blob: bc5df9cf47907f5b304147349449df27409af99b [file] [log] [blame]
Zhou Shengfd43dcf2007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengfd43dcf2007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencer5d0d05c2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengfd43dcf2007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
Reid Spencer9d6c9192007-02-24 03:58:46 +000015#define DEBUG_TYPE "apint"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000016#include "llvm/ADT/APInt.h"
Ted Kremeneke420deb2008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Reid Spencer9d6c9192007-02-24 03:58:46 +000018#include "llvm/Support/Debug.h"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000019#include "llvm/Support/MathExtras.h"
Jeff Cohenca5183d2007-03-05 00:00:42 +000020#include <math.h>
Jeff Cohen09dfd8e2007-03-20 20:42:36 +000021#include <limits>
Zhou Shenga3832fd2007-02-07 06:14:53 +000022#include <cstring>
Zhou Shengfd43dcf2007-02-06 03:00:16 +000023#include <cstdlib>
Reid Spencer385f7542007-02-21 03:55:44 +000024#include <iomanip>
Reid Spencer385f7542007-02-21 03:55:44 +000025
Zhou Shengfd43dcf2007-02-06 03:00:16 +000026using namespace llvm;
27
Reid Spencer9af18872007-12-11 06:53:58 +000028/// This enumeration just provides for internal constants used in this
29/// translation unit.
30enum {
31 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
32 ///< Note that this must remain synchronized with IntegerType::MIN_INT_BITS
33 MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
34 ///< Note that this must remain synchronized with IntegerType::MAX_INT_BITS
35};
36
Reid Spencer5d0d05c2007-02-25 19:32:03 +000037/// A utility function for allocating memory, checking for allocation failures,
38/// and ensuring the contents are zeroed.
Reid Spenceraf0e9562007-02-18 18:38:44 +000039inline static uint64_t* getClearedMemory(uint32_t numWords) {
40 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 memset(result, 0, numWords * sizeof(uint64_t));
43 return result;
Zhou Sheng353815d2007-02-06 06:04:53 +000044}
45
Reid Spencer5d0d05c2007-02-25 19:32:03 +000046/// A utility function for allocating memory and checking for allocation
47/// failure. The content is not zeroed.
Reid Spenceraf0e9562007-02-18 18:38:44 +000048inline static uint64_t* getMemory(uint32_t numWords) {
49 uint64_t * result = new uint64_t[numWords];
50 assert(result && "APInt memory allocation fails!");
51 return result;
52}
53
Reid Spenceradf2a202007-03-19 21:19:02 +000054APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned)
Reid Spencer3a341372007-03-19 20:37:47 +000055 : BitWidth(numBits), VAL(0) {
Reid Spencer9af18872007-12-11 06:53:58 +000056 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
57 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Reid Spencer5d0d05c2007-02-25 19:32:03 +000058 if (isSingleWord())
59 VAL = val;
Zhou Shengfd43dcf2007-02-06 03:00:16 +000060 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +000061 pVal = getClearedMemory(getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +000062 pVal[0] = val;
Reid Spencer3a341372007-03-19 20:37:47 +000063 if (isSigned && int64_t(val) < 0)
64 for (unsigned i = 1; i < getNumWords(); ++i)
65 pVal[i] = -1ULL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +000066 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +000067 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +000068}
69
Dale Johannesen910993e2007-09-21 22:09:37 +000070APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[])
Reid Spencer385f7542007-02-21 03:55:44 +000071 : BitWidth(numBits), VAL(0) {
Reid Spencer9af18872007-12-11 06:53:58 +000072 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
73 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Zhou Shengfd43dcf2007-02-06 03:00:16 +000074 assert(bigVal && "Null pointer detected!");
75 if (isSingleWord())
Reid Spencer610fad82007-02-24 10:01:42 +000076 VAL = bigVal[0];
Zhou Shengfd43dcf2007-02-06 03:00:16 +000077 else {
Reid Spencer610fad82007-02-24 10:01:42 +000078 // Get memory, cleared to 0
79 pVal = getClearedMemory(getNumWords());
80 // Calculate the number of words to copy
81 uint32_t words = std::min<uint32_t>(numWords, getNumWords());
82 // Copy the words from bigVal to pVal
83 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +000084 }
Reid Spencer610fad82007-02-24 10:01:42 +000085 // Make sure unused high bits are cleared
86 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +000087}
88
Reid Spenceraf0e9562007-02-18 18:38:44 +000089APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
Reid Spencer9c0696f2007-02-20 08:51:03 +000090 uint8_t radix)
Reid Spencer385f7542007-02-21 03:55:44 +000091 : BitWidth(numbits), VAL(0) {
Reid Spencer9af18872007-12-11 06:53:58 +000092 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
93 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Reid Spencere81d2da2007-02-16 22:36:51 +000094 fromString(numbits, StrStart, slen, radix);
Zhou Shenga3832fd2007-02-07 06:14:53 +000095}
96
Reid Spencer9c0696f2007-02-20 08:51:03 +000097APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
Reid Spencer385f7542007-02-21 03:55:44 +000098 : BitWidth(numbits), VAL(0) {
Reid Spencer9af18872007-12-11 06:53:58 +000099 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
100 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Zhou Shenga3832fd2007-02-07 06:14:53 +0000101 assert(!Val.empty() && "String empty?");
Reid Spencere81d2da2007-02-16 22:36:51 +0000102 fromString(numbits, Val.c_str(), Val.size(), radix);
Zhou Shenga3832fd2007-02-07 06:14:53 +0000103}
104
Reid Spencer54362ca2007-02-20 23:40:25 +0000105APInt::APInt(const APInt& that)
Reid Spencer385f7542007-02-21 03:55:44 +0000106 : BitWidth(that.BitWidth), VAL(0) {
Reid Spencer9af18872007-12-11 06:53:58 +0000107 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
108 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Reid Spenceraf0e9562007-02-18 18:38:44 +0000109 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000110 VAL = that.VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000111 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000112 pVal = getMemory(getNumWords());
Reid Spencer54362ca2007-02-20 23:40:25 +0000113 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000114 }
115}
116
117APInt::~APInt() {
Reid Spencer9c0696f2007-02-20 08:51:03 +0000118 if (!isSingleWord() && pVal)
Reid Spencer9ac44112007-02-26 23:38:21 +0000119 delete [] pVal;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000120}
121
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000122APInt& APInt::operator=(const APInt& RHS) {
Reid Spencer9ac44112007-02-26 23:38:21 +0000123 // Don't do anything for X = X
124 if (this == &RHS)
125 return *this;
126
127 // If the bitwidths are the same, we can avoid mucking with memory
128 if (BitWidth == RHS.getBitWidth()) {
129 if (isSingleWord())
130 VAL = RHS.VAL;
131 else
132 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
133 return *this;
134 }
135
136 if (isSingleWord())
137 if (RHS.isSingleWord())
138 VAL = RHS.VAL;
139 else {
140 VAL = 0;
141 pVal = getMemory(RHS.getNumWords());
142 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
143 }
144 else if (getNumWords() == RHS.getNumWords())
145 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
146 else if (RHS.isSingleWord()) {
147 delete [] pVal;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000148 VAL = RHS.VAL;
Reid Spencer9ac44112007-02-26 23:38:21 +0000149 } else {
150 delete [] pVal;
151 pVal = getMemory(RHS.getNumWords());
152 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
153 }
154 BitWidth = RHS.BitWidth;
155 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000156}
157
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000158APInt& APInt::operator=(uint64_t RHS) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000159 if (isSingleWord())
160 VAL = RHS;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000161 else {
162 pVal[0] = RHS;
Reid Spencera58f0582007-02-18 20:09:41 +0000163 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000164 }
Reid Spencer9ac44112007-02-26 23:38:21 +0000165 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000166}
167
Ted Kremeneke420deb2008-01-19 04:23:33 +0000168/// Profile - This method 'profiles' an APInt for use with FoldingSet.
169void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremeneka795aca2008-02-19 20:50:41 +0000170 ID.AddInteger(BitWidth);
171
Ted Kremeneke420deb2008-01-19 04:23:33 +0000172 if (isSingleWord()) {
173 ID.AddInteger(VAL);
174 return;
175 }
176
177 uint32_t NumWords = getNumWords();
178 for (unsigned i = 0; i < NumWords; ++i)
179 ID.AddInteger(pVal[i]);
180}
181
Reid Spenceraf0e9562007-02-18 18:38:44 +0000182/// add_1 - This function adds a single "digit" integer, y, to the multiple
183/// "digit" integer array, x[]. x[] is modified to reflect the addition and
184/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000185/// @returns the carry of the addition.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000186static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000187 for (uint32_t i = 0; i < len; ++i) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000188 dest[i] = y + x[i];
189 if (dest[i] < y)
Reid Spencer610fad82007-02-24 10:01:42 +0000190 y = 1; // Carry one to next digit.
Reid Spencerf2c521c2007-02-18 06:39:42 +0000191 else {
Reid Spencer610fad82007-02-24 10:01:42 +0000192 y = 0; // No need to carry so exit early
Reid Spencerf2c521c2007-02-18 06:39:42 +0000193 break;
194 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000195 }
Reid Spencerf2c521c2007-02-18 06:39:42 +0000196 return y;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000197}
198
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000199/// @brief Prefix increment operator. Increments the APInt by one.
200APInt& APInt::operator++() {
Reid Spencere81d2da2007-02-16 22:36:51 +0000201 if (isSingleWord())
202 ++VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000203 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000204 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000205 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000206}
207
Reid Spenceraf0e9562007-02-18 18:38:44 +0000208/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
209/// the multi-digit integer array, x[], propagating the borrowed 1 value until
210/// no further borrowing is neeeded or it runs out of "digits" in x. The result
211/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
212/// In other words, if y > x then this function returns 1, otherwise 0.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000213/// @returns the borrow out of the subtraction
214static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000215 for (uint32_t i = 0; i < len; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000216 uint64_t X = x[i];
Reid Spencerf2c521c2007-02-18 06:39:42 +0000217 x[i] -= y;
218 if (y > X)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000219 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer5e0a8512007-02-17 03:16:00 +0000220 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000221 y = 0; // No need to borrow
222 break; // Remaining digits are unchanged so exit early
Reid Spencer5e0a8512007-02-17 03:16:00 +0000223 }
224 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000225 return bool(y);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000226}
227
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000228/// @brief Prefix decrement operator. Decrements the APInt by one.
229APInt& APInt::operator--() {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000230 if (isSingleWord())
231 --VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000232 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000233 sub_1(pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000234 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000235}
236
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000237/// add - This function adds the integer array x to the integer array Y and
238/// places the result in dest.
239/// @returns the carry out from the addition
240/// @brief General addition of 64-bit integer arrays
Reid Spencer9d6c9192007-02-24 03:58:46 +0000241static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
242 uint32_t len) {
243 bool carry = false;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000244 for (uint32_t i = 0; i< len; ++i) {
Reid Spencer92904632007-02-23 01:57:13 +0000245 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
Reid Spencer54362ca2007-02-20 23:40:25 +0000246 dest[i] = x[i] + y[i] + carry;
Reid Spencer60c0a6a2007-02-21 05:44:56 +0000247 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000248 }
249 return carry;
250}
251
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000252/// Adds the RHS APint to this APInt.
253/// @returns this, after addition of RHS.
254/// @brief Addition assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000255APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000256 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer54362ca2007-02-20 23:40:25 +0000257 if (isSingleWord())
258 VAL += RHS.VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000259 else {
Reid Spencer54362ca2007-02-20 23:40:25 +0000260 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000261 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000262 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000263}
264
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000265/// Subtracts the integer array y from the integer array x
266/// @returns returns the borrow out.
267/// @brief Generalized subtraction of 64-bit integer arrays.
Reid Spencer9d6c9192007-02-24 03:58:46 +0000268static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
269 uint32_t len) {
Reid Spencer385f7542007-02-21 03:55:44 +0000270 bool borrow = false;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000271 for (uint32_t i = 0; i < len; ++i) {
Reid Spencer385f7542007-02-21 03:55:44 +0000272 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
273 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
274 dest[i] = x_tmp - y[i];
Reid Spencer5e0a8512007-02-17 03:16:00 +0000275 }
Reid Spencer54362ca2007-02-20 23:40:25 +0000276 return borrow;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000277}
278
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000279/// Subtracts the RHS APInt from this APInt
280/// @returns this, after subtraction
281/// @brief Subtraction assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000282APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000283 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000284 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000285 VAL -= RHS.VAL;
286 else
287 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000288 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000289}
290
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000291/// Multiplies an integer array, x by a a uint64_t integer and places the result
292/// into dest.
293/// @returns the carry out of the multiplication.
294/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Reid Spencer610fad82007-02-24 10:01:42 +0000295static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
296 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
Reid Spencer5e0a8512007-02-17 03:16:00 +0000297 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000298 uint64_t carry = 0;
299
300 // For each digit of x.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000301 for (uint32_t i = 0; i < len; ++i) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000302 // Split x into high and low words
303 uint64_t lx = x[i] & 0xffffffffULL;
304 uint64_t hx = x[i] >> 32;
305 // hasCarry - A flag to indicate if there is a carry to the next digit.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000306 // hasCarry == 0, no carry
307 // hasCarry == 1, has carry
308 // hasCarry == 2, no carry and the calculation result == 0.
309 uint8_t hasCarry = 0;
310 dest[i] = carry + lx * ly;
311 // Determine if the add above introduces carry.
312 hasCarry = (dest[i] < carry) ? 1 : 0;
313 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
314 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
315 // (2^32 - 1) + 2^32 = 2^64.
316 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
317
318 carry += (lx * hy) & 0xffffffffULL;
319 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
320 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
321 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
322 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000323 return carry;
324}
325
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000326/// Multiplies integer array x by integer array y and stores the result into
327/// the integer array dest. Note that dest's size must be >= xlen + ylen.
328/// @brief Generalized multiplicate of integer arrays.
Reid Spencer610fad82007-02-24 10:01:42 +0000329static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
330 uint32_t ylen) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000331 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Reid Spenceraf0e9562007-02-18 18:38:44 +0000332 for (uint32_t i = 1; i < ylen; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000333 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencere0cdd332007-02-21 08:21:52 +0000334 uint64_t carry = 0, lx = 0, hx = 0;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000335 for (uint32_t j = 0; j < xlen; ++j) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000336 lx = x[j] & 0xffffffffULL;
337 hx = x[j] >> 32;
338 // hasCarry - A flag to indicate if has carry.
339 // hasCarry == 0, no carry
340 // hasCarry == 1, has carry
341 // hasCarry == 2, no carry and the calculation result == 0.
342 uint8_t hasCarry = 0;
343 uint64_t resul = carry + lx * ly;
344 hasCarry = (resul < carry) ? 1 : 0;
345 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
346 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
347
348 carry += (lx * hy) & 0xffffffffULL;
349 resul = (carry << 32) | (resul & 0xffffffffULL);
350 dest[i+j] += resul;
351 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
352 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
353 ((lx * hy) >> 32) + hx * hy;
354 }
355 dest[i+xlen] = carry;
356 }
357}
358
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000359APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000360 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencere0cdd332007-02-21 08:21:52 +0000361 if (isSingleWord()) {
Reid Spencer61eb1802007-02-20 20:42:10 +0000362 VAL *= RHS.VAL;
Reid Spencere0cdd332007-02-21 08:21:52 +0000363 clearUnusedBits();
364 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000365 }
Reid Spencere0cdd332007-02-21 08:21:52 +0000366
367 // Get some bit facts about LHS and check for zero
368 uint32_t lhsBits = getActiveBits();
369 uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
370 if (!lhsWords)
371 // 0 * X ===> 0
372 return *this;
373
374 // Get some bit facts about RHS and check for zero
375 uint32_t rhsBits = RHS.getActiveBits();
376 uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
377 if (!rhsWords) {
378 // X * 0 ===> 0
379 clear();
380 return *this;
381 }
382
383 // Allocate space for the result
384 uint32_t destWords = rhsWords + lhsWords;
385 uint64_t *dest = getMemory(destWords);
386
387 // Perform the long multiply
388 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
389
390 // Copy result back into *this
391 clear();
392 uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
393 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
394
395 // delete dest array and return
396 delete[] dest;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000397 return *this;
398}
399
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000400APInt& APInt::operator&=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000401 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000402 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000403 VAL &= RHS.VAL;
404 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000405 }
Reid Spenceraf0e9562007-02-18 18:38:44 +0000406 uint32_t numWords = getNumWords();
407 for (uint32_t i = 0; i < numWords; ++i)
408 pVal[i] &= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000409 return *this;
410}
411
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000412APInt& APInt::operator|=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000413 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000414 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000415 VAL |= RHS.VAL;
416 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000417 }
Reid Spenceraf0e9562007-02-18 18:38:44 +0000418 uint32_t numWords = getNumWords();
419 for (uint32_t i = 0; i < numWords; ++i)
420 pVal[i] |= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000421 return *this;
422}
423
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000424APInt& APInt::operator^=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000425 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000426 if (isSingleWord()) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000427 VAL ^= RHS.VAL;
Reid Spencer54362ca2007-02-20 23:40:25 +0000428 this->clearUnusedBits();
Reid Spencerf2c521c2007-02-18 06:39:42 +0000429 return *this;
430 }
Reid Spenceraf0e9562007-02-18 18:38:44 +0000431 uint32_t numWords = getNumWords();
432 for (uint32_t i = 0; i < numWords; ++i)
433 pVal[i] ^= RHS.pVal[i];
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000434 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000435}
436
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000437APInt APInt::operator&(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000438 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spenceraf0e9562007-02-18 18:38:44 +0000439 if (isSingleWord())
440 return APInt(getBitWidth(), VAL & RHS.VAL);
441
Reid Spenceraf0e9562007-02-18 18:38:44 +0000442 uint32_t numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000443 uint64_t* val = getMemory(numWords);
Reid Spenceraf0e9562007-02-18 18:38:44 +0000444 for (uint32_t i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000445 val[i] = pVal[i] & RHS.pVal[i];
446 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000447}
448
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000449APInt APInt::operator|(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000450 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spenceraf0e9562007-02-18 18:38:44 +0000451 if (isSingleWord())
452 return APInt(getBitWidth(), VAL | RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000453
Reid Spenceraf0e9562007-02-18 18:38:44 +0000454 uint32_t numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000455 uint64_t *val = getMemory(numWords);
Reid Spenceraf0e9562007-02-18 18:38:44 +0000456 for (uint32_t i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000457 val[i] = pVal[i] | RHS.pVal[i];
458 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000459}
460
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000461APInt APInt::operator^(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000462 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000463 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000464 return APInt(BitWidth, VAL ^ RHS.VAL);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000465
Reid Spenceraf0e9562007-02-18 18:38:44 +0000466 uint32_t numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000467 uint64_t *val = getMemory(numWords);
Reid Spenceraf0e9562007-02-18 18:38:44 +0000468 for (uint32_t i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000469 val[i] = pVal[i] ^ RHS.pVal[i];
470
471 // 0^0==1 so clear the high bits in case they got set.
472 return APInt(val, getBitWidth()).clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000473}
474
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000475bool APInt::operator !() const {
476 if (isSingleWord())
477 return !VAL;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000478
479 for (uint32_t i = 0; i < getNumWords(); ++i)
480 if (pVal[i])
481 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000482 return true;
483}
484
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000485APInt APInt::operator*(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000486 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000487 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000488 return APInt(BitWidth, VAL * RHS.VAL);
Reid Spencer61eb1802007-02-20 20:42:10 +0000489 APInt Result(*this);
490 Result *= RHS;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000491 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000492}
493
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000494APInt APInt::operator+(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000495 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000496 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000497 return APInt(BitWidth, VAL + RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000498 APInt Result(BitWidth, 0);
499 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000500 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000501}
502
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000503APInt APInt::operator-(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000504 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000505 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000506 return APInt(BitWidth, VAL - RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000507 APInt Result(BitWidth, 0);
508 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000509 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000510}
511
Reid Spenceraf0e9562007-02-18 18:38:44 +0000512bool APInt::operator[](uint32_t bitPosition) const {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000513 return (maskBit(bitPosition) &
514 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000515}
516
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000517bool APInt::operator==(const APInt& RHS) const {
Reid Spencer9ac44112007-02-26 23:38:21 +0000518 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
Reid Spencer54362ca2007-02-20 23:40:25 +0000519 if (isSingleWord())
520 return VAL == RHS.VAL;
521
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000522 // Get some facts about the number of bits used in the two operands.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000523 uint32_t n1 = getActiveBits();
524 uint32_t n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000525
526 // If the number of bits isn't the same, they aren't equal
Reid Spencer54362ca2007-02-20 23:40:25 +0000527 if (n1 != n2)
528 return false;
529
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000530 // If the number of bits fits in a word, we only need to compare the low word.
Reid Spencer54362ca2007-02-20 23:40:25 +0000531 if (n1 <= APINT_BITS_PER_WORD)
532 return pVal[0] == RHS.pVal[0];
533
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000534 // Otherwise, compare everything
Reid Spencer54362ca2007-02-20 23:40:25 +0000535 for (int i = whichWord(n1 - 1); i >= 0; --i)
536 if (pVal[i] != RHS.pVal[i])
537 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000538 return true;
539}
540
Zhou Shenga3832fd2007-02-07 06:14:53 +0000541bool APInt::operator==(uint64_t Val) const {
542 if (isSingleWord())
543 return VAL == Val;
Reid Spencer54362ca2007-02-20 23:40:25 +0000544
545 uint32_t n = getActiveBits();
546 if (n <= APINT_BITS_PER_WORD)
547 return pVal[0] == Val;
548 else
549 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000550}
551
Reid Spencere81d2da2007-02-16 22:36:51 +0000552bool APInt::ult(const APInt& RHS) const {
553 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
554 if (isSingleWord())
555 return VAL < RHS.VAL;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000556
557 // Get active bit length of both operands
558 uint32_t n1 = getActiveBits();
559 uint32_t n2 = RHS.getActiveBits();
560
561 // If magnitude of LHS is less than RHS, return true.
562 if (n1 < n2)
563 return true;
564
565 // If magnitude of RHS is greather than LHS, return false.
566 if (n2 < n1)
567 return false;
568
569 // If they bot fit in a word, just compare the low order word
570 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
571 return pVal[0] < RHS.pVal[0];
572
573 // Otherwise, compare all words
Reid Spencer1fa111e2007-02-27 18:23:40 +0000574 uint32_t topWord = whichWord(std::max(n1,n2)-1);
575 for (int i = topWord; i >= 0; --i) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000576 if (pVal[i] > RHS.pVal[i])
Reid Spencere81d2da2007-02-16 22:36:51 +0000577 return false;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000578 if (pVal[i] < RHS.pVal[i])
579 return true;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000580 }
581 return false;
582}
583
Reid Spencere81d2da2007-02-16 22:36:51 +0000584bool APInt::slt(const APInt& RHS) const {
585 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencera58f0582007-02-18 20:09:41 +0000586 if (isSingleWord()) {
587 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
588 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
589 return lhsSext < rhsSext;
Reid Spencere81d2da2007-02-16 22:36:51 +0000590 }
Reid Spencera58f0582007-02-18 20:09:41 +0000591
592 APInt lhs(*this);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000593 APInt rhs(RHS);
594 bool lhsNeg = isNegative();
595 bool rhsNeg = rhs.isNegative();
596 if (lhsNeg) {
597 // Sign bit is set so perform two's complement to make it positive
Reid Spencera58f0582007-02-18 20:09:41 +0000598 lhs.flip();
599 lhs++;
600 }
Reid Spencer1fa111e2007-02-27 18:23:40 +0000601 if (rhsNeg) {
602 // Sign bit is set so perform two's complement to make it positive
Reid Spencera58f0582007-02-18 20:09:41 +0000603 rhs.flip();
604 rhs++;
605 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000606
607 // Now we have unsigned values to compare so do the comparison if necessary
608 // based on the negativeness of the values.
Reid Spencer1fa111e2007-02-27 18:23:40 +0000609 if (lhsNeg)
610 if (rhsNeg)
611 return lhs.ugt(rhs);
Reid Spencera58f0582007-02-18 20:09:41 +0000612 else
613 return true;
Reid Spencer1fa111e2007-02-27 18:23:40 +0000614 else if (rhsNeg)
Reid Spencera58f0582007-02-18 20:09:41 +0000615 return false;
616 else
617 return lhs.ult(rhs);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000618}
619
Reid Spenceraf0e9562007-02-18 18:38:44 +0000620APInt& APInt::set(uint32_t bitPosition) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000621 if (isSingleWord())
622 VAL |= maskBit(bitPosition);
623 else
624 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000625 return *this;
626}
627
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000628APInt& APInt::set() {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000629 if (isSingleWord()) {
630 VAL = -1ULL;
631 return clearUnusedBits();
Zhou Shengb04973e2007-02-15 06:36:31 +0000632 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000633
634 // Set all the bits in all the words.
Zhou Sheng6dbe2332007-03-21 04:34:37 +0000635 for (uint32_t i = 0; i < getNumWords(); ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000636 pVal[i] = -1ULL;
637 // Clear the unused ones
638 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000639}
640
641/// Set the given bit to 0 whose position is given as "bitPosition".
642/// @brief Set a given bit to 0.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000643APInt& APInt::clear(uint32_t bitPosition) {
644 if (isSingleWord())
645 VAL &= ~maskBit(bitPosition);
646 else
647 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000648 return *this;
649}
650
651/// @brief Set every bit to 0.
652APInt& APInt::clear() {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000653 if (isSingleWord())
654 VAL = 0;
Zhou Shenga3832fd2007-02-07 06:14:53 +0000655 else
Reid Spencera58f0582007-02-18 20:09:41 +0000656 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000657 return *this;
658}
659
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000660/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
661/// this APInt.
662APInt APInt::operator~() const {
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000663 APInt Result(*this);
664 Result.flip();
665 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000666}
667
668/// @brief Toggle every bit to its opposite value.
669APInt& APInt::flip() {
Reid Spencer9eec2412007-02-25 23:44:53 +0000670 if (isSingleWord()) {
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000671 VAL ^= -1ULL;
Reid Spencer9eec2412007-02-25 23:44:53 +0000672 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000673 }
Reid Spencer9eec2412007-02-25 23:44:53 +0000674 for (uint32_t i = 0; i < getNumWords(); ++i)
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000675 pVal[i] ^= -1ULL;
Reid Spencer9eec2412007-02-25 23:44:53 +0000676 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000677}
678
679/// Toggle a given bit to its opposite value whose position is given
680/// as "bitPosition".
681/// @brief Toggles a given bit to its opposite value.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000682APInt& APInt::flip(uint32_t bitPosition) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000683 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000684 if ((*this)[bitPosition]) clear(bitPosition);
685 else set(bitPosition);
686 return *this;
687}
688
Reid Spencer57ae4f52007-04-13 19:19:07 +0000689uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
690 assert(str != 0 && "Invalid value string");
691 assert(slen > 0 && "Invalid string length");
692
693 // Each computation below needs to know if its negative
694 uint32_t isNegative = str[0] == '-';
695 if (isNegative) {
696 slen--;
697 str++;
698 }
699 // For radixes of power-of-two values, the bits required is accurately and
700 // easily computed
701 if (radix == 2)
702 return slen + isNegative;
703 if (radix == 8)
704 return slen * 3 + isNegative;
705 if (radix == 16)
706 return slen * 4 + isNegative;
707
708 // Otherwise it must be radix == 10, the hard case
709 assert(radix == 10 && "Invalid radix");
710
711 // This is grossly inefficient but accurate. We could probably do something
712 // with a computation of roughly slen*64/20 and then adjust by the value of
713 // the first few digits. But, I'm not sure how accurate that could be.
714
715 // Compute a sufficient number of bits that is always large enough but might
716 // be too large. This avoids the assertion in the constructor.
717 uint32_t sufficient = slen*64/18;
718
719 // Convert to the actual binary value.
720 APInt tmp(sufficient, str, slen, radix);
721
722 // Compute how many bits are required.
Reid Spencer0468ab32007-04-14 00:00:10 +0000723 return isNegative + tmp.logBase2() + 1;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000724}
725
Reid Spencer794f4722007-02-26 21:02:27 +0000726uint64_t APInt::getHashValue() const {
Reid Spencer9ac44112007-02-26 23:38:21 +0000727 // Put the bit width into the low order bits.
728 uint64_t hash = BitWidth;
Reid Spencer794f4722007-02-26 21:02:27 +0000729
730 // Add the sum of the words to the hash.
731 if (isSingleWord())
Reid Spencer9ac44112007-02-26 23:38:21 +0000732 hash += VAL << 6; // clear separation of up to 64 bits
Reid Spencer794f4722007-02-26 21:02:27 +0000733 else
734 for (uint32_t i = 0; i < getNumWords(); ++i)
Reid Spencer9ac44112007-02-26 23:38:21 +0000735 hash += pVal[i] << 6; // clear sepration of up to 64 bits
Reid Spencer794f4722007-02-26 21:02:27 +0000736 return hash;
737}
738
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000739/// HiBits - This function returns the high "numBits" bits of this APInt.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000740APInt APInt::getHiBits(uint32_t numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000741 return APIntOps::lshr(*this, BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000742}
743
744/// LoBits - This function returns the low "numBits" bits of this APInt.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000745APInt APInt::getLoBits(uint32_t numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000746 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
747 BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000748}
749
Reid Spencere81d2da2007-02-16 22:36:51 +0000750bool APInt::isPowerOf2() const {
751 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
752}
753
Reid Spenceraf0e9562007-02-18 18:38:44 +0000754uint32_t APInt::countLeadingZeros() const {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000755 uint32_t Count = 0;
Reid Spencere549c492007-02-21 00:29:48 +0000756 if (isSingleWord())
757 Count = CountLeadingZeros_64(VAL);
758 else {
759 for (uint32_t i = getNumWords(); i > 0u; --i) {
760 if (pVal[i-1] == 0)
761 Count += APINT_BITS_PER_WORD;
762 else {
763 Count += CountLeadingZeros_64(pVal[i-1]);
764 break;
765 }
766 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000767 }
Reid Spencerab2b2c82007-02-22 00:22:00 +0000768 uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
769 if (remainder)
770 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner9e513ac2007-11-23 22:42:31 +0000771 return std::min(Count, BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000772}
773
Reid Spencer681dcd12007-02-27 21:59:26 +0000774static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
775 uint32_t Count = 0;
776 if (skip)
777 V <<= skip;
778 while (V && (V & (1ULL << 63))) {
779 Count++;
780 V <<= 1;
781 }
782 return Count;
783}
784
785uint32_t APInt::countLeadingOnes() const {
786 if (isSingleWord())
787 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
788
789 uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
790 uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
791 int i = getNumWords() - 1;
792 uint32_t Count = countLeadingOnes_64(pVal[i], shift);
793 if (Count == highWordBits) {
794 for (i--; i >= 0; --i) {
795 if (pVal[i] == -1ULL)
796 Count += APINT_BITS_PER_WORD;
797 else {
798 Count += countLeadingOnes_64(pVal[i], 0);
799 break;
800 }
801 }
802 }
803 return Count;
804}
805
Reid Spenceraf0e9562007-02-18 18:38:44 +0000806uint32_t APInt::countTrailingZeros() const {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000807 if (isSingleWord())
Anton Korobeynikov97d37262007-12-24 11:16:47 +0000808 return std::min(uint32_t(CountTrailingZeros_64(VAL)), BitWidth);
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000809 uint32_t Count = 0;
810 uint32_t i = 0;
811 for (; i < getNumWords() && pVal[i] == 0; ++i)
812 Count += APINT_BITS_PER_WORD;
813 if (i < getNumWords())
814 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner5e557122007-11-23 22:36:25 +0000815 return std::min(Count, BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000816}
817
Dan Gohman42dd77f2008-02-13 21:11:05 +0000818uint32_t APInt::countTrailingOnes() const {
819 if (isSingleWord())
820 return std::min(uint32_t(CountTrailingOnes_64(VAL)), BitWidth);
821 uint32_t Count = 0;
822 uint32_t i = 0;
Dan Gohman5a0e7b42008-02-14 22:38:45 +0000823 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohman42dd77f2008-02-13 21:11:05 +0000824 Count += APINT_BITS_PER_WORD;
825 if (i < getNumWords())
826 Count += CountTrailingOnes_64(pVal[i]);
827 return std::min(Count, BitWidth);
828}
829
Reid Spenceraf0e9562007-02-18 18:38:44 +0000830uint32_t APInt::countPopulation() const {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000831 if (isSingleWord())
832 return CountPopulation_64(VAL);
Reid Spenceraf0e9562007-02-18 18:38:44 +0000833 uint32_t Count = 0;
834 for (uint32_t i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000835 Count += CountPopulation_64(pVal[i]);
836 return Count;
837}
838
Reid Spencere81d2da2007-02-16 22:36:51 +0000839APInt APInt::byteSwap() const {
840 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
841 if (BitWidth == 16)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000842 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
Reid Spencere81d2da2007-02-16 22:36:51 +0000843 else if (BitWidth == 32)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000844 return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
Reid Spencere81d2da2007-02-16 22:36:51 +0000845 else if (BitWidth == 48) {
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000846 uint32_t Tmp1 = uint32_t(VAL >> 16);
Zhou Shengb04973e2007-02-15 06:36:31 +0000847 Tmp1 = ByteSwap_32(Tmp1);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000848 uint16_t Tmp2 = uint16_t(VAL);
Zhou Shengb04973e2007-02-15 06:36:31 +0000849 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000850 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Reid Spencere81d2da2007-02-16 22:36:51 +0000851 } else if (BitWidth == 64)
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000852 return APInt(BitWidth, ByteSwap_64(VAL));
Zhou Shengb04973e2007-02-15 06:36:31 +0000853 else {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000854 APInt Result(BitWidth, 0);
Zhou Shengb04973e2007-02-15 06:36:31 +0000855 char *pByte = (char*)Result.pVal;
Reid Spencera58f0582007-02-18 20:09:41 +0000856 for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Zhou Shengb04973e2007-02-15 06:36:31 +0000857 char Tmp = pByte[i];
Reid Spencera58f0582007-02-18 20:09:41 +0000858 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
859 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
Zhou Shengb04973e2007-02-15 06:36:31 +0000860 }
861 return Result;
862 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000863}
864
Zhou Sheng0b706b12007-02-08 14:35:19 +0000865APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
866 const APInt& API2) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000867 APInt A = API1, B = API2;
868 while (!!B) {
869 APInt T = B;
Reid Spencere81d2da2007-02-16 22:36:51 +0000870 B = APIntOps::urem(A, B);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000871 A = T;
872 }
873 return A;
874}
Chris Lattner6ad4c142007-02-06 05:38:37 +0000875
Reid Spencer1fa111e2007-02-27 18:23:40 +0000876APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
Zhou Shengd93f00c2007-02-12 20:02:55 +0000877 union {
878 double D;
879 uint64_t I;
880 } T;
881 T.D = Double;
Reid Spencer30f44f32007-02-27 01:28:10 +0000882
883 // Get the sign bit from the highest order bit
Zhou Shengd93f00c2007-02-12 20:02:55 +0000884 bool isNeg = T.I >> 63;
Reid Spencer30f44f32007-02-27 01:28:10 +0000885
886 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd93f00c2007-02-12 20:02:55 +0000887 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer30f44f32007-02-27 01:28:10 +0000888
889 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000890 if (exp < 0)
Reid Spencerff605762007-02-28 01:30:08 +0000891 return APInt(width, 0u);
Reid Spencer30f44f32007-02-27 01:28:10 +0000892
893 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
894 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
895
896 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd93f00c2007-02-12 20:02:55 +0000897 if (exp < 52)
Reid Spencer1fa111e2007-02-27 18:23:40 +0000898 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
899 APInt(width, mantissa >> (52 - exp));
900
901 // If the client didn't provide enough bits for us to shift the mantissa into
902 // then the result is undefined, just return 0
903 if (width <= exp - 52)
904 return APInt(width, 0);
Reid Spencer30f44f32007-02-27 01:28:10 +0000905
906 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer1fa111e2007-02-27 18:23:40 +0000907 APInt Tmp(width, mantissa);
Reid Spencere81d2da2007-02-16 22:36:51 +0000908 Tmp = Tmp.shl(exp - 52);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000909 return isNeg ? -Tmp : Tmp;
910}
911
Reid Spencerdb3faa62007-02-13 22:41:58 +0000912/// RoundToDouble - This function convert this APInt to a double.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000913/// The layout for double is as following (IEEE Standard 754):
914/// --------------------------------------
915/// | Sign Exponent Fraction Bias |
916/// |-------------------------------------- |
917/// | 1[63] 11[62-52] 52[51-00] 1023 |
918/// --------------------------------------
Reid Spencere81d2da2007-02-16 22:36:51 +0000919double APInt::roundToDouble(bool isSigned) const {
Reid Spencer9c0696f2007-02-20 08:51:03 +0000920
921 // Handle the simple case where the value is contained in one uint64_t.
Reid Spencera58f0582007-02-18 20:09:41 +0000922 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
923 if (isSigned) {
924 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
925 return double(sext);
926 } else
927 return double(VAL);
928 }
929
Reid Spencer9c0696f2007-02-20 08:51:03 +0000930 // Determine if the value is negative.
Reid Spencere81d2da2007-02-16 22:36:51 +0000931 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000932
933 // Construct the absolute value if we're negative.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000934 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencer9c0696f2007-02-20 08:51:03 +0000935
936 // Figure out how many bits we're using.
Reid Spenceraf0e9562007-02-18 18:38:44 +0000937 uint32_t n = Tmp.getActiveBits();
Zhou Shengd93f00c2007-02-12 20:02:55 +0000938
Reid Spencer9c0696f2007-02-20 08:51:03 +0000939 // The exponent (without bias normalization) is just the number of bits
940 // we are using. Note that the sign bit is gone since we constructed the
941 // absolute value.
942 uint64_t exp = n;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000943
Reid Spencer9c0696f2007-02-20 08:51:03 +0000944 // Return infinity for exponent overflow
945 if (exp > 1023) {
946 if (!isSigned || !isNeg)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000947 return std::numeric_limits<double>::infinity();
Reid Spencer9c0696f2007-02-20 08:51:03 +0000948 else
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000949 return -std::numeric_limits<double>::infinity();
Reid Spencer9c0696f2007-02-20 08:51:03 +0000950 }
951 exp += 1023; // Increment for 1023 bias
952
953 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
954 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000955 uint64_t mantissa;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000956 unsigned hiWord = whichWord(n-1);
957 if (hiWord == 0) {
958 mantissa = Tmp.pVal[0];
959 if (n > 52)
960 mantissa >>= n - 52; // shift down, we want the top 52 bits.
961 } else {
962 assert(hiWord > 0 && "huh?");
963 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
964 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
965 mantissa = hibits | lobits;
966 }
967
Zhou Shengd93f00c2007-02-12 20:02:55 +0000968 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencer443b5702007-02-18 00:44:22 +0000969 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000970 union {
971 double D;
972 uint64_t I;
973 } T;
974 T.I = sign | (exp << 52) | mantissa;
975 return T.D;
976}
977
Reid Spencere81d2da2007-02-16 22:36:51 +0000978// Truncate to new width.
Reid Spencer94900772007-02-28 17:34:32 +0000979APInt &APInt::trunc(uint32_t width) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000980 assert(width < BitWidth && "Invalid APInt Truncate request");
Reid Spencer9af18872007-12-11 06:53:58 +0000981 assert(width >= MIN_INT_BITS && "Can't truncate to 0 bits");
Reid Spencer9eec2412007-02-25 23:44:53 +0000982 uint32_t wordsBefore = getNumWords();
983 BitWidth = width;
984 uint32_t wordsAfter = getNumWords();
985 if (wordsBefore != wordsAfter) {
986 if (wordsAfter == 1) {
987 uint64_t *tmp = pVal;
988 VAL = pVal[0];
Reid Spencer9ac44112007-02-26 23:38:21 +0000989 delete [] tmp;
Reid Spencer9eec2412007-02-25 23:44:53 +0000990 } else {
991 uint64_t *newVal = getClearedMemory(wordsAfter);
992 for (uint32_t i = 0; i < wordsAfter; ++i)
993 newVal[i] = pVal[i];
Reid Spencer9ac44112007-02-26 23:38:21 +0000994 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +0000995 pVal = newVal;
996 }
997 }
Reid Spencer94900772007-02-28 17:34:32 +0000998 return clearUnusedBits();
Reid Spencere81d2da2007-02-16 22:36:51 +0000999}
1000
1001// Sign extend to a new width.
Reid Spencer94900772007-02-28 17:34:32 +00001002APInt &APInt::sext(uint32_t width) {
Reid Spencere81d2da2007-02-16 22:36:51 +00001003 assert(width > BitWidth && "Invalid APInt SignExtend request");
Reid Spencer9af18872007-12-11 06:53:58 +00001004 assert(width <= MAX_INT_BITS && "Too many bits");
Reid Spencer9eec2412007-02-25 23:44:53 +00001005 // If the sign bit isn't set, this is the same as zext.
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001006 if (!isNegative()) {
Reid Spencer9eec2412007-02-25 23:44:53 +00001007 zext(width);
Reid Spencer94900772007-02-28 17:34:32 +00001008 return *this;
Reid Spencer9eec2412007-02-25 23:44:53 +00001009 }
1010
1011 // The sign bit is set. First, get some facts
1012 uint32_t wordsBefore = getNumWords();
1013 uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
1014 BitWidth = width;
1015 uint32_t wordsAfter = getNumWords();
1016
1017 // Mask the high order word appropriately
1018 if (wordsBefore == wordsAfter) {
1019 uint32_t newWordBits = width % APINT_BITS_PER_WORD;
1020 // The extension is contained to the wordsBefore-1th word.
Reid Spencer36184ed2007-03-02 01:19:42 +00001021 uint64_t mask = ~0ULL;
1022 if (newWordBits)
1023 mask >>= APINT_BITS_PER_WORD - newWordBits;
1024 mask <<= wordBits;
Reid Spencer9eec2412007-02-25 23:44:53 +00001025 if (wordsBefore == 1)
1026 VAL |= mask;
1027 else
1028 pVal[wordsBefore-1] |= mask;
Reid Spencer295e40a2007-03-01 23:30:25 +00001029 return clearUnusedBits();
Reid Spencer9eec2412007-02-25 23:44:53 +00001030 }
1031
Reid Spencerf30b1882007-02-25 23:54:00 +00001032 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
Reid Spencer9eec2412007-02-25 23:44:53 +00001033 uint64_t *newVal = getMemory(wordsAfter);
1034 if (wordsBefore == 1)
1035 newVal[0] = VAL | mask;
1036 else {
1037 for (uint32_t i = 0; i < wordsBefore; ++i)
1038 newVal[i] = pVal[i];
1039 newVal[wordsBefore-1] |= mask;
1040 }
1041 for (uint32_t i = wordsBefore; i < wordsAfter; i++)
1042 newVal[i] = -1ULL;
1043 if (wordsBefore != 1)
Reid Spencer9ac44112007-02-26 23:38:21 +00001044 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001045 pVal = newVal;
Reid Spencer94900772007-02-28 17:34:32 +00001046 return clearUnusedBits();
Reid Spencere81d2da2007-02-16 22:36:51 +00001047}
1048
1049// Zero extend to a new width.
Reid Spencer94900772007-02-28 17:34:32 +00001050APInt &APInt::zext(uint32_t width) {
Reid Spencere81d2da2007-02-16 22:36:51 +00001051 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Reid Spencer9af18872007-12-11 06:53:58 +00001052 assert(width <= MAX_INT_BITS && "Too many bits");
Reid Spencer9eec2412007-02-25 23:44:53 +00001053 uint32_t wordsBefore = getNumWords();
1054 BitWidth = width;
1055 uint32_t wordsAfter = getNumWords();
1056 if (wordsBefore != wordsAfter) {
1057 uint64_t *newVal = getClearedMemory(wordsAfter);
1058 if (wordsBefore == 1)
1059 newVal[0] = VAL;
1060 else
1061 for (uint32_t i = 0; i < wordsBefore; ++i)
1062 newVal[i] = pVal[i];
1063 if (wordsBefore != 1)
Reid Spencer9ac44112007-02-26 23:38:21 +00001064 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001065 pVal = newVal;
1066 }
Reid Spencer94900772007-02-28 17:34:32 +00001067 return *this;
Reid Spencere81d2da2007-02-16 22:36:51 +00001068}
1069
Reid Spencer68e23002007-03-01 17:15:32 +00001070APInt &APInt::zextOrTrunc(uint32_t width) {
1071 if (BitWidth < width)
1072 return zext(width);
1073 if (BitWidth > width)
1074 return trunc(width);
1075 return *this;
1076}
1077
1078APInt &APInt::sextOrTrunc(uint32_t width) {
1079 if (BitWidth < width)
1080 return sext(width);
1081 if (BitWidth > width)
1082 return trunc(width);
1083 return *this;
1084}
1085
Zhou Shengff4304f2007-02-09 07:48:24 +00001086/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001087/// @brief Arithmetic right-shift function.
Reid Spenceraf0e9562007-02-18 18:38:44 +00001088APInt APInt::ashr(uint32_t shiftAmt) const {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001089 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer46f9c942007-03-02 22:39:11 +00001090 // Handle a degenerate case
1091 if (shiftAmt == 0)
1092 return *this;
1093
1094 // Handle single word shifts with built-in ashr
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001095 if (isSingleWord()) {
1096 if (shiftAmt == BitWidth)
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001097 return APInt(BitWidth, 0); // undefined
1098 else {
1099 uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001100 return APInt(BitWidth,
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001101 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1102 }
Zhou Sheng0b706b12007-02-08 14:35:19 +00001103 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001104
Reid Spencer46f9c942007-03-02 22:39:11 +00001105 // If all the bits were shifted out, the result is, technically, undefined.
1106 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1107 // issues in the algorithm below.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001108 if (shiftAmt == BitWidth) {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001109 if (isNegative())
1110 return APInt(BitWidth, -1ULL);
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001111 else
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001112 return APInt(BitWidth, 0);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001113 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001114
1115 // Create some space for the result.
1116 uint64_t * val = new uint64_t[getNumWords()];
1117
Reid Spencer46f9c942007-03-02 22:39:11 +00001118 // Compute some values needed by the following shift algorithms
1119 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1120 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1121 uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
1122 uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
1123 if (bitsInWord == 0)
1124 bitsInWord = APINT_BITS_PER_WORD;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001125
1126 // If we are shifting whole words, just move whole words
1127 if (wordShift == 0) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001128 // Move the words containing significant bits
1129 for (uint32_t i = 0; i <= breakWord; ++i)
1130 val[i] = pVal[i+offset]; // move whole word
1131
1132 // Adjust the top significant word for sign bit fill, if negative
1133 if (isNegative())
1134 if (bitsInWord < APINT_BITS_PER_WORD)
1135 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1136 } else {
1137 // Shift the low order words
1138 for (uint32_t i = 0; i < breakWord; ++i) {
1139 // This combines the shifted corresponding word with the low bits from
1140 // the next word (shifted into this word's high bits).
1141 val[i] = (pVal[i+offset] >> wordShift) |
1142 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1143 }
1144
1145 // Shift the break word. In this case there are no bits from the next word
1146 // to include in this word.
1147 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1148
1149 // Deal with sign extenstion in the break word, and possibly the word before
1150 // it.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001151 if (isNegative()) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001152 if (wordShift > bitsInWord) {
1153 if (breakWord > 0)
1154 val[breakWord-1] |=
1155 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1156 val[breakWord] |= ~0ULL;
1157 } else
1158 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001159 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001160 }
1161
Reid Spencer46f9c942007-03-02 22:39:11 +00001162 // Remaining words are 0 or -1, just assign them.
1163 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001164 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001165 val[i] = fillValue;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001166 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001167}
1168
Zhou Shengff4304f2007-02-09 07:48:24 +00001169/// Logical right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001170/// @brief Logical right-shift function.
Reid Spenceraf0e9562007-02-18 18:38:44 +00001171APInt APInt::lshr(uint32_t shiftAmt) const {
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001172 if (isSingleWord()) {
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001173 if (shiftAmt == BitWidth)
1174 return APInt(BitWidth, 0);
1175 else
1176 return APInt(BitWidth, this->VAL >> shiftAmt);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001177 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001178
Reid Spencerba81c2b2007-02-26 01:19:48 +00001179 // If all the bits were shifted out, the result is 0. This avoids issues
1180 // with shifting by the size of the integer type, which produces undefined
1181 // results. We define these "undefined results" to always be 0.
1182 if (shiftAmt == BitWidth)
1183 return APInt(BitWidth, 0);
1184
Reid Spencer02ae8b72007-05-17 06:26:29 +00001185 // If none of the bits are shifted out, the result is *this. This avoids
1186 // issues with shifting byt he size of the integer type, which produces
1187 // undefined results in the code below. This is also an optimization.
1188 if (shiftAmt == 0)
1189 return *this;
1190
Reid Spencerba81c2b2007-02-26 01:19:48 +00001191 // Create some space for the result.
1192 uint64_t * val = new uint64_t[getNumWords()];
1193
1194 // If we are shifting less than a word, compute the shift with a simple carry
1195 if (shiftAmt < APINT_BITS_PER_WORD) {
1196 uint64_t carry = 0;
1197 for (int i = getNumWords()-1; i >= 0; --i) {
Reid Spenceraf8fb192007-03-01 05:39:56 +00001198 val[i] = (pVal[i] >> shiftAmt) | carry;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001199 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1200 }
1201 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001202 }
1203
Reid Spencerba81c2b2007-02-26 01:19:48 +00001204 // Compute some values needed by the remaining shift algorithms
1205 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1206 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1207
1208 // If we are shifting whole words, just move whole words
1209 if (wordShift == 0) {
1210 for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1211 val[i] = pVal[i+offset];
1212 for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1213 val[i] = 0;
1214 return APInt(val,BitWidth).clearUnusedBits();
1215 }
1216
1217 // Shift the low order words
1218 uint32_t breakWord = getNumWords() - offset -1;
1219 for (uint32_t i = 0; i < breakWord; ++i)
Reid Spenceraf8fb192007-03-01 05:39:56 +00001220 val[i] = (pVal[i+offset] >> wordShift) |
1221 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
Reid Spencerba81c2b2007-02-26 01:19:48 +00001222 // Shift the break word.
1223 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1224
1225 // Remaining words are 0
1226 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1227 val[i] = 0;
1228 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001229}
1230
Zhou Shengff4304f2007-02-09 07:48:24 +00001231/// Left-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001232/// @brief Left-shift function.
Reid Spenceraf0e9562007-02-18 18:38:44 +00001233APInt APInt::shl(uint32_t shiftAmt) const {
Reid Spencer5bce8542007-02-24 20:19:37 +00001234 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer87553802007-02-25 00:56:44 +00001235 if (isSingleWord()) {
Reid Spencer5bce8542007-02-24 20:19:37 +00001236 if (shiftAmt == BitWidth)
Reid Spencer87553802007-02-25 00:56:44 +00001237 return APInt(BitWidth, 0); // avoid undefined shift results
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001238 return APInt(BitWidth, VAL << shiftAmt);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001239 }
Reid Spencer5bce8542007-02-24 20:19:37 +00001240
Reid Spencer87553802007-02-25 00:56:44 +00001241 // If all the bits were shifted out, the result is 0. This avoids issues
1242 // with shifting by the size of the integer type, which produces undefined
1243 // results. We define these "undefined results" to always be 0.
1244 if (shiftAmt == BitWidth)
1245 return APInt(BitWidth, 0);
1246
Reid Spencer92c72832007-05-12 18:01:57 +00001247 // If none of the bits are shifted out, the result is *this. This avoids a
1248 // lshr by the words size in the loop below which can produce incorrect
1249 // results. It also avoids the expensive computation below for a common case.
1250 if (shiftAmt == 0)
1251 return *this;
1252
Reid Spencer87553802007-02-25 00:56:44 +00001253 // Create some space for the result.
1254 uint64_t * val = new uint64_t[getNumWords()];
1255
1256 // If we are shifting less than a word, do it the easy way
1257 if (shiftAmt < APINT_BITS_PER_WORD) {
1258 uint64_t carry = 0;
Reid Spencer87553802007-02-25 00:56:44 +00001259 for (uint32_t i = 0; i < getNumWords(); i++) {
1260 val[i] = pVal[i] << shiftAmt | carry;
1261 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1262 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001263 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001264 }
1265
Reid Spencer87553802007-02-25 00:56:44 +00001266 // Compute some values needed by the remaining shift algorithms
1267 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1268 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1269
1270 // If we are shifting whole words, just move whole words
1271 if (wordShift == 0) {
1272 for (uint32_t i = 0; i < offset; i++)
1273 val[i] = 0;
1274 for (uint32_t i = offset; i < getNumWords(); i++)
1275 val[i] = pVal[i-offset];
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001276 return APInt(val,BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001277 }
Reid Spencer87553802007-02-25 00:56:44 +00001278
1279 // Copy whole words from this to Result.
1280 uint32_t i = getNumWords() - 1;
1281 for (; i > offset; --i)
1282 val[i] = pVal[i-offset] << wordShift |
1283 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
Reid Spencer438d71e2007-02-25 01:08:58 +00001284 val[offset] = pVal[0] << wordShift;
Reid Spencer87553802007-02-25 00:56:44 +00001285 for (i = 0; i < offset; ++i)
1286 val[i] = 0;
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001287 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001288}
1289
Reid Spencer19dc32a2007-05-13 23:44:59 +00001290APInt APInt::rotl(uint32_t rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001291 if (rotateAmt == 0)
1292 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001293 // Don't get too fancy, just use existing shift/or facilities
1294 APInt hi(*this);
1295 APInt lo(*this);
1296 hi.shl(rotateAmt);
1297 lo.lshr(BitWidth - rotateAmt);
1298 return hi | lo;
1299}
1300
1301APInt APInt::rotr(uint32_t rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001302 if (rotateAmt == 0)
1303 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001304 // Don't get too fancy, just use existing shift/or facilities
1305 APInt hi(*this);
1306 APInt lo(*this);
1307 lo.lshr(rotateAmt);
1308 hi.shl(BitWidth - rotateAmt);
1309 return hi | lo;
1310}
Reid Spenceraf8fb192007-03-01 05:39:56 +00001311
1312// Square Root - this method computes and returns the square root of "this".
1313// Three mechanisms are used for computation. For small values (<= 5 bits),
1314// a table lookup is done. This gets some performance for common cases. For
1315// values using less than 52 bits, the value is converted to double and then
1316// the libc sqrt function is called. The result is rounded and then converted
1317// back to a uint64_t which is then used to construct the result. Finally,
1318// the Babylonian method for computing square roots is used.
1319APInt APInt::sqrt() const {
1320
1321 // Determine the magnitude of the value.
1322 uint32_t magnitude = getActiveBits();
1323
1324 // Use a fast table for some small values. This also gets rid of some
1325 // rounding errors in libc sqrt for small values.
1326 if (magnitude <= 5) {
Reid Spencer4e1e87f2007-03-01 17:47:31 +00001327 static const uint8_t results[32] = {
Reid Spencerb5ca2cd2007-03-01 06:23:32 +00001328 /* 0 */ 0,
1329 /* 1- 2 */ 1, 1,
1330 /* 3- 6 */ 2, 2, 2, 2,
1331 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1332 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1333 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1334 /* 31 */ 6
1335 };
1336 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
Reid Spenceraf8fb192007-03-01 05:39:56 +00001337 }
1338
1339 // If the magnitude of the value fits in less than 52 bits (the precision of
1340 // an IEEE double precision floating point value), then we can use the
1341 // libc sqrt function which will probably use a hardware sqrt computation.
1342 // This should be faster than the algorithm below.
Jeff Cohenca5183d2007-03-05 00:00:42 +00001343 if (magnitude < 52) {
1344#ifdef _MSC_VER
1345 // Amazingly, VC++ doesn't have round().
1346 return APInt(BitWidth,
1347 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1348#else
Reid Spenceraf8fb192007-03-01 05:39:56 +00001349 return APInt(BitWidth,
1350 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
Jeff Cohenca5183d2007-03-05 00:00:42 +00001351#endif
1352 }
Reid Spenceraf8fb192007-03-01 05:39:56 +00001353
1354 // Okay, all the short cuts are exhausted. We must compute it. The following
1355 // is a classical Babylonian method for computing the square root. This code
1356 // was adapted to APINt from a wikipedia article on such computations.
1357 // See http://www.wikipedia.org/ and go to the page named
1358 // Calculate_an_integer_square_root.
1359 uint32_t nbits = BitWidth, i = 4;
1360 APInt testy(BitWidth, 16);
1361 APInt x_old(BitWidth, 1);
1362 APInt x_new(BitWidth, 0);
1363 APInt two(BitWidth, 2);
1364
1365 // Select a good starting value using binary logarithms.
1366 for (;; i += 2, testy = testy.shl(2))
1367 if (i >= nbits || this->ule(testy)) {
1368 x_old = x_old.shl(i / 2);
1369 break;
1370 }
1371
1372 // Use the Babylonian method to arrive at the integer square root:
1373 for (;;) {
1374 x_new = (this->udiv(x_old) + x_old).udiv(two);
1375 if (x_old.ule(x_new))
1376 break;
1377 x_old = x_new;
1378 }
1379
1380 // Make sure we return the closest approximation
Reid Spencerf09aef72007-03-02 04:21:55 +00001381 // NOTE: The rounding calculation below is correct. It will produce an
1382 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1383 // determined to be a rounding issue with pari/gp as it begins to use a
1384 // floating point representation after 192 bits. There are no discrepancies
1385 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spenceraf8fb192007-03-01 05:39:56 +00001386 APInt square(x_old * x_old);
1387 APInt nextSquare((x_old + 1) * (x_old +1));
1388 if (this->ult(square))
1389 return x_old;
Reid Spencerf09aef72007-03-02 04:21:55 +00001390 else if (this->ule(nextSquare)) {
1391 APInt midpoint((nextSquare - square).udiv(two));
1392 APInt offset(*this - square);
1393 if (offset.ult(midpoint))
Reid Spenceraf8fb192007-03-01 05:39:56 +00001394 return x_old;
Reid Spencerf09aef72007-03-02 04:21:55 +00001395 else
1396 return x_old + 1;
1397 } else
Reid Spenceraf8fb192007-03-01 05:39:56 +00001398 assert(0 && "Error in APInt::sqrt computation");
1399 return x_old + 1;
1400}
1401
Reid Spencer9c0696f2007-02-20 08:51:03 +00001402/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1403/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1404/// variables here have the same names as in the algorithm. Comments explain
1405/// the algorithm and any deviation from it.
1406static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1407 uint32_t m, uint32_t n) {
1408 assert(u && "Must provide dividend");
1409 assert(v && "Must provide divisor");
1410 assert(q && "Must provide quotient");
Reid Spencer9d6c9192007-02-24 03:58:46 +00001411 assert(u != v && u != q && v != q && "Must us different memory");
Reid Spencer9c0696f2007-02-20 08:51:03 +00001412 assert(n>1 && "n must be > 1");
1413
1414 // Knuth uses the value b as the base of the number system. In our case b
1415 // is 2^31 so we just set it to -1u.
1416 uint64_t b = uint64_t(1) << 32;
1417
Reid Spencer9d6c9192007-02-24 03:58:46 +00001418 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1419 DEBUG(cerr << "KnuthDiv: original:");
1420 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1421 DEBUG(cerr << " by");
1422 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1423 DEBUG(cerr << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001424 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1425 // u and v by d. Note that we have taken Knuth's advice here to use a power
1426 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1427 // 2 allows us to shift instead of multiply and it is easy to determine the
1428 // shift amount from the leading zeros. We are basically normalizing the u
1429 // and v so that its high bits are shifted to the top of v's range without
1430 // overflow. Note that this can require an extra word in u so that u must
1431 // be of length m+n+1.
1432 uint32_t shift = CountLeadingZeros_32(v[n-1]);
1433 uint32_t v_carry = 0;
1434 uint32_t u_carry = 0;
1435 if (shift) {
1436 for (uint32_t i = 0; i < m+n; ++i) {
1437 uint32_t u_tmp = u[i] >> (32 - shift);
1438 u[i] = (u[i] << shift) | u_carry;
1439 u_carry = u_tmp;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001440 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001441 for (uint32_t i = 0; i < n; ++i) {
1442 uint32_t v_tmp = v[i] >> (32 - shift);
1443 v[i] = (v[i] << shift) | v_carry;
1444 v_carry = v_tmp;
1445 }
1446 }
1447 u[m+n] = u_carry;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001448 DEBUG(cerr << "KnuthDiv: normal:");
1449 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1450 DEBUG(cerr << " by");
1451 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1452 DEBUG(cerr << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001453
1454 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1455 int j = m;
1456 do {
Reid Spencer9d6c9192007-02-24 03:58:46 +00001457 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001458 // D3. [Calculate q'.].
1459 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1460 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1461 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1462 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1463 // on v[n-2] determines at high speed most of the cases in which the trial
1464 // value qp is one too large, and it eliminates all cases where qp is two
1465 // too large.
Reid Spencer92904632007-02-23 01:57:13 +00001466 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
Reid Spencer9d6c9192007-02-24 03:58:46 +00001467 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencer92904632007-02-23 01:57:13 +00001468 uint64_t qp = dividend / v[n-1];
1469 uint64_t rp = dividend % v[n-1];
Reid Spencer9c0696f2007-02-20 08:51:03 +00001470 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1471 qp--;
1472 rp += v[n-1];
Reid Spencer610fad82007-02-24 10:01:42 +00001473 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencer9d6c9192007-02-24 03:58:46 +00001474 qp--;
Reid Spencer92904632007-02-23 01:57:13 +00001475 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001476 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001477
Reid Spencer92904632007-02-23 01:57:13 +00001478 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1479 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1480 // consists of a simple multiplication by a one-place number, combined with
Reid Spencer610fad82007-02-24 10:01:42 +00001481 // a subtraction.
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001482 bool isNeg = false;
Reid Spencer92904632007-02-23 01:57:13 +00001483 for (uint32_t i = 0; i < n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001484 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
Reid Spencer9d6c9192007-02-24 03:58:46 +00001485 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
Reid Spencer610fad82007-02-24 10:01:42 +00001486 bool borrow = subtrahend > u_tmp;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001487 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
Reid Spencer610fad82007-02-24 10:01:42 +00001488 << ", subtrahend == " << subtrahend
1489 << ", borrow = " << borrow << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001490
Reid Spencer610fad82007-02-24 10:01:42 +00001491 uint64_t result = u_tmp - subtrahend;
1492 uint32_t k = j + i;
1493 u[k++] = result & (b-1); // subtract low word
1494 u[k++] = result >> 32; // subtract high word
1495 while (borrow && k <= m+n) { // deal with borrow to the left
1496 borrow = u[k] == 0;
1497 u[k]--;
1498 k++;
1499 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001500 isNeg |= borrow;
Reid Spencer610fad82007-02-24 10:01:42 +00001501 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1502 u[j+i+1] << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001503 }
1504 DEBUG(cerr << "KnuthDiv: after subtraction:");
1505 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1506 DEBUG(cerr << '\n');
Reid Spencer610fad82007-02-24 10:01:42 +00001507 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1508 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1509 // true value plus b**(n+1), namely as the b's complement of
Reid Spencer92904632007-02-23 01:57:13 +00001510 // the true value, and a "borrow" to the left should be remembered.
1511 //
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001512 if (isNeg) {
Reid Spencer610fad82007-02-24 10:01:42 +00001513 bool carry = true; // true because b's complement is "complement + 1"
1514 for (uint32_t i = 0; i <= m+n; ++i) {
1515 u[i] = ~u[i] + carry; // b's complement
1516 carry = carry && u[i] == 0;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001517 }
Reid Spencer92904632007-02-23 01:57:13 +00001518 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001519 DEBUG(cerr << "KnuthDiv: after complement:");
1520 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1521 DEBUG(cerr << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001522
1523 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1524 // negative, go to step D6; otherwise go on to step D7.
1525 q[j] = qp;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001526 if (isNeg) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00001527 // D6. [Add back]. The probability that this step is necessary is very
1528 // small, on the order of only 2/b. Make sure that test data accounts for
Reid Spencer92904632007-02-23 01:57:13 +00001529 // this possibility. Decrease q[j] by 1
1530 q[j]--;
1531 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1532 // A carry will occur to the left of u[j+n], and it should be ignored
1533 // since it cancels with the borrow that occurred in D4.
1534 bool carry = false;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001535 for (uint32_t i = 0; i < n; i++) {
Reid Spencer9d6c9192007-02-24 03:58:46 +00001536 uint32_t limit = std::min(u[j+i],v[i]);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001537 u[j+i] += v[i] + carry;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001538 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001539 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001540 u[j+n] += carry;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001541 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001542 DEBUG(cerr << "KnuthDiv: after correction:");
1543 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1544 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001545
Reid Spencer92904632007-02-23 01:57:13 +00001546 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1547 } while (--j >= 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001548
Reid Spencer9d6c9192007-02-24 03:58:46 +00001549 DEBUG(cerr << "KnuthDiv: quotient:");
1550 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1551 DEBUG(cerr << '\n');
1552
Reid Spencer9c0696f2007-02-20 08:51:03 +00001553 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1554 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1555 // compute the remainder (urem uses this).
1556 if (r) {
1557 // The value d is expressed by the "shift" value above since we avoided
1558 // multiplication by d by using a shift left. So, all we have to do is
1559 // shift right here. In order to mak
Reid Spencer1050ec52007-02-24 20:38:01 +00001560 if (shift) {
1561 uint32_t carry = 0;
1562 DEBUG(cerr << "KnuthDiv: remainder:");
1563 for (int i = n-1; i >= 0; i--) {
1564 r[i] = (u[i] >> shift) | carry;
1565 carry = u[i] << (32 - shift);
1566 DEBUG(cerr << " " << r[i]);
1567 }
1568 } else {
1569 for (int i = n-1; i >= 0; i--) {
1570 r[i] = u[i];
1571 DEBUG(cerr << " " << r[i]);
1572 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001573 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001574 DEBUG(cerr << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001575 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001576 DEBUG(cerr << std::setbase(10) << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001577}
1578
Reid Spencer9c0696f2007-02-20 08:51:03 +00001579void APInt::divide(const APInt LHS, uint32_t lhsWords,
1580 const APInt &RHS, uint32_t rhsWords,
1581 APInt *Quotient, APInt *Remainder)
1582{
1583 assert(lhsWords >= rhsWords && "Fractional result");
1584
1585 // First, compose the values into an array of 32-bit words instead of
1586 // 64-bit words. This is a necessity of both the "short division" algorithm
1587 // and the the Knuth "classical algorithm" which requires there to be native
1588 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1589 // can't use 64-bit operands here because we don't have native results of
1590 // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1591 // work on large-endian machines.
1592 uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1593 uint32_t n = rhsWords * 2;
1594 uint32_t m = (lhsWords * 2) - n;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001595
1596 // Allocate space for the temporary values we need either on the stack, if
1597 // it will fit, or on the heap if it won't.
1598 uint32_t SPACE[128];
1599 uint32_t *U = 0;
1600 uint32_t *V = 0;
1601 uint32_t *Q = 0;
1602 uint32_t *R = 0;
1603 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1604 U = &SPACE[0];
1605 V = &SPACE[m+n+1];
1606 Q = &SPACE[(m+n+1) + n];
1607 if (Remainder)
1608 R = &SPACE[(m+n+1) + n + (m+n)];
1609 } else {
1610 U = new uint32_t[m + n + 1];
1611 V = new uint32_t[n];
1612 Q = new uint32_t[m+n];
1613 if (Remainder)
1614 R = new uint32_t[n];
1615 }
1616
1617 // Initialize the dividend
Reid Spencer9c0696f2007-02-20 08:51:03 +00001618 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1619 for (unsigned i = 0; i < lhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001620 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001621 U[i * 2] = tmp & mask;
1622 U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1623 }
1624 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1625
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001626 // Initialize the divisor
Reid Spencer9c0696f2007-02-20 08:51:03 +00001627 memset(V, 0, (n)*sizeof(uint32_t));
1628 for (unsigned i = 0; i < rhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001629 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001630 V[i * 2] = tmp & mask;
1631 V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1632 }
1633
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001634 // initialize the quotient and remainder
Reid Spencer9c0696f2007-02-20 08:51:03 +00001635 memset(Q, 0, (m+n) * sizeof(uint32_t));
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001636 if (Remainder)
Reid Spencer9c0696f2007-02-20 08:51:03 +00001637 memset(R, 0, n * sizeof(uint32_t));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001638
1639 // Now, adjust m and n for the Knuth division. n is the number of words in
1640 // the divisor. m is the number of words by which the dividend exceeds the
1641 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1642 // contain any zero words or the Knuth algorithm fails.
1643 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1644 n--;
1645 m++;
1646 }
1647 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1648 m--;
1649
1650 // If we're left with only a single word for the divisor, Knuth doesn't work
1651 // so we implement the short division algorithm here. This is much simpler
1652 // and faster because we are certain that we can divide a 64-bit quantity
1653 // by a 32-bit quantity at hardware speed and short division is simply a
1654 // series of such operations. This is just like doing short division but we
1655 // are using base 2^32 instead of base 10.
1656 assert(n != 0 && "Divide by zero?");
1657 if (n == 1) {
1658 uint32_t divisor = V[0];
1659 uint32_t remainder = 0;
1660 for (int i = m+n-1; i >= 0; i--) {
1661 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1662 if (partial_dividend == 0) {
1663 Q[i] = 0;
1664 remainder = 0;
1665 } else if (partial_dividend < divisor) {
1666 Q[i] = 0;
1667 remainder = partial_dividend;
1668 } else if (partial_dividend == divisor) {
1669 Q[i] = 1;
1670 remainder = 0;
1671 } else {
1672 Q[i] = partial_dividend / divisor;
1673 remainder = partial_dividend - (Q[i] * divisor);
1674 }
1675 }
1676 if (R)
1677 R[0] = remainder;
1678 } else {
1679 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1680 // case n > 1.
1681 KnuthDiv(U, V, Q, R, m, n);
1682 }
1683
1684 // If the caller wants the quotient
1685 if (Quotient) {
1686 // Set up the Quotient value's memory.
1687 if (Quotient->BitWidth != LHS.BitWidth) {
1688 if (Quotient->isSingleWord())
1689 Quotient->VAL = 0;
1690 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001691 delete [] Quotient->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001692 Quotient->BitWidth = LHS.BitWidth;
1693 if (!Quotient->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001694 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001695 } else
1696 Quotient->clear();
1697
1698 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1699 // order words.
1700 if (lhsWords == 1) {
1701 uint64_t tmp =
1702 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1703 if (Quotient->isSingleWord())
1704 Quotient->VAL = tmp;
1705 else
1706 Quotient->pVal[0] = tmp;
1707 } else {
1708 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1709 for (unsigned i = 0; i < lhsWords; ++i)
1710 Quotient->pVal[i] =
1711 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1712 }
1713 }
1714
1715 // If the caller wants the remainder
1716 if (Remainder) {
1717 // Set up the Remainder value's memory.
1718 if (Remainder->BitWidth != RHS.BitWidth) {
1719 if (Remainder->isSingleWord())
1720 Remainder->VAL = 0;
1721 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001722 delete [] Remainder->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001723 Remainder->BitWidth = RHS.BitWidth;
1724 if (!Remainder->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001725 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001726 } else
1727 Remainder->clear();
1728
1729 // The remainder is in R. Reconstitute the remainder into Remainder's low
1730 // order words.
1731 if (rhsWords == 1) {
1732 uint64_t tmp =
1733 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1734 if (Remainder->isSingleWord())
1735 Remainder->VAL = tmp;
1736 else
1737 Remainder->pVal[0] = tmp;
1738 } else {
1739 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1740 for (unsigned i = 0; i < rhsWords; ++i)
1741 Remainder->pVal[i] =
1742 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1743 }
1744 }
1745
1746 // Clean up the memory we allocated.
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001747 if (U != &SPACE[0]) {
1748 delete [] U;
1749 delete [] V;
1750 delete [] Q;
1751 delete [] R;
1752 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00001753}
1754
Reid Spencere81d2da2007-02-16 22:36:51 +00001755APInt APInt::udiv(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001756 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001757
1758 // First, deal with the easy case
1759 if (isSingleWord()) {
1760 assert(RHS.VAL != 0 && "Divide by zero?");
1761 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001762 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001763
Reid Spencer71bd08f2007-02-17 02:07:07 +00001764 // Get some facts about the LHS and RHS number of bits and words
Reid Spenceraf0e9562007-02-18 18:38:44 +00001765 uint32_t rhsBits = RHS.getActiveBits();
1766 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001767 assert(rhsWords && "Divided by zero???");
Reid Spencer9c0696f2007-02-20 08:51:03 +00001768 uint32_t lhsBits = this->getActiveBits();
Reid Spenceraf0e9562007-02-18 18:38:44 +00001769 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001770
1771 // Deal with some degenerate cases
1772 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +00001773 // 0 / X ===> 0
1774 return APInt(BitWidth, 0);
1775 else if (lhsWords < rhsWords || this->ult(RHS)) {
1776 // X / Y ===> 0, iff X < Y
1777 return APInt(BitWidth, 0);
1778 } else if (*this == RHS) {
1779 // X / X ===> 1
1780 return APInt(BitWidth, 1);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001781 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001782 // All high words are zero, just use native divide
Reid Spencere0cdd332007-02-21 08:21:52 +00001783 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001784 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001785
1786 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1787 APInt Quotient(1,0); // to hold result.
1788 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1789 return Quotient;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001790}
1791
Reid Spencere81d2da2007-02-16 22:36:51 +00001792APInt APInt::urem(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001793 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001794 if (isSingleWord()) {
1795 assert(RHS.VAL != 0 && "Remainder by zero?");
1796 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001797 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001798
Reid Spencere0cdd332007-02-21 08:21:52 +00001799 // Get some facts about the LHS
1800 uint32_t lhsBits = getActiveBits();
1801 uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001802
1803 // Get some facts about the RHS
Reid Spenceraf0e9562007-02-18 18:38:44 +00001804 uint32_t rhsBits = RHS.getActiveBits();
1805 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001806 assert(rhsWords && "Performing remainder operation by zero ???");
1807
Reid Spencer71bd08f2007-02-17 02:07:07 +00001808 // Check the degenerate cases
Reid Spencer9c0696f2007-02-20 08:51:03 +00001809 if (lhsWords == 0) {
Reid Spencere0cdd332007-02-21 08:21:52 +00001810 // 0 % Y ===> 0
1811 return APInt(BitWidth, 0);
1812 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1813 // X % Y ===> X, iff X < Y
1814 return *this;
1815 } else if (*this == RHS) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001816 // X % X == 0;
Reid Spencere0cdd332007-02-21 08:21:52 +00001817 return APInt(BitWidth, 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001818 } else if (lhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001819 // All high words are zero, just use native remainder
Reid Spencere0cdd332007-02-21 08:21:52 +00001820 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001821 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001822
Reid Spencer19dc32a2007-05-13 23:44:59 +00001823 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Reid Spencer9c0696f2007-02-20 08:51:03 +00001824 APInt Remainder(1,0);
1825 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1826 return Remainder;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001827}
Reid Spencer5e0a8512007-02-17 03:16:00 +00001828
Reid Spencer19dc32a2007-05-13 23:44:59 +00001829void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1830 APInt &Quotient, APInt &Remainder) {
1831 // Get some size facts about the dividend and divisor
1832 uint32_t lhsBits = LHS.getActiveBits();
1833 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1834 uint32_t rhsBits = RHS.getActiveBits();
1835 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1836
1837 // Check the degenerate cases
1838 if (lhsWords == 0) {
1839 Quotient = 0; // 0 / Y ===> 0
1840 Remainder = 0; // 0 % Y ===> 0
1841 return;
1842 }
1843
1844 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1845 Quotient = 0; // X / Y ===> 0, iff X < Y
1846 Remainder = LHS; // X % Y ===> X, iff X < Y
1847 return;
1848 }
1849
1850 if (LHS == RHS) {
1851 Quotient = 1; // X / X ===> 1
1852 Remainder = 0; // X % X ===> 0;
1853 return;
1854 }
1855
1856 if (lhsWords == 1 && rhsWords == 1) {
1857 // There is only one word to consider so use the native versions.
1858 if (LHS.isSingleWord()) {
1859 Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL);
1860 Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL);
1861 } else {
1862 Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]);
1863 Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]);
1864 }
1865 return;
1866 }
1867
1868 // Okay, lets do it the long way
1869 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1870}
1871
Reid Spencer385f7542007-02-21 03:55:44 +00001872void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
Reid Spencer5e0a8512007-02-17 03:16:00 +00001873 uint8_t radix) {
Reid Spencer385f7542007-02-21 03:55:44 +00001874 // Check our assumptions here
Reid Spencer5e0a8512007-02-17 03:16:00 +00001875 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1876 "Radix should be 2, 8, 10, or 16!");
Reid Spencer385f7542007-02-21 03:55:44 +00001877 assert(str && "String is null?");
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001878 bool isNeg = str[0] == '-';
1879 if (isNeg)
Reid Spencer9eec2412007-02-25 23:44:53 +00001880 str++, slen--;
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001881 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
1882 assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
1883 assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
1884 assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
Reid Spencer385f7542007-02-21 03:55:44 +00001885
1886 // Allocate memory
1887 if (!isSingleWord())
1888 pVal = getClearedMemory(getNumWords());
1889
1890 // Figure out if we can shift instead of multiply
1891 uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1892
1893 // Set up an APInt for the digit to add outside the loop so we don't
1894 // constantly construct/destruct it.
1895 APInt apdigit(getBitWidth(), 0);
1896 APInt apradix(getBitWidth(), radix);
1897
1898 // Enter digit traversal loop
1899 for (unsigned i = 0; i < slen; i++) {
1900 // Get a digit
1901 uint32_t digit = 0;
1902 char cdigit = str[i];
Reid Spencer6551dcd2007-05-16 19:18:22 +00001903 if (radix == 16) {
1904 if (!isxdigit(cdigit))
1905 assert(0 && "Invalid hex digit in string");
1906 if (isdigit(cdigit))
1907 digit = cdigit - '0';
1908 else if (cdigit >= 'a')
Reid Spencer385f7542007-02-21 03:55:44 +00001909 digit = cdigit - 'a' + 10;
1910 else if (cdigit >= 'A')
1911 digit = cdigit - 'A' + 10;
1912 else
Reid Spencer6551dcd2007-05-16 19:18:22 +00001913 assert(0 && "huh? we shouldn't get here");
1914 } else if (isdigit(cdigit)) {
1915 digit = cdigit - '0';
1916 } else {
Reid Spencer385f7542007-02-21 03:55:44 +00001917 assert(0 && "Invalid character in digit string");
Reid Spencer6551dcd2007-05-16 19:18:22 +00001918 }
Reid Spencer385f7542007-02-21 03:55:44 +00001919
Reid Spencer6551dcd2007-05-16 19:18:22 +00001920 // Shift or multiply the value by the radix
Reid Spencer385f7542007-02-21 03:55:44 +00001921 if (shift)
Reid Spencer6551dcd2007-05-16 19:18:22 +00001922 *this <<= shift;
Reid Spencer385f7542007-02-21 03:55:44 +00001923 else
1924 *this *= apradix;
1925
1926 // Add in the digit we just interpreted
Reid Spencer5bce8542007-02-24 20:19:37 +00001927 if (apdigit.isSingleWord())
1928 apdigit.VAL = digit;
1929 else
1930 apdigit.pVal[0] = digit;
Reid Spencer385f7542007-02-21 03:55:44 +00001931 *this += apdigit;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001932 }
Reid Spencer9eec2412007-02-25 23:44:53 +00001933 // If its negative, put it in two's complement form
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001934 if (isNeg) {
1935 (*this)--;
Reid Spencer9eec2412007-02-25 23:44:53 +00001936 this->flip();
Reid Spencer9eec2412007-02-25 23:44:53 +00001937 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00001938}
Reid Spencer9c0696f2007-02-20 08:51:03 +00001939
Reid Spencer9c0696f2007-02-20 08:51:03 +00001940std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1941 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1942 "Radix should be 2, 8, 10, or 16!");
1943 static const char *digits[] = {
1944 "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1945 };
1946 std::string result;
1947 uint32_t bits_used = getActiveBits();
1948 if (isSingleWord()) {
1949 char buf[65];
1950 const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1951 (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1952 if (format) {
1953 if (wantSigned) {
1954 int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1955 (APINT_BITS_PER_WORD-BitWidth);
1956 sprintf(buf, format, sextVal);
1957 } else
1958 sprintf(buf, format, VAL);
1959 } else {
1960 memset(buf, 0, 65);
1961 uint64_t v = VAL;
1962 while (bits_used) {
1963 uint32_t bit = v & 1;
1964 bits_used--;
1965 buf[bits_used] = digits[bit][0];
1966 v >>=1;
1967 }
1968 }
1969 result = buf;
1970 return result;
1971 }
1972
1973 if (radix != 10) {
Reid Spencerfb0709a2007-05-17 19:23:02 +00001974 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
1975 // because the number of bits per digit (1,3 and 4 respectively) divides
1976 // equaly. We just shift until there value is zero.
1977
1978 // First, check for a zero value and just short circuit the logic below.
1979 if (*this == 0)
1980 result = "0";
1981 else {
1982 APInt tmp(*this);
1983 size_t insert_at = 0;
1984 if (wantSigned && this->isNegative()) {
1985 // They want to print the signed version and it is a negative value
1986 // Flip the bits and add one to turn it into the equivalent positive
1987 // value and put a '-' in the result.
1988 tmp.flip();
1989 tmp++;
1990 result = "-";
1991 insert_at = 1;
1992 }
1993 // Just shift tmp right for each digit width until it becomes zero
1994 uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
1995 uint64_t mask = radix - 1;
1996 APInt zero(tmp.getBitWidth(), 0);
1997 while (tmp.ne(zero)) {
Reid Spencer20a4c232007-05-19 00:29:55 +00001998 unsigned digit = (tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask;
Reid Spencerfb0709a2007-05-17 19:23:02 +00001999 result.insert(insert_at, digits[digit]);
Reid Spencer20a4c232007-05-19 00:29:55 +00002000 tmp = tmp.lshr(shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00002001 }
2002 }
2003 return result;
2004 }
2005
2006 APInt tmp(*this);
2007 APInt divisor(4, radix);
2008 APInt zero(tmp.getBitWidth(), 0);
2009 size_t insert_at = 0;
2010 if (wantSigned && tmp[BitWidth-1]) {
2011 // They want to print the signed version and it is a negative value
2012 // Flip the bits and add one to turn it into the equivalent positive
2013 // value and put a '-' in the result.
2014 tmp.flip();
2015 tmp++;
2016 result = "-";
2017 insert_at = 1;
2018 }
Reid Spencere549c492007-02-21 00:29:48 +00002019 if (tmp == APInt(tmp.getBitWidth(), 0))
Reid Spencer9c0696f2007-02-20 08:51:03 +00002020 result = "0";
2021 else while (tmp.ne(zero)) {
2022 APInt APdigit(1,0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00002023 APInt tmp2(tmp.getBitWidth(), 0);
Reid Spencer385f7542007-02-21 03:55:44 +00002024 divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2025 &APdigit);
Reid Spencer794f4722007-02-26 21:02:27 +00002026 uint32_t digit = APdigit.getZExtValue();
Reid Spencer385f7542007-02-21 03:55:44 +00002027 assert(digit < radix && "divide failed");
2028 result.insert(insert_at,digits[digit]);
Reid Spencer9c0696f2007-02-20 08:51:03 +00002029 tmp = tmp2;
2030 }
2031
2032 return result;
2033}
2034
Reid Spencer385f7542007-02-21 03:55:44 +00002035void APInt::dump() const
2036{
Reid Spencer610fad82007-02-24 10:01:42 +00002037 cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
Reid Spencer385f7542007-02-21 03:55:44 +00002038 if (isSingleWord())
Reid Spencer610fad82007-02-24 10:01:42 +00002039 cerr << VAL;
Reid Spencer385f7542007-02-21 03:55:44 +00002040 else for (unsigned i = getNumWords(); i > 0; i--) {
Reid Spencer610fad82007-02-24 10:01:42 +00002041 cerr << pVal[i-1] << " ";
Reid Spencer385f7542007-02-21 03:55:44 +00002042 }
Chris Lattner9132a2b2007-08-23 05:15:32 +00002043 cerr << " U(" << this->toStringUnsigned(10) << ") S("
Dale Johannesen9e3d3ab2007-09-14 22:26:36 +00002044 << this->toStringSigned(10) << ")" << std::setbase(10);
Reid Spencer385f7542007-02-21 03:55:44 +00002045}
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002046
2047// This implements a variety of operations on a representation of
2048// arbitrary precision, two's-complement, bignum integer values.
2049
2050/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2051 and unrestricting assumption. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002052COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002053
2054/* Some handy functions local to this file. */
2055namespace {
2056
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002057 /* Returns the integer part with the least significant BITS set.
2058 BITS cannot be zero. */
2059 inline integerPart
2060 lowBitMask(unsigned int bits)
2061 {
2062 assert (bits != 0 && bits <= integerPartWidth);
2063
2064 return ~(integerPart) 0 >> (integerPartWidth - bits);
2065 }
2066
Neil Booth055c0b32007-10-06 00:43:45 +00002067 /* Returns the value of the lower half of PART. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002068 inline integerPart
2069 lowHalf(integerPart part)
2070 {
2071 return part & lowBitMask(integerPartWidth / 2);
2072 }
2073
Neil Booth055c0b32007-10-06 00:43:45 +00002074 /* Returns the value of the upper half of PART. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002075 inline integerPart
2076 highHalf(integerPart part)
2077 {
2078 return part >> (integerPartWidth / 2);
2079 }
2080
Neil Booth055c0b32007-10-06 00:43:45 +00002081 /* Returns the bit number of the most significant set bit of a part.
2082 If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002083 unsigned int
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002084 partMSB(integerPart value)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002085 {
2086 unsigned int n, msb;
2087
2088 if (value == 0)
2089 return -1U;
2090
2091 n = integerPartWidth / 2;
2092
2093 msb = 0;
2094 do {
2095 if (value >> n) {
2096 value >>= n;
2097 msb += n;
2098 }
2099
2100 n >>= 1;
2101 } while (n);
2102
2103 return msb;
2104 }
2105
Neil Booth055c0b32007-10-06 00:43:45 +00002106 /* Returns the bit number of the least significant set bit of a
2107 part. If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002108 unsigned int
2109 partLSB(integerPart value)
2110 {
2111 unsigned int n, lsb;
2112
2113 if (value == 0)
2114 return -1U;
2115
2116 lsb = integerPartWidth - 1;
2117 n = integerPartWidth / 2;
2118
2119 do {
2120 if (value << n) {
2121 value <<= n;
2122 lsb -= n;
2123 }
2124
2125 n >>= 1;
2126 } while (n);
2127
2128 return lsb;
2129 }
2130}
2131
2132/* Sets the least significant part of a bignum to the input value, and
2133 zeroes out higher parts. */
2134void
2135APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2136{
2137 unsigned int i;
2138
Neil Booth68e53ad2007-10-08 13:47:12 +00002139 assert (parts > 0);
2140
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002141 dst[0] = part;
2142 for(i = 1; i < parts; i++)
2143 dst[i] = 0;
2144}
2145
2146/* Assign one bignum to another. */
2147void
2148APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2149{
2150 unsigned int i;
2151
2152 for(i = 0; i < parts; i++)
2153 dst[i] = src[i];
2154}
2155
2156/* Returns true if a bignum is zero, false otherwise. */
2157bool
2158APInt::tcIsZero(const integerPart *src, unsigned int parts)
2159{
2160 unsigned int i;
2161
2162 for(i = 0; i < parts; i++)
2163 if (src[i])
2164 return false;
2165
2166 return true;
2167}
2168
2169/* Extract the given bit of a bignum; returns 0 or 1. */
2170int
2171APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2172{
2173 return(parts[bit / integerPartWidth]
2174 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2175}
2176
2177/* Set the given bit of a bignum. */
2178void
2179APInt::tcSetBit(integerPart *parts, unsigned int bit)
2180{
2181 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2182}
2183
Neil Booth055c0b32007-10-06 00:43:45 +00002184/* Returns the bit number of the least significant set bit of a
2185 number. If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002186unsigned int
2187APInt::tcLSB(const integerPart *parts, unsigned int n)
2188{
2189 unsigned int i, lsb;
2190
2191 for(i = 0; i < n; i++) {
2192 if (parts[i] != 0) {
2193 lsb = partLSB(parts[i]);
2194
2195 return lsb + i * integerPartWidth;
2196 }
2197 }
2198
2199 return -1U;
2200}
2201
Neil Booth055c0b32007-10-06 00:43:45 +00002202/* Returns the bit number of the most significant set bit of a number.
2203 If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002204unsigned int
2205APInt::tcMSB(const integerPart *parts, unsigned int n)
2206{
2207 unsigned int msb;
2208
2209 do {
2210 --n;
2211
2212 if (parts[n] != 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002213 msb = partMSB(parts[n]);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002214
2215 return msb + n * integerPartWidth;
2216 }
2217 } while (n);
2218
2219 return -1U;
2220}
2221
Neil Booth68e53ad2007-10-08 13:47:12 +00002222/* Copy the bit vector of width srcBITS from SRC, starting at bit
2223 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2224 the least significant bit of DST. All high bits above srcBITS in
2225 DST are zero-filled. */
2226void
2227APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
2228 unsigned int srcBits, unsigned int srcLSB)
2229{
2230 unsigned int firstSrcPart, dstParts, shift, n;
2231
2232 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2233 assert (dstParts <= dstCount);
2234
2235 firstSrcPart = srcLSB / integerPartWidth;
2236 tcAssign (dst, src + firstSrcPart, dstParts);
2237
2238 shift = srcLSB % integerPartWidth;
2239 tcShiftRight (dst, dstParts, shift);
2240
2241 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2242 in DST. If this is less that srcBits, append the rest, else
2243 clear the high bits. */
2244 n = dstParts * integerPartWidth - shift;
2245 if (n < srcBits) {
2246 integerPart mask = lowBitMask (srcBits - n);
2247 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2248 << n % integerPartWidth);
2249 } else if (n > srcBits) {
Neil Booth1e8390d2007-10-12 15:31:31 +00002250 if (srcBits % integerPartWidth)
2251 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Booth68e53ad2007-10-08 13:47:12 +00002252 }
2253
2254 /* Clear high parts. */
2255 while (dstParts < dstCount)
2256 dst[dstParts++] = 0;
2257}
2258
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002259/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2260integerPart
2261APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2262 integerPart c, unsigned int parts)
2263{
2264 unsigned int i;
2265
2266 assert(c <= 1);
2267
2268 for(i = 0; i < parts; i++) {
2269 integerPart l;
2270
2271 l = dst[i];
2272 if (c) {
2273 dst[i] += rhs[i] + 1;
2274 c = (dst[i] <= l);
2275 } else {
2276 dst[i] += rhs[i];
2277 c = (dst[i] < l);
2278 }
2279 }
2280
2281 return c;
2282}
2283
2284/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2285integerPart
2286APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2287 integerPart c, unsigned int parts)
2288{
2289 unsigned int i;
2290
2291 assert(c <= 1);
2292
2293 for(i = 0; i < parts; i++) {
2294 integerPart l;
2295
2296 l = dst[i];
2297 if (c) {
2298 dst[i] -= rhs[i] + 1;
2299 c = (dst[i] >= l);
2300 } else {
2301 dst[i] -= rhs[i];
2302 c = (dst[i] > l);
2303 }
2304 }
2305
2306 return c;
2307}
2308
2309/* Negate a bignum in-place. */
2310void
2311APInt::tcNegate(integerPart *dst, unsigned int parts)
2312{
2313 tcComplement(dst, parts);
2314 tcIncrement(dst, parts);
2315}
2316
Neil Booth055c0b32007-10-06 00:43:45 +00002317/* DST += SRC * MULTIPLIER + CARRY if add is true
2318 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002319
2320 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2321 they must start at the same point, i.e. DST == SRC.
2322
2323 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2324 returned. Otherwise DST is filled with the least significant
2325 DSTPARTS parts of the result, and if all of the omitted higher
2326 parts were zero return zero, otherwise overflow occurred and
2327 return one. */
2328int
2329APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2330 integerPart multiplier, integerPart carry,
2331 unsigned int srcParts, unsigned int dstParts,
2332 bool add)
2333{
2334 unsigned int i, n;
2335
2336 /* Otherwise our writes of DST kill our later reads of SRC. */
2337 assert(dst <= src || dst >= src + srcParts);
2338 assert(dstParts <= srcParts + 1);
2339
2340 /* N loops; minimum of dstParts and srcParts. */
2341 n = dstParts < srcParts ? dstParts: srcParts;
2342
2343 for(i = 0; i < n; i++) {
2344 integerPart low, mid, high, srcPart;
2345
2346 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2347
2348 This cannot overflow, because
2349
2350 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2351
2352 which is less than n^2. */
2353
2354 srcPart = src[i];
2355
2356 if (multiplier == 0 || srcPart == 0) {
2357 low = carry;
2358 high = 0;
2359 } else {
2360 low = lowHalf(srcPart) * lowHalf(multiplier);
2361 high = highHalf(srcPart) * highHalf(multiplier);
2362
2363 mid = lowHalf(srcPart) * highHalf(multiplier);
2364 high += highHalf(mid);
2365 mid <<= integerPartWidth / 2;
2366 if (low + mid < low)
2367 high++;
2368 low += mid;
2369
2370 mid = highHalf(srcPart) * lowHalf(multiplier);
2371 high += highHalf(mid);
2372 mid <<= integerPartWidth / 2;
2373 if (low + mid < low)
2374 high++;
2375 low += mid;
2376
2377 /* Now add carry. */
2378 if (low + carry < low)
2379 high++;
2380 low += carry;
2381 }
2382
2383 if (add) {
2384 /* And now DST[i], and store the new low part there. */
2385 if (low + dst[i] < low)
2386 high++;
2387 dst[i] += low;
2388 } else
2389 dst[i] = low;
2390
2391 carry = high;
2392 }
2393
2394 if (i < dstParts) {
2395 /* Full multiplication, there is no overflow. */
2396 assert(i + 1 == dstParts);
2397 dst[i] = carry;
2398 return 0;
2399 } else {
2400 /* We overflowed if there is carry. */
2401 if (carry)
2402 return 1;
2403
2404 /* We would overflow if any significant unwritten parts would be
2405 non-zero. This is true if any remaining src parts are non-zero
2406 and the multiplier is non-zero. */
2407 if (multiplier)
2408 for(; i < srcParts; i++)
2409 if (src[i])
2410 return 1;
2411
2412 /* We fitted in the narrow destination. */
2413 return 0;
2414 }
2415}
2416
2417/* DST = LHS * RHS, where DST has the same width as the operands and
2418 is filled with the least significant parts of the result. Returns
2419 one if overflow occurred, otherwise zero. DST must be disjoint
2420 from both operands. */
2421int
2422APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2423 const integerPart *rhs, unsigned int parts)
2424{
2425 unsigned int i;
2426 int overflow;
2427
2428 assert(dst != lhs && dst != rhs);
2429
2430 overflow = 0;
2431 tcSet(dst, 0, parts);
2432
2433 for(i = 0; i < parts; i++)
2434 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2435 parts - i, true);
2436
2437 return overflow;
2438}
2439
Neil Booth978661d2007-10-06 00:24:48 +00002440/* DST = LHS * RHS, where DST has width the sum of the widths of the
2441 operands. No overflow occurs. DST must be disjoint from both
2442 operands. Returns the number of parts required to hold the
2443 result. */
2444unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002445APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth978661d2007-10-06 00:24:48 +00002446 const integerPart *rhs, unsigned int lhsParts,
2447 unsigned int rhsParts)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002448{
Neil Booth978661d2007-10-06 00:24:48 +00002449 /* Put the narrower number on the LHS for less loops below. */
2450 if (lhsParts > rhsParts) {
2451 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2452 } else {
2453 unsigned int n;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002454
Neil Booth978661d2007-10-06 00:24:48 +00002455 assert(dst != lhs && dst != rhs);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002456
Neil Booth978661d2007-10-06 00:24:48 +00002457 tcSet(dst, 0, rhsParts);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002458
Neil Booth978661d2007-10-06 00:24:48 +00002459 for(n = 0; n < lhsParts; n++)
2460 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002461
Neil Booth978661d2007-10-06 00:24:48 +00002462 n = lhsParts + rhsParts;
2463
2464 return n - (dst[n - 1] == 0);
2465 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002466}
2467
2468/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2469 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2470 set REMAINDER to the remainder, return zero. i.e.
2471
2472 OLD_LHS = RHS * LHS + REMAINDER
2473
2474 SCRATCH is a bignum of the same size as the operands and result for
2475 use by the routine; its contents need not be initialized and are
2476 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2477*/
2478int
2479APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2480 integerPart *remainder, integerPart *srhs,
2481 unsigned int parts)
2482{
2483 unsigned int n, shiftCount;
2484 integerPart mask;
2485
2486 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2487
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002488 shiftCount = tcMSB(rhs, parts) + 1;
2489 if (shiftCount == 0)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002490 return true;
2491
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002492 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002493 n = shiftCount / integerPartWidth;
2494 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2495
2496 tcAssign(srhs, rhs, parts);
2497 tcShiftLeft(srhs, parts, shiftCount);
2498 tcAssign(remainder, lhs, parts);
2499 tcSet(lhs, 0, parts);
2500
2501 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2502 the total. */
2503 for(;;) {
2504 int compare;
2505
2506 compare = tcCompare(remainder, srhs, parts);
2507 if (compare >= 0) {
2508 tcSubtract(remainder, srhs, 0, parts);
2509 lhs[n] |= mask;
2510 }
2511
2512 if (shiftCount == 0)
2513 break;
2514 shiftCount--;
2515 tcShiftRight(srhs, parts, 1);
2516 if ((mask >>= 1) == 0)
2517 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2518 }
2519
2520 return false;
2521}
2522
2523/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2524 There are no restrictions on COUNT. */
2525void
2526APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2527{
Neil Booth68e53ad2007-10-08 13:47:12 +00002528 if (count) {
2529 unsigned int jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002530
Neil Booth68e53ad2007-10-08 13:47:12 +00002531 /* Jump is the inter-part jump; shift is is intra-part shift. */
2532 jump = count / integerPartWidth;
2533 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002534
Neil Booth68e53ad2007-10-08 13:47:12 +00002535 while (parts > jump) {
2536 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002537
Neil Booth68e53ad2007-10-08 13:47:12 +00002538 parts--;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002539
Neil Booth68e53ad2007-10-08 13:47:12 +00002540 /* dst[i] comes from the two parts src[i - jump] and, if we have
2541 an intra-part shift, src[i - jump - 1]. */
2542 part = dst[parts - jump];
2543 if (shift) {
2544 part <<= shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002545 if (parts >= jump + 1)
2546 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2547 }
2548
Neil Booth68e53ad2007-10-08 13:47:12 +00002549 dst[parts] = part;
2550 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002551
Neil Booth68e53ad2007-10-08 13:47:12 +00002552 while (parts > 0)
2553 dst[--parts] = 0;
2554 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002555}
2556
2557/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2558 zero. There are no restrictions on COUNT. */
2559void
2560APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2561{
Neil Booth68e53ad2007-10-08 13:47:12 +00002562 if (count) {
2563 unsigned int i, jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002564
Neil Booth68e53ad2007-10-08 13:47:12 +00002565 /* Jump is the inter-part jump; shift is is intra-part shift. */
2566 jump = count / integerPartWidth;
2567 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002568
Neil Booth68e53ad2007-10-08 13:47:12 +00002569 /* Perform the shift. This leaves the most significant COUNT bits
2570 of the result at zero. */
2571 for(i = 0; i < parts; i++) {
2572 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002573
Neil Booth68e53ad2007-10-08 13:47:12 +00002574 if (i + jump >= parts) {
2575 part = 0;
2576 } else {
2577 part = dst[i + jump];
2578 if (shift) {
2579 part >>= shift;
2580 if (i + jump + 1 < parts)
2581 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2582 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002583 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002584
Neil Booth68e53ad2007-10-08 13:47:12 +00002585 dst[i] = part;
2586 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002587 }
2588}
2589
2590/* Bitwise and of two bignums. */
2591void
2592APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2593{
2594 unsigned int i;
2595
2596 for(i = 0; i < parts; i++)
2597 dst[i] &= rhs[i];
2598}
2599
2600/* Bitwise inclusive or of two bignums. */
2601void
2602APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2603{
2604 unsigned int i;
2605
2606 for(i = 0; i < parts; i++)
2607 dst[i] |= rhs[i];
2608}
2609
2610/* Bitwise exclusive or of two bignums. */
2611void
2612APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2613{
2614 unsigned int i;
2615
2616 for(i = 0; i < parts; i++)
2617 dst[i] ^= rhs[i];
2618}
2619
2620/* Complement a bignum in-place. */
2621void
2622APInt::tcComplement(integerPart *dst, unsigned int parts)
2623{
2624 unsigned int i;
2625
2626 for(i = 0; i < parts; i++)
2627 dst[i] = ~dst[i];
2628}
2629
2630/* Comparison (unsigned) of two bignums. */
2631int
2632APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2633 unsigned int parts)
2634{
2635 while (parts) {
2636 parts--;
2637 if (lhs[parts] == rhs[parts])
2638 continue;
2639
2640 if (lhs[parts] > rhs[parts])
2641 return 1;
2642 else
2643 return -1;
2644 }
2645
2646 return 0;
2647}
2648
2649/* Increment a bignum in-place, return the carry flag. */
2650integerPart
2651APInt::tcIncrement(integerPart *dst, unsigned int parts)
2652{
2653 unsigned int i;
2654
2655 for(i = 0; i < parts; i++)
2656 if (++dst[i] != 0)
2657 break;
2658
2659 return i == parts;
2660}
2661
2662/* Set the least significant BITS bits of a bignum, clear the
2663 rest. */
2664void
2665APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2666 unsigned int bits)
2667{
2668 unsigned int i;
2669
2670 i = 0;
2671 while (bits > integerPartWidth) {
2672 dst[i++] = ~(integerPart) 0;
2673 bits -= integerPartWidth;
2674 }
2675
2676 if (bits)
2677 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2678
2679 while (i < parts)
2680 dst[i++] = 0;
2681}