blob: 2867597a59dca9dd45b8be4c11b6a9a60d38197c [file] [log] [blame]
Tony Linthicumb4b54152011-12-12 21:14:40 +00001//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass identifies loops where we can generate the Hexagon hardware
11// loop instruction. The hardware loop can perform loop branches with a
12// zero-cycle overhead.
13//
14// The pattern that defines the induction variable can changed depending on
15// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
16// normalizes induction variables, and the Loop Strength Reduction pass
17// run by 'llc' may also make changes to the induction variable.
18// The pattern detected by this phase is due to running Strength Reduction.
19//
20// Criteria for hardware loops:
21// - Countable loops (w/ ind. var for a trip count)
22// - Assumes loops are normalized by IndVarSimplify
23// - Try inner-most loops first
24// - No nested hardware loops.
25// - No function calls in loops.
26//
27//===----------------------------------------------------------------------===//
28
29#define DEBUG_TYPE "hwloops"
Craig Topper79aa3412012-03-17 18:46:09 +000030#include "Hexagon.h"
31#include "HexagonTargetMachine.h"
Tony Linthicumb4b54152011-12-12 21:14:40 +000032#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/Statistic.h"
Tony Linthicumb4b54152011-12-12 21:14:40 +000034#include "llvm/CodeGen/MachineDominators.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineLoopInfo.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000040#include "llvm/CodeGen/Passes.h"
Tony Linthicumb4b54152011-12-12 21:14:40 +000041#include "llvm/CodeGen/RegisterScavenging.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000042#include "llvm/Constants.h"
43#include "llvm/PassSupport.h"
Tony Linthicumb4b54152011-12-12 21:14:40 +000044#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include <algorithm>
Tony Linthicumb4b54152011-12-12 21:14:40 +000048
49using namespace llvm;
50
51STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
52
53namespace {
54 class CountValue;
55 struct HexagonHardwareLoops : public MachineFunctionPass {
56 MachineLoopInfo *MLI;
57 MachineRegisterInfo *MRI;
58 const TargetInstrInfo *TII;
59
60 public:
61 static char ID; // Pass identification, replacement for typeid
62
63 HexagonHardwareLoops() : MachineFunctionPass(ID) {}
64
65 virtual bool runOnMachineFunction(MachineFunction &MF);
66
67 const char *getPassName() const { return "Hexagon Hardware Loops"; }
68
69 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
70 AU.setPreservesCFG();
71 AU.addRequired<MachineDominatorTree>();
72 AU.addPreserved<MachineDominatorTree>();
73 AU.addRequired<MachineLoopInfo>();
74 AU.addPreserved<MachineLoopInfo>();
75 MachineFunctionPass::getAnalysisUsage(AU);
76 }
77
78 private:
79 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
80 /// induction variable.
81 /// Should be defined in MachineLoop. Based upon version in class Loop.
82 const MachineInstr *getCanonicalInductionVariable(MachineLoop *L) const;
83
84 /// getTripCount - Return a loop-invariant LLVM register indicating the
85 /// number of times the loop will be executed. If the trip-count cannot
86 /// be determined, this return null.
87 CountValue *getTripCount(MachineLoop *L) const;
88
89 /// isInductionOperation - Return true if the instruction matches the
90 /// pattern for an opertion that defines an induction variable.
91 bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
92
93 /// isInvalidOperation - Return true if the instruction is not valid within
94 /// a hardware loop.
95 bool isInvalidLoopOperation(const MachineInstr *MI) const;
96
97 /// containsInavlidInstruction - Return true if the loop contains an
98 /// instruction that inhibits using the hardware loop.
99 bool containsInvalidInstruction(MachineLoop *L) const;
100
101 /// converToHardwareLoop - Given a loop, check if we can convert it to a
102 /// hardware loop. If so, then perform the conversion and return true.
103 bool convertToHardwareLoop(MachineLoop *L);
104
105 };
106
107 char HexagonHardwareLoops::ID = 0;
108
109
110 // CountValue class - Abstraction for a trip count of a loop. A
111 // smaller vesrsion of the MachineOperand class without the concerns
112 // of changing the operand representation.
113 class CountValue {
114 public:
115 enum CountValueType {
116 CV_Register,
117 CV_Immediate
118 };
119 private:
120 CountValueType Kind;
121 union Values {
122 unsigned RegNum;
123 int64_t ImmVal;
124 Values(unsigned r) : RegNum(r) {}
125 Values(int64_t i) : ImmVal(i) {}
126 } Contents;
127 bool isNegative;
128
129 public:
130 CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
131 isNegative(neg) {}
132 explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
133 isNegative(i < 0) {}
134 CountValueType getType() const { return Kind; }
135 bool isReg() const { return Kind == CV_Register; }
136 bool isImm() const { return Kind == CV_Immediate; }
137 bool isNeg() const { return isNegative; }
138
139 unsigned getReg() const {
140 assert(isReg() && "Wrong CountValue accessor");
141 return Contents.RegNum;
142 }
143 void setReg(unsigned Val) {
144 Contents.RegNum = Val;
145 }
146 int64_t getImm() const {
147 assert(isImm() && "Wrong CountValue accessor");
148 if (isNegative) {
149 return -Contents.ImmVal;
150 }
151 return Contents.ImmVal;
152 }
153 void setImm(int64_t Val) {
154 Contents.ImmVal = Val;
155 }
156
157 void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
158 if (isReg()) { OS << PrintReg(getReg()); }
159 if (isImm()) { OS << getImm(); }
160 }
161 };
162
163 struct HexagonFixupHwLoops : public MachineFunctionPass {
164 public:
165 static char ID; // Pass identification, replacement for typeid.
166
167 HexagonFixupHwLoops() : MachineFunctionPass(ID) {}
168
169 virtual bool runOnMachineFunction(MachineFunction &MF);
170
171 const char *getPassName() const { return "Hexagon Hardware Loop Fixup"; }
172
173 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
174 AU.setPreservesCFG();
175 MachineFunctionPass::getAnalysisUsage(AU);
176 }
177
178 private:
179 /// Maximum distance between the loop instr and the basic block.
180 /// Just an estimate.
181 static const unsigned MAX_LOOP_DISTANCE = 200;
182
183 /// fixupLoopInstrs - Check the offset between each loop instruction and
184 /// the loop basic block to determine if we can use the LOOP instruction
185 /// or if we need to set the LC/SA registers explicitly.
186 bool fixupLoopInstrs(MachineFunction &MF);
187
188 /// convertLoopInstr - Add the instruction to set the LC and SA registers
189 /// explicitly.
190 void convertLoopInstr(MachineFunction &MF,
191 MachineBasicBlock::iterator &MII,
192 RegScavenger &RS);
193
194 };
195
196 char HexagonFixupHwLoops::ID = 0;
197
198} // end anonymous namespace
199
200
201/// isHardwareLoop - Returns true if the instruction is a hardware loop
202/// instruction.
203static bool isHardwareLoop(const MachineInstr *MI) {
204 return MI->getOpcode() == Hexagon::LOOP0_r ||
205 MI->getOpcode() == Hexagon::LOOP0_i;
206}
207
208/// isCompareEquals - Returns true if the instruction is a compare equals
209/// instruction with an immediate operand.
210static bool isCompareEqualsImm(const MachineInstr *MI) {
211 return MI->getOpcode() == Hexagon::CMPEQri;
212}
213
214
215/// createHexagonHardwareLoops - Factory for creating
216/// the hardware loop phase.
217FunctionPass *llvm::createHexagonHardwareLoops() {
218 return new HexagonHardwareLoops();
219}
220
221
222bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
223 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
224
225 bool Changed = false;
226
227 // get the loop information
228 MLI = &getAnalysis<MachineLoopInfo>();
229 // get the register information
230 MRI = &MF.getRegInfo();
231 // the target specific instructio info.
232 TII = MF.getTarget().getInstrInfo();
233
234 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
235 I != E; ++I) {
236 MachineLoop *L = *I;
237 if (!L->getParentLoop()) {
238 Changed |= convertToHardwareLoop(L);
239 }
240 }
241
242 return Changed;
243}
244
245/// getCanonicalInductionVariable - Check to see if the loop has a canonical
246/// induction variable. We check for a simple recurrence pattern - an
247/// integer recurrence that decrements by one each time through the loop and
248/// ends at zero. If so, return the phi node that corresponds to it.
249///
250/// Based upon the similar code in LoopInfo except this code is specific to
251/// the machine.
252/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
253///
254const MachineInstr
255*HexagonHardwareLoops::getCanonicalInductionVariable(MachineLoop *L) const {
256 MachineBasicBlock *TopMBB = L->getTopBlock();
257 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
258 assert(PI != TopMBB->pred_end() &&
259 "Loop must have more than one incoming edge!");
260 MachineBasicBlock *Backedge = *PI++;
261 if (PI == TopMBB->pred_end()) return 0; // dead loop
262 MachineBasicBlock *Incoming = *PI++;
263 if (PI != TopMBB->pred_end()) return 0; // multiple backedges?
264
265 // make sure there is one incoming and one backedge and determine which
266 // is which.
267 if (L->contains(Incoming)) {
268 if (L->contains(Backedge))
269 return 0;
270 std::swap(Incoming, Backedge);
271 } else if (!L->contains(Backedge))
272 return 0;
273
274 // Loop over all of the PHI nodes, looking for a canonical induction variable:
275 // - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
276 // - The recurrence comes from the backedge.
277 // - the definition is an induction operatio.n
278 for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
279 I != E && I->isPHI(); ++I) {
280 const MachineInstr *MPhi = &*I;
281 unsigned DefReg = MPhi->getOperand(0).getReg();
282 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
283 // Check each operand for the value from the backedge.
284 MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
285 if (L->contains(MBB)) { // operands comes from the backedge
286 // Check if the definition is an induction operation.
287 const MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
288 if (isInductionOperation(DI, DefReg)) {
289 return MPhi;
290 }
291 }
292 }
293 }
294 return 0;
295}
296
297/// getTripCount - Return a loop-invariant LLVM value indicating the
298/// number of times the loop will be executed. The trip count can
299/// be either a register or a constant value. If the trip-count
300/// cannot be determined, this returns null.
301///
302/// We find the trip count from the phi instruction that defines the
303/// induction variable. We follow the links to the CMP instruction
304/// to get the trip count.
305///
306/// Based upon getTripCount in LoopInfo.
307///
308CountValue *HexagonHardwareLoops::getTripCount(MachineLoop *L) const {
309 // Check that the loop has a induction variable.
310 const MachineInstr *IV_Inst = getCanonicalInductionVariable(L);
311 if (IV_Inst == 0) return 0;
312
313 // Canonical loops will end with a 'cmpeq_ri IV, Imm',
314 // if Imm is 0, get the count from the PHI opnd
315 // if Imm is -M, than M is the count
316 // Otherwise, Imm is the count
317 const MachineOperand *IV_Opnd;
318 const MachineOperand *InitialValue;
319 if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
320 InitialValue = &IV_Inst->getOperand(1);
321 IV_Opnd = &IV_Inst->getOperand(3);
322 } else {
323 InitialValue = &IV_Inst->getOperand(3);
324 IV_Opnd = &IV_Inst->getOperand(1);
325 }
326
327 // Look for the cmp instruction to determine if we
328 // can get a useful trip count. The trip count can
329 // be either a register or an immediate. The location
330 // of the value depends upon the type (reg or imm).
Jakob Stoklund Olesen0c5f5f42012-08-08 23:44:04 +0000331 for (MachineRegisterInfo::reg_iterator
332 RI = MRI->reg_begin(IV_Opnd->getReg()), RE = MRI->reg_end();
333 RI != RE; ++RI) {
334 IV_Opnd = &RI.getOperand();
Tony Linthicumb4b54152011-12-12 21:14:40 +0000335 const MachineInstr *MI = IV_Opnd->getParent();
336 if (L->contains(MI) && isCompareEqualsImm(MI)) {
337 const MachineOperand &MO = MI->getOperand(2);
338 assert(MO.isImm() && "IV Cmp Operand should be 0");
339 int64_t ImmVal = MO.getImm();
340
341 const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
342 assert(L->contains(IV_DefInstr->getParent()) &&
343 "IV definition should occurs in loop");
344 int64_t iv_value = IV_DefInstr->getOperand(2).getImm();
345
346 if (ImmVal == 0) {
347 // Make sure the induction variable changes by one on each iteration.
348 if (iv_value != 1 && iv_value != -1) {
349 return 0;
350 }
351 return new CountValue(InitialValue->getReg(), iv_value > 0);
352 } else {
353 assert(InitialValue->isReg() && "Expecting register for init value");
354 const MachineInstr *DefInstr = MRI->getVRegDef(InitialValue->getReg());
355 if (DefInstr && DefInstr->getOpcode() == Hexagon::TFRI) {
356 int64_t count = ImmVal - DefInstr->getOperand(1).getImm();
357 if ((count % iv_value) != 0) {
358 return 0;
359 }
360 return new CountValue(count/iv_value);
361 }
362 }
363 }
364 }
365 return 0;
366}
367
368/// isInductionOperation - return true if the operation is matches the
369/// pattern that defines an induction variable:
370/// add iv, c
371///
372bool
373HexagonHardwareLoops::isInductionOperation(const MachineInstr *MI,
374 unsigned IVReg) const {
375 return (MI->getOpcode() ==
376 Hexagon::ADD_ri && MI->getOperand(1).getReg() == IVReg);
377}
378
379/// isInvalidOperation - Return true if the operation is invalid within
380/// hardware loop.
381bool
382HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
383
384 // call is not allowed because the callee may use a hardware loop
385 if (MI->getDesc().isCall()) {
386 return true;
387 }
388 // do not allow nested hardware loops
389 if (isHardwareLoop(MI)) {
390 return true;
391 }
392 // check if the instruction defines a hardware loop register
393 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
394 const MachineOperand &MO = MI->getOperand(i);
395 if (MO.isReg() && MO.isDef() &&
396 (MO.getReg() == Hexagon::LC0 || MO.getReg() == Hexagon::LC1 ||
397 MO.getReg() == Hexagon::SA0 || MO.getReg() == Hexagon::SA0)) {
398 return true;
399 }
400 }
401 return false;
402}
403
404/// containsInvalidInstruction - Return true if the loop contains
405/// an instruction that inhibits the use of the hardware loop function.
406///
407bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const {
408 const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
409 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
410 MachineBasicBlock *MBB = Blocks[i];
411 for (MachineBasicBlock::iterator
412 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
413 const MachineInstr *MI = &*MII;
414 if (isInvalidLoopOperation(MI)) {
415 return true;
416 }
417 }
418 }
419 return false;
420}
421
422/// converToHardwareLoop - check if the loop is a candidate for
423/// converting to a hardware loop. If so, then perform the
424/// transformation.
425///
426/// This function works on innermost loops first. A loop can
427/// be converted if it is a counting loop; either a register
428/// value or an immediate.
429///
430/// The code makes several assumptions about the representation
431/// of the loop in llvm.
432bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
433 bool Changed = false;
434 // Process nested loops first.
435 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
436 Changed |= convertToHardwareLoop(*I);
437 }
438 // If a nested loop has been converted, then we can't convert this loop.
439 if (Changed) {
440 return Changed;
441 }
442 // Are we able to determine the trip count for the loop?
443 CountValue *TripCount = getTripCount(L);
444 if (TripCount == 0) {
445 return false;
446 }
447 // Does the loop contain any invalid instructions?
448 if (containsInvalidInstruction(L)) {
449 return false;
450 }
451 MachineBasicBlock *Preheader = L->getLoopPreheader();
452 // No preheader means there's not place for the loop instr.
453 if (Preheader == 0) {
454 return false;
455 }
456 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
457
458 MachineBasicBlock *LastMBB = L->getExitingBlock();
459 // Don't generate hw loop if the loop has more than one exit.
460 if (LastMBB == 0) {
461 return false;
462 }
463 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
464
465 // Determine the loop start.
466 MachineBasicBlock *LoopStart = L->getTopBlock();
467 if (L->getLoopLatch() != LastMBB) {
468 // When the exit and latch are not the same, use the latch block as the
469 // start.
470 // The loop start address is used only after the 1st iteration, and the loop
471 // latch may contains instrs. that need to be executed after the 1st iter.
472 LoopStart = L->getLoopLatch();
473 // Make sure the latch is a successor of the exit, otherwise it won't work.
474 if (!LastMBB->isSuccessor(LoopStart)) {
475 return false;
476 }
477 }
478
479 // Convert the loop to a hardware loop
480 DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
481
482 if (TripCount->isReg()) {
483 // Create a copy of the loop count register.
484 MachineFunction *MF = LastMBB->getParent();
485 const TargetRegisterClass *RC =
486 MF->getRegInfo().getRegClass(TripCount->getReg());
487 unsigned CountReg = MF->getRegInfo().createVirtualRegister(RC);
488 BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
489 TII->get(TargetOpcode::COPY), CountReg).addReg(TripCount->getReg());
490 if (TripCount->isNeg()) {
491 unsigned CountReg1 = CountReg;
492 CountReg = MF->getRegInfo().createVirtualRegister(RC);
493 BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
494 TII->get(Hexagon::NEG), CountReg).addReg(CountReg1);
495 }
496
Benjamin Kramerd9b0b022012-06-02 10:20:22 +0000497 // Add the Loop instruction to the beginning of the loop.
Tony Linthicumb4b54152011-12-12 21:14:40 +0000498 BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
499 TII->get(Hexagon::LOOP0_r)).addMBB(LoopStart).addReg(CountReg);
500 } else {
501 assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
502 // Add the Loop immediate instruction to the beginning of the loop.
503 int64_t CountImm = TripCount->getImm();
504 BuildMI(*Preheader, InsertPos, InsertPos->getDebugLoc(),
505 TII->get(Hexagon::LOOP0_i)).addMBB(LoopStart).addImm(CountImm);
506 }
507
508 // Make sure the loop start always has a reference in the CFG. We need to
509 // create a BlockAddress operand to get this mechanism to work both the
510 // MachineBasicBlock and BasicBlock objects need the flag set.
511 LoopStart->setHasAddressTaken();
512 // This line is needed to set the hasAddressTaken flag on the BasicBlock
513 // object
514 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
515
516 // Replace the loop branch with an endloop instruction.
517 DebugLoc dl = LastI->getDebugLoc();
518 BuildMI(*LastMBB, LastI, dl, TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart);
519
520 // The loop ends with either:
521 // - a conditional branch followed by an unconditional branch, or
522 // - a conditional branch to the loop start.
Sirish Pandeab7955b2012-02-15 18:52:27 +0000523 if (LastI->getOpcode() == Hexagon::JMP_c ||
524 LastI->getOpcode() == Hexagon::JMP_cNot) {
Tony Linthicumb4b54152011-12-12 21:14:40 +0000525 // delete one and change/add an uncond. branch to out of the loop
526 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
527 LastI = LastMBB->erase(LastI);
528 if (!L->contains(BranchTarget)) {
529 if (LastI != LastMBB->end()) {
530 TII->RemoveBranch(*LastMBB);
531 }
532 SmallVector<MachineOperand, 0> Cond;
533 TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, dl);
534 }
535 } else {
536 // Conditional branch to loop start; just delete it.
537 LastMBB->erase(LastI);
538 }
539 delete TripCount;
540
541 ++NumHWLoops;
542 return true;
543}
544
545/// createHexagonFixupHwLoops - Factory for creating the hardware loop
546/// phase.
547FunctionPass *llvm::createHexagonFixupHwLoops() {
548 return new HexagonFixupHwLoops();
549}
550
551bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) {
552 DEBUG(dbgs() << "****** Hexagon Hardware Loop Fixup ******\n");
553
554 bool Changed = fixupLoopInstrs(MF);
555 return Changed;
556}
557
558/// fixupLoopInsts - For Hexagon, if the loop label is to far from the
559/// loop instruction then we need to set the LC0 and SA0 registers
560/// explicitly instead of using LOOP(start,count). This function
561/// checks the distance, and generates register assignments if needed.
562///
563/// This function makes two passes over the basic blocks. The first
564/// pass computes the offset of the basic block from the start.
565/// The second pass checks all the loop instructions.
566bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {
567
568 // Offset of the current instruction from the start.
569 unsigned InstOffset = 0;
570 // Map for each basic block to it's first instruction.
571 DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
572
573 // First pass - compute the offset of each basic block.
574 for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
575 MBB != MBBe; ++MBB) {
576 BlockToInstOffset[MBB] = InstOffset;
577 InstOffset += (MBB->size() * 4);
578 }
579
580 // Second pass - check each loop instruction to see if it needs to
581 // be converted.
582 InstOffset = 0;
583 bool Changed = false;
584 RegScavenger RS;
585
586 // Loop over all the basic blocks.
587 for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
588 MBB != MBBe; ++MBB) {
589 InstOffset = BlockToInstOffset[MBB];
590 RS.enterBasicBlock(MBB);
591
592 // Loop over all the instructions.
593 MachineBasicBlock::iterator MIE = MBB->end();
594 MachineBasicBlock::iterator MII = MBB->begin();
595 while (MII != MIE) {
596 if (isHardwareLoop(MII)) {
597 RS.forward(MII);
598 assert(MII->getOperand(0).isMBB() &&
599 "Expect a basic block as loop operand");
600 int diff = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()];
601 diff = (diff > 0 ? diff : -diff);
602 if ((unsigned)diff > MAX_LOOP_DISTANCE) {
603 // Convert to explicity setting LC0 and SA0.
604 convertLoopInstr(MF, MII, RS);
605 MII = MBB->erase(MII);
606 Changed = true;
607 } else {
608 ++MII;
609 }
610 } else {
611 ++MII;
612 }
613 InstOffset += 4;
614 }
615 }
616
617 return Changed;
618
619}
620
621/// convertLoopInstr - convert a loop instruction to a sequence of instructions
622/// that set the lc and sa register explicitly.
623void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF,
624 MachineBasicBlock::iterator &MII,
625 RegScavenger &RS) {
626 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
627 MachineBasicBlock *MBB = MII->getParent();
628 DebugLoc DL = MII->getDebugLoc();
Craig Topper420761a2012-04-20 07:30:17 +0000629 unsigned Scratch = RS.scavengeRegister(&Hexagon::IntRegsRegClass, MII, 0);
Tony Linthicumb4b54152011-12-12 21:14:40 +0000630
631 // First, set the LC0 with the trip count.
632 if (MII->getOperand(1).isReg()) {
633 // Trip count is a register
634 BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
635 .addReg(MII->getOperand(1).getReg());
636 } else {
637 // Trip count is an immediate.
638 BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch)
639 .addImm(MII->getOperand(1).getImm());
640 BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
641 .addReg(Scratch);
642 }
643 // Then, set the SA0 with the loop start address.
644 BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch)
645 .addMBB(MII->getOperand(0).getMBB());
646 BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0).addReg(Scratch);
647}