blob: f1a8e37a0bbc31af9e07d74bdca145a0e0f57364 [file] [log] [blame]
Chris Lattner00950542001-06-06 20:29:01 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00002<html><head><title>LLVM Assembly Language Reference Manual</title></head>
Chris Lattner00950542001-06-06 20:29:01 +00003<body bgcolor=white>
4
5<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006<tr><td>&nbsp; <font size=+5 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Language Reference Manual</b></font></td>
Chris Lattner00950542001-06-06 20:29:01 +00007</tr></table>
8
9<ol>
10 <li><a href="#abstract">Abstract</a>
11 <li><a href="#introduction">Introduction</a>
12 <li><a href="#identifiers">Identifiers</a>
13 <li><a href="#typesystem">Type System</a>
14 <ol>
15 <li><a href="#t_primitive">Primitive Types</a>
16 <ol>
17 <li><a href="#t_classifications">Type Classifications</a>
18 </ol>
19 <li><a href="#t_derived">Derived Types</a>
20 <ol>
21 <li><a href="#t_array" >Array Type</a>
Chris Lattner7faa8832002-04-14 06:13:44 +000022 <li><a href="#t_function">Function Type</a>
Chris Lattner00950542001-06-06 20:29:01 +000023 <li><a href="#t_pointer">Pointer Type</a>
24 <li><a href="#t_struct" >Structure Type</a>
Chris Lattner690d99b2002-08-29 18:33:48 +000025 <!-- <li><a href="#t_packed" >Packed Type</a> -->
Chris Lattner00950542001-06-06 20:29:01 +000026 </ol>
27 </ol>
28 <li><a href="#highlevel">High Level Structure</a>
29 <ol>
30 <li><a href="#modulestructure">Module Structure</a>
Chris Lattner2b7d3202002-05-06 03:03:22 +000031 <li><a href="#globalvars">Global Variables</a>
Chris Lattner7faa8832002-04-14 06:13:44 +000032 <li><a href="#functionstructure">Function Structure</a>
Chris Lattner00950542001-06-06 20:29:01 +000033 </ol>
34 <li><a href="#instref">Instruction Reference</a>
35 <ol>
36 <li><a href="#terminators">Terminator Instructions</a>
37 <ol>
Chris Lattner7faa8832002-04-14 06:13:44 +000038 <li><a href="#i_ret" >'<tt>ret</tt>' Instruction</a>
39 <li><a href="#i_br" >'<tt>br</tt>' Instruction</a>
40 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a>
41 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a>
Chris Lattner00950542001-06-06 20:29:01 +000042 </ol>
Chris Lattner00950542001-06-06 20:29:01 +000043 <li><a href="#binaryops">Binary Operations</a>
44 <ol>
45 <li><a href="#i_add" >'<tt>add</tt>' Instruction</a>
46 <li><a href="#i_sub" >'<tt>sub</tt>' Instruction</a>
47 <li><a href="#i_mul" >'<tt>mul</tt>' Instruction</a>
48 <li><a href="#i_div" >'<tt>div</tt>' Instruction</a>
49 <li><a href="#i_rem" >'<tt>rem</tt>' Instruction</a>
50 <li><a href="#i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a>
51 </ol>
52 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
53 <ol>
54 <li><a href="#i_and">'<tt>and</tt>' Instruction</a>
55 <li><a href="#i_or" >'<tt>or</tt>' Instruction</a>
56 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a>
57 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a>
58 <li><a href="#i_shr">'<tt>shr</tt>' Instruction</a>
59 </ol>
60 <li><a href="#memoryops">Memory Access Operations</a>
61 <ol>
62 <li><a href="#i_malloc" >'<tt>malloc</tt>' Instruction</a>
63 <li><a href="#i_free" >'<tt>free</tt>' Instruction</a>
64 <li><a href="#i_alloca" >'<tt>alloca</tt>' Instruction</a>
65 <li><a href="#i_load" >'<tt>load</tt>' Instruction</a>
66 <li><a href="#i_store" >'<tt>store</tt>' Instruction</a>
Chris Lattner2b7d3202002-05-06 03:03:22 +000067 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
Chris Lattner00950542001-06-06 20:29:01 +000068 </ol>
69 <li><a href="#otherops">Other Operations</a>
70 <ol>
Chris Lattner6536cfe2002-05-06 22:08:29 +000071 <li><a href="#i_phi" >'<tt>phi</tt>' Instruction</a>
Chris Lattner33ba0d92001-07-09 00:26:23 +000072 <li><a href="#i_cast">'<tt>cast .. to</tt>' Instruction</a>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#i_call" >'<tt>call</tt>' Instruction</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +000074 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner00950542001-06-06 20:29:01 +000075 </ol>
Chris Lattner00950542001-06-06 20:29:01 +000076 </ol>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +000077 <li><a href="#intrinsics">Intrinsic Functions</a>
78 <ol>
79 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
80 <ol>
81 <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
82 <li><a href="#i_va_end" >'<tt>llvm.va_end</tt>' Intrinsic</a>
83 <li><a href="#i_va_copy" >'<tt>llvm.va_copy</tt>' Intrinsic</a>
84 </ol>
85 </ol>
Chris Lattnerd816bcf2002-08-30 21:50:21 +000086
87 <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and <A href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></b><p>
88
89
Chris Lattner00950542001-06-06 20:29:01 +000090</ol>
91
92
93<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +000094<p><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
95<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +000096<a name="abstract">Abstract
97</b></font></td></tr></table><ul>
98<!-- *********************************************************************** -->
99
100<blockquote>
Chris Lattner7bae3952002-06-25 18:03:17 +0000101 This document is a reference manual for the LLVM assembly language. LLVM is
102 an SSA based representation that provides type safety, low level operations,
103 flexibility, and the capability of representing 'all' high level languages
104 cleanly. It is the common code representation used throughout all phases of
105 the LLVM compilation strategy.
Chris Lattner00950542001-06-06 20:29:01 +0000106</blockquote>
107
108
109
110
111<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000112</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
113<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000114<a name="introduction">Introduction
115</b></font></td></tr></table><ul>
116<!-- *********************************************************************** -->
117
Chris Lattner7faa8832002-04-14 06:13:44 +0000118The LLVM code representation is designed to be used in three different forms: as
119an in-memory compiler IR, as an on-disk bytecode representation, suitable for
120fast loading by a dynamic compiler, and as a human readable assembly language
121representation. This allows LLVM to provide a powerful intermediate
122representation for efficient compiler transformations and analysis, while
123providing a natural means to debug and visualize the transformations. The three
124different forms of LLVM are all equivalent. This document describes the human
125readable representation and notation.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000126
Chris Lattner7faa8832002-04-14 06:13:44 +0000127The LLVM representation aims to be a light weight and low level while being
Chris Lattnerb7c6c2a2002-06-25 20:20:08 +0000128expressive, typed, and extensible at the same time. It aims to be a "universal
129IR" of sorts, by being at a low enough level that high level ideas may be
130cleanly mapped to it (similar to how microprocessors are "universal IR's",
131allowing many source languages to be mapped to them). By providing type
132information, LLVM can be used as the target of optimizations: for example,
133through pointer analysis, it can be proven that a C automatic variable is never
134accessed outside of the current function... allowing it to be promoted to a
135simple SSA value instead of a memory location.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000136
137<!-- _______________________________________________________________________ -->
138</ul><a name="wellformed"><h4><hr size=0>Well Formedness</h4><ul>
139
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000140It is important to note that this document describes 'well formed' LLVM assembly
Chris Lattner7faa8832002-04-14 06:13:44 +0000141language. There is a difference between what the parser accepts and what is
142considered 'well formed'. For example, the following instruction is
143syntactically okay, but not well formed:<p>
Chris Lattner00950542001-06-06 20:29:01 +0000144
145<pre>
146 %x = <a href="#i_add">add</a> int 1, %x
147</pre>
148
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000149...because the definition of <tt>%x</tt> does not dominate all of its uses. The
150LLVM infrastructure provides a verification pass that may be used to verify that
151an LLVM module is well formed. This pass is automatically run by the parser
152after parsing input assembly, and by the optimizer before it outputs bytecode.
153The violations pointed out by the verifier pass indicate bugs in transformation
Chris Lattner2b7d3202002-05-06 03:03:22 +0000154passes or input to the parser.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000155
Chris Lattner7bae3952002-06-25 18:03:17 +0000156<!-- Describe the typesetting conventions here. -->
Chris Lattner00950542001-06-06 20:29:01 +0000157
158
159<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000160</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
161<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000162<a name="identifiers">Identifiers
163</b></font></td></tr></table><ul>
164<!-- *********************************************************************** -->
165
166LLVM uses three different forms of identifiers, for different purposes:<p>
167
168<ol>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000169<li>Numeric constants are represented as you would expect: 12, -3 123.421, etc. Floating point constants have an optional hexidecimal notation.
Chris Lattner00950542001-06-06 20:29:01 +0000170<li>Named values are represented as a string of characters with a '%' prefix. For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
171<li>Unnamed values are represented as an unsigned numeric value with a '%' prefix. For example, %12, %2, %44.
172</ol><p>
173
Chris Lattner7faa8832002-04-14 06:13:44 +0000174LLVM requires the values start with a '%' sign for two reasons: Compilers don't
175need to worry about name clashes with reserved words, and the set of reserved
176words may be expanded in the future without penalty. Additionally, unnamed
177identifiers allow a compiler to quickly come up with a temporary variable
178without having to avoid symbol table conflicts.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000179
Chris Lattner7faa8832002-04-14 06:13:44 +0000180Reserved words in LLVM are very similar to reserved words in other languages.
181There are keywords for different opcodes ('<tt><a href="#i_add">add</a></tt>',
182'<tt><a href="#i_cast">cast</a></tt>', '<tt><a href="#i_ret">ret</a></tt>',
183etc...), for primitive type names ('<tt><a href="#t_void">void</a></tt>',
184'<tt><a href="#t_uint">uint</a></tt>', etc...), and others. These reserved
185words cannot conflict with variable names, because none of them start with a '%'
186character.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000187
Chris Lattner7faa8832002-04-14 06:13:44 +0000188Here is an example of LLVM code to multiply the integer variable '<tt>%X</tt>'
189by 8:<p>
Chris Lattner00950542001-06-06 20:29:01 +0000190
191The easy way:
192<pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000193 %result = <a href="#i_mul">mul</a> uint %X, 8
Chris Lattner00950542001-06-06 20:29:01 +0000194</pre>
195
196After strength reduction:
197<pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000198 %result = <a href="#i_shl">shl</a> uint %X, ubyte 3
Chris Lattner00950542001-06-06 20:29:01 +0000199</pre>
200
201And the hard way:
202<pre>
Chris Lattner7bae3952002-06-25 18:03:17 +0000203 <a href="#i_add">add</a> uint %X, %X <i>; yields {uint}:%0</i>
204 <a href="#i_add">add</a> uint %0, %0 <i>; yields {uint}:%1</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000205 %result = <a href="#i_add">add</a> uint %1, %1
Chris Lattner00950542001-06-06 20:29:01 +0000206</pre>
207
208This last way of multiplying <tt>%X</tt> by 8 illustrates several important lexical features of LLVM:<p>
209
210<ol>
211<li>Comments are delimited with a '<tt>;</tt>' and go until the end of line.
Chris Lattner7faa8832002-04-14 06:13:44 +0000212<li>Unnamed temporaries are created when the result of a computation is not
213 assigned to a named value.
Chris Lattner00950542001-06-06 20:29:01 +0000214<li>Unnamed temporaries are numbered sequentially
215</ol><p>
216
Chris Lattner7faa8832002-04-14 06:13:44 +0000217...and it also show a convention that we follow in this document. When
218demonstrating instructions, we will follow an instruction with a comment that
219defines the type and name of value produced. Comments are shown in italic
220text.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000221
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000222The one non-intuitive notation for constants is the optional hexidecimal form of
Chris Lattner2b7d3202002-05-06 03:03:22 +0000223floating point constants. For example, the form '<tt>double
2240x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
2254.5e+15</tt>' which is also supported by the parser. The only time hexadecimal
226floating point constants are useful (and the only time that they are generated
227by the disassembler) is when an FP constant has to be emitted that is not
228representable as a decimal floating point number exactly. For example, NaN's,
229infinities, and other special cases are represented in their IEEE hexadecimal
230format so that assembly and disassembly do not cause any bits to change in the
231constants.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000232
233
234<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000235</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
236<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000237<a name="typesystem">Type System
238</b></font></td></tr></table><ul>
239<!-- *********************************************************************** -->
240
Chris Lattner2b7d3202002-05-06 03:03:22 +0000241The LLVM type system is one of the most important features of the intermediate
Chris Lattnerb7c6c2a2002-06-25 20:20:08 +0000242representation. Being typed enables a number of optimizations to be performed
243on the IR directly, without having to do extra analyses on the side before the
244transformation. A strong type system makes it easier to read the generated code
245and enables novel analyses and transformations that are not feasible to perform
246on normal three address code representations.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000247
Chris Lattner7bae3952002-06-25 18:03:17 +0000248<!-- The written form for the type system was heavily influenced by the
249syntactic problems with types in the C language<sup><a
250href="#rw_stroustrup">1</a></sup>.<p> -->
Chris Lattner00950542001-06-06 20:29:01 +0000251
252
253
254<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000255</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
256<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000257<a name="t_primitive">Primitive Types
258</b></font></td></tr></table><ul>
259
Chris Lattner7faa8832002-04-14 06:13:44 +0000260The primitive types are the fundemental building blocks of the LLVM system. The
261current set of primitive types are as follows:<p>
Chris Lattner00950542001-06-06 20:29:01 +0000262
263<table border=0 align=center><tr><td>
264
265<table border=1 cellspacing=0 cellpadding=4 align=center>
266<tr><td><tt>void</tt></td> <td>No value</td></tr>
267<tr><td><tt>ubyte</tt></td> <td>Unsigned 8 bit value</td></tr>
268<tr><td><tt>ushort</tt></td><td>Unsigned 16 bit value</td></tr>
269<tr><td><tt>uint</tt></td> <td>Unsigned 32 bit value</td></tr>
270<tr><td><tt>ulong</tt></td> <td>Unsigned 64 bit value</td></tr>
271<tr><td><tt>float</tt></td> <td>32 bit floating point value</td></tr>
272<tr><td><tt>label</tt></td> <td>Branch destination</td></tr>
273</table>
274
Chris Lattner7faa8832002-04-14 06:13:44 +0000275</td><td valign=top>
Chris Lattner00950542001-06-06 20:29:01 +0000276
277<table border=1 cellspacing=0 cellpadding=4 align=center>
278<tr><td><tt>bool</tt></td> <td>True or False value</td></tr>
279<tr><td><tt>sbyte</tt></td> <td>Signed 8 bit value</td></tr>
280<tr><td><tt>short</tt></td> <td>Signed 16 bit value</td></tr>
281<tr><td><tt>int</tt></td> <td>Signed 32 bit value</td></tr>
282<tr><td><tt>long</tt></td> <td>Signed 64 bit value</td></tr>
283<tr><td><tt>double</tt></td><td>64 bit floating point value</td></tr>
Chris Lattner00950542001-06-06 20:29:01 +0000284</table>
285
286</td></tr></table><p>
287
288
289
290<!-- _______________________________________________________________________ -->
291</ul><a name="t_classifications"><h4><hr size=0>Type Classifications</h4><ul>
292
293These different primitive types fall into a few useful classifications:<p>
294
295<table border=1 cellspacing=0 cellpadding=4 align=center>
296<tr><td><a name="t_signed">signed</td> <td><tt>sbyte, short, int, long, float, double</tt></td></tr>
297<tr><td><a name="t_unsigned">unsigned</td><td><tt>ubyte, ushort, uint, ulong</tt></td></tr>
Chris Lattnereaee9e12002-09-03 00:52:52 +0000298<tr><td><a name="t_integral">integer</td><td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td></tr>
299<tr><td><a name="t_integral">integral</td><td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td></tr>
Chris Lattner00950542001-06-06 20:29:01 +0000300<tr><td><a name="t_floating">floating point</td><td><tt>float, double</tt></td></tr>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000301<tr><td><a name="t_firstclass">first class</td><td><tt>bool, ubyte, sbyte, ushort, short,<br> uint, int, ulong, long, float, double, <a href="#t_pointer">pointer</a></tt></td></tr>
Chris Lattner00950542001-06-06 20:29:01 +0000302</table><p>
303
304
305
306
307
308<!-- ======================================================================= -->
309</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
310<a name="t_derived">Derived Types
311</b></font></td></tr></table><ul>
312
Chris Lattner7faa8832002-04-14 06:13:44 +0000313The real power in LLVM comes from the derived types in the system. This is what
314allows a programmer to represent arrays, functions, pointers, and other useful
315types. Note that these derived types may be recursive: For example, it is
316possible to have a two dimensional array.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000317
318
319
320<!-- _______________________________________________________________________ -->
321</ul><a name="t_array"><h4><hr size=0>Array Type</h4><ul>
322
323<h5>Overview:</h5>
324
Chris Lattner7faa8832002-04-14 06:13:44 +0000325The array type is a very simple derived type that arranges elements sequentially
326in memory. The array type requires a size (number of elements) and an
327underlying data type.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000328
Chris Lattner7faa8832002-04-14 06:13:44 +0000329<h5>Syntax:</h5>
330<pre>
331 [&lt;# elements&gt; x &lt;elementtype&gt;]
332</pre>
Chris Lattner00950542001-06-06 20:29:01 +0000333
Chris Lattner2b7d3202002-05-06 03:03:22 +0000334The number of elements is a constant integer value, elementtype may be any type
Chris Lattner7faa8832002-04-14 06:13:44 +0000335with a size.<p>
336
337<h5>Examples:</h5>
338<ul>
Chris Lattner00950542001-06-06 20:29:01 +0000339 <tt>[40 x int ]</tt>: Array of 40 integer values.<br>
340 <tt>[41 x int ]</tt>: Array of 41 integer values.<br>
341 <tt>[40 x uint]</tt>: Array of 40 unsigned integer values.<p>
Chris Lattner7faa8832002-04-14 06:13:44 +0000342</ul>
Chris Lattner00950542001-06-06 20:29:01 +0000343
344Here are some examples of multidimensional arrays:<p>
345<ul>
346<table border=0 cellpadding=0 cellspacing=0>
347<tr><td><tt>[3 x [4 x int]]</tt></td><td>: 3x4 array integer values.</td></tr>
Chris Lattner7faa8832002-04-14 06:13:44 +0000348<tr><td><tt>[12 x [10 x float]]</tt></td><td>: 2x10 array of single precision floating point values.</td></tr>
Chris Lattner00950542001-06-06 20:29:01 +0000349<tr><td><tt>[2 x [3 x [4 x uint]]]</tt></td><td>: 2x3x4 array of unsigned integer values.</td></tr>
350</table>
351</ul>
352
353
Chris Lattner00950542001-06-06 20:29:01 +0000354<!-- _______________________________________________________________________ -->
Chris Lattner7faa8832002-04-14 06:13:44 +0000355</ul><a name="t_function"><h4><hr size=0>Function Type</h4><ul>
Chris Lattner00950542001-06-06 20:29:01 +0000356
357<h5>Overview:</h5>
358
Chris Lattner7faa8832002-04-14 06:13:44 +0000359The function type can be thought of as a function signature. It consists of a
360return type and a list of formal parameter types. Function types are usually
361used when to build virtual function tables (which are structures of pointers to
362functions), for indirect function calls, and when defining a function.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000363
364<h5>Syntax:</h5>
365<pre>
366 &lt;returntype&gt; (&lt;parameter list&gt;)
367</pre>
368
Chris Lattner7faa8832002-04-14 06:13:44 +0000369Where '<tt>&lt;parameter list&gt;</tt>' is a comma seperated list of type
370specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
371which indicates that the function takes a variable number of arguments. Note
372that there currently is no way to define a function in LLVM that takes a
373variable number of arguments, but it is possible to <b>call</b> a function that
374is vararg.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000375
376<h5>Examples:</h5>
377<ul>
378<table border=0 cellpadding=0 cellspacing=0>
Chris Lattner7faa8832002-04-14 06:13:44 +0000379
380<tr><td><tt>int (int)</tt></td><td>: function taking an <tt>int</tt>, returning
381an <tt>int</tt></td></tr>
382
383<tr><td><tt>float (int, int *) *</tt></td><td>: <a href="#t_pointer">Pointer</a>
384to a function that takes an <tt>int</tt> and a <a href="#t_pointer">pointer</a>
385to <tt>int</tt>, returning <tt>float</tt>.</td></tr>
386
387<tr><td><tt>int (sbyte *, ...)</tt></td><td>: A vararg function that takes at
388least one <a href="#t_pointer">pointer</a> to <tt>sbyte</tt> (signed char in C),
389which returns an integer. This is the signature for <tt>printf</tt> in
390LLVM.</td></tr>
391
Chris Lattner00950542001-06-06 20:29:01 +0000392</table>
393</ul>
394
395
396
397<!-- _______________________________________________________________________ -->
398</ul><a name="t_struct"><h4><hr size=0>Structure Type</h4><ul>
399
400<h5>Overview:</h5>
401
Chris Lattner2b7d3202002-05-06 03:03:22 +0000402The structure type is used to represent a collection of data members together in
Chris Lattner7bae3952002-06-25 18:03:17 +0000403memory. The packing of the field types is defined to match the ABI of the
404underlying processor. The elements of a structure may be any type that has a
405size.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000406
Chris Lattner2b7d3202002-05-06 03:03:22 +0000407Structures are accessed using '<tt><a href="#i_load">load</a></tt> and '<tt><a
408href="#i_store">store</a></tt>' by getting a pointer to a field with the '<tt><a
409href="#i_getelementptr">getelementptr</a></tt>' instruction.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000410
411<h5>Syntax:</h5>
412<pre>
413 { &lt;type list&gt; }
414</pre>
415
416
417<h5>Examples:</h5>
418<table border=0 cellpadding=0 cellspacing=0>
Chris Lattner7faa8832002-04-14 06:13:44 +0000419
420<tr><td><tt>{ int, int, int }</tt></td><td>: a triple of three <tt>int</tt>
421values</td></tr>
422
Chris Lattner7bae3952002-06-25 18:03:17 +0000423<tr><td><tt>{ float, int (int) * }</tt></td><td>: A pair, where the first
Chris Lattner7faa8832002-04-14 06:13:44 +0000424element is a <tt>float</tt> and the second element is a <a
425href="#t_pointer">pointer</a> to a <a href="t_function">function</a> that takes
426an <tt>int</tt>, returning an <tt>int</tt>.</td></tr>
427
Chris Lattner00950542001-06-06 20:29:01 +0000428</table>
429
430
431<!-- _______________________________________________________________________ -->
432</ul><a name="t_pointer"><h4><hr size=0>Pointer Type</h4><ul>
433
Chris Lattner7faa8832002-04-14 06:13:44 +0000434<h5>Overview:</h5>
435
436As in many languages, the pointer type represents a pointer or reference to
437another object, which must live in memory.<p>
438
439<h5>Syntax:</h5>
440<pre>
441 &lt;type&gt; *
442</pre>
443
444<h5>Examples:</h5>
445
446<table border=0 cellpadding=0 cellspacing=0>
447
448<tr><td><tt>[4x int]*</tt></td><td>: <a href="#t_pointer">pointer</a> to <a
449href="#t_array">array</a> of four <tt>int</tt> values</td></tr>
450
451<tr><td><tt>int (int *) *</tt></td><td>: A <a href="#t_pointer">pointer</a> to a
452<a href="t_function">function</a> that takes an <tt>int</tt>, returning an
453<tt>int</tt>.</td></tr>
454
455</table>
456<p>
457
Chris Lattner00950542001-06-06 20:29:01 +0000458
459<!-- _______________________________________________________________________ -->
Chris Lattner7faa8832002-04-14 06:13:44 +0000460<!--
Chris Lattner00950542001-06-06 20:29:01 +0000461</ul><a name="t_packed"><h4><hr size=0>Packed Type</h4><ul>
462
463Mention/decide that packed types work with saturation or not. Maybe have a packed+saturated type in addition to just a packed type.<p>
464
465Packed types should be 'nonsaturated' because standard data types are not saturated. Maybe have a saturated packed type?<p>
466
Chris Lattner7faa8832002-04-14 06:13:44 +0000467-->
468
Chris Lattner00950542001-06-06 20:29:01 +0000469
470<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000471</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
472<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000473<a name="highlevel">High Level Structure
474</b></font></td></tr></table><ul>
475<!-- *********************************************************************** -->
476
477
478<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000479</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
480<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000481<a name="modulestructure">Module Structure
482</b></font></td></tr></table><ul>
483
Chris Lattner2b7d3202002-05-06 03:03:22 +0000484LLVM programs are composed of "Module"s, each of which is a translation unit of
485the input programs. Each module consists of functions, global variables, and
486symbol table entries. Modules may be combined together with the LLVM linker,
487which merges function (and global variable) definitions, resolves forward
488declarations, and merges symbol table entries. Here is an example of the "hello world" module:<p>
Chris Lattner00950542001-06-06 20:29:01 +0000489
Chris Lattner2b7d3202002-05-06 03:03:22 +0000490<pre>
491<i>; Declare the string constant as a global constant...</i>
492<a href="#identifiers">%.LC0</a> = <a href="#linkage_decl">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x sbyte]</a> c"hello world\0A\00" <i>; [13 x sbyte]*</i>
493
494<i>; Forward declaration of puts</i>
495<a href="#functionstructure">declare</a> int "puts"(sbyte*) <i>; int(sbyte*)* </i>
496
497<i>; Definition of main function</i>
498int "main"() { <i>; int()* </i>
499 <i>; Convert [13x sbyte]* to sbyte *...</i>
Chris Lattner3dfa10b2002-12-13 06:01:21 +0000500 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x sbyte]* %.LC0, long 0, long 0 <i>; sbyte*</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000501
502 <i>; Call puts function to write out the string to stdout...</i>
503 <a href="#i_call">call</a> int %puts(sbyte* %cast210) <i>; int</i>
504 <a href="#i_ret">ret</a> int 0
505}
506</pre>
507
508This example is made up of a <a href="#globalvars">global variable</a> named
509"<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and a
510<a href="#functionstructure">function definition</a> for "<tt>main</tt>".<p>
511
512<a name="linkage_decl">
513In general, a module is made up of a list of global values, where both functions
514and global variables are global values. Global values are represented by a
515pointer to a memory location (in this case, a pointer to an array of char, and a
516pointer to a function), and can be either "internal" or externally accessible
Chris Lattner7bae3952002-06-25 18:03:17 +0000517(which corresponds to the static keyword in C, when used at global scope).<p>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000518
519For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
520another module defined a "<tt>.LC0</tt>" variable and was linked with this one,
521one of the two would be renamed, preventing a collision. Since "<tt>main</tt>"
Chris Lattner7bae3952002-06-25 18:03:17 +0000522and "<tt>puts</tt>" are external (i.e., lacking "<tt>internal</tt>"
523declarations), they are accessible outside of the current module. It is illegal
524for a function declaration to be "<tt>internal</tt>".<p>
Chris Lattner00950542001-06-06 20:29:01 +0000525
526
527<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000528</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
529<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
530<a name="globalvars">Global Variables
531</b></font></td></tr></table><ul>
532
533Global variables define regions of memory allocated at compilation time instead
Chris Lattner7bae3952002-06-25 18:03:17 +0000534of run-time. Global variables may optionally be initialized. A variable may
535be defined as a global "constant", which indicates that the contents of the
Chris Lattner2b7d3202002-05-06 03:03:22 +0000536variable will never be modified (opening options for optimization). Constants
537must always have an initial value.<p>
538
Chris Lattner7bae3952002-06-25 18:03:17 +0000539As SSA values, global variables define pointer values that are in scope
540(i.e. they dominate) for all basic blocks in the program. Global variables
541always define a pointer to their "content" type because they describe a region
542of memory, and all memory objects in LLVM are accessed through pointers.<p>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000543
544
545
546<!-- ======================================================================= -->
547</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
548<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner7faa8832002-04-14 06:13:44 +0000549<a name="functionstructure">Function Structure
Chris Lattner00950542001-06-06 20:29:01 +0000550</b></font></td></tr></table><ul>
551
Chris Lattner2b7d3202002-05-06 03:03:22 +0000552LLVM functions definitions are composed of a (possibly empty) argument list, an
553opening curly brace, a list of basic blocks, and a closing curly brace. LLVM
554function declarations are defined with the "<tt>declare</tt>" keyword, a
555function name and a function signature.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000556
Chris Lattner2b7d3202002-05-06 03:03:22 +0000557A function definition contains a list of basic blocks, forming the CFG for the
558function. Each basic block may optionally start with a label (giving the basic
559block a symbol table entry), contains a list of instructions, and ends with a <a
560href="#terminators">terminator</a> instruction (such as a branch or function
561return).<p>
562
563The first basic block in program is special in two ways: it is immediately
564executed on entrance to the function, and it is not allowed to have predecessor
565basic blocks (i.e. there can not be any branches to the entry block of a
566function).<p>
Chris Lattner00950542001-06-06 20:29:01 +0000567
568
569<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000570</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
571<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000572<a name="instref">Instruction Reference
573</b></font></td></tr></table><ul>
574<!-- *********************************************************************** -->
575
Chris Lattner2b7d3202002-05-06 03:03:22 +0000576The LLVM instruction set consists of several different classifications of
Chris Lattnere489aa52002-08-14 17:55:59 +0000577instructions: <a href="#terminators">terminator instructions</a>, <a
578href="#binaryops">binary instructions</a>, <a href="#memoryops">memory
579instructions</a>, and <a href="#otherops">other instructions</a>.<p>
Chris Lattner2b7d3202002-05-06 03:03:22 +0000580
Chris Lattner00950542001-06-06 20:29:01 +0000581
582<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +0000583</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
584<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +0000585<a name="terminators">Terminator Instructions
586</b></font></td></tr></table><ul>
587
Chris Lattner2b7d3202002-05-06 03:03:22 +0000588As mentioned <a href="#functionstructure">previously</a>, every basic block in a
Chris Lattner7bae3952002-06-25 18:03:17 +0000589program ends with a "Terminator" instruction, which indicates which block should
590be executed after the current block is finished. These terminator instructions
591typically yield a '<tt>void</tt>' value: they produce control flow, not values
592(the one exception being the '<a href="#i_invoke"><tt>invoke</tt></a>'
593instruction).<p>
Chris Lattner00950542001-06-06 20:29:01 +0000594
Chris Lattner7faa8832002-04-14 06:13:44 +0000595There are four different terminator instructions: the '<a
596href="#i_ret"><tt>ret</tt></a>' instruction, the '<a
597href="#i_br"><tt>br</tt></a>' instruction, the '<a
598href="#i_switch"><tt>switch</tt></a>' instruction, and the '<a
599href="#i_invoke"><tt>invoke</tt></a>' instruction.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000600
601
602<!-- _______________________________________________________________________ -->
603</ul><a name="i_ret"><h4><hr size=0>'<tt>ret</tt>' Instruction</h4><ul>
604
605<h5>Syntax:</h5>
606<pre>
Chris Lattner7faa8832002-04-14 06:13:44 +0000607 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
608 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +0000609</pre>
610
611<h5>Overview:</h5>
Chris Lattner00950542001-06-06 20:29:01 +0000612
Chris Lattner2b7d3202002-05-06 03:03:22 +0000613The '<tt>ret</tt>' instruction is used to return control flow (and a value) from
614a function, back to the caller.<p>
Chris Lattner7faa8832002-04-14 06:13:44 +0000615
616There are two forms of the '<tt>ret</tt>' instructruction: one that returns a
617value and then causes control flow, and one that just causes control flow to
618occur.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000619
620<h5>Arguments:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000621
622The '<tt>ret</tt>' instruction may return any '<a href="#t_firstclass">first
623class</a>' type. Notice that a function is not <a href="#wellformed">well
624formed</a> if there exists a '<tt>ret</tt>' instruction inside of the function
625that returns a value that does not match the return type of the function.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000626
627<h5>Semantics:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000628
629When the '<tt>ret</tt>' instruction is executed, control flow returns back to
630the calling function's context. If the instruction returns a value, that value
Misha Brukmana3bbcb52002-10-29 23:06:16 +0000631shall be propagated into the calling function's data space.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000632
633<h5>Example:</h5>
634<pre>
635 ret int 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +0000636 ret void <i>; Return from a void function</i>
Chris Lattner00950542001-06-06 20:29:01 +0000637</pre>
638
639
640<!-- _______________________________________________________________________ -->
641</ul><a name="i_br"><h4><hr size=0>'<tt>br</tt>' Instruction</h4><ul>
642
643<h5>Syntax:</h5>
644<pre>
645 br bool &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
646 br label &lt;dest&gt; <i>; Unconditional branch</i>
647</pre>
648
649<h5>Overview:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000650
651The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
652different basic block in the current function. There are two forms of this
653instruction, corresponding to a conditional branch and an unconditional
654branch.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000655
656<h5>Arguments:</h5>
657
Chris Lattner7faa8832002-04-14 06:13:44 +0000658The conditional branch form of the '<tt>br</tt>' instruction takes a single
659'<tt>bool</tt>' value and two '<tt>label</tt>' values. The unconditional form
660of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
661target.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000662
663<h5>Semantics:</h5>
664
Chris Lattner7faa8832002-04-14 06:13:44 +0000665Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>'
666argument is evaluated. If the value is <tt>true</tt>, control flows to the
667'<tt>iftrue</tt>' '<tt>label</tt>' argument. If "cond" is <tt>false</tt>,
668control flows to the '<tt>iffalse</tt>' '<tt>label</tt>' argument.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000669
670<h5>Example:</h5>
671<pre>
672Test:
673 %cond = <a href="#i_setcc">seteq</a> int %a, %b
674 br bool %cond, label %IfEqual, label %IfUnequal
675IfEqual:
Chris Lattner2b7d3202002-05-06 03:03:22 +0000676 <a href="#i_ret">ret</a> int 1
Chris Lattner00950542001-06-06 20:29:01 +0000677IfUnequal:
Chris Lattner2b7d3202002-05-06 03:03:22 +0000678 <a href="#i_ret">ret</a> int 0
Chris Lattner00950542001-06-06 20:29:01 +0000679</pre>
680
681
682<!-- _______________________________________________________________________ -->
683</ul><a name="i_switch"><h4><hr size=0>'<tt>switch</tt>' Instruction</h4><ul>
684
685<h5>Syntax:</h5>
686<pre>
687 <i>; Definitions for lookup indirect branch</i>
688 %switchtype = type [&lt;anysize&gt; x { uint, label }]
689
690 <i>; Lookup indirect branch</i>
691 switch uint &lt;value&gt;, label &lt;defaultdest&gt;, %switchtype &lt;switchtable&gt;
Chris Lattnera0ff4aa2002-11-05 00:21:03 +0000692<!--
Chris Lattner00950542001-06-06 20:29:01 +0000693 <i>; Indexed indirect branch</i>
694 switch uint &lt;idxvalue&gt;, label &lt;defaultdest&gt;, [&lt;anysize&gt; x label] &lt;desttable&gt;
Chris Lattnera0ff4aa2002-11-05 00:21:03 +0000695-->
Chris Lattner00950542001-06-06 20:29:01 +0000696</pre>
697
698<h5>Overview:</h5>
Chris Lattner00950542001-06-06 20:29:01 +0000699
Chris Lattnera0ff4aa2002-11-05 00:21:03 +0000700<b>NOTE:</b> The switch instruction may go away in the future. It is not very
701well supported in LLVM anyway, so don't go to great lengths to support it. Talk
702to <a href="mailto:sabre@nondot.org">Chris</a> for more info if this concerns
703you.<p>
704
Chris Lattner7faa8832002-04-14 06:13:44 +0000705The '<tt>switch</tt>' instruction is used to transfer control flow to one of
706several different places. It is a generalization of the '<tt>br</tt>'
707instruction, allowing a branch to occur to one of many possible destinations.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000708
Chris Lattner7faa8832002-04-14 06:13:44 +0000709The '<tt>switch</tt>' statement supports two different styles of indirect
710branching: lookup branching and indexed branching. Lookup branching is
711generally useful if the values to switch on are spread far appart, where index
712branching is useful if the values to switch on are generally dense.<p>
713
714The two different forms of the '<tt>switch</tt>' statement are simple hints to
Chris Lattner2b7d3202002-05-06 03:03:22 +0000715the underlying implementation. For example, the compiler may choose to
716implement a small indirect branch table as a series of predicated comparisons:
717if it is faster for the target architecture.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000718
719<h5>Arguments:</h5>
Chris Lattner00950542001-06-06 20:29:01 +0000720
Chris Lattner7faa8832002-04-14 06:13:44 +0000721The lookup form of the '<tt>switch</tt>' instruction uses three parameters: a
722'<tt>uint</tt>' comparison value '<tt>value</tt>', a default '<tt>label</tt>'
723destination, and an array of pairs of comparison value constants and
724'<tt>label</tt>'s. The sized array must be a constant value.<p>
725
726The indexed form of the '<tt>switch</tt>' instruction uses three parameters: an
727'<tt>uint</tt>' index value, a default '<tt>label</tt>' and a sized array of
728'<tt>label</tt>'s. The '<tt>dests</tt>' array must be a constant array.
Chris Lattner00950542001-06-06 20:29:01 +0000729
730<h5>Semantics:</h5>
731
Chris Lattner7faa8832002-04-14 06:13:44 +0000732The lookup style switch statement specifies a table of values and destinations.
733When the '<tt>switch</tt>' instruction is executed, this table is searched for
734the given value. If the value is found, the corresponding destination is
735branched to. <p>
Chris Lattner00950542001-06-06 20:29:01 +0000736
Chris Lattner7faa8832002-04-14 06:13:44 +0000737The index branch form simply looks up a label element directly in a table and
738branches to it.<p>
739
740In either case, the compiler knows the static size of the array, because it is
741provided as part of the constant values type.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000742
743<h5>Example:</h5>
744<pre>
745 <i>; Emulate a conditional br instruction</i>
746 %Val = <a href="#i_cast">cast</a> bool %value to uint
747 switch uint %Val, label %truedest, [1 x label] [label %falsedest ]
748
749 <i>; Emulate an unconditional br instruction</i>
750 switch uint 0, label %dest, [ 0 x label] [ ]
751
Chris Lattner2b7d3202002-05-06 03:03:22 +0000752 <i>; Implement a jump table:</i>
Chris Lattner00950542001-06-06 20:29:01 +0000753 switch uint %val, label %otherwise, [3 x label] [ label %onzero,
754 label %onone,
755 label %ontwo ]
756
757</pre>
758
759
760
761<!-- _______________________________________________________________________ -->
Chris Lattner7faa8832002-04-14 06:13:44 +0000762</ul><a name="i_invoke"><h4><hr size=0>'<tt>invoke</tt>' Instruction</h4><ul>
Chris Lattner00950542001-06-06 20:29:01 +0000763
764<h5>Syntax:</h5>
765<pre>
Chris Lattner7faa8832002-04-14 06:13:44 +0000766 &lt;result&gt; = invoke &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
767 to label &lt;normal label&gt; except label &lt;exception label&gt;
Chris Lattner00950542001-06-06 20:29:01 +0000768</pre>
769
Chris Lattner6536cfe2002-05-06 22:08:29 +0000770<h5>Overview:</h5>
771
772The '<tt>invoke</tt>' instruction is used to cause control flow to transfer to a
773specified function, with the possibility of control flow transfer to either the
774'<tt>normal label</tt>' label or the '<tt>exception label</tt>'. The '<tt><a
775href="#i_call">call</a></tt>' instruction is closely related, but guarantees
776that control flow either never returns from the called function, or that it
Chris Lattner7bae3952002-06-25 18:03:17 +0000777returns to the instruction following the '<tt><a href="#i_call">call</a></tt>'
Chris Lattner6536cfe2002-05-06 22:08:29 +0000778instruction.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000779
780<h5>Arguments:</h5>
781
782This instruction requires several arguments:<p>
783<ol>
Chris Lattner7faa8832002-04-14 06:13:44 +0000784
785<li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Chris Lattner2b7d3202002-05-06 03:03:22 +0000786function value being invoked. In most cases, this is a direct function
Misha Brukmane6fe6712002-09-18 02:35:14 +0000787invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
Chris Lattner7faa8832002-04-14 06:13:44 +0000788an arbitrary pointer to function value.<p>
789
790<li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
791function to be invoked.
792
793<li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner6536cfe2002-05-06 22:08:29 +0000794signature argument types. If the function signature indicates the function
795accepts a variable number of arguments, the extra arguments can be specified.
Chris Lattner7faa8832002-04-14 06:13:44 +0000796
797<li>'<tt>normal label</tt>': the label reached when the called function executes
798a '<tt><a href="#i_ret">ret</a></tt>' instruction.
799
800<li>'<tt>exception label</tt>': the label reached when an exception is thrown.
Chris Lattner00950542001-06-06 20:29:01 +0000801</ol>
802
803<h5>Semantics:</h5>
804
Chris Lattner2b7d3202002-05-06 03:03:22 +0000805This instruction is designed to operate as a standard '<tt><a
806href="#i_call">call</a></tt>' instruction in most regards. The primary
807difference is that it associates a label with the function invocation that may
808be accessed via the runtime library provided by the execution environment. This
809instruction is used in languages with destructors to ensure that proper cleanup
810is performed in the case of either a <tt>longjmp</tt> or a thrown exception.
811Additionally, this is important for implementation of '<tt>catch</tt>' clauses
812in high-level languages that support them.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000813
Chris Lattner7bae3952002-06-25 18:03:17 +0000814<!-- For a more comprehensive explanation of how this instruction is used, look in the llvm/docs/2001-05-18-ExceptionHandling.txt document.<p> -->
Chris Lattner00950542001-06-06 20:29:01 +0000815
816<h5>Example:</h5>
817<pre>
Chris Lattner7faa8832002-04-14 06:13:44 +0000818 %retval = invoke int %Test(int 15)
819 to label %Continue except label %TestCleanup <i>; {int}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +0000820</pre>
821
822
823
824<!-- ======================================================================= -->
Chris Lattner00950542001-06-06 20:29:01 +0000825</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
826<a name="binaryops">Binary Operations
827</b></font></td></tr></table><ul>
828
Chris Lattner7faa8832002-04-14 06:13:44 +0000829Binary operators are used to do most of the computation in a program. They
830require two operands, execute an operation on them, and produce a single value.
831The result value of a binary operator is not neccesarily the same type as its
832operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000833
834There are several different binary operators:<p>
835
836
837<!-- _______________________________________________________________________ -->
838</ul><a name="i_add"><h4><hr size=0>'<tt>add</tt>' Instruction</h4><ul>
839
840<h5>Syntax:</h5>
841<pre>
842 &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
843</pre>
844
845<h5>Overview:</h5>
846The '<tt>add</tt>' instruction returns the sum of its two operands.<p>
847
848<h5>Arguments:</h5>
Chris Lattnereaee9e12002-09-03 00:52:52 +0000849The two arguments to the '<tt>add</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values. Both arguments must have identical types.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000850
851<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +0000852
Chris Lattnereaee9e12002-09-03 00:52:52 +0000853The value produced is the integer or floating point sum of the two operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000854
855<h5>Example:</h5>
856<pre>
857 &lt;result&gt; = add int 4, %var <i>; yields {int}:result = 4 + %var</i>
858</pre>
859
860
861<!-- _______________________________________________________________________ -->
862</ul><a name="i_sub"><h4><hr size=0>'<tt>sub</tt>' Instruction</h4><ul>
863
864<h5>Syntax:</h5>
865<pre>
866 &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
867</pre>
868
869<h5>Overview:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000870
Chris Lattner00950542001-06-06 20:29:01 +0000871The '<tt>sub</tt>' instruction returns the difference of its two operands.<p>
872
Chris Lattner7faa8832002-04-14 06:13:44 +0000873Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
874instruction present in most other intermediate representations.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000875
876<h5>Arguments:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000877
878The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattnereaee9e12002-09-03 00:52:52 +0000879href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattner7faa8832002-04-14 06:13:44 +0000880values. Both arguments must have identical types.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000881
882<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +0000883
Chris Lattnereaee9e12002-09-03 00:52:52 +0000884The value produced is the integer or floating point difference of the two
Chris Lattner7bae3952002-06-25 18:03:17 +0000885operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000886
887<h5>Example:</h5>
888<pre>
889 &lt;result&gt; = sub int 4, %var <i>; yields {int}:result = 4 - %var</i>
890 &lt;result&gt; = sub int 0, %val <i>; yields {int}:result = -%var</i>
891</pre>
892
893<!-- _______________________________________________________________________ -->
894</ul><a name="i_mul"><h4><hr size=0>'<tt>mul</tt>' Instruction</h4><ul>
895
896<h5>Syntax:</h5>
897<pre>
898 &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
899</pre>
900
901<h5>Overview:</h5>
902The '<tt>mul</tt>' instruction returns the product of its two operands.<p>
903
904<h5>Arguments:</h5>
Chris Lattnereaee9e12002-09-03 00:52:52 +0000905The two arguments to the '<tt>mul</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values. Both arguments must have identical types.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000906
907<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +0000908
Chris Lattnereaee9e12002-09-03 00:52:52 +0000909The value produced is the integer or floating point product of the two
Chris Lattner7bae3952002-06-25 18:03:17 +0000910operands.<p>
Chris Lattner7faa8832002-04-14 06:13:44 +0000911
912There is no signed vs unsigned multiplication. The appropriate action is taken
913based on the type of the operand. <p>
Chris Lattner00950542001-06-06 20:29:01 +0000914
915
916<h5>Example:</h5>
917<pre>
918 &lt;result&gt; = mul int 4, %var <i>; yields {int}:result = 4 * %var</i>
919</pre>
920
921
922<!-- _______________________________________________________________________ -->
923</ul><a name="i_div"><h4><hr size=0>'<tt>div</tt>' Instruction</h4><ul>
924
925<h5>Syntax:</h5>
926<pre>
927 &lt;result&gt; = div &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
928</pre>
929
930<h5>Overview:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000931
Chris Lattner00950542001-06-06 20:29:01 +0000932The '<tt>div</tt>' instruction returns the quotient of its two operands.<p>
933
934<h5>Arguments:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +0000935
936The two arguments to the '<tt>div</tt>' instruction must be either <a
Chris Lattnereaee9e12002-09-03 00:52:52 +0000937href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattner7faa8832002-04-14 06:13:44 +0000938values. Both arguments must have identical types.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000939
940<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +0000941
Chris Lattnereaee9e12002-09-03 00:52:52 +0000942The value produced is the integer or floating point quotient of the two
Chris Lattner7bae3952002-06-25 18:03:17 +0000943operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000944
945<h5>Example:</h5>
946<pre>
947 &lt;result&gt; = div int 4, %var <i>; yields {int}:result = 4 / %var</i>
948</pre>
949
950
951<!-- _______________________________________________________________________ -->
952</ul><a name="i_rem"><h4><hr size=0>'<tt>rem</tt>' Instruction</h4><ul>
953
954<h5>Syntax:</h5>
955<pre>
956 &lt;result&gt; = rem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
957</pre>
958
959<h5>Overview:</h5>
960The '<tt>rem</tt>' instruction returns the remainder from the division of its two operands.<p>
961
962<h5>Arguments:</h5>
Chris Lattnereaee9e12002-09-03 00:52:52 +0000963The two arguments to the '<tt>rem</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values. Both arguments must have identical types.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000964
965<h5>Semantics:</h5>
Chris Lattner6536cfe2002-05-06 22:08:29 +0000966
967This returns the <i>remainder</i> of a division (where the result has the same
968sign as the divisor), not the <i>modulus</i> (where the result has the same sign
969as the dividend) of a value. For more information about the difference, see: <a
970href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The Math
971Forum</a>.<p>
972
Chris Lattner00950542001-06-06 20:29:01 +0000973<h5>Example:</h5>
974<pre>
975 &lt;result&gt; = rem int 4, %var <i>; yields {int}:result = 4 % %var</i>
976</pre>
977
978
979<!-- _______________________________________________________________________ -->
980</ul><a name="i_setcc"><h4><hr size=0>'<tt>set<i>cc</i></tt>' Instructions</h4><ul>
981
982<h5>Syntax:</h5>
983<pre>
984 &lt;result&gt; = seteq &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
985 &lt;result&gt; = setne &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
986 &lt;result&gt; = setlt &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
987 &lt;result&gt; = setgt &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
988 &lt;result&gt; = setle &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
989 &lt;result&gt; = setge &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
990</pre>
991
Chris Lattner6536cfe2002-05-06 22:08:29 +0000992<h5>Overview:</h5> The '<tt>set<i>cc</i></tt>' family of instructions returns a
993boolean value based on a comparison of their two operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +0000994
Chris Lattner7faa8832002-04-14 06:13:44 +0000995<h5>Arguments:</h5> The two arguments to the '<tt>set<i>cc</i></tt>'
996instructions must be of <a href="#t_firstclass">first class</a> or <a
997href="#t_pointer">pointer</a> type (it is not possible to compare
998'<tt>label</tt>'s, '<tt>array</tt>'s, '<tt>structure</tt>' or '<tt>void</tt>'
Chris Lattner6536cfe2002-05-06 22:08:29 +0000999values, etc...). Both arguments must have identical types.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001000
Chris Lattner6536cfe2002-05-06 22:08:29 +00001001The '<tt>setlt</tt>', '<tt>setgt</tt>', '<tt>setle</tt>', and '<tt>setge</tt>'
1002instructions do not operate on '<tt>bool</tt>' typed arguments.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001003
1004<h5>Semantics:</h5>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001005
1006The '<tt>seteq</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
1007both operands are equal.<br>
1008
1009The '<tt>setne</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
1010both operands are unequal.<br>
1011
1012The '<tt>setlt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
1013the first operand is less than the second operand.<br>
1014
1015The '<tt>setgt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
1016the first operand is greater than the second operand.<br>
1017
1018The '<tt>setle</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
1019the first operand is less than or equal to the second operand.<br>
1020
1021The '<tt>setge</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
1022the first operand is greater than or equal to the second operand.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001023
1024<h5>Example:</h5>
1025<pre>
1026 &lt;result&gt; = seteq int 4, 5 <i>; yields {bool}:result = false</i>
1027 &lt;result&gt; = setne float 4, 5 <i>; yields {bool}:result = true</i>
1028 &lt;result&gt; = setlt uint 4, 5 <i>; yields {bool}:result = true</i>
1029 &lt;result&gt; = setgt sbyte 4, 5 <i>; yields {bool}:result = false</i>
1030 &lt;result&gt; = setle sbyte 4, 5 <i>; yields {bool}:result = true</i>
1031 &lt;result&gt; = setge sbyte 4, 5 <i>; yields {bool}:result = false</i>
1032</pre>
1033
1034
1035
1036<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +00001037</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1038<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +00001039<a name="bitwiseops">Bitwise Binary Operations
1040</b></font></td></tr></table><ul>
1041
Chris Lattner2b7d3202002-05-06 03:03:22 +00001042Bitwise binary operators are used to do various forms of bit-twiddling in a
1043program. They are generally very efficient instructions, and can commonly be
1044strength reduced from other instructions. They require two operands, execute an
1045operation on them, and produce a single value. The resulting value of the
1046bitwise binary operators is always the same type as its first operand.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001047
1048<!-- _______________________________________________________________________ -->
1049</ul><a name="i_and"><h4><hr size=0>'<tt>and</tt>' Instruction</h4><ul>
1050
1051<h5>Syntax:</h5>
1052<pre>
1053 &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1054</pre>
1055
1056<h5>Overview:</h5>
1057The '<tt>and</tt>' instruction returns the bitwise logical and of its two operands.<p>
1058
1059<h5>Arguments:</h5>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001060
Chris Lattnereaee9e12002-09-03 00:52:52 +00001061The two arguments to the '<tt>and</tt>' instruction must be <a
1062href="#t_integral">integral</a> values. Both arguments must have identical
1063types.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001064
1065
1066<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +00001067
1068The truth table used for the '<tt>and</tt>' instruction is:<p>
1069
Chris Lattnerc98cbbc2002-06-25 18:06:50 +00001070<center><table border=1 cellspacing=0 cellpadding=4>
Chris Lattner7bae3952002-06-25 18:03:17 +00001071<tr><td>In0</td> <td>In1</td> <td>Out</td></tr>
1072<tr><td>0</td> <td>0</td> <td>0</td></tr>
1073<tr><td>0</td> <td>1</td> <td>0</td></tr>
1074<tr><td>1</td> <td>0</td> <td>0</td></tr>
1075<tr><td>1</td> <td>1</td> <td>1</td></tr>
1076</table></center><p>
Chris Lattner00950542001-06-06 20:29:01 +00001077
1078
1079<h5>Example:</h5>
1080<pre>
1081 &lt;result&gt; = and int 4, %var <i>; yields {int}:result = 4 & %var</i>
1082 &lt;result&gt; = and int 15, 40 <i>; yields {int}:result = 8</i>
1083 &lt;result&gt; = and int 4, 8 <i>; yields {int}:result = 0</i>
1084</pre>
1085
1086
1087
1088<!-- _______________________________________________________________________ -->
1089</ul><a name="i_or"><h4><hr size=0>'<tt>or</tt>' Instruction</h4><ul>
1090
1091<h5>Syntax:</h5>
1092<pre>
1093 &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1094</pre>
1095
Chris Lattner7faa8832002-04-14 06:13:44 +00001096<h5>Overview:</h5> The '<tt>or</tt>' instruction returns the bitwise logical
1097inclusive or of its two operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001098
1099<h5>Arguments:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +00001100
Chris Lattnereaee9e12002-09-03 00:52:52 +00001101The two arguments to the '<tt>or</tt>' instruction must be <a
1102href="#t_integral">integral</a> values. Both arguments must have identical
1103types.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001104
1105
1106<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +00001107
1108The truth table used for the '<tt>or</tt>' instruction is:<p>
1109
Chris Lattnerc98cbbc2002-06-25 18:06:50 +00001110<center><table border=1 cellspacing=0 cellpadding=4>
Chris Lattner7bae3952002-06-25 18:03:17 +00001111<tr><td>In0</td> <td>In1</td> <td>Out</td></tr>
1112<tr><td>0</td> <td>0</td> <td>0</td></tr>
1113<tr><td>0</td> <td>1</td> <td>1</td></tr>
1114<tr><td>1</td> <td>0</td> <td>1</td></tr>
1115<tr><td>1</td> <td>1</td> <td>1</td></tr>
1116</table></center><p>
Chris Lattner00950542001-06-06 20:29:01 +00001117
1118
1119<h5>Example:</h5>
1120<pre>
1121 &lt;result&gt; = or int 4, %var <i>; yields {int}:result = 4 | %var</i>
1122 &lt;result&gt; = or int 15, 40 <i>; yields {int}:result = 47</i>
1123 &lt;result&gt; = or int 4, 8 <i>; yields {int}:result = 12</i>
1124</pre>
1125
1126
1127<!-- _______________________________________________________________________ -->
1128</ul><a name="i_xor"><h4><hr size=0>'<tt>xor</tt>' Instruction</h4><ul>
1129
1130<h5>Syntax:</h5>
1131<pre>
1132 &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1133</pre>
1134
1135<h5>Overview:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +00001136
1137The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of its
1138two operands.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001139
1140<h5>Arguments:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +00001141
Chris Lattnereaee9e12002-09-03 00:52:52 +00001142The two arguments to the '<tt>xor</tt>' instruction must be <a
1143href="#t_integral">integral</a> values. Both arguments must have identical
1144types.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001145
1146
1147<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +00001148
1149The truth table used for the '<tt>xor</tt>' instruction is:<p>
1150
Chris Lattnerc98cbbc2002-06-25 18:06:50 +00001151<center><table border=1 cellspacing=0 cellpadding=4>
Chris Lattner7bae3952002-06-25 18:03:17 +00001152<tr><td>In0</td> <td>In1</td> <td>Out</td></tr>
1153<tr><td>0</td> <td>0</td> <td>0</td></tr>
1154<tr><td>0</td> <td>1</td> <td>1</td></tr>
1155<tr><td>1</td> <td>0</td> <td>1</td></tr>
1156<tr><td>1</td> <td>1</td> <td>0</td></tr>
1157</table></center><p>
Chris Lattner00950542001-06-06 20:29:01 +00001158
1159
1160<h5>Example:</h5>
1161<pre>
1162 &lt;result&gt; = xor int 4, %var <i>; yields {int}:result = 4 ^ %var</i>
1163 &lt;result&gt; = xor int 15, 40 <i>; yields {int}:result = 39</i>
1164 &lt;result&gt; = xor int 4, 8 <i>; yields {int}:result = 12</i>
1165</pre>
1166
1167
1168<!-- _______________________________________________________________________ -->
1169</ul><a name="i_shl"><h4><hr size=0>'<tt>shl</tt>' Instruction</h4><ul>
1170
1171<h5>Syntax:</h5>
1172<pre>
1173 &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt; <i>; yields {ty}:result</i>
1174</pre>
1175
1176<h5>Overview:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +00001177
1178The '<tt>shl</tt>' instruction returns the first operand shifted to the left a
1179specified number of bits.
Chris Lattner00950542001-06-06 20:29:01 +00001180
1181<h5>Arguments:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +00001182
1183The first argument to the '<tt>shl</tt>' instruction must be an <a
Chris Lattnereaee9e12002-09-03 00:52:52 +00001184href="#t_integer">integer</a> type. The second argument must be an
Chris Lattner7faa8832002-04-14 06:13:44 +00001185'<tt>ubyte</tt>' type.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001186
1187<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +00001188
1189The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001190
1191
1192<h5>Example:</h5>
1193<pre>
1194 &lt;result&gt; = shl int 4, ubyte %var <i>; yields {int}:result = 4 << %var</i>
1195 &lt;result&gt; = shl int 4, ubyte 2 <i>; yields {int}:result = 16</i>
1196 &lt;result&gt; = shl int 1, ubyte 10 <i>; yields {int}:result = 1024</i>
1197</pre>
1198
1199
1200<!-- _______________________________________________________________________ -->
1201</ul><a name="i_shr"><h4><hr size=0>'<tt>shr</tt>' Instruction</h4><ul>
1202
1203
1204<h5>Syntax:</h5>
1205<pre>
1206 &lt;result&gt; = shr &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt; <i>; yields {ty}:result</i>
1207</pre>
1208
1209<h5>Overview:</h5>
1210The '<tt>shr</tt>' instruction returns the first operand shifted to the right a specified number of bits.
1211
1212<h5>Arguments:</h5>
Chris Lattnereaee9e12002-09-03 00:52:52 +00001213The first argument to the '<tt>shr</tt>' instruction must be an <a href="#t_integer">integer</a> type. The second argument must be an '<tt>ubyte</tt>' type.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001214
1215<h5>Semantics:</h5>
Chris Lattner7bae3952002-06-25 18:03:17 +00001216
1217If the first argument is a <a href="#t_signed">signed</a> type, the most
1218significant bit is duplicated in the newly free'd bit positions. If the first
1219argument is unsigned, zero bits shall fill the empty positions.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001220
1221<h5>Example:</h5>
1222<pre>
1223 &lt;result&gt; = shr int 4, ubyte %var <i>; yields {int}:result = 4 >> %var</i>
1224 &lt;result&gt; = shr int 4, ubyte 1 <i>; yields {int}:result = 2</i>
1225 &lt;result&gt; = shr int 4, ubyte 2 <i>; yields {int}:result = 1</i>
1226 &lt;result&gt; = shr int 4, ubyte 3 <i>; yields {int}:result = 0</i>
1227</pre>
1228
1229
1230
1231
1232
1233<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +00001234</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1235<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +00001236<a name="memoryops">Memory Access Operations
1237</b></font></td></tr></table><ul>
1238
Chris Lattner6536cfe2002-05-06 22:08:29 +00001239Accessing memory in SSA form is, well, sticky at best. This section describes how to read, write, allocate and free memory in LLVM.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001240
1241
1242<!-- _______________________________________________________________________ -->
1243</ul><a name="i_malloc"><h4><hr size=0>'<tt>malloc</tt>' Instruction</h4><ul>
1244
1245<h5>Syntax:</h5>
1246<pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001247 &lt;result&gt; = malloc &lt;type&gt;, uint &lt;NumElements&gt; <i>; yields {type*}:result</i>
1248 &lt;result&gt; = malloc &lt;type&gt; <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001249</pre>
1250
1251<h5>Overview:</h5>
1252The '<tt>malloc</tt>' instruction allocates memory from the system heap and returns a pointer to it.<p>
1253
1254<h5>Arguments:</h5>
1255
Chris Lattner7faa8832002-04-14 06:13:44 +00001256The the '<tt>malloc</tt>' instruction allocates
1257<tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory from the operating
1258system, and returns a pointer of the appropriate type to the program. The
1259second form of the instruction is a shorter version of the first instruction
1260that defaults to allocating one element.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001261
Chris Lattner7faa8832002-04-14 06:13:44 +00001262'<tt>type</tt>' must be a sized type<p>
Chris Lattner00950542001-06-06 20:29:01 +00001263
1264<h5>Semantics:</h5>
1265Memory is allocated, a pointer is returned.<p>
1266
1267<h5>Example:</h5>
1268<pre>
1269 %array = malloc [4 x ubyte ] <i>; yields {[%4 x ubyte]*}:array</i>
1270
1271 %size = <a href="#i_add">add</a> uint 2, 2 <i>; yields {uint}:size = uint 4</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001272 %array1 = malloc ubyte, uint 4 <i>; yields {ubyte*}:array1</i>
1273 %array2 = malloc [12 x ubyte], uint %size <i>; yields {[12 x ubyte]*}:array2</i>
Chris Lattner00950542001-06-06 20:29:01 +00001274</pre>
1275
1276
1277<!-- _______________________________________________________________________ -->
1278</ul><a name="i_free"><h4><hr size=0>'<tt>free</tt>' Instruction</h4><ul>
1279
1280<h5>Syntax:</h5>
1281<pre>
1282 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
1283</pre>
1284
1285
1286<h5>Overview:</h5>
1287The '<tt>free</tt>' instruction returns memory back to the unused memory heap, to be reallocated in the future.<p>
1288
1289
1290<h5>Arguments:</h5>
1291
Chris Lattner6536cfe2002-05-06 22:08:29 +00001292'<tt>value</tt>' shall be a pointer value that points to a value that was
1293allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001294
1295
1296<h5>Semantics:</h5>
Chris Lattner00950542001-06-06 20:29:01 +00001297
Chris Lattner6536cfe2002-05-06 22:08:29 +00001298Access to the memory pointed to by the pointer is not longer defined after this instruction executes.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001299
1300<h5>Example:</h5>
1301<pre>
1302 %array = <a href="#i_malloc">malloc</a> [4 x ubyte] <i>; yields {[4 x ubyte]*}:array</i>
1303 free [4 x ubyte]* %array
1304</pre>
1305
1306
1307<!-- _______________________________________________________________________ -->
1308</ul><a name="i_alloca"><h4><hr size=0>'<tt>alloca</tt>' Instruction</h4><ul>
1309
1310<h5>Syntax:</h5>
1311<pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001312 &lt;result&gt; = alloca &lt;type&gt;, uint &lt;NumElements&gt; <i>; yields {type*}:result</i>
1313 &lt;result&gt; = alloca &lt;type&gt; <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001314</pre>
1315
1316<h5>Overview:</h5>
1317
Chris Lattner7faa8832002-04-14 06:13:44 +00001318The '<tt>alloca</tt>' instruction allocates memory on the current stack frame of
1319the procedure that is live until the current function returns to its caller.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001320
1321<h5>Arguments:</h5>
Chris Lattner00950542001-06-06 20:29:01 +00001322
Chris Lattner7faa8832002-04-14 06:13:44 +00001323The the '<tt>alloca</tt>' instruction allocates
1324<tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the runtime stack,
1325returning a pointer of the appropriate type to the program. The second form of
1326the instruction is a shorter version of the first that defaults to allocating
1327one element.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001328
Chris Lattner7faa8832002-04-14 06:13:44 +00001329'<tt>type</tt>' may be any sized type.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001330
1331<h5>Semantics:</h5>
Chris Lattner7faa8832002-04-14 06:13:44 +00001332
1333Memory is allocated, a pointer is returned. '<tt>alloca</tt>'d memory is
1334automatically released when the function returns. The '<tt>alloca</tt>'
1335instruction is commonly used to represent automatic variables that must have an
1336address available, as well as spilled variables.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001337
1338<h5>Example:</h5>
1339<pre>
1340 %ptr = alloca int <i>; yields {int*}:ptr</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001341 %ptr = alloca int, uint 4 <i>; yields {int*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00001342</pre>
1343
1344
1345<!-- _______________________________________________________________________ -->
Chris Lattner2b7d3202002-05-06 03:03:22 +00001346</ul><a name="i_load"><h4><hr size=0>'<tt>load</tt>' Instruction</h4><ul>
1347
1348<h5>Syntax:</h5>
1349<pre>
1350 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;
1351</pre>
1352
1353<h5>Overview:</h5>
1354The '<tt>load</tt>' instruction is used to read from memory.<p>
1355
1356<h5>Arguments:</h5>
1357
1358The argument to the '<tt>load</tt>' instruction specifies the memory address to load from. The pointer must point to a <a href="t_firstclass">first class</a> type.<p>
1359
1360<h5>Semantics:</h5>
1361
1362The location of memory pointed to is loaded.
1363
1364<h5>Examples:</h5>
1365<pre>
1366 %ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i>
1367 <a href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i>
1368 %val = load int* %ptr <i>; yields {int}:val = int 3</i>
1369</pre>
1370
1371
1372
1373
1374<!-- _______________________________________________________________________ -->
1375</ul><a name="i_store"><h4><hr size=0>'<tt>store</tt>' Instruction</h4><ul>
1376
1377<h5>Syntax:</h5>
1378<pre>
1379 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
1380</pre>
1381
1382<h5>Overview:</h5>
1383The '<tt>store</tt>' instruction is used to write to memory.<p>
1384
1385<h5>Arguments:</h5>
1386
1387There are two arguments to the '<tt>store</tt>' instruction: a value to store
1388and an address to store it into. The type of the '<tt>&lt;pointer&gt;</tt>'
1389operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
1390operand.<p>
1391
1392<h5>Semantics:</h5> The contents of memory are updated to contain
1393'<tt>&lt;value&gt;</tt>' at the location specified by the
1394'<tt>&lt;pointer&gt;</tt>' operand.<p>
1395
1396<h5>Example:</h5>
1397<pre>
1398 %ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i>
1399 <a href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i>
1400 %val = load int* %ptr <i>; yields {int}:val = int 3</i>
1401</pre>
1402
1403
1404
1405
1406<!-- _______________________________________________________________________ -->
Chris Lattner7faa8832002-04-14 06:13:44 +00001407</ul><a name="i_getelementptr"><h4><hr size=0>'<tt>getelementptr</tt>' Instruction</h4><ul>
1408
1409<h5>Syntax:</h5>
1410<pre>
Chris Lattner3dfa10b2002-12-13 06:01:21 +00001411 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, long &lt;aidx&gt;|, ubyte &lt;sidx&gt;}*
Chris Lattner7faa8832002-04-14 06:13:44 +00001412</pre>
1413
1414<h5>Overview:</h5>
1415
1416The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner6536cfe2002-05-06 22:08:29 +00001417subelement of an aggregate data structure.<p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001418
1419<h5>Arguments:</h5>
1420
Chris Lattner3dfa10b2002-12-13 06:01:21 +00001421This instruction takes a list of <tt>long</tt> values and <tt>ubyte</tt>
Chris Lattner7faa8832002-04-14 06:13:44 +00001422constants that indicate what form of addressing to perform. The actual types of
1423the arguments provided depend on the type of the first pointer argument. The
1424'<tt>getelementptr</tt>' instruction is used to index down through the type
1425levels of a structure.<p>
1426
Chris Lattner6536cfe2002-05-06 22:08:29 +00001427For example, lets consider a C code fragment and how it gets compiled to
1428LLVM:<p>
1429
1430<pre>
1431struct RT {
1432 char A;
1433 int B[10][20];
1434 char C;
1435};
1436struct ST {
1437 int X;
1438 double Y;
1439 struct RT Z;
1440};
1441
1442int *foo(struct ST *s) {
1443 return &amp;s[1].Z.B[5][13];
1444}
1445</pre>
1446
1447The LLVM code generated by the GCC frontend is:
1448
1449<pre>
1450%RT = type { sbyte, [10 x [20 x int]], sbyte }
1451%ST = type { int, double, %RT }
1452
1453int* "foo"(%ST* %s) {
Chris Lattner3dfa10b2002-12-13 06:01:21 +00001454 %reg = getelementptr %ST* %s, long 1, ubyte 2, ubyte 1, long 5, long 13
Chris Lattner6536cfe2002-05-06 22:08:29 +00001455 ret int* %reg
1456}
1457</pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001458
1459<h5>Semantics:</h5>
1460
Chris Lattner6536cfe2002-05-06 22:08:29 +00001461The index types specified for the '<tt>getelementptr</tt>' instruction depend on
1462the pointer type that is being index into. <a href="t_pointer">Pointer</a> and
Chris Lattner3dfa10b2002-12-13 06:01:21 +00001463<a href="t_array">array</a> types require '<tt>long</tt>' values, and <a
Chris Lattner6536cfe2002-05-06 22:08:29 +00001464href="t_struct">structure</a> types require '<tt>ubyte</tt>'
1465<b>constants</b>.<p>
1466
1467In the example above, the first index is indexing into the '<tt>%ST*</tt>' type,
1468which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ int, double, %RT }</tt>'
1469type, a structure. The second index indexes into the third element of the
1470structure, yielding a '<tt>%RT</tt>' = '<tt>{ sbyte, [10 x [20 x int]], sbyte
1471}</tt>' type, another structure. The third index indexes into the second
1472element of the structure, yielding a '<tt>[10 x [20 x int]]</tt>' type, an
1473array. The two dimensions of the array are subscripted into, yielding an
1474'<tt>int</tt>' type. The '<tt>getelementptr</tt>' instruction return a pointer
1475to this element, thus yielding a '<tt>int*</tt>' type.<p>
1476
1477Note that it is perfectly legal to index partially through a structure,
1478returning a pointer to an inner element. Because of this, the LLVM code for the
1479given testcase is equivalent to:<p>
1480
1481<pre>
1482int* "foo"(%ST* %s) {
Chris Lattner3dfa10b2002-12-13 06:01:21 +00001483 %t1 = getelementptr %ST* %s , long 1 <i>; yields %ST*:%t1</i>
1484 %t2 = getelementptr %ST* %t1, long 0, ubyte 2 <i>; yields %RT*:%t2</i>
1485 %t3 = getelementptr %RT* %t2, long 0, ubyte 1 <i>; yields [10 x [20 x int]]*:%t3</i>
1486 %t4 = getelementptr [10 x [20 x int]]* %t3, long 0, long 5 <i>; yields [20 x int]*:%t4</i>
1487 %t5 = getelementptr [20 x int]* %t4, long 0, long 13 <i>; yields int*:%t5</i>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001488 ret int* %t5
1489}
1490</pre>
1491
1492
Chris Lattner7faa8832002-04-14 06:13:44 +00001493
1494<h5>Example:</h5>
1495<pre>
Chris Lattnerf31860b2002-08-19 21:14:38 +00001496 <i>; yields [12 x ubyte]*:aptr</i>
Chris Lattner3dfa10b2002-12-13 06:01:21 +00001497 %aptr = getelementptr {int, [12 x ubyte]}* %sptr, long 0, ubyte 1
Chris Lattner7faa8832002-04-14 06:13:44 +00001498</pre>
1499
1500
1501
Chris Lattner00950542001-06-06 20:29:01 +00001502<!-- ======================================================================= -->
Chris Lattner2b7d3202002-05-06 03:03:22 +00001503</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1504<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
Chris Lattner00950542001-06-06 20:29:01 +00001505<a name="otherops">Other Operations
1506</b></font></td></tr></table><ul>
1507
1508The instructions in this catagory are the "miscellaneous" functions, that defy better classification.<p>
1509
1510
1511<!-- _______________________________________________________________________ -->
Chris Lattner6536cfe2002-05-06 22:08:29 +00001512</ul><a name="i_phi"><h4><hr size=0>'<tt>phi</tt>' Instruction</h4><ul>
Chris Lattner33ba0d92001-07-09 00:26:23 +00001513
1514<h5>Syntax:</h5>
1515<pre>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001516 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
Chris Lattner33ba0d92001-07-09 00:26:23 +00001517</pre>
1518
1519<h5>Overview:</h5>
1520
Chris Lattner6536cfe2002-05-06 22:08:29 +00001521The '<tt>phi</tt>' instruction is used to implement the &phi; node in the SSA
1522graph representing the function.<p>
Chris Lattner33ba0d92001-07-09 00:26:23 +00001523
1524<h5>Arguments:</h5>
1525
Chris Lattner6536cfe2002-05-06 22:08:29 +00001526The type of the incoming values are specified with the first type field. After
1527this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
1528one pair for each predecessor basic block of the current block.<p>
1529
1530There must be no non-phi instructions between the start of a basic block and the
1531PHI instructions: i.e. PHI instructions must be first in a basic block.<p>
Chris Lattner33ba0d92001-07-09 00:26:23 +00001532
1533<h5>Semantics:</h5>
1534
Chris Lattner6536cfe2002-05-06 22:08:29 +00001535At runtime, the '<tt>phi</tt>' instruction logically takes on the value
1536specified by the parameter, depending on which basic block we came from in the
1537last <a href="#terminators">terminator</a> instruction.<p>
1538
1539<h5>Example:</h5>
1540
1541<pre>
1542Loop: ; Infinite loop that counts from 0 on up...
1543 %indvar = phi uint [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
1544 %nextindvar = add uint %indvar, 1
1545 br label %Loop
1546</pre>
1547
1548
1549<!-- _______________________________________________________________________ -->
1550</ul><a name="i_cast"><h4><hr size=0>'<tt>cast .. to</tt>' Instruction</h4><ul>
1551
1552<h5>Syntax:</h5>
1553<pre>
1554 &lt;result&gt; = cast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
1555</pre>
1556
1557<h5>Overview:</h5>
1558
1559The '<tt>cast</tt>' instruction is used as the primitive means to convert
1560integers to floating point, change data type sizes, and break type safety (by
1561casting pointers).<p>
1562
1563<h5>Arguments:</h5>
1564
Chris Lattner7bae3952002-06-25 18:03:17 +00001565The '<tt>cast</tt>' instruction takes a value to cast, which must be a first
Chris Lattner6536cfe2002-05-06 22:08:29 +00001566class value, and a type to cast it to, which must also be a first class type.<p>
1567
1568<h5>Semantics:</h5>
1569
1570This instruction follows the C rules for explicit casts when determining how the
1571data being cast must change to fit in its new container.<p>
1572
Chris Lattner7bae3952002-06-25 18:03:17 +00001573When casting to bool, any value that would be considered true in the context of
1574a C '<tt>if</tt>' condition is converted to the boolean '<tt>true</tt>' values,
1575all else are '<tt>false</tt>'.<p>
Chris Lattner33ba0d92001-07-09 00:26:23 +00001576
Chris Lattnerf8856bc2002-08-13 20:52:09 +00001577When extending an integral value from a type of one signness to another (for
1578example '<tt>sbyte</tt>' to '<tt>ulong</tt>'), the value is sign-extended if the
1579<b>source</b> value is signed, and zero-extended if the source value is
Chris Lattner2b4dcbb2002-08-15 19:36:05 +00001580unsigned. <tt>bool</tt> values are always zero extended into either zero or
1581one.<p>
Chris Lattnerf8856bc2002-08-13 20:52:09 +00001582
Chris Lattner33ba0d92001-07-09 00:26:23 +00001583<h5>Example:</h5>
1584<pre>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001585 %X = cast int 257 to ubyte <i>; yields ubyte:1</i>
Chris Lattner7bae3952002-06-25 18:03:17 +00001586 %Y = cast int 123 to bool <i>; yields bool:true</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00001587</pre>
1588
1589
1590
1591<!-- _______________________________________________________________________ -->
Chris Lattner00950542001-06-06 20:29:01 +00001592</ul><a name="i_call"><h4><hr size=0>'<tt>call</tt>' Instruction</h4><ul>
1593
1594<h5>Syntax:</h5>
1595<pre>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001596 &lt;result&gt; = call &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner00950542001-06-06 20:29:01 +00001597</pre>
1598
1599<h5>Overview:</h5>
1600
Chris Lattner6536cfe2002-05-06 22:08:29 +00001601The '<tt>call</tt>' instruction represents a simple function call.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001602
1603<h5>Arguments:</h5>
1604
Chris Lattner6536cfe2002-05-06 22:08:29 +00001605This instruction requires several arguments:<p>
1606<ol>
1607
1608<li>'<tt>ty</tt>': shall be the signature of the pointer to function value being
1609invoked. The argument types must match the types implied by this signature.<p>
1610
1611<li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to be
1612invoked. In most cases, this is a direct function invocation, but indirect
Misha Brukmane6fe6712002-09-18 02:35:14 +00001613<tt>call</tt>s are just as possible, calling an arbitrary pointer to function
Chris Lattner6536cfe2002-05-06 22:08:29 +00001614values.<p>
1615
1616<li>'<tt>function args</tt>': argument list whose types match the function
1617signature argument types. If the function signature indicates the function
1618accepts a variable number of arguments, the extra arguments can be specified.
1619</ol>
Chris Lattner00950542001-06-06 20:29:01 +00001620
1621<h5>Semantics:</h5>
1622
Chris Lattner6536cfe2002-05-06 22:08:29 +00001623The '<tt>call</tt>' instruction is used to cause control flow to transfer to a
1624specified function, with its incoming arguments bound to the specified values.
1625Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called function,
1626control flow continues with the instruction after the function call, and the
1627return value of the function is bound to the result argument. This is a simpler
1628case of the <a href="#i_invoke">invoke</a> instruction.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001629
1630<h5>Example:</h5>
1631<pre>
1632 %retval = call int %test(int %argc)
Chris Lattner6536cfe2002-05-06 22:08:29 +00001633 call int(sbyte*, ...) *%printf(sbyte* %msg, int 12, sbyte 42);
1634
Chris Lattner00950542001-06-06 20:29:01 +00001635</pre>
1636
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001637<!-- _______________________________________________________________________ -->
1638</ul><a name="i_va_arg"><h4><hr size=0>'<tt>va_arg</tt>' Instruction</h4><ul>
Chris Lattner00950542001-06-06 20:29:01 +00001639
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001640<h5>Syntax:</h5>
1641<pre>
1642 &lt;result&gt; = va_arg &lt;va_list&gt;* &lt;arglist&gt;, &lt;retty&gt;
1643</pre>
1644
1645<h5>Overview:</h5>
1646
1647The '<tt>va_arg</tt>' instruction is used to access arguments passed through the
1648"variable argument" area of a function call. It corresponds directly to the
1649<tt>va_arg</tt> macro in C.<p>
1650
1651<h5>Arguments:</h5>
1652
1653This instruction takes a pointer to a <tt>valist</tt> value to read a new
1654argument from. The return type of the instruction is defined by the second
1655argument, a type.<p>
1656
1657<h5>Semantics:</h5>
1658
1659The '<tt>va_arg</tt>' instruction works just like the <tt>va_arg</tt> macro
1660available in C. In a target-dependent way, it reads the argument indicated by
1661the value the arglist points to, updates the arglist, then returns a value of
1662the specified type. This instruction should be used in conjunction with the
1663variable argument handling <a href="#int_varargs">Intrinsic Functions</a>.<p>
1664
1665It is legal for this instruction to be called in a function which does not take
1666a variable number of arguments, for example, the <tt>vfprintf</tt> function.<p>
1667
1668<tt>va_arg</tt> is an LLVM instruction instead of an <a
1669href="#intrinsics">intrinsic function</a> because the return type depends on an
1670argument.<p>
1671
1672<h5>Example:</h5>
1673
1674See the <a href="#int_varargs">variable argument processing</a> section.<p>
1675
1676<!-- *********************************************************************** -->
Chris Lattner2b7d3202002-05-06 03:03:22 +00001677</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
1678<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001679<a name="intrinsics">Intrinsic Functions
Chris Lattner00950542001-06-06 20:29:01 +00001680</b></font></td></tr></table><ul>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001681<!-- *********************************************************************** -->
1682
1683LLVM supports the notion of an "intrinsic function". These functions have well
1684known names and semantics, and are required to follow certain restrictions.
1685Overall, these instructions represent an extension mechanism for the LLVM
1686language that does not require changing all of the transformations in LLVM to
1687add to the language (or the bytecode reader/writer, the parser, etc...).<p>
1688
1689Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix, this
1690prefix is reserved in LLVM for intrinsic names, thus functions may not be named
1691this. Intrinsic functions must always be external functions: you cannot define
1692the body of intrinsic functions. Intrinsic functions may only be used in call
1693or invoke instructions: it is illegal to take the address of an intrinsic
1694function. Additionally, because intrinsic functions are part of the LLVM
1695language, it is required that they all be documented here if any are added.<p>
1696
1697Unless an intrinsic function is target-specific, there must be a lowering pass
1698to eliminate the intrinsic or all backends must support the intrinsic
1699function.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001700
1701
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001702<!-- ======================================================================= -->
1703</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1704<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
1705<a name="int_varargs">Variable Argument Handling Intrinsics
1706</b></font></td></tr></table><ul>
Chris Lattner00950542001-06-06 20:29:01 +00001707
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001708Variable argument support is defined in LLVM with the <a
1709href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three intrinsic
1710functions. These function correspond almost directly to the similarly named
1711macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001712
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001713All of these functions operate on arguments that use a target-specific type
1714"<tt>va_list</tt>". The LLVM assembly language reference manual does not define
1715what this type is, so all transformations should be prepared to handle
1716intrinsics with any type used.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001717
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001718This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction
1719and the variable argument handling intrinsic functions are used.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001720
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001721<pre>
1722int %test(int %X, ...) {
1723 ; Allocate two va_list items. On this target, va_list is of type sbyte*
1724 %ap = alloca sbyte*
1725 %aq = alloca sbyte*
Chris Lattner00950542001-06-06 20:29:01 +00001726
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001727 ; Initialize variable argument processing
1728 call void (sbyte**, ...)* %<a href="#i_va_start">llvm.va_start</a>(sbyte** %ap, int %X)
Chris Lattner00950542001-06-06 20:29:01 +00001729
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001730 ; Read a single integer argument
1731 %tmp = <a href="#i_va_arg">va_arg</a> sbyte** %ap, int
Chris Lattner00950542001-06-06 20:29:01 +00001732
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001733 ; Demonstrate usage of llvm.va_copy and llvm_va_end
1734 %apv = load sbyte** %ap
1735 call void %<a href="#i_va_copy">llvm.va_copy</a>(sbyte** %aq, sbyte* %apv)
1736 call void %<a href="#i_va_end">llvm.va_end</a>(sbyte** %aq)
Chris Lattner00950542001-06-06 20:29:01 +00001737
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001738 ; Stop processing of arguments.
1739 call void %<a href="#i_va_end">llvm.va_end</a>(sbyte** %ap)
1740 ret int %tmp
1741}
1742</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001743
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001744<!-- _______________________________________________________________________ -->
1745</ul><a name="i_va_start"><h4><hr size=0>'<tt>llvm.va_start</tt>' Intrinsic</h4><ul>
Chris Lattner00950542001-06-06 20:29:01 +00001746
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001747<h5>Syntax:</h5>
1748<pre>
1749 call void (va_list*, ...)* %llvm.va_start(&lt;va_list&gt;* &lt;arglist&gt;, &lt;argument&gt;)
1750</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001751
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001752<h5>Overview:</h5>
Chris Lattner00950542001-06-06 20:29:01 +00001753
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001754The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt> for
1755subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt> and <tt><a
1756href="#i_va_end">llvm.va_end</a></tt>, and must be called before either are
1757invoked.<p>
Chris Lattner00950542001-06-06 20:29:01 +00001758
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001759<h5>Arguments:</h5>
Chris Lattner00950542001-06-06 20:29:01 +00001760
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001761The first argument is a pointer to a <tt>va_list</tt> element to initialize.
1762The second argument is required to be the last LLVM argument before the
1763ellipsis. In the future, this restriction may be relaxed (to allow it to be
1764other arguments).<p>
Chris Lattner00950542001-06-06 20:29:01 +00001765
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001766<h5>Semantics:</h5>
1767
1768The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
1769macro available in C. In a target-dependent way, it initializes the
1770<tt>va_list</tt> element the first argument points to, so that the next call to
1771<tt>va_arg</tt> will produce the first variable argument passed to the
1772function.<p>
1773
1774
1775<!-- _______________________________________________________________________ -->
1776</ul><a name="i_va_end"><h4><hr size=0>'<tt>llvm.va_end</tt>' Intrinsic</h4><ul>
1777
1778<h5>Syntax:</h5>
1779<pre>
1780 call void (va_list*)* %llvm.va_end(&lt;va_list&gt;* &lt;arglist&gt;)
1781</pre>
1782
1783<h5>Overview:</h5>
1784
1785The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt> which
1786has been initialized previously with <tt><a
1787href="#i_va_begin">llvm.va_begin</a></tt>.<p>
1788
1789<h5>Arguments:</h5>
1790
1791The argument is a pointer to a <tt>va_list</tt> element to destroy.<p>
1792
1793<h5>Semantics:</h5>
1794
1795The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt> macro
1796available in C. In a target-dependent way, it destroys the <tt>va_list</tt>
1797that the argument points to. Calls to <a
1798href="#i_va_start"><tt>llvm.va_start</tt></a> and <a
1799href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly with calls
1800to <tt>llvm.va_end</tt>.<p>
1801
1802
1803
1804<!-- _______________________________________________________________________ -->
1805</ul><a name="i_va_copy"><h4><hr size=0>'<tt>llvm.va_copy</tt>' Intrinsic</h4><ul>
1806
1807<h5>Syntax:</h5>
1808<pre>
1809 call void (va_list*, va_list)* %va_copy(&lt;va_list&gt;* &lt;destarglist&gt;,
1810 &lt;va_list&gt; &lt;srcarglist&gt;)
1811</pre>
1812
1813<h5>Overview:</h5>
1814
1815The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position from
1816the source argument list to the destination argument list.<p>
1817
1818<h5>Arguments:</h5>
1819
1820The first argument is a pointer to a <tt>va_list</tt> element to initialize.
1821The second argument is a <tt>va_list</tt> element to copy from.<p>
1822
1823
1824<h5>Semantics:</h5>
1825
1826The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> macro
1827available in C. In a target-dependent way, it copies the source
1828<tt>va_list</tt> element into the destination list. This intrinsic is necessary
1829because the <tt><a href="i_va_begin">llvm.va_begin</a></tt> intrinsic may be
1830arbitrarily complex and require memory allocation, for example.<p>
Chris Lattner6536cfe2002-05-06 22:08:29 +00001831
1832
Chris Lattner00950542001-06-06 20:29:01 +00001833<!-- *********************************************************************** -->
1834</ul>
1835<!-- *********************************************************************** -->
1836
1837
1838<hr>
1839<font size=-1>
1840<address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
1841<!-- Created: Tue Jan 23 15:19:28 CST 2001 -->
1842<!-- hhmts start -->
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00001843Last modified: Wed May 7 23:56:16 CDT 2003
Chris Lattner00950542001-06-06 20:29:01 +00001844<!-- hhmts end -->
1845</font>
1846</body></html>