blob: eaf58b39e28bdae658084506944f1a9a0e3db9ed [file] [log] [blame]
Misha Brukmana85d6bc2002-11-22 22:42:50 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Chris Lattnerabf05b22003-08-03 21:55:55 +000016#include "X86GenInstrInfo.inc"
Evan Chengaa3c1412006-05-30 21:45:53 +000017#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson718cb662007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng0488db92007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000028
Brian Gaeked0fde302003-11-11 22:41:34 +000029using namespace llvm;
30
Owen Anderson43dbe052008-01-07 01:35:02 +000031namespace {
32 cl::opt<bool>
33 NoFusing("disable-spill-fusing",
34 cl::desc("Disable fusing of spill code into instructions"));
35 cl::opt<bool>
36 PrintFailedFusing("print-failed-fuse-candidates",
37 cl::desc("Print instructions that the allocator wants to"
38 " fuse, but the X86 backend currently can't"),
39 cl::Hidden);
Evan Chengffe2eb02008-04-01 23:26:12 +000040 cl::opt<bool>
41 ReMatPICStubLoad("remat-pic-stub-load",
42 cl::desc("Re-materialize load from stub in PIC mode"),
43 cl::init(false), cl::Hidden);
Owen Anderson43dbe052008-01-07 01:35:02 +000044}
45
Evan Chengaa3c1412006-05-30 21:45:53 +000046X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattner64105522008-01-01 01:03:04 +000047 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Evan Cheng25ab6902006-09-08 06:48:29 +000048 TM(tm), RI(tm, *this) {
Owen Anderson43dbe052008-01-07 01:35:02 +000049 SmallVector<unsigned,16> AmbEntries;
50 static const unsigned OpTbl2Addr[][2] = {
51 { X86::ADC32ri, X86::ADC32mi },
52 { X86::ADC32ri8, X86::ADC32mi8 },
53 { X86::ADC32rr, X86::ADC32mr },
54 { X86::ADC64ri32, X86::ADC64mi32 },
55 { X86::ADC64ri8, X86::ADC64mi8 },
56 { X86::ADC64rr, X86::ADC64mr },
57 { X86::ADD16ri, X86::ADD16mi },
58 { X86::ADD16ri8, X86::ADD16mi8 },
59 { X86::ADD16rr, X86::ADD16mr },
60 { X86::ADD32ri, X86::ADD32mi },
61 { X86::ADD32ri8, X86::ADD32mi8 },
62 { X86::ADD32rr, X86::ADD32mr },
63 { X86::ADD64ri32, X86::ADD64mi32 },
64 { X86::ADD64ri8, X86::ADD64mi8 },
65 { X86::ADD64rr, X86::ADD64mr },
66 { X86::ADD8ri, X86::ADD8mi },
67 { X86::ADD8rr, X86::ADD8mr },
68 { X86::AND16ri, X86::AND16mi },
69 { X86::AND16ri8, X86::AND16mi8 },
70 { X86::AND16rr, X86::AND16mr },
71 { X86::AND32ri, X86::AND32mi },
72 { X86::AND32ri8, X86::AND32mi8 },
73 { X86::AND32rr, X86::AND32mr },
74 { X86::AND64ri32, X86::AND64mi32 },
75 { X86::AND64ri8, X86::AND64mi8 },
76 { X86::AND64rr, X86::AND64mr },
77 { X86::AND8ri, X86::AND8mi },
78 { X86::AND8rr, X86::AND8mr },
79 { X86::DEC16r, X86::DEC16m },
80 { X86::DEC32r, X86::DEC32m },
81 { X86::DEC64_16r, X86::DEC64_16m },
82 { X86::DEC64_32r, X86::DEC64_32m },
83 { X86::DEC64r, X86::DEC64m },
84 { X86::DEC8r, X86::DEC8m },
85 { X86::INC16r, X86::INC16m },
86 { X86::INC32r, X86::INC32m },
87 { X86::INC64_16r, X86::INC64_16m },
88 { X86::INC64_32r, X86::INC64_32m },
89 { X86::INC64r, X86::INC64m },
90 { X86::INC8r, X86::INC8m },
91 { X86::NEG16r, X86::NEG16m },
92 { X86::NEG32r, X86::NEG32m },
93 { X86::NEG64r, X86::NEG64m },
94 { X86::NEG8r, X86::NEG8m },
95 { X86::NOT16r, X86::NOT16m },
96 { X86::NOT32r, X86::NOT32m },
97 { X86::NOT64r, X86::NOT64m },
98 { X86::NOT8r, X86::NOT8m },
99 { X86::OR16ri, X86::OR16mi },
100 { X86::OR16ri8, X86::OR16mi8 },
101 { X86::OR16rr, X86::OR16mr },
102 { X86::OR32ri, X86::OR32mi },
103 { X86::OR32ri8, X86::OR32mi8 },
104 { X86::OR32rr, X86::OR32mr },
105 { X86::OR64ri32, X86::OR64mi32 },
106 { X86::OR64ri8, X86::OR64mi8 },
107 { X86::OR64rr, X86::OR64mr },
108 { X86::OR8ri, X86::OR8mi },
109 { X86::OR8rr, X86::OR8mr },
110 { X86::ROL16r1, X86::ROL16m1 },
111 { X86::ROL16rCL, X86::ROL16mCL },
112 { X86::ROL16ri, X86::ROL16mi },
113 { X86::ROL32r1, X86::ROL32m1 },
114 { X86::ROL32rCL, X86::ROL32mCL },
115 { X86::ROL32ri, X86::ROL32mi },
116 { X86::ROL64r1, X86::ROL64m1 },
117 { X86::ROL64rCL, X86::ROL64mCL },
118 { X86::ROL64ri, X86::ROL64mi },
119 { X86::ROL8r1, X86::ROL8m1 },
120 { X86::ROL8rCL, X86::ROL8mCL },
121 { X86::ROL8ri, X86::ROL8mi },
122 { X86::ROR16r1, X86::ROR16m1 },
123 { X86::ROR16rCL, X86::ROR16mCL },
124 { X86::ROR16ri, X86::ROR16mi },
125 { X86::ROR32r1, X86::ROR32m1 },
126 { X86::ROR32rCL, X86::ROR32mCL },
127 { X86::ROR32ri, X86::ROR32mi },
128 { X86::ROR64r1, X86::ROR64m1 },
129 { X86::ROR64rCL, X86::ROR64mCL },
130 { X86::ROR64ri, X86::ROR64mi },
131 { X86::ROR8r1, X86::ROR8m1 },
132 { X86::ROR8rCL, X86::ROR8mCL },
133 { X86::ROR8ri, X86::ROR8mi },
134 { X86::SAR16r1, X86::SAR16m1 },
135 { X86::SAR16rCL, X86::SAR16mCL },
136 { X86::SAR16ri, X86::SAR16mi },
137 { X86::SAR32r1, X86::SAR32m1 },
138 { X86::SAR32rCL, X86::SAR32mCL },
139 { X86::SAR32ri, X86::SAR32mi },
140 { X86::SAR64r1, X86::SAR64m1 },
141 { X86::SAR64rCL, X86::SAR64mCL },
142 { X86::SAR64ri, X86::SAR64mi },
143 { X86::SAR8r1, X86::SAR8m1 },
144 { X86::SAR8rCL, X86::SAR8mCL },
145 { X86::SAR8ri, X86::SAR8mi },
146 { X86::SBB32ri, X86::SBB32mi },
147 { X86::SBB32ri8, X86::SBB32mi8 },
148 { X86::SBB32rr, X86::SBB32mr },
149 { X86::SBB64ri32, X86::SBB64mi32 },
150 { X86::SBB64ri8, X86::SBB64mi8 },
151 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson43dbe052008-01-07 01:35:02 +0000152 { X86::SHL16rCL, X86::SHL16mCL },
153 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000154 { X86::SHL32rCL, X86::SHL32mCL },
155 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000156 { X86::SHL64rCL, X86::SHL64mCL },
157 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000158 { X86::SHL8rCL, X86::SHL8mCL },
159 { X86::SHL8ri, X86::SHL8mi },
160 { X86::SHLD16rrCL, X86::SHLD16mrCL },
161 { X86::SHLD16rri8, X86::SHLD16mri8 },
162 { X86::SHLD32rrCL, X86::SHLD32mrCL },
163 { X86::SHLD32rri8, X86::SHLD32mri8 },
164 { X86::SHLD64rrCL, X86::SHLD64mrCL },
165 { X86::SHLD64rri8, X86::SHLD64mri8 },
166 { X86::SHR16r1, X86::SHR16m1 },
167 { X86::SHR16rCL, X86::SHR16mCL },
168 { X86::SHR16ri, X86::SHR16mi },
169 { X86::SHR32r1, X86::SHR32m1 },
170 { X86::SHR32rCL, X86::SHR32mCL },
171 { X86::SHR32ri, X86::SHR32mi },
172 { X86::SHR64r1, X86::SHR64m1 },
173 { X86::SHR64rCL, X86::SHR64mCL },
174 { X86::SHR64ri, X86::SHR64mi },
175 { X86::SHR8r1, X86::SHR8m1 },
176 { X86::SHR8rCL, X86::SHR8mCL },
177 { X86::SHR8ri, X86::SHR8mi },
178 { X86::SHRD16rrCL, X86::SHRD16mrCL },
179 { X86::SHRD16rri8, X86::SHRD16mri8 },
180 { X86::SHRD32rrCL, X86::SHRD32mrCL },
181 { X86::SHRD32rri8, X86::SHRD32mri8 },
182 { X86::SHRD64rrCL, X86::SHRD64mrCL },
183 { X86::SHRD64rri8, X86::SHRD64mri8 },
184 { X86::SUB16ri, X86::SUB16mi },
185 { X86::SUB16ri8, X86::SUB16mi8 },
186 { X86::SUB16rr, X86::SUB16mr },
187 { X86::SUB32ri, X86::SUB32mi },
188 { X86::SUB32ri8, X86::SUB32mi8 },
189 { X86::SUB32rr, X86::SUB32mr },
190 { X86::SUB64ri32, X86::SUB64mi32 },
191 { X86::SUB64ri8, X86::SUB64mi8 },
192 { X86::SUB64rr, X86::SUB64mr },
193 { X86::SUB8ri, X86::SUB8mi },
194 { X86::SUB8rr, X86::SUB8mr },
195 { X86::XOR16ri, X86::XOR16mi },
196 { X86::XOR16ri8, X86::XOR16mi8 },
197 { X86::XOR16rr, X86::XOR16mr },
198 { X86::XOR32ri, X86::XOR32mi },
199 { X86::XOR32ri8, X86::XOR32mi8 },
200 { X86::XOR32rr, X86::XOR32mr },
201 { X86::XOR64ri32, X86::XOR64mi32 },
202 { X86::XOR64ri8, X86::XOR64mi8 },
203 { X86::XOR64rr, X86::XOR64mr },
204 { X86::XOR8ri, X86::XOR8mi },
205 { X86::XOR8rr, X86::XOR8mr }
206 };
207
208 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
209 unsigned RegOp = OpTbl2Addr[i][0];
210 unsigned MemOp = OpTbl2Addr[i][1];
211 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
212 assert(false && "Duplicated entries?");
213 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
214 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
215 std::make_pair(RegOp, AuxInfo))))
216 AmbEntries.push_back(MemOp);
217 }
218
219 // If the third value is 1, then it's folding either a load or a store.
220 static const unsigned OpTbl0[][3] = {
221 { X86::CALL32r, X86::CALL32m, 1 },
222 { X86::CALL64r, X86::CALL64m, 1 },
223 { X86::CMP16ri, X86::CMP16mi, 1 },
224 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000225 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000226 { X86::CMP32ri, X86::CMP32mi, 1 },
227 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000228 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000229 { X86::CMP64ri32, X86::CMP64mi32, 1 },
230 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000231 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000232 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohman27845362008-03-25 16:53:19 +0000233 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000234 { X86::DIV16r, X86::DIV16m, 1 },
235 { X86::DIV32r, X86::DIV32m, 1 },
236 { X86::DIV64r, X86::DIV64m, 1 },
237 { X86::DIV8r, X86::DIV8m, 1 },
238 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
239 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
240 { X86::IDIV16r, X86::IDIV16m, 1 },
241 { X86::IDIV32r, X86::IDIV32m, 1 },
242 { X86::IDIV64r, X86::IDIV64m, 1 },
243 { X86::IDIV8r, X86::IDIV8m, 1 },
244 { X86::IMUL16r, X86::IMUL16m, 1 },
245 { X86::IMUL32r, X86::IMUL32m, 1 },
246 { X86::IMUL64r, X86::IMUL64m, 1 },
247 { X86::IMUL8r, X86::IMUL8m, 1 },
248 { X86::JMP32r, X86::JMP32m, 1 },
249 { X86::JMP64r, X86::JMP64m, 1 },
250 { X86::MOV16ri, X86::MOV16mi, 0 },
251 { X86::MOV16rr, X86::MOV16mr, 0 },
252 { X86::MOV16to16_, X86::MOV16_mr, 0 },
253 { X86::MOV32ri, X86::MOV32mi, 0 },
254 { X86::MOV32rr, X86::MOV32mr, 0 },
255 { X86::MOV32to32_, X86::MOV32_mr, 0 },
256 { X86::MOV64ri32, X86::MOV64mi32, 0 },
257 { X86::MOV64rr, X86::MOV64mr, 0 },
258 { X86::MOV8ri, X86::MOV8mi, 0 },
259 { X86::MOV8rr, X86::MOV8mr, 0 },
260 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
261 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
262 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
263 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
264 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
265 { X86::MOVSDrr, X86::MOVSDmr, 0 },
266 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
267 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
268 { X86::MOVSSrr, X86::MOVSSmr, 0 },
269 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
270 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
271 { X86::MUL16r, X86::MUL16m, 1 },
272 { X86::MUL32r, X86::MUL32m, 1 },
273 { X86::MUL64r, X86::MUL64m, 1 },
274 { X86::MUL8r, X86::MUL8m, 1 },
275 { X86::SETAEr, X86::SETAEm, 0 },
276 { X86::SETAr, X86::SETAm, 0 },
277 { X86::SETBEr, X86::SETBEm, 0 },
278 { X86::SETBr, X86::SETBm, 0 },
279 { X86::SETEr, X86::SETEm, 0 },
280 { X86::SETGEr, X86::SETGEm, 0 },
281 { X86::SETGr, X86::SETGm, 0 },
282 { X86::SETLEr, X86::SETLEm, 0 },
283 { X86::SETLr, X86::SETLm, 0 },
284 { X86::SETNEr, X86::SETNEm, 0 },
285 { X86::SETNPr, X86::SETNPm, 0 },
286 { X86::SETNSr, X86::SETNSm, 0 },
287 { X86::SETPr, X86::SETPm, 0 },
288 { X86::SETSr, X86::SETSm, 0 },
289 { X86::TAILJMPr, X86::TAILJMPm, 1 },
290 { X86::TEST16ri, X86::TEST16mi, 1 },
291 { X86::TEST32ri, X86::TEST32mi, 1 },
292 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000293 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000294 };
295
296 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
297 unsigned RegOp = OpTbl0[i][0];
298 unsigned MemOp = OpTbl0[i][1];
299 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
300 assert(false && "Duplicated entries?");
301 unsigned FoldedLoad = OpTbl0[i][2];
302 // Index 0, folded load or store.
303 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
304 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
305 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
306 std::make_pair(RegOp, AuxInfo))))
307 AmbEntries.push_back(MemOp);
308 }
309
310 static const unsigned OpTbl1[][2] = {
311 { X86::CMP16rr, X86::CMP16rm },
312 { X86::CMP32rr, X86::CMP32rm },
313 { X86::CMP64rr, X86::CMP64rm },
314 { X86::CMP8rr, X86::CMP8rm },
315 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
316 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
317 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
318 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
319 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
320 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
321 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
322 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
323 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
324 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
325 { X86::FsMOVAPDrr, X86::MOVSDrm },
326 { X86::FsMOVAPSrr, X86::MOVSSrm },
327 { X86::IMUL16rri, X86::IMUL16rmi },
328 { X86::IMUL16rri8, X86::IMUL16rmi8 },
329 { X86::IMUL32rri, X86::IMUL32rmi },
330 { X86::IMUL32rri8, X86::IMUL32rmi8 },
331 { X86::IMUL64rri32, X86::IMUL64rmi32 },
332 { X86::IMUL64rri8, X86::IMUL64rmi8 },
333 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
334 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
335 { X86::Int_COMISDrr, X86::Int_COMISDrm },
336 { X86::Int_COMISSrr, X86::Int_COMISSrm },
337 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
338 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
339 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
340 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
341 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
342 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
343 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
344 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
345 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
346 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
347 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
348 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
349 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
350 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
351 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
352 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
353 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
354 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
355 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
356 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
357 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
358 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
359 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
360 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
361 { X86::MOV16rr, X86::MOV16rm },
362 { X86::MOV16to16_, X86::MOV16_rm },
363 { X86::MOV32rr, X86::MOV32rm },
364 { X86::MOV32to32_, X86::MOV32_rm },
365 { X86::MOV64rr, X86::MOV64rm },
366 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
367 { X86::MOV64toSDrr, X86::MOV64toSDrm },
368 { X86::MOV8rr, X86::MOV8rm },
369 { X86::MOVAPDrr, X86::MOVAPDrm },
370 { X86::MOVAPSrr, X86::MOVAPSrm },
371 { X86::MOVDDUPrr, X86::MOVDDUPrm },
372 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
373 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
374 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
375 { X86::MOVSDrr, X86::MOVSDrm },
376 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
377 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
378 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
379 { X86::MOVSSrr, X86::MOVSSrm },
380 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
381 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
382 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
383 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
384 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
385 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
386 { X86::MOVUPDrr, X86::MOVUPDrm },
387 { X86::MOVUPSrr, X86::MOVUPSrm },
388 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
389 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
390 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
391 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
392 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
393 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
394 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
395 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
396 { X86::PSHUFDri, X86::PSHUFDmi },
397 { X86::PSHUFHWri, X86::PSHUFHWmi },
398 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000399 { X86::RCPPSr, X86::RCPPSm },
400 { X86::RCPPSr_Int, X86::RCPPSm_Int },
401 { X86::RSQRTPSr, X86::RSQRTPSm },
402 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
403 { X86::RSQRTSSr, X86::RSQRTSSm },
404 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
405 { X86::SQRTPDr, X86::SQRTPDm },
406 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
407 { X86::SQRTPSr, X86::SQRTPSm },
408 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
409 { X86::SQRTSDr, X86::SQRTSDm },
410 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
411 { X86::SQRTSSr, X86::SQRTSSm },
412 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
413 { X86::TEST16rr, X86::TEST16rm },
414 { X86::TEST32rr, X86::TEST32rm },
415 { X86::TEST64rr, X86::TEST64rm },
416 { X86::TEST8rr, X86::TEST8rm },
417 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
418 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf9b3f372008-01-11 18:00:50 +0000419 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson43dbe052008-01-07 01:35:02 +0000420 };
421
422 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
423 unsigned RegOp = OpTbl1[i][0];
424 unsigned MemOp = OpTbl1[i][1];
425 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
426 assert(false && "Duplicated entries?");
427 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
428 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
429 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
430 std::make_pair(RegOp, AuxInfo))))
431 AmbEntries.push_back(MemOp);
432 }
433
434 static const unsigned OpTbl2[][2] = {
435 { X86::ADC32rr, X86::ADC32rm },
436 { X86::ADC64rr, X86::ADC64rm },
437 { X86::ADD16rr, X86::ADD16rm },
438 { X86::ADD32rr, X86::ADD32rm },
439 { X86::ADD64rr, X86::ADD64rm },
440 { X86::ADD8rr, X86::ADD8rm },
441 { X86::ADDPDrr, X86::ADDPDrm },
442 { X86::ADDPSrr, X86::ADDPSrm },
443 { X86::ADDSDrr, X86::ADDSDrm },
444 { X86::ADDSSrr, X86::ADDSSrm },
445 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
446 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
447 { X86::AND16rr, X86::AND16rm },
448 { X86::AND32rr, X86::AND32rm },
449 { X86::AND64rr, X86::AND64rm },
450 { X86::AND8rr, X86::AND8rm },
451 { X86::ANDNPDrr, X86::ANDNPDrm },
452 { X86::ANDNPSrr, X86::ANDNPSrm },
453 { X86::ANDPDrr, X86::ANDPDrm },
454 { X86::ANDPSrr, X86::ANDPSrm },
455 { X86::CMOVA16rr, X86::CMOVA16rm },
456 { X86::CMOVA32rr, X86::CMOVA32rm },
457 { X86::CMOVA64rr, X86::CMOVA64rm },
458 { X86::CMOVAE16rr, X86::CMOVAE16rm },
459 { X86::CMOVAE32rr, X86::CMOVAE32rm },
460 { X86::CMOVAE64rr, X86::CMOVAE64rm },
461 { X86::CMOVB16rr, X86::CMOVB16rm },
462 { X86::CMOVB32rr, X86::CMOVB32rm },
463 { X86::CMOVB64rr, X86::CMOVB64rm },
464 { X86::CMOVBE16rr, X86::CMOVBE16rm },
465 { X86::CMOVBE32rr, X86::CMOVBE32rm },
466 { X86::CMOVBE64rr, X86::CMOVBE64rm },
467 { X86::CMOVE16rr, X86::CMOVE16rm },
468 { X86::CMOVE32rr, X86::CMOVE32rm },
469 { X86::CMOVE64rr, X86::CMOVE64rm },
470 { X86::CMOVG16rr, X86::CMOVG16rm },
471 { X86::CMOVG32rr, X86::CMOVG32rm },
472 { X86::CMOVG64rr, X86::CMOVG64rm },
473 { X86::CMOVGE16rr, X86::CMOVGE16rm },
474 { X86::CMOVGE32rr, X86::CMOVGE32rm },
475 { X86::CMOVGE64rr, X86::CMOVGE64rm },
476 { X86::CMOVL16rr, X86::CMOVL16rm },
477 { X86::CMOVL32rr, X86::CMOVL32rm },
478 { X86::CMOVL64rr, X86::CMOVL64rm },
479 { X86::CMOVLE16rr, X86::CMOVLE16rm },
480 { X86::CMOVLE32rr, X86::CMOVLE32rm },
481 { X86::CMOVLE64rr, X86::CMOVLE64rm },
482 { X86::CMOVNE16rr, X86::CMOVNE16rm },
483 { X86::CMOVNE32rr, X86::CMOVNE32rm },
484 { X86::CMOVNE64rr, X86::CMOVNE64rm },
485 { X86::CMOVNP16rr, X86::CMOVNP16rm },
486 { X86::CMOVNP32rr, X86::CMOVNP32rm },
487 { X86::CMOVNP64rr, X86::CMOVNP64rm },
488 { X86::CMOVNS16rr, X86::CMOVNS16rm },
489 { X86::CMOVNS32rr, X86::CMOVNS32rm },
490 { X86::CMOVNS64rr, X86::CMOVNS64rm },
491 { X86::CMOVP16rr, X86::CMOVP16rm },
492 { X86::CMOVP32rr, X86::CMOVP32rm },
493 { X86::CMOVP64rr, X86::CMOVP64rm },
494 { X86::CMOVS16rr, X86::CMOVS16rm },
495 { X86::CMOVS32rr, X86::CMOVS32rm },
496 { X86::CMOVS64rr, X86::CMOVS64rm },
497 { X86::CMPPDrri, X86::CMPPDrmi },
498 { X86::CMPPSrri, X86::CMPPSrmi },
499 { X86::CMPSDrr, X86::CMPSDrm },
500 { X86::CMPSSrr, X86::CMPSSrm },
501 { X86::DIVPDrr, X86::DIVPDrm },
502 { X86::DIVPSrr, X86::DIVPSrm },
503 { X86::DIVSDrr, X86::DIVSDrm },
504 { X86::DIVSSrr, X86::DIVSSrm },
Evan Cheng33663fc2008-02-08 00:12:56 +0000505 { X86::FsANDNPDrr, X86::FsANDNPDrm },
506 { X86::FsANDNPSrr, X86::FsANDNPSrm },
507 { X86::FsANDPDrr, X86::FsANDPDrm },
508 { X86::FsANDPSrr, X86::FsANDPSrm },
509 { X86::FsORPDrr, X86::FsORPDrm },
510 { X86::FsORPSrr, X86::FsORPSrm },
511 { X86::FsXORPDrr, X86::FsXORPDrm },
512 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson43dbe052008-01-07 01:35:02 +0000513 { X86::HADDPDrr, X86::HADDPDrm },
514 { X86::HADDPSrr, X86::HADDPSrm },
515 { X86::HSUBPDrr, X86::HSUBPDrm },
516 { X86::HSUBPSrr, X86::HSUBPSrm },
517 { X86::IMUL16rr, X86::IMUL16rm },
518 { X86::IMUL32rr, X86::IMUL32rm },
519 { X86::IMUL64rr, X86::IMUL64rm },
520 { X86::MAXPDrr, X86::MAXPDrm },
521 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
522 { X86::MAXPSrr, X86::MAXPSrm },
523 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
524 { X86::MAXSDrr, X86::MAXSDrm },
525 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
526 { X86::MAXSSrr, X86::MAXSSrm },
527 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
528 { X86::MINPDrr, X86::MINPDrm },
529 { X86::MINPDrr_Int, X86::MINPDrm_Int },
530 { X86::MINPSrr, X86::MINPSrm },
531 { X86::MINPSrr_Int, X86::MINPSrm_Int },
532 { X86::MINSDrr, X86::MINSDrm },
533 { X86::MINSDrr_Int, X86::MINSDrm_Int },
534 { X86::MINSSrr, X86::MINSSrm },
535 { X86::MINSSrr_Int, X86::MINSSrm_Int },
536 { X86::MULPDrr, X86::MULPDrm },
537 { X86::MULPSrr, X86::MULPSrm },
538 { X86::MULSDrr, X86::MULSDrm },
539 { X86::MULSSrr, X86::MULSSrm },
540 { X86::OR16rr, X86::OR16rm },
541 { X86::OR32rr, X86::OR32rm },
542 { X86::OR64rr, X86::OR64rm },
543 { X86::OR8rr, X86::OR8rm },
544 { X86::ORPDrr, X86::ORPDrm },
545 { X86::ORPSrr, X86::ORPSrm },
546 { X86::PACKSSDWrr, X86::PACKSSDWrm },
547 { X86::PACKSSWBrr, X86::PACKSSWBrm },
548 { X86::PACKUSWBrr, X86::PACKUSWBrm },
549 { X86::PADDBrr, X86::PADDBrm },
550 { X86::PADDDrr, X86::PADDDrm },
551 { X86::PADDQrr, X86::PADDQrm },
552 { X86::PADDSBrr, X86::PADDSBrm },
553 { X86::PADDSWrr, X86::PADDSWrm },
554 { X86::PADDWrr, X86::PADDWrm },
555 { X86::PANDNrr, X86::PANDNrm },
556 { X86::PANDrr, X86::PANDrm },
557 { X86::PAVGBrr, X86::PAVGBrm },
558 { X86::PAVGWrr, X86::PAVGWrm },
559 { X86::PCMPEQBrr, X86::PCMPEQBrm },
560 { X86::PCMPEQDrr, X86::PCMPEQDrm },
561 { X86::PCMPEQWrr, X86::PCMPEQWrm },
562 { X86::PCMPGTBrr, X86::PCMPGTBrm },
563 { X86::PCMPGTDrr, X86::PCMPGTDrm },
564 { X86::PCMPGTWrr, X86::PCMPGTWrm },
565 { X86::PINSRWrri, X86::PINSRWrmi },
566 { X86::PMADDWDrr, X86::PMADDWDrm },
567 { X86::PMAXSWrr, X86::PMAXSWrm },
568 { X86::PMAXUBrr, X86::PMAXUBrm },
569 { X86::PMINSWrr, X86::PMINSWrm },
570 { X86::PMINUBrr, X86::PMINUBrm },
571 { X86::PMULHUWrr, X86::PMULHUWrm },
572 { X86::PMULHWrr, X86::PMULHWrm },
573 { X86::PMULLWrr, X86::PMULLWrm },
574 { X86::PMULUDQrr, X86::PMULUDQrm },
575 { X86::PORrr, X86::PORrm },
576 { X86::PSADBWrr, X86::PSADBWrm },
577 { X86::PSLLDrr, X86::PSLLDrm },
578 { X86::PSLLQrr, X86::PSLLQrm },
579 { X86::PSLLWrr, X86::PSLLWrm },
580 { X86::PSRADrr, X86::PSRADrm },
581 { X86::PSRAWrr, X86::PSRAWrm },
582 { X86::PSRLDrr, X86::PSRLDrm },
583 { X86::PSRLQrr, X86::PSRLQrm },
584 { X86::PSRLWrr, X86::PSRLWrm },
585 { X86::PSUBBrr, X86::PSUBBrm },
586 { X86::PSUBDrr, X86::PSUBDrm },
587 { X86::PSUBSBrr, X86::PSUBSBrm },
588 { X86::PSUBSWrr, X86::PSUBSWrm },
589 { X86::PSUBWrr, X86::PSUBWrm },
590 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
591 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
592 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
593 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
594 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
595 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
596 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
597 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
598 { X86::PXORrr, X86::PXORrm },
599 { X86::SBB32rr, X86::SBB32rm },
600 { X86::SBB64rr, X86::SBB64rm },
601 { X86::SHUFPDrri, X86::SHUFPDrmi },
602 { X86::SHUFPSrri, X86::SHUFPSrmi },
603 { X86::SUB16rr, X86::SUB16rm },
604 { X86::SUB32rr, X86::SUB32rm },
605 { X86::SUB64rr, X86::SUB64rm },
606 { X86::SUB8rr, X86::SUB8rm },
607 { X86::SUBPDrr, X86::SUBPDrm },
608 { X86::SUBPSrr, X86::SUBPSrm },
609 { X86::SUBSDrr, X86::SUBSDrm },
610 { X86::SUBSSrr, X86::SUBSSrm },
611 // FIXME: TEST*rr -> swapped operand of TEST*mr.
612 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
613 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
614 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
615 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
616 { X86::XOR16rr, X86::XOR16rm },
617 { X86::XOR32rr, X86::XOR32rm },
618 { X86::XOR64rr, X86::XOR64rm },
619 { X86::XOR8rr, X86::XOR8rm },
620 { X86::XORPDrr, X86::XORPDrm },
621 { X86::XORPSrr, X86::XORPSrm }
622 };
623
624 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
625 unsigned RegOp = OpTbl2[i][0];
626 unsigned MemOp = OpTbl2[i][1];
627 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
628 assert(false && "Duplicated entries?");
629 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
630 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
631 std::make_pair(RegOp, AuxInfo))))
632 AmbEntries.push_back(MemOp);
633 }
634
635 // Remove ambiguous entries.
636 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Chris Lattner72614082002-10-25 22:55:53 +0000637}
638
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000639bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
640 unsigned& sourceReg,
641 unsigned& destReg) const {
Chris Lattner07f7cc32008-03-11 19:28:17 +0000642 switch (MI.getOpcode()) {
643 default:
644 return false;
645 case X86::MOV8rr:
646 case X86::MOV16rr:
647 case X86::MOV32rr:
648 case X86::MOV64rr:
649 case X86::MOV16to16_:
650 case X86::MOV32to32_:
Chris Lattner07f7cc32008-03-11 19:28:17 +0000651 case X86::MOVSSrr:
652 case X86::MOVSDrr:
Chris Lattner1d386772008-03-11 19:30:09 +0000653
654 // FP Stack register class copies
655 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
656 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
657 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
658
Chris Lattner07f7cc32008-03-11 19:28:17 +0000659 case X86::FsMOVAPSrr:
660 case X86::FsMOVAPDrr:
661 case X86::MOVAPSrr:
662 case X86::MOVAPDrr:
663 case X86::MOVSS2PSrr:
664 case X86::MOVSD2PDrr:
665 case X86::MOVPS2SSrr:
666 case X86::MOVPD2SDrr:
667 case X86::MMX_MOVD64rr:
668 case X86::MMX_MOVQ64rr:
669 assert(MI.getNumOperands() >= 2 &&
670 MI.getOperand(0).isRegister() &&
671 MI.getOperand(1).isRegister() &&
672 "invalid register-register move instruction");
673 sourceReg = MI.getOperand(1).getReg();
674 destReg = MI.getOperand(0).getReg();
675 return true;
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000676 }
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000677}
Alkis Evlogimenos36f506e2004-07-31 09:38:47 +0000678
Chris Lattner40839602006-02-02 20:12:32 +0000679unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
680 int &FrameIndex) const {
681 switch (MI->getOpcode()) {
682 default: break;
683 case X86::MOV8rm:
684 case X86::MOV16rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000685 case X86::MOV16_rm:
Chris Lattner40839602006-02-02 20:12:32 +0000686 case X86::MOV32rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000687 case X86::MOV32_rm:
Evan Cheng25ab6902006-09-08 06:48:29 +0000688 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000689 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +0000690 case X86::MOVSSrm:
691 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +0000692 case X86::MOVAPSrm:
693 case X86::MOVAPDrm:
Bill Wendling823efee2007-04-03 06:00:37 +0000694 case X86::MMX_MOVD64rm:
695 case X86::MMX_MOVQ64rm:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000696 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
697 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000698 MI->getOperand(2).getImm() == 1 &&
Chris Lattner40839602006-02-02 20:12:32 +0000699 MI->getOperand(3).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000700 MI->getOperand(4).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000701 FrameIndex = MI->getOperand(1).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000702 return MI->getOperand(0).getReg();
703 }
704 break;
705 }
706 return 0;
707}
708
709unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
710 int &FrameIndex) const {
711 switch (MI->getOpcode()) {
712 default: break;
713 case X86::MOV8mr:
714 case X86::MOV16mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000715 case X86::MOV16_mr:
Chris Lattner40839602006-02-02 20:12:32 +0000716 case X86::MOV32mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000717 case X86::MOV32_mr:
Evan Cheng25ab6902006-09-08 06:48:29 +0000718 case X86::MOV64mr:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000719 case X86::ST_FpP64m:
Chris Lattner40839602006-02-02 20:12:32 +0000720 case X86::MOVSSmr:
721 case X86::MOVSDmr:
Chris Lattner993c8972006-04-18 16:44:51 +0000722 case X86::MOVAPSmr:
723 case X86::MOVAPDmr:
Bill Wendling823efee2007-04-03 06:00:37 +0000724 case X86::MMX_MOVD64mr:
725 case X86::MMX_MOVQ64mr:
Bill Wendling71bfd112007-04-03 23:48:32 +0000726 case X86::MMX_MOVNTQmr:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000727 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
728 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000729 MI->getOperand(1).getImm() == 1 &&
Chris Lattner1c07e722006-02-02 20:38:12 +0000730 MI->getOperand(2).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000731 MI->getOperand(3).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000732 FrameIndex = MI->getOperand(0).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000733 return MI->getOperand(4).getReg();
734 }
735 break;
736 }
737 return 0;
738}
739
740
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000741/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
742/// X86::MOVPC32r.
743static bool regIsPICBase(unsigned BaseReg, MachineRegisterInfo &MRI) {
744 bool isPICBase = false;
745 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
746 E = MRI.def_end(); I != E; ++I) {
747 MachineInstr *DefMI = I.getOperand().getParent();
748 if (DefMI->getOpcode() != X86::MOVPC32r)
749 return false;
750 assert(!isPICBase && "More than one PIC base?");
751 isPICBase = true;
752 }
753 return isPICBase;
754}
Evan Cheng9d15abe2008-03-31 07:54:19 +0000755
756/// isGVStub - Return true if the GV requires an extra load to get the
757/// real address.
758static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
759 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
760}
Evan Chenge771ebd2008-03-27 01:41:09 +0000761
Bill Wendling041b3f82007-12-08 23:58:46 +0000762bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
Dan Gohmanc101e952007-06-14 20:50:44 +0000763 switch (MI->getOpcode()) {
764 default: break;
Evan Chenge771ebd2008-03-27 01:41:09 +0000765 case X86::MOV8rm:
766 case X86::MOV16rm:
767 case X86::MOV16_rm:
768 case X86::MOV32rm:
769 case X86::MOV32_rm:
770 case X86::MOV64rm:
771 case X86::LD_Fp64m:
772 case X86::MOVSSrm:
773 case X86::MOVSDrm:
774 case X86::MOVAPSrm:
775 case X86::MOVAPDrm:
776 case X86::MMX_MOVD64rm:
777 case X86::MMX_MOVQ64rm: {
778 // Loads from constant pools are trivially rematerializable.
779 if (MI->getOperand(1).isReg() &&
780 MI->getOperand(2).isImm() &&
781 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Evan Cheng9d15abe2008-03-31 07:54:19 +0000782 (MI->getOperand(4).isCPI() ||
783 (MI->getOperand(4).isGlobal() &&
784 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Chenge771ebd2008-03-27 01:41:09 +0000785 unsigned BaseReg = MI->getOperand(1).getReg();
786 if (BaseReg == 0)
787 return true;
788 // Allow re-materialization of PIC load.
Evan Chengffe2eb02008-04-01 23:26:12 +0000789 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
790 return false;
Evan Chenge771ebd2008-03-27 01:41:09 +0000791 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
792 bool isPICBase = false;
793 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
794 E = MRI.def_end(); I != E; ++I) {
795 MachineInstr *DefMI = I.getOperand().getParent();
796 if (DefMI->getOpcode() != X86::MOVPC32r)
797 return false;
798 assert(!isPICBase && "More than one PIC base?");
799 isPICBase = true;
800 }
801 return isPICBase;
802 }
803 return false;
Evan Chengd8850a52008-02-22 09:25:47 +0000804 }
Evan Chenge771ebd2008-03-27 01:41:09 +0000805
806 case X86::LEA32r:
807 case X86::LEA64r: {
808 if (MI->getOperand(1).isReg() &&
809 MI->getOperand(2).isImm() &&
810 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
811 !MI->getOperand(4).isReg()) {
812 // lea fi#, lea GV, etc. are all rematerializable.
813 unsigned BaseReg = MI->getOperand(1).getReg();
814 if (BaseReg == 0)
815 return true;
816 // Allow re-materialization of lea PICBase + x.
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000817 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
818 return regIsPICBase(BaseReg, MRI);
Evan Chenge771ebd2008-03-27 01:41:09 +0000819 }
820 return false;
821 }
Dan Gohmanc101e952007-06-14 20:50:44 +0000822 }
Evan Chenge771ebd2008-03-27 01:41:09 +0000823
Dan Gohmand45eddd2007-06-26 00:48:07 +0000824 // All other instructions marked M_REMATERIALIZABLE are always trivially
825 // rematerializable.
826 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +0000827}
828
Evan Chengca1267c2008-03-31 20:40:39 +0000829void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
830 MachineBasicBlock::iterator I,
831 unsigned DestReg,
832 const MachineInstr *Orig) const {
833 // MOV32r0 etc. are implemented with xor which clobbers condition code.
834 // Re-materialize them as movri instructions to avoid side effects.
835 switch (Orig->getOpcode()) {
836 case X86::MOV8r0:
837 BuildMI(MBB, I, get(X86::MOV8ri), DestReg).addImm(0);
838 break;
839 case X86::MOV16r0:
840 BuildMI(MBB, I, get(X86::MOV16ri), DestReg).addImm(0);
841 break;
842 case X86::MOV32r0:
843 BuildMI(MBB, I, get(X86::MOV32ri), DestReg).addImm(0);
844 break;
845 case X86::MOV64r0:
846 BuildMI(MBB, I, get(X86::MOV64ri32), DestReg).addImm(0);
847 break;
848 default: {
849 MachineInstr *MI = Orig->clone();
850 MI->getOperand(0).setReg(DestReg);
851 MBB.insert(I, MI);
852 break;
853 }
854 }
855}
856
Chris Lattnera22edc82008-01-10 23:08:24 +0000857/// isInvariantLoad - Return true if the specified instruction (which is marked
858/// mayLoad) is loading from a location whose value is invariant across the
859/// function. For example, loading a value from the constant pool or from
860/// from the argument area of a function if it does not change. This should
861/// only return true of *all* loads the instruction does are invariant (if it
862/// does multiple loads).
863bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner828bb6c2008-01-12 00:35:08 +0000864 // This code cares about loads from three cases: constant pool entries,
865 // invariant argument slots, and global stubs. In order to handle these cases
866 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner144ad582008-01-12 00:53:16 +0000867 // operand and base our analysis on it. This is safe because the address of
Chris Lattner828bb6c2008-01-12 00:35:08 +0000868 // none of these three cases is ever used as anything other than a load base
869 // and X86 doesn't have any instructions that load from multiple places.
870
871 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
872 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnera22edc82008-01-10 23:08:24 +0000873 // Loads from constant pools are trivially invariant.
Chris Lattner828bb6c2008-01-12 00:35:08 +0000874 if (MO.isCPI())
Chris Lattner3b5a2212008-01-05 05:28:30 +0000875 return true;
Evan Cheng9d15abe2008-03-31 07:54:19 +0000876
877 if (MO.isGlobal())
878 return isGVStub(MO.getGlobal(), TM);
Chris Lattner828bb6c2008-01-12 00:35:08 +0000879
880 // If this is a load from an invariant stack slot, the load is a constant.
881 if (MO.isFI()) {
882 const MachineFrameInfo &MFI =
883 *MI->getParent()->getParent()->getFrameInfo();
884 int Idx = MO.getIndex();
Chris Lattner87943902008-01-10 04:16:31 +0000885 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
886 }
Bill Wendling627c00b2007-12-17 23:07:56 +0000887 }
Chris Lattner828bb6c2008-01-12 00:35:08 +0000888
Chris Lattnera22edc82008-01-10 23:08:24 +0000889 // All other instances of these instructions are presumed to have other
890 // issues.
Chris Lattnera83b34b2008-01-05 05:26:26 +0000891 return false;
Bill Wendling627c00b2007-12-17 23:07:56 +0000892}
893
Evan Cheng3f411c72007-10-05 08:04:01 +0000894/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
895/// is not marked dead.
896static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +0000897 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
898 MachineOperand &MO = MI->getOperand(i);
899 if (MO.isRegister() && MO.isDef() &&
900 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
901 return true;
902 }
903 }
904 return false;
905}
906
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000907/// convertToThreeAddress - This method must be implemented by targets that
908/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
909/// may be able to convert a two-address instruction into a true
910/// three-address instruction on demand. This allows the X86 target (for
911/// example) to convert ADD and SHL instructions into LEA instructions if they
912/// would require register copies due to two-addressness.
913///
914/// This method returns a null pointer if the transformation cannot be
915/// performed, otherwise it returns the new instruction.
916///
Evan Cheng258ff672006-12-01 21:52:41 +0000917MachineInstr *
918X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
919 MachineBasicBlock::iterator &MBBI,
920 LiveVariables &LV) const {
921 MachineInstr *MI = MBBI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000922 // All instructions input are two-addr instructions. Get the known operands.
923 unsigned Dest = MI->getOperand(0).getReg();
924 unsigned Src = MI->getOperand(1).getReg();
925
Evan Cheng6ce7dc22006-11-15 20:58:11 +0000926 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +0000927 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000928 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Cheng258ff672006-12-01 21:52:41 +0000929 bool DisableLEA16 = true;
930
Evan Cheng559dc462007-10-05 20:34:26 +0000931 unsigned MIOpc = MI->getOpcode();
932 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +0000933 case X86::SHUFPSrri: {
934 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000935 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
936
Evan Chengaa3c1412006-05-30 21:45:53 +0000937 unsigned A = MI->getOperand(0).getReg();
938 unsigned B = MI->getOperand(1).getReg();
939 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000940 unsigned M = MI->getOperand(3).getImm();
941 if (B != C) return 0;
Evan Chengc0f64ff2006-11-27 23:37:22 +0000942 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000943 break;
944 }
Chris Lattner995f5502007-03-28 18:12:31 +0000945 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000946 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +0000947 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
948 // the flags produced by a shift yet, so this is safe.
949 unsigned Dest = MI->getOperand(0).getReg();
950 unsigned Src = MI->getOperand(1).getReg();
951 unsigned ShAmt = MI->getOperand(2).getImm();
952 if (ShAmt == 0 || ShAmt >= 4) return 0;
953
954 NewMI = BuildMI(get(X86::LEA64r), Dest)
955 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
956 break;
957 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000958 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000959 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000960 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
961 // the flags produced by a shift yet, so this is safe.
962 unsigned Dest = MI->getOperand(0).getReg();
963 unsigned Src = MI->getOperand(1).getReg();
964 unsigned ShAmt = MI->getOperand(2).getImm();
965 if (ShAmt == 0 || ShAmt >= 4) return 0;
966
Chris Lattnerf2177b82007-03-28 00:58:40 +0000967 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
968 X86::LEA64_32r : X86::LEA32r;
969 NewMI = BuildMI(get(Opc), Dest)
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000970 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
971 break;
972 }
973 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000974 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +0000975 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
976 // the flags produced by a shift yet, so this is safe.
977 unsigned Dest = MI->getOperand(0).getReg();
978 unsigned Src = MI->getOperand(1).getReg();
979 unsigned ShAmt = MI->getOperand(2).getImm();
980 if (ShAmt == 0 || ShAmt >= 4) return 0;
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000981
Christopher Lambb8133712007-08-10 21:18:25 +0000982 if (DisableLEA16) {
983 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner84bc5422007-12-31 04:13:23 +0000984 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng61d9c862007-09-06 00:14:41 +0000985 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
986 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner84bc5422007-12-31 04:13:23 +0000987 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
988 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Cheng4499e492008-03-10 19:31:26 +0000989
Christopher Lamb1bc10082008-03-11 10:27:36 +0000990 // Build and insert into an implicit UNDEF value. This is OK because
991 // well be shifting and then extracting the lower 16-bits.
Christopher Lambc9298232008-03-16 03:12:01 +0000992 MachineInstr *Undef = BuildMI(get(X86::IMPLICIT_DEF), leaInReg);
993
Christopher Lamb1bc10082008-03-11 10:27:36 +0000994 MachineInstr *Ins =
Christopher Lamb6634e262008-03-13 05:47:01 +0000995 BuildMI(get(X86::INSERT_SUBREG),leaInReg)
Christopher Lambc9298232008-03-16 03:12:01 +0000996 .addReg(leaInReg).addReg(Src).addImm(X86::SUBREG_16BIT);
Christopher Lambb8133712007-08-10 21:18:25 +0000997
998 NewMI = BuildMI(get(Opc), leaOutReg)
999 .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
1000
Evan Cheng61d9c862007-09-06 00:14:41 +00001001 MachineInstr *Ext =
Christopher Lamb1bc10082008-03-11 10:27:36 +00001002 BuildMI(get(X86::EXTRACT_SUBREG), Dest)
1003 .addReg(leaOutReg).addImm(X86::SUBREG_16BIT);
Christopher Lambb8133712007-08-10 21:18:25 +00001004 Ext->copyKillDeadInfo(MI);
1005
Christopher Lambc9298232008-03-16 03:12:01 +00001006 MFI->insert(MBBI, Undef);
Christopher Lambb8133712007-08-10 21:18:25 +00001007 MFI->insert(MBBI, Ins); // Insert the insert_subreg
1008 LV.instructionChanged(MI, NewMI); // Update live variables
1009 LV.addVirtualRegisterKilled(leaInReg, NewMI);
1010 MFI->insert(MBBI, NewMI); // Insert the new inst
1011 LV.addVirtualRegisterKilled(leaOutReg, Ext);
Evan Cheng61d9c862007-09-06 00:14:41 +00001012 MFI->insert(MBBI, Ext); // Insert the extract_subreg
Christopher Lambb8133712007-08-10 21:18:25 +00001013 return Ext;
1014 } else {
1015 NewMI = BuildMI(get(X86::LEA16r), Dest)
1016 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
1017 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001018 break;
Evan Chengccba76b2006-05-30 20:26:50 +00001019 }
Evan Cheng559dc462007-10-05 20:34:26 +00001020 default: {
1021 // The following opcodes also sets the condition code register(s). Only
1022 // convert them to equivalent lea if the condition code register def's
1023 // are dead!
1024 if (hasLiveCondCodeDef(MI))
1025 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +00001026
Evan Chengb76143c2007-10-09 07:14:53 +00001027 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng559dc462007-10-05 20:34:26 +00001028 switch (MIOpc) {
1029 default: return 0;
1030 case X86::INC64r:
Evan Chengb75ed322007-10-05 21:55:32 +00001031 case X86::INC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001032 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001033 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1034 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +00001035 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
1036 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001037 }
Evan Cheng559dc462007-10-05 20:34:26 +00001038 case X86::INC16r:
1039 case X86::INC64_16r:
1040 if (DisableLEA16) return 0;
1041 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1042 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
1043 break;
1044 case X86::DEC64r:
Evan Chengb75ed322007-10-05 21:55:32 +00001045 case X86::DEC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001046 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001047 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1048 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +00001049 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
1050 break;
1051 }
1052 case X86::DEC16r:
1053 case X86::DEC64_16r:
1054 if (DisableLEA16) return 0;
1055 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1056 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
1057 break;
1058 case X86::ADD64rr:
1059 case X86::ADD32rr: {
1060 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001061 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1062 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +00001063 NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
1064 MI->getOperand(2).getReg());
1065 break;
1066 }
1067 case X86::ADD16rr:
1068 if (DisableLEA16) return 0;
1069 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1070 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
1071 MI->getOperand(2).getReg());
1072 break;
1073 case X86::ADD64ri32:
1074 case X86::ADD64ri8:
1075 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1076 if (MI->getOperand(2).isImmediate())
1077 NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001078 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001079 break;
1080 case X86::ADD32ri:
1081 case X86::ADD32ri8:
1082 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001083 if (MI->getOperand(2).isImmediate()) {
1084 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1085 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001086 MI->getOperand(2).getImm());
Evan Chengb76143c2007-10-09 07:14:53 +00001087 }
Evan Cheng559dc462007-10-05 20:34:26 +00001088 break;
1089 case X86::ADD16ri:
1090 case X86::ADD16ri8:
1091 if (DisableLEA16) return 0;
1092 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1093 if (MI->getOperand(2).isImmediate())
1094 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001095 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001096 break;
1097 case X86::SHL16ri:
1098 if (DisableLEA16) return 0;
1099 case X86::SHL32ri:
1100 case X86::SHL64ri: {
1101 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1102 "Unknown shl instruction!");
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001103 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng559dc462007-10-05 20:34:26 +00001104 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1105 X86AddressMode AM;
1106 AM.Scale = 1 << ShAmt;
1107 AM.IndexReg = Src;
1108 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chengb76143c2007-10-09 07:14:53 +00001109 : (MIOpc == X86::SHL32ri
1110 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Cheng559dc462007-10-05 20:34:26 +00001111 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
1112 }
1113 break;
1114 }
1115 }
1116 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001117 }
1118
Evan Cheng15246732008-02-07 08:29:53 +00001119 if (!NewMI) return 0;
1120
Evan Cheng559dc462007-10-05 20:34:26 +00001121 NewMI->copyKillDeadInfo(MI);
1122 LV.instructionChanged(MI, NewMI); // Update live variables
1123 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001124 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001125}
1126
Chris Lattner41e431b2005-01-19 07:11:01 +00001127/// commuteInstruction - We have a few instructions that must be hacked on to
1128/// commute them.
1129///
1130MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
1131 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00001132 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1133 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00001134 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00001135 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1136 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1137 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00001138 unsigned Opc;
1139 unsigned Size;
1140 switch (MI->getOpcode()) {
1141 default: assert(0 && "Unreachable!");
1142 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1143 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1144 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1145 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00001146 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1147 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00001148 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001149 unsigned Amt = MI->getOperand(3).getImm();
Chris Lattner41e431b2005-01-19 07:11:01 +00001150 unsigned A = MI->getOperand(0).getReg();
1151 unsigned B = MI->getOperand(1).getReg();
1152 unsigned C = MI->getOperand(2).getReg();
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001153 bool BisKill = MI->getOperand(1).isKill();
1154 bool CisKill = MI->getOperand(2).isKill();
Evan Chenga4d16a12008-02-13 02:46:49 +00001155 // If machine instrs are no longer in two-address forms, update
1156 // destination register as well.
1157 if (A == B) {
1158 // Must be two address instruction!
1159 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1160 "Expecting a two-address instruction!");
1161 A = C;
1162 CisKill = false;
1163 }
Evan Chengc0f64ff2006-11-27 23:37:22 +00001164 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001165 .addReg(B, false, false, BisKill).addImm(Size-Amt);
Chris Lattner41e431b2005-01-19 07:11:01 +00001166 }
Evan Cheng7ad42d92007-10-05 23:13:21 +00001167 case X86::CMOVB16rr:
1168 case X86::CMOVB32rr:
1169 case X86::CMOVB64rr:
1170 case X86::CMOVAE16rr:
1171 case X86::CMOVAE32rr:
1172 case X86::CMOVAE64rr:
1173 case X86::CMOVE16rr:
1174 case X86::CMOVE32rr:
1175 case X86::CMOVE64rr:
1176 case X86::CMOVNE16rr:
1177 case X86::CMOVNE32rr:
1178 case X86::CMOVNE64rr:
1179 case X86::CMOVBE16rr:
1180 case X86::CMOVBE32rr:
1181 case X86::CMOVBE64rr:
1182 case X86::CMOVA16rr:
1183 case X86::CMOVA32rr:
1184 case X86::CMOVA64rr:
1185 case X86::CMOVL16rr:
1186 case X86::CMOVL32rr:
1187 case X86::CMOVL64rr:
1188 case X86::CMOVGE16rr:
1189 case X86::CMOVGE32rr:
1190 case X86::CMOVGE64rr:
1191 case X86::CMOVLE16rr:
1192 case X86::CMOVLE32rr:
1193 case X86::CMOVLE64rr:
1194 case X86::CMOVG16rr:
1195 case X86::CMOVG32rr:
1196 case X86::CMOVG64rr:
1197 case X86::CMOVS16rr:
1198 case X86::CMOVS32rr:
1199 case X86::CMOVS64rr:
1200 case X86::CMOVNS16rr:
1201 case X86::CMOVNS32rr:
1202 case X86::CMOVNS64rr:
1203 case X86::CMOVP16rr:
1204 case X86::CMOVP32rr:
1205 case X86::CMOVP64rr:
1206 case X86::CMOVNP16rr:
1207 case X86::CMOVNP32rr:
1208 case X86::CMOVNP64rr: {
Evan Cheng7ad42d92007-10-05 23:13:21 +00001209 unsigned Opc = 0;
1210 switch (MI->getOpcode()) {
1211 default: break;
1212 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1213 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1214 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1215 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1216 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1217 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1218 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1219 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1220 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1221 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1222 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1223 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1224 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1225 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1226 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1227 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1228 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1229 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1230 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1231 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1232 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1233 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1234 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1235 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1236 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1237 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1238 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1239 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1240 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1241 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1242 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1243 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1244 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1245 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1246 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1247 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1248 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1249 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1250 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1251 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1252 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1253 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1254 }
1255
Chris Lattner5080f4d2008-01-11 18:10:50 +00001256 MI->setDesc(get(Opc));
Evan Cheng7ad42d92007-10-05 23:13:21 +00001257 // Fallthrough intended.
1258 }
Chris Lattner41e431b2005-01-19 07:11:01 +00001259 default:
Chris Lattner264e6fe2008-01-01 01:05:34 +00001260 return TargetInstrInfoImpl::commuteInstruction(MI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001261 }
1262}
1263
Chris Lattner7fbe9722006-10-20 17:42:20 +00001264static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1265 switch (BrOpc) {
1266 default: return X86::COND_INVALID;
1267 case X86::JE: return X86::COND_E;
1268 case X86::JNE: return X86::COND_NE;
1269 case X86::JL: return X86::COND_L;
1270 case X86::JLE: return X86::COND_LE;
1271 case X86::JG: return X86::COND_G;
1272 case X86::JGE: return X86::COND_GE;
1273 case X86::JB: return X86::COND_B;
1274 case X86::JBE: return X86::COND_BE;
1275 case X86::JA: return X86::COND_A;
1276 case X86::JAE: return X86::COND_AE;
1277 case X86::JS: return X86::COND_S;
1278 case X86::JNS: return X86::COND_NS;
1279 case X86::JP: return X86::COND_P;
1280 case X86::JNP: return X86::COND_NP;
1281 case X86::JO: return X86::COND_O;
1282 case X86::JNO: return X86::COND_NO;
1283 }
1284}
1285
1286unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1287 switch (CC) {
1288 default: assert(0 && "Illegal condition code!");
Evan Chenge5f62042007-09-29 00:00:36 +00001289 case X86::COND_E: return X86::JE;
1290 case X86::COND_NE: return X86::JNE;
1291 case X86::COND_L: return X86::JL;
1292 case X86::COND_LE: return X86::JLE;
1293 case X86::COND_G: return X86::JG;
1294 case X86::COND_GE: return X86::JGE;
1295 case X86::COND_B: return X86::JB;
1296 case X86::COND_BE: return X86::JBE;
1297 case X86::COND_A: return X86::JA;
1298 case X86::COND_AE: return X86::JAE;
1299 case X86::COND_S: return X86::JS;
1300 case X86::COND_NS: return X86::JNS;
1301 case X86::COND_P: return X86::JP;
1302 case X86::COND_NP: return X86::JNP;
1303 case X86::COND_O: return X86::JO;
1304 case X86::COND_NO: return X86::JNO;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001305 }
1306}
1307
Chris Lattner9cd68752006-10-21 05:52:40 +00001308/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1309/// e.g. turning COND_E to COND_NE.
1310X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1311 switch (CC) {
1312 default: assert(0 && "Illegal condition code!");
1313 case X86::COND_E: return X86::COND_NE;
1314 case X86::COND_NE: return X86::COND_E;
1315 case X86::COND_L: return X86::COND_GE;
1316 case X86::COND_LE: return X86::COND_G;
1317 case X86::COND_G: return X86::COND_LE;
1318 case X86::COND_GE: return X86::COND_L;
1319 case X86::COND_B: return X86::COND_AE;
1320 case X86::COND_BE: return X86::COND_A;
1321 case X86::COND_A: return X86::COND_BE;
1322 case X86::COND_AE: return X86::COND_B;
1323 case X86::COND_S: return X86::COND_NS;
1324 case X86::COND_NS: return X86::COND_S;
1325 case X86::COND_P: return X86::COND_NP;
1326 case X86::COND_NP: return X86::COND_P;
1327 case X86::COND_O: return X86::COND_NO;
1328 case X86::COND_NO: return X86::COND_O;
1329 }
1330}
1331
Dale Johannesen318093b2007-06-14 22:03:45 +00001332bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner749c6f62008-01-07 07:27:27 +00001333 const TargetInstrDesc &TID = MI->getDesc();
1334 if (!TID.isTerminator()) return false;
Chris Lattner69244302008-01-07 01:56:04 +00001335
1336 // Conditional branch is a special case.
Chris Lattner749c6f62008-01-07 07:27:27 +00001337 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner69244302008-01-07 01:56:04 +00001338 return true;
Chris Lattner749c6f62008-01-07 07:27:27 +00001339 if (!TID.isPredicable())
Chris Lattner69244302008-01-07 01:56:04 +00001340 return true;
1341 return !isPredicated(MI);
Dale Johannesen318093b2007-06-14 22:03:45 +00001342}
Chris Lattner9cd68752006-10-21 05:52:40 +00001343
Evan Cheng85dce6c2007-07-26 17:32:14 +00001344// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1345static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1346 const X86InstrInfo &TII) {
1347 if (MI->getOpcode() == X86::FP_REG_KILL)
1348 return false;
1349 return TII.isUnpredicatedTerminator(MI);
1350}
1351
Chris Lattner7fbe9722006-10-20 17:42:20 +00001352bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1353 MachineBasicBlock *&TBB,
1354 MachineBasicBlock *&FBB,
1355 std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001356 // If the block has no terminators, it just falls into the block after it.
1357 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng85dce6c2007-07-26 17:32:14 +00001358 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001359 return false;
1360
1361 // Get the last instruction in the block.
1362 MachineInstr *LastInst = I;
1363
1364 // If there is only one terminator instruction, process it.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001365 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner749c6f62008-01-07 07:27:27 +00001366 if (!LastInst->getDesc().isBranch())
Chris Lattner7fbe9722006-10-20 17:42:20 +00001367 return true;
1368
1369 // If the block ends with a branch there are 3 possibilities:
1370 // it's an unconditional, conditional, or indirect branch.
1371
1372 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001373 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001374 return false;
1375 }
1376 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1377 if (BranchCode == X86::COND_INVALID)
1378 return true; // Can't handle indirect branch.
1379
1380 // Otherwise, block ends with fall-through condbranch.
Chris Lattner8aa797a2007-12-30 23:10:15 +00001381 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001382 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1383 return false;
1384 }
1385
1386 // Get the instruction before it if it's a terminator.
1387 MachineInstr *SecondLastInst = I;
1388
1389 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001390 if (SecondLastInst && I != MBB.begin() &&
1391 isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001392 return true;
1393
Chris Lattner6ce64432006-10-30 22:27:23 +00001394 // If the block ends with X86::JMP and a conditional branch, handle it.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001395 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1396 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001397 TBB = SecondLastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001398 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner8aa797a2007-12-30 23:10:15 +00001399 FBB = LastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001400 return false;
1401 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00001402
Dale Johannesen13e8b512007-06-13 17:59:52 +00001403 // If the block ends with two X86::JMPs, handle it. The second one is not
1404 // executed, so remove it.
1405 if (SecondLastInst->getOpcode() == X86::JMP &&
1406 LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001407 TBB = SecondLastInst->getOperand(0).getMBB();
Dale Johannesen13e8b512007-06-13 17:59:52 +00001408 I = LastInst;
1409 I->eraseFromParent();
1410 return false;
1411 }
1412
Chris Lattner7fbe9722006-10-20 17:42:20 +00001413 // Otherwise, can't handle this.
1414 return true;
1415}
1416
Evan Cheng6ae36262007-05-18 00:18:17 +00001417unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001418 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng6ae36262007-05-18 00:18:17 +00001419 if (I == MBB.begin()) return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001420 --I;
1421 if (I->getOpcode() != X86::JMP &&
1422 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001423 return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001424
1425 // Remove the branch.
1426 I->eraseFromParent();
1427
1428 I = MBB.end();
1429
Evan Cheng6ae36262007-05-18 00:18:17 +00001430 if (I == MBB.begin()) return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001431 --I;
1432 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001433 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001434
1435 // Remove the branch.
1436 I->eraseFromParent();
Evan Cheng6ae36262007-05-18 00:18:17 +00001437 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001438}
1439
Owen Andersonf6372aa2008-01-01 21:11:32 +00001440static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1441 MachineOperand &MO) {
1442 if (MO.isRegister())
1443 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1444 false, false, MO.getSubReg());
1445 else if (MO.isImmediate())
1446 MIB = MIB.addImm(MO.getImm());
1447 else if (MO.isFrameIndex())
1448 MIB = MIB.addFrameIndex(MO.getIndex());
1449 else if (MO.isGlobalAddress())
1450 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1451 else if (MO.isConstantPoolIndex())
1452 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1453 else if (MO.isJumpTableIndex())
1454 MIB = MIB.addJumpTableIndex(MO.getIndex());
1455 else if (MO.isExternalSymbol())
1456 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1457 else
1458 assert(0 && "Unknown operand for X86InstrAddOperand!");
1459
1460 return MIB;
1461}
1462
Evan Cheng6ae36262007-05-18 00:18:17 +00001463unsigned
1464X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1465 MachineBasicBlock *FBB,
1466 const std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001467 // Shouldn't be a fall through.
1468 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00001469 assert((Cond.size() == 1 || Cond.size() == 0) &&
1470 "X86 branch conditions have one component!");
1471
1472 if (FBB == 0) { // One way branch.
1473 if (Cond.empty()) {
1474 // Unconditional branch?
Evan Chengc0f64ff2006-11-27 23:37:22 +00001475 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001476 } else {
1477 // Conditional branch.
1478 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001479 BuildMI(&MBB, get(Opc)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001480 }
Evan Cheng6ae36262007-05-18 00:18:17 +00001481 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001482 }
1483
Chris Lattner879d09c2006-10-21 05:42:09 +00001484 // Two-way Conditional branch.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001485 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001486 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1487 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00001488 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001489}
1490
Owen Andersond10fd972007-12-31 06:32:00 +00001491void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner5c927502008-03-09 08:46:19 +00001492 MachineBasicBlock::iterator MI,
1493 unsigned DestReg, unsigned SrcReg,
1494 const TargetRegisterClass *DestRC,
1495 const TargetRegisterClass *SrcRC) const {
Chris Lattner90b347d2008-03-09 07:58:04 +00001496 if (DestRC == SrcRC) {
1497 unsigned Opc;
1498 if (DestRC == &X86::GR64RegClass) {
1499 Opc = X86::MOV64rr;
1500 } else if (DestRC == &X86::GR32RegClass) {
1501 Opc = X86::MOV32rr;
1502 } else if (DestRC == &X86::GR16RegClass) {
1503 Opc = X86::MOV16rr;
1504 } else if (DestRC == &X86::GR8RegClass) {
1505 Opc = X86::MOV8rr;
1506 } else if (DestRC == &X86::GR32_RegClass) {
1507 Opc = X86::MOV32_rr;
1508 } else if (DestRC == &X86::GR16_RegClass) {
1509 Opc = X86::MOV16_rr;
1510 } else if (DestRC == &X86::RFP32RegClass) {
1511 Opc = X86::MOV_Fp3232;
1512 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1513 Opc = X86::MOV_Fp6464;
1514 } else if (DestRC == &X86::RFP80RegClass) {
1515 Opc = X86::MOV_Fp8080;
1516 } else if (DestRC == &X86::FR32RegClass) {
1517 Opc = X86::FsMOVAPSrr;
1518 } else if (DestRC == &X86::FR64RegClass) {
1519 Opc = X86::FsMOVAPDrr;
1520 } else if (DestRC == &X86::VR128RegClass) {
1521 Opc = X86::MOVAPSrr;
1522 } else if (DestRC == &X86::VR64RegClass) {
1523 Opc = X86::MMX_MOVQ64rr;
1524 } else {
1525 assert(0 && "Unknown regclass");
1526 abort();
Owen Andersond10fd972007-12-31 06:32:00 +00001527 }
Chris Lattner90b347d2008-03-09 07:58:04 +00001528 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1529 return;
Owen Andersond10fd972007-12-31 06:32:00 +00001530 }
Chris Lattner90b347d2008-03-09 07:58:04 +00001531
1532 // Moving EFLAGS to / from another register requires a push and a pop.
1533 if (SrcRC == &X86::CCRRegClass) {
1534 assert(SrcReg == X86::EFLAGS);
1535 if (DestRC == &X86::GR64RegClass) {
1536 BuildMI(MBB, MI, get(X86::PUSHFQ));
1537 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1538 return;
1539 } else if (DestRC == &X86::GR32RegClass) {
1540 BuildMI(MBB, MI, get(X86::PUSHFD));
1541 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1542 return;
1543 }
1544 } else if (DestRC == &X86::CCRRegClass) {
1545 assert(DestReg == X86::EFLAGS);
1546 if (SrcRC == &X86::GR64RegClass) {
1547 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1548 BuildMI(MBB, MI, get(X86::POPFQ));
1549 return;
1550 } else if (SrcRC == &X86::GR32RegClass) {
1551 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1552 BuildMI(MBB, MI, get(X86::POPFD));
1553 return;
1554 }
Owen Andersond10fd972007-12-31 06:32:00 +00001555 }
Chris Lattner5c927502008-03-09 08:46:19 +00001556
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001557 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner5c927502008-03-09 08:46:19 +00001558 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner24e0a542008-03-21 06:38:26 +00001559 // Copying from ST(0)/ST(1).
1560 assert((SrcReg == X86::ST0 || SrcReg == X86::ST1) &&
1561 "Can only copy from ST(0)/ST(1) right now");
1562 bool isST0 = SrcReg == X86::ST0;
Chris Lattner5c927502008-03-09 08:46:19 +00001563 unsigned Opc;
1564 if (DestRC == &X86::RFP32RegClass)
Chris Lattner24e0a542008-03-21 06:38:26 +00001565 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner5c927502008-03-09 08:46:19 +00001566 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner24e0a542008-03-21 06:38:26 +00001567 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner5c927502008-03-09 08:46:19 +00001568 else {
1569 assert(DestRC == &X86::RFP80RegClass);
Chris Lattner24e0a542008-03-21 06:38:26 +00001570 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner5c927502008-03-09 08:46:19 +00001571 }
1572 BuildMI(MBB, MI, get(Opc), DestReg);
1573 return;
1574 }
Chris Lattnerf30e1cf2008-03-09 09:15:31 +00001575
1576 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1577 if (DestRC == &X86::RSTRegClass) {
1578 // Copying to ST(0). FIXME: handle ST(1) also
1579 assert(DestReg == X86::ST0 && "Can only copy to TOS right now");
1580 unsigned Opc;
1581 if (SrcRC == &X86::RFP32RegClass)
1582 Opc = X86::FpSET_ST0_32;
1583 else if (SrcRC == &X86::RFP64RegClass)
1584 Opc = X86::FpSET_ST0_64;
1585 else {
1586 assert(SrcRC == &X86::RFP80RegClass);
1587 Opc = X86::FpSET_ST0_80;
1588 }
1589 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1590 return;
1591 }
Chris Lattner5c927502008-03-09 08:46:19 +00001592
Chris Lattner183275a2008-03-10 23:56:08 +00001593 assert(0 && "Not yet supported!");
Chris Lattner90b347d2008-03-09 07:58:04 +00001594 abort();
Owen Andersond10fd972007-12-31 06:32:00 +00001595}
1596
Owen Andersonf6372aa2008-01-01 21:11:32 +00001597static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1598 unsigned StackAlign) {
1599 unsigned Opc = 0;
1600 if (RC == &X86::GR64RegClass) {
1601 Opc = X86::MOV64mr;
1602 } else if (RC == &X86::GR32RegClass) {
1603 Opc = X86::MOV32mr;
1604 } else if (RC == &X86::GR16RegClass) {
1605 Opc = X86::MOV16mr;
1606 } else if (RC == &X86::GR8RegClass) {
1607 Opc = X86::MOV8mr;
1608 } else if (RC == &X86::GR32_RegClass) {
1609 Opc = X86::MOV32_mr;
1610 } else if (RC == &X86::GR16_RegClass) {
1611 Opc = X86::MOV16_mr;
1612 } else if (RC == &X86::RFP80RegClass) {
1613 Opc = X86::ST_FpP80m; // pops
1614 } else if (RC == &X86::RFP64RegClass) {
1615 Opc = X86::ST_Fp64m;
1616 } else if (RC == &X86::RFP32RegClass) {
1617 Opc = X86::ST_Fp32m;
1618 } else if (RC == &X86::FR32RegClass) {
1619 Opc = X86::MOVSSmr;
1620 } else if (RC == &X86::FR64RegClass) {
1621 Opc = X86::MOVSDmr;
1622 } else if (RC == &X86::VR128RegClass) {
1623 // FIXME: Use movaps once we are capable of selectively
1624 // aligning functions that spill SSE registers on 16-byte boundaries.
1625 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1626 } else if (RC == &X86::VR64RegClass) {
1627 Opc = X86::MMX_MOVQ64mr;
1628 } else {
1629 assert(0 && "Unknown regclass");
1630 abort();
1631 }
1632
1633 return Opc;
1634}
1635
1636void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1637 MachineBasicBlock::iterator MI,
1638 unsigned SrcReg, bool isKill, int FrameIdx,
1639 const TargetRegisterClass *RC) const {
1640 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1641 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1642 .addReg(SrcReg, false, false, isKill);
1643}
1644
1645void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1646 bool isKill,
1647 SmallVectorImpl<MachineOperand> &Addr,
1648 const TargetRegisterClass *RC,
1649 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1650 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1651 MachineInstrBuilder MIB = BuildMI(get(Opc));
1652 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1653 MIB = X86InstrAddOperand(MIB, Addr[i]);
1654 MIB.addReg(SrcReg, false, false, isKill);
1655 NewMIs.push_back(MIB);
1656}
1657
1658static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1659 unsigned StackAlign) {
1660 unsigned Opc = 0;
1661 if (RC == &X86::GR64RegClass) {
1662 Opc = X86::MOV64rm;
1663 } else if (RC == &X86::GR32RegClass) {
1664 Opc = X86::MOV32rm;
1665 } else if (RC == &X86::GR16RegClass) {
1666 Opc = X86::MOV16rm;
1667 } else if (RC == &X86::GR8RegClass) {
1668 Opc = X86::MOV8rm;
1669 } else if (RC == &X86::GR32_RegClass) {
1670 Opc = X86::MOV32_rm;
1671 } else if (RC == &X86::GR16_RegClass) {
1672 Opc = X86::MOV16_rm;
1673 } else if (RC == &X86::RFP80RegClass) {
1674 Opc = X86::LD_Fp80m;
1675 } else if (RC == &X86::RFP64RegClass) {
1676 Opc = X86::LD_Fp64m;
1677 } else if (RC == &X86::RFP32RegClass) {
1678 Opc = X86::LD_Fp32m;
1679 } else if (RC == &X86::FR32RegClass) {
1680 Opc = X86::MOVSSrm;
1681 } else if (RC == &X86::FR64RegClass) {
1682 Opc = X86::MOVSDrm;
1683 } else if (RC == &X86::VR128RegClass) {
1684 // FIXME: Use movaps once we are capable of selectively
1685 // aligning functions that spill SSE registers on 16-byte boundaries.
1686 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1687 } else if (RC == &X86::VR64RegClass) {
1688 Opc = X86::MMX_MOVQ64rm;
1689 } else {
1690 assert(0 && "Unknown regclass");
1691 abort();
1692 }
1693
1694 return Opc;
1695}
1696
1697void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1698 MachineBasicBlock::iterator MI,
1699 unsigned DestReg, int FrameIdx,
1700 const TargetRegisterClass *RC) const{
1701 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1702 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1703}
1704
1705void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1706 SmallVectorImpl<MachineOperand> &Addr,
1707 const TargetRegisterClass *RC,
1708 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1709 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1710 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1711 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1712 MIB = X86InstrAddOperand(MIB, Addr[i]);
1713 NewMIs.push_back(MIB);
1714}
1715
Owen Andersond94b6a12008-01-04 23:57:37 +00001716bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1717 MachineBasicBlock::iterator MI,
1718 const std::vector<CalleeSavedInfo> &CSI) const {
1719 if (CSI.empty())
1720 return false;
1721
1722 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1723 unsigned SlotSize = is64Bit ? 8 : 4;
1724
1725 MachineFunction &MF = *MBB.getParent();
1726 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1727 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1728
1729 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1730 for (unsigned i = CSI.size(); i != 0; --i) {
1731 unsigned Reg = CSI[i-1].getReg();
1732 // Add the callee-saved register as live-in. It's killed at the spill.
1733 MBB.addLiveIn(Reg);
1734 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1735 }
1736 return true;
1737}
1738
1739bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1740 MachineBasicBlock::iterator MI,
1741 const std::vector<CalleeSavedInfo> &CSI) const {
1742 if (CSI.empty())
1743 return false;
1744
1745 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1746
1747 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1748 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1749 unsigned Reg = CSI[i].getReg();
1750 BuildMI(MBB, MI, get(Opc), Reg);
1751 }
1752 return true;
1753}
1754
Owen Anderson43dbe052008-01-07 01:35:02 +00001755static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1756 SmallVector<MachineOperand,4> &MOs,
1757 MachineInstr *MI, const TargetInstrInfo &TII) {
1758 // Create the base instruction with the memory operand as the first part.
1759 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1760 MachineInstrBuilder MIB(NewMI);
1761 unsigned NumAddrOps = MOs.size();
1762 for (unsigned i = 0; i != NumAddrOps; ++i)
1763 MIB = X86InstrAddOperand(MIB, MOs[i]);
1764 if (NumAddrOps < 4) // FrameIndex only
1765 MIB.addImm(1).addReg(0).addImm(0);
1766
1767 // Loop over the rest of the ri operands, converting them over.
Chris Lattner749c6f62008-01-07 07:27:27 +00001768 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson43dbe052008-01-07 01:35:02 +00001769 for (unsigned i = 0; i != NumOps; ++i) {
1770 MachineOperand &MO = MI->getOperand(i+2);
1771 MIB = X86InstrAddOperand(MIB, MO);
1772 }
1773 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1774 MachineOperand &MO = MI->getOperand(i);
1775 MIB = X86InstrAddOperand(MIB, MO);
1776 }
1777 return MIB;
1778}
1779
1780static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1781 SmallVector<MachineOperand,4> &MOs,
1782 MachineInstr *MI, const TargetInstrInfo &TII) {
1783 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1784 MachineInstrBuilder MIB(NewMI);
1785
1786 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1787 MachineOperand &MO = MI->getOperand(i);
1788 if (i == OpNo) {
1789 assert(MO.isRegister() && "Expected to fold into reg operand!");
1790 unsigned NumAddrOps = MOs.size();
1791 for (unsigned i = 0; i != NumAddrOps; ++i)
1792 MIB = X86InstrAddOperand(MIB, MOs[i]);
1793 if (NumAddrOps < 4) // FrameIndex only
1794 MIB.addImm(1).addReg(0).addImm(0);
1795 } else {
1796 MIB = X86InstrAddOperand(MIB, MO);
1797 }
1798 }
1799 return MIB;
1800}
1801
1802static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1803 SmallVector<MachineOperand,4> &MOs,
1804 MachineInstr *MI) {
1805 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1806
1807 unsigned NumAddrOps = MOs.size();
1808 for (unsigned i = 0; i != NumAddrOps; ++i)
1809 MIB = X86InstrAddOperand(MIB, MOs[i]);
1810 if (NumAddrOps < 4) // FrameIndex only
1811 MIB.addImm(1).addReg(0).addImm(0);
1812 return MIB.addImm(0);
1813}
1814
1815MachineInstr*
1816X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
Evan Cheng5fd79d02008-02-08 21:20:40 +00001817 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001818 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1819 bool isTwoAddrFold = false;
Chris Lattner749c6f62008-01-07 07:27:27 +00001820 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001821 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00001822 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00001823
1824 MachineInstr *NewMI = NULL;
1825 // Folding a memory location into the two-address part of a two-address
1826 // instruction is different than folding it other places. It requires
1827 // replacing the *two* registers with the memory location.
1828 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1829 MI->getOperand(0).isRegister() &&
1830 MI->getOperand(1).isRegister() &&
1831 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1832 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1833 isTwoAddrFold = true;
1834 } else if (i == 0) { // If operand 0
1835 if (MI->getOpcode() == X86::MOV16r0)
1836 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1837 else if (MI->getOpcode() == X86::MOV32r0)
1838 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1839 else if (MI->getOpcode() == X86::MOV64r0)
1840 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1841 else if (MI->getOpcode() == X86::MOV8r0)
1842 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1843 if (NewMI) {
1844 NewMI->copyKillDeadInfo(MI);
1845 return NewMI;
1846 }
1847
1848 OpcodeTablePtr = &RegOp2MemOpTable0;
1849 } else if (i == 1) {
1850 OpcodeTablePtr = &RegOp2MemOpTable1;
1851 } else if (i == 2) {
1852 OpcodeTablePtr = &RegOp2MemOpTable2;
1853 }
1854
1855 // If table selected...
1856 if (OpcodeTablePtr) {
1857 // Find the Opcode to fuse
1858 DenseMap<unsigned*, unsigned>::iterator I =
1859 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1860 if (I != OpcodeTablePtr->end()) {
1861 if (isTwoAddrFold)
1862 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1863 else
1864 NewMI = FuseInst(I->second, i, MOs, MI, *this);
1865 NewMI->copyKillDeadInfo(MI);
1866 return NewMI;
1867 }
1868 }
1869
1870 // No fusion
1871 if (PrintFailedFusing)
Chris Lattner269f0592008-01-09 00:37:18 +00001872 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson43dbe052008-01-07 01:35:02 +00001873 return NULL;
1874}
1875
1876
Evan Cheng5fd79d02008-02-08 21:20:40 +00001877MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1878 MachineInstr *MI,
Owen Anderson43dbe052008-01-07 01:35:02 +00001879 SmallVectorImpl<unsigned> &Ops,
1880 int FrameIndex) const {
1881 // Check switch flag
1882 if (NoFusing) return NULL;
1883
Evan Cheng5fd79d02008-02-08 21:20:40 +00001884 const MachineFrameInfo *MFI = MF.getFrameInfo();
1885 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1886 // FIXME: Move alignment requirement into tables?
1887 if (Alignment < 16) {
1888 switch (MI->getOpcode()) {
1889 default: break;
1890 // Not always safe to fold movsd into these instructions since their load
1891 // folding variants expects the address to be 16 byte aligned.
1892 case X86::FsANDNPDrr:
1893 case X86::FsANDNPSrr:
1894 case X86::FsANDPDrr:
1895 case X86::FsANDPSrr:
1896 case X86::FsORPDrr:
1897 case X86::FsORPSrr:
1898 case X86::FsXORPDrr:
1899 case X86::FsXORPSrr:
1900 return NULL;
1901 }
1902 }
1903
Owen Anderson43dbe052008-01-07 01:35:02 +00001904 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1905 unsigned NewOpc = 0;
1906 switch (MI->getOpcode()) {
1907 default: return NULL;
1908 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1909 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1910 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1911 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1912 }
1913 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001914 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00001915 MI->getOperand(1).ChangeToImmediate(0);
1916 } else if (Ops.size() != 1)
1917 return NULL;
1918
1919 SmallVector<MachineOperand,4> MOs;
1920 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
1921 return foldMemoryOperand(MI, Ops[0], MOs);
1922}
1923
Evan Cheng5fd79d02008-02-08 21:20:40 +00001924MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1925 MachineInstr *MI,
Chris Lattner269f0592008-01-09 00:37:18 +00001926 SmallVectorImpl<unsigned> &Ops,
1927 MachineInstr *LoadMI) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001928 // Check switch flag
1929 if (NoFusing) return NULL;
1930
Evan Cheng5fd79d02008-02-08 21:20:40 +00001931 unsigned Alignment = 0;
1932 for (unsigned i = 0, e = LoadMI->getNumMemOperands(); i != e; ++i) {
Dan Gohman36b5c132008-04-07 19:35:22 +00001933 const MachineMemOperand &MRO = LoadMI->getMemOperand(i);
Evan Cheng5fd79d02008-02-08 21:20:40 +00001934 unsigned Align = MRO.getAlignment();
1935 if (Align > Alignment)
1936 Alignment = Align;
1937 }
1938
1939 // FIXME: Move alignment requirement into tables?
1940 if (Alignment < 16) {
1941 switch (MI->getOpcode()) {
1942 default: break;
1943 // Not always safe to fold movsd into these instructions since their load
1944 // folding variants expects the address to be 16 byte aligned.
1945 case X86::FsANDNPDrr:
1946 case X86::FsANDNPSrr:
1947 case X86::FsANDPDrr:
1948 case X86::FsANDPSrr:
1949 case X86::FsORPDrr:
1950 case X86::FsORPSrr:
1951 case X86::FsXORPDrr:
1952 case X86::FsXORPSrr:
1953 return NULL;
1954 }
1955 }
1956
Owen Anderson43dbe052008-01-07 01:35:02 +00001957 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1958 unsigned NewOpc = 0;
1959 switch (MI->getOpcode()) {
1960 default: return NULL;
1961 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1962 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1963 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1964 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1965 }
1966 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001967 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00001968 MI->getOperand(1).ChangeToImmediate(0);
1969 } else if (Ops.size() != 1)
1970 return NULL;
1971
1972 SmallVector<MachineOperand,4> MOs;
Chris Lattner749c6f62008-01-07 07:27:27 +00001973 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00001974 for (unsigned i = NumOps - 4; i != NumOps; ++i)
1975 MOs.push_back(LoadMI->getOperand(i));
1976 return foldMemoryOperand(MI, Ops[0], MOs);
1977}
1978
1979
1980bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattner269f0592008-01-09 00:37:18 +00001981 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson43dbe052008-01-07 01:35:02 +00001982 // Check switch flag
1983 if (NoFusing) return 0;
1984
1985 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1986 switch (MI->getOpcode()) {
1987 default: return false;
1988 case X86::TEST8rr:
1989 case X86::TEST16rr:
1990 case X86::TEST32rr:
1991 case X86::TEST64rr:
1992 return true;
1993 }
1994 }
1995
1996 if (Ops.size() != 1)
1997 return false;
1998
1999 unsigned OpNum = Ops[0];
2000 unsigned Opc = MI->getOpcode();
Chris Lattner749c6f62008-01-07 07:27:27 +00002001 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00002002 bool isTwoAddr = NumOps > 1 &&
Chris Lattner749c6f62008-01-07 07:27:27 +00002003 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00002004
2005 // Folding a memory location into the two-address part of a two-address
2006 // instruction is different than folding it other places. It requires
2007 // replacing the *two* registers with the memory location.
2008 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2009 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2010 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2011 } else if (OpNum == 0) { // If operand 0
2012 switch (Opc) {
2013 case X86::MOV16r0:
2014 case X86::MOV32r0:
2015 case X86::MOV64r0:
2016 case X86::MOV8r0:
2017 return true;
2018 default: break;
2019 }
2020 OpcodeTablePtr = &RegOp2MemOpTable0;
2021 } else if (OpNum == 1) {
2022 OpcodeTablePtr = &RegOp2MemOpTable1;
2023 } else if (OpNum == 2) {
2024 OpcodeTablePtr = &RegOp2MemOpTable2;
2025 }
2026
2027 if (OpcodeTablePtr) {
2028 // Find the Opcode to fuse
2029 DenseMap<unsigned*, unsigned>::iterator I =
2030 OpcodeTablePtr->find((unsigned*)Opc);
2031 if (I != OpcodeTablePtr->end())
2032 return true;
2033 }
2034 return false;
2035}
2036
2037bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2038 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2039 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2040 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2041 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2042 if (I == MemOp2RegOpTable.end())
2043 return false;
2044 unsigned Opc = I->second.first;
2045 unsigned Index = I->second.second & 0xf;
2046 bool FoldedLoad = I->second.second & (1 << 4);
2047 bool FoldedStore = I->second.second & (1 << 5);
2048 if (UnfoldLoad && !FoldedLoad)
2049 return false;
2050 UnfoldLoad &= FoldedLoad;
2051 if (UnfoldStore && !FoldedStore)
2052 return false;
2053 UnfoldStore &= FoldedStore;
2054
Chris Lattner749c6f62008-01-07 07:27:27 +00002055 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00002056 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002057 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002058 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2059 SmallVector<MachineOperand,4> AddrOps;
2060 SmallVector<MachineOperand,2> BeforeOps;
2061 SmallVector<MachineOperand,2> AfterOps;
2062 SmallVector<MachineOperand,4> ImpOps;
2063 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2064 MachineOperand &Op = MI->getOperand(i);
2065 if (i >= Index && i < Index+4)
2066 AddrOps.push_back(Op);
2067 else if (Op.isRegister() && Op.isImplicit())
2068 ImpOps.push_back(Op);
2069 else if (i < Index)
2070 BeforeOps.push_back(Op);
2071 else if (i > Index)
2072 AfterOps.push_back(Op);
2073 }
2074
2075 // Emit the load instruction.
2076 if (UnfoldLoad) {
2077 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2078 if (UnfoldStore) {
2079 // Address operands cannot be marked isKill.
2080 for (unsigned i = 1; i != 5; ++i) {
2081 MachineOperand &MO = NewMIs[0]->getOperand(i);
2082 if (MO.isRegister())
2083 MO.setIsKill(false);
2084 }
2085 }
2086 }
2087
2088 // Emit the data processing instruction.
2089 MachineInstr *DataMI = new MachineInstr(TID, true);
2090 MachineInstrBuilder MIB(DataMI);
2091
2092 if (FoldedStore)
2093 MIB.addReg(Reg, true);
2094 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2095 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2096 if (FoldedLoad)
2097 MIB.addReg(Reg);
2098 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2099 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2100 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2101 MachineOperand &MO = ImpOps[i];
2102 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2103 }
2104 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2105 unsigned NewOpc = 0;
2106 switch (DataMI->getOpcode()) {
2107 default: break;
2108 case X86::CMP64ri32:
2109 case X86::CMP32ri:
2110 case X86::CMP16ri:
2111 case X86::CMP8ri: {
2112 MachineOperand &MO0 = DataMI->getOperand(0);
2113 MachineOperand &MO1 = DataMI->getOperand(1);
2114 if (MO1.getImm() == 0) {
2115 switch (DataMI->getOpcode()) {
2116 default: break;
2117 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2118 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2119 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2120 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2121 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00002122 DataMI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002123 MO1.ChangeToRegister(MO0.getReg(), false);
2124 }
2125 }
2126 }
2127 NewMIs.push_back(DataMI);
2128
2129 // Emit the store instruction.
2130 if (UnfoldStore) {
2131 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002132 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002133 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2134 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2135 }
2136
2137 return true;
2138}
2139
2140bool
2141X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2142 SmallVectorImpl<SDNode*> &NewNodes) const {
2143 if (!N->isTargetOpcode())
2144 return false;
2145
2146 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2147 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
2148 if (I == MemOp2RegOpTable.end())
2149 return false;
2150 unsigned Opc = I->second.first;
2151 unsigned Index = I->second.second & 0xf;
2152 bool FoldedLoad = I->second.second & (1 << 4);
2153 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner749c6f62008-01-07 07:27:27 +00002154 const TargetInstrDesc &TID = get(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00002155 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002156 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002157 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2158 std::vector<SDOperand> AddrOps;
2159 std::vector<SDOperand> BeforeOps;
2160 std::vector<SDOperand> AfterOps;
2161 unsigned NumOps = N->getNumOperands();
2162 for (unsigned i = 0; i != NumOps-1; ++i) {
2163 SDOperand Op = N->getOperand(i);
2164 if (i >= Index && i < Index+4)
2165 AddrOps.push_back(Op);
2166 else if (i < Index)
2167 BeforeOps.push_back(Op);
2168 else if (i > Index)
2169 AfterOps.push_back(Op);
2170 }
2171 SDOperand Chain = N->getOperand(NumOps-1);
2172 AddrOps.push_back(Chain);
2173
2174 // Emit the load instruction.
2175 SDNode *Load = 0;
2176 if (FoldedLoad) {
2177 MVT::ValueType VT = *RC->vt_begin();
2178 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2179 MVT::Other, &AddrOps[0], AddrOps.size());
2180 NewNodes.push_back(Load);
2181 }
2182
2183 // Emit the data processing instruction.
2184 std::vector<MVT::ValueType> VTs;
2185 const TargetRegisterClass *DstRC = 0;
Chris Lattner349c4952008-01-07 03:13:06 +00002186 if (TID.getNumDefs() > 0) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002187 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattner8ca5c672008-01-07 02:39:19 +00002188 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson43dbe052008-01-07 01:35:02 +00002189 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2190 VTs.push_back(*DstRC->vt_begin());
2191 }
2192 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2193 MVT::ValueType VT = N->getValueType(i);
Chris Lattner349c4952008-01-07 03:13:06 +00002194 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson43dbe052008-01-07 01:35:02 +00002195 VTs.push_back(VT);
2196 }
2197 if (Load)
2198 BeforeOps.push_back(SDOperand(Load, 0));
2199 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2200 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2201 NewNodes.push_back(NewNode);
2202
2203 // Emit the store instruction.
2204 if (FoldedStore) {
2205 AddrOps.pop_back();
2206 AddrOps.push_back(SDOperand(NewNode, 0));
2207 AddrOps.push_back(Chain);
2208 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2209 MVT::Other, &AddrOps[0], AddrOps.size());
2210 NewNodes.push_back(Store);
2211 }
2212
2213 return true;
2214}
2215
2216unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2217 bool UnfoldLoad, bool UnfoldStore) const {
2218 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2219 MemOp2RegOpTable.find((unsigned*)Opc);
2220 if (I == MemOp2RegOpTable.end())
2221 return 0;
2222 bool FoldedLoad = I->second.second & (1 << 4);
2223 bool FoldedStore = I->second.second & (1 << 5);
2224 if (UnfoldLoad && !FoldedLoad)
2225 return 0;
2226 if (UnfoldStore && !FoldedStore)
2227 return 0;
2228 return I->second.first;
2229}
2230
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002231bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2232 if (MBB.empty()) return false;
2233
2234 switch (MBB.back().getOpcode()) {
Arnold Schwaighoferc85e1712007-10-11 19:40:01 +00002235 case X86::TCRETURNri:
2236 case X86::TCRETURNdi:
Evan Cheng126f17a2007-05-21 18:44:17 +00002237 case X86::RET: // Return.
2238 case X86::RETI:
2239 case X86::TAILJMPd:
2240 case X86::TAILJMPr:
2241 case X86::TAILJMPm:
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002242 case X86::JMP: // Uncond branch.
2243 case X86::JMP32r: // Indirect branch.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002244 case X86::JMP64r: // Indirect branch (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002245 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002246 case X86::JMP64m: // Indirect branch through mem (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002247 return true;
2248 default: return false;
2249 }
2250}
2251
Chris Lattner7fbe9722006-10-20 17:42:20 +00002252bool X86InstrInfo::
2253ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00002254 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2255 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2256 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002257}
2258
Evan Cheng25ab6902006-09-08 06:48:29 +00002259const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2260 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2261 if (Subtarget->is64Bit())
2262 return &X86::GR64RegClass;
2263 else
2264 return &X86::GR32RegClass;
2265}