blob: fa689de058ca23250d46ff4c7c3b1926f5d4487d [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18#include "llvm/Target/TargetLowering.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "PPC.h"
21#include "PPCSubtarget.h"
22
23namespace llvm {
24 namespace PPCISD {
25 enum NodeType {
26 // Start the numbering where the builtin ops and target ops leave off.
Dan Gohman868636e2008-09-23 18:42:32 +000027 FIRST_NUMBER = ISD::BUILTIN_OP_END,
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028
29 /// FSEL - Traditional three-operand fsel node.
30 ///
31 FSEL,
32
33 /// FCFID - The FCFID instruction, taking an f64 operand and producing
34 /// and f64 value containing the FP representation of the integer that
35 /// was temporarily in the f64 operand.
36 FCFID,
37
38 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
39 /// operand, producing an f64 value containing the integer representation
40 /// of that FP value.
41 FCTIDZ, FCTIWZ,
42
43 /// STFIWX - The STFIWX instruction. The first operand is an input token
44 /// chain, then an f64 value to store, then an address to store it to,
45 /// then a SRCVALUE for the address.
46 STFIWX,
47
48 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
49 // three v4f32 operands and producing a v4f32 result.
50 VMADDFP, VNMSUBFP,
51
52 /// VPERM - The PPC VPERM Instruction.
53 ///
54 VPERM,
55
56 /// Hi/Lo - These represent the high and low 16-bit parts of a global
57 /// address respectively. These nodes have two operands, the first of
58 /// which must be a TargetGlobalAddress, and the second of which must be a
59 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
60 /// though these are usually folded into other nodes.
61 Hi, Lo,
62
63 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
64 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
65 /// compute an allocation on the stack.
66 DYNALLOC,
67
68 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
69 /// at function entry, used for PIC code.
70 GlobalBaseReg,
71
72 /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
73 /// shift amounts. These nodes are generated by the multi-precision shift
74 /// code.
75 SRL, SRA, SHL,
76
77 /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
78 /// registers.
79 EXTSW_32,
80
81 /// STD_32 - This is the STD instruction for use with "32-bit" registers.
82 STD_32,
83
84 /// CALL - A direct function call.
85 CALL_Macho, CALL_ELF,
86
87 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
88 /// MTCTR instruction.
89 MTCTR,
90
91 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
92 /// BCTRL instruction.
93 BCTRL_Macho, BCTRL_ELF,
94
95 /// Return with a flag operand, matched by 'blr'
96 RET_FLAG,
97
98 /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCR/MFOCRF instructions.
99 /// This copies the bits corresponding to the specified CRREG into the
100 /// resultant GPR. Bits corresponding to other CR regs are undefined.
101 MFCR,
102
103 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
104 /// instructions. For lack of better number, we use the opcode number
105 /// encoding for the OPC field to identify the compare. For example, 838
106 /// is VCMPGTSH.
107 VCMP,
108
109 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
110 /// altivec VCMP*o instructions. For lack of better number, we use the
111 /// opcode number encoding for the OPC field to identify the compare. For
112 /// example, 838 is VCMPGTSH.
113 VCMPo,
114
115 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
116 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
117 /// condition register to branch on, OPC is the branch opcode to use (e.g.
118 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
119 /// an optional input flag argument.
120 COND_BRANCH,
121
122 /// CHAIN = STBRX CHAIN, GPRC, Ptr, SRCVALUE, Type - This is a
123 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
124 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
125 /// i32.
126 STBRX,
127
128 /// GPRC, CHAIN = LBRX CHAIN, Ptr, SRCVALUE, Type - This is a
129 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
130 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
131 /// or i32.
Dale Johannesen3d8578b2007-10-10 01:01:31 +0000132 LBRX,
133
134 // The following 5 instructions are used only as part of the
135 // long double-to-int conversion sequence.
136
137 /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
138 /// register.
139 MFFS,
140
141 /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
142 MTFSB0,
143
144 /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
145 MTFSB1,
146
147 /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
148 /// rounding towards zero. It has flags added so it won't move past the
149 /// FPSCR-setting instructions.
150 FADDRTZ,
151
152 /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
Evan Cheng4df1f9d2008-04-19 01:30:48 +0000153 MTFSF,
154
Evan Cheng0589b512008-04-19 02:30:38 +0000155 /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
Evan Cheng4df1f9d2008-04-19 01:30:48 +0000156 /// reserve indexed. This is used to implement atomic operations.
Evan Cheng0589b512008-04-19 02:30:38 +0000157 LARX,
Evan Cheng4df1f9d2008-04-19 01:30:48 +0000158
Evan Cheng0589b512008-04-19 02:30:38 +0000159 /// STCX = This corresponds to PPC stcx. instrcution: store conditional
160 /// indexed. This is used to implement atomic operations.
161 STCX,
Evan Cheng4df1f9d2008-04-19 01:30:48 +0000162
Arnold Schwaighofera0032722008-04-30 09:16:33 +0000163 /// TAILCALL - Indicates a tail call should be taken.
164 TAILCALL,
165 /// TC_RETURN - A tail call return.
166 /// operand #0 chain
167 /// operand #1 callee (register or absolute)
168 /// operand #2 stack adjustment
169 /// operand #3 optional in flag
170 TC_RETURN
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000171 };
172 }
173
174 /// Define some predicates that are used for node matching.
175 namespace PPC {
176 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
177 /// VPKUHUM instruction.
178 bool isVPKUHUMShuffleMask(SDNode *N, bool isUnary);
179
180 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
181 /// VPKUWUM instruction.
182 bool isVPKUWUMShuffleMask(SDNode *N, bool isUnary);
183
184 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
185 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
186 bool isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary);
187
188 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
189 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
190 bool isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary);
191
192 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
193 /// amount, otherwise return -1.
194 int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
195
196 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
197 /// specifies a splat of a single element that is suitable for input to
198 /// VSPLTB/VSPLTH/VSPLTW.
199 bool isSplatShuffleMask(SDNode *N, unsigned EltSize);
200
Evan Chengc5912e32007-07-30 07:51:22 +0000201 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
202 /// are -0.0.
203 bool isAllNegativeZeroVector(SDNode *N);
204
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000205 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
206 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
207 unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
208
209 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
210 /// formed by using a vspltis[bhw] instruction of the specified element
211 /// size, return the constant being splatted. The ByteSize field indicates
212 /// the number of bytes of each element [124] -> [bhw].
Dan Gohman8181bd12008-07-27 21:46:04 +0000213 SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 }
215
216 class PPCTargetLowering : public TargetLowering {
217 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
218 int VarArgsStackOffset; // StackOffset for start of stack
219 // arguments.
220 unsigned VarArgsNumGPR; // Index of the first unused integer
221 // register for parameter passing.
222 unsigned VarArgsNumFPR; // Index of the first unused double
223 // register for parameter passing.
224 int ReturnAddrIndex; // FrameIndex for return slot.
225 const PPCSubtarget &PPCSubTarget;
226 public:
Dan Gohman3a78bbf2007-08-02 21:21:54 +0000227 explicit PPCTargetLowering(PPCTargetMachine &TM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228
229 /// getTargetNodeName() - This method returns the name of a target specific
230 /// DAG node.
231 virtual const char *getTargetNodeName(unsigned Opcode) const;
232
Scott Michel502151f2008-03-10 15:42:14 +0000233 /// getSetCCResultType - Return the ISD::SETCC ValueType
Dan Gohman8181bd12008-07-27 21:46:04 +0000234 virtual MVT getSetCCResultType(const SDValue &) const;
Scott Michel502151f2008-03-10 15:42:14 +0000235
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000236 /// getPreIndexedAddressParts - returns true by value, base pointer and
237 /// offset pointer and addressing mode by reference if the node's address
238 /// can be legally represented as pre-indexed load / store address.
Dan Gohman8181bd12008-07-27 21:46:04 +0000239 virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
240 SDValue &Offset,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000241 ISD::MemIndexedMode &AM,
242 SelectionDAG &DAG);
243
244 /// SelectAddressRegReg - Given the specified addressed, check to see if it
245 /// can be represented as an indexed [r+r] operation. Returns false if it
246 /// can be more efficiently represented with [r+imm].
Dan Gohman8181bd12008-07-27 21:46:04 +0000247 bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000248 SelectionDAG &DAG);
249
250 /// SelectAddressRegImm - Returns true if the address N can be represented
251 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
252 /// is not better represented as reg+reg.
Dan Gohman8181bd12008-07-27 21:46:04 +0000253 bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000254 SelectionDAG &DAG);
255
256 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
257 /// represented as an indexed [r+r] operation.
Dan Gohman8181bd12008-07-27 21:46:04 +0000258 bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000259 SelectionDAG &DAG);
260
261 /// SelectAddressRegImmShift - Returns true if the address N can be
262 /// represented by a base register plus a signed 14-bit displacement
263 /// [r+imm*4]. Suitable for use by STD and friends.
Dan Gohman8181bd12008-07-27 21:46:04 +0000264 bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000265 SelectionDAG &DAG);
266
267
268 /// LowerOperation - Provide custom lowering hooks for some operations.
269 ///
Dan Gohman8181bd12008-07-27 21:46:04 +0000270 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
Chris Lattner28771092007-11-28 18:44:47 +0000271
Duncan Sandsac496a12008-07-04 11:47:58 +0000272 virtual SDNode *ReplaceNodeResults(SDNode *N, SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273
Dan Gohman8181bd12008-07-27 21:46:04 +0000274 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000275
Dan Gohman8181bd12008-07-27 21:46:04 +0000276 virtual void computeMaskedBitsForTargetNode(const SDValue Op,
Dan Gohmand0dfc772008-02-13 22:28:48 +0000277 const APInt &Mask,
Dan Gohman229fa052008-02-13 00:35:47 +0000278 APInt &KnownZero,
279 APInt &KnownOne,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000280 const SelectionDAG &DAG,
281 unsigned Depth = 0) const;
282
Evan Chenge637db12008-01-30 18:18:23 +0000283 virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
284 MachineBasicBlock *MBB);
Dale Johannesene91a2d62008-08-25 22:34:37 +0000285 MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
286 MachineBasicBlock *MBB, bool is64Bit,
287 unsigned BinOpcode);
Dale Johannesen97ed14a2008-08-28 17:53:09 +0000288 MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
289 MachineBasicBlock *MBB,
290 bool is8bit, unsigned Opcode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000291
292 ConstraintType getConstraintType(const std::string &Constraint) const;
293 std::pair<unsigned, const TargetRegisterClass*>
294 getRegForInlineAsmConstraint(const std::string &Constraint,
Duncan Sands92c43912008-06-06 12:08:01 +0000295 MVT VT) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000296
Dale Johannesen88945f82008-02-28 22:31:51 +0000297 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
298 /// function arguments in the caller parameter area. This is the actual
299 /// alignment, not its logarithm.
300 unsigned getByValTypeAlignment(const Type *Ty) const;
301
Chris Lattnera531abc2007-08-25 00:47:38 +0000302 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
Evan Cheng7f250d62008-09-24 00:05:32 +0000303 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
304 /// true it means one of the asm constraint of the inline asm instruction
305 /// being processed is 'm'.
Dan Gohman8181bd12008-07-27 21:46:04 +0000306 virtual void LowerAsmOperandForConstraint(SDValue Op,
Chris Lattnera531abc2007-08-25 00:47:38 +0000307 char ConstraintLetter,
Evan Cheng7f250d62008-09-24 00:05:32 +0000308 bool hasMemory,
Dan Gohman8181bd12008-07-27 21:46:04 +0000309 std::vector<SDValue> &Ops,
Chris Lattnereca405c2008-04-26 23:02:14 +0000310 SelectionDAG &DAG) const;
Chris Lattnera531abc2007-08-25 00:47:38 +0000311
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000312 /// isLegalAddressingMode - Return true if the addressing mode represented
313 /// by AM is legal for this target, for a load/store of the specified type.
314 virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
315
316 /// isLegalAddressImmediate - Return true if the integer value can be used
317 /// as the offset of the target addressing mode for load / store of the
318 /// given type.
319 virtual bool isLegalAddressImmediate(int64_t V, const Type *Ty) const;
320
321 /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
322 /// the offset of the target addressing mode.
323 virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
324
Arnold Schwaighofera0032722008-04-30 09:16:33 +0000325 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
326 /// for tail call optimization. Target which want to do tail call
327 /// optimization should implement this function.
Dan Gohman705e3f72008-09-13 01:54:27 +0000328 virtual bool IsEligibleForTailCallOptimization(CallSDNode *TheCall,
Dan Gohman8181bd12008-07-27 21:46:04 +0000329 SDValue Ret,
Arnold Schwaighofera0032722008-04-30 09:16:33 +0000330 SelectionDAG &DAG) const;
331
Evan Cheng4df1f9d2008-04-19 01:30:48 +0000332 private:
Dan Gohman8181bd12008-07-27 21:46:04 +0000333 SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
334 SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
Arnold Schwaighofera0032722008-04-30 09:16:33 +0000335
Dan Gohman8181bd12008-07-27 21:46:04 +0000336 SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
Arnold Schwaighofera0032722008-04-30 09:16:33 +0000337 int SPDiff,
Dan Gohman8181bd12008-07-27 21:46:04 +0000338 SDValue Chain,
339 SDValue &LROpOut,
340 SDValue &FPOpOut);
Arnold Schwaighofera0032722008-04-30 09:16:33 +0000341
Dan Gohman8181bd12008-07-27 21:46:04 +0000342 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG);
343 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
344 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
345 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
346 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
347 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
348 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
Bill Wendling2c394b62008-09-17 00:30:57 +0000349 SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG);
Dan Gohman8181bd12008-07-27 21:46:04 +0000350 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
Dale Johannesen8be83a72008-03-04 23:17:14 +0000351 int VarArgsFrameIndex, int VarArgsStackOffset,
352 unsigned VarArgsNumGPR, unsigned VarArgsNumFPR,
353 const PPCSubtarget &Subtarget);
Dan Gohman8181bd12008-07-27 21:46:04 +0000354 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG, int VarArgsFrameIndex,
Dale Johannesen8be83a72008-03-04 23:17:14 +0000355 int VarArgsStackOffset, unsigned VarArgsNumGPR,
356 unsigned VarArgsNumFPR, const PPCSubtarget &Subtarget);
Dan Gohman8181bd12008-07-27 21:46:04 +0000357 SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG,
Dale Johannesen8be83a72008-03-04 23:17:14 +0000358 int &VarArgsFrameIndex,
359 int &VarArgsStackOffset,
360 unsigned &VarArgsNumGPR,
361 unsigned &VarArgsNumFPR,
362 const PPCSubtarget &Subtarget);
Dan Gohman8181bd12008-07-27 21:46:04 +0000363 SDValue LowerCALL(SDValue Op, SelectionDAG &DAG,
Dan Gohman9f153572008-03-19 21:39:28 +0000364 const PPCSubtarget &Subtarget, TargetMachine &TM);
Dan Gohman8181bd12008-07-27 21:46:04 +0000365 SDValue LowerRET(SDValue Op, SelectionDAG &DAG, TargetMachine &TM);
366 SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
Dale Johannesen8be83a72008-03-04 23:17:14 +0000367 const PPCSubtarget &Subtarget);
Dan Gohman8181bd12008-07-27 21:46:04 +0000368 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
Dale Johannesen8be83a72008-03-04 23:17:14 +0000369 const PPCSubtarget &Subtarget);
Dan Gohman8181bd12008-07-27 21:46:04 +0000370 SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG);
Dan Gohman8181bd12008-07-27 21:46:04 +0000371 SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG);
372 SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
373 SDValue LowerFP_ROUND_INREG(SDValue Op, SelectionDAG &DAG);
374 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG);
375 SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG);
376 SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG);
377 SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG);
378 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG);
379 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG);
380 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
381 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
382 SDValue LowerMUL(SDValue Op, SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000383 };
384}
385
386#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H