blob: f4f76af4c9977d0c3bed14aec25f89fd746b813d [file] [log] [blame]
Chris Lattner369bbeb2001-07-20 19:17:55 +00001//===- Expressions.cpp - Expression Analysis Utilities ----------------------=//
2//
3// This file defines a package of expression analysis utilties:
4//
5// ClassifyExpression: Analyze an expression to determine the complexity of the
6// expression, and which other variables it depends on.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Analysis/Expressions.h"
Chris Lattner968ddc92002-04-08 20:18:09 +000011#include "llvm/ConstantHandling.h"
Chris Lattnere590ff22002-03-26 17:55:33 +000012#include "llvm/Function.h"
Chris Lattner369bbeb2001-07-20 19:17:55 +000013#include "llvm/BasicBlock.h"
Chris Lattnerdb931242002-05-06 17:53:10 +000014#include "llvm/Instruction.h"
Chris Lattner697954c2002-01-20 22:54:45 +000015#include <iostream>
Chris Lattner369bbeb2001-07-20 19:17:55 +000016
Chris Lattner19f31f22001-07-21 19:07:19 +000017using namespace analysis;
18
Chris Lattner69f8ce02001-09-11 04:27:34 +000019ExprType::ExprType(Value *Val) {
Chris Lattner1d87bcf2001-10-01 20:11:19 +000020 if (Val)
Chris Lattnere9bb2df2001-12-03 22:26:30 +000021 if (ConstantInt *CPI = dyn_cast<ConstantInt>(Val)) {
Chris Lattner1d87bcf2001-10-01 20:11:19 +000022 Offset = CPI;
23 Var = 0;
24 ExprTy = Constant;
25 Scale = 0;
26 return;
27 }
28
29 Var = Val; Offset = 0;
30 ExprTy = Var ? Linear : Constant;
Chris Lattner69f8ce02001-09-11 04:27:34 +000031 Scale = 0;
32}
33
Chris Lattnere9bb2df2001-12-03 22:26:30 +000034ExprType::ExprType(const ConstantInt *scale, Value *var,
35 const ConstantInt *offset) {
Chris Lattner50020222001-11-26 18:53:07 +000036 Scale = var ? scale : 0; Var = var; Offset = offset;
Chris Lattner69f8ce02001-09-11 04:27:34 +000037 ExprTy = Scale ? ScaledLinear : (Var ? Linear : Constant);
38 if (Scale && Scale->equalsInt(0)) { // Simplify 0*Var + const
39 Scale = 0; Var = 0;
40 ExprTy = Constant;
41 }
42}
43
44
45const Type *ExprType::getExprType(const Type *Default) const {
46 if (Offset) return Offset->getType();
47 if (Scale) return Scale->getType();
48 return Var ? Var->getType() : Default;
49}
50
51
52
Chris Lattner19f31f22001-07-21 19:07:19 +000053class DefVal {
Chris Lattnere9bb2df2001-12-03 22:26:30 +000054 const ConstantInt * const Val;
Chris Lattner19f31f22001-07-21 19:07:19 +000055 const Type * const Ty;
56protected:
Chris Lattnere9bb2df2001-12-03 22:26:30 +000057 inline DefVal(const ConstantInt *val, const Type *ty) : Val(val), Ty(ty) {}
Chris Lattner19f31f22001-07-21 19:07:19 +000058public:
59 inline const Type *getType() const { return Ty; }
Chris Lattnere9bb2df2001-12-03 22:26:30 +000060 inline const ConstantInt *getVal() const { return Val; }
61 inline operator const ConstantInt * () const { return Val; }
62 inline const ConstantInt *operator->() const { return Val; }
Chris Lattner19f31f22001-07-21 19:07:19 +000063};
64
65struct DefZero : public DefVal {
Chris Lattnere9bb2df2001-12-03 22:26:30 +000066 inline DefZero(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {}
67 inline DefZero(const ConstantInt *val) : DefVal(val, val->getType()) {}
Chris Lattner19f31f22001-07-21 19:07:19 +000068};
69
70struct DefOne : public DefVal {
Chris Lattnere9bb2df2001-12-03 22:26:30 +000071 inline DefOne(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {}
Chris Lattner19f31f22001-07-21 19:07:19 +000072};
73
Chris Lattner369bbeb2001-07-20 19:17:55 +000074
Chris Lattner9b534262002-03-14 22:35:50 +000075// getUnsignedConstant - Return a constant value of the specified type. If the
76// constant value is not valid for the specified type, return null. This cannot
77// happen for values in the range of 0 to 127.
78//
Chris Lattnere9bb2df2001-12-03 22:26:30 +000079static ConstantInt *getUnsignedConstant(uint64_t V, const Type *Ty) {
Chris Lattner9b625032002-05-06 16:15:30 +000080 if (isa<PointerType>(Ty)) Ty = Type::ULongTy;
Chris Lattner9b534262002-03-14 22:35:50 +000081 if (Ty->isSigned()) {
82 // If this value is not a valid unsigned value for this type, return null!
83 if (V > 127 && ((int64_t)V < 0 ||
84 !ConstantSInt::isValueValidForType(Ty, (int64_t)V)))
85 return 0;
86 return ConstantSInt::get(Ty, V);
87 } else {
88 // If this value is not a valid unsigned value for this type, return null!
89 if (V > 255 && !ConstantUInt::isValueValidForType(Ty, V))
90 return 0;
91 return ConstantUInt::get(Ty, V);
92 }
Chris Lattner369bbeb2001-07-20 19:17:55 +000093}
94
Chris Lattner369bbeb2001-07-20 19:17:55 +000095// Add - Helper function to make later code simpler. Basically it just adds
96// the two constants together, inserts the result into the constant pool, and
97// returns it. Of course life is not simple, and this is no exception. Factors
98// that complicate matters:
99// 1. Either argument may be null. If this is the case, the null argument is
100// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
101// 2. Types get in the way. We want to do arithmetic operations without
102// regard for the underlying types. It is assumed that the constants are
103// integral constants. The new value takes the type of the left argument.
104// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
105// is false, a null return value indicates a value of 0.
106//
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000107static const ConstantInt *Add(const ConstantInt *Arg1,
108 const ConstantInt *Arg2, bool DefOne) {
Chris Lattner369bbeb2001-07-20 19:17:55 +0000109 assert(Arg1 && Arg2 && "No null arguments should exist now!");
Chris Lattner19f31f22001-07-21 19:07:19 +0000110 assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
Chris Lattner369bbeb2001-07-20 19:17:55 +0000111
112 // Actually perform the computation now!
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000113 Constant *Result = *Arg1 + *Arg2;
Chris Lattner19f31f22001-07-21 19:07:19 +0000114 assert(Result && Result->getType() == Arg1->getType() &&
115 "Couldn't perform addition!");
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000116 ConstantInt *ResultI = cast<ConstantInt>(Result);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000117
118 // Check to see if the result is one of the special cases that we want to
119 // recognize...
Chris Lattner69f8ce02001-09-11 04:27:34 +0000120 if (ResultI->equalsInt(DefOne ? 1 : 0))
121 return 0; // Yes it is, simply return null.
Chris Lattner369bbeb2001-07-20 19:17:55 +0000122
Chris Lattner369bbeb2001-07-20 19:17:55 +0000123 return ResultI;
124}
125
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000126inline const ConstantInt *operator+(const DefZero &L, const DefZero &R) {
Chris Lattner19f31f22001-07-21 19:07:19 +0000127 if (L == 0) return R;
128 if (R == 0) return L;
Chris Lattner8e195e02001-09-07 16:31:04 +0000129 return Add(L, R, false);
Chris Lattner19f31f22001-07-21 19:07:19 +0000130}
Chris Lattner369bbeb2001-07-20 19:17:55 +0000131
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000132inline const ConstantInt *operator+(const DefOne &L, const DefOne &R) {
Chris Lattner19f31f22001-07-21 19:07:19 +0000133 if (L == 0) {
134 if (R == 0)
Chris Lattner69f8ce02001-09-11 04:27:34 +0000135 return getUnsignedConstant(2, L.getType());
Chris Lattner19f31f22001-07-21 19:07:19 +0000136 else
Chris Lattner69f8ce02001-09-11 04:27:34 +0000137 return Add(getUnsignedConstant(1, L.getType()), R, true);
Chris Lattner19f31f22001-07-21 19:07:19 +0000138 } else if (R == 0) {
Chris Lattner69f8ce02001-09-11 04:27:34 +0000139 return Add(L, getUnsignedConstant(1, L.getType()), true);
Chris Lattner19f31f22001-07-21 19:07:19 +0000140 }
Chris Lattner8e195e02001-09-07 16:31:04 +0000141 return Add(L, R, true);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000142}
143
144
Chris Lattner19f31f22001-07-21 19:07:19 +0000145// Mul - Helper function to make later code simpler. Basically it just
Chris Lattner369bbeb2001-07-20 19:17:55 +0000146// multiplies the two constants together, inserts the result into the constant
147// pool, and returns it. Of course life is not simple, and this is no
148// exception. Factors that complicate matters:
149// 1. Either argument may be null. If this is the case, the null argument is
150// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
151// 2. Types get in the way. We want to do arithmetic operations without
152// regard for the underlying types. It is assumed that the constants are
153// integral constants.
154// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
155// is false, a null return value indicates a value of 0.
156//
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000157inline const ConstantInt *Mul(const ConstantInt *Arg1,
158 const ConstantInt *Arg2, bool DefOne) {
Chris Lattner369bbeb2001-07-20 19:17:55 +0000159 assert(Arg1 && Arg2 && "No null arguments should exist now!");
Chris Lattner19f31f22001-07-21 19:07:19 +0000160 assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
Chris Lattner369bbeb2001-07-20 19:17:55 +0000161
162 // Actually perform the computation now!
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000163 Constant *Result = *Arg1 * *Arg2;
Chris Lattner19f31f22001-07-21 19:07:19 +0000164 assert(Result && Result->getType() == Arg1->getType() &&
Chris Lattner50020222001-11-26 18:53:07 +0000165 "Couldn't perform multiplication!");
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000166 ConstantInt *ResultI = cast<ConstantInt>(Result);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000167
168 // Check to see if the result is one of the special cases that we want to
169 // recognize...
Chris Lattner69f8ce02001-09-11 04:27:34 +0000170 if (ResultI->equalsInt(DefOne ? 1 : 0))
171 return 0; // Yes it is, simply return null.
Chris Lattner369bbeb2001-07-20 19:17:55 +0000172
Chris Lattner369bbeb2001-07-20 19:17:55 +0000173 return ResultI;
174}
175
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000176inline const ConstantInt *operator*(const DefZero &L, const DefZero &R) {
Chris Lattner19f31f22001-07-21 19:07:19 +0000177 if (L == 0 || R == 0) return 0;
Chris Lattner8e195e02001-09-07 16:31:04 +0000178 return Mul(L, R, false);
Chris Lattner19f31f22001-07-21 19:07:19 +0000179}
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000180inline const ConstantInt *operator*(const DefOne &L, const DefZero &R) {
Chris Lattner69f8ce02001-09-11 04:27:34 +0000181 if (R == 0) return getUnsignedConstant(0, L.getType());
Chris Lattner19f31f22001-07-21 19:07:19 +0000182 if (L == 0) return R->equalsInt(1) ? 0 : R.getVal();
Chris Lattner50020222001-11-26 18:53:07 +0000183 return Mul(L, R, true);
Chris Lattner19f31f22001-07-21 19:07:19 +0000184}
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000185inline const ConstantInt *operator*(const DefZero &L, const DefOne &R) {
Chris Lattner50020222001-11-26 18:53:07 +0000186 if (L == 0 || R == 0) return L.getVal();
187 return Mul(R, L, false);
Chris Lattner19f31f22001-07-21 19:07:19 +0000188}
189
Chris Lattner69f8ce02001-09-11 04:27:34 +0000190// handleAddition - Add two expressions together, creating a new expression that
191// represents the composite of the two...
192//
193static ExprType handleAddition(ExprType Left, ExprType Right, Value *V) {
194 const Type *Ty = V->getType();
195 if (Left.ExprTy > Right.ExprTy)
Chris Lattner697954c2002-01-20 22:54:45 +0000196 std::swap(Left, Right); // Make left be simpler than right
Chris Lattner69f8ce02001-09-11 04:27:34 +0000197
198 switch (Left.ExprTy) {
199 case ExprType::Constant:
Chris Lattner50020222001-11-26 18:53:07 +0000200 return ExprType(Right.Scale, Right.Var,
201 DefZero(Right.Offset, Ty) + DefZero(Left.Offset, Ty));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000202 case ExprType::Linear: // RHS side must be linear or scaled
203 case ExprType::ScaledLinear: // RHS must be scaled
204 if (Left.Var != Right.Var) // Are they the same variables?
Chris Lattner50020222001-11-26 18:53:07 +0000205 return V; // if not, we don't know anything!
Chris Lattner69f8ce02001-09-11 04:27:34 +0000206
207 return ExprType(DefOne(Left.Scale , Ty) + DefOne(Right.Scale , Ty),
Chris Lattner50020222001-11-26 18:53:07 +0000208 Right.Var,
Chris Lattner69f8ce02001-09-11 04:27:34 +0000209 DefZero(Left.Offset, Ty) + DefZero(Right.Offset, Ty));
210 default:
211 assert(0 && "Dont' know how to handle this case!");
212 return ExprType();
213 }
214}
215
216// negate - Negate the value of the specified expression...
217//
218static inline ExprType negate(const ExprType &E, Value *V) {
219 const Type *Ty = V->getType();
Chris Lattnercb05e782002-03-11 20:50:24 +0000220 ConstantInt *Zero = getUnsignedConstant(0, Ty);
221 ConstantInt *One = getUnsignedConstant(1, Ty);
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000222 ConstantInt *NegOne = cast<ConstantInt>(*Zero - *One);
Chris Lattner69f8ce02001-09-11 04:27:34 +0000223 if (NegOne == 0) return V; // Couldn't subtract values...
224
225 return ExprType(DefOne (E.Scale , Ty) * NegOne, E.Var,
226 DefZero(E.Offset, Ty) * NegOne);
227}
Chris Lattner19f31f22001-07-21 19:07:19 +0000228
Chris Lattner369bbeb2001-07-20 19:17:55 +0000229
230// ClassifyExpression: Analyze an expression to determine the complexity of the
231// expression, and which other values it depends on.
232//
233// Note that this analysis cannot get into infinite loops because it treats PHI
234// nodes as being an unknown linear expression.
235//
Chris Lattner19f31f22001-07-21 19:07:19 +0000236ExprType analysis::ClassifyExpression(Value *Expr) {
Chris Lattner369bbeb2001-07-20 19:17:55 +0000237 assert(Expr != 0 && "Can't classify a null expression!");
Chris Lattner0da29c82001-12-05 19:38:29 +0000238 if (Expr->getType() == Type::FloatTy || Expr->getType() == Type::DoubleTy)
239 return Expr; // FIXME: Can't handle FP expressions
240
Chris Lattner369bbeb2001-07-20 19:17:55 +0000241 switch (Expr->getValueType()) {
242 case Value::InstructionVal: break; // Instruction... hmmm... investigate.
243 case Value::TypeVal: case Value::BasicBlockVal:
Chris Lattner96d0f302002-04-28 04:50:00 +0000244 case Value::FunctionVal: default:
Chris Lattner481fafe2001-12-13 00:45:06 +0000245 //assert(0 && "Unexpected expression type to classify!");
Chris Lattner697954c2002-01-20 22:54:45 +0000246 std::cerr << "Bizarre thing to expr classify: " << Expr << "\n";
Chris Lattner481fafe2001-12-13 00:45:06 +0000247 return Expr;
Chris Lattnere590ff22002-03-26 17:55:33 +0000248 case Value::GlobalVariableVal: // Global Variable & Function argument:
Chris Lattner73e21422002-04-09 19:48:49 +0000249 case Value::ArgumentVal: // nothing known, return variable itself
Chris Lattner369bbeb2001-07-20 19:17:55 +0000250 return Expr;
251 case Value::ConstantVal: // Constant value, just return constant
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000252 Constant *CPV = cast<Constant>(Expr);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000253 if (CPV->getType()->isIntegral()) { // It's an integral constant!
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000254 ConstantInt *CPI = cast<ConstantInt>(Expr);
Chris Lattner69f8ce02001-09-11 04:27:34 +0000255 return ExprType(CPI->equalsInt(0) ? 0 : CPI);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000256 }
257 return Expr;
258 }
259
Chris Lattner9636a912001-10-01 16:18:37 +0000260 Instruction *I = cast<Instruction>(Expr);
Chris Lattner19f31f22001-07-21 19:07:19 +0000261 const Type *Ty = I->getType();
Chris Lattner369bbeb2001-07-20 19:17:55 +0000262
263 switch (I->getOpcode()) { // Handle each instruction type seperately
264 case Instruction::Add: {
Chris Lattner19f31f22001-07-21 19:07:19 +0000265 ExprType Left (ClassifyExpression(I->getOperand(0)));
266 ExprType Right(ClassifyExpression(I->getOperand(1)));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000267 return handleAddition(Left, Right, I);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000268 } // end case Instruction::Add
269
Chris Lattner69f8ce02001-09-11 04:27:34 +0000270 case Instruction::Sub: {
271 ExprType Left (ClassifyExpression(I->getOperand(0)));
272 ExprType Right(ClassifyExpression(I->getOperand(1)));
Chris Lattner50020222001-11-26 18:53:07 +0000273 ExprType RightNeg = negate(Right, I);
274 if (RightNeg.Var == I && !RightNeg.Offset && !RightNeg.Scale)
275 return I; // Could not negate value...
276 return handleAddition(Left, RightNeg, I);
Chris Lattner69f8ce02001-09-11 04:27:34 +0000277 } // end case Instruction::Sub
278
Chris Lattner369bbeb2001-07-20 19:17:55 +0000279 case Instruction::Shl: {
Chris Lattner19f31f22001-07-21 19:07:19 +0000280 ExprType Right(ClassifyExpression(I->getOperand(1)));
281 if (Right.ExprTy != ExprType::Constant) break;
282 ExprType Left(ClassifyExpression(I->getOperand(0)));
283 if (Right.Offset == 0) return Left; // shl x, 0 = x
284 assert(Right.Offset->getType() == Type::UByteTy &&
Chris Lattner369bbeb2001-07-20 19:17:55 +0000285 "Shift amount must always be a unsigned byte!");
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000286 uint64_t ShiftAmount = ((ConstantUInt*)Right.Offset)->getValue();
287 ConstantInt *Multiplier = getUnsignedConstant(1ULL << ShiftAmount, Ty);
Chris Lattner9b534262002-03-14 22:35:50 +0000288
289 // We don't know how to classify it if they are shifting by more than what
290 // is reasonable. In most cases, the result will be zero, but there is one
291 // class of cases where it is not, so we cannot optimize without checking
292 // for it. The case is when you are shifting a signed value by 1 less than
293 // the number of bits in the value. For example:
294 // %X = shl sbyte %Y, ubyte 7
295 // will try to form an sbyte multiplier of 128, which will give a null
296 // multiplier, even though the result is not 0. Until we can check for this
297 // case, be conservative. TODO.
298 //
299 if (Multiplier == 0)
300 return Expr;
301
Chris Lattner8e195e02001-09-07 16:31:04 +0000302 return ExprType(DefOne(Left.Scale, Ty) * Multiplier, Left.Var,
303 DefZero(Left.Offset, Ty) * Multiplier);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000304 } // end case Instruction::Shl
305
Chris Lattner19f31f22001-07-21 19:07:19 +0000306 case Instruction::Mul: {
307 ExprType Left (ClassifyExpression(I->getOperand(0)));
308 ExprType Right(ClassifyExpression(I->getOperand(1)));
309 if (Left.ExprTy > Right.ExprTy)
Chris Lattner697954c2002-01-20 22:54:45 +0000310 std::swap(Left, Right); // Make left be simpler than right
Chris Lattner19f31f22001-07-21 19:07:19 +0000311
312 if (Left.ExprTy != ExprType::Constant) // RHS must be > constant
313 return I; // Quadratic eqn! :(
314
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000315 const ConstantInt *Offs = Left.Offset;
Chris Lattner19f31f22001-07-21 19:07:19 +0000316 if (Offs == 0) return ExprType();
Chris Lattner8e195e02001-09-07 16:31:04 +0000317 return ExprType( DefOne(Right.Scale , Ty) * Offs, Right.Var,
318 DefZero(Right.Offset, Ty) * Offs);
Chris Lattner19f31f22001-07-21 19:07:19 +0000319 } // end case Instruction::Mul
320
321 case Instruction::Cast: {
322 ExprType Src(ClassifyExpression(I->getOperand(0)));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000323 const Type *DestTy = I->getType();
Chris Lattner9b625032002-05-06 16:15:30 +0000324 if (isa<PointerType>(DestTy))
Chris Lattner69f8ce02001-09-11 04:27:34 +0000325 DestTy = Type::ULongTy; // Pointer types are represented as ulong
Chris Lattner19f31f22001-07-21 19:07:19 +0000326
Chris Lattner882572a2001-11-26 16:53:50 +0000327 /*
328 if (!Src.getExprType(0)->isLosslesslyConvertableTo(DestTy)) {
329 if (Src.ExprTy != ExprType::Constant)
330 return I; // Converting cast, and not a constant value...
331 }
332 */
Chris Lattner19f31f22001-07-21 19:07:19 +0000333
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000334 const ConstantInt *Offset = Src.Offset;
335 const ConstantInt *Scale = Src.Scale;
Chris Lattner882572a2001-11-26 16:53:50 +0000336 if (Offset) {
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000337 const Constant *CPV = ConstantFoldCastInstruction(Offset, DestTy);
Chris Lattner882572a2001-11-26 16:53:50 +0000338 if (!CPV) return I;
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000339 Offset = cast<ConstantInt>(CPV);
Chris Lattner882572a2001-11-26 16:53:50 +0000340 }
341 if (Scale) {
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000342 const Constant *CPV = ConstantFoldCastInstruction(Scale, DestTy);
Chris Lattner882572a2001-11-26 16:53:50 +0000343 if (!CPV) return I;
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000344 Scale = cast<ConstantInt>(CPV);
Chris Lattner882572a2001-11-26 16:53:50 +0000345 }
346 return ExprType(Scale, Src.Var, Offset);
Chris Lattner19f31f22001-07-21 19:07:19 +0000347 } // end case Instruction::Cast
Chris Lattner793d6782001-07-25 22:47:32 +0000348 // TODO: Handle SUB, SHR?
Chris Lattner369bbeb2001-07-20 19:17:55 +0000349
350 } // end switch
351
352 // Otherwise, I don't know anything about this value!
Chris Lattner19f31f22001-07-21 19:07:19 +0000353 return I;
Chris Lattner369bbeb2001-07-20 19:17:55 +0000354}