blob: 329cdd8e7519ee1d2be51697935d63e38c1a21bd [file] [log] [blame]
Chris Lattnera960d952003-01-13 01:01:59 +00001//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Chris Lattner847df252004-01-30 22:25:18 +000011// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
Chris Lattnera960d952003-01-13 01:01:59 +000028//
29//===----------------------------------------------------------------------===//
30
Chris Lattnercb533582003-08-03 21:14:38 +000031#define DEBUG_TYPE "fp"
Chris Lattnera960d952003-01-13 01:01:59 +000032#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
Alkis Evlogimenos359b65f2003-12-13 05:36:22 +000037#include "llvm/CodeGen/Passes.h"
Chris Lattner3501fea2003-01-14 22:00:31 +000038#include "llvm/Target/TargetInstrInfo.h"
Chris Lattnera960d952003-01-13 01:01:59 +000039#include "llvm/Target/TargetMachine.h"
Chris Lattnera11136b2003-08-01 22:21:34 +000040#include "Support/Debug.h"
Chris Lattner847df252004-01-30 22:25:18 +000041#include "Support/DepthFirstIterator.h"
Chris Lattnera960d952003-01-13 01:01:59 +000042#include "Support/Statistic.h"
Alkis Evlogimenosf81af212004-02-14 01:18:34 +000043#include "Support/STLExtras.h"
Chris Lattnera960d952003-01-13 01:01:59 +000044#include <algorithm>
Chris Lattner847df252004-01-30 22:25:18 +000045#include <set>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000046using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000047
Chris Lattnera960d952003-01-13 01:01:59 +000048namespace {
49 Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
50 Statistic<> NumFP ("x86-codegen", "Number of floating point instructions");
51
52 struct FPS : public MachineFunctionPass {
53 virtual bool runOnMachineFunction(MachineFunction &MF);
54
55 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
56
57 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
58 AU.addRequired<LiveVariables>();
59 MachineFunctionPass::getAnalysisUsage(AU);
60 }
61 private:
62 LiveVariables *LV; // Live variable info for current function...
63 MachineBasicBlock *MBB; // Current basic block
64 unsigned Stack[8]; // FP<n> Registers in each stack slot...
65 unsigned RegMap[8]; // Track which stack slot contains each register
66 unsigned StackTop; // The current top of the FP stack.
67
68 void dumpStack() const {
69 std::cerr << "Stack contents:";
70 for (unsigned i = 0; i != StackTop; ++i) {
71 std::cerr << " FP" << Stack[i];
72 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
73 }
74 std::cerr << "\n";
75 }
76 private:
77 // getSlot - Return the stack slot number a particular register number is
78 // in...
79 unsigned getSlot(unsigned RegNo) const {
80 assert(RegNo < 8 && "Regno out of range!");
81 return RegMap[RegNo];
82 }
83
84 // getStackEntry - Return the X86::FP<n> register in register ST(i)
85 unsigned getStackEntry(unsigned STi) const {
86 assert(STi < StackTop && "Access past stack top!");
87 return Stack[StackTop-1-STi];
88 }
89
90 // getSTReg - Return the X86::ST(i) register which contains the specified
91 // FP<RegNo> register
92 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +000093 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +000094 }
95
Chris Lattner4a06f352004-02-02 19:23:15 +000096 // pushReg - Push the specified FP<n> register onto the stack
Chris Lattnera960d952003-01-13 01:01:59 +000097 void pushReg(unsigned Reg) {
98 assert(Reg < 8 && "Register number out of range!");
99 assert(StackTop < 8 && "Stack overflow!");
100 Stack[StackTop] = Reg;
101 RegMap[Reg] = StackTop++;
102 }
103
104 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
105 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
106 if (!isAtTop(RegNo)) {
107 unsigned Slot = getSlot(RegNo);
108 unsigned STReg = getSTReg(RegNo);
109 unsigned RegOnTop = getStackEntry(0);
110
111 // Swap the slots the regs are in
112 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
113
114 // Swap stack slot contents
115 assert(RegMap[RegOnTop] < StackTop);
116 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
117
118 // Emit an fxch to update the runtime processors version of the state
Chris Lattner0526f012004-04-01 04:06:09 +0000119 BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000120 NumFXCH++;
121 }
122 }
123
Chris Lattner0526f012004-04-01 04:06:09 +0000124 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Chris Lattnera960d952003-01-13 01:01:59 +0000125 unsigned STReg = getSTReg(RegNo);
126 pushReg(AsReg); // New register on top of stack
127
Chris Lattner0526f012004-04-01 04:06:09 +0000128 BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000129 }
130
131 // popStackAfter - Pop the current value off of the top of the FP stack
132 // after the specified instruction.
133 void popStackAfter(MachineBasicBlock::iterator &I);
134
Chris Lattner0526f012004-04-01 04:06:09 +0000135 // freeStackSlotAfter - Free the specified register from the register stack,
136 // so that it is no longer in a register. If the register is currently at
137 // the top of the stack, we just pop the current instruction, otherwise we
138 // store the current top-of-stack into the specified slot, then pop the top
139 // of stack.
140 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
141
Chris Lattnera960d952003-01-13 01:01:59 +0000142 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
143
144 void handleZeroArgFP(MachineBasicBlock::iterator &I);
145 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000146 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000147 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000148 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000149 void handleSpecialFP(MachineBasicBlock::iterator &I);
150 };
151}
152
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000153FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000154
155/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
156/// register references into FP stack references.
157///
158bool FPS::runOnMachineFunction(MachineFunction &MF) {
159 LV = &getAnalysis<LiveVariables>();
160 StackTop = 0;
161
Chris Lattner847df252004-01-30 22:25:18 +0000162 // Process the function in depth first order so that we process at least one
163 // of the predecessors for every reachable block in the function.
Chris Lattner22686842004-05-01 21:27:53 +0000164 std::set<MachineBasicBlock*> Processed;
165 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000166
167 bool Changed = false;
Chris Lattner22686842004-05-01 21:27:53 +0000168 for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
Chris Lattner847df252004-01-30 22:25:18 +0000169 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
170 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000171 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000172
Chris Lattnera960d952003-01-13 01:01:59 +0000173 return Changed;
174}
175
176/// processBasicBlock - Loop over all of the instructions in the basic block,
177/// transforming FP instructions into their stack form.
178///
179bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnerd029cd22004-06-02 05:55:25 +0000180 const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
Chris Lattnera960d952003-01-13 01:01:59 +0000181 bool Changed = false;
182 MBB = &BB;
183
184 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000185 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000186 unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
Chris Lattner847df252004-01-30 22:25:18 +0000187 if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
188 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000189
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000190 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000191 if (I != BB.begin())
192 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000193
194 ++NumFP; // Keep track of # of pseudo instrs
195 DEBUG(std::cerr << "\nFPInst:\t";
196 MI->print(std::cerr, MF.getTarget()));
197
198 // Get dead variables list now because the MI pointer may be deleted as part
199 // of processing!
200 LiveVariables::killed_iterator IB = LV->dead_begin(MI);
201 LiveVariables::killed_iterator IE = LV->dead_end(MI);
202
203 DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
204 LiveVariables::killed_iterator I = LV->killed_begin(MI);
205 LiveVariables::killed_iterator E = LV->killed_end(MI);
206 if (I != E) {
207 std::cerr << "Killed Operands:";
208 for (; I != E; ++I)
209 std::cerr << " %" << MRI->getName(I->second);
210 std::cerr << "\n";
211 });
212
213 switch (Flags & X86II::FPTypeMask) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000214 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000215 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000216 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
217 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000218 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000219 case X86II::SpecialFP: handleSpecialFP(I); break;
Chris Lattnera960d952003-01-13 01:01:59 +0000220 default: assert(0 && "Unknown FP Type!");
221 }
222
223 // Check to see if any of the values defined by this instruction are dead
224 // after definition. If so, pop them.
225 for (; IB != IE; ++IB) {
226 unsigned Reg = IB->second;
227 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
228 DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
229 ++I; // Insert fxch AFTER the instruction
Misha Brukman5560c9d2003-08-18 14:43:39 +0000230 moveToTop(Reg-X86::FP0, I); // Insert fxch if necessary
Chris Lattnera960d952003-01-13 01:01:59 +0000231 --I; // Move to fxch or old instruction
232 popStackAfter(I); // Pop the top of the stack, killing value
233 }
234 }
235
236 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000237 DEBUG(
238 MachineBasicBlock::iterator PrevI(PrevMI);
239 if (I == PrevI) {
Chris Lattner0526f012004-04-01 04:06:09 +0000240 std::cerr << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000241 } else {
242 MachineBasicBlock::iterator Start = I;
243 // Rewind to first instruction newly inserted.
244 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
245 std::cerr << "Inserted instructions:\n\t";
246 Start->print(std::cerr, MF.getTarget());
247 while (++Start != next(I));
248 }
249 dumpStack();
250 );
Chris Lattnera960d952003-01-13 01:01:59 +0000251
252 Changed = true;
253 }
254
255 assert(StackTop == 0 && "Stack not empty at end of basic block?");
256 return Changed;
257}
258
259//===----------------------------------------------------------------------===//
260// Efficient Lookup Table Support
261//===----------------------------------------------------------------------===//
262
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000263namespace {
264 struct TableEntry {
265 unsigned from;
266 unsigned to;
267 bool operator<(const TableEntry &TE) const { return from < TE.from; }
268 bool operator<(unsigned V) const { return from < V; }
269 };
270}
Chris Lattnera960d952003-01-13 01:01:59 +0000271
272static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
273 for (unsigned i = 0; i != NumEntries-1; ++i)
274 if (!(Table[i] < Table[i+1])) return false;
275 return true;
276}
277
278static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
279 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
280 if (I != Table+N && I->from == Opcode)
281 return I->to;
282 return -1;
283}
284
285#define ARRAY_SIZE(TABLE) \
286 (sizeof(TABLE)/sizeof(TABLE[0]))
287
288#ifdef NDEBUG
289#define ASSERT_SORTED(TABLE)
290#else
291#define ASSERT_SORTED(TABLE) \
292 { static bool TABLE##Checked = false; \
293 if (!TABLE##Checked) \
294 assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \
295 "All lookup tables must be sorted for efficient access!"); \
296 }
297#endif
298
299
300//===----------------------------------------------------------------------===//
301// Helper Methods
302//===----------------------------------------------------------------------===//
303
304// PopTable - Sorted map of instructions to their popping version. The first
305// element is an instruction, the second is the version which pops.
306//
307static const TableEntry PopTable[] = {
Chris Lattner113455b2003-08-03 21:56:36 +0000308 { X86::FADDrST0 , X86::FADDPrST0 },
309
310 { X86::FDIVRrST0, X86::FDIVRPrST0 },
311 { X86::FDIVrST0 , X86::FDIVPrST0 },
312
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000313 { X86::FIST16m , X86::FISTP16m },
314 { X86::FIST32m , X86::FISTP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000315
Chris Lattnera960d952003-01-13 01:01:59 +0000316 { X86::FMULrST0 , X86::FMULPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000317
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000318 { X86::FST32m , X86::FSTP32m },
319 { X86::FST64m , X86::FSTP64m },
Chris Lattner113455b2003-08-03 21:56:36 +0000320 { X86::FSTrr , X86::FSTPrr },
321
322 { X86::FSUBRrST0, X86::FSUBRPrST0 },
323 { X86::FSUBrST0 , X86::FSUBPrST0 },
324
Chris Lattnerc040bca2004-04-12 01:39:15 +0000325 { X86::FUCOMIr , X86::FUCOMIPr },
326
Chris Lattnera960d952003-01-13 01:01:59 +0000327 { X86::FUCOMPr , X86::FUCOMPPr },
Chris Lattner113455b2003-08-03 21:56:36 +0000328 { X86::FUCOMr , X86::FUCOMPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000329};
330
331/// popStackAfter - Pop the current value off of the top of the FP stack after
332/// the specified instruction. This attempts to be sneaky and combine the pop
333/// into the instruction itself if possible. The iterator is left pointing to
334/// the last instruction, be it a new pop instruction inserted, or the old
335/// instruction if it was modified in place.
336///
337void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
338 ASSERT_SORTED(PopTable);
339 assert(StackTop > 0 && "Cannot pop empty stack!");
340 RegMap[Stack[--StackTop]] = ~0; // Update state
341
342 // Check to see if there is a popping version of this instruction...
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000343 int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000344 if (Opcode != -1) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000345 I->setOpcode(Opcode);
Chris Lattnera960d952003-01-13 01:01:59 +0000346 if (Opcode == X86::FUCOMPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000347 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000348
349 } else { // Insert an explicit pop
Chris Lattner0526f012004-04-01 04:06:09 +0000350 I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000351 }
352}
353
Chris Lattner0526f012004-04-01 04:06:09 +0000354/// freeStackSlotAfter - Free the specified register from the register stack, so
355/// that it is no longer in a register. If the register is currently at the top
356/// of the stack, we just pop the current instruction, otherwise we store the
357/// current top-of-stack into the specified slot, then pop the top of stack.
358void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
359 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
360 popStackAfter(I);
361 return;
362 }
363
364 // Otherwise, store the top of stack into the dead slot, killing the operand
365 // without having to add in an explicit xchg then pop.
366 //
367 unsigned STReg = getSTReg(FPRegNo);
368 unsigned OldSlot = getSlot(FPRegNo);
369 unsigned TopReg = Stack[StackTop-1];
370 Stack[OldSlot] = TopReg;
371 RegMap[TopReg] = OldSlot;
372 RegMap[FPRegNo] = ~0;
373 Stack[--StackTop] = ~0;
374 I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
375}
376
377
Chris Lattnera960d952003-01-13 01:01:59 +0000378static unsigned getFPReg(const MachineOperand &MO) {
Chris Lattner6d215182004-02-10 20:31:28 +0000379 assert(MO.isRegister() && "Expected an FP register!");
Chris Lattnera960d952003-01-13 01:01:59 +0000380 unsigned Reg = MO.getReg();
381 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
382 return Reg - X86::FP0;
383}
384
385
386//===----------------------------------------------------------------------===//
387// Instruction transformation implementation
388//===----------------------------------------------------------------------===//
389
390/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000391///
Chris Lattnera960d952003-01-13 01:01:59 +0000392void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000393 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000394 unsigned DestReg = getFPReg(MI->getOperand(0));
395 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
396
397 // Result gets pushed on the stack...
398 pushReg(DestReg);
399}
400
Chris Lattner4a06f352004-02-02 19:23:15 +0000401/// handleOneArgFP - fst <mem>, ST(0)
402///
Chris Lattnera960d952003-01-13 01:01:59 +0000403void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000404 MachineInstr *MI = I;
Chris Lattnerb97046a2004-02-03 07:27:34 +0000405 assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
406 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000407
Chris Lattner4a06f352004-02-02 19:23:15 +0000408 // Is this the last use of the source register?
Chris Lattnerb97046a2004-02-03 07:27:34 +0000409 unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
Chris Lattnera960d952003-01-13 01:01:59 +0000410 bool KillsSrc = false;
411 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
412 E = LV->killed_end(MI); KI != E; ++KI)
413 KillsSrc |= KI->second == X86::FP0+Reg;
414
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000415 // FSTP80r and FISTP64r are strange because there are no non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000416 // If we have one _and_ we don't want to pop the operand, duplicate the value
417 // on the stack instead of moving it. This ensure that popping the value is
418 // always ok.
419 //
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000420 if ((MI->getOpcode() == X86::FSTP80m ||
421 MI->getOpcode() == X86::FISTP64m) && !KillsSrc) {
Chris Lattnera960d952003-01-13 01:01:59 +0000422 duplicateToTop(Reg, 7 /*temp register*/, I);
423 } else {
424 moveToTop(Reg, I); // Move to the top of the stack...
425 }
Chris Lattnerb97046a2004-02-03 07:27:34 +0000426 MI->RemoveOperand(MI->getNumOperands()-1); // Remove explicit ST(0) operand
Chris Lattnera960d952003-01-13 01:01:59 +0000427
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000428 if (MI->getOpcode() == X86::FSTP80m || MI->getOpcode() == X86::FISTP64m) {
Chris Lattnera960d952003-01-13 01:01:59 +0000429 assert(StackTop > 0 && "Stack empty??");
430 --StackTop;
431 } else if (KillsSrc) { // Last use of operand?
432 popStackAfter(I);
433 }
434}
435
Chris Lattner4a06f352004-02-02 19:23:15 +0000436
Chris Lattner4cf15e72004-04-11 20:21:06 +0000437/// handleOneArgFPRW: Handle instructions that read from the top of stack and
438/// replace the value with a newly computed value. These instructions may have
439/// non-fp operands after their FP operands.
440///
441/// Examples:
442/// R1 = fchs R2
443/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +0000444///
445void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000446 MachineInstr *MI = I;
Chris Lattner4cf15e72004-04-11 20:21:06 +0000447 assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!");
Chris Lattner4a06f352004-02-02 19:23:15 +0000448
449 // Is this the last use of the source register?
450 unsigned Reg = getFPReg(MI->getOperand(1));
451 bool KillsSrc = false;
452 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
453 E = LV->killed_end(MI); KI != E; ++KI)
454 KillsSrc |= KI->second == X86::FP0+Reg;
455
456 if (KillsSrc) {
457 // If this is the last use of the source register, just make sure it's on
458 // the top of the stack.
459 moveToTop(Reg, I);
460 assert(StackTop > 0 && "Stack cannot be empty!");
461 --StackTop;
462 pushReg(getFPReg(MI->getOperand(0)));
463 } else {
464 // If this is not the last use of the source register, _copy_ it to the top
465 // of the stack.
466 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
467 }
468
469 MI->RemoveOperand(1); // Drop the source operand.
470 MI->RemoveOperand(0); // Drop the destination operand.
471}
472
473
Chris Lattnera960d952003-01-13 01:01:59 +0000474//===----------------------------------------------------------------------===//
475// Define tables of various ways to map pseudo instructions
476//
477
478// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
479static const TableEntry ForwardST0Table[] = {
Chris Lattnerc040bca2004-04-12 01:39:15 +0000480 { X86::FpADD , X86::FADDST0r },
481 { X86::FpDIV , X86::FDIVST0r },
482 { X86::FpMUL , X86::FMULST0r },
483 { X86::FpSUB , X86::FSUBST0r },
484 { X86::FpUCOM , X86::FUCOMr },
Chris Lattner133dbb12004-04-12 03:02:48 +0000485 { X86::FpUCOMI, X86::FUCOMIr },
Chris Lattnera960d952003-01-13 01:01:59 +0000486};
487
488// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
489static const TableEntry ReverseST0Table[] = {
Chris Lattnerc040bca2004-04-12 01:39:15 +0000490 { X86::FpADD , X86::FADDST0r }, // commutative
491 { X86::FpDIV , X86::FDIVRST0r },
492 { X86::FpMUL , X86::FMULST0r }, // commutative
493 { X86::FpSUB , X86::FSUBRST0r },
494 { X86::FpUCOM , ~0 },
Chris Lattner133dbb12004-04-12 03:02:48 +0000495 { X86::FpUCOMI, ~0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000496};
497
498// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
499static const TableEntry ForwardSTiTable[] = {
Chris Lattnerc040bca2004-04-12 01:39:15 +0000500 { X86::FpADD , X86::FADDrST0 }, // commutative
501 { X86::FpDIV , X86::FDIVRrST0 },
502 { X86::FpMUL , X86::FMULrST0 }, // commutative
503 { X86::FpSUB , X86::FSUBRrST0 },
504 { X86::FpUCOM , X86::FUCOMr },
Chris Lattner133dbb12004-04-12 03:02:48 +0000505 { X86::FpUCOMI, X86::FUCOMIr },
Chris Lattnera960d952003-01-13 01:01:59 +0000506};
507
508// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
509static const TableEntry ReverseSTiTable[] = {
Chris Lattnerc040bca2004-04-12 01:39:15 +0000510 { X86::FpADD , X86::FADDrST0 },
511 { X86::FpDIV , X86::FDIVrST0 },
512 { X86::FpMUL , X86::FMULrST0 },
513 { X86::FpSUB , X86::FSUBrST0 },
514 { X86::FpUCOM , ~0 },
Chris Lattner133dbb12004-04-12 03:02:48 +0000515 { X86::FpUCOMI, ~0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000516};
517
518
519/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
520/// instructions which need to be simplified and possibly transformed.
521///
522/// Result: ST(0) = fsub ST(0), ST(i)
523/// ST(i) = fsub ST(0), ST(i)
524/// ST(0) = fsubr ST(0), ST(i)
525/// ST(i) = fsubr ST(0), ST(i)
526///
527/// In addition to three address instructions, this also handles the FpUCOM
528/// instruction which only has two operands, but no destination. This
529/// instruction is also annoying because there is no "reverse" form of it
530/// available.
531///
532void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
533 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
534 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000535 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000536
537 unsigned NumOperands = MI->getNumOperands();
Chris Lattnerc040bca2004-04-12 01:39:15 +0000538 bool isCompare = MI->getOpcode() == X86::FpUCOM ||
Chris Lattner133dbb12004-04-12 03:02:48 +0000539 MI->getOpcode() == X86::FpUCOMI;
Chris Lattnerc040bca2004-04-12 01:39:15 +0000540 assert((NumOperands == 3 || (NumOperands == 2 && isCompare)) &&
Chris Lattnera960d952003-01-13 01:01:59 +0000541 "Illegal TwoArgFP instruction!");
542 unsigned Dest = getFPReg(MI->getOperand(0));
543 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
544 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
545 bool KillsOp0 = false, KillsOp1 = false;
546
547 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
548 E = LV->killed_end(MI); KI != E; ++KI) {
549 KillsOp0 |= (KI->second == X86::FP0+Op0);
550 KillsOp1 |= (KI->second == X86::FP0+Op1);
551 }
552
553 // If this is an FpUCOM instruction, we must make sure the first operand is on
554 // the top of stack, the other one can be anywhere...
Chris Lattnerc040bca2004-04-12 01:39:15 +0000555 if (isCompare)
Chris Lattnera960d952003-01-13 01:01:59 +0000556 moveToTop(Op0, I);
557
558 unsigned TOS = getStackEntry(0);
559
560 // One of our operands must be on the top of the stack. If neither is yet, we
561 // need to move one.
562 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
563 // We can choose to move either operand to the top of the stack. If one of
564 // the operands is killed by this instruction, we want that one so that we
565 // can update right on top of the old version.
566 if (KillsOp0) {
567 moveToTop(Op0, I); // Move dead operand to TOS.
568 TOS = Op0;
569 } else if (KillsOp1) {
570 moveToTop(Op1, I);
571 TOS = Op1;
572 } else {
573 // All of the operands are live after this instruction executes, so we
574 // cannot update on top of any operand. Because of this, we must
575 // duplicate one of the stack elements to the top. It doesn't matter
576 // which one we pick.
577 //
578 duplicateToTop(Op0, Dest, I);
579 Op0 = TOS = Dest;
580 KillsOp0 = true;
581 }
Chris Lattnerc040bca2004-04-12 01:39:15 +0000582 } else if (!KillsOp0 && !KillsOp1 && !isCompare) {
Chris Lattnera960d952003-01-13 01:01:59 +0000583 // If we DO have one of our operands at the top of the stack, but we don't
584 // have a dead operand, we must duplicate one of the operands to a new slot
585 // on the stack.
586 duplicateToTop(Op0, Dest, I);
587 Op0 = TOS = Dest;
588 KillsOp0 = true;
589 }
590
591 // Now we know that one of our operands is on the top of the stack, and at
592 // least one of our operands is killed by this instruction.
593 assert((TOS == Op0 || TOS == Op1) &&
Chris Lattnerc040bca2004-04-12 01:39:15 +0000594 (KillsOp0 || KillsOp1 || isCompare) &&
Chris Lattnera960d952003-01-13 01:01:59 +0000595 "Stack conditions not set up right!");
596
597 // We decide which form to use based on what is on the top of the stack, and
598 // which operand is killed by this instruction.
599 const TableEntry *InstTable;
600 bool isForward = TOS == Op0;
601 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
602 if (updateST0) {
603 if (isForward)
604 InstTable = ForwardST0Table;
605 else
606 InstTable = ReverseST0Table;
607 } else {
608 if (isForward)
609 InstTable = ForwardSTiTable;
610 else
611 InstTable = ReverseSTiTable;
612 }
613
614 int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
615 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
616
617 // NotTOS - The register which is not on the top of stack...
618 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
619
620 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +0000621 MBB->remove(I++);
Chris Lattner0526f012004-04-01 04:06:09 +0000622 I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +0000623
624 // If both operands are killed, pop one off of the stack in addition to
625 // overwriting the other one.
626 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
627 assert(!updateST0 && "Should have updated other operand!");
628 popStackAfter(I); // Pop the top of stack
629 }
630
631 // Insert an explicit pop of the "updated" operand for FUCOM
Chris Lattnerc040bca2004-04-12 01:39:15 +0000632 if (isCompare) {
Chris Lattnera960d952003-01-13 01:01:59 +0000633 if (KillsOp0 && !KillsOp1)
634 popStackAfter(I); // If we kill the first operand, pop it!
Chris Lattner0526f012004-04-01 04:06:09 +0000635 else if (KillsOp1 && Op0 != Op1)
636 freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +0000637 }
638
639 // Update stack information so that we know the destination register is now on
640 // the stack.
Chris Lattnerc040bca2004-04-12 01:39:15 +0000641 if (!isCompare) {
Chris Lattnera960d952003-01-13 01:01:59 +0000642 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
643 assert(UpdatedSlot < StackTop && Dest < 7);
644 Stack[UpdatedSlot] = Dest;
645 RegMap[Dest] = UpdatedSlot;
646 }
647 delete MI; // Remove the old instruction
648}
649
Chris Lattnerc1bab322004-03-31 22:02:36 +0000650/// handleCondMovFP - Handle two address conditional move instructions. These
651/// instructions move a st(i) register to st(0) iff a condition is true. These
652/// instructions require that the first operand is at the top of the stack, but
653/// otherwise don't modify the stack at all.
654void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
655 MachineInstr *MI = I;
656
657 unsigned Op0 = getFPReg(MI->getOperand(0));
658 unsigned Op1 = getFPReg(MI->getOperand(1));
659
660 // The first operand *must* be on the top of the stack.
661 moveToTop(Op0, I);
662
663 // Change the second operand to the stack register that the operand is in.
664 MI->RemoveOperand(0);
665 MI->getOperand(0).setReg(getSTReg(Op1));
666
667 // If we kill the second operand, make sure to pop it from the stack.
Chris Lattner098e9452004-04-14 02:42:32 +0000668 if (Op0 != Op1)
669 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
670 E = LV->killed_end(MI); KI != E; ++KI)
671 if (KI->second == X86::FP0+Op1) {
672 // Get this value off of the register stack.
673 freeStackSlotAfter(I, Op1);
674 break;
675 }
Chris Lattnerc1bab322004-03-31 22:02:36 +0000676}
677
Chris Lattnera960d952003-01-13 01:01:59 +0000678
679/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +0000680/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +0000681/// instructions.
682///
683void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000684 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000685 switch (MI->getOpcode()) {
686 default: assert(0 && "Unknown SpecialFP instruction!");
687 case X86::FpGETRESULT: // Appears immediately after a call returning FP type!
688 assert(StackTop == 0 && "Stack should be empty after a call!");
689 pushReg(getFPReg(MI->getOperand(0)));
690 break;
691 case X86::FpSETRESULT:
692 assert(StackTop == 1 && "Stack should have one element on it to return!");
693 --StackTop; // "Forget" we have something on the top of stack!
694 break;
695 case X86::FpMOV: {
696 unsigned SrcReg = getFPReg(MI->getOperand(1));
697 unsigned DestReg = getFPReg(MI->getOperand(0));
698 bool KillsSrc = false;
699 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
700 E = LV->killed_end(MI); KI != E; ++KI)
701 KillsSrc |= KI->second == X86::FP0+SrcReg;
702
703 if (KillsSrc) {
704 // If the input operand is killed, we can just change the owner of the
705 // incoming stack slot into the result.
706 unsigned Slot = getSlot(SrcReg);
707 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
708 Stack[Slot] = DestReg;
709 RegMap[DestReg] = Slot;
710
711 } else {
712 // For FMOV we just duplicate the specified value to a new stack slot.
713 // This could be made better, but would require substantial changes.
714 duplicateToTop(SrcReg, DestReg, I);
715 }
716 break;
717 }
718 }
719
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000720 I = MBB->erase(I); // Remove the pseudo instruction
721 --I;
Chris Lattnera960d952003-01-13 01:01:59 +0000722}