blob: eab3ec332ee828624fe6d2fcdca14ff4feb9bdcd [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
Christopher Lamb6f9fad52007-08-02 01:18:14 +000021#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
Owen Anderson37f3ffb2008-02-17 21:29:08 +000024#include "llvm/IntrinsicInst.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/Pass.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
Owen Anderson1636de92007-09-07 04:06:50 +000028#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029#include "llvm/Support/Compiler.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include <algorithm>
33using namespace llvm;
34
35namespace {
36 /// NoAA - This class implements the -no-aa pass, which always returns "I
37 /// don't know" for alias queries. NoAA is unlike other alias analysis
38 /// implementations, in that it does not chain to a previous analysis. As
39 /// such it doesn't follow many of the rules that other alias analyses must.
40 ///
41 struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
42 static char ID; // Class identification, replacement for typeinfo
43 NoAA() : ImmutablePass((intptr_t)&ID) {}
44 explicit NoAA(intptr_t PID) : ImmutablePass(PID) { }
45
46 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
47 AU.addRequired<TargetData>();
48 }
49
50 virtual void initializePass() {
51 TD = &getAnalysis<TargetData>();
52 }
53
54 virtual AliasResult alias(const Value *V1, unsigned V1Size,
55 const Value *V2, unsigned V2Size) {
56 return MayAlias;
57 }
58
59 virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
60 std::vector<PointerAccessInfo> *Info) {
61 return UnknownModRefBehavior;
62 }
63
64 virtual void getArgumentAccesses(Function *F, CallSite CS,
65 std::vector<PointerAccessInfo> &Info) {
66 assert(0 && "This method may not be called on this function!");
67 }
68
69 virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
70 virtual bool pointsToConstantMemory(const Value *P) { return false; }
71 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
72 return ModRef;
73 }
74 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
75 return ModRef;
76 }
77 virtual bool hasNoModRefInfoForCalls() const { return true; }
78
79 virtual void deleteValue(Value *V) {}
80 virtual void copyValue(Value *From, Value *To) {}
81 };
82
83 // Register this pass...
84 char NoAA::ID = 0;
85 RegisterPass<NoAA>
Devang Patel3aab76e2008-03-19 21:56:59 +000086 U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087
88 // Declare that we implement the AliasAnalysis interface
89 RegisterAnalysisGroup<AliasAnalysis> V(U);
90} // End of anonymous namespace
91
92ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
93
94namespace {
95 /// BasicAliasAnalysis - This is the default alias analysis implementation.
96 /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
97 /// derives from the NoAA class.
98 struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
99 static char ID; // Class identification, replacement for typeinfo
100 BasicAliasAnalysis() : NoAA((intptr_t)&ID) { }
101 AliasResult alias(const Value *V1, unsigned V1Size,
102 const Value *V2, unsigned V2Size);
103
104 ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
105 ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
106 return NoAA::getModRefInfo(CS1,CS2);
107 }
108
109 /// hasNoModRefInfoForCalls - We can provide mod/ref information against
110 /// non-escaping allocations.
111 virtual bool hasNoModRefInfoForCalls() const { return false; }
112
113 /// pointsToConstantMemory - Chase pointers until we find a (constant
114 /// global) or not.
115 bool pointsToConstantMemory(const Value *P);
116
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117 private:
118 // CheckGEPInstructions - Check two GEP instructions with known
119 // must-aliasing base pointers. This checks to see if the index expressions
120 // preclude the pointers from aliasing...
121 AliasResult
122 CheckGEPInstructions(const Type* BasePtr1Ty,
123 Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
124 const Type *BasePtr2Ty,
125 Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
126 };
127
128 // Register this pass...
129 char BasicAliasAnalysis::ID = 0;
130 RegisterPass<BasicAliasAnalysis>
Devang Patel3aab76e2008-03-19 21:56:59 +0000131 X("basicaa", "Basic Alias Analysis (default AA impl)", true, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000132
133 // Declare that we implement the AliasAnalysis interface
134 RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
135} // End of anonymous namespace
136
137ImmutablePass *llvm::createBasicAliasAnalysisPass() {
138 return new BasicAliasAnalysis();
139}
140
Chris Lattner9603f432008-01-24 18:00:32 +0000141/// getUnderlyingObject - This traverses the use chain to figure out what object
142/// the specified value points to. If the value points to, or is derived from,
143/// a unique object or an argument, return it. This returns:
144/// Arguments, GlobalVariables, Functions, Allocas, Mallocs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145static const Value *getUnderlyingObject(const Value *V) {
146 if (!isa<PointerType>(V->getType())) return 0;
147
148 // If we are at some type of object, return it. GlobalValues and Allocations
149 // have unique addresses.
150 if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isa<Argument>(V))
151 return V;
152
153 // Traverse through different addressing mechanisms...
154 if (const Instruction *I = dyn_cast<Instruction>(V)) {
155 if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
156 return getUnderlyingObject(I->getOperand(0));
157 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
158 if (CE->getOpcode() == Instruction::BitCast ||
159 CE->getOpcode() == Instruction::GetElementPtr)
160 return getUnderlyingObject(CE->getOperand(0));
161 }
162 return 0;
163}
164
165static const User *isGEP(const Value *V) {
166 if (isa<GetElementPtrInst>(V) ||
167 (isa<ConstantExpr>(V) &&
168 cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
169 return cast<User>(V);
170 return 0;
171}
172
173static const Value *GetGEPOperands(const Value *V,
174 SmallVector<Value*, 16> &GEPOps){
175 assert(GEPOps.empty() && "Expect empty list to populate!");
176 GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
177 cast<User>(V)->op_end());
178
179 // Accumulate all of the chained indexes into the operand array
180 V = cast<User>(V)->getOperand(0);
181
182 while (const User *G = isGEP(V)) {
183 if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
184 !cast<Constant>(GEPOps[0])->isNullValue())
185 break; // Don't handle folding arbitrary pointer offsets yet...
186 GEPOps.erase(GEPOps.begin()); // Drop the zero index
187 GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
188 V = G->getOperand(0);
189 }
190 return V;
191}
192
193/// pointsToConstantMemory - Chase pointers until we find a (constant
194/// global) or not.
195bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
196 if (const Value *V = getUnderlyingObject(P))
197 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
198 return GV->isConstant();
199 return false;
200}
201
202// Determine if an AllocationInst instruction escapes from the function it is
203// contained in. If it does not escape, there is no way for another function to
204// mod/ref it. We do this by looking at its uses and determining if the uses
205// can escape (recursively).
206static bool AddressMightEscape(const Value *V) {
207 for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
208 UI != E; ++UI) {
209 const Instruction *I = cast<Instruction>(*UI);
210 switch (I->getOpcode()) {
211 case Instruction::Load:
212 break; //next use.
213 case Instruction::Store:
214 if (I->getOperand(0) == V)
215 return true; // Escapes if the pointer is stored.
216 break; // next use.
217 case Instruction::GetElementPtr:
218 if (AddressMightEscape(I))
219 return true;
Evan Cheng2e9830d2007-09-05 21:36:14 +0000220 break; // next use.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000221 case Instruction::BitCast:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000222 if (AddressMightEscape(I))
223 return true;
224 break; // next use
225 case Instruction::Ret:
226 // If returned, the address will escape to calling functions, but no
227 // callees could modify it.
228 break; // next use
Owen Anderson37f3ffb2008-02-17 21:29:08 +0000229 case Instruction::Call:
230 // If the call is to a few known safe intrinsics, we know that it does
231 // not escape
Chris Lattner4a27ab82008-02-18 02:11:28 +0000232 if (!isa<MemIntrinsic>(I))
Owen Anderson37f3ffb2008-02-17 21:29:08 +0000233 return true;
Chris Lattner4a27ab82008-02-18 02:11:28 +0000234 break; // next use
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 default:
236 return true;
237 }
238 }
239 return false;
240}
241
242// getModRefInfo - Check to see if the specified callsite can clobber the
243// specified memory object. Since we only look at local properties of this
244// function, we really can't say much about this query. We do, however, use
245// simple "address taken" analysis on local objects.
246//
247AliasAnalysis::ModRefResult
248BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
Chris Lattner9603f432008-01-24 18:00:32 +0000249 if (!isa<Constant>(P)) {
250 const Value *Object = getUnderlyingObject(P);
251 // Allocations and byval arguments are "new" objects.
Chris Lattner36d0a1f2008-01-24 19:07:10 +0000252 if (Object &&
Owen Anderson34f007e2008-02-18 02:31:23 +0000253 (isa<AllocationInst>(Object) || isa<Argument>(Object))) {
Owen Anderson37f3ffb2008-02-17 21:29:08 +0000254 // Okay, the pointer is to a stack allocated (or effectively so, for
Owen Andersonf8e7e842008-02-18 03:52:21 +0000255 // for noalias parameters) object. If the address of this object doesn't
256 // escape from this function body to a callee, then we know that no
257 // callees can mod/ref it unless they are actually passed it.
Owen Anderson34f007e2008-02-18 02:31:23 +0000258 if (isa<AllocationInst>(Object) ||
259 cast<Argument>(Object)->hasByValAttr() ||
260 cast<Argument>(Object)->hasNoAliasAttr())
261 if (!AddressMightEscape(Object)) {
Owen Andersonf8e7e842008-02-18 03:52:21 +0000262 bool passedAsArg = false;
Owen Anderson34f007e2008-02-18 02:31:23 +0000263 for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
264 CI != CE; ++CI)
Chris Lattnera9ebe5b2008-02-18 17:28:21 +0000265 if (isa<PointerType>((*CI)->getType()) &&
Owen Anderson9ff88842008-02-19 06:47:18 +0000266 ( getUnderlyingObject(*CI) == P ||
Duncan Sands4a287b12008-02-19 09:28:48 +0000267 alias(cast<Value>(CI), ~0UL, P, ~0UL) != NoAlias) )
Owen Andersonf8e7e842008-02-18 03:52:21 +0000268 passedAsArg = true;
269
270 if (!passedAsArg)
271 return NoModRef;
Owen Anderson34f007e2008-02-18 02:31:23 +0000272 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273
274 // If this is a tail call and P points to a stack location, we know that
275 // the tail call cannot access or modify the local stack.
Owen Anderson528ef0d2008-02-18 09:11:02 +0000276 if (isa<AllocaInst>(Object) ||
Owen Anderson3b7b3ed2008-02-18 10:11:00 +0000277 (isa<Argument>(Object) && cast<Argument>(Object)->hasByValAttr()))
Owen Anderson34f007e2008-02-18 02:31:23 +0000278 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
Owen Anderson528ef0d2008-02-18 09:11:02 +0000279 if (CI->isTailCall())
Owen Anderson34f007e2008-02-18 02:31:23 +0000280 return NoModRef;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000281 }
Chris Lattner9603f432008-01-24 18:00:32 +0000282 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000283
284 // The AliasAnalysis base class has some smarts, lets use them.
285 return AliasAnalysis::getModRefInfo(CS, P, Size);
286}
287
288// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
289// as array references. Note that this function is heavily tail recursive.
290// Hopefully we have a smart C++ compiler. :)
291//
292AliasAnalysis::AliasResult
293BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
294 const Value *V2, unsigned V2Size) {
295 // Strip off any constant expression casts if they exist
296 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
297 if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
298 V1 = CE->getOperand(0);
299 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
300 if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
301 V2 = CE->getOperand(0);
302
303 // Are we checking for alias of the same value?
304 if (V1 == V2) return MustAlias;
305
306 if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
307 V1->getType() != Type::Int64Ty && V2->getType() != Type::Int64Ty)
308 return NoAlias; // Scalars cannot alias each other
309
310 // Strip off cast instructions...
311 if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
312 return alias(I->getOperand(0), V1Size, V2, V2Size);
313 if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
314 return alias(V1, V1Size, I->getOperand(0), V2Size);
315
316 // Figure out what objects these things are pointing to if we can...
317 const Value *O1 = getUnderlyingObject(V1);
318 const Value *O2 = getUnderlyingObject(V2);
319
320 // Pointing at a discernible object?
321 if (O1) {
322 if (O2) {
Christopher Lambcd533cf2007-08-02 17:52:00 +0000323 if (const Argument *O1Arg = dyn_cast<Argument>(O1)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000324 // Incoming argument cannot alias locally allocated object!
325 if (isa<AllocationInst>(O2)) return NoAlias;
Christopher Lamb6f9fad52007-08-02 01:18:14 +0000326
327 // If they are two different objects, and one is a noalias argument
328 // then they do not alias.
Chris Lattner9603f432008-01-24 18:00:32 +0000329 if (O1 != O2 && O1Arg->hasNoAliasAttr())
Christopher Lamb6f9fad52007-08-02 01:18:14 +0000330 return NoAlias;
Chris Lattner9603f432008-01-24 18:00:32 +0000331
332 // Byval arguments can't alias globals or other arguments.
333 if (O1 != O2 && O1Arg->hasByValAttr()) return NoAlias;
334
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335 // Otherwise, nothing is known...
Christopher Lamb6f9fad52007-08-02 01:18:14 +0000336 }
337
Christopher Lambcd533cf2007-08-02 17:52:00 +0000338 if (const Argument *O2Arg = dyn_cast<Argument>(O2)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000339 // Incoming argument cannot alias locally allocated object!
340 if (isa<AllocationInst>(O1)) return NoAlias;
Christopher Lamb6f9fad52007-08-02 01:18:14 +0000341
342 // If they are two different objects, and one is a noalias argument
343 // then they do not alias.
Chris Lattner9603f432008-01-24 18:00:32 +0000344 if (O1 != O2 && O2Arg->hasNoAliasAttr())
Christopher Lamb6f9fad52007-08-02 01:18:14 +0000345 return NoAlias;
346
Chris Lattner9603f432008-01-24 18:00:32 +0000347 // Byval arguments can't alias globals or other arguments.
348 if (O1 != O2 && O2Arg->hasByValAttr()) return NoAlias;
349
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000350 // Otherwise, nothing is known...
Owen Andersoncd935022007-10-26 03:47:14 +0000351
Chris Lattner9603f432008-01-24 18:00:32 +0000352 } else if (O1 != O2 && !isa<Argument>(O1)) {
353 // If they are two different objects, and neither is an argument,
354 // we know that we have no alias.
355 return NoAlias;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000356 }
Christopher Lambd5fcd572007-07-31 16:18:07 +0000357
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000358 // If they are the same object, they we can look at the indexes. If they
359 // index off of the object is the same for both pointers, they must alias.
360 // If they are provably different, they must not alias. Otherwise, we
361 // can't tell anything.
362 }
363
Chris Lattner9603f432008-01-24 18:00:32 +0000364 // Unique values don't alias null, except non-byval arguments.
365 if (isa<ConstantPointerNull>(V2)) {
366 if (const Argument *O1Arg = dyn_cast<Argument>(O1)) {
367 if (O1Arg->hasByValAttr())
368 return NoAlias;
369 } else {
370 return NoAlias;
371 }
372 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000373
374 if (isa<GlobalVariable>(O1) ||
375 (isa<AllocationInst>(O1) &&
376 !cast<AllocationInst>(O1)->isArrayAllocation()))
377 if (cast<PointerType>(O1->getType())->getElementType()->isSized()) {
378 // If the size of the other access is larger than the total size of the
379 // global/alloca/malloc, it cannot be accessing the global (it's
380 // undefined to load or store bytes before or after an object).
381 const Type *ElTy = cast<PointerType>(O1->getType())->getElementType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000382 unsigned GlobalSize = getTargetData().getABITypeSize(ElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000383 if (GlobalSize < V2Size && V2Size != ~0U)
384 return NoAlias;
385 }
386 }
387
388 if (O2) {
389 if (!isa<Argument>(O2) && isa<ConstantPointerNull>(V1))
390 return NoAlias; // Unique values don't alias null
391
392 if (isa<GlobalVariable>(O2) ||
393 (isa<AllocationInst>(O2) &&
394 !cast<AllocationInst>(O2)->isArrayAllocation()))
395 if (cast<PointerType>(O2->getType())->getElementType()->isSized()) {
396 // If the size of the other access is larger than the total size of the
397 // global/alloca/malloc, it cannot be accessing the object (it's
398 // undefined to load or store bytes before or after an object).
399 const Type *ElTy = cast<PointerType>(O2->getType())->getElementType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000400 unsigned GlobalSize = getTargetData().getABITypeSize(ElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000401 if (GlobalSize < V1Size && V1Size != ~0U)
402 return NoAlias;
403 }
404 }
405
406 // If we have two gep instructions with must-alias'ing base pointers, figure
407 // out if the indexes to the GEP tell us anything about the derived pointer.
408 // Note that we also handle chains of getelementptr instructions as well as
409 // constant expression getelementptrs here.
410 //
411 if (isGEP(V1) && isGEP(V2)) {
412 // Drill down into the first non-gep value, to test for must-aliasing of
413 // the base pointers.
Wojciech Matyjewicz170707f2007-12-13 16:22:58 +0000414 const User *G = cast<User>(V1);
415 while (isGEP(G->getOperand(0)) &&
416 G->getOperand(1) ==
417 Constant::getNullValue(G->getOperand(1)->getType()))
418 G = cast<User>(G->getOperand(0));
419 const Value *BasePtr1 = G->getOperand(0);
420
421 G = cast<User>(V2);
422 while (isGEP(G->getOperand(0)) &&
423 G->getOperand(1) ==
424 Constant::getNullValue(G->getOperand(1)->getType()))
425 G = cast<User>(G->getOperand(0));
426 const Value *BasePtr2 = G->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000427
428 // Do the base pointers alias?
429 AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
430 if (BaseAlias == NoAlias) return NoAlias;
431 if (BaseAlias == MustAlias) {
432 // If the base pointers alias each other exactly, check to see if we can
433 // figure out anything about the resultant pointers, to try to prove
434 // non-aliasing.
435
436 // Collect all of the chained GEP operands together into one simple place
437 SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
438 BasePtr1 = GetGEPOperands(V1, GEP1Ops);
439 BasePtr2 = GetGEPOperands(V2, GEP2Ops);
440
441 // If GetGEPOperands were able to fold to the same must-aliased pointer,
442 // do the comparison.
443 if (BasePtr1 == BasePtr2) {
444 AliasResult GAlias =
445 CheckGEPInstructions(BasePtr1->getType(),
446 &GEP1Ops[0], GEP1Ops.size(), V1Size,
447 BasePtr2->getType(),
448 &GEP2Ops[0], GEP2Ops.size(), V2Size);
449 if (GAlias != MayAlias)
450 return GAlias;
451 }
452 }
453 }
454
455 // Check to see if these two pointers are related by a getelementptr
456 // instruction. If one pointer is a GEP with a non-zero index of the other
457 // pointer, we know they cannot alias.
458 //
459 if (isGEP(V2)) {
460 std::swap(V1, V2);
461 std::swap(V1Size, V2Size);
462 }
463
464 if (V1Size != ~0U && V2Size != ~0U)
465 if (isGEP(V1)) {
466 SmallVector<Value*, 16> GEPOperands;
467 const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
468
469 AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
470 if (R == MustAlias) {
471 // If there is at least one non-zero constant index, we know they cannot
472 // alias.
473 bool ConstantFound = false;
474 bool AllZerosFound = true;
475 for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
476 if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
477 if (!C->isNullValue()) {
478 ConstantFound = true;
479 AllZerosFound = false;
480 break;
481 }
482 } else {
483 AllZerosFound = false;
484 }
485
486 // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
487 // the ptr, the end result is a must alias also.
488 if (AllZerosFound)
489 return MustAlias;
490
491 if (ConstantFound) {
492 if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
493 return NoAlias;
494
495 // Otherwise we have to check to see that the distance is more than
496 // the size of the argument... build an index vector that is equal to
497 // the arguments provided, except substitute 0's for any variable
498 // indexes we find...
499 if (cast<PointerType>(
500 BasePtr->getType())->getElementType()->isSized()) {
501 for (unsigned i = 0; i != GEPOperands.size(); ++i)
502 if (!isa<ConstantInt>(GEPOperands[i]))
503 GEPOperands[i] =
504 Constant::getNullValue(GEPOperands[i]->getType());
505 int64_t Offset =
506 getTargetData().getIndexedOffset(BasePtr->getType(),
507 &GEPOperands[0],
508 GEPOperands.size());
509
510 if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
511 return NoAlias;
512 }
513 }
514 }
515 }
516
517 return MayAlias;
518}
519
520// This function is used to determin if the indices of two GEP instructions are
521// equal. V1 and V2 are the indices.
522static bool IndexOperandsEqual(Value *V1, Value *V2) {
523 if (V1->getType() == V2->getType())
524 return V1 == V2;
525 if (Constant *C1 = dyn_cast<Constant>(V1))
526 if (Constant *C2 = dyn_cast<Constant>(V2)) {
527 // Sign extend the constants to long types, if necessary
528 if (C1->getType() != Type::Int64Ty)
529 C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
530 if (C2->getType() != Type::Int64Ty)
531 C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
532 return C1 == C2;
533 }
534 return false;
535}
536
537/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
538/// base pointers. This checks to see if the index expressions preclude the
539/// pointers from aliasing...
540AliasAnalysis::AliasResult
541BasicAliasAnalysis::CheckGEPInstructions(
542 const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
543 const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
544 // We currently can't handle the case when the base pointers have different
545 // primitive types. Since this is uncommon anyway, we are happy being
546 // extremely conservative.
547 if (BasePtr1Ty != BasePtr2Ty)
548 return MayAlias;
549
550 const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
551
552 // Find the (possibly empty) initial sequence of equal values... which are not
553 // necessarily constants.
554 unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
555 unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
556 unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
557 unsigned UnequalOper = 0;
558 while (UnequalOper != MinOperands &&
559 IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
560 // Advance through the type as we go...
561 ++UnequalOper;
562 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
563 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
564 else {
565 // If all operands equal each other, then the derived pointers must
566 // alias each other...
567 BasePtr1Ty = 0;
568 assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
569 "Ran out of type nesting, but not out of operands?");
570 return MustAlias;
571 }
572 }
573
574 // If we have seen all constant operands, and run out of indexes on one of the
575 // getelementptrs, check to see if the tail of the leftover one is all zeros.
576 // If so, return mustalias.
577 if (UnequalOper == MinOperands) {
578 if (NumGEP1Ops < NumGEP2Ops) {
579 std::swap(GEP1Ops, GEP2Ops);
580 std::swap(NumGEP1Ops, NumGEP2Ops);
581 }
582
583 bool AllAreZeros = true;
584 for (unsigned i = UnequalOper; i != MaxOperands; ++i)
585 if (!isa<Constant>(GEP1Ops[i]) ||
586 !cast<Constant>(GEP1Ops[i])->isNullValue()) {
587 AllAreZeros = false;
588 break;
589 }
590 if (AllAreZeros) return MustAlias;
591 }
592
593
594 // So now we know that the indexes derived from the base pointers,
595 // which are known to alias, are different. We can still determine a
596 // no-alias result if there are differing constant pairs in the index
597 // chain. For example:
598 // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
599 //
600 // We have to be careful here about array accesses. In particular, consider:
601 // A[1][0] vs A[0][i]
602 // In this case, we don't *know* that the array will be accessed in bounds:
603 // the index could even be negative. Because of this, we have to
604 // conservatively *give up* and return may alias. We disregard differing
605 // array subscripts that are followed by a variable index without going
606 // through a struct.
607 //
608 unsigned SizeMax = std::max(G1S, G2S);
609 if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
610
611 // Scan for the first operand that is constant and unequal in the
612 // two getelementptrs...
613 unsigned FirstConstantOper = UnequalOper;
614 for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
615 const Value *G1Oper = GEP1Ops[FirstConstantOper];
616 const Value *G2Oper = GEP2Ops[FirstConstantOper];
617
618 if (G1Oper != G2Oper) // Found non-equal constant indexes...
619 if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
620 if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
621 if (G1OC->getType() != G2OC->getType()) {
622 // Sign extend both operands to long.
623 if (G1OC->getType() != Type::Int64Ty)
624 G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
625 if (G2OC->getType() != Type::Int64Ty)
626 G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
627 GEP1Ops[FirstConstantOper] = G1OC;
628 GEP2Ops[FirstConstantOper] = G2OC;
629 }
630
631 if (G1OC != G2OC) {
632 // Handle the "be careful" case above: if this is an array/vector
633 // subscript, scan for a subsequent variable array index.
634 if (isa<SequentialType>(BasePtr1Ty)) {
635 const Type *NextTy =
636 cast<SequentialType>(BasePtr1Ty)->getElementType();
637 bool isBadCase = false;
638
639 for (unsigned Idx = FirstConstantOper+1;
640 Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
641 const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
642 if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
643 isBadCase = true;
644 break;
645 }
646 NextTy = cast<SequentialType>(NextTy)->getElementType();
647 }
648
649 if (isBadCase) G1OC = 0;
650 }
651
652 // Make sure they are comparable (ie, not constant expressions), and
653 // make sure the GEP with the smaller leading constant is GEP1.
654 if (G1OC) {
655 Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
656 G1OC, G2OC);
657 if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
658 if (CV->getZExtValue()) { // If they are comparable and G2 > G1
659 std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
660 std::swap(NumGEP1Ops, NumGEP2Ops);
661 }
662 break;
663 }
664 }
665 }
666 }
667 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
668 }
669
670 // No shared constant operands, and we ran out of common operands. At this
671 // point, the GEP instructions have run through all of their operands, and we
672 // haven't found evidence that there are any deltas between the GEP's.
673 // However, one GEP may have more operands than the other. If this is the
674 // case, there may still be hope. Check this now.
675 if (FirstConstantOper == MinOperands) {
676 // Make GEP1Ops be the longer one if there is a longer one.
677 if (NumGEP1Ops < NumGEP2Ops) {
678 std::swap(GEP1Ops, GEP2Ops);
679 std::swap(NumGEP1Ops, NumGEP2Ops);
680 }
681
682 // Is there anything to check?
683 if (NumGEP1Ops > MinOperands) {
684 for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
685 if (isa<ConstantInt>(GEP1Ops[i]) &&
686 !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
687 // Yup, there's a constant in the tail. Set all variables to
688 // constants in the GEP instruction to make it suiteable for
689 // TargetData::getIndexedOffset.
690 for (i = 0; i != MaxOperands; ++i)
691 if (!isa<ConstantInt>(GEP1Ops[i]))
692 GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
693 // Okay, now get the offset. This is the relative offset for the full
694 // instruction.
695 const TargetData &TD = getTargetData();
696 int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
697 NumGEP1Ops);
698
699 // Now check without any constants at the end.
700 int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
701 MinOperands);
702
703 // If the tail provided a bit enough offset, return noalias!
704 if ((uint64_t)(Offset2-Offset1) >= SizeMax)
705 return NoAlias;
706 }
707 }
708
709 // Couldn't find anything useful.
710 return MayAlias;
711 }
712
713 // If there are non-equal constants arguments, then we can figure
714 // out a minimum known delta between the two index expressions... at
715 // this point we know that the first constant index of GEP1 is less
716 // than the first constant index of GEP2.
717
718 // Advance BasePtr[12]Ty over this first differing constant operand.
719 BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
720 getTypeAtIndex(GEP2Ops[FirstConstantOper]);
721 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
722 getTypeAtIndex(GEP1Ops[FirstConstantOper]);
723
724 // We are going to be using TargetData::getIndexedOffset to determine the
725 // offset that each of the GEP's is reaching. To do this, we have to convert
726 // all variable references to constant references. To do this, we convert the
727 // initial sequence of array subscripts into constant zeros to start with.
728 const Type *ZeroIdxTy = GEPPointerTy;
729 for (unsigned i = 0; i != FirstConstantOper; ++i) {
730 if (!isa<StructType>(ZeroIdxTy))
731 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
732
733 if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
734 ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
735 }
736
737 // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
738
739 // Loop over the rest of the operands...
740 for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
741 const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
742 const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
743 // If they are equal, use a zero index...
744 if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
745 if (!isa<ConstantInt>(Op1))
746 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
747 // Otherwise, just keep the constants we have.
748 } else {
749 if (Op1) {
750 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
751 // If this is an array index, make sure the array element is in range.
752 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
753 if (Op1C->getZExtValue() >= AT->getNumElements())
754 return MayAlias; // Be conservative with out-of-range accesses
Chris Lattnereaf7b232007-12-09 07:35:13 +0000755 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
756 if (Op1C->getZExtValue() >= VT->getNumElements())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757 return MayAlias; // Be conservative with out-of-range accesses
758 }
759
760 } else {
761 // GEP1 is known to produce a value less than GEP2. To be
762 // conservatively correct, we must assume the largest possible
763 // constant is used in this position. This cannot be the initial
764 // index to the GEP instructions (because we know we have at least one
765 // element before this one with the different constant arguments), so
766 // we know that the current index must be into either a struct or
767 // array. Because we know it's not constant, this cannot be a
768 // structure index. Because of this, we can calculate the maximum
769 // value possible.
770 //
771 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
772 GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000773 else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
774 GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000775 }
776 }
777
778 if (Op2) {
779 if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
780 // If this is an array index, make sure the array element is in range.
Chris Lattnereaf7b232007-12-09 07:35:13 +0000781 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000782 if (Op2C->getZExtValue() >= AT->getNumElements())
783 return MayAlias; // Be conservative with out-of-range accesses
Chris Lattnereaf7b232007-12-09 07:35:13 +0000784 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000785 if (Op2C->getZExtValue() >= VT->getNumElements())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000786 return MayAlias; // Be conservative with out-of-range accesses
787 }
788 } else { // Conservatively assume the minimum value for this index
789 GEP2Ops[i] = Constant::getNullValue(Op2->getType());
790 }
791 }
792 }
793
794 if (BasePtr1Ty && Op1) {
795 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
796 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
797 else
798 BasePtr1Ty = 0;
799 }
800
801 if (BasePtr2Ty && Op2) {
802 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
803 BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
804 else
805 BasePtr2Ty = 0;
806 }
807 }
808
809 if (GEPPointerTy->getElementType()->isSized()) {
810 int64_t Offset1 =
811 getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
812 int64_t Offset2 =
813 getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
Chris Lattnerc0656ad2007-11-06 05:58:42 +0000814 assert(Offset1 != Offset2 &&
815 "There is at least one different constant here!");
816
817 // Make sure we compare the absolute difference.
818 if (Offset1 > Offset2)
819 std::swap(Offset1, Offset2);
820
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000821 if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
822 //cerr << "Determined that these two GEP's don't alias ["
823 // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
824 return NoAlias;
825 }
826 }
827 return MayAlias;
828}
829
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000830// Make sure that anything that uses AliasAnalysis pulls in this file...
831DEFINING_FILE_FOR(BasicAliasAnalysis)