Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| 2 | "http://www.w3.org/TR/html4/strict.dtd"> |
| 3 | |
| 4 | <html> |
| 5 | <head> |
| 6 | <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA |
| 7 | construction</title> |
| 8 | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| 9 | <meta name="author" content="Chris Lattner"> |
| 10 | <link rel="stylesheet" href="../llvm.css" type="text/css"> |
| 11 | </head> |
| 12 | |
| 13 | <body> |
| 14 | |
| 15 | <div class="doc_title">Kaleidoscope: Extending the Language: Mutable Variables</div> |
| 16 | |
Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame] | 17 | <ul> |
Chris Lattner | 0e555b1 | 2007-11-05 20:04:56 +0000 | [diff] [blame] | 18 | <li><a href="index.html">Up to Tutorial Index</a></li> |
Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame] | 19 | <li>Chapter 7 |
| 20 | <ol> |
| 21 | <li><a href="#intro">Chapter 7 Introduction</a></li> |
| 22 | <li><a href="#why">Why is this a hard problem?</a></li> |
| 23 | <li><a href="#memory">Memory in LLVM</a></li> |
| 24 | <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li> |
| 25 | <li><a href="#adjustments">Adjusting Existing Variables for |
| 26 | Mutation</a></li> |
| 27 | <li><a href="#assignment">New Assignment Operator</a></li> |
| 28 | <li><a href="#localvars">User-defined Local Variables</a></li> |
| 29 | <li><a href="#code">Full Code Listing</a></li> |
| 30 | </ol> |
| 31 | </li> |
Chris Lattner | 0e555b1 | 2007-11-05 20:04:56 +0000 | [diff] [blame] | 32 | <li><a href="LangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM |
| 33 | tidbits</li> |
Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame] | 34 | </ul> |
| 35 | |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 36 | <div class="doc_author"> |
| 37 | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> |
| 38 | </div> |
| 39 | |
| 40 | <!-- *********************************************************************** --> |
Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame] | 41 | <div class="doc_section"><a name="intro">Chapter 7 Introduction</a></div> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 42 | <!-- *********************************************************************** --> |
| 43 | |
| 44 | <div class="doc_text"> |
| 45 | |
Chris Lattner | 128eb86 | 2007-11-05 19:06:59 +0000 | [diff] [blame] | 46 | <p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language |
| 47 | with LLVM</a>" tutorial. In chapters 1 through 6, we've built a very |
| 48 | respectable, albeit simple, <a |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 49 | href="http://en.wikipedia.org/wiki/Functional_programming">functional |
| 50 | programming language</a>. In our journey, we learned some parsing techniques, |
| 51 | how to build and represent an AST, how to build LLVM IR, and how to optimize |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 52 | the resultant code as well as JIT compile it.</p> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 53 | |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 54 | <p>While Kaleidoscope is interesting as a functional language, the fact that it |
| 55 | is functional makes it "too easy" to generate LLVM IR for it. In particular, a |
| 56 | functional language makes it very easy to build LLVM IR directly in <a |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 57 | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>. |
| 58 | Since LLVM requires that the input code be in SSA form, this is a very nice |
| 59 | property and it is often unclear to newcomers how to generate code for an |
| 60 | imperative language with mutable variables.</p> |
| 61 | |
| 62 | <p>The short (and happy) summary of this chapter is that there is no need for |
| 63 | your front-end to build SSA form: LLVM provides highly tuned and well tested |
| 64 | support for this, though the way it works is a bit unexpected for some.</p> |
| 65 | |
| 66 | </div> |
| 67 | |
| 68 | <!-- *********************************************************************** --> |
| 69 | <div class="doc_section"><a name="why">Why is this a hard problem?</a></div> |
| 70 | <!-- *********************************************************************** --> |
| 71 | |
| 72 | <div class="doc_text"> |
| 73 | |
| 74 | <p> |
| 75 | To understand why mutable variables cause complexities in SSA construction, |
| 76 | consider this extremely simple C example: |
| 77 | </p> |
| 78 | |
| 79 | <div class="doc_code"> |
| 80 | <pre> |
| 81 | int G, H; |
| 82 | int test(_Bool Condition) { |
| 83 | int X; |
| 84 | if (Condition) |
| 85 | X = G; |
| 86 | else |
| 87 | X = H; |
| 88 | return X; |
| 89 | } |
| 90 | </pre> |
| 91 | </div> |
| 92 | |
| 93 | <p>In this case, we have the variable "X", whose value depends on the path |
| 94 | executed in the program. Because there are two different possible values for X |
| 95 | before the return instruction, a PHI node is inserted to merge the two values. |
| 96 | The LLVM IR that we want for this example looks like this:</p> |
| 97 | |
| 98 | <div class="doc_code"> |
| 99 | <pre> |
| 100 | @G = weak global i32 0 ; type of @G is i32* |
| 101 | @H = weak global i32 0 ; type of @H is i32* |
| 102 | |
| 103 | define i32 @test(i1 %Condition) { |
| 104 | entry: |
| 105 | br i1 %Condition, label %cond_true, label %cond_false |
| 106 | |
| 107 | cond_true: |
| 108 | %X.0 = load i32* @G |
| 109 | br label %cond_next |
| 110 | |
| 111 | cond_false: |
| 112 | %X.1 = load i32* @H |
| 113 | br label %cond_next |
| 114 | |
| 115 | cond_next: |
| 116 | %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] |
| 117 | ret i32 %X.2 |
| 118 | } |
| 119 | </pre> |
| 120 | </div> |
| 121 | |
| 122 | <p>In this example, the loads from the G and H global variables are explicit in |
| 123 | the LLVM IR, and they live in the then/else branches of the if statement |
| 124 | (cond_true/cond_false). In order to merge the incoming values, the X.2 phi node |
| 125 | in the cond_next block selects the right value to use based on where control |
| 126 | flow is coming from: if control flow comes from the cond_false block, X.2 gets |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 127 | the value of X.1. Alternatively, if control flow comes from cond_true, it gets |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 128 | the value of X.0. The intent of this chapter is not to explain the details of |
| 129 | SSA form. For more information, see one of the many <a |
| 130 | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online |
| 131 | references</a>.</p> |
| 132 | |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 133 | <p>The question for this article is "who places the phi nodes when lowering |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 134 | assignments to mutable variables?". The issue here is that LLVM |
| 135 | <em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it. |
| 136 | However, SSA construction requires non-trivial algorithms and data structures, |
| 137 | so it is inconvenient and wasteful for every front-end to have to reproduce this |
| 138 | logic.</p> |
| 139 | |
| 140 | </div> |
| 141 | |
| 142 | <!-- *********************************************************************** --> |
| 143 | <div class="doc_section"><a name="memory">Memory in LLVM</a></div> |
| 144 | <!-- *********************************************************************** --> |
| 145 | |
| 146 | <div class="doc_text"> |
| 147 | |
| 148 | <p>The 'trick' here is that while LLVM does require all register values to be |
| 149 | in SSA form, it does not require (or permit) memory objects to be in SSA form. |
| 150 | In the example above, note that the loads from G and H are direct accesses to |
| 151 | G and H: they are not renamed or versioned. This differs from some other |
Chris Lattner | 2e5d07e | 2007-11-04 19:42:13 +0000 | [diff] [blame] | 152 | compiler systems, which do try to version memory objects. In LLVM, instead of |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 153 | encoding dataflow analysis of memory into the LLVM IR, it is handled with <a |
| 154 | href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on |
| 155 | demand.</p> |
| 156 | |
| 157 | <p> |
| 158 | With this in mind, the high-level idea is that we want to make a stack variable |
| 159 | (which lives in memory, because it is on the stack) for each mutable object in |
| 160 | a function. To take advantage of this trick, we need to talk about how LLVM |
| 161 | represents stack variables. |
| 162 | </p> |
| 163 | |
| 164 | <p>In LLVM, all memory accesses are explicit with load/store instructions, and |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 165 | it is carefully designed not to have (or need) an "address-of" operator. Notice |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 166 | how the type of the @G/@H global variables is actually "i32*" even though the |
| 167 | variable is defined as "i32". What this means is that @G defines <em>space</em> |
| 168 | for an i32 in the global data area, but its <em>name</em> actually refers to the |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 169 | address for that space. Stack variables work the same way, except that instead of |
| 170 | being declared with global variable definitions, they are declared with the |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 171 | <a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p> |
| 172 | |
| 173 | <div class="doc_code"> |
| 174 | <pre> |
Chris Lattner | 1e46a6c | 2007-11-07 06:34:39 +0000 | [diff] [blame] | 175 | define i32 @example() { |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 176 | entry: |
| 177 | %X = alloca i32 ; type of %X is i32*. |
| 178 | ... |
| 179 | %tmp = load i32* %X ; load the stack value %X from the stack. |
| 180 | %tmp2 = add i32 %tmp, 1 ; increment it |
| 181 | store i32 %tmp2, i32* %X ; store it back |
| 182 | ... |
| 183 | </pre> |
| 184 | </div> |
| 185 | |
| 186 | <p>This code shows an example of how you can declare and manipulate a stack |
| 187 | variable in the LLVM IR. Stack memory allocated with the alloca instruction is |
| 188 | fully general: you can pass the address of the stack slot to functions, you can |
| 189 | store it in other variables, etc. In our example above, we could rewrite the |
| 190 | example to use the alloca technique to avoid using a PHI node:</p> |
| 191 | |
| 192 | <div class="doc_code"> |
| 193 | <pre> |
| 194 | @G = weak global i32 0 ; type of @G is i32* |
| 195 | @H = weak global i32 0 ; type of @H is i32* |
| 196 | |
| 197 | define i32 @test(i1 %Condition) { |
| 198 | entry: |
| 199 | %X = alloca i32 ; type of %X is i32*. |
| 200 | br i1 %Condition, label %cond_true, label %cond_false |
| 201 | |
| 202 | cond_true: |
| 203 | %X.0 = load i32* @G |
| 204 | store i32 %X.0, i32* %X ; Update X |
| 205 | br label %cond_next |
| 206 | |
| 207 | cond_false: |
| 208 | %X.1 = load i32* @H |
| 209 | store i32 %X.1, i32* %X ; Update X |
| 210 | br label %cond_next |
| 211 | |
| 212 | cond_next: |
| 213 | %X.2 = load i32* %X ; Read X |
| 214 | ret i32 %X.2 |
| 215 | } |
| 216 | </pre> |
| 217 | </div> |
| 218 | |
| 219 | <p>With this, we have discovered a way to handle arbitrary mutable variables |
| 220 | without the need to create Phi nodes at all:</p> |
| 221 | |
| 222 | <ol> |
| 223 | <li>Each mutable variable becomes a stack allocation.</li> |
| 224 | <li>Each read of the variable becomes a load from the stack.</li> |
| 225 | <li>Each update of the variable becomes a store to the stack.</li> |
| 226 | <li>Taking the address of a variable just uses the stack address directly.</li> |
| 227 | </ol> |
| 228 | |
| 229 | <p>While this solution has solved our immediate problem, it introduced another |
| 230 | one: we have now apparently introduced a lot of stack traffic for very simple |
| 231 | and common operations, a major performance problem. Fortunately for us, the |
| 232 | LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles |
| 233 | this case, promoting allocas like this into SSA registers, inserting Phi nodes |
| 234 | as appropriate. If you run this example through the pass, for example, you'll |
| 235 | get:</p> |
| 236 | |
| 237 | <div class="doc_code"> |
| 238 | <pre> |
| 239 | $ <b>llvm-as < example.ll | opt -mem2reg | llvm-dis</b> |
| 240 | @G = weak global i32 0 |
| 241 | @H = weak global i32 0 |
| 242 | |
| 243 | define i32 @test(i1 %Condition) { |
| 244 | entry: |
| 245 | br i1 %Condition, label %cond_true, label %cond_false |
| 246 | |
| 247 | cond_true: |
| 248 | %X.0 = load i32* @G |
| 249 | br label %cond_next |
| 250 | |
| 251 | cond_false: |
| 252 | %X.1 = load i32* @H |
| 253 | br label %cond_next |
| 254 | |
| 255 | cond_next: |
| 256 | %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] |
| 257 | ret i32 %X.01 |
| 258 | } |
| 259 | </pre> |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 260 | </div> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 261 | |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 262 | <p>The mem2reg pass implements the standard "iterated dominance frontier" |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 263 | algorithm for constructing SSA form and has a number of optimizations that speed |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 264 | up (very common) degenerate cases. The mem2reg optimization pass is the answer to dealing |
| 265 | with mutable variables, and we highly recommend that you depend on it. Note that |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 266 | mem2reg only works on variables in certain circumstances:</p> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 267 | |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 268 | <ol> |
| 269 | <li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it |
| 270 | promotes them. It does not apply to global variables or heap allocations.</li> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 271 | |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 272 | <li>mem2reg only looks for alloca instructions in the entry block of the |
| 273 | function. Being in the entry block guarantees that the alloca is only executed |
| 274 | once, which makes analysis simpler.</li> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 275 | |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 276 | <li>mem2reg only promotes allocas whose uses are direct loads and stores. If |
| 277 | the address of the stack object is passed to a function, or if any funny pointer |
| 278 | arithmetic is involved, the alloca will not be promoted.</li> |
| 279 | |
Chris Lattner | a56b22d | 2007-11-05 17:45:54 +0000 | [diff] [blame] | 280 | <li>mem2reg only works on allocas of <a |
| 281 | href="../LangRef.html#t_classifications">first class</a> |
| 282 | values (such as pointers, scalars and vectors), and only if the array size |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 283 | of the allocation is 1 (or missing in the .ll file). mem2reg is not capable of |
| 284 | promoting structs or arrays to registers. Note that the "scalarrepl" pass is |
| 285 | more powerful and can promote structs, "unions", and arrays in many cases.</li> |
| 286 | |
| 287 | </ol> |
| 288 | |
| 289 | <p> |
| 290 | All of these properties are easy to satisfy for most imperative languages, and |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 291 | we'll illustrate it below with Kaleidoscope. The final question you may be |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 292 | asking is: should I bother with this nonsense for my front-end? Wouldn't it be |
| 293 | better if I just did SSA construction directly, avoiding use of the mem2reg |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 294 | optimization pass? In short, we strongly recommend that you use this technique |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 295 | for building SSA form, unless there is an extremely good reason not to. Using |
| 296 | this technique is:</p> |
| 297 | |
| 298 | <ul> |
| 299 | <li>Proven and well tested: llvm-gcc and clang both use this technique for local |
| 300 | mutable variables. As such, the most common clients of LLVM are using this to |
| 301 | handle a bulk of their variables. You can be sure that bugs are found fast and |
| 302 | fixed early.</li> |
| 303 | |
| 304 | <li>Extremely Fast: mem2reg has a number of special cases that make it fast in |
| 305 | common cases as well as fully general. For example, it has fast-paths for |
| 306 | variables that are only used in a single block, variables that only have one |
| 307 | assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc. |
| 308 | </li> |
| 309 | |
| 310 | <li>Needed for debug info generation: <a href="../SourceLevelDebugging.html"> |
| 311 | Debug information in LLVM</a> relies on having the address of the variable |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 312 | exposed so that debug info can be attached to it. This technique dovetails |
| 313 | very naturally with this style of debug info.</li> |
Chris Lattner | e719831 | 2007-11-03 22:22:30 +0000 | [diff] [blame] | 314 | </ul> |
| 315 | |
| 316 | <p>If nothing else, this makes it much easier to get your front-end up and |
| 317 | running, and is very simple to implement. Lets extend Kaleidoscope with mutable |
| 318 | variables now! |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 319 | </p> |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 320 | |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 321 | </div> |
| 322 | |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 323 | <!-- *********************************************************************** --> |
| 324 | <div class="doc_section"><a name="kalvars">Mutable Variables in |
| 325 | Kaleidoscope</a></div> |
| 326 | <!-- *********************************************************************** --> |
| 327 | |
| 328 | <div class="doc_text"> |
| 329 | |
| 330 | <p>Now that we know the sort of problem we want to tackle, lets see what this |
| 331 | looks like in the context of our little Kaleidoscope language. We're going to |
| 332 | add two features:</p> |
| 333 | |
| 334 | <ol> |
| 335 | <li>The ability to mutate variables with the '=' operator.</li> |
| 336 | <li>The ability to define new variables.</li> |
| 337 | </ol> |
| 338 | |
| 339 | <p>While the first item is really what this is about, we only have variables |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 340 | for incoming arguments as well as for induction variables, and redefining those only |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 341 | goes so far :). Also, the ability to define new variables is a |
| 342 | useful thing regardless of whether you will be mutating them. Here's a |
| 343 | motivating example that shows how we could use these:</p> |
| 344 | |
| 345 | <div class="doc_code"> |
| 346 | <pre> |
| 347 | # Define ':' for sequencing: as a low-precedence operator that ignores operands |
| 348 | # and just returns the RHS. |
| 349 | def binary : 1 (x y) y; |
| 350 | |
| 351 | # Recursive fib, we could do this before. |
| 352 | def fib(x) |
| 353 | if (x < 3) then |
| 354 | 1 |
| 355 | else |
| 356 | fib(x-1)+fib(x-2); |
| 357 | |
| 358 | # Iterative fib. |
| 359 | def fibi(x) |
| 360 | <b>var a = 1, b = 1, c in</b> |
Chris Lattner | 1e46a6c | 2007-11-07 06:34:39 +0000 | [diff] [blame] | 361 | (for i = 3, i < x in |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 362 | <b>c = a + b</b> : |
| 363 | <b>a = b</b> : |
| 364 | <b>b = c</b>) : |
| 365 | b; |
| 366 | |
| 367 | # Call it. |
| 368 | fibi(10); |
| 369 | </pre> |
| 370 | </div> |
| 371 | |
| 372 | <p> |
| 373 | In order to mutate variables, we have to change our existing variables to use |
| 374 | the "alloca trick". Once we have that, we'll add our new operator, then extend |
| 375 | Kaleidoscope to support new variable definitions. |
| 376 | </p> |
| 377 | |
| 378 | </div> |
| 379 | |
| 380 | <!-- *********************************************************************** --> |
| 381 | <div class="doc_section"><a name="adjustments">Adjusting Existing Variables for |
| 382 | Mutation</a></div> |
| 383 | <!-- *********************************************************************** --> |
| 384 | |
| 385 | <div class="doc_text"> |
| 386 | |
| 387 | <p> |
| 388 | The symbol table in Kaleidoscope is managed at code generation time by the |
| 389 | '<tt>NamedValues</tt>' map. This map currently keeps track of the LLVM "Value*" |
| 390 | that holds the double value for the named variable. In order to support |
| 391 | mutation, we need to change this slightly, so that it <tt>NamedValues</tt> holds |
| 392 | the <em>memory location</em> of the variable in question. Note that this |
| 393 | change is a refactoring: it changes the structure of the code, but does not |
| 394 | (by itself) change the behavior of the compiler. All of these changes are |
| 395 | isolated in the Kaleidoscope code generator.</p> |
| 396 | |
| 397 | <p> |
| 398 | At this point in Kaleidoscope's development, it only supports variables for two |
| 399 | things: incoming arguments to functions and the induction variable of 'for' |
| 400 | loops. For consistency, we'll allow mutation of these variables in addition to |
| 401 | other user-defined variables. This means that these will both need memory |
| 402 | locations. |
| 403 | </p> |
| 404 | |
| 405 | <p>To start our transformation of Kaleidoscope, we'll change the NamedValues |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 406 | map so that it maps to AllocaInst* instead of Value*. Once we do this, the C++ |
| 407 | compiler will tell us what parts of the code we need to update:</p> |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 408 | |
| 409 | <div class="doc_code"> |
| 410 | <pre> |
| 411 | static std::map<std::string, AllocaInst*> NamedValues; |
| 412 | </pre> |
| 413 | </div> |
| 414 | |
| 415 | <p>Also, since we will need to create these alloca's, we'll use a helper |
| 416 | function that ensures that the allocas are created in the entry block of the |
| 417 | function:</p> |
| 418 | |
| 419 | <div class="doc_code"> |
| 420 | <pre> |
| 421 | /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of |
| 422 | /// the function. This is used for mutable variables etc. |
| 423 | static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, |
| 424 | const std::string &VarName) { |
Gabor Greif | d6c1ed0 | 2009-03-11 19:51:07 +0000 | [diff] [blame^] | 425 | IRBuilder<> TmpB(&TheFunction->getEntryBlock(), |
Duncan Sands | 89f6d88 | 2008-04-13 06:22:09 +0000 | [diff] [blame] | 426 | TheFunction->getEntryBlock().begin()); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 427 | return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str()); |
| 428 | } |
| 429 | </pre> |
| 430 | </div> |
| 431 | |
Duncan Sands | 89f6d88 | 2008-04-13 06:22:09 +0000 | [diff] [blame] | 432 | <p>This funny looking code creates an IRBuilder object that is pointing at |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 433 | the first instruction (.begin()) of the entry block. It then creates an alloca |
| 434 | with the expected name and returns it. Because all values in Kaleidoscope are |
| 435 | doubles, there is no need to pass in a type to use.</p> |
| 436 | |
| 437 | <p>With this in place, the first functionality change we want to make is to |
| 438 | variable references. In our new scheme, variables live on the stack, so code |
| 439 | generating a reference to them actually needs to produce a load from the stack |
| 440 | slot:</p> |
| 441 | |
| 442 | <div class="doc_code"> |
| 443 | <pre> |
| 444 | Value *VariableExprAST::Codegen() { |
| 445 | // Look this variable up in the function. |
| 446 | Value *V = NamedValues[Name]; |
| 447 | if (V == 0) return ErrorV("Unknown variable name"); |
| 448 | |
Chris Lattner | 1e46a6c | 2007-11-07 06:34:39 +0000 | [diff] [blame] | 449 | <b>// Load the value. |
| 450 | return Builder.CreateLoad(V, Name.c_str());</b> |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 451 | } |
| 452 | </pre> |
| 453 | </div> |
| 454 | |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 455 | <p>As you can see, this is pretty straightforward. Now we need to update the |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 456 | things that define the variables to set up the alloca. We'll start with |
| 457 | <tt>ForExprAST::Codegen</tt> (see the <a href="#code">full code listing</a> for |
| 458 | the unabridged code):</p> |
| 459 | |
| 460 | <div class="doc_code"> |
| 461 | <pre> |
| 462 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 463 | |
| 464 | <b>// Create an alloca for the variable in the entry block. |
| 465 | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);</b> |
| 466 | |
| 467 | // Emit the start code first, without 'variable' in scope. |
| 468 | Value *StartVal = Start->Codegen(); |
| 469 | if (StartVal == 0) return 0; |
| 470 | |
| 471 | <b>// Store the value into the alloca. |
| 472 | Builder.CreateStore(StartVal, Alloca);</b> |
| 473 | ... |
| 474 | |
| 475 | // Compute the end condition. |
| 476 | Value *EndCond = End->Codegen(); |
| 477 | if (EndCond == 0) return EndCond; |
| 478 | |
| 479 | <b>// Reload, increment, and restore the alloca. This handles the case where |
| 480 | // the body of the loop mutates the variable. |
| 481 | Value *CurVar = Builder.CreateLoad(Alloca); |
| 482 | Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar"); |
| 483 | Builder.CreateStore(NextVar, Alloca);</b> |
| 484 | ... |
| 485 | </pre> |
| 486 | </div> |
| 487 | |
| 488 | <p>This code is virtually identical to the code <a |
| 489 | href="LangImpl5.html#forcodegen">before we allowed mutable variables</a>. The |
| 490 | big difference is that we no longer have to construct a PHI node, and we use |
| 491 | load/store to access the variable as needed.</p> |
| 492 | |
| 493 | <p>To support mutable argument variables, we need to also make allocas for them. |
| 494 | The code for this is also pretty simple:</p> |
| 495 | |
| 496 | <div class="doc_code"> |
| 497 | <pre> |
| 498 | /// CreateArgumentAllocas - Create an alloca for each argument and register the |
| 499 | /// argument in the symbol table so that references to it will succeed. |
| 500 | void PrototypeAST::CreateArgumentAllocas(Function *F) { |
| 501 | Function::arg_iterator AI = F->arg_begin(); |
| 502 | for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { |
| 503 | // Create an alloca for this variable. |
| 504 | AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); |
| 505 | |
| 506 | // Store the initial value into the alloca. |
| 507 | Builder.CreateStore(AI, Alloca); |
| 508 | |
| 509 | // Add arguments to variable symbol table. |
| 510 | NamedValues[Args[Idx]] = Alloca; |
| 511 | } |
| 512 | } |
| 513 | </pre> |
| 514 | </div> |
| 515 | |
| 516 | <p>For each argument, we make an alloca, store the input value to the function |
| 517 | into the alloca, and register the alloca as the memory location for the |
| 518 | argument. This method gets invoked by <tt>FunctionAST::Codegen</tt> right after |
| 519 | it sets up the entry block for the function.</p> |
| 520 | |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 521 | <p>The final missing piece is adding the mem2reg pass, which allows us to get |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 522 | good codegen once again:</p> |
| 523 | |
| 524 | <div class="doc_code"> |
| 525 | <pre> |
| 526 | // Set up the optimizer pipeline. Start with registering info about how the |
| 527 | // target lays out data structures. |
| 528 | OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); |
| 529 | <b>// Promote allocas to registers. |
| 530 | OurFPM.add(createPromoteMemoryToRegisterPass());</b> |
| 531 | // Do simple "peephole" optimizations and bit-twiddling optzns. |
| 532 | OurFPM.add(createInstructionCombiningPass()); |
| 533 | // Reassociate expressions. |
| 534 | OurFPM.add(createReassociatePass()); |
| 535 | </pre> |
| 536 | </div> |
| 537 | |
| 538 | <p>It is interesting to see what the code looks like before and after the |
| 539 | mem2reg optimization runs. For example, this is the before/after code for our |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 540 | recursive fib function. Before the optimization:</p> |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 541 | |
| 542 | <div class="doc_code"> |
| 543 | <pre> |
| 544 | define double @fib(double %x) { |
| 545 | entry: |
| 546 | <b>%x1 = alloca double |
| 547 | store double %x, double* %x1 |
| 548 | %x2 = load double* %x1</b> |
Chris Lattner | 7115521 | 2007-11-06 01:39:12 +0000 | [diff] [blame] | 549 | %cmptmp = fcmp ult double %x2, 3.000000e+00 |
| 550 | %booltmp = uitofp i1 %cmptmp to double |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 551 | %ifcond = fcmp one double %booltmp, 0.000000e+00 |
| 552 | br i1 %ifcond, label %then, label %else |
| 553 | |
| 554 | then: ; preds = %entry |
| 555 | br label %ifcont |
| 556 | |
| 557 | else: ; preds = %entry |
| 558 | <b>%x3 = load double* %x1</b> |
| 559 | %subtmp = sub double %x3, 1.000000e+00 |
| 560 | %calltmp = call double @fib( double %subtmp ) |
| 561 | <b>%x4 = load double* %x1</b> |
| 562 | %subtmp5 = sub double %x4, 2.000000e+00 |
| 563 | %calltmp6 = call double @fib( double %subtmp5 ) |
| 564 | %addtmp = add double %calltmp, %calltmp6 |
| 565 | br label %ifcont |
| 566 | |
| 567 | ifcont: ; preds = %else, %then |
| 568 | %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] |
| 569 | ret double %iftmp |
| 570 | } |
| 571 | </pre> |
| 572 | </div> |
| 573 | |
| 574 | <p>Here there is only one variable (x, the input argument) but you can still |
| 575 | see the extremely simple-minded code generation strategy we are using. In the |
| 576 | entry block, an alloca is created, and the initial input value is stored into |
| 577 | it. Each reference to the variable does a reload from the stack. Also, note |
| 578 | that we didn't modify the if/then/else expression, so it still inserts a PHI |
| 579 | node. While we could make an alloca for it, it is actually easier to create a |
| 580 | PHI node for it, so we still just make the PHI.</p> |
| 581 | |
| 582 | <p>Here is the code after the mem2reg pass runs:</p> |
| 583 | |
| 584 | <div class="doc_code"> |
| 585 | <pre> |
| 586 | define double @fib(double %x) { |
| 587 | entry: |
Chris Lattner | 7115521 | 2007-11-06 01:39:12 +0000 | [diff] [blame] | 588 | %cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00 |
| 589 | %booltmp = uitofp i1 %cmptmp to double |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 590 | %ifcond = fcmp one double %booltmp, 0.000000e+00 |
| 591 | br i1 %ifcond, label %then, label %else |
| 592 | |
| 593 | then: |
| 594 | br label %ifcont |
| 595 | |
| 596 | else: |
| 597 | %subtmp = sub double <b>%x</b>, 1.000000e+00 |
| 598 | %calltmp = call double @fib( double %subtmp ) |
| 599 | %subtmp5 = sub double <b>%x</b>, 2.000000e+00 |
| 600 | %calltmp6 = call double @fib( double %subtmp5 ) |
| 601 | %addtmp = add double %calltmp, %calltmp6 |
| 602 | br label %ifcont |
| 603 | |
| 604 | ifcont: ; preds = %else, %then |
| 605 | %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] |
| 606 | ret double %iftmp |
| 607 | } |
| 608 | </pre> |
| 609 | </div> |
| 610 | |
| 611 | <p>This is a trivial case for mem2reg, since there are no redefinitions of the |
| 612 | variable. The point of showing this is to calm your tension about inserting |
| 613 | such blatent inefficiencies :).</p> |
| 614 | |
| 615 | <p>After the rest of the optimizers run, we get:</p> |
| 616 | |
| 617 | <div class="doc_code"> |
| 618 | <pre> |
| 619 | define double @fib(double %x) { |
| 620 | entry: |
Chris Lattner | 7115521 | 2007-11-06 01:39:12 +0000 | [diff] [blame] | 621 | %cmptmp = fcmp ult double %x, 3.000000e+00 |
| 622 | %booltmp = uitofp i1 %cmptmp to double |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 623 | %ifcond = fcmp ueq double %booltmp, 0.000000e+00 |
| 624 | br i1 %ifcond, label %else, label %ifcont |
| 625 | |
| 626 | else: |
| 627 | %subtmp = sub double %x, 1.000000e+00 |
| 628 | %calltmp = call double @fib( double %subtmp ) |
| 629 | %subtmp5 = sub double %x, 2.000000e+00 |
| 630 | %calltmp6 = call double @fib( double %subtmp5 ) |
| 631 | %addtmp = add double %calltmp, %calltmp6 |
| 632 | ret double %addtmp |
| 633 | |
| 634 | ifcont: |
| 635 | ret double 1.000000e+00 |
| 636 | } |
| 637 | </pre> |
| 638 | </div> |
| 639 | |
| 640 | <p>Here we see that the simplifycfg pass decided to clone the return instruction |
| 641 | into the end of the 'else' block. This allowed it to eliminate some branches |
| 642 | and the PHI node.</p> |
| 643 | |
| 644 | <p>Now that all symbol table references are updated to use stack variables, |
| 645 | we'll add the assignment operator.</p> |
| 646 | |
| 647 | </div> |
| 648 | |
| 649 | <!-- *********************************************************************** --> |
| 650 | <div class="doc_section"><a name="assignment">New Assignment Operator</a></div> |
| 651 | <!-- *********************************************************************** --> |
| 652 | |
| 653 | <div class="doc_text"> |
| 654 | |
| 655 | <p>With our current framework, adding a new assignment operator is really |
| 656 | simple. We will parse it just like any other binary operator, but handle it |
| 657 | internally (instead of allowing the user to define it). The first step is to |
| 658 | set a precedence:</p> |
| 659 | |
| 660 | <div class="doc_code"> |
| 661 | <pre> |
| 662 | int main() { |
| 663 | // Install standard binary operators. |
| 664 | // 1 is lowest precedence. |
| 665 | <b>BinopPrecedence['='] = 2;</b> |
| 666 | BinopPrecedence['<'] = 10; |
| 667 | BinopPrecedence['+'] = 20; |
| 668 | BinopPrecedence['-'] = 20; |
| 669 | </pre> |
| 670 | </div> |
| 671 | |
| 672 | <p>Now that the parser knows the precedence of the binary operator, it takes |
| 673 | care of all the parsing and AST generation. We just need to implement codegen |
| 674 | for the assignment operator. This looks like:</p> |
| 675 | |
| 676 | <div class="doc_code"> |
| 677 | <pre> |
| 678 | Value *BinaryExprAST::Codegen() { |
| 679 | // Special case '=' because we don't want to emit the LHS as an expression. |
| 680 | if (Op == '=') { |
| 681 | // Assignment requires the LHS to be an identifier. |
| 682 | VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); |
| 683 | if (!LHSE) |
| 684 | return ErrorV("destination of '=' must be a variable"); |
| 685 | </pre> |
| 686 | </div> |
| 687 | |
| 688 | <p>Unlike the rest of the binary operators, our assignment operator doesn't |
| 689 | follow the "emit LHS, emit RHS, do computation" model. As such, it is handled |
| 690 | as a special case before the other binary operators are handled. The other |
Chris Lattner | 1e46a6c | 2007-11-07 06:34:39 +0000 | [diff] [blame] | 691 | strange thing is that it requires the LHS to be a variable. It is invalid to |
| 692 | have "(x+1) = expr" - only things like "x = expr" are allowed. |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 693 | </p> |
| 694 | |
| 695 | <div class="doc_code"> |
| 696 | <pre> |
| 697 | // Codegen the RHS. |
| 698 | Value *Val = RHS->Codegen(); |
| 699 | if (Val == 0) return 0; |
| 700 | |
| 701 | // Look up the name. |
| 702 | Value *Variable = NamedValues[LHSE->getName()]; |
| 703 | if (Variable == 0) return ErrorV("Unknown variable name"); |
| 704 | |
| 705 | Builder.CreateStore(Val, Variable); |
| 706 | return Val; |
| 707 | } |
| 708 | ... |
| 709 | </pre> |
| 710 | </div> |
| 711 | |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 712 | <p>Once we have the variable, codegen'ing the assignment is straightforward: |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 713 | we emit the RHS of the assignment, create a store, and return the computed |
| 714 | value. Returning a value allows for chained assignments like "X = (Y = Z)".</p> |
| 715 | |
| 716 | <p>Now that we have an assignment operator, we can mutate loop variables and |
| 717 | arguments. For example, we can now run code like this:</p> |
| 718 | |
| 719 | <div class="doc_code"> |
| 720 | <pre> |
| 721 | # Function to print a double. |
| 722 | extern printd(x); |
| 723 | |
| 724 | # Define ':' for sequencing: as a low-precedence operator that ignores operands |
| 725 | # and just returns the RHS. |
| 726 | def binary : 1 (x y) y; |
| 727 | |
| 728 | def test(x) |
| 729 | printd(x) : |
| 730 | x = 4 : |
| 731 | printd(x); |
| 732 | |
| 733 | test(123); |
| 734 | </pre> |
| 735 | </div> |
| 736 | |
| 737 | <p>When run, this example prints "123" and then "4", showing that we did |
| 738 | actually mutate the value! Okay, we have now officially implemented our goal: |
| 739 | getting this to work requires SSA construction in the general case. However, |
| 740 | to be really useful, we want the ability to define our own local variables, lets |
| 741 | add this next! |
| 742 | </p> |
| 743 | |
| 744 | </div> |
| 745 | |
| 746 | <!-- *********************************************************************** --> |
| 747 | <div class="doc_section"><a name="localvars">User-defined Local |
| 748 | Variables</a></div> |
| 749 | <!-- *********************************************************************** --> |
| 750 | |
| 751 | <div class="doc_text"> |
| 752 | |
| 753 | <p>Adding var/in is just like any other other extensions we made to |
| 754 | Kaleidoscope: we extend the lexer, the parser, the AST and the code generator. |
| 755 | The first step for adding our new 'var/in' construct is to extend the lexer. |
| 756 | As before, this is pretty trivial, the code looks like this:</p> |
| 757 | |
| 758 | <div class="doc_code"> |
| 759 | <pre> |
| 760 | enum Token { |
| 761 | ... |
| 762 | <b>// var definition |
| 763 | tok_var = -13</b> |
| 764 | ... |
| 765 | } |
| 766 | ... |
| 767 | static int gettok() { |
| 768 | ... |
| 769 | if (IdentifierStr == "in") return tok_in; |
| 770 | if (IdentifierStr == "binary") return tok_binary; |
| 771 | if (IdentifierStr == "unary") return tok_unary; |
| 772 | <b>if (IdentifierStr == "var") return tok_var;</b> |
| 773 | return tok_identifier; |
| 774 | ... |
| 775 | </pre> |
| 776 | </div> |
| 777 | |
| 778 | <p>The next step is to define the AST node that we will construct. For var/in, |
Chris Lattner | 1e46a6c | 2007-11-07 06:34:39 +0000 | [diff] [blame] | 779 | it looks like this:</p> |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 780 | |
| 781 | <div class="doc_code"> |
| 782 | <pre> |
| 783 | /// VarExprAST - Expression class for var/in |
| 784 | class VarExprAST : public ExprAST { |
| 785 | std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| 786 | ExprAST *Body; |
| 787 | public: |
| 788 | VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, |
| 789 | ExprAST *body) |
| 790 | : VarNames(varnames), Body(body) {} |
| 791 | |
| 792 | virtual Value *Codegen(); |
| 793 | }; |
| 794 | </pre> |
| 795 | </div> |
| 796 | |
| 797 | <p>var/in allows a list of names to be defined all at once, and each name can |
| 798 | optionally have an initializer value. As such, we capture this information in |
| 799 | the VarNames vector. Also, var/in has a body, this body is allowed to access |
Chris Lattner | 1e46a6c | 2007-11-07 06:34:39 +0000 | [diff] [blame] | 800 | the variables defined by the var/in.</p> |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 801 | |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 802 | <p>With this in place, we can define the parser pieces. The first thing we do is add |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 803 | it as a primary expression:</p> |
| 804 | |
| 805 | <div class="doc_code"> |
| 806 | <pre> |
| 807 | /// primary |
| 808 | /// ::= identifierexpr |
| 809 | /// ::= numberexpr |
| 810 | /// ::= parenexpr |
| 811 | /// ::= ifexpr |
| 812 | /// ::= forexpr |
| 813 | <b>/// ::= varexpr</b> |
| 814 | static ExprAST *ParsePrimary() { |
| 815 | switch (CurTok) { |
| 816 | default: return Error("unknown token when expecting an expression"); |
| 817 | case tok_identifier: return ParseIdentifierExpr(); |
| 818 | case tok_number: return ParseNumberExpr(); |
| 819 | case '(': return ParseParenExpr(); |
| 820 | case tok_if: return ParseIfExpr(); |
| 821 | case tok_for: return ParseForExpr(); |
| 822 | <b>case tok_var: return ParseVarExpr();</b> |
| 823 | } |
| 824 | } |
| 825 | </pre> |
| 826 | </div> |
| 827 | |
| 828 | <p>Next we define ParseVarExpr:</p> |
| 829 | |
| 830 | <div class="doc_code"> |
| 831 | <pre> |
Chris Lattner | 20a0c80 | 2007-11-05 17:54:34 +0000 | [diff] [blame] | 832 | /// varexpr ::= 'var' identifier ('=' expression)? |
| 833 | // (',' identifier ('=' expression)?)* 'in' expression |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 834 | static ExprAST *ParseVarExpr() { |
| 835 | getNextToken(); // eat the var. |
| 836 | |
| 837 | std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| 838 | |
| 839 | // At least one variable name is required. |
| 840 | if (CurTok != tok_identifier) |
| 841 | return Error("expected identifier after var"); |
| 842 | </pre> |
| 843 | </div> |
| 844 | |
| 845 | <p>The first part of this code parses the list of identifier/expr pairs into the |
| 846 | local <tt>VarNames</tt> vector. |
| 847 | |
| 848 | <div class="doc_code"> |
| 849 | <pre> |
| 850 | while (1) { |
| 851 | std::string Name = IdentifierStr; |
Chris Lattner | 20a0c80 | 2007-11-05 17:54:34 +0000 | [diff] [blame] | 852 | getNextToken(); // eat identifier. |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 853 | |
| 854 | // Read the optional initializer. |
| 855 | ExprAST *Init = 0; |
| 856 | if (CurTok == '=') { |
| 857 | getNextToken(); // eat the '='. |
| 858 | |
| 859 | Init = ParseExpression(); |
| 860 | if (Init == 0) return 0; |
| 861 | } |
| 862 | |
| 863 | VarNames.push_back(std::make_pair(Name, Init)); |
| 864 | |
| 865 | // End of var list, exit loop. |
| 866 | if (CurTok != ',') break; |
| 867 | getNextToken(); // eat the ','. |
| 868 | |
| 869 | if (CurTok != tok_identifier) |
| 870 | return Error("expected identifier list after var"); |
| 871 | } |
| 872 | </pre> |
| 873 | </div> |
| 874 | |
| 875 | <p>Once all the variables are parsed, we then parse the body and create the |
| 876 | AST node:</p> |
| 877 | |
| 878 | <div class="doc_code"> |
| 879 | <pre> |
| 880 | // At this point, we have to have 'in'. |
| 881 | if (CurTok != tok_in) |
| 882 | return Error("expected 'in' keyword after 'var'"); |
| 883 | getNextToken(); // eat 'in'. |
| 884 | |
| 885 | ExprAST *Body = ParseExpression(); |
| 886 | if (Body == 0) return 0; |
| 887 | |
| 888 | return new VarExprAST(VarNames, Body); |
| 889 | } |
| 890 | </pre> |
| 891 | </div> |
| 892 | |
| 893 | <p>Now that we can parse and represent the code, we need to support emission of |
| 894 | LLVM IR for it. This code starts out with:</p> |
| 895 | |
| 896 | <div class="doc_code"> |
| 897 | <pre> |
| 898 | Value *VarExprAST::Codegen() { |
| 899 | std::vector<AllocaInst *> OldBindings; |
| 900 | |
| 901 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 902 | |
| 903 | // Register all variables and emit their initializer. |
| 904 | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { |
| 905 | const std::string &VarName = VarNames[i].first; |
| 906 | ExprAST *Init = VarNames[i].second; |
| 907 | </pre> |
| 908 | </div> |
| 909 | |
| 910 | <p>Basically it loops over all the variables, installing them one at a time. |
| 911 | For each variable we put into the symbol table, we remember the previous value |
| 912 | that we replace in OldBindings.</p> |
| 913 | |
| 914 | <div class="doc_code"> |
| 915 | <pre> |
| 916 | // Emit the initializer before adding the variable to scope, this prevents |
| 917 | // the initializer from referencing the variable itself, and permits stuff |
| 918 | // like this: |
| 919 | // var a = 1 in |
| 920 | // var a = a in ... # refers to outer 'a'. |
| 921 | Value *InitVal; |
| 922 | if (Init) { |
| 923 | InitVal = Init->Codegen(); |
| 924 | if (InitVal == 0) return 0; |
| 925 | } else { // If not specified, use 0.0. |
Gabor Greif | 5934adf | 2008-06-10 01:52:17 +0000 | [diff] [blame] | 926 | InitVal = ConstantFP::get(APFloat(0.0)); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 927 | } |
| 928 | |
| 929 | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| 930 | Builder.CreateStore(InitVal, Alloca); |
| 931 | |
| 932 | // Remember the old variable binding so that we can restore the binding when |
| 933 | // we unrecurse. |
| 934 | OldBindings.push_back(NamedValues[VarName]); |
| 935 | |
| 936 | // Remember this binding. |
| 937 | NamedValues[VarName] = Alloca; |
| 938 | } |
| 939 | </pre> |
| 940 | </div> |
| 941 | |
| 942 | <p>There are more comments here than code. The basic idea is that we emit the |
| 943 | initializer, create the alloca, then update the symbol table to point to it. |
| 944 | Once all the variables are installed in the symbol table, we evaluate the body |
| 945 | of the var/in expression:</p> |
| 946 | |
| 947 | <div class="doc_code"> |
| 948 | <pre> |
| 949 | // Codegen the body, now that all vars are in scope. |
| 950 | Value *BodyVal = Body->Codegen(); |
| 951 | if (BodyVal == 0) return 0; |
| 952 | </pre> |
| 953 | </div> |
| 954 | |
| 955 | <p>Finally, before returning, we restore the previous variable bindings:</p> |
| 956 | |
| 957 | <div class="doc_code"> |
| 958 | <pre> |
| 959 | // Pop all our variables from scope. |
| 960 | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) |
| 961 | NamedValues[VarNames[i].first] = OldBindings[i]; |
| 962 | |
| 963 | // Return the body computation. |
| 964 | return BodyVal; |
| 965 | } |
| 966 | </pre> |
| 967 | </div> |
| 968 | |
| 969 | <p>The end result of all of this is that we get properly scoped variable |
| 970 | definitions, and we even (trivially) allow mutation of them :).</p> |
| 971 | |
| 972 | <p>With this, we completed what we set out to do. Our nice iterative fib |
| 973 | example from the intro compiles and runs just fine. The mem2reg pass optimizes |
| 974 | all of our stack variables into SSA registers, inserting PHI nodes where needed, |
Chris Lattner | b7e6b1a | 2007-11-15 04:51:31 +0000 | [diff] [blame] | 975 | and our front-end remains simple: no "iterated dominance frontier" computation |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 976 | anywhere in sight.</p> |
| 977 | |
| 978 | </div> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 979 | |
| 980 | <!-- *********************************************************************** --> |
| 981 | <div class="doc_section"><a name="code">Full Code Listing</a></div> |
| 982 | <!-- *********************************************************************** --> |
| 983 | |
| 984 | <div class="doc_text"> |
| 985 | |
| 986 | <p> |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 987 | Here is the complete code listing for our running example, enhanced with mutable |
| 988 | variables and var/in support. To build this example, use: |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 989 | </p> |
| 990 | |
| 991 | <div class="doc_code"> |
| 992 | <pre> |
| 993 | # Compile |
| 994 | g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy |
| 995 | # Run |
| 996 | ./toy |
| 997 | </pre> |
| 998 | </div> |
| 999 | |
| 1000 | <p>Here is the code:</p> |
| 1001 | |
| 1002 | <div class="doc_code"> |
| 1003 | <pre> |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1004 | #include "llvm/DerivedTypes.h" |
| 1005 | #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| 1006 | #include "llvm/Module.h" |
| 1007 | #include "llvm/ModuleProvider.h" |
| 1008 | #include "llvm/PassManager.h" |
| 1009 | #include "llvm/Analysis/Verifier.h" |
| 1010 | #include "llvm/Target/TargetData.h" |
| 1011 | #include "llvm/Transforms/Scalar.h" |
Duncan Sands | 89f6d88 | 2008-04-13 06:22:09 +0000 | [diff] [blame] | 1012 | #include "llvm/Support/IRBuilder.h" |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1013 | #include <cstdio> |
| 1014 | #include <string> |
| 1015 | #include <map> |
| 1016 | #include <vector> |
| 1017 | using namespace llvm; |
| 1018 | |
| 1019 | //===----------------------------------------------------------------------===// |
| 1020 | // Lexer |
| 1021 | //===----------------------------------------------------------------------===// |
| 1022 | |
| 1023 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| 1024 | // of these for known things. |
| 1025 | enum Token { |
| 1026 | tok_eof = -1, |
| 1027 | |
| 1028 | // commands |
| 1029 | tok_def = -2, tok_extern = -3, |
| 1030 | |
| 1031 | // primary |
| 1032 | tok_identifier = -4, tok_number = -5, |
| 1033 | |
| 1034 | // control |
| 1035 | tok_if = -6, tok_then = -7, tok_else = -8, |
| 1036 | tok_for = -9, tok_in = -10, |
| 1037 | |
| 1038 | // operators |
| 1039 | tok_binary = -11, tok_unary = -12, |
| 1040 | |
| 1041 | // var definition |
| 1042 | tok_var = -13 |
| 1043 | }; |
| 1044 | |
| 1045 | static std::string IdentifierStr; // Filled in if tok_identifier |
| 1046 | static double NumVal; // Filled in if tok_number |
| 1047 | |
| 1048 | /// gettok - Return the next token from standard input. |
| 1049 | static int gettok() { |
| 1050 | static int LastChar = ' '; |
| 1051 | |
| 1052 | // Skip any whitespace. |
| 1053 | while (isspace(LastChar)) |
| 1054 | LastChar = getchar(); |
| 1055 | |
| 1056 | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| 1057 | IdentifierStr = LastChar; |
| 1058 | while (isalnum((LastChar = getchar()))) |
| 1059 | IdentifierStr += LastChar; |
| 1060 | |
| 1061 | if (IdentifierStr == "def") return tok_def; |
| 1062 | if (IdentifierStr == "extern") return tok_extern; |
| 1063 | if (IdentifierStr == "if") return tok_if; |
| 1064 | if (IdentifierStr == "then") return tok_then; |
| 1065 | if (IdentifierStr == "else") return tok_else; |
| 1066 | if (IdentifierStr == "for") return tok_for; |
| 1067 | if (IdentifierStr == "in") return tok_in; |
| 1068 | if (IdentifierStr == "binary") return tok_binary; |
| 1069 | if (IdentifierStr == "unary") return tok_unary; |
| 1070 | if (IdentifierStr == "var") return tok_var; |
| 1071 | return tok_identifier; |
| 1072 | } |
| 1073 | |
| 1074 | if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| 1075 | std::string NumStr; |
| 1076 | do { |
| 1077 | NumStr += LastChar; |
| 1078 | LastChar = getchar(); |
| 1079 | } while (isdigit(LastChar) || LastChar == '.'); |
| 1080 | |
| 1081 | NumVal = strtod(NumStr.c_str(), 0); |
| 1082 | return tok_number; |
| 1083 | } |
| 1084 | |
| 1085 | if (LastChar == '#') { |
| 1086 | // Comment until end of line. |
| 1087 | do LastChar = getchar(); |
Chris Lattner | c80c23f | 2007-12-02 22:46:01 +0000 | [diff] [blame] | 1088 | while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1089 | |
| 1090 | if (LastChar != EOF) |
| 1091 | return gettok(); |
| 1092 | } |
| 1093 | |
| 1094 | // Check for end of file. Don't eat the EOF. |
| 1095 | if (LastChar == EOF) |
| 1096 | return tok_eof; |
| 1097 | |
| 1098 | // Otherwise, just return the character as its ascii value. |
| 1099 | int ThisChar = LastChar; |
| 1100 | LastChar = getchar(); |
| 1101 | return ThisChar; |
| 1102 | } |
| 1103 | |
| 1104 | //===----------------------------------------------------------------------===// |
| 1105 | // Abstract Syntax Tree (aka Parse Tree) |
| 1106 | //===----------------------------------------------------------------------===// |
| 1107 | |
| 1108 | /// ExprAST - Base class for all expression nodes. |
| 1109 | class ExprAST { |
| 1110 | public: |
| 1111 | virtual ~ExprAST() {} |
| 1112 | virtual Value *Codegen() = 0; |
| 1113 | }; |
| 1114 | |
| 1115 | /// NumberExprAST - Expression class for numeric literals like "1.0". |
| 1116 | class NumberExprAST : public ExprAST { |
| 1117 | double Val; |
| 1118 | public: |
| 1119 | NumberExprAST(double val) : Val(val) {} |
| 1120 | virtual Value *Codegen(); |
| 1121 | }; |
| 1122 | |
| 1123 | /// VariableExprAST - Expression class for referencing a variable, like "a". |
| 1124 | class VariableExprAST : public ExprAST { |
| 1125 | std::string Name; |
| 1126 | public: |
| 1127 | VariableExprAST(const std::string &name) : Name(name) {} |
| 1128 | const std::string &getName() const { return Name; } |
| 1129 | virtual Value *Codegen(); |
| 1130 | }; |
| 1131 | |
| 1132 | /// UnaryExprAST - Expression class for a unary operator. |
| 1133 | class UnaryExprAST : public ExprAST { |
| 1134 | char Opcode; |
| 1135 | ExprAST *Operand; |
| 1136 | public: |
| 1137 | UnaryExprAST(char opcode, ExprAST *operand) |
| 1138 | : Opcode(opcode), Operand(operand) {} |
| 1139 | virtual Value *Codegen(); |
| 1140 | }; |
| 1141 | |
| 1142 | /// BinaryExprAST - Expression class for a binary operator. |
| 1143 | class BinaryExprAST : public ExprAST { |
| 1144 | char Op; |
| 1145 | ExprAST *LHS, *RHS; |
| 1146 | public: |
| 1147 | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| 1148 | : Op(op), LHS(lhs), RHS(rhs) {} |
| 1149 | virtual Value *Codegen(); |
| 1150 | }; |
| 1151 | |
| 1152 | /// CallExprAST - Expression class for function calls. |
| 1153 | class CallExprAST : public ExprAST { |
| 1154 | std::string Callee; |
| 1155 | std::vector<ExprAST*> Args; |
| 1156 | public: |
| 1157 | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| 1158 | : Callee(callee), Args(args) {} |
| 1159 | virtual Value *Codegen(); |
| 1160 | }; |
| 1161 | |
| 1162 | /// IfExprAST - Expression class for if/then/else. |
| 1163 | class IfExprAST : public ExprAST { |
| 1164 | ExprAST *Cond, *Then, *Else; |
| 1165 | public: |
| 1166 | IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) |
| 1167 | : Cond(cond), Then(then), Else(_else) {} |
| 1168 | virtual Value *Codegen(); |
| 1169 | }; |
| 1170 | |
| 1171 | /// ForExprAST - Expression class for for/in. |
| 1172 | class ForExprAST : public ExprAST { |
| 1173 | std::string VarName; |
| 1174 | ExprAST *Start, *End, *Step, *Body; |
| 1175 | public: |
| 1176 | ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, |
| 1177 | ExprAST *step, ExprAST *body) |
| 1178 | : VarName(varname), Start(start), End(end), Step(step), Body(body) {} |
| 1179 | virtual Value *Codegen(); |
| 1180 | }; |
| 1181 | |
| 1182 | /// VarExprAST - Expression class for var/in |
| 1183 | class VarExprAST : public ExprAST { |
| 1184 | std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| 1185 | ExprAST *Body; |
| 1186 | public: |
| 1187 | VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, |
| 1188 | ExprAST *body) |
| 1189 | : VarNames(varnames), Body(body) {} |
| 1190 | |
| 1191 | virtual Value *Codegen(); |
| 1192 | }; |
| 1193 | |
| 1194 | /// PrototypeAST - This class represents the "prototype" for a function, |
| 1195 | /// which captures its argument names as well as if it is an operator. |
| 1196 | class PrototypeAST { |
| 1197 | std::string Name; |
| 1198 | std::vector<std::string> Args; |
| 1199 | bool isOperator; |
| 1200 | unsigned Precedence; // Precedence if a binary op. |
| 1201 | public: |
| 1202 | PrototypeAST(const std::string &name, const std::vector<std::string> &args, |
| 1203 | bool isoperator = false, unsigned prec = 0) |
| 1204 | : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} |
| 1205 | |
| 1206 | bool isUnaryOp() const { return isOperator && Args.size() == 1; } |
| 1207 | bool isBinaryOp() const { return isOperator && Args.size() == 2; } |
| 1208 | |
| 1209 | char getOperatorName() const { |
| 1210 | assert(isUnaryOp() || isBinaryOp()); |
| 1211 | return Name[Name.size()-1]; |
| 1212 | } |
| 1213 | |
| 1214 | unsigned getBinaryPrecedence() const { return Precedence; } |
| 1215 | |
| 1216 | Function *Codegen(); |
| 1217 | |
| 1218 | void CreateArgumentAllocas(Function *F); |
| 1219 | }; |
| 1220 | |
| 1221 | /// FunctionAST - This class represents a function definition itself. |
| 1222 | class FunctionAST { |
| 1223 | PrototypeAST *Proto; |
| 1224 | ExprAST *Body; |
| 1225 | public: |
| 1226 | FunctionAST(PrototypeAST *proto, ExprAST *body) |
| 1227 | : Proto(proto), Body(body) {} |
| 1228 | |
| 1229 | Function *Codegen(); |
| 1230 | }; |
| 1231 | |
| 1232 | //===----------------------------------------------------------------------===// |
| 1233 | // Parser |
| 1234 | //===----------------------------------------------------------------------===// |
| 1235 | |
| 1236 | /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| 1237 | /// token the parser it looking at. getNextToken reads another token from the |
| 1238 | /// lexer and updates CurTok with its results. |
| 1239 | static int CurTok; |
| 1240 | static int getNextToken() { |
| 1241 | return CurTok = gettok(); |
| 1242 | } |
| 1243 | |
| 1244 | /// BinopPrecedence - This holds the precedence for each binary operator that is |
| 1245 | /// defined. |
| 1246 | static std::map<char, int> BinopPrecedence; |
| 1247 | |
| 1248 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| 1249 | static int GetTokPrecedence() { |
| 1250 | if (!isascii(CurTok)) |
| 1251 | return -1; |
| 1252 | |
| 1253 | // Make sure it's a declared binop. |
| 1254 | int TokPrec = BinopPrecedence[CurTok]; |
| 1255 | if (TokPrec <= 0) return -1; |
| 1256 | return TokPrec; |
| 1257 | } |
| 1258 | |
| 1259 | /// Error* - These are little helper functions for error handling. |
| 1260 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| 1261 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| 1262 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| 1263 | |
| 1264 | static ExprAST *ParseExpression(); |
| 1265 | |
| 1266 | /// identifierexpr |
Chris Lattner | 20a0c80 | 2007-11-05 17:54:34 +0000 | [diff] [blame] | 1267 | /// ::= identifier |
| 1268 | /// ::= identifier '(' expression* ')' |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1269 | static ExprAST *ParseIdentifierExpr() { |
| 1270 | std::string IdName = IdentifierStr; |
| 1271 | |
Chris Lattner | 20a0c80 | 2007-11-05 17:54:34 +0000 | [diff] [blame] | 1272 | getNextToken(); // eat identifier. |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1273 | |
| 1274 | if (CurTok != '(') // Simple variable ref. |
| 1275 | return new VariableExprAST(IdName); |
| 1276 | |
| 1277 | // Call. |
| 1278 | getNextToken(); // eat ( |
| 1279 | std::vector<ExprAST*> Args; |
| 1280 | if (CurTok != ')') { |
| 1281 | while (1) { |
| 1282 | ExprAST *Arg = ParseExpression(); |
| 1283 | if (!Arg) return 0; |
| 1284 | Args.push_back(Arg); |
| 1285 | |
| 1286 | if (CurTok == ')') break; |
| 1287 | |
| 1288 | if (CurTok != ',') |
Chris Lattner | 6c4be9c | 2008-04-14 16:44:41 +0000 | [diff] [blame] | 1289 | return Error("Expected ')' or ',' in argument list"); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1290 | getNextToken(); |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | // Eat the ')'. |
| 1295 | getNextToken(); |
| 1296 | |
| 1297 | return new CallExprAST(IdName, Args); |
| 1298 | } |
| 1299 | |
| 1300 | /// numberexpr ::= number |
| 1301 | static ExprAST *ParseNumberExpr() { |
| 1302 | ExprAST *Result = new NumberExprAST(NumVal); |
| 1303 | getNextToken(); // consume the number |
| 1304 | return Result; |
| 1305 | } |
| 1306 | |
| 1307 | /// parenexpr ::= '(' expression ')' |
| 1308 | static ExprAST *ParseParenExpr() { |
| 1309 | getNextToken(); // eat (. |
| 1310 | ExprAST *V = ParseExpression(); |
| 1311 | if (!V) return 0; |
| 1312 | |
| 1313 | if (CurTok != ')') |
| 1314 | return Error("expected ')'"); |
| 1315 | getNextToken(); // eat ). |
| 1316 | return V; |
| 1317 | } |
| 1318 | |
| 1319 | /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| 1320 | static ExprAST *ParseIfExpr() { |
| 1321 | getNextToken(); // eat the if. |
| 1322 | |
| 1323 | // condition. |
| 1324 | ExprAST *Cond = ParseExpression(); |
| 1325 | if (!Cond) return 0; |
| 1326 | |
| 1327 | if (CurTok != tok_then) |
| 1328 | return Error("expected then"); |
| 1329 | getNextToken(); // eat the then |
| 1330 | |
| 1331 | ExprAST *Then = ParseExpression(); |
| 1332 | if (Then == 0) return 0; |
| 1333 | |
| 1334 | if (CurTok != tok_else) |
| 1335 | return Error("expected else"); |
| 1336 | |
| 1337 | getNextToken(); |
| 1338 | |
| 1339 | ExprAST *Else = ParseExpression(); |
| 1340 | if (!Else) return 0; |
| 1341 | |
| 1342 | return new IfExprAST(Cond, Then, Else); |
| 1343 | } |
| 1344 | |
Chris Lattner | 20a0c80 | 2007-11-05 17:54:34 +0000 | [diff] [blame] | 1345 | /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1346 | static ExprAST *ParseForExpr() { |
| 1347 | getNextToken(); // eat the for. |
| 1348 | |
| 1349 | if (CurTok != tok_identifier) |
| 1350 | return Error("expected identifier after for"); |
| 1351 | |
| 1352 | std::string IdName = IdentifierStr; |
Chris Lattner | 20a0c80 | 2007-11-05 17:54:34 +0000 | [diff] [blame] | 1353 | getNextToken(); // eat identifier. |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1354 | |
| 1355 | if (CurTok != '=') |
| 1356 | return Error("expected '=' after for"); |
| 1357 | getNextToken(); // eat '='. |
| 1358 | |
| 1359 | |
| 1360 | ExprAST *Start = ParseExpression(); |
| 1361 | if (Start == 0) return 0; |
| 1362 | if (CurTok != ',') |
| 1363 | return Error("expected ',' after for start value"); |
| 1364 | getNextToken(); |
| 1365 | |
| 1366 | ExprAST *End = ParseExpression(); |
| 1367 | if (End == 0) return 0; |
| 1368 | |
| 1369 | // The step value is optional. |
| 1370 | ExprAST *Step = 0; |
| 1371 | if (CurTok == ',') { |
| 1372 | getNextToken(); |
| 1373 | Step = ParseExpression(); |
| 1374 | if (Step == 0) return 0; |
| 1375 | } |
| 1376 | |
| 1377 | if (CurTok != tok_in) |
| 1378 | return Error("expected 'in' after for"); |
| 1379 | getNextToken(); // eat 'in'. |
| 1380 | |
| 1381 | ExprAST *Body = ParseExpression(); |
| 1382 | if (Body == 0) return 0; |
| 1383 | |
| 1384 | return new ForExprAST(IdName, Start, End, Step, Body); |
| 1385 | } |
| 1386 | |
Chris Lattner | 20a0c80 | 2007-11-05 17:54:34 +0000 | [diff] [blame] | 1387 | /// varexpr ::= 'var' identifier ('=' expression)? |
| 1388 | // (',' identifier ('=' expression)?)* 'in' expression |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1389 | static ExprAST *ParseVarExpr() { |
| 1390 | getNextToken(); // eat the var. |
| 1391 | |
| 1392 | std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| 1393 | |
| 1394 | // At least one variable name is required. |
| 1395 | if (CurTok != tok_identifier) |
| 1396 | return Error("expected identifier after var"); |
| 1397 | |
| 1398 | while (1) { |
| 1399 | std::string Name = IdentifierStr; |
Chris Lattner | 20a0c80 | 2007-11-05 17:54:34 +0000 | [diff] [blame] | 1400 | getNextToken(); // eat identifier. |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1401 | |
| 1402 | // Read the optional initializer. |
| 1403 | ExprAST *Init = 0; |
| 1404 | if (CurTok == '=') { |
| 1405 | getNextToken(); // eat the '='. |
| 1406 | |
| 1407 | Init = ParseExpression(); |
| 1408 | if (Init == 0) return 0; |
| 1409 | } |
| 1410 | |
| 1411 | VarNames.push_back(std::make_pair(Name, Init)); |
| 1412 | |
| 1413 | // End of var list, exit loop. |
| 1414 | if (CurTok != ',') break; |
| 1415 | getNextToken(); // eat the ','. |
| 1416 | |
| 1417 | if (CurTok != tok_identifier) |
| 1418 | return Error("expected identifier list after var"); |
| 1419 | } |
| 1420 | |
| 1421 | // At this point, we have to have 'in'. |
| 1422 | if (CurTok != tok_in) |
| 1423 | return Error("expected 'in' keyword after 'var'"); |
| 1424 | getNextToken(); // eat 'in'. |
| 1425 | |
| 1426 | ExprAST *Body = ParseExpression(); |
| 1427 | if (Body == 0) return 0; |
| 1428 | |
| 1429 | return new VarExprAST(VarNames, Body); |
| 1430 | } |
| 1431 | |
| 1432 | |
| 1433 | /// primary |
| 1434 | /// ::= identifierexpr |
| 1435 | /// ::= numberexpr |
| 1436 | /// ::= parenexpr |
| 1437 | /// ::= ifexpr |
| 1438 | /// ::= forexpr |
| 1439 | /// ::= varexpr |
| 1440 | static ExprAST *ParsePrimary() { |
| 1441 | switch (CurTok) { |
| 1442 | default: return Error("unknown token when expecting an expression"); |
| 1443 | case tok_identifier: return ParseIdentifierExpr(); |
| 1444 | case tok_number: return ParseNumberExpr(); |
| 1445 | case '(': return ParseParenExpr(); |
| 1446 | case tok_if: return ParseIfExpr(); |
| 1447 | case tok_for: return ParseForExpr(); |
| 1448 | case tok_var: return ParseVarExpr(); |
| 1449 | } |
| 1450 | } |
| 1451 | |
| 1452 | /// unary |
| 1453 | /// ::= primary |
| 1454 | /// ::= '!' unary |
| 1455 | static ExprAST *ParseUnary() { |
| 1456 | // If the current token is not an operator, it must be a primary expr. |
| 1457 | if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') |
| 1458 | return ParsePrimary(); |
| 1459 | |
| 1460 | // If this is a unary operator, read it. |
| 1461 | int Opc = CurTok; |
| 1462 | getNextToken(); |
| 1463 | if (ExprAST *Operand = ParseUnary()) |
| 1464 | return new UnaryExprAST(Opc, Operand); |
| 1465 | return 0; |
| 1466 | } |
| 1467 | |
| 1468 | /// binoprhs |
| 1469 | /// ::= ('+' unary)* |
| 1470 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| 1471 | // If this is a binop, find its precedence. |
| 1472 | while (1) { |
| 1473 | int TokPrec = GetTokPrecedence(); |
| 1474 | |
| 1475 | // If this is a binop that binds at least as tightly as the current binop, |
| 1476 | // consume it, otherwise we are done. |
| 1477 | if (TokPrec < ExprPrec) |
| 1478 | return LHS; |
| 1479 | |
| 1480 | // Okay, we know this is a binop. |
| 1481 | int BinOp = CurTok; |
| 1482 | getNextToken(); // eat binop |
| 1483 | |
| 1484 | // Parse the unary expression after the binary operator. |
| 1485 | ExprAST *RHS = ParseUnary(); |
| 1486 | if (!RHS) return 0; |
| 1487 | |
| 1488 | // If BinOp binds less tightly with RHS than the operator after RHS, let |
| 1489 | // the pending operator take RHS as its LHS. |
| 1490 | int NextPrec = GetTokPrecedence(); |
| 1491 | if (TokPrec < NextPrec) { |
| 1492 | RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| 1493 | if (RHS == 0) return 0; |
| 1494 | } |
| 1495 | |
| 1496 | // Merge LHS/RHS. |
| 1497 | LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| 1498 | } |
| 1499 | } |
| 1500 | |
| 1501 | /// expression |
| 1502 | /// ::= unary binoprhs |
| 1503 | /// |
| 1504 | static ExprAST *ParseExpression() { |
| 1505 | ExprAST *LHS = ParseUnary(); |
| 1506 | if (!LHS) return 0; |
| 1507 | |
| 1508 | return ParseBinOpRHS(0, LHS); |
| 1509 | } |
| 1510 | |
| 1511 | /// prototype |
| 1512 | /// ::= id '(' id* ')' |
| 1513 | /// ::= binary LETTER number? (id, id) |
| 1514 | /// ::= unary LETTER (id) |
| 1515 | static PrototypeAST *ParsePrototype() { |
| 1516 | std::string FnName; |
| 1517 | |
| 1518 | int Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. |
| 1519 | unsigned BinaryPrecedence = 30; |
| 1520 | |
| 1521 | switch (CurTok) { |
| 1522 | default: |
| 1523 | return ErrorP("Expected function name in prototype"); |
| 1524 | case tok_identifier: |
| 1525 | FnName = IdentifierStr; |
| 1526 | Kind = 0; |
| 1527 | getNextToken(); |
| 1528 | break; |
| 1529 | case tok_unary: |
| 1530 | getNextToken(); |
| 1531 | if (!isascii(CurTok)) |
| 1532 | return ErrorP("Expected unary operator"); |
| 1533 | FnName = "unary"; |
| 1534 | FnName += (char)CurTok; |
| 1535 | Kind = 1; |
| 1536 | getNextToken(); |
| 1537 | break; |
| 1538 | case tok_binary: |
| 1539 | getNextToken(); |
| 1540 | if (!isascii(CurTok)) |
| 1541 | return ErrorP("Expected binary operator"); |
| 1542 | FnName = "binary"; |
| 1543 | FnName += (char)CurTok; |
| 1544 | Kind = 2; |
| 1545 | getNextToken(); |
| 1546 | |
| 1547 | // Read the precedence if present. |
| 1548 | if (CurTok == tok_number) { |
| 1549 | if (NumVal < 1 || NumVal > 100) |
| 1550 | return ErrorP("Invalid precedecnce: must be 1..100"); |
| 1551 | BinaryPrecedence = (unsigned)NumVal; |
| 1552 | getNextToken(); |
| 1553 | } |
| 1554 | break; |
| 1555 | } |
| 1556 | |
| 1557 | if (CurTok != '(') |
| 1558 | return ErrorP("Expected '(' in prototype"); |
| 1559 | |
| 1560 | std::vector<std::string> ArgNames; |
| 1561 | while (getNextToken() == tok_identifier) |
| 1562 | ArgNames.push_back(IdentifierStr); |
| 1563 | if (CurTok != ')') |
| 1564 | return ErrorP("Expected ')' in prototype"); |
| 1565 | |
| 1566 | // success. |
| 1567 | getNextToken(); // eat ')'. |
| 1568 | |
| 1569 | // Verify right number of names for operator. |
| 1570 | if (Kind && ArgNames.size() != Kind) |
| 1571 | return ErrorP("Invalid number of operands for operator"); |
| 1572 | |
| 1573 | return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); |
| 1574 | } |
| 1575 | |
| 1576 | /// definition ::= 'def' prototype expression |
| 1577 | static FunctionAST *ParseDefinition() { |
| 1578 | getNextToken(); // eat def. |
| 1579 | PrototypeAST *Proto = ParsePrototype(); |
| 1580 | if (Proto == 0) return 0; |
| 1581 | |
| 1582 | if (ExprAST *E = ParseExpression()) |
| 1583 | return new FunctionAST(Proto, E); |
| 1584 | return 0; |
| 1585 | } |
| 1586 | |
| 1587 | /// toplevelexpr ::= expression |
| 1588 | static FunctionAST *ParseTopLevelExpr() { |
| 1589 | if (ExprAST *E = ParseExpression()) { |
| 1590 | // Make an anonymous proto. |
| 1591 | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| 1592 | return new FunctionAST(Proto, E); |
| 1593 | } |
| 1594 | return 0; |
| 1595 | } |
| 1596 | |
| 1597 | /// external ::= 'extern' prototype |
| 1598 | static PrototypeAST *ParseExtern() { |
| 1599 | getNextToken(); // eat extern. |
| 1600 | return ParsePrototype(); |
| 1601 | } |
| 1602 | |
| 1603 | //===----------------------------------------------------------------------===// |
| 1604 | // Code Generation |
| 1605 | //===----------------------------------------------------------------------===// |
| 1606 | |
| 1607 | static Module *TheModule; |
Gabor Greif | d6c1ed0 | 2009-03-11 19:51:07 +0000 | [diff] [blame^] | 1608 | static IRBuilder<> Builder; |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1609 | static std::map<std::string, AllocaInst*> NamedValues; |
| 1610 | static FunctionPassManager *TheFPM; |
| 1611 | |
| 1612 | Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| 1613 | |
| 1614 | /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of |
| 1615 | /// the function. This is used for mutable variables etc. |
| 1616 | static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, |
| 1617 | const std::string &VarName) { |
Gabor Greif | d6c1ed0 | 2009-03-11 19:51:07 +0000 | [diff] [blame^] | 1618 | IRBuilder<> TmpB(&TheFunction->getEntryBlock(), |
Duncan Sands | 89f6d88 | 2008-04-13 06:22:09 +0000 | [diff] [blame] | 1619 | TheFunction->getEntryBlock().begin()); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1620 | return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str()); |
| 1621 | } |
| 1622 | |
| 1623 | |
| 1624 | Value *NumberExprAST::Codegen() { |
Gabor Greif | 5934adf | 2008-06-10 01:52:17 +0000 | [diff] [blame] | 1625 | return ConstantFP::get(APFloat(Val)); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1626 | } |
| 1627 | |
| 1628 | Value *VariableExprAST::Codegen() { |
| 1629 | // Look this variable up in the function. |
| 1630 | Value *V = NamedValues[Name]; |
| 1631 | if (V == 0) return ErrorV("Unknown variable name"); |
| 1632 | |
| 1633 | // Load the value. |
| 1634 | return Builder.CreateLoad(V, Name.c_str()); |
| 1635 | } |
| 1636 | |
| 1637 | Value *UnaryExprAST::Codegen() { |
| 1638 | Value *OperandV = Operand->Codegen(); |
| 1639 | if (OperandV == 0) return 0; |
| 1640 | |
| 1641 | Function *F = TheModule->getFunction(std::string("unary")+Opcode); |
| 1642 | if (F == 0) |
| 1643 | return ErrorV("Unknown unary operator"); |
| 1644 | |
| 1645 | return Builder.CreateCall(F, OperandV, "unop"); |
| 1646 | } |
| 1647 | |
| 1648 | |
| 1649 | Value *BinaryExprAST::Codegen() { |
| 1650 | // Special case '=' because we don't want to emit the LHS as an expression. |
| 1651 | if (Op == '=') { |
| 1652 | // Assignment requires the LHS to be an identifier. |
| 1653 | VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); |
| 1654 | if (!LHSE) |
| 1655 | return ErrorV("destination of '=' must be a variable"); |
| 1656 | // Codegen the RHS. |
| 1657 | Value *Val = RHS->Codegen(); |
| 1658 | if (Val == 0) return 0; |
| 1659 | |
| 1660 | // Look up the name. |
| 1661 | Value *Variable = NamedValues[LHSE->getName()]; |
| 1662 | if (Variable == 0) return ErrorV("Unknown variable name"); |
| 1663 | |
| 1664 | Builder.CreateStore(Val, Variable); |
| 1665 | return Val; |
| 1666 | } |
| 1667 | |
| 1668 | |
| 1669 | Value *L = LHS->Codegen(); |
| 1670 | Value *R = RHS->Codegen(); |
| 1671 | if (L == 0 || R == 0) return 0; |
| 1672 | |
| 1673 | switch (Op) { |
| 1674 | case '+': return Builder.CreateAdd(L, R, "addtmp"); |
| 1675 | case '-': return Builder.CreateSub(L, R, "subtmp"); |
| 1676 | case '*': return Builder.CreateMul(L, R, "multmp"); |
| 1677 | case '<': |
Chris Lattner | 7115521 | 2007-11-06 01:39:12 +0000 | [diff] [blame] | 1678 | L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1679 | // Convert bool 0/1 to double 0.0 or 1.0 |
| 1680 | return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); |
| 1681 | default: break; |
| 1682 | } |
| 1683 | |
| 1684 | // If it wasn't a builtin binary operator, it must be a user defined one. Emit |
| 1685 | // a call to it. |
| 1686 | Function *F = TheModule->getFunction(std::string("binary")+Op); |
| 1687 | assert(F && "binary operator not found!"); |
| 1688 | |
| 1689 | Value *Ops[] = { L, R }; |
| 1690 | return Builder.CreateCall(F, Ops, Ops+2, "binop"); |
| 1691 | } |
| 1692 | |
| 1693 | Value *CallExprAST::Codegen() { |
| 1694 | // Look up the name in the global module table. |
| 1695 | Function *CalleeF = TheModule->getFunction(Callee); |
| 1696 | if (CalleeF == 0) |
| 1697 | return ErrorV("Unknown function referenced"); |
| 1698 | |
| 1699 | // If argument mismatch error. |
| 1700 | if (CalleeF->arg_size() != Args.size()) |
| 1701 | return ErrorV("Incorrect # arguments passed"); |
| 1702 | |
| 1703 | std::vector<Value*> ArgsV; |
| 1704 | for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| 1705 | ArgsV.push_back(Args[i]->Codegen()); |
| 1706 | if (ArgsV.back() == 0) return 0; |
| 1707 | } |
| 1708 | |
| 1709 | return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); |
| 1710 | } |
| 1711 | |
| 1712 | Value *IfExprAST::Codegen() { |
| 1713 | Value *CondV = Cond->Codegen(); |
| 1714 | if (CondV == 0) return 0; |
| 1715 | |
| 1716 | // Convert condition to a bool by comparing equal to 0.0. |
| 1717 | CondV = Builder.CreateFCmpONE(CondV, |
Gabor Greif | 5934adf | 2008-06-10 01:52:17 +0000 | [diff] [blame] | 1718 | ConstantFP::get(APFloat(0.0)), |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1719 | "ifcond"); |
| 1720 | |
| 1721 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 1722 | |
| 1723 | // Create blocks for the then and else cases. Insert the 'then' block at the |
| 1724 | // end of the function. |
Gabor Greif | df7d2b4 | 2008-04-19 22:25:09 +0000 | [diff] [blame] | 1725 | BasicBlock *ThenBB = BasicBlock::Create("then", TheFunction); |
| 1726 | BasicBlock *ElseBB = BasicBlock::Create("else"); |
| 1727 | BasicBlock *MergeBB = BasicBlock::Create("ifcont"); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1728 | |
| 1729 | Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| 1730 | |
| 1731 | // Emit then value. |
| 1732 | Builder.SetInsertPoint(ThenBB); |
| 1733 | |
| 1734 | Value *ThenV = Then->Codegen(); |
| 1735 | if (ThenV == 0) return 0; |
| 1736 | |
| 1737 | Builder.CreateBr(MergeBB); |
| 1738 | // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| 1739 | ThenBB = Builder.GetInsertBlock(); |
| 1740 | |
| 1741 | // Emit else block. |
| 1742 | TheFunction->getBasicBlockList().push_back(ElseBB); |
| 1743 | Builder.SetInsertPoint(ElseBB); |
| 1744 | |
| 1745 | Value *ElseV = Else->Codegen(); |
| 1746 | if (ElseV == 0) return 0; |
| 1747 | |
| 1748 | Builder.CreateBr(MergeBB); |
| 1749 | // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| 1750 | ElseBB = Builder.GetInsertBlock(); |
| 1751 | |
| 1752 | // Emit merge block. |
| 1753 | TheFunction->getBasicBlockList().push_back(MergeBB); |
| 1754 | Builder.SetInsertPoint(MergeBB); |
| 1755 | PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp"); |
| 1756 | |
| 1757 | PN->addIncoming(ThenV, ThenBB); |
| 1758 | PN->addIncoming(ElseV, ElseBB); |
| 1759 | return PN; |
| 1760 | } |
| 1761 | |
| 1762 | Value *ForExprAST::Codegen() { |
| 1763 | // Output this as: |
| 1764 | // var = alloca double |
| 1765 | // ... |
| 1766 | // start = startexpr |
| 1767 | // store start -> var |
| 1768 | // goto loop |
| 1769 | // loop: |
| 1770 | // ... |
| 1771 | // bodyexpr |
| 1772 | // ... |
| 1773 | // loopend: |
| 1774 | // step = stepexpr |
| 1775 | // endcond = endexpr |
| 1776 | // |
| 1777 | // curvar = load var |
| 1778 | // nextvar = curvar + step |
| 1779 | // store nextvar -> var |
| 1780 | // br endcond, loop, endloop |
| 1781 | // outloop: |
| 1782 | |
| 1783 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 1784 | |
| 1785 | // Create an alloca for the variable in the entry block. |
| 1786 | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| 1787 | |
| 1788 | // Emit the start code first, without 'variable' in scope. |
| 1789 | Value *StartVal = Start->Codegen(); |
| 1790 | if (StartVal == 0) return 0; |
| 1791 | |
| 1792 | // Store the value into the alloca. |
| 1793 | Builder.CreateStore(StartVal, Alloca); |
| 1794 | |
| 1795 | // Make the new basic block for the loop header, inserting after current |
| 1796 | // block. |
| 1797 | BasicBlock *PreheaderBB = Builder.GetInsertBlock(); |
Gabor Greif | df7d2b4 | 2008-04-19 22:25:09 +0000 | [diff] [blame] | 1798 | BasicBlock *LoopBB = BasicBlock::Create("loop", TheFunction); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1799 | |
| 1800 | // Insert an explicit fall through from the current block to the LoopBB. |
| 1801 | Builder.CreateBr(LoopBB); |
| 1802 | |
| 1803 | // Start insertion in LoopBB. |
| 1804 | Builder.SetInsertPoint(LoopBB); |
| 1805 | |
| 1806 | // Within the loop, the variable is defined equal to the PHI node. If it |
| 1807 | // shadows an existing variable, we have to restore it, so save it now. |
| 1808 | AllocaInst *OldVal = NamedValues[VarName]; |
| 1809 | NamedValues[VarName] = Alloca; |
| 1810 | |
| 1811 | // Emit the body of the loop. This, like any other expr, can change the |
| 1812 | // current BB. Note that we ignore the value computed by the body, but don't |
| 1813 | // allow an error. |
| 1814 | if (Body->Codegen() == 0) |
| 1815 | return 0; |
| 1816 | |
| 1817 | // Emit the step value. |
| 1818 | Value *StepVal; |
| 1819 | if (Step) { |
| 1820 | StepVal = Step->Codegen(); |
| 1821 | if (StepVal == 0) return 0; |
| 1822 | } else { |
| 1823 | // If not specified, use 1.0. |
Gabor Greif | 5934adf | 2008-06-10 01:52:17 +0000 | [diff] [blame] | 1824 | StepVal = ConstantFP::get(APFloat(1.0)); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1825 | } |
| 1826 | |
| 1827 | // Compute the end condition. |
| 1828 | Value *EndCond = End->Codegen(); |
| 1829 | if (EndCond == 0) return EndCond; |
| 1830 | |
| 1831 | // Reload, increment, and restore the alloca. This handles the case where |
| 1832 | // the body of the loop mutates the variable. |
| 1833 | Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); |
| 1834 | Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar"); |
| 1835 | Builder.CreateStore(NextVar, Alloca); |
| 1836 | |
| 1837 | // Convert condition to a bool by comparing equal to 0.0. |
| 1838 | EndCond = Builder.CreateFCmpONE(EndCond, |
Gabor Greif | 5934adf | 2008-06-10 01:52:17 +0000 | [diff] [blame] | 1839 | ConstantFP::get(APFloat(0.0)), |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1840 | "loopcond"); |
| 1841 | |
| 1842 | // Create the "after loop" block and insert it. |
| 1843 | BasicBlock *LoopEndBB = Builder.GetInsertBlock(); |
Gabor Greif | df7d2b4 | 2008-04-19 22:25:09 +0000 | [diff] [blame] | 1844 | BasicBlock *AfterBB = BasicBlock::Create("afterloop", TheFunction); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1845 | |
| 1846 | // Insert the conditional branch into the end of LoopEndBB. |
| 1847 | Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| 1848 | |
| 1849 | // Any new code will be inserted in AfterBB. |
| 1850 | Builder.SetInsertPoint(AfterBB); |
| 1851 | |
| 1852 | // Restore the unshadowed variable. |
| 1853 | if (OldVal) |
| 1854 | NamedValues[VarName] = OldVal; |
| 1855 | else |
| 1856 | NamedValues.erase(VarName); |
| 1857 | |
| 1858 | |
| 1859 | // for expr always returns 0.0. |
| 1860 | return Constant::getNullValue(Type::DoubleTy); |
| 1861 | } |
| 1862 | |
| 1863 | Value *VarExprAST::Codegen() { |
| 1864 | std::vector<AllocaInst *> OldBindings; |
| 1865 | |
| 1866 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 1867 | |
| 1868 | // Register all variables and emit their initializer. |
| 1869 | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { |
| 1870 | const std::string &VarName = VarNames[i].first; |
| 1871 | ExprAST *Init = VarNames[i].second; |
| 1872 | |
| 1873 | // Emit the initializer before adding the variable to scope, this prevents |
| 1874 | // the initializer from referencing the variable itself, and permits stuff |
| 1875 | // like this: |
| 1876 | // var a = 1 in |
| 1877 | // var a = a in ... # refers to outer 'a'. |
| 1878 | Value *InitVal; |
| 1879 | if (Init) { |
| 1880 | InitVal = Init->Codegen(); |
| 1881 | if (InitVal == 0) return 0; |
| 1882 | } else { // If not specified, use 0.0. |
Gabor Greif | 5934adf | 2008-06-10 01:52:17 +0000 | [diff] [blame] | 1883 | InitVal = ConstantFP::get(APFloat(0.0)); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1884 | } |
| 1885 | |
| 1886 | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| 1887 | Builder.CreateStore(InitVal, Alloca); |
| 1888 | |
| 1889 | // Remember the old variable binding so that we can restore the binding when |
| 1890 | // we unrecurse. |
| 1891 | OldBindings.push_back(NamedValues[VarName]); |
| 1892 | |
| 1893 | // Remember this binding. |
| 1894 | NamedValues[VarName] = Alloca; |
| 1895 | } |
| 1896 | |
| 1897 | // Codegen the body, now that all vars are in scope. |
| 1898 | Value *BodyVal = Body->Codegen(); |
| 1899 | if (BodyVal == 0) return 0; |
| 1900 | |
| 1901 | // Pop all our variables from scope. |
| 1902 | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) |
| 1903 | NamedValues[VarNames[i].first] = OldBindings[i]; |
| 1904 | |
| 1905 | // Return the body computation. |
| 1906 | return BodyVal; |
| 1907 | } |
| 1908 | |
| 1909 | |
| 1910 | Function *PrototypeAST::Codegen() { |
| 1911 | // Make the function type: double(double,double) etc. |
| 1912 | std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy); |
| 1913 | FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false); |
| 1914 | |
Gabor Greif | df7d2b4 | 2008-04-19 22:25:09 +0000 | [diff] [blame] | 1915 | Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1916 | |
| 1917 | // If F conflicted, there was already something named 'Name'. If it has a |
| 1918 | // body, don't allow redefinition or reextern. |
| 1919 | if (F->getName() != Name) { |
| 1920 | // Delete the one we just made and get the existing one. |
| 1921 | F->eraseFromParent(); |
| 1922 | F = TheModule->getFunction(Name); |
| 1923 | |
| 1924 | // If F already has a body, reject this. |
| 1925 | if (!F->empty()) { |
| 1926 | ErrorF("redefinition of function"); |
| 1927 | return 0; |
| 1928 | } |
| 1929 | |
| 1930 | // If F took a different number of args, reject. |
| 1931 | if (F->arg_size() != Args.size()) { |
| 1932 | ErrorF("redefinition of function with different # args"); |
| 1933 | return 0; |
| 1934 | } |
| 1935 | } |
| 1936 | |
| 1937 | // Set names for all arguments. |
| 1938 | unsigned Idx = 0; |
| 1939 | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| 1940 | ++AI, ++Idx) |
| 1941 | AI->setName(Args[Idx]); |
| 1942 | |
| 1943 | return F; |
| 1944 | } |
| 1945 | |
| 1946 | /// CreateArgumentAllocas - Create an alloca for each argument and register the |
| 1947 | /// argument in the symbol table so that references to it will succeed. |
| 1948 | void PrototypeAST::CreateArgumentAllocas(Function *F) { |
| 1949 | Function::arg_iterator AI = F->arg_begin(); |
| 1950 | for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { |
| 1951 | // Create an alloca for this variable. |
| 1952 | AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); |
| 1953 | |
| 1954 | // Store the initial value into the alloca. |
| 1955 | Builder.CreateStore(AI, Alloca); |
| 1956 | |
| 1957 | // Add arguments to variable symbol table. |
| 1958 | NamedValues[Args[Idx]] = Alloca; |
| 1959 | } |
| 1960 | } |
| 1961 | |
| 1962 | |
| 1963 | Function *FunctionAST::Codegen() { |
| 1964 | NamedValues.clear(); |
| 1965 | |
| 1966 | Function *TheFunction = Proto->Codegen(); |
| 1967 | if (TheFunction == 0) |
| 1968 | return 0; |
| 1969 | |
| 1970 | // If this is an operator, install it. |
| 1971 | if (Proto->isBinaryOp()) |
| 1972 | BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); |
| 1973 | |
| 1974 | // Create a new basic block to start insertion into. |
Gabor Greif | df7d2b4 | 2008-04-19 22:25:09 +0000 | [diff] [blame] | 1975 | BasicBlock *BB = BasicBlock::Create("entry", TheFunction); |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 1976 | Builder.SetInsertPoint(BB); |
| 1977 | |
| 1978 | // Add all arguments to the symbol table and create their allocas. |
| 1979 | Proto->CreateArgumentAllocas(TheFunction); |
| 1980 | |
| 1981 | if (Value *RetVal = Body->Codegen()) { |
| 1982 | // Finish off the function. |
| 1983 | Builder.CreateRet(RetVal); |
| 1984 | |
| 1985 | // Validate the generated code, checking for consistency. |
| 1986 | verifyFunction(*TheFunction); |
| 1987 | |
| 1988 | // Optimize the function. |
| 1989 | TheFPM->run(*TheFunction); |
| 1990 | |
| 1991 | return TheFunction; |
| 1992 | } |
| 1993 | |
| 1994 | // Error reading body, remove function. |
| 1995 | TheFunction->eraseFromParent(); |
| 1996 | |
| 1997 | if (Proto->isBinaryOp()) |
| 1998 | BinopPrecedence.erase(Proto->getOperatorName()); |
| 1999 | return 0; |
| 2000 | } |
| 2001 | |
| 2002 | //===----------------------------------------------------------------------===// |
| 2003 | // Top-Level parsing and JIT Driver |
| 2004 | //===----------------------------------------------------------------------===// |
| 2005 | |
| 2006 | static ExecutionEngine *TheExecutionEngine; |
| 2007 | |
| 2008 | static void HandleDefinition() { |
| 2009 | if (FunctionAST *F = ParseDefinition()) { |
| 2010 | if (Function *LF = F->Codegen()) { |
| 2011 | fprintf(stderr, "Read function definition:"); |
| 2012 | LF->dump(); |
| 2013 | } |
| 2014 | } else { |
| 2015 | // Skip token for error recovery. |
| 2016 | getNextToken(); |
| 2017 | } |
| 2018 | } |
| 2019 | |
| 2020 | static void HandleExtern() { |
| 2021 | if (PrototypeAST *P = ParseExtern()) { |
| 2022 | if (Function *F = P->Codegen()) { |
| 2023 | fprintf(stderr, "Read extern: "); |
| 2024 | F->dump(); |
| 2025 | } |
| 2026 | } else { |
| 2027 | // Skip token for error recovery. |
| 2028 | getNextToken(); |
| 2029 | } |
| 2030 | } |
| 2031 | |
| 2032 | static void HandleTopLevelExpression() { |
| 2033 | // Evaluate a top level expression into an anonymous function. |
| 2034 | if (FunctionAST *F = ParseTopLevelExpr()) { |
| 2035 | if (Function *LF = F->Codegen()) { |
| 2036 | // JIT the function, returning a function pointer. |
| 2037 | void *FPtr = TheExecutionEngine->getPointerToFunction(LF); |
| 2038 | |
| 2039 | // Cast it to the right type (takes no arguments, returns a double) so we |
| 2040 | // can call it as a native function. |
| 2041 | double (*FP)() = (double (*)())FPtr; |
| 2042 | fprintf(stderr, "Evaluated to %f\n", FP()); |
| 2043 | } |
| 2044 | } else { |
| 2045 | // Skip token for error recovery. |
| 2046 | getNextToken(); |
| 2047 | } |
| 2048 | } |
| 2049 | |
| 2050 | /// top ::= definition | external | expression | ';' |
| 2051 | static void MainLoop() { |
| 2052 | while (1) { |
| 2053 | fprintf(stderr, "ready> "); |
| 2054 | switch (CurTok) { |
| 2055 | case tok_eof: return; |
| 2056 | case ';': getNextToken(); break; // ignore top level semicolons. |
| 2057 | case tok_def: HandleDefinition(); break; |
| 2058 | case tok_extern: HandleExtern(); break; |
| 2059 | default: HandleTopLevelExpression(); break; |
| 2060 | } |
| 2061 | } |
| 2062 | } |
| 2063 | |
| 2064 | |
| 2065 | |
| 2066 | //===----------------------------------------------------------------------===// |
| 2067 | // "Library" functions that can be "extern'd" from user code. |
| 2068 | //===----------------------------------------------------------------------===// |
| 2069 | |
| 2070 | /// putchard - putchar that takes a double and returns 0. |
| 2071 | extern "C" |
| 2072 | double putchard(double X) { |
| 2073 | putchar((char)X); |
| 2074 | return 0; |
| 2075 | } |
| 2076 | |
| 2077 | /// printd - printf that takes a double prints it as "%f\n", returning 0. |
| 2078 | extern "C" |
| 2079 | double printd(double X) { |
| 2080 | printf("%f\n", X); |
| 2081 | return 0; |
| 2082 | } |
| 2083 | |
| 2084 | //===----------------------------------------------------------------------===// |
| 2085 | // Main driver code. |
| 2086 | //===----------------------------------------------------------------------===// |
| 2087 | |
| 2088 | int main() { |
| 2089 | // Install standard binary operators. |
| 2090 | // 1 is lowest precedence. |
| 2091 | BinopPrecedence['='] = 2; |
| 2092 | BinopPrecedence['<'] = 10; |
| 2093 | BinopPrecedence['+'] = 20; |
| 2094 | BinopPrecedence['-'] = 20; |
| 2095 | BinopPrecedence['*'] = 40; // highest. |
| 2096 | |
| 2097 | // Prime the first token. |
| 2098 | fprintf(stderr, "ready> "); |
| 2099 | getNextToken(); |
| 2100 | |
| 2101 | // Make the module, which holds all the code. |
| 2102 | TheModule = new Module("my cool jit"); |
| 2103 | |
| 2104 | // Create the JIT. |
| 2105 | TheExecutionEngine = ExecutionEngine::create(TheModule); |
| 2106 | |
| 2107 | { |
| 2108 | ExistingModuleProvider OurModuleProvider(TheModule); |
| 2109 | FunctionPassManager OurFPM(&OurModuleProvider); |
| 2110 | |
| 2111 | // Set up the optimizer pipeline. Start with registering info about how the |
| 2112 | // target lays out data structures. |
| 2113 | OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); |
| 2114 | // Promote allocas to registers. |
| 2115 | OurFPM.add(createPromoteMemoryToRegisterPass()); |
| 2116 | // Do simple "peephole" optimizations and bit-twiddling optzns. |
| 2117 | OurFPM.add(createInstructionCombiningPass()); |
| 2118 | // Reassociate expressions. |
| 2119 | OurFPM.add(createReassociatePass()); |
| 2120 | // Eliminate Common SubExpressions. |
| 2121 | OurFPM.add(createGVNPass()); |
| 2122 | // Simplify the control flow graph (deleting unreachable blocks, etc). |
| 2123 | OurFPM.add(createCFGSimplificationPass()); |
| 2124 | |
| 2125 | // Set the global so the code gen can use this. |
| 2126 | TheFPM = &OurFPM; |
| 2127 | |
| 2128 | // Run the main "interpreter loop" now. |
| 2129 | MainLoop(); |
| 2130 | |
| 2131 | TheFPM = 0; |
Chris Lattner | 515686b | 2008-02-05 06:18:42 +0000 | [diff] [blame] | 2132 | |
| 2133 | // Print out all of the generated code. |
| 2134 | TheModule->dump(); |
| 2135 | |
| 2136 | } // Free module provider (and thus the module) and pass manager. |
| 2137 | |
Chris Lattner | 62a709d | 2007-11-05 00:23:57 +0000 | [diff] [blame] | 2138 | return 0; |
| 2139 | } |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 2140 | </pre> |
| 2141 | </div> |
| 2142 | |
Chris Lattner | 729eb14 | 2008-02-10 19:11:04 +0000 | [diff] [blame] | 2143 | <a href="LangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a> |
Chris Lattner | 00c992d | 2007-11-03 08:55:29 +0000 | [diff] [blame] | 2144 | </div> |
| 2145 | |
| 2146 | <!-- *********************************************************************** --> |
| 2147 | <hr> |
| 2148 | <address> |
| 2149 | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| 2150 | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> |
| 2151 | <a href="http://validator.w3.org/check/referer"><img |
| 2152 | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> |
| 2153 | |
| 2154 | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| 2155 | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> |
| 2156 | Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ |
| 2157 | </address> |
| 2158 | </body> |
| 2159 | </html> |