blob: e79ee90eae8965b40181b5848355c499897381ed [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000037#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038using namespace llvm;
39
40X86TargetLowering::X86TargetLowering(TargetMachine &TM)
41 : TargetLowering(TM) {
42 Subtarget = &TM.getSubtarget<X86Subtarget>();
43 X86ScalarSSE = Subtarget->hasSSE2();
44 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
45
46 RegInfo = TM.getRegisterInfo();
47
48 // Set up the TargetLowering object.
49
50 // X86 is weird, it always uses i8 for shift amounts and setcc results.
51 setShiftAmountType(MVT::i8);
52 setSetCCResultType(MVT::i8);
53 setSetCCResultContents(ZeroOrOneSetCCResult);
54 setSchedulingPreference(SchedulingForRegPressure);
55 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
56 setStackPointerRegisterToSaveRestore(X86StackPtr);
57
58 if (Subtarget->isTargetDarwin()) {
59 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
60 setUseUnderscoreSetJmp(false);
61 setUseUnderscoreLongJmp(false);
62 } else if (Subtarget->isTargetMingw()) {
63 // MS runtime is weird: it exports _setjmp, but longjmp!
64 setUseUnderscoreSetJmp(true);
65 setUseUnderscoreLongJmp(false);
66 } else {
67 setUseUnderscoreSetJmp(true);
68 setUseUnderscoreLongJmp(true);
69 }
70
71 // Set up the register classes.
72 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
73 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
74 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
75 if (Subtarget->is64Bit())
76 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
77
78 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
79
80 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
81 // operation.
82 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
83 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
84 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
85
86 if (Subtarget->is64Bit()) {
87 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
88 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
89 } else {
90 if (X86ScalarSSE)
91 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
92 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
93 else
94 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
95 }
96
97 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
98 // this operation.
99 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
100 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
101 // SSE has no i16 to fp conversion, only i32
Dale Johannesen2fc20782007-09-14 22:26:36 +0000102 if (X86ScalarSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000104 // f32 and f64 cases are Legal, f80 case is not
105 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
106 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
108 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
109 }
110
Dale Johannesen958b08b2007-09-19 23:55:34 +0000111 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
112 // are Legal, f80 is custom lowered.
113 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
114 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000115
116 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
117 // this operation.
118 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
119 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
120
121 if (X86ScalarSSE) {
122 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000123 // f32 and f64 cases are Legal, f80 case is not
124 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000125 } else {
126 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
127 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
128 }
129
130 // Handle FP_TO_UINT by promoting the destination to a larger signed
131 // conversion.
132 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
133 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
134 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
135
136 if (Subtarget->is64Bit()) {
137 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
138 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
139 } else {
140 if (X86ScalarSSE && !Subtarget->hasSSE3())
141 // Expand FP_TO_UINT into a select.
142 // FIXME: We would like to use a Custom expander here eventually to do
143 // the optimal thing for SSE vs. the default expansion in the legalizer.
144 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
145 else
146 // With SSE3 we can use fisttpll to convert to a signed i64.
147 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
148 }
149
150 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
151 if (!X86ScalarSSE) {
152 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
153 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
154 }
155
156 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
157 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
158 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
159 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
160 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
161 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000162 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
163 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
164 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
166 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
167 setOperationAction(ISD::FREM , MVT::f64 , Expand);
168
169 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
170 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
171 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
172 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
173 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
174 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
175 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
176 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
177 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
178 if (Subtarget->is64Bit()) {
179 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
180 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
181 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
182 }
183
184 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
185 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
186
187 // These should be promoted to a larger select which is supported.
188 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
189 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
190 // X86 wants to expand cmov itself.
191 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
192 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
193 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
194 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000195 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
197 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
198 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
199 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
200 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000201 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000202 if (Subtarget->is64Bit()) {
203 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
204 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
205 }
206 // X86 ret instruction may pop stack.
207 setOperationAction(ISD::RET , MVT::Other, Custom);
208 if (!Subtarget->is64Bit())
209 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
210
211 // Darwin ABI issue.
212 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
213 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
214 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
215 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
216 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
217 if (Subtarget->is64Bit()) {
218 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
219 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
220 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
221 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
222 }
223 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
224 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
225 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
226 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
227 // X86 wants to expand memset / memcpy itself.
228 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
229 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
230
231 // We don't have line number support yet.
232 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
233 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
234 // FIXME - use subtarget debug flags
235 if (!Subtarget->isTargetDarwin() &&
236 !Subtarget->isTargetELF() &&
237 !Subtarget->isTargetCygMing())
238 setOperationAction(ISD::LABEL, MVT::Other, Expand);
239
240 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
241 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
242 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
243 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
244 if (Subtarget->is64Bit()) {
245 // FIXME: Verify
246 setExceptionPointerRegister(X86::RAX);
247 setExceptionSelectorRegister(X86::RDX);
248 } else {
249 setExceptionPointerRegister(X86::EAX);
250 setExceptionSelectorRegister(X86::EDX);
251 }
Anton Korobeynikov23ca9c52007-09-03 00:36:06 +0000252 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000253
Duncan Sands7407a9f2007-09-11 14:10:23 +0000254 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000255
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000256 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
257 setOperationAction(ISD::VASTART , MVT::Other, Custom);
258 setOperationAction(ISD::VAARG , MVT::Other, Expand);
259 setOperationAction(ISD::VAEND , MVT::Other, Expand);
260 if (Subtarget->is64Bit())
261 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
262 else
263 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
264
265 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
266 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
267 if (Subtarget->is64Bit())
268 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
269 if (Subtarget->isTargetCygMing())
270 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
271 else
272 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
273
274 if (X86ScalarSSE) {
275 // Set up the FP register classes.
276 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
277 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
278
279 // Use ANDPD to simulate FABS.
280 setOperationAction(ISD::FABS , MVT::f64, Custom);
281 setOperationAction(ISD::FABS , MVT::f32, Custom);
282
283 // Use XORP to simulate FNEG.
284 setOperationAction(ISD::FNEG , MVT::f64, Custom);
285 setOperationAction(ISD::FNEG , MVT::f32, Custom);
286
287 // Use ANDPD and ORPD to simulate FCOPYSIGN.
288 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
289 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
290
291 // We don't support sin/cos/fmod
292 setOperationAction(ISD::FSIN , MVT::f64, Expand);
293 setOperationAction(ISD::FCOS , MVT::f64, Expand);
294 setOperationAction(ISD::FREM , MVT::f64, Expand);
295 setOperationAction(ISD::FSIN , MVT::f32, Expand);
296 setOperationAction(ISD::FCOS , MVT::f32, Expand);
297 setOperationAction(ISD::FREM , MVT::f32, Expand);
298
299 // Expand FP immediates into loads from the stack, except for the special
300 // cases we handle.
301 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
302 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000303 addLegalFPImmediate(APFloat(+0.0)); // xorps / xorpd
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000304
305 // Conversions to long double (in X87) go through memory.
306 setConvertAction(MVT::f32, MVT::f80, Expand);
307 setConvertAction(MVT::f64, MVT::f80, Expand);
308
309 // Conversions from long double (in X87) go through memory.
310 setConvertAction(MVT::f80, MVT::f32, Expand);
311 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000312 } else {
313 // Set up the FP register classes.
314 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
315 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
316
317 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
318 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
319 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
320 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000321
322 // Floating truncations need to go through memory.
323 setConvertAction(MVT::f80, MVT::f32, Expand);
324 setConvertAction(MVT::f64, MVT::f32, Expand);
325 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000326
327 if (!UnsafeFPMath) {
328 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
329 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
330 }
331
332 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
333 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000334 addLegalFPImmediate(APFloat(+0.0)); // FLD0
335 addLegalFPImmediate(APFloat(+1.0)); // FLD1
336 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
337 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000338 }
339
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000340 // Long double always uses X87.
341 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000342 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
343 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
344 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000345
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000346 // First set operation action for all vector types to expand. Then we
347 // will selectively turn on ones that can be effectively codegen'd.
348 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
349 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
350 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
351 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
352 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
353 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
354 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
355 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
356 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
357 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
358 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
359 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
360 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
361 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
362 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
363 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
364 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
365 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
366 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
367 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
368 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
369 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
370 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
371 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
372 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
373 }
374
375 if (Subtarget->hasMMX()) {
376 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
377 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
378 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
379 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
380
381 // FIXME: add MMX packed arithmetics
382
383 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
384 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
385 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
386 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
387
388 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
389 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
390 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
391
392 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
393 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
394
395 setOperationAction(ISD::AND, MVT::v8i8, Promote);
396 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
397 setOperationAction(ISD::AND, MVT::v4i16, Promote);
398 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
399 setOperationAction(ISD::AND, MVT::v2i32, Promote);
400 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
401 setOperationAction(ISD::AND, MVT::v1i64, Legal);
402
403 setOperationAction(ISD::OR, MVT::v8i8, Promote);
404 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
405 setOperationAction(ISD::OR, MVT::v4i16, Promote);
406 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
407 setOperationAction(ISD::OR, MVT::v2i32, Promote);
408 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
409 setOperationAction(ISD::OR, MVT::v1i64, Legal);
410
411 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
412 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
413 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
414 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
415 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
416 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
417 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
418
419 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
420 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
421 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
422 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
423 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
424 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
425 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
426
427 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
428 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
429 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
430 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
431
432 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
433 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
434 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
435 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
436
437 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
438 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
439 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
440 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
441 }
442
443 if (Subtarget->hasSSE1()) {
444 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
445
446 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
447 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
448 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
449 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
450 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
451 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000452 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
453 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
454 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
455 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
456 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
457 }
458
459 if (Subtarget->hasSSE2()) {
460 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
461 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
462 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
463 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
464 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
465
466 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
467 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
468 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
469 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
470 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
471 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
472 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
473 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
474 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
475 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
476 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
477 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
478 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
479 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
480 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000481
482 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
483 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
484 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
485 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
486 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
487 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
488
489 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
490 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
491 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
492 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
493 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
494 }
495 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
496 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
497 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
498 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
499 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
500 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
501
502 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
503 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
504 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
505 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
506 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
507 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
508 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
509 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
510 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
511 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
512 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
513 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
514 }
515
516 // Custom lower v2i64 and v2f64 selects.
517 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
518 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
519 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
520 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
521 }
522
523 // We want to custom lower some of our intrinsics.
524 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
525
526 // We have target-specific dag combine patterns for the following nodes:
527 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
528 setTargetDAGCombine(ISD::SELECT);
529
530 computeRegisterProperties();
531
532 // FIXME: These should be based on subtarget info. Plus, the values should
533 // be smaller when we are in optimizing for size mode.
534 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
535 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
536 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
537 allowUnalignedMemoryAccesses = true; // x86 supports it!
538}
539
540
541//===----------------------------------------------------------------------===//
542// Return Value Calling Convention Implementation
543//===----------------------------------------------------------------------===//
544
545#include "X86GenCallingConv.inc"
546
547/// LowerRET - Lower an ISD::RET node.
548SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
549 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
550
551 SmallVector<CCValAssign, 16> RVLocs;
552 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
553 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
554 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
555 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
556
557
558 // If this is the first return lowered for this function, add the regs to the
559 // liveout set for the function.
560 if (DAG.getMachineFunction().liveout_empty()) {
561 for (unsigned i = 0; i != RVLocs.size(); ++i)
562 if (RVLocs[i].isRegLoc())
563 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
564 }
565
566 SDOperand Chain = Op.getOperand(0);
567 SDOperand Flag;
568
569 // Copy the result values into the output registers.
570 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
571 RVLocs[0].getLocReg() != X86::ST0) {
572 for (unsigned i = 0; i != RVLocs.size(); ++i) {
573 CCValAssign &VA = RVLocs[i];
574 assert(VA.isRegLoc() && "Can only return in registers!");
575 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
576 Flag);
577 Flag = Chain.getValue(1);
578 }
579 } else {
580 // We need to handle a destination of ST0 specially, because it isn't really
581 // a register.
582 SDOperand Value = Op.getOperand(1);
583
584 // If this is an FP return with ScalarSSE, we need to move the value from
585 // an XMM register onto the fp-stack.
586 if (X86ScalarSSE) {
587 SDOperand MemLoc;
588
589 // If this is a load into a scalarsse value, don't store the loaded value
590 // back to the stack, only to reload it: just replace the scalar-sse load.
591 if (ISD::isNON_EXTLoad(Value.Val) &&
592 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
593 Chain = Value.getOperand(0);
594 MemLoc = Value.getOperand(1);
595 } else {
596 // Spill the value to memory and reload it into top of stack.
597 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
598 MachineFunction &MF = DAG.getMachineFunction();
599 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
600 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
601 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
602 }
603 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
604 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
605 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
606 Chain = Value.getValue(1);
607 }
608
609 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
610 SDOperand Ops[] = { Chain, Value };
611 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
612 Flag = Chain.getValue(1);
613 }
614
615 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
616 if (Flag.Val)
617 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
618 else
619 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
620}
621
622
623/// LowerCallResult - Lower the result values of an ISD::CALL into the
624/// appropriate copies out of appropriate physical registers. This assumes that
625/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
626/// being lowered. The returns a SDNode with the same number of values as the
627/// ISD::CALL.
628SDNode *X86TargetLowering::
629LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
630 unsigned CallingConv, SelectionDAG &DAG) {
631
632 // Assign locations to each value returned by this call.
633 SmallVector<CCValAssign, 16> RVLocs;
634 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
635 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
636 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
637
638
639 SmallVector<SDOperand, 8> ResultVals;
640
641 // Copy all of the result registers out of their specified physreg.
642 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
643 for (unsigned i = 0; i != RVLocs.size(); ++i) {
644 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
645 RVLocs[i].getValVT(), InFlag).getValue(1);
646 InFlag = Chain.getValue(2);
647 ResultVals.push_back(Chain.getValue(0));
648 }
649 } else {
650 // Copies from the FP stack are special, as ST0 isn't a valid register
651 // before the fp stackifier runs.
652
653 // Copy ST0 into an RFP register with FP_GET_RESULT.
654 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
655 SDOperand GROps[] = { Chain, InFlag };
656 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
657 Chain = RetVal.getValue(1);
658 InFlag = RetVal.getValue(2);
659
660 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
661 // an XMM register.
662 if (X86ScalarSSE) {
663 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
664 // shouldn't be necessary except that RFP cannot be live across
665 // multiple blocks. When stackifier is fixed, they can be uncoupled.
666 MachineFunction &MF = DAG.getMachineFunction();
667 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
668 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
669 SDOperand Ops[] = {
670 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
671 };
672 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
673 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
674 Chain = RetVal.getValue(1);
675 }
676 ResultVals.push_back(RetVal);
677 }
678
679 // Merge everything together with a MERGE_VALUES node.
680 ResultVals.push_back(Chain);
681 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
682 &ResultVals[0], ResultVals.size()).Val;
683}
684
685
686//===----------------------------------------------------------------------===//
687// C & StdCall Calling Convention implementation
688//===----------------------------------------------------------------------===//
689// StdCall calling convention seems to be standard for many Windows' API
690// routines and around. It differs from C calling convention just a little:
691// callee should clean up the stack, not caller. Symbols should be also
692// decorated in some fancy way :) It doesn't support any vector arguments.
693
694/// AddLiveIn - This helper function adds the specified physical register to the
695/// MachineFunction as a live in value. It also creates a corresponding virtual
696/// register for it.
697static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
698 const TargetRegisterClass *RC) {
699 assert(RC->contains(PReg) && "Not the correct regclass!");
700 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
701 MF.addLiveIn(PReg, VReg);
702 return VReg;
703}
704
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000705SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
706 const CCValAssign &VA,
707 MachineFrameInfo *MFI,
708 SDOperand Root, unsigned i) {
709 // Create the nodes corresponding to a load from this parameter slot.
710 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
711 VA.getLocMemOffset());
712 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
713
714 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
715
716 if (Flags & ISD::ParamFlags::ByVal)
717 return FIN;
718 else
719 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
720}
721
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000722SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
723 bool isStdCall) {
724 unsigned NumArgs = Op.Val->getNumValues() - 1;
725 MachineFunction &MF = DAG.getMachineFunction();
726 MachineFrameInfo *MFI = MF.getFrameInfo();
727 SDOperand Root = Op.getOperand(0);
728 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
729
730 // Assign locations to all of the incoming arguments.
731 SmallVector<CCValAssign, 16> ArgLocs;
732 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
733 getTargetMachine(), ArgLocs);
734 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
735
736 SmallVector<SDOperand, 8> ArgValues;
737 unsigned LastVal = ~0U;
738 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
739 CCValAssign &VA = ArgLocs[i];
740 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
741 // places.
742 assert(VA.getValNo() != LastVal &&
743 "Don't support value assigned to multiple locs yet");
744 LastVal = VA.getValNo();
745
746 if (VA.isRegLoc()) {
747 MVT::ValueType RegVT = VA.getLocVT();
748 TargetRegisterClass *RC;
749 if (RegVT == MVT::i32)
750 RC = X86::GR32RegisterClass;
751 else {
752 assert(MVT::isVector(RegVT));
753 RC = X86::VR128RegisterClass;
754 }
755
756 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
757 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
758
759 // If this is an 8 or 16-bit value, it is really passed promoted to 32
760 // bits. Insert an assert[sz]ext to capture this, then truncate to the
761 // right size.
762 if (VA.getLocInfo() == CCValAssign::SExt)
763 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
764 DAG.getValueType(VA.getValVT()));
765 else if (VA.getLocInfo() == CCValAssign::ZExt)
766 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
767 DAG.getValueType(VA.getValVT()));
768
769 if (VA.getLocInfo() != CCValAssign::Full)
770 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
771
772 ArgValues.push_back(ArgValue);
773 } else {
774 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000775 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776 }
777 }
778
779 unsigned StackSize = CCInfo.getNextStackOffset();
780
781 ArgValues.push_back(Root);
782
783 // If the function takes variable number of arguments, make a frame index for
784 // the start of the first vararg value... for expansion of llvm.va_start.
785 if (isVarArg)
786 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
787
788 if (isStdCall && !isVarArg) {
789 BytesToPopOnReturn = StackSize; // Callee pops everything..
790 BytesCallerReserves = 0;
791 } else {
792 BytesToPopOnReturn = 0; // Callee pops nothing.
793
794 // If this is an sret function, the return should pop the hidden pointer.
795 if (NumArgs &&
796 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
797 ISD::ParamFlags::StructReturn))
798 BytesToPopOnReturn = 4;
799
800 BytesCallerReserves = StackSize;
801 }
Anton Korobeynikove844e472007-08-15 17:12:32 +0000802
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000803 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000804
Anton Korobeynikove844e472007-08-15 17:12:32 +0000805 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
806 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000807
808 // Return the new list of results.
809 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
810 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
811}
812
813SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
814 unsigned CC) {
815 SDOperand Chain = Op.getOperand(0);
816 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
817 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
818 SDOperand Callee = Op.getOperand(4);
819 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
820
821 // Analyze operands of the call, assigning locations to each operand.
822 SmallVector<CCValAssign, 16> ArgLocs;
823 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
824 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
825
826 // Get a count of how many bytes are to be pushed on the stack.
827 unsigned NumBytes = CCInfo.getNextStackOffset();
828
829 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
830
831 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
832 SmallVector<SDOperand, 8> MemOpChains;
833
834 SDOperand StackPtr;
835
836 // Walk the register/memloc assignments, inserting copies/loads.
837 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
838 CCValAssign &VA = ArgLocs[i];
839 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
840
841 // Promote the value if needed.
842 switch (VA.getLocInfo()) {
843 default: assert(0 && "Unknown loc info!");
844 case CCValAssign::Full: break;
845 case CCValAssign::SExt:
846 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
847 break;
848 case CCValAssign::ZExt:
849 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
850 break;
851 case CCValAssign::AExt:
852 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
853 break;
854 }
855
856 if (VA.isRegLoc()) {
857 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
858 } else {
859 assert(VA.isMemLoc());
860 if (StackPtr.Val == 0)
861 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +0000862
863 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
864 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000865 }
866 }
867
868 // If the first argument is an sret pointer, remember it.
869 bool isSRet = NumOps &&
870 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
871 ISD::ParamFlags::StructReturn);
872
873 if (!MemOpChains.empty())
874 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
875 &MemOpChains[0], MemOpChains.size());
876
877 // Build a sequence of copy-to-reg nodes chained together with token chain
878 // and flag operands which copy the outgoing args into registers.
879 SDOperand InFlag;
880 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
881 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
882 InFlag);
883 InFlag = Chain.getValue(1);
884 }
885
886 // ELF / PIC requires GOT in the EBX register before function calls via PLT
887 // GOT pointer.
888 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
889 Subtarget->isPICStyleGOT()) {
890 Chain = DAG.getCopyToReg(Chain, X86::EBX,
891 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
892 InFlag);
893 InFlag = Chain.getValue(1);
894 }
895
896 // If the callee is a GlobalAddress node (quite common, every direct call is)
897 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
898 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
899 // We should use extra load for direct calls to dllimported functions in
900 // non-JIT mode.
901 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
902 getTargetMachine(), true))
903 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
904 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
905 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
906
907 // Returns a chain & a flag for retval copy to use.
908 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
909 SmallVector<SDOperand, 8> Ops;
910 Ops.push_back(Chain);
911 Ops.push_back(Callee);
912
913 // Add argument registers to the end of the list so that they are known live
914 // into the call.
915 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
916 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
917 RegsToPass[i].second.getValueType()));
918
919 // Add an implicit use GOT pointer in EBX.
920 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
921 Subtarget->isPICStyleGOT())
922 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
923
924 if (InFlag.Val)
925 Ops.push_back(InFlag);
926
927 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
928 NodeTys, &Ops[0], Ops.size());
929 InFlag = Chain.getValue(1);
930
931 // Create the CALLSEQ_END node.
932 unsigned NumBytesForCalleeToPush = 0;
933
934 if (CC == CallingConv::X86_StdCall) {
935 if (isVarArg)
936 NumBytesForCalleeToPush = isSRet ? 4 : 0;
937 else
938 NumBytesForCalleeToPush = NumBytes;
939 } else {
940 // If this is is a call to a struct-return function, the callee
941 // pops the hidden struct pointer, so we have to push it back.
942 // This is common for Darwin/X86, Linux & Mingw32 targets.
943 NumBytesForCalleeToPush = isSRet ? 4 : 0;
944 }
945
946 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
947 Ops.clear();
948 Ops.push_back(Chain);
949 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
950 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
951 Ops.push_back(InFlag);
952 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
953 InFlag = Chain.getValue(1);
954
955 // Handle result values, copying them out of physregs into vregs that we
956 // return.
957 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
958}
959
960
961//===----------------------------------------------------------------------===//
962// FastCall Calling Convention implementation
963//===----------------------------------------------------------------------===//
964//
965// The X86 'fastcall' calling convention passes up to two integer arguments in
966// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
967// and requires that the callee pop its arguments off the stack (allowing proper
968// tail calls), and has the same return value conventions as C calling convs.
969//
970// This calling convention always arranges for the callee pop value to be 8n+4
971// bytes, which is needed for tail recursion elimination and stack alignment
972// reasons.
973SDOperand
974X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
975 MachineFunction &MF = DAG.getMachineFunction();
976 MachineFrameInfo *MFI = MF.getFrameInfo();
977 SDOperand Root = Op.getOperand(0);
978 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
979
980 // Assign locations to all of the incoming arguments.
981 SmallVector<CCValAssign, 16> ArgLocs;
982 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
983 getTargetMachine(), ArgLocs);
984 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
985
986 SmallVector<SDOperand, 8> ArgValues;
987 unsigned LastVal = ~0U;
988 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
989 CCValAssign &VA = ArgLocs[i];
990 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
991 // places.
992 assert(VA.getValNo() != LastVal &&
993 "Don't support value assigned to multiple locs yet");
994 LastVal = VA.getValNo();
995
996 if (VA.isRegLoc()) {
997 MVT::ValueType RegVT = VA.getLocVT();
998 TargetRegisterClass *RC;
999 if (RegVT == MVT::i32)
1000 RC = X86::GR32RegisterClass;
1001 else {
1002 assert(MVT::isVector(RegVT));
1003 RC = X86::VR128RegisterClass;
1004 }
1005
1006 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1007 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1008
1009 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1010 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1011 // right size.
1012 if (VA.getLocInfo() == CCValAssign::SExt)
1013 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1014 DAG.getValueType(VA.getValVT()));
1015 else if (VA.getLocInfo() == CCValAssign::ZExt)
1016 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1017 DAG.getValueType(VA.getValVT()));
1018
1019 if (VA.getLocInfo() != CCValAssign::Full)
1020 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1021
1022 ArgValues.push_back(ArgValue);
1023 } else {
1024 assert(VA.isMemLoc());
Rafael Espindolab53ef122007-09-21 14:55:38 +00001025 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001026 }
1027 }
1028
1029 ArgValues.push_back(Root);
1030
1031 unsigned StackSize = CCInfo.getNextStackOffset();
1032
1033 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1034 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1035 // arguments and the arguments after the retaddr has been pushed are aligned.
1036 if ((StackSize & 7) == 0)
1037 StackSize += 4;
1038 }
1039
1040 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1041 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001042 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1043 BytesCallerReserves = 0;
1044
Anton Korobeynikove844e472007-08-15 17:12:32 +00001045 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1046 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047
1048 // Return the new list of results.
1049 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1050 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1051}
1052
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001053SDOperand
1054X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1055 const SDOperand &StackPtr,
1056 const CCValAssign &VA,
1057 SDOperand Chain,
1058 SDOperand Arg) {
1059 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1060 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1061 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1062 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1063 if (Flags & ISD::ParamFlags::ByVal) {
1064 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1065 ISD::ParamFlags::ByValAlignOffs);
1066
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001067 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1068 ISD::ParamFlags::ByValSizeOffs;
1069
1070 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1071 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1072
1073 return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1074 AlignNode);
1075 } else {
1076 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1077 }
1078}
1079
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001080SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1081 unsigned CC) {
1082 SDOperand Chain = Op.getOperand(0);
1083 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1084 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1085 SDOperand Callee = Op.getOperand(4);
1086
1087 // Analyze operands of the call, assigning locations to each operand.
1088 SmallVector<CCValAssign, 16> ArgLocs;
1089 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1090 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1091
1092 // Get a count of how many bytes are to be pushed on the stack.
1093 unsigned NumBytes = CCInfo.getNextStackOffset();
1094
1095 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1096 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1097 // arguments and the arguments after the retaddr has been pushed are aligned.
1098 if ((NumBytes & 7) == 0)
1099 NumBytes += 4;
1100 }
1101
1102 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1103
1104 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1105 SmallVector<SDOperand, 8> MemOpChains;
1106
1107 SDOperand StackPtr;
1108
1109 // Walk the register/memloc assignments, inserting copies/loads.
1110 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1111 CCValAssign &VA = ArgLocs[i];
1112 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1113
1114 // Promote the value if needed.
1115 switch (VA.getLocInfo()) {
1116 default: assert(0 && "Unknown loc info!");
1117 case CCValAssign::Full: break;
1118 case CCValAssign::SExt:
1119 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1120 break;
1121 case CCValAssign::ZExt:
1122 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1123 break;
1124 case CCValAssign::AExt:
1125 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1126 break;
1127 }
1128
1129 if (VA.isRegLoc()) {
1130 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1131 } else {
1132 assert(VA.isMemLoc());
1133 if (StackPtr.Val == 0)
1134 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001135
1136 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1137 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001138 }
1139 }
1140
1141 if (!MemOpChains.empty())
1142 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1143 &MemOpChains[0], MemOpChains.size());
1144
1145 // Build a sequence of copy-to-reg nodes chained together with token chain
1146 // and flag operands which copy the outgoing args into registers.
1147 SDOperand InFlag;
1148 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1149 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1150 InFlag);
1151 InFlag = Chain.getValue(1);
1152 }
1153
1154 // If the callee is a GlobalAddress node (quite common, every direct call is)
1155 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1156 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1157 // We should use extra load for direct calls to dllimported functions in
1158 // non-JIT mode.
1159 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1160 getTargetMachine(), true))
1161 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1162 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1163 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1164
1165 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1166 // GOT pointer.
1167 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1168 Subtarget->isPICStyleGOT()) {
1169 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1170 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1171 InFlag);
1172 InFlag = Chain.getValue(1);
1173 }
1174
1175 // Returns a chain & a flag for retval copy to use.
1176 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1177 SmallVector<SDOperand, 8> Ops;
1178 Ops.push_back(Chain);
1179 Ops.push_back(Callee);
1180
1181 // Add argument registers to the end of the list so that they are known live
1182 // into the call.
1183 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1184 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1185 RegsToPass[i].second.getValueType()));
1186
1187 // Add an implicit use GOT pointer in EBX.
1188 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1189 Subtarget->isPICStyleGOT())
1190 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1191
1192 if (InFlag.Val)
1193 Ops.push_back(InFlag);
1194
1195 // FIXME: Do not generate X86ISD::TAILCALL for now.
1196 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1197 NodeTys, &Ops[0], Ops.size());
1198 InFlag = Chain.getValue(1);
1199
1200 // Returns a flag for retval copy to use.
1201 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1202 Ops.clear();
1203 Ops.push_back(Chain);
1204 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1205 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1206 Ops.push_back(InFlag);
1207 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1208 InFlag = Chain.getValue(1);
1209
1210 // Handle result values, copying them out of physregs into vregs that we
1211 // return.
1212 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1213}
1214
1215
1216//===----------------------------------------------------------------------===//
1217// X86-64 C Calling Convention implementation
1218//===----------------------------------------------------------------------===//
1219
1220SDOperand
1221X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1222 MachineFunction &MF = DAG.getMachineFunction();
1223 MachineFrameInfo *MFI = MF.getFrameInfo();
1224 SDOperand Root = Op.getOperand(0);
1225 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1226
1227 static const unsigned GPR64ArgRegs[] = {
1228 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1229 };
1230 static const unsigned XMMArgRegs[] = {
1231 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1232 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1233 };
1234
1235
1236 // Assign locations to all of the incoming arguments.
1237 SmallVector<CCValAssign, 16> ArgLocs;
1238 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1239 getTargetMachine(), ArgLocs);
1240 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1241
1242 SmallVector<SDOperand, 8> ArgValues;
1243 unsigned LastVal = ~0U;
1244 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1245 CCValAssign &VA = ArgLocs[i];
1246 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1247 // places.
1248 assert(VA.getValNo() != LastVal &&
1249 "Don't support value assigned to multiple locs yet");
1250 LastVal = VA.getValNo();
1251
1252 if (VA.isRegLoc()) {
1253 MVT::ValueType RegVT = VA.getLocVT();
1254 TargetRegisterClass *RC;
1255 if (RegVT == MVT::i32)
1256 RC = X86::GR32RegisterClass;
1257 else if (RegVT == MVT::i64)
1258 RC = X86::GR64RegisterClass;
1259 else if (RegVT == MVT::f32)
1260 RC = X86::FR32RegisterClass;
1261 else if (RegVT == MVT::f64)
1262 RC = X86::FR64RegisterClass;
1263 else {
1264 assert(MVT::isVector(RegVT));
1265 if (MVT::getSizeInBits(RegVT) == 64) {
1266 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1267 RegVT = MVT::i64;
1268 } else
1269 RC = X86::VR128RegisterClass;
1270 }
1271
1272 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1273 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1274
1275 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1276 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1277 // right size.
1278 if (VA.getLocInfo() == CCValAssign::SExt)
1279 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1280 DAG.getValueType(VA.getValVT()));
1281 else if (VA.getLocInfo() == CCValAssign::ZExt)
1282 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1283 DAG.getValueType(VA.getValVT()));
1284
1285 if (VA.getLocInfo() != CCValAssign::Full)
1286 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1287
1288 // Handle MMX values passed in GPRs.
1289 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1290 MVT::getSizeInBits(RegVT) == 64)
1291 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1292
1293 ArgValues.push_back(ArgValue);
1294 } else {
1295 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001296 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001297 }
1298 }
1299
1300 unsigned StackSize = CCInfo.getNextStackOffset();
1301
1302 // If the function takes variable number of arguments, make a frame index for
1303 // the start of the first vararg value... for expansion of llvm.va_start.
1304 if (isVarArg) {
1305 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1306 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1307
1308 // For X86-64, if there are vararg parameters that are passed via
1309 // registers, then we must store them to their spots on the stack so they
1310 // may be loaded by deferencing the result of va_next.
1311 VarArgsGPOffset = NumIntRegs * 8;
1312 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1313 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1314 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1315
1316 // Store the integer parameter registers.
1317 SmallVector<SDOperand, 8> MemOps;
1318 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1319 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1320 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1321 for (; NumIntRegs != 6; ++NumIntRegs) {
1322 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1323 X86::GR64RegisterClass);
1324 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1325 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1326 MemOps.push_back(Store);
1327 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1328 DAG.getConstant(8, getPointerTy()));
1329 }
1330
1331 // Now store the XMM (fp + vector) parameter registers.
1332 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1333 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1334 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1335 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1336 X86::VR128RegisterClass);
1337 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1338 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1339 MemOps.push_back(Store);
1340 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1341 DAG.getConstant(16, getPointerTy()));
1342 }
1343 if (!MemOps.empty())
1344 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1345 &MemOps[0], MemOps.size());
1346 }
1347
1348 ArgValues.push_back(Root);
1349
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001350 BytesToPopOnReturn = 0; // Callee pops nothing.
1351 BytesCallerReserves = StackSize;
1352
Anton Korobeynikove844e472007-08-15 17:12:32 +00001353 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1354 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1355
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001356 // Return the new list of results.
1357 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1358 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1359}
1360
1361SDOperand
1362X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1363 unsigned CC) {
1364 SDOperand Chain = Op.getOperand(0);
1365 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1366 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1367 SDOperand Callee = Op.getOperand(4);
1368
1369 // Analyze operands of the call, assigning locations to each operand.
1370 SmallVector<CCValAssign, 16> ArgLocs;
1371 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1372 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1373
1374 // Get a count of how many bytes are to be pushed on the stack.
1375 unsigned NumBytes = CCInfo.getNextStackOffset();
1376 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1377
1378 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1379 SmallVector<SDOperand, 8> MemOpChains;
1380
1381 SDOperand StackPtr;
1382
1383 // Walk the register/memloc assignments, inserting copies/loads.
1384 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1385 CCValAssign &VA = ArgLocs[i];
1386 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1387
1388 // Promote the value if needed.
1389 switch (VA.getLocInfo()) {
1390 default: assert(0 && "Unknown loc info!");
1391 case CCValAssign::Full: break;
1392 case CCValAssign::SExt:
1393 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1394 break;
1395 case CCValAssign::ZExt:
1396 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1397 break;
1398 case CCValAssign::AExt:
1399 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1400 break;
1401 }
1402
1403 if (VA.isRegLoc()) {
1404 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1405 } else {
1406 assert(VA.isMemLoc());
1407 if (StackPtr.Val == 0)
1408 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00001409
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001410 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1411 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001412 }
1413 }
1414
1415 if (!MemOpChains.empty())
1416 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1417 &MemOpChains[0], MemOpChains.size());
1418
1419 // Build a sequence of copy-to-reg nodes chained together with token chain
1420 // and flag operands which copy the outgoing args into registers.
1421 SDOperand InFlag;
1422 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1423 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1424 InFlag);
1425 InFlag = Chain.getValue(1);
1426 }
1427
1428 if (isVarArg) {
1429 // From AMD64 ABI document:
1430 // For calls that may call functions that use varargs or stdargs
1431 // (prototype-less calls or calls to functions containing ellipsis (...) in
1432 // the declaration) %al is used as hidden argument to specify the number
1433 // of SSE registers used. The contents of %al do not need to match exactly
1434 // the number of registers, but must be an ubound on the number of SSE
1435 // registers used and is in the range 0 - 8 inclusive.
1436
1437 // Count the number of XMM registers allocated.
1438 static const unsigned XMMArgRegs[] = {
1439 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1440 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1441 };
1442 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1443
1444 Chain = DAG.getCopyToReg(Chain, X86::AL,
1445 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1446 InFlag = Chain.getValue(1);
1447 }
1448
1449 // If the callee is a GlobalAddress node (quite common, every direct call is)
1450 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1451 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1452 // We should use extra load for direct calls to dllimported functions in
1453 // non-JIT mode.
1454 if (getTargetMachine().getCodeModel() != CodeModel::Large
1455 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1456 getTargetMachine(), true))
1457 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1458 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1459 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1460 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1461
1462 // Returns a chain & a flag for retval copy to use.
1463 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1464 SmallVector<SDOperand, 8> Ops;
1465 Ops.push_back(Chain);
1466 Ops.push_back(Callee);
1467
1468 // Add argument registers to the end of the list so that they are known live
1469 // into the call.
1470 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1471 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1472 RegsToPass[i].second.getValueType()));
1473
1474 if (InFlag.Val)
1475 Ops.push_back(InFlag);
1476
1477 // FIXME: Do not generate X86ISD::TAILCALL for now.
1478 Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1479 NodeTys, &Ops[0], Ops.size());
1480 InFlag = Chain.getValue(1);
1481
1482 // Returns a flag for retval copy to use.
1483 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1484 Ops.clear();
1485 Ops.push_back(Chain);
1486 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1487 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1488 Ops.push_back(InFlag);
1489 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1490 InFlag = Chain.getValue(1);
1491
1492 // Handle result values, copying them out of physregs into vregs that we
1493 // return.
1494 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1495}
1496
1497
1498//===----------------------------------------------------------------------===//
1499// Other Lowering Hooks
1500//===----------------------------------------------------------------------===//
1501
1502
1503SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00001504 MachineFunction &MF = DAG.getMachineFunction();
1505 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1506 int ReturnAddrIndex = FuncInfo->getRAIndex();
1507
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001508 if (ReturnAddrIndex == 0) {
1509 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001510 if (Subtarget->is64Bit())
1511 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1512 else
1513 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00001514
1515 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001516 }
1517
1518 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1519}
1520
1521
1522
1523/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1524/// specific condition code. It returns a false if it cannot do a direct
1525/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
1526/// needed.
1527static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1528 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1529 SelectionDAG &DAG) {
1530 X86CC = X86::COND_INVALID;
1531 if (!isFP) {
1532 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1533 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1534 // X > -1 -> X == 0, jump !sign.
1535 RHS = DAG.getConstant(0, RHS.getValueType());
1536 X86CC = X86::COND_NS;
1537 return true;
1538 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1539 // X < 0 -> X == 0, jump on sign.
1540 X86CC = X86::COND_S;
1541 return true;
Dan Gohman37b34262007-09-17 14:49:27 +00001542 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1543 // X < 1 -> X <= 0
1544 RHS = DAG.getConstant(0, RHS.getValueType());
1545 X86CC = X86::COND_LE;
1546 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001547 }
1548 }
1549
1550 switch (SetCCOpcode) {
1551 default: break;
1552 case ISD::SETEQ: X86CC = X86::COND_E; break;
1553 case ISD::SETGT: X86CC = X86::COND_G; break;
1554 case ISD::SETGE: X86CC = X86::COND_GE; break;
1555 case ISD::SETLT: X86CC = X86::COND_L; break;
1556 case ISD::SETLE: X86CC = X86::COND_LE; break;
1557 case ISD::SETNE: X86CC = X86::COND_NE; break;
1558 case ISD::SETULT: X86CC = X86::COND_B; break;
1559 case ISD::SETUGT: X86CC = X86::COND_A; break;
1560 case ISD::SETULE: X86CC = X86::COND_BE; break;
1561 case ISD::SETUGE: X86CC = X86::COND_AE; break;
1562 }
1563 } else {
1564 // On a floating point condition, the flags are set as follows:
1565 // ZF PF CF op
1566 // 0 | 0 | 0 | X > Y
1567 // 0 | 0 | 1 | X < Y
1568 // 1 | 0 | 0 | X == Y
1569 // 1 | 1 | 1 | unordered
1570 bool Flip = false;
1571 switch (SetCCOpcode) {
1572 default: break;
1573 case ISD::SETUEQ:
1574 case ISD::SETEQ: X86CC = X86::COND_E; break;
1575 case ISD::SETOLT: Flip = true; // Fallthrough
1576 case ISD::SETOGT:
1577 case ISD::SETGT: X86CC = X86::COND_A; break;
1578 case ISD::SETOLE: Flip = true; // Fallthrough
1579 case ISD::SETOGE:
1580 case ISD::SETGE: X86CC = X86::COND_AE; break;
1581 case ISD::SETUGT: Flip = true; // Fallthrough
1582 case ISD::SETULT:
1583 case ISD::SETLT: X86CC = X86::COND_B; break;
1584 case ISD::SETUGE: Flip = true; // Fallthrough
1585 case ISD::SETULE:
1586 case ISD::SETLE: X86CC = X86::COND_BE; break;
1587 case ISD::SETONE:
1588 case ISD::SETNE: X86CC = X86::COND_NE; break;
1589 case ISD::SETUO: X86CC = X86::COND_P; break;
1590 case ISD::SETO: X86CC = X86::COND_NP; break;
1591 }
1592 if (Flip)
1593 std::swap(LHS, RHS);
1594 }
1595
1596 return X86CC != X86::COND_INVALID;
1597}
1598
1599/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1600/// code. Current x86 isa includes the following FP cmov instructions:
1601/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1602static bool hasFPCMov(unsigned X86CC) {
1603 switch (X86CC) {
1604 default:
1605 return false;
1606 case X86::COND_B:
1607 case X86::COND_BE:
1608 case X86::COND_E:
1609 case X86::COND_P:
1610 case X86::COND_A:
1611 case X86::COND_AE:
1612 case X86::COND_NE:
1613 case X86::COND_NP:
1614 return true;
1615 }
1616}
1617
1618/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
1619/// true if Op is undef or if its value falls within the specified range (L, H].
1620static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1621 if (Op.getOpcode() == ISD::UNDEF)
1622 return true;
1623
1624 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1625 return (Val >= Low && Val < Hi);
1626}
1627
1628/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
1629/// true if Op is undef or if its value equal to the specified value.
1630static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1631 if (Op.getOpcode() == ISD::UNDEF)
1632 return true;
1633 return cast<ConstantSDNode>(Op)->getValue() == Val;
1634}
1635
1636/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1637/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1638bool X86::isPSHUFDMask(SDNode *N) {
1639 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1640
Dan Gohman7dc19012007-08-02 21:17:01 +00001641 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001642 return false;
1643
1644 // Check if the value doesn't reference the second vector.
1645 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1646 SDOperand Arg = N->getOperand(i);
1647 if (Arg.getOpcode() == ISD::UNDEF) continue;
1648 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00001649 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001650 return false;
1651 }
1652
1653 return true;
1654}
1655
1656/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1657/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1658bool X86::isPSHUFHWMask(SDNode *N) {
1659 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1660
1661 if (N->getNumOperands() != 8)
1662 return false;
1663
1664 // Lower quadword copied in order.
1665 for (unsigned i = 0; i != 4; ++i) {
1666 SDOperand Arg = N->getOperand(i);
1667 if (Arg.getOpcode() == ISD::UNDEF) continue;
1668 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1669 if (cast<ConstantSDNode>(Arg)->getValue() != i)
1670 return false;
1671 }
1672
1673 // Upper quadword shuffled.
1674 for (unsigned i = 4; i != 8; ++i) {
1675 SDOperand Arg = N->getOperand(i);
1676 if (Arg.getOpcode() == ISD::UNDEF) continue;
1677 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1678 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1679 if (Val < 4 || Val > 7)
1680 return false;
1681 }
1682
1683 return true;
1684}
1685
1686/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1687/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1688bool X86::isPSHUFLWMask(SDNode *N) {
1689 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1690
1691 if (N->getNumOperands() != 8)
1692 return false;
1693
1694 // Upper quadword copied in order.
1695 for (unsigned i = 4; i != 8; ++i)
1696 if (!isUndefOrEqual(N->getOperand(i), i))
1697 return false;
1698
1699 // Lower quadword shuffled.
1700 for (unsigned i = 0; i != 4; ++i)
1701 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1702 return false;
1703
1704 return true;
1705}
1706
1707/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1708/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1709static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1710 if (NumElems != 2 && NumElems != 4) return false;
1711
1712 unsigned Half = NumElems / 2;
1713 for (unsigned i = 0; i < Half; ++i)
1714 if (!isUndefOrInRange(Elems[i], 0, NumElems))
1715 return false;
1716 for (unsigned i = Half; i < NumElems; ++i)
1717 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1718 return false;
1719
1720 return true;
1721}
1722
1723bool X86::isSHUFPMask(SDNode *N) {
1724 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1725 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1726}
1727
1728/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1729/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1730/// half elements to come from vector 1 (which would equal the dest.) and
1731/// the upper half to come from vector 2.
1732static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1733 if (NumOps != 2 && NumOps != 4) return false;
1734
1735 unsigned Half = NumOps / 2;
1736 for (unsigned i = 0; i < Half; ++i)
1737 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1738 return false;
1739 for (unsigned i = Half; i < NumOps; ++i)
1740 if (!isUndefOrInRange(Ops[i], 0, NumOps))
1741 return false;
1742 return true;
1743}
1744
1745static bool isCommutedSHUFP(SDNode *N) {
1746 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1747 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1748}
1749
1750/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1751/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1752bool X86::isMOVHLPSMask(SDNode *N) {
1753 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1754
1755 if (N->getNumOperands() != 4)
1756 return false;
1757
1758 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1759 return isUndefOrEqual(N->getOperand(0), 6) &&
1760 isUndefOrEqual(N->getOperand(1), 7) &&
1761 isUndefOrEqual(N->getOperand(2), 2) &&
1762 isUndefOrEqual(N->getOperand(3), 3);
1763}
1764
1765/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1766/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1767/// <2, 3, 2, 3>
1768bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1769 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1770
1771 if (N->getNumOperands() != 4)
1772 return false;
1773
1774 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1775 return isUndefOrEqual(N->getOperand(0), 2) &&
1776 isUndefOrEqual(N->getOperand(1), 3) &&
1777 isUndefOrEqual(N->getOperand(2), 2) &&
1778 isUndefOrEqual(N->getOperand(3), 3);
1779}
1780
1781/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1782/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1783bool X86::isMOVLPMask(SDNode *N) {
1784 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1785
1786 unsigned NumElems = N->getNumOperands();
1787 if (NumElems != 2 && NumElems != 4)
1788 return false;
1789
1790 for (unsigned i = 0; i < NumElems/2; ++i)
1791 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1792 return false;
1793
1794 for (unsigned i = NumElems/2; i < NumElems; ++i)
1795 if (!isUndefOrEqual(N->getOperand(i), i))
1796 return false;
1797
1798 return true;
1799}
1800
1801/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1802/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1803/// and MOVLHPS.
1804bool X86::isMOVHPMask(SDNode *N) {
1805 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1806
1807 unsigned NumElems = N->getNumOperands();
1808 if (NumElems != 2 && NumElems != 4)
1809 return false;
1810
1811 for (unsigned i = 0; i < NumElems/2; ++i)
1812 if (!isUndefOrEqual(N->getOperand(i), i))
1813 return false;
1814
1815 for (unsigned i = 0; i < NumElems/2; ++i) {
1816 SDOperand Arg = N->getOperand(i + NumElems/2);
1817 if (!isUndefOrEqual(Arg, i + NumElems))
1818 return false;
1819 }
1820
1821 return true;
1822}
1823
1824/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1825/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1826bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1827 bool V2IsSplat = false) {
1828 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1829 return false;
1830
1831 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1832 SDOperand BitI = Elts[i];
1833 SDOperand BitI1 = Elts[i+1];
1834 if (!isUndefOrEqual(BitI, j))
1835 return false;
1836 if (V2IsSplat) {
1837 if (isUndefOrEqual(BitI1, NumElts))
1838 return false;
1839 } else {
1840 if (!isUndefOrEqual(BitI1, j + NumElts))
1841 return false;
1842 }
1843 }
1844
1845 return true;
1846}
1847
1848bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1849 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1850 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1851}
1852
1853/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1854/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1855bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1856 bool V2IsSplat = false) {
1857 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1858 return false;
1859
1860 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1861 SDOperand BitI = Elts[i];
1862 SDOperand BitI1 = Elts[i+1];
1863 if (!isUndefOrEqual(BitI, j + NumElts/2))
1864 return false;
1865 if (V2IsSplat) {
1866 if (isUndefOrEqual(BitI1, NumElts))
1867 return false;
1868 } else {
1869 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1870 return false;
1871 }
1872 }
1873
1874 return true;
1875}
1876
1877bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1878 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1879 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1880}
1881
1882/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1883/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1884/// <0, 0, 1, 1>
1885bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1886 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1887
1888 unsigned NumElems = N->getNumOperands();
1889 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1890 return false;
1891
1892 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1893 SDOperand BitI = N->getOperand(i);
1894 SDOperand BitI1 = N->getOperand(i+1);
1895
1896 if (!isUndefOrEqual(BitI, j))
1897 return false;
1898 if (!isUndefOrEqual(BitI1, j))
1899 return false;
1900 }
1901
1902 return true;
1903}
1904
1905/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1906/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1907/// <2, 2, 3, 3>
1908bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1909 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1910
1911 unsigned NumElems = N->getNumOperands();
1912 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1913 return false;
1914
1915 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1916 SDOperand BitI = N->getOperand(i);
1917 SDOperand BitI1 = N->getOperand(i + 1);
1918
1919 if (!isUndefOrEqual(BitI, j))
1920 return false;
1921 if (!isUndefOrEqual(BitI1, j))
1922 return false;
1923 }
1924
1925 return true;
1926}
1927
1928/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1929/// specifies a shuffle of elements that is suitable for input to MOVSS,
1930/// MOVSD, and MOVD, i.e. setting the lowest element.
1931static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1932 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1933 return false;
1934
1935 if (!isUndefOrEqual(Elts[0], NumElts))
1936 return false;
1937
1938 for (unsigned i = 1; i < NumElts; ++i) {
1939 if (!isUndefOrEqual(Elts[i], i))
1940 return false;
1941 }
1942
1943 return true;
1944}
1945
1946bool X86::isMOVLMask(SDNode *N) {
1947 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1948 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1949}
1950
1951/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1952/// of what x86 movss want. X86 movs requires the lowest element to be lowest
1953/// element of vector 2 and the other elements to come from vector 1 in order.
1954static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1955 bool V2IsSplat = false,
1956 bool V2IsUndef = false) {
1957 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1958 return false;
1959
1960 if (!isUndefOrEqual(Ops[0], 0))
1961 return false;
1962
1963 for (unsigned i = 1; i < NumOps; ++i) {
1964 SDOperand Arg = Ops[i];
1965 if (!(isUndefOrEqual(Arg, i+NumOps) ||
1966 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1967 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1968 return false;
1969 }
1970
1971 return true;
1972}
1973
1974static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1975 bool V2IsUndef = false) {
1976 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1977 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1978 V2IsSplat, V2IsUndef);
1979}
1980
1981/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1982/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1983bool X86::isMOVSHDUPMask(SDNode *N) {
1984 assert(N->getOpcode() == ISD::BUILD_VECTOR);
1985
1986 if (N->getNumOperands() != 4)
1987 return false;
1988
1989 // Expect 1, 1, 3, 3
1990 for (unsigned i = 0; i < 2; ++i) {
1991 SDOperand Arg = N->getOperand(i);
1992 if (Arg.getOpcode() == ISD::UNDEF) continue;
1993 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1994 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1995 if (Val != 1) return false;
1996 }
1997
1998 bool HasHi = false;
1999 for (unsigned i = 2; i < 4; ++i) {
2000 SDOperand Arg = N->getOperand(i);
2001 if (Arg.getOpcode() == ISD::UNDEF) continue;
2002 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2003 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2004 if (Val != 3) return false;
2005 HasHi = true;
2006 }
2007
2008 // Don't use movshdup if it can be done with a shufps.
2009 return HasHi;
2010}
2011
2012/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2013/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2014bool X86::isMOVSLDUPMask(SDNode *N) {
2015 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2016
2017 if (N->getNumOperands() != 4)
2018 return false;
2019
2020 // Expect 0, 0, 2, 2
2021 for (unsigned i = 0; i < 2; ++i) {
2022 SDOperand Arg = N->getOperand(i);
2023 if (Arg.getOpcode() == ISD::UNDEF) continue;
2024 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2025 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2026 if (Val != 0) return false;
2027 }
2028
2029 bool HasHi = false;
2030 for (unsigned i = 2; i < 4; ++i) {
2031 SDOperand Arg = N->getOperand(i);
2032 if (Arg.getOpcode() == ISD::UNDEF) continue;
2033 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2034 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2035 if (Val != 2) return false;
2036 HasHi = true;
2037 }
2038
2039 // Don't use movshdup if it can be done with a shufps.
2040 return HasHi;
2041}
2042
2043/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2044/// specifies a identity operation on the LHS or RHS.
2045static bool isIdentityMask(SDNode *N, bool RHS = false) {
2046 unsigned NumElems = N->getNumOperands();
2047 for (unsigned i = 0; i < NumElems; ++i)
2048 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2049 return false;
2050 return true;
2051}
2052
2053/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2054/// a splat of a single element.
2055static bool isSplatMask(SDNode *N) {
2056 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2057
2058 // This is a splat operation if each element of the permute is the same, and
2059 // if the value doesn't reference the second vector.
2060 unsigned NumElems = N->getNumOperands();
2061 SDOperand ElementBase;
2062 unsigned i = 0;
2063 for (; i != NumElems; ++i) {
2064 SDOperand Elt = N->getOperand(i);
2065 if (isa<ConstantSDNode>(Elt)) {
2066 ElementBase = Elt;
2067 break;
2068 }
2069 }
2070
2071 if (!ElementBase.Val)
2072 return false;
2073
2074 for (; i != NumElems; ++i) {
2075 SDOperand Arg = N->getOperand(i);
2076 if (Arg.getOpcode() == ISD::UNDEF) continue;
2077 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2078 if (Arg != ElementBase) return false;
2079 }
2080
2081 // Make sure it is a splat of the first vector operand.
2082 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2083}
2084
2085/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2086/// a splat of a single element and it's a 2 or 4 element mask.
2087bool X86::isSplatMask(SDNode *N) {
2088 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2089
2090 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2091 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2092 return false;
2093 return ::isSplatMask(N);
2094}
2095
2096/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2097/// specifies a splat of zero element.
2098bool X86::isSplatLoMask(SDNode *N) {
2099 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2100
2101 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2102 if (!isUndefOrEqual(N->getOperand(i), 0))
2103 return false;
2104 return true;
2105}
2106
2107/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2108/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2109/// instructions.
2110unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2111 unsigned NumOperands = N->getNumOperands();
2112 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2113 unsigned Mask = 0;
2114 for (unsigned i = 0; i < NumOperands; ++i) {
2115 unsigned Val = 0;
2116 SDOperand Arg = N->getOperand(NumOperands-i-1);
2117 if (Arg.getOpcode() != ISD::UNDEF)
2118 Val = cast<ConstantSDNode>(Arg)->getValue();
2119 if (Val >= NumOperands) Val -= NumOperands;
2120 Mask |= Val;
2121 if (i != NumOperands - 1)
2122 Mask <<= Shift;
2123 }
2124
2125 return Mask;
2126}
2127
2128/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2129/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2130/// instructions.
2131unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2132 unsigned Mask = 0;
2133 // 8 nodes, but we only care about the last 4.
2134 for (unsigned i = 7; i >= 4; --i) {
2135 unsigned Val = 0;
2136 SDOperand Arg = N->getOperand(i);
2137 if (Arg.getOpcode() != ISD::UNDEF)
2138 Val = cast<ConstantSDNode>(Arg)->getValue();
2139 Mask |= (Val - 4);
2140 if (i != 4)
2141 Mask <<= 2;
2142 }
2143
2144 return Mask;
2145}
2146
2147/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2148/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2149/// instructions.
2150unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2151 unsigned Mask = 0;
2152 // 8 nodes, but we only care about the first 4.
2153 for (int i = 3; i >= 0; --i) {
2154 unsigned Val = 0;
2155 SDOperand Arg = N->getOperand(i);
2156 if (Arg.getOpcode() != ISD::UNDEF)
2157 Val = cast<ConstantSDNode>(Arg)->getValue();
2158 Mask |= Val;
2159 if (i != 0)
2160 Mask <<= 2;
2161 }
2162
2163 return Mask;
2164}
2165
2166/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2167/// specifies a 8 element shuffle that can be broken into a pair of
2168/// PSHUFHW and PSHUFLW.
2169static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2170 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2171
2172 if (N->getNumOperands() != 8)
2173 return false;
2174
2175 // Lower quadword shuffled.
2176 for (unsigned i = 0; i != 4; ++i) {
2177 SDOperand Arg = N->getOperand(i);
2178 if (Arg.getOpcode() == ISD::UNDEF) continue;
2179 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2180 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2181 if (Val > 4)
2182 return false;
2183 }
2184
2185 // Upper quadword shuffled.
2186 for (unsigned i = 4; i != 8; ++i) {
2187 SDOperand Arg = N->getOperand(i);
2188 if (Arg.getOpcode() == ISD::UNDEF) continue;
2189 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2190 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2191 if (Val < 4 || Val > 7)
2192 return false;
2193 }
2194
2195 return true;
2196}
2197
2198/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2199/// values in ther permute mask.
2200static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2201 SDOperand &V2, SDOperand &Mask,
2202 SelectionDAG &DAG) {
2203 MVT::ValueType VT = Op.getValueType();
2204 MVT::ValueType MaskVT = Mask.getValueType();
2205 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2206 unsigned NumElems = Mask.getNumOperands();
2207 SmallVector<SDOperand, 8> MaskVec;
2208
2209 for (unsigned i = 0; i != NumElems; ++i) {
2210 SDOperand Arg = Mask.getOperand(i);
2211 if (Arg.getOpcode() == ISD::UNDEF) {
2212 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2213 continue;
2214 }
2215 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2216 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2217 if (Val < NumElems)
2218 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2219 else
2220 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2221 }
2222
2223 std::swap(V1, V2);
2224 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2225 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2226}
2227
2228/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2229/// match movhlps. The lower half elements should come from upper half of
2230/// V1 (and in order), and the upper half elements should come from the upper
2231/// half of V2 (and in order).
2232static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2233 unsigned NumElems = Mask->getNumOperands();
2234 if (NumElems != 4)
2235 return false;
2236 for (unsigned i = 0, e = 2; i != e; ++i)
2237 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2238 return false;
2239 for (unsigned i = 2; i != 4; ++i)
2240 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2241 return false;
2242 return true;
2243}
2244
2245/// isScalarLoadToVector - Returns true if the node is a scalar load that
2246/// is promoted to a vector.
2247static inline bool isScalarLoadToVector(SDNode *N) {
2248 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2249 N = N->getOperand(0).Val;
2250 return ISD::isNON_EXTLoad(N);
2251 }
2252 return false;
2253}
2254
2255/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2256/// match movlp{s|d}. The lower half elements should come from lower half of
2257/// V1 (and in order), and the upper half elements should come from the upper
2258/// half of V2 (and in order). And since V1 will become the source of the
2259/// MOVLP, it must be either a vector load or a scalar load to vector.
2260static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2261 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2262 return false;
2263 // Is V2 is a vector load, don't do this transformation. We will try to use
2264 // load folding shufps op.
2265 if (ISD::isNON_EXTLoad(V2))
2266 return false;
2267
2268 unsigned NumElems = Mask->getNumOperands();
2269 if (NumElems != 2 && NumElems != 4)
2270 return false;
2271 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2272 if (!isUndefOrEqual(Mask->getOperand(i), i))
2273 return false;
2274 for (unsigned i = NumElems/2; i != NumElems; ++i)
2275 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2276 return false;
2277 return true;
2278}
2279
2280/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2281/// all the same.
2282static bool isSplatVector(SDNode *N) {
2283 if (N->getOpcode() != ISD::BUILD_VECTOR)
2284 return false;
2285
2286 SDOperand SplatValue = N->getOperand(0);
2287 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2288 if (N->getOperand(i) != SplatValue)
2289 return false;
2290 return true;
2291}
2292
2293/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2294/// to an undef.
2295static bool isUndefShuffle(SDNode *N) {
2296 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2297 return false;
2298
2299 SDOperand V1 = N->getOperand(0);
2300 SDOperand V2 = N->getOperand(1);
2301 SDOperand Mask = N->getOperand(2);
2302 unsigned NumElems = Mask.getNumOperands();
2303 for (unsigned i = 0; i != NumElems; ++i) {
2304 SDOperand Arg = Mask.getOperand(i);
2305 if (Arg.getOpcode() != ISD::UNDEF) {
2306 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2307 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2308 return false;
2309 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2310 return false;
2311 }
2312 }
2313 return true;
2314}
2315
2316/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2317/// constant +0.0.
2318static inline bool isZeroNode(SDOperand Elt) {
2319 return ((isa<ConstantSDNode>(Elt) &&
2320 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2321 (isa<ConstantFPSDNode>(Elt) &&
Dale Johannesendf8a8312007-08-31 04:03:46 +00002322 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002323}
2324
2325/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2326/// to an zero vector.
2327static bool isZeroShuffle(SDNode *N) {
2328 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2329 return false;
2330
2331 SDOperand V1 = N->getOperand(0);
2332 SDOperand V2 = N->getOperand(1);
2333 SDOperand Mask = N->getOperand(2);
2334 unsigned NumElems = Mask.getNumOperands();
2335 for (unsigned i = 0; i != NumElems; ++i) {
2336 SDOperand Arg = Mask.getOperand(i);
2337 if (Arg.getOpcode() != ISD::UNDEF) {
2338 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2339 if (Idx < NumElems) {
2340 unsigned Opc = V1.Val->getOpcode();
2341 if (Opc == ISD::UNDEF)
2342 continue;
2343 if (Opc != ISD::BUILD_VECTOR ||
2344 !isZeroNode(V1.Val->getOperand(Idx)))
2345 return false;
2346 } else if (Idx >= NumElems) {
2347 unsigned Opc = V2.Val->getOpcode();
2348 if (Opc == ISD::UNDEF)
2349 continue;
2350 if (Opc != ISD::BUILD_VECTOR ||
2351 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2352 return false;
2353 }
2354 }
2355 }
2356 return true;
2357}
2358
2359/// getZeroVector - Returns a vector of specified type with all zero elements.
2360///
2361static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2362 assert(MVT::isVector(VT) && "Expected a vector type");
2363 unsigned NumElems = MVT::getVectorNumElements(VT);
2364 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2365 bool isFP = MVT::isFloatingPoint(EVT);
2366 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2367 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2368 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2369}
2370
2371/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2372/// that point to V2 points to its first element.
2373static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2374 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2375
2376 bool Changed = false;
2377 SmallVector<SDOperand, 8> MaskVec;
2378 unsigned NumElems = Mask.getNumOperands();
2379 for (unsigned i = 0; i != NumElems; ++i) {
2380 SDOperand Arg = Mask.getOperand(i);
2381 if (Arg.getOpcode() != ISD::UNDEF) {
2382 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2383 if (Val > NumElems) {
2384 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2385 Changed = true;
2386 }
2387 }
2388 MaskVec.push_back(Arg);
2389 }
2390
2391 if (Changed)
2392 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2393 &MaskVec[0], MaskVec.size());
2394 return Mask;
2395}
2396
2397/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2398/// operation of specified width.
2399static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2400 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2401 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2402
2403 SmallVector<SDOperand, 8> MaskVec;
2404 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2405 for (unsigned i = 1; i != NumElems; ++i)
2406 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2407 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2408}
2409
2410/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2411/// of specified width.
2412static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2413 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2414 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2415 SmallVector<SDOperand, 8> MaskVec;
2416 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2417 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2418 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2419 }
2420 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2421}
2422
2423/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2424/// of specified width.
2425static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2426 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2427 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2428 unsigned Half = NumElems/2;
2429 SmallVector<SDOperand, 8> MaskVec;
2430 for (unsigned i = 0; i != Half; ++i) {
2431 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2432 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2433 }
2434 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2435}
2436
2437/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2438///
2439static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2440 SDOperand V1 = Op.getOperand(0);
2441 SDOperand Mask = Op.getOperand(2);
2442 MVT::ValueType VT = Op.getValueType();
2443 unsigned NumElems = Mask.getNumOperands();
2444 Mask = getUnpacklMask(NumElems, DAG);
2445 while (NumElems != 4) {
2446 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2447 NumElems >>= 1;
2448 }
2449 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2450
2451 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2452 Mask = getZeroVector(MaskVT, DAG);
2453 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2454 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2455 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2456}
2457
2458/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2459/// vector of zero or undef vector.
2460static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2461 unsigned NumElems, unsigned Idx,
2462 bool isZero, SelectionDAG &DAG) {
2463 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2464 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2465 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2466 SDOperand Zero = DAG.getConstant(0, EVT);
2467 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2468 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2469 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2470 &MaskVec[0], MaskVec.size());
2471 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2472}
2473
2474/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2475///
2476static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2477 unsigned NumNonZero, unsigned NumZero,
2478 SelectionDAG &DAG, TargetLowering &TLI) {
2479 if (NumNonZero > 8)
2480 return SDOperand();
2481
2482 SDOperand V(0, 0);
2483 bool First = true;
2484 for (unsigned i = 0; i < 16; ++i) {
2485 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2486 if (ThisIsNonZero && First) {
2487 if (NumZero)
2488 V = getZeroVector(MVT::v8i16, DAG);
2489 else
2490 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2491 First = false;
2492 }
2493
2494 if ((i & 1) != 0) {
2495 SDOperand ThisElt(0, 0), LastElt(0, 0);
2496 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2497 if (LastIsNonZero) {
2498 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2499 }
2500 if (ThisIsNonZero) {
2501 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2502 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2503 ThisElt, DAG.getConstant(8, MVT::i8));
2504 if (LastIsNonZero)
2505 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2506 } else
2507 ThisElt = LastElt;
2508
2509 if (ThisElt.Val)
2510 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2511 DAG.getConstant(i/2, TLI.getPointerTy()));
2512 }
2513 }
2514
2515 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2516}
2517
2518/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2519///
2520static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2521 unsigned NumNonZero, unsigned NumZero,
2522 SelectionDAG &DAG, TargetLowering &TLI) {
2523 if (NumNonZero > 4)
2524 return SDOperand();
2525
2526 SDOperand V(0, 0);
2527 bool First = true;
2528 for (unsigned i = 0; i < 8; ++i) {
2529 bool isNonZero = (NonZeros & (1 << i)) != 0;
2530 if (isNonZero) {
2531 if (First) {
2532 if (NumZero)
2533 V = getZeroVector(MVT::v8i16, DAG);
2534 else
2535 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2536 First = false;
2537 }
2538 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2539 DAG.getConstant(i, TLI.getPointerTy()));
2540 }
2541 }
2542
2543 return V;
2544}
2545
2546SDOperand
2547X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2548 // All zero's are handled with pxor.
2549 if (ISD::isBuildVectorAllZeros(Op.Val))
2550 return Op;
2551
2552 // All one's are handled with pcmpeqd.
2553 if (ISD::isBuildVectorAllOnes(Op.Val))
2554 return Op;
2555
2556 MVT::ValueType VT = Op.getValueType();
2557 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2558 unsigned EVTBits = MVT::getSizeInBits(EVT);
2559
2560 unsigned NumElems = Op.getNumOperands();
2561 unsigned NumZero = 0;
2562 unsigned NumNonZero = 0;
2563 unsigned NonZeros = 0;
Dan Gohman21463242007-07-24 22:55:08 +00002564 unsigned NumNonZeroImms = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002565 std::set<SDOperand> Values;
2566 for (unsigned i = 0; i < NumElems; ++i) {
2567 SDOperand Elt = Op.getOperand(i);
2568 if (Elt.getOpcode() != ISD::UNDEF) {
2569 Values.insert(Elt);
2570 if (isZeroNode(Elt))
2571 NumZero++;
2572 else {
2573 NonZeros |= (1 << i);
2574 NumNonZero++;
Dan Gohman21463242007-07-24 22:55:08 +00002575 if (Elt.getOpcode() == ISD::Constant ||
2576 Elt.getOpcode() == ISD::ConstantFP)
2577 NumNonZeroImms++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002578 }
2579 }
2580 }
2581
2582 if (NumNonZero == 0) {
2583 if (NumZero == 0)
2584 // All undef vector. Return an UNDEF.
2585 return DAG.getNode(ISD::UNDEF, VT);
2586 else
2587 // A mix of zero and undef. Return a zero vector.
2588 return getZeroVector(VT, DAG);
2589 }
2590
2591 // Splat is obviously ok. Let legalizer expand it to a shuffle.
2592 if (Values.size() == 1)
2593 return SDOperand();
2594
2595 // Special case for single non-zero element.
2596 if (NumNonZero == 1) {
2597 unsigned Idx = CountTrailingZeros_32(NonZeros);
2598 SDOperand Item = Op.getOperand(Idx);
2599 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2600 if (Idx == 0)
2601 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2602 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2603 NumZero > 0, DAG);
2604
2605 if (EVTBits == 32) {
2606 // Turn it into a shuffle of zero and zero-extended scalar to vector.
2607 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2608 DAG);
2609 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2610 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2611 SmallVector<SDOperand, 8> MaskVec;
2612 for (unsigned i = 0; i < NumElems; i++)
2613 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2614 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2615 &MaskVec[0], MaskVec.size());
2616 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2617 DAG.getNode(ISD::UNDEF, VT), Mask);
2618 }
2619 }
2620
Dan Gohman21463242007-07-24 22:55:08 +00002621 // A vector full of immediates; various special cases are already
2622 // handled, so this is best done with a single constant-pool load.
2623 if (NumNonZero == NumNonZeroImms)
2624 return SDOperand();
2625
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002626 // Let legalizer expand 2-wide build_vectors.
2627 if (EVTBits == 64)
2628 return SDOperand();
2629
2630 // If element VT is < 32 bits, convert it to inserts into a zero vector.
2631 if (EVTBits == 8 && NumElems == 16) {
2632 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2633 *this);
2634 if (V.Val) return V;
2635 }
2636
2637 if (EVTBits == 16 && NumElems == 8) {
2638 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2639 *this);
2640 if (V.Val) return V;
2641 }
2642
2643 // If element VT is == 32 bits, turn it into a number of shuffles.
2644 SmallVector<SDOperand, 8> V;
2645 V.resize(NumElems);
2646 if (NumElems == 4 && NumZero > 0) {
2647 for (unsigned i = 0; i < 4; ++i) {
2648 bool isZero = !(NonZeros & (1 << i));
2649 if (isZero)
2650 V[i] = getZeroVector(VT, DAG);
2651 else
2652 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2653 }
2654
2655 for (unsigned i = 0; i < 2; ++i) {
2656 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2657 default: break;
2658 case 0:
2659 V[i] = V[i*2]; // Must be a zero vector.
2660 break;
2661 case 1:
2662 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2663 getMOVLMask(NumElems, DAG));
2664 break;
2665 case 2:
2666 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2667 getMOVLMask(NumElems, DAG));
2668 break;
2669 case 3:
2670 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2671 getUnpacklMask(NumElems, DAG));
2672 break;
2673 }
2674 }
2675
2676 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2677 // clears the upper bits.
2678 // FIXME: we can do the same for v4f32 case when we know both parts of
2679 // the lower half come from scalar_to_vector (loadf32). We should do
2680 // that in post legalizer dag combiner with target specific hooks.
2681 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2682 return V[0];
2683 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2684 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2685 SmallVector<SDOperand, 8> MaskVec;
2686 bool Reverse = (NonZeros & 0x3) == 2;
2687 for (unsigned i = 0; i < 2; ++i)
2688 if (Reverse)
2689 MaskVec.push_back(DAG.getConstant(1-i, EVT));
2690 else
2691 MaskVec.push_back(DAG.getConstant(i, EVT));
2692 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2693 for (unsigned i = 0; i < 2; ++i)
2694 if (Reverse)
2695 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2696 else
2697 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2698 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2699 &MaskVec[0], MaskVec.size());
2700 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2701 }
2702
2703 if (Values.size() > 2) {
2704 // Expand into a number of unpckl*.
2705 // e.g. for v4f32
2706 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2707 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2708 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
2709 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2710 for (unsigned i = 0; i < NumElems; ++i)
2711 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2712 NumElems >>= 1;
2713 while (NumElems != 0) {
2714 for (unsigned i = 0; i < NumElems; ++i)
2715 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2716 UnpckMask);
2717 NumElems >>= 1;
2718 }
2719 return V[0];
2720 }
2721
2722 return SDOperand();
2723}
2724
2725SDOperand
2726X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2727 SDOperand V1 = Op.getOperand(0);
2728 SDOperand V2 = Op.getOperand(1);
2729 SDOperand PermMask = Op.getOperand(2);
2730 MVT::ValueType VT = Op.getValueType();
2731 unsigned NumElems = PermMask.getNumOperands();
2732 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2733 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2734 bool V1IsSplat = false;
2735 bool V2IsSplat = false;
2736
2737 if (isUndefShuffle(Op.Val))
2738 return DAG.getNode(ISD::UNDEF, VT);
2739
2740 if (isZeroShuffle(Op.Val))
2741 return getZeroVector(VT, DAG);
2742
2743 if (isIdentityMask(PermMask.Val))
2744 return V1;
2745 else if (isIdentityMask(PermMask.Val, true))
2746 return V2;
2747
2748 if (isSplatMask(PermMask.Val)) {
2749 if (NumElems <= 4) return Op;
2750 // Promote it to a v4i32 splat.
2751 return PromoteSplat(Op, DAG);
2752 }
2753
2754 if (X86::isMOVLMask(PermMask.Val))
2755 return (V1IsUndef) ? V2 : Op;
2756
2757 if (X86::isMOVSHDUPMask(PermMask.Val) ||
2758 X86::isMOVSLDUPMask(PermMask.Val) ||
2759 X86::isMOVHLPSMask(PermMask.Val) ||
2760 X86::isMOVHPMask(PermMask.Val) ||
2761 X86::isMOVLPMask(PermMask.Val))
2762 return Op;
2763
2764 if (ShouldXformToMOVHLPS(PermMask.Val) ||
2765 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2766 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2767
2768 bool Commuted = false;
2769 V1IsSplat = isSplatVector(V1.Val);
2770 V2IsSplat = isSplatVector(V2.Val);
2771 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2772 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2773 std::swap(V1IsSplat, V2IsSplat);
2774 std::swap(V1IsUndef, V2IsUndef);
2775 Commuted = true;
2776 }
2777
2778 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2779 if (V2IsUndef) return V1;
2780 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2781 if (V2IsSplat) {
2782 // V2 is a splat, so the mask may be malformed. That is, it may point
2783 // to any V2 element. The instruction selectior won't like this. Get
2784 // a corrected mask and commute to form a proper MOVS{S|D}.
2785 SDOperand NewMask = getMOVLMask(NumElems, DAG);
2786 if (NewMask.Val != PermMask.Val)
2787 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2788 }
2789 return Op;
2790 }
2791
2792 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2793 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2794 X86::isUNPCKLMask(PermMask.Val) ||
2795 X86::isUNPCKHMask(PermMask.Val))
2796 return Op;
2797
2798 if (V2IsSplat) {
2799 // Normalize mask so all entries that point to V2 points to its first
2800 // element then try to match unpck{h|l} again. If match, return a
2801 // new vector_shuffle with the corrected mask.
2802 SDOperand NewMask = NormalizeMask(PermMask, DAG);
2803 if (NewMask.Val != PermMask.Val) {
2804 if (X86::isUNPCKLMask(PermMask.Val, true)) {
2805 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2806 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2807 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2808 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2809 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2810 }
2811 }
2812 }
2813
2814 // Normalize the node to match x86 shuffle ops if needed
2815 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2816 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2817
2818 if (Commuted) {
2819 // Commute is back and try unpck* again.
2820 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2821 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2822 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2823 X86::isUNPCKLMask(PermMask.Val) ||
2824 X86::isUNPCKHMask(PermMask.Val))
2825 return Op;
2826 }
2827
2828 // If VT is integer, try PSHUF* first, then SHUFP*.
2829 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00002830 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2831 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2832 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2833 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002834 X86::isPSHUFHWMask(PermMask.Val) ||
2835 X86::isPSHUFLWMask(PermMask.Val)) {
2836 if (V2.getOpcode() != ISD::UNDEF)
2837 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2838 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2839 return Op;
2840 }
2841
2842 if (X86::isSHUFPMask(PermMask.Val) &&
2843 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
2844 return Op;
2845
2846 // Handle v8i16 shuffle high / low shuffle node pair.
2847 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2848 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2849 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2850 SmallVector<SDOperand, 8> MaskVec;
2851 for (unsigned i = 0; i != 4; ++i)
2852 MaskVec.push_back(PermMask.getOperand(i));
2853 for (unsigned i = 4; i != 8; ++i)
2854 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2855 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2856 &MaskVec[0], MaskVec.size());
2857 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2858 MaskVec.clear();
2859 for (unsigned i = 0; i != 4; ++i)
2860 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2861 for (unsigned i = 4; i != 8; ++i)
2862 MaskVec.push_back(PermMask.getOperand(i));
2863 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2864 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2865 }
2866 } else {
2867 // Floating point cases in the other order.
2868 if (X86::isSHUFPMask(PermMask.Val))
2869 return Op;
2870 if (X86::isPSHUFDMask(PermMask.Val) ||
2871 X86::isPSHUFHWMask(PermMask.Val) ||
2872 X86::isPSHUFLWMask(PermMask.Val)) {
2873 if (V2.getOpcode() != ISD::UNDEF)
2874 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2875 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2876 return Op;
2877 }
2878 }
2879
2880 if (NumElems == 4 &&
2881 // Don't do this for MMX.
2882 MVT::getSizeInBits(VT) != 64) {
2883 MVT::ValueType MaskVT = PermMask.getValueType();
2884 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2885 SmallVector<std::pair<int, int>, 8> Locs;
2886 Locs.reserve(NumElems);
2887 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2888 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2889 unsigned NumHi = 0;
2890 unsigned NumLo = 0;
2891 // If no more than two elements come from either vector. This can be
2892 // implemented with two shuffles. First shuffle gather the elements.
2893 // The second shuffle, which takes the first shuffle as both of its
2894 // vector operands, put the elements into the right order.
2895 for (unsigned i = 0; i != NumElems; ++i) {
2896 SDOperand Elt = PermMask.getOperand(i);
2897 if (Elt.getOpcode() == ISD::UNDEF) {
2898 Locs[i] = std::make_pair(-1, -1);
2899 } else {
2900 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2901 if (Val < NumElems) {
2902 Locs[i] = std::make_pair(0, NumLo);
2903 Mask1[NumLo] = Elt;
2904 NumLo++;
2905 } else {
2906 Locs[i] = std::make_pair(1, NumHi);
2907 if (2+NumHi < NumElems)
2908 Mask1[2+NumHi] = Elt;
2909 NumHi++;
2910 }
2911 }
2912 }
2913 if (NumLo <= 2 && NumHi <= 2) {
2914 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2915 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2916 &Mask1[0], Mask1.size()));
2917 for (unsigned i = 0; i != NumElems; ++i) {
2918 if (Locs[i].first == -1)
2919 continue;
2920 else {
2921 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2922 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2923 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2924 }
2925 }
2926
2927 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2928 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2929 &Mask2[0], Mask2.size()));
2930 }
2931
2932 // Break it into (shuffle shuffle_hi, shuffle_lo).
2933 Locs.clear();
2934 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2935 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2936 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2937 unsigned MaskIdx = 0;
2938 unsigned LoIdx = 0;
2939 unsigned HiIdx = NumElems/2;
2940 for (unsigned i = 0; i != NumElems; ++i) {
2941 if (i == NumElems/2) {
2942 MaskPtr = &HiMask;
2943 MaskIdx = 1;
2944 LoIdx = 0;
2945 HiIdx = NumElems/2;
2946 }
2947 SDOperand Elt = PermMask.getOperand(i);
2948 if (Elt.getOpcode() == ISD::UNDEF) {
2949 Locs[i] = std::make_pair(-1, -1);
2950 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2951 Locs[i] = std::make_pair(MaskIdx, LoIdx);
2952 (*MaskPtr)[LoIdx] = Elt;
2953 LoIdx++;
2954 } else {
2955 Locs[i] = std::make_pair(MaskIdx, HiIdx);
2956 (*MaskPtr)[HiIdx] = Elt;
2957 HiIdx++;
2958 }
2959 }
2960
2961 SDOperand LoShuffle =
2962 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2963 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2964 &LoMask[0], LoMask.size()));
2965 SDOperand HiShuffle =
2966 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2967 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2968 &HiMask[0], HiMask.size()));
2969 SmallVector<SDOperand, 8> MaskOps;
2970 for (unsigned i = 0; i != NumElems; ++i) {
2971 if (Locs[i].first == -1) {
2972 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2973 } else {
2974 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2975 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2976 }
2977 }
2978 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2979 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2980 &MaskOps[0], MaskOps.size()));
2981 }
2982
2983 return SDOperand();
2984}
2985
2986SDOperand
2987X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2988 if (!isa<ConstantSDNode>(Op.getOperand(1)))
2989 return SDOperand();
2990
2991 MVT::ValueType VT = Op.getValueType();
2992 // TODO: handle v16i8.
2993 if (MVT::getSizeInBits(VT) == 16) {
2994 // Transform it so it match pextrw which produces a 32-bit result.
2995 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
2996 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
2997 Op.getOperand(0), Op.getOperand(1));
2998 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
2999 DAG.getValueType(VT));
3000 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3001 } else if (MVT::getSizeInBits(VT) == 32) {
3002 SDOperand Vec = Op.getOperand(0);
3003 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3004 if (Idx == 0)
3005 return Op;
3006 // SHUFPS the element to the lowest double word, then movss.
3007 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3008 SmallVector<SDOperand, 8> IdxVec;
3009 IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3010 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3011 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3012 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3013 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3014 &IdxVec[0], IdxVec.size());
3015 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3016 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3017 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3018 DAG.getConstant(0, getPointerTy()));
3019 } else if (MVT::getSizeInBits(VT) == 64) {
3020 SDOperand Vec = Op.getOperand(0);
3021 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3022 if (Idx == 0)
3023 return Op;
3024
3025 // UNPCKHPD the element to the lowest double word, then movsd.
3026 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3027 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3028 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3029 SmallVector<SDOperand, 8> IdxVec;
3030 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3031 IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3032 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3033 &IdxVec[0], IdxVec.size());
3034 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3035 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3036 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3037 DAG.getConstant(0, getPointerTy()));
3038 }
3039
3040 return SDOperand();
3041}
3042
3043SDOperand
3044X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3045 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3046 // as its second argument.
3047 MVT::ValueType VT = Op.getValueType();
3048 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3049 SDOperand N0 = Op.getOperand(0);
3050 SDOperand N1 = Op.getOperand(1);
3051 SDOperand N2 = Op.getOperand(2);
3052 if (MVT::getSizeInBits(BaseVT) == 16) {
3053 if (N1.getValueType() != MVT::i32)
3054 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3055 if (N2.getValueType() != MVT::i32)
3056 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3057 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3058 } else if (MVT::getSizeInBits(BaseVT) == 32) {
3059 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3060 if (Idx == 0) {
3061 // Use a movss.
3062 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3063 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3064 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3065 SmallVector<SDOperand, 8> MaskVec;
3066 MaskVec.push_back(DAG.getConstant(4, BaseVT));
3067 for (unsigned i = 1; i <= 3; ++i)
3068 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3069 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3070 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3071 &MaskVec[0], MaskVec.size()));
3072 } else {
3073 // Use two pinsrw instructions to insert a 32 bit value.
3074 Idx <<= 1;
3075 if (MVT::isFloatingPoint(N1.getValueType())) {
Evan Cheng1eea6752007-07-31 06:21:44 +00003076 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3077 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3078 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3079 DAG.getConstant(0, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003080 }
3081 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3082 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3083 DAG.getConstant(Idx, getPointerTy()));
3084 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3085 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3086 DAG.getConstant(Idx+1, getPointerTy()));
3087 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3088 }
3089 }
3090
3091 return SDOperand();
3092}
3093
3094SDOperand
3095X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3096 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3097 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3098}
3099
3100// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3101// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3102// one of the above mentioned nodes. It has to be wrapped because otherwise
3103// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3104// be used to form addressing mode. These wrapped nodes will be selected
3105// into MOV32ri.
3106SDOperand
3107X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3108 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3109 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3110 getPointerTy(),
3111 CP->getAlignment());
3112 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3113 // With PIC, the address is actually $g + Offset.
3114 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3115 !Subtarget->isPICStyleRIPRel()) {
3116 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3117 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3118 Result);
3119 }
3120
3121 return Result;
3122}
3123
3124SDOperand
3125X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3126 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3127 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3128 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3129 // With PIC, the address is actually $g + Offset.
3130 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3131 !Subtarget->isPICStyleRIPRel()) {
3132 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3133 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3134 Result);
3135 }
3136
3137 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3138 // load the value at address GV, not the value of GV itself. This means that
3139 // the GlobalAddress must be in the base or index register of the address, not
3140 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3141 // The same applies for external symbols during PIC codegen
3142 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3143 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3144
3145 return Result;
3146}
3147
3148// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3149static SDOperand
3150LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3151 const MVT::ValueType PtrVT) {
3152 SDOperand InFlag;
3153 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3154 DAG.getNode(X86ISD::GlobalBaseReg,
3155 PtrVT), InFlag);
3156 InFlag = Chain.getValue(1);
3157
3158 // emit leal symbol@TLSGD(,%ebx,1), %eax
3159 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3160 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3161 GA->getValueType(0),
3162 GA->getOffset());
3163 SDOperand Ops[] = { Chain, TGA, InFlag };
3164 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3165 InFlag = Result.getValue(2);
3166 Chain = Result.getValue(1);
3167
3168 // call ___tls_get_addr. This function receives its argument in
3169 // the register EAX.
3170 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3171 InFlag = Chain.getValue(1);
3172
3173 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3174 SDOperand Ops1[] = { Chain,
3175 DAG.getTargetExternalSymbol("___tls_get_addr",
3176 PtrVT),
3177 DAG.getRegister(X86::EAX, PtrVT),
3178 DAG.getRegister(X86::EBX, PtrVT),
3179 InFlag };
3180 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3181 InFlag = Chain.getValue(1);
3182
3183 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3184}
3185
3186// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3187// "local exec" model.
3188static SDOperand
3189LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3190 const MVT::ValueType PtrVT) {
3191 // Get the Thread Pointer
3192 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3193 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3194 // exec)
3195 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3196 GA->getValueType(0),
3197 GA->getOffset());
3198 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3199
3200 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3201 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3202
3203 // The address of the thread local variable is the add of the thread
3204 // pointer with the offset of the variable.
3205 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3206}
3207
3208SDOperand
3209X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3210 // TODO: implement the "local dynamic" model
3211 // TODO: implement the "initial exec"model for pic executables
3212 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3213 "TLS not implemented for non-ELF and 64-bit targets");
3214 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3215 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3216 // otherwise use the "Local Exec"TLS Model
3217 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3218 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3219 else
3220 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3221}
3222
3223SDOperand
3224X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3225 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3226 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3227 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3228 // With PIC, the address is actually $g + Offset.
3229 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3230 !Subtarget->isPICStyleRIPRel()) {
3231 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3232 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3233 Result);
3234 }
3235
3236 return Result;
3237}
3238
3239SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3240 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3241 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3242 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3243 // With PIC, the address is actually $g + Offset.
3244 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3245 !Subtarget->isPICStyleRIPRel()) {
3246 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3247 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3248 Result);
3249 }
3250
3251 return Result;
3252}
3253
3254SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3255 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3256 "Not an i64 shift!");
3257 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3258 SDOperand ShOpLo = Op.getOperand(0);
3259 SDOperand ShOpHi = Op.getOperand(1);
3260 SDOperand ShAmt = Op.getOperand(2);
3261 SDOperand Tmp1 = isSRA ?
3262 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3263 DAG.getConstant(0, MVT::i32);
3264
3265 SDOperand Tmp2, Tmp3;
3266 if (Op.getOpcode() == ISD::SHL_PARTS) {
3267 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3268 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3269 } else {
3270 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3271 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3272 }
3273
3274 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3275 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3276 DAG.getConstant(32, MVT::i8));
3277 SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3278 SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3279
3280 SDOperand Hi, Lo;
3281 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3282
3283 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3284 SmallVector<SDOperand, 4> Ops;
3285 if (Op.getOpcode() == ISD::SHL_PARTS) {
3286 Ops.push_back(Tmp2);
3287 Ops.push_back(Tmp3);
3288 Ops.push_back(CC);
3289 Ops.push_back(InFlag);
3290 Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3291 InFlag = Hi.getValue(1);
3292
3293 Ops.clear();
3294 Ops.push_back(Tmp3);
3295 Ops.push_back(Tmp1);
3296 Ops.push_back(CC);
3297 Ops.push_back(InFlag);
3298 Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3299 } else {
3300 Ops.push_back(Tmp2);
3301 Ops.push_back(Tmp3);
3302 Ops.push_back(CC);
3303 Ops.push_back(InFlag);
3304 Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3305 InFlag = Lo.getValue(1);
3306
3307 Ops.clear();
3308 Ops.push_back(Tmp3);
3309 Ops.push_back(Tmp1);
3310 Ops.push_back(CC);
3311 Ops.push_back(InFlag);
3312 Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3313 }
3314
3315 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3316 Ops.clear();
3317 Ops.push_back(Lo);
3318 Ops.push_back(Hi);
3319 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3320}
3321
3322SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3323 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3324 Op.getOperand(0).getValueType() >= MVT::i16 &&
3325 "Unknown SINT_TO_FP to lower!");
3326
3327 SDOperand Result;
3328 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3329 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3330 MachineFunction &MF = DAG.getMachineFunction();
3331 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3332 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3333 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3334 StackSlot, NULL, 0);
3335
Dale Johannesen2fc20782007-09-14 22:26:36 +00003336 // These are really Legal; caller falls through into that case.
3337 if (SrcVT==MVT::i32 && Op.getValueType() != MVT::f80 && X86ScalarSSE)
3338 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003339 if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3340 Subtarget->is64Bit())
3341 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003342
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003343 // Build the FILD
3344 SDVTList Tys;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003345 bool useSSE = X86ScalarSSE && Op.getValueType() != MVT::f80;
3346 if (useSSE)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003347 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3348 else
3349 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3350 SmallVector<SDOperand, 8> Ops;
3351 Ops.push_back(Chain);
3352 Ops.push_back(StackSlot);
3353 Ops.push_back(DAG.getValueType(SrcVT));
Dale Johannesen2fc20782007-09-14 22:26:36 +00003354 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003355 Tys, &Ops[0], Ops.size());
3356
Dale Johannesen2fc20782007-09-14 22:26:36 +00003357 if (useSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003358 Chain = Result.getValue(1);
3359 SDOperand InFlag = Result.getValue(2);
3360
3361 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3362 // shouldn't be necessary except that RFP cannot be live across
3363 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3364 MachineFunction &MF = DAG.getMachineFunction();
3365 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3366 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3367 Tys = DAG.getVTList(MVT::Other);
3368 SmallVector<SDOperand, 8> Ops;
3369 Ops.push_back(Chain);
3370 Ops.push_back(Result);
3371 Ops.push_back(StackSlot);
3372 Ops.push_back(DAG.getValueType(Op.getValueType()));
3373 Ops.push_back(InFlag);
3374 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3375 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3376 }
3377
3378 return Result;
3379}
3380
3381SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3382 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3383 "Unknown FP_TO_SINT to lower!");
3384 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3385 // stack slot.
Dale Johannesen2fc20782007-09-14 22:26:36 +00003386 SDOperand Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003387 MachineFunction &MF = DAG.getMachineFunction();
3388 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3389 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3390 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3391
Dale Johannesen2fc20782007-09-14 22:26:36 +00003392 // These are really Legal.
3393 if (Op.getValueType() == MVT::i32 && X86ScalarSSE &&
3394 Op.getOperand(0).getValueType() != MVT::f80)
3395 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003396 if (Subtarget->is64Bit() &&
3397 Op.getValueType() == MVT::i64 &&
3398 Op.getOperand(0).getValueType() != MVT::f80)
3399 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003400
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003401 unsigned Opc;
3402 switch (Op.getValueType()) {
3403 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3404 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3405 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3406 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3407 }
3408
3409 SDOperand Chain = DAG.getEntryNode();
3410 SDOperand Value = Op.getOperand(0);
Dale Johannesen2fc20782007-09-14 22:26:36 +00003411 if (X86ScalarSSE && Op.getOperand(0).getValueType() != MVT::f80) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003412 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3413 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3414 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3415 SDOperand Ops[] = {
3416 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3417 };
3418 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3419 Chain = Value.getValue(1);
3420 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3421 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3422 }
3423
3424 // Build the FP_TO_INT*_IN_MEM
3425 SDOperand Ops[] = { Chain, Value, StackSlot };
3426 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3427
3428 // Load the result.
3429 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3430}
3431
3432SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3433 MVT::ValueType VT = Op.getValueType();
3434 MVT::ValueType EltVT = VT;
3435 if (MVT::isVector(VT))
3436 EltVT = MVT::getVectorElementType(VT);
3437 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3438 std::vector<Constant*> CV;
3439 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003440 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003441 CV.push_back(C);
3442 CV.push_back(C);
3443 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003444 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003445 CV.push_back(C);
3446 CV.push_back(C);
3447 CV.push_back(C);
3448 CV.push_back(C);
3449 }
Dan Gohman11821702007-07-27 17:16:43 +00003450 Constant *C = ConstantVector::get(CV);
3451 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3452 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3453 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003454 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3455}
3456
3457SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3458 MVT::ValueType VT = Op.getValueType();
3459 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00003460 unsigned EltNum = 1;
3461 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003462 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00003463 EltNum = MVT::getVectorNumElements(VT);
3464 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003465 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3466 std::vector<Constant*> CV;
3467 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003468 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003469 CV.push_back(C);
3470 CV.push_back(C);
3471 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003472 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003473 CV.push_back(C);
3474 CV.push_back(C);
3475 CV.push_back(C);
3476 CV.push_back(C);
3477 }
Dan Gohman11821702007-07-27 17:16:43 +00003478 Constant *C = ConstantVector::get(CV);
3479 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3480 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3481 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00003482 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00003483 return DAG.getNode(ISD::BIT_CONVERT, VT,
3484 DAG.getNode(ISD::XOR, MVT::v2i64,
3485 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3486 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3487 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00003488 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3489 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003490}
3491
3492SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3493 SDOperand Op0 = Op.getOperand(0);
3494 SDOperand Op1 = Op.getOperand(1);
3495 MVT::ValueType VT = Op.getValueType();
3496 MVT::ValueType SrcVT = Op1.getValueType();
3497 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
3498
3499 // If second operand is smaller, extend it first.
3500 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3501 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3502 SrcVT = VT;
Dale Johannesenb9de9f02007-09-06 18:13:44 +00003503 SrcTy = MVT::getTypeForValueType(SrcVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003504 }
3505
3506 // First get the sign bit of second operand.
3507 std::vector<Constant*> CV;
3508 if (SrcVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003509 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
3510 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003511 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003512 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
3513 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3514 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3515 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003516 }
Dan Gohman11821702007-07-27 17:16:43 +00003517 Constant *C = ConstantVector::get(CV);
3518 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3519 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3520 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003521 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3522
3523 // Shift sign bit right or left if the two operands have different types.
3524 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3525 // Op0 is MVT::f32, Op1 is MVT::f64.
3526 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3527 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3528 DAG.getConstant(32, MVT::i32));
3529 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3530 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3531 DAG.getConstant(0, getPointerTy()));
3532 }
3533
3534 // Clear first operand sign bit.
3535 CV.clear();
3536 if (VT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003537 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
3538 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003539 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003540 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
3541 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3542 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3543 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003544 }
Dan Gohman11821702007-07-27 17:16:43 +00003545 C = ConstantVector::get(CV);
3546 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3547 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3548 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003549 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3550
3551 // Or the value with the sign bit.
3552 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3553}
3554
3555SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3556 SDOperand Chain) {
3557 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3558 SDOperand Cond;
3559 SDOperand Op0 = Op.getOperand(0);
3560 SDOperand Op1 = Op.getOperand(1);
3561 SDOperand CC = Op.getOperand(2);
3562 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3563 const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3564 const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3565 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3566 unsigned X86CC;
3567
3568 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3569 Op0, Op1, DAG)) {
3570 SDOperand Ops1[] = { Chain, Op0, Op1 };
3571 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3572 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3573 return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3574 }
3575
3576 assert(isFP && "Illegal integer SetCC!");
3577
3578 SDOperand COps[] = { Chain, Op0, Op1 };
3579 Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3580
3581 switch (SetCCOpcode) {
3582 default: assert(false && "Illegal floating point SetCC!");
3583 case ISD::SETOEQ: { // !PF & ZF
3584 SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3585 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3586 SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3587 Tmp1.getValue(1) };
3588 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3589 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3590 }
3591 case ISD::SETUNE: { // PF | !ZF
3592 SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3593 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3594 SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3595 Tmp1.getValue(1) };
3596 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3597 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3598 }
3599 }
3600}
3601
3602SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3603 bool addTest = true;
3604 SDOperand Chain = DAG.getEntryNode();
3605 SDOperand Cond = Op.getOperand(0);
3606 SDOperand CC;
3607 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3608
3609 if (Cond.getOpcode() == ISD::SETCC)
3610 Cond = LowerSETCC(Cond, DAG, Chain);
3611
3612 if (Cond.getOpcode() == X86ISD::SETCC) {
3613 CC = Cond.getOperand(0);
3614
3615 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3616 // (since flag operand cannot be shared). Use it as the condition setting
3617 // operand in place of the X86ISD::SETCC.
3618 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3619 // to use a test instead of duplicating the X86ISD::CMP (for register
3620 // pressure reason)?
3621 SDOperand Cmp = Cond.getOperand(1);
3622 unsigned Opc = Cmp.getOpcode();
3623 bool IllegalFPCMov = !X86ScalarSSE &&
3624 MVT::isFloatingPoint(Op.getValueType()) &&
3625 !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3626 if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3627 !IllegalFPCMov) {
3628 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3629 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3630 addTest = false;
3631 }
3632 }
3633
3634 if (addTest) {
3635 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3636 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3637 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3638 }
3639
3640 VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3641 SmallVector<SDOperand, 4> Ops;
3642 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3643 // condition is true.
3644 Ops.push_back(Op.getOperand(2));
3645 Ops.push_back(Op.getOperand(1));
3646 Ops.push_back(CC);
3647 Ops.push_back(Cond.getValue(1));
3648 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3649}
3650
3651SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3652 bool addTest = true;
3653 SDOperand Chain = Op.getOperand(0);
3654 SDOperand Cond = Op.getOperand(1);
3655 SDOperand Dest = Op.getOperand(2);
3656 SDOperand CC;
3657 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3658
3659 if (Cond.getOpcode() == ISD::SETCC)
3660 Cond = LowerSETCC(Cond, DAG, Chain);
3661
3662 if (Cond.getOpcode() == X86ISD::SETCC) {
3663 CC = Cond.getOperand(0);
3664
3665 // If condition flag is set by a X86ISD::CMP, then make a copy of it
3666 // (since flag operand cannot be shared). Use it as the condition setting
3667 // operand in place of the X86ISD::SETCC.
3668 // If the X86ISD::SETCC has more than one use, then perhaps it's better
3669 // to use a test instead of duplicating the X86ISD::CMP (for register
3670 // pressure reason)?
3671 SDOperand Cmp = Cond.getOperand(1);
3672 unsigned Opc = Cmp.getOpcode();
3673 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3674 SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3675 Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3676 addTest = false;
3677 }
3678 }
3679
3680 if (addTest) {
3681 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3682 SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3683 Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3684 }
3685 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3686 Cond, Op.getOperand(2), CC, Cond.getValue(1));
3687}
3688
3689SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3690 unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3691
3692 if (Subtarget->is64Bit())
3693 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3694 else
3695 switch (CallingConv) {
3696 default:
3697 assert(0 && "Unsupported calling convention");
3698 case CallingConv::Fast:
3699 // TODO: Implement fastcc
3700 // Falls through
3701 case CallingConv::C:
3702 case CallingConv::X86_StdCall:
3703 return LowerCCCCallTo(Op, DAG, CallingConv);
3704 case CallingConv::X86_FastCall:
3705 return LowerFastCCCallTo(Op, DAG, CallingConv);
3706 }
3707}
3708
3709
3710// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3711// Calls to _alloca is needed to probe the stack when allocating more than 4k
3712// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3713// that the guard pages used by the OS virtual memory manager are allocated in
3714// correct sequence.
3715SDOperand
3716X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3717 SelectionDAG &DAG) {
3718 assert(Subtarget->isTargetCygMing() &&
3719 "This should be used only on Cygwin/Mingw targets");
3720
3721 // Get the inputs.
3722 SDOperand Chain = Op.getOperand(0);
3723 SDOperand Size = Op.getOperand(1);
3724 // FIXME: Ensure alignment here
3725
3726 SDOperand Flag;
3727
3728 MVT::ValueType IntPtr = getPointerTy();
3729 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3730
3731 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3732 Flag = Chain.getValue(1);
3733
3734 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3735 SDOperand Ops[] = { Chain,
3736 DAG.getTargetExternalSymbol("_alloca", IntPtr),
3737 DAG.getRegister(X86::EAX, IntPtr),
3738 Flag };
3739 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3740 Flag = Chain.getValue(1);
3741
3742 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3743
3744 std::vector<MVT::ValueType> Tys;
3745 Tys.push_back(SPTy);
3746 Tys.push_back(MVT::Other);
3747 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3748 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3749}
3750
3751SDOperand
3752X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3753 MachineFunction &MF = DAG.getMachineFunction();
3754 const Function* Fn = MF.getFunction();
3755 if (Fn->hasExternalLinkage() &&
3756 Subtarget->isTargetCygMing() &&
3757 Fn->getName() == "main")
3758 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3759
3760 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3761 if (Subtarget->is64Bit())
3762 return LowerX86_64CCCArguments(Op, DAG);
3763 else
3764 switch(CC) {
3765 default:
3766 assert(0 && "Unsupported calling convention");
3767 case CallingConv::Fast:
3768 // TODO: implement fastcc.
3769
3770 // Falls through
3771 case CallingConv::C:
3772 return LowerCCCArguments(Op, DAG);
3773 case CallingConv::X86_StdCall:
3774 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3775 return LowerCCCArguments(Op, DAG, true);
3776 case CallingConv::X86_FastCall:
3777 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3778 return LowerFastCCArguments(Op, DAG);
3779 }
3780}
3781
3782SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3783 SDOperand InFlag(0, 0);
3784 SDOperand Chain = Op.getOperand(0);
3785 unsigned Align =
3786 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3787 if (Align == 0) Align = 1;
3788
3789 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003790 // If not DWORD aligned or size is more than the threshold, call memset.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00003791 // The libc version is likely to be faster for these cases. It can use the
3792 // address value and run time information about the CPU.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003793 if ((Align & 3) != 0 ||
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003794 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003795 MVT::ValueType IntPtr = getPointerTy();
3796 const Type *IntPtrTy = getTargetData()->getIntPtrType();
3797 TargetLowering::ArgListTy Args;
3798 TargetLowering::ArgListEntry Entry;
3799 Entry.Node = Op.getOperand(1);
3800 Entry.Ty = IntPtrTy;
3801 Args.push_back(Entry);
3802 // Extend the unsigned i8 argument to be an int value for the call.
3803 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3804 Entry.Ty = IntPtrTy;
3805 Args.push_back(Entry);
3806 Entry.Node = Op.getOperand(3);
3807 Args.push_back(Entry);
3808 std::pair<SDOperand,SDOperand> CallResult =
3809 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3810 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3811 return CallResult.second;
3812 }
3813
3814 MVT::ValueType AVT;
3815 SDOperand Count;
3816 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3817 unsigned BytesLeft = 0;
3818 bool TwoRepStos = false;
3819 if (ValC) {
3820 unsigned ValReg;
3821 uint64_t Val = ValC->getValue() & 255;
3822
3823 // If the value is a constant, then we can potentially use larger sets.
3824 switch (Align & 3) {
3825 case 2: // WORD aligned
3826 AVT = MVT::i16;
3827 ValReg = X86::AX;
3828 Val = (Val << 8) | Val;
3829 break;
3830 case 0: // DWORD aligned
3831 AVT = MVT::i32;
3832 ValReg = X86::EAX;
3833 Val = (Val << 8) | Val;
3834 Val = (Val << 16) | Val;
3835 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
3836 AVT = MVT::i64;
3837 ValReg = X86::RAX;
3838 Val = (Val << 32) | Val;
3839 }
3840 break;
3841 default: // Byte aligned
3842 AVT = MVT::i8;
3843 ValReg = X86::AL;
3844 Count = Op.getOperand(3);
3845 break;
3846 }
3847
3848 if (AVT > MVT::i8) {
3849 if (I) {
3850 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3851 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3852 BytesLeft = I->getValue() % UBytes;
3853 } else {
3854 assert(AVT >= MVT::i32 &&
3855 "Do not use rep;stos if not at least DWORD aligned");
3856 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3857 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3858 TwoRepStos = true;
3859 }
3860 }
3861
3862 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3863 InFlag);
3864 InFlag = Chain.getValue(1);
3865 } else {
3866 AVT = MVT::i8;
3867 Count = Op.getOperand(3);
3868 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3869 InFlag = Chain.getValue(1);
3870 }
3871
3872 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3873 Count, InFlag);
3874 InFlag = Chain.getValue(1);
3875 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3876 Op.getOperand(1), InFlag);
3877 InFlag = Chain.getValue(1);
3878
3879 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3880 SmallVector<SDOperand, 8> Ops;
3881 Ops.push_back(Chain);
3882 Ops.push_back(DAG.getValueType(AVT));
3883 Ops.push_back(InFlag);
3884 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3885
3886 if (TwoRepStos) {
3887 InFlag = Chain.getValue(1);
3888 Count = Op.getOperand(3);
3889 MVT::ValueType CVT = Count.getValueType();
3890 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3891 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3892 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3893 Left, InFlag);
3894 InFlag = Chain.getValue(1);
3895 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3896 Ops.clear();
3897 Ops.push_back(Chain);
3898 Ops.push_back(DAG.getValueType(MVT::i8));
3899 Ops.push_back(InFlag);
3900 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3901 } else if (BytesLeft) {
3902 // Issue stores for the last 1 - 7 bytes.
3903 SDOperand Value;
3904 unsigned Val = ValC->getValue() & 255;
3905 unsigned Offset = I->getValue() - BytesLeft;
3906 SDOperand DstAddr = Op.getOperand(1);
3907 MVT::ValueType AddrVT = DstAddr.getValueType();
3908 if (BytesLeft >= 4) {
3909 Val = (Val << 8) | Val;
3910 Val = (Val << 16) | Val;
3911 Value = DAG.getConstant(Val, MVT::i32);
3912 Chain = DAG.getStore(Chain, Value,
3913 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3914 DAG.getConstant(Offset, AddrVT)),
3915 NULL, 0);
3916 BytesLeft -= 4;
3917 Offset += 4;
3918 }
3919 if (BytesLeft >= 2) {
3920 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3921 Chain = DAG.getStore(Chain, Value,
3922 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3923 DAG.getConstant(Offset, AddrVT)),
3924 NULL, 0);
3925 BytesLeft -= 2;
3926 Offset += 2;
3927 }
3928 if (BytesLeft == 1) {
3929 Value = DAG.getConstant(Val, MVT::i8);
3930 Chain = DAG.getStore(Chain, Value,
3931 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3932 DAG.getConstant(Offset, AddrVT)),
3933 NULL, 0);
3934 }
3935 }
3936
3937 return Chain;
3938}
3939
3940SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3941 SDOperand Chain = Op.getOperand(0);
3942 unsigned Align =
3943 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3944 if (Align == 0) Align = 1;
3945
3946 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003947 // If not DWORD aligned or size is more than the threshold, call memcpy.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00003948 // The libc version is likely to be faster for these cases. It can use the
3949 // address value and run time information about the CPU.
3950 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003951 if ((Align & 3) != 0 ||
Rafael Espindola5d3e7622007-08-27 10:18:20 +00003952 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003953 MVT::ValueType IntPtr = getPointerTy();
3954 TargetLowering::ArgListTy Args;
3955 TargetLowering::ArgListEntry Entry;
3956 Entry.Ty = getTargetData()->getIntPtrType();
3957 Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3958 Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3959 Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3960 std::pair<SDOperand,SDOperand> CallResult =
3961 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3962 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3963 return CallResult.second;
3964 }
3965
3966 MVT::ValueType AVT;
3967 SDOperand Count;
3968 unsigned BytesLeft = 0;
3969 bool TwoRepMovs = false;
3970 switch (Align & 3) {
3971 case 2: // WORD aligned
3972 AVT = MVT::i16;
3973 break;
3974 case 0: // DWORD aligned
3975 AVT = MVT::i32;
3976 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
3977 AVT = MVT::i64;
3978 break;
3979 default: // Byte aligned
3980 AVT = MVT::i8;
3981 Count = Op.getOperand(3);
3982 break;
3983 }
3984
3985 if (AVT > MVT::i8) {
3986 if (I) {
3987 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3988 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3989 BytesLeft = I->getValue() % UBytes;
3990 } else {
3991 assert(AVT >= MVT::i32 &&
3992 "Do not use rep;movs if not at least DWORD aligned");
3993 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3994 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3995 TwoRepMovs = true;
3996 }
3997 }
3998
3999 SDOperand InFlag(0, 0);
4000 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4001 Count, InFlag);
4002 InFlag = Chain.getValue(1);
4003 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4004 Op.getOperand(1), InFlag);
4005 InFlag = Chain.getValue(1);
4006 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4007 Op.getOperand(2), InFlag);
4008 InFlag = Chain.getValue(1);
4009
4010 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4011 SmallVector<SDOperand, 8> Ops;
4012 Ops.push_back(Chain);
4013 Ops.push_back(DAG.getValueType(AVT));
4014 Ops.push_back(InFlag);
4015 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4016
4017 if (TwoRepMovs) {
4018 InFlag = Chain.getValue(1);
4019 Count = Op.getOperand(3);
4020 MVT::ValueType CVT = Count.getValueType();
4021 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4022 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4023 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4024 Left, InFlag);
4025 InFlag = Chain.getValue(1);
4026 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4027 Ops.clear();
4028 Ops.push_back(Chain);
4029 Ops.push_back(DAG.getValueType(MVT::i8));
4030 Ops.push_back(InFlag);
4031 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4032 } else if (BytesLeft) {
4033 // Issue loads and stores for the last 1 - 7 bytes.
4034 unsigned Offset = I->getValue() - BytesLeft;
4035 SDOperand DstAddr = Op.getOperand(1);
4036 MVT::ValueType DstVT = DstAddr.getValueType();
4037 SDOperand SrcAddr = Op.getOperand(2);
4038 MVT::ValueType SrcVT = SrcAddr.getValueType();
4039 SDOperand Value;
4040 if (BytesLeft >= 4) {
4041 Value = DAG.getLoad(MVT::i32, Chain,
4042 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4043 DAG.getConstant(Offset, SrcVT)),
4044 NULL, 0);
4045 Chain = Value.getValue(1);
4046 Chain = DAG.getStore(Chain, Value,
4047 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4048 DAG.getConstant(Offset, DstVT)),
4049 NULL, 0);
4050 BytesLeft -= 4;
4051 Offset += 4;
4052 }
4053 if (BytesLeft >= 2) {
4054 Value = DAG.getLoad(MVT::i16, Chain,
4055 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4056 DAG.getConstant(Offset, SrcVT)),
4057 NULL, 0);
4058 Chain = Value.getValue(1);
4059 Chain = DAG.getStore(Chain, Value,
4060 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4061 DAG.getConstant(Offset, DstVT)),
4062 NULL, 0);
4063 BytesLeft -= 2;
4064 Offset += 2;
4065 }
4066
4067 if (BytesLeft == 1) {
4068 Value = DAG.getLoad(MVT::i8, Chain,
4069 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4070 DAG.getConstant(Offset, SrcVT)),
4071 NULL, 0);
4072 Chain = Value.getValue(1);
4073 Chain = DAG.getStore(Chain, Value,
4074 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4075 DAG.getConstant(Offset, DstVT)),
4076 NULL, 0);
4077 }
4078 }
4079
4080 return Chain;
4081}
4082
4083SDOperand
4084X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4085 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4086 SDOperand TheOp = Op.getOperand(0);
4087 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4088 if (Subtarget->is64Bit()) {
4089 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4090 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4091 MVT::i64, Copy1.getValue(2));
4092 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4093 DAG.getConstant(32, MVT::i8));
4094 SDOperand Ops[] = {
4095 DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4096 };
4097
4098 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4099 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4100 }
4101
4102 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4103 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4104 MVT::i32, Copy1.getValue(2));
4105 SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4106 Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4107 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4108}
4109
4110SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4111 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4112
4113 if (!Subtarget->is64Bit()) {
4114 // vastart just stores the address of the VarArgsFrameIndex slot into the
4115 // memory location argument.
4116 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4117 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4118 SV->getOffset());
4119 }
4120
4121 // __va_list_tag:
4122 // gp_offset (0 - 6 * 8)
4123 // fp_offset (48 - 48 + 8 * 16)
4124 // overflow_arg_area (point to parameters coming in memory).
4125 // reg_save_area
4126 SmallVector<SDOperand, 8> MemOps;
4127 SDOperand FIN = Op.getOperand(1);
4128 // Store gp_offset
4129 SDOperand Store = DAG.getStore(Op.getOperand(0),
4130 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4131 FIN, SV->getValue(), SV->getOffset());
4132 MemOps.push_back(Store);
4133
4134 // Store fp_offset
4135 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4136 DAG.getConstant(4, getPointerTy()));
4137 Store = DAG.getStore(Op.getOperand(0),
4138 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4139 FIN, SV->getValue(), SV->getOffset());
4140 MemOps.push_back(Store);
4141
4142 // Store ptr to overflow_arg_area
4143 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4144 DAG.getConstant(4, getPointerTy()));
4145 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4146 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4147 SV->getOffset());
4148 MemOps.push_back(Store);
4149
4150 // Store ptr to reg_save_area.
4151 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4152 DAG.getConstant(8, getPointerTy()));
4153 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4154 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4155 SV->getOffset());
4156 MemOps.push_back(Store);
4157 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4158}
4159
4160SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4161 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4162 SDOperand Chain = Op.getOperand(0);
4163 SDOperand DstPtr = Op.getOperand(1);
4164 SDOperand SrcPtr = Op.getOperand(2);
4165 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4166 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4167
4168 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4169 SrcSV->getValue(), SrcSV->getOffset());
4170 Chain = SrcPtr.getValue(1);
4171 for (unsigned i = 0; i < 3; ++i) {
4172 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4173 SrcSV->getValue(), SrcSV->getOffset());
4174 Chain = Val.getValue(1);
4175 Chain = DAG.getStore(Chain, Val, DstPtr,
4176 DstSV->getValue(), DstSV->getOffset());
4177 if (i == 2)
4178 break;
4179 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4180 DAG.getConstant(8, getPointerTy()));
4181 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4182 DAG.getConstant(8, getPointerTy()));
4183 }
4184 return Chain;
4185}
4186
4187SDOperand
4188X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4189 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4190 switch (IntNo) {
4191 default: return SDOperand(); // Don't custom lower most intrinsics.
4192 // Comparison intrinsics.
4193 case Intrinsic::x86_sse_comieq_ss:
4194 case Intrinsic::x86_sse_comilt_ss:
4195 case Intrinsic::x86_sse_comile_ss:
4196 case Intrinsic::x86_sse_comigt_ss:
4197 case Intrinsic::x86_sse_comige_ss:
4198 case Intrinsic::x86_sse_comineq_ss:
4199 case Intrinsic::x86_sse_ucomieq_ss:
4200 case Intrinsic::x86_sse_ucomilt_ss:
4201 case Intrinsic::x86_sse_ucomile_ss:
4202 case Intrinsic::x86_sse_ucomigt_ss:
4203 case Intrinsic::x86_sse_ucomige_ss:
4204 case Intrinsic::x86_sse_ucomineq_ss:
4205 case Intrinsic::x86_sse2_comieq_sd:
4206 case Intrinsic::x86_sse2_comilt_sd:
4207 case Intrinsic::x86_sse2_comile_sd:
4208 case Intrinsic::x86_sse2_comigt_sd:
4209 case Intrinsic::x86_sse2_comige_sd:
4210 case Intrinsic::x86_sse2_comineq_sd:
4211 case Intrinsic::x86_sse2_ucomieq_sd:
4212 case Intrinsic::x86_sse2_ucomilt_sd:
4213 case Intrinsic::x86_sse2_ucomile_sd:
4214 case Intrinsic::x86_sse2_ucomigt_sd:
4215 case Intrinsic::x86_sse2_ucomige_sd:
4216 case Intrinsic::x86_sse2_ucomineq_sd: {
4217 unsigned Opc = 0;
4218 ISD::CondCode CC = ISD::SETCC_INVALID;
4219 switch (IntNo) {
4220 default: break;
4221 case Intrinsic::x86_sse_comieq_ss:
4222 case Intrinsic::x86_sse2_comieq_sd:
4223 Opc = X86ISD::COMI;
4224 CC = ISD::SETEQ;
4225 break;
4226 case Intrinsic::x86_sse_comilt_ss:
4227 case Intrinsic::x86_sse2_comilt_sd:
4228 Opc = X86ISD::COMI;
4229 CC = ISD::SETLT;
4230 break;
4231 case Intrinsic::x86_sse_comile_ss:
4232 case Intrinsic::x86_sse2_comile_sd:
4233 Opc = X86ISD::COMI;
4234 CC = ISD::SETLE;
4235 break;
4236 case Intrinsic::x86_sse_comigt_ss:
4237 case Intrinsic::x86_sse2_comigt_sd:
4238 Opc = X86ISD::COMI;
4239 CC = ISD::SETGT;
4240 break;
4241 case Intrinsic::x86_sse_comige_ss:
4242 case Intrinsic::x86_sse2_comige_sd:
4243 Opc = X86ISD::COMI;
4244 CC = ISD::SETGE;
4245 break;
4246 case Intrinsic::x86_sse_comineq_ss:
4247 case Intrinsic::x86_sse2_comineq_sd:
4248 Opc = X86ISD::COMI;
4249 CC = ISD::SETNE;
4250 break;
4251 case Intrinsic::x86_sse_ucomieq_ss:
4252 case Intrinsic::x86_sse2_ucomieq_sd:
4253 Opc = X86ISD::UCOMI;
4254 CC = ISD::SETEQ;
4255 break;
4256 case Intrinsic::x86_sse_ucomilt_ss:
4257 case Intrinsic::x86_sse2_ucomilt_sd:
4258 Opc = X86ISD::UCOMI;
4259 CC = ISD::SETLT;
4260 break;
4261 case Intrinsic::x86_sse_ucomile_ss:
4262 case Intrinsic::x86_sse2_ucomile_sd:
4263 Opc = X86ISD::UCOMI;
4264 CC = ISD::SETLE;
4265 break;
4266 case Intrinsic::x86_sse_ucomigt_ss:
4267 case Intrinsic::x86_sse2_ucomigt_sd:
4268 Opc = X86ISD::UCOMI;
4269 CC = ISD::SETGT;
4270 break;
4271 case Intrinsic::x86_sse_ucomige_ss:
4272 case Intrinsic::x86_sse2_ucomige_sd:
4273 Opc = X86ISD::UCOMI;
4274 CC = ISD::SETGE;
4275 break;
4276 case Intrinsic::x86_sse_ucomineq_ss:
4277 case Intrinsic::x86_sse2_ucomineq_sd:
4278 Opc = X86ISD::UCOMI;
4279 CC = ISD::SETNE;
4280 break;
4281 }
4282
4283 unsigned X86CC;
4284 SDOperand LHS = Op.getOperand(1);
4285 SDOperand RHS = Op.getOperand(2);
4286 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4287
4288 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4289 SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4290 SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4291 VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4292 SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4293 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4294 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4295 }
4296 }
4297}
4298
4299SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4300 // Depths > 0 not supported yet!
4301 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4302 return SDOperand();
4303
4304 // Just load the return address
4305 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4306 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4307}
4308
4309SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4310 // Depths > 0 not supported yet!
4311 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4312 return SDOperand();
4313
4314 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4315 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4316 DAG.getConstant(4, getPointerTy()));
4317}
4318
4319SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4320 SelectionDAG &DAG) {
4321 // Is not yet supported on x86-64
4322 if (Subtarget->is64Bit())
4323 return SDOperand();
4324
4325 return DAG.getConstant(8, getPointerTy());
4326}
4327
4328SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4329{
4330 assert(!Subtarget->is64Bit() &&
4331 "Lowering of eh_return builtin is not supported yet on x86-64");
4332
4333 MachineFunction &MF = DAG.getMachineFunction();
4334 SDOperand Chain = Op.getOperand(0);
4335 SDOperand Offset = Op.getOperand(1);
4336 SDOperand Handler = Op.getOperand(2);
4337
4338 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4339 getPointerTy());
4340
4341 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4342 DAG.getConstant(-4UL, getPointerTy()));
4343 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4344 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4345 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4346 MF.addLiveOut(X86::ECX);
4347
4348 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4349 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4350}
4351
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004352SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4353 SelectionDAG &DAG) {
4354 SDOperand Root = Op.getOperand(0);
4355 SDOperand Trmp = Op.getOperand(1); // trampoline
4356 SDOperand FPtr = Op.getOperand(2); // nested function
4357 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4358
4359 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4360
4361 if (Subtarget->is64Bit()) {
4362 return SDOperand(); // not yet supported
4363 } else {
4364 Function *Func = (Function *)
4365 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4366 unsigned CC = Func->getCallingConv();
Duncan Sands466eadd2007-08-29 19:01:20 +00004367 unsigned NestReg;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004368
4369 switch (CC) {
4370 default:
4371 assert(0 && "Unsupported calling convention");
4372 case CallingConv::C:
4373 case CallingConv::Fast:
4374 case CallingConv::X86_StdCall: {
4375 // Pass 'nest' parameter in ECX.
4376 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004377 NestReg = X86::ECX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004378
4379 // Check that ECX wasn't needed by an 'inreg' parameter.
4380 const FunctionType *FTy = Func->getFunctionType();
4381 const ParamAttrsList *Attrs = FTy->getParamAttrs();
4382
4383 if (Attrs && !Func->isVarArg()) {
4384 unsigned InRegCount = 0;
4385 unsigned Idx = 1;
4386
4387 for (FunctionType::param_iterator I = FTy->param_begin(),
4388 E = FTy->param_end(); I != E; ++I, ++Idx)
4389 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4390 // FIXME: should only count parameters that are lowered to integers.
4391 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4392
4393 if (InRegCount > 2) {
4394 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4395 abort();
4396 }
4397 }
4398 break;
4399 }
4400 case CallingConv::X86_FastCall:
4401 // Pass 'nest' parameter in EAX.
4402 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004403 NestReg = X86::EAX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004404 break;
4405 }
4406
Duncan Sands466eadd2007-08-29 19:01:20 +00004407 const X86InstrInfo *TII =
4408 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4409
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004410 SDOperand OutChains[4];
4411 SDOperand Addr, Disp;
4412
4413 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4414 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4415
Duncan Sands466eadd2007-08-29 19:01:20 +00004416 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4417 unsigned char N86Reg = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4418 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004419 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4420
4421 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4422 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4423 TrmpSV->getOffset() + 1, false, 1);
4424
Duncan Sands466eadd2007-08-29 19:01:20 +00004425 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004426 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4427 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4428 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4429
4430 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4431 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4432 TrmpSV->getOffset() + 6, false, 1);
4433
Duncan Sands7407a9f2007-09-11 14:10:23 +00004434 SDOperand Ops[] =
4435 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4436 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004437 }
4438}
4439
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004440/// LowerOperation - Provide custom lowering hooks for some operations.
4441///
4442SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4443 switch (Op.getOpcode()) {
4444 default: assert(0 && "Should not custom lower this!");
4445 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4446 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4447 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4448 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4449 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4450 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4451 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4452 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4453 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
4454 case ISD::SHL_PARTS:
4455 case ISD::SRA_PARTS:
4456 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
4457 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
4458 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
4459 case ISD::FABS: return LowerFABS(Op, DAG);
4460 case ISD::FNEG: return LowerFNEG(Op, DAG);
4461 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
4462 case ISD::SETCC: return LowerSETCC(Op, DAG, DAG.getEntryNode());
4463 case ISD::SELECT: return LowerSELECT(Op, DAG);
4464 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4465 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
4466 case ISD::CALL: return LowerCALL(Op, DAG);
4467 case ISD::RET: return LowerRET(Op, DAG);
4468 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
4469 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
4470 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
4471 case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
4472 case ISD::VASTART: return LowerVASTART(Op, DAG);
4473 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
4474 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4475 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4476 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
4477 case ISD::FRAME_TO_ARGS_OFFSET:
4478 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4479 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4480 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004481 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004482 }
4483 return SDOperand();
4484}
4485
4486const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4487 switch (Opcode) {
4488 default: return NULL;
4489 case X86ISD::SHLD: return "X86ISD::SHLD";
4490 case X86ISD::SHRD: return "X86ISD::SHRD";
4491 case X86ISD::FAND: return "X86ISD::FAND";
4492 case X86ISD::FOR: return "X86ISD::FOR";
4493 case X86ISD::FXOR: return "X86ISD::FXOR";
4494 case X86ISD::FSRL: return "X86ISD::FSRL";
4495 case X86ISD::FILD: return "X86ISD::FILD";
4496 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
4497 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4498 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4499 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4500 case X86ISD::FLD: return "X86ISD::FLD";
4501 case X86ISD::FST: return "X86ISD::FST";
4502 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
4503 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
4504 case X86ISD::CALL: return "X86ISD::CALL";
4505 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
4506 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
4507 case X86ISD::CMP: return "X86ISD::CMP";
4508 case X86ISD::COMI: return "X86ISD::COMI";
4509 case X86ISD::UCOMI: return "X86ISD::UCOMI";
4510 case X86ISD::SETCC: return "X86ISD::SETCC";
4511 case X86ISD::CMOV: return "X86ISD::CMOV";
4512 case X86ISD::BRCOND: return "X86ISD::BRCOND";
4513 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
4514 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
4515 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004516 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
4517 case X86ISD::Wrapper: return "X86ISD::Wrapper";
4518 case X86ISD::S2VEC: return "X86ISD::S2VEC";
4519 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
4520 case X86ISD::PINSRW: return "X86ISD::PINSRW";
4521 case X86ISD::FMAX: return "X86ISD::FMAX";
4522 case X86ISD::FMIN: return "X86ISD::FMIN";
4523 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
4524 case X86ISD::FRCP: return "X86ISD::FRCP";
4525 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
4526 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
4527 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
4528 }
4529}
4530
4531// isLegalAddressingMode - Return true if the addressing mode represented
4532// by AM is legal for this target, for a load/store of the specified type.
4533bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4534 const Type *Ty) const {
4535 // X86 supports extremely general addressing modes.
4536
4537 // X86 allows a sign-extended 32-bit immediate field as a displacement.
4538 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4539 return false;
4540
4541 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004542 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004543 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4544 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00004545
4546 // X86-64 only supports addr of globals in small code model.
4547 if (Subtarget->is64Bit()) {
4548 if (getTargetMachine().getCodeModel() != CodeModel::Small)
4549 return false;
4550 // If lower 4G is not available, then we must use rip-relative addressing.
4551 if (AM.BaseOffs || AM.Scale > 1)
4552 return false;
4553 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004554 }
4555
4556 switch (AM.Scale) {
4557 case 0:
4558 case 1:
4559 case 2:
4560 case 4:
4561 case 8:
4562 // These scales always work.
4563 break;
4564 case 3:
4565 case 5:
4566 case 9:
4567 // These scales are formed with basereg+scalereg. Only accept if there is
4568 // no basereg yet.
4569 if (AM.HasBaseReg)
4570 return false;
4571 break;
4572 default: // Other stuff never works.
4573 return false;
4574 }
4575
4576 return true;
4577}
4578
4579
4580/// isShuffleMaskLegal - Targets can use this to indicate that they only
4581/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4582/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4583/// are assumed to be legal.
4584bool
4585X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4586 // Only do shuffles on 128-bit vector types for now.
4587 if (MVT::getSizeInBits(VT) == 64) return false;
4588 return (Mask.Val->getNumOperands() <= 4 ||
4589 isIdentityMask(Mask.Val) ||
4590 isIdentityMask(Mask.Val, true) ||
4591 isSplatMask(Mask.Val) ||
4592 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4593 X86::isUNPCKLMask(Mask.Val) ||
4594 X86::isUNPCKHMask(Mask.Val) ||
4595 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4596 X86::isUNPCKH_v_undef_Mask(Mask.Val));
4597}
4598
4599bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4600 MVT::ValueType EVT,
4601 SelectionDAG &DAG) const {
4602 unsigned NumElts = BVOps.size();
4603 // Only do shuffles on 128-bit vector types for now.
4604 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4605 if (NumElts == 2) return true;
4606 if (NumElts == 4) {
4607 return (isMOVLMask(&BVOps[0], 4) ||
4608 isCommutedMOVL(&BVOps[0], 4, true) ||
4609 isSHUFPMask(&BVOps[0], 4) ||
4610 isCommutedSHUFP(&BVOps[0], 4));
4611 }
4612 return false;
4613}
4614
4615//===----------------------------------------------------------------------===//
4616// X86 Scheduler Hooks
4617//===----------------------------------------------------------------------===//
4618
4619MachineBasicBlock *
4620X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4621 MachineBasicBlock *BB) {
4622 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4623 switch (MI->getOpcode()) {
4624 default: assert(false && "Unexpected instr type to insert");
4625 case X86::CMOV_FR32:
4626 case X86::CMOV_FR64:
4627 case X86::CMOV_V4F32:
4628 case X86::CMOV_V2F64:
4629 case X86::CMOV_V2I64: {
4630 // To "insert" a SELECT_CC instruction, we actually have to insert the
4631 // diamond control-flow pattern. The incoming instruction knows the
4632 // destination vreg to set, the condition code register to branch on, the
4633 // true/false values to select between, and a branch opcode to use.
4634 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4635 ilist<MachineBasicBlock>::iterator It = BB;
4636 ++It;
4637
4638 // thisMBB:
4639 // ...
4640 // TrueVal = ...
4641 // cmpTY ccX, r1, r2
4642 // bCC copy1MBB
4643 // fallthrough --> copy0MBB
4644 MachineBasicBlock *thisMBB = BB;
4645 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4646 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4647 unsigned Opc =
4648 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4649 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4650 MachineFunction *F = BB->getParent();
4651 F->getBasicBlockList().insert(It, copy0MBB);
4652 F->getBasicBlockList().insert(It, sinkMBB);
4653 // Update machine-CFG edges by first adding all successors of the current
4654 // block to the new block which will contain the Phi node for the select.
4655 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4656 e = BB->succ_end(); i != e; ++i)
4657 sinkMBB->addSuccessor(*i);
4658 // Next, remove all successors of the current block, and add the true
4659 // and fallthrough blocks as its successors.
4660 while(!BB->succ_empty())
4661 BB->removeSuccessor(BB->succ_begin());
4662 BB->addSuccessor(copy0MBB);
4663 BB->addSuccessor(sinkMBB);
4664
4665 // copy0MBB:
4666 // %FalseValue = ...
4667 // # fallthrough to sinkMBB
4668 BB = copy0MBB;
4669
4670 // Update machine-CFG edges
4671 BB->addSuccessor(sinkMBB);
4672
4673 // sinkMBB:
4674 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4675 // ...
4676 BB = sinkMBB;
4677 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4678 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4679 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4680
4681 delete MI; // The pseudo instruction is gone now.
4682 return BB;
4683 }
4684
4685 case X86::FP32_TO_INT16_IN_MEM:
4686 case X86::FP32_TO_INT32_IN_MEM:
4687 case X86::FP32_TO_INT64_IN_MEM:
4688 case X86::FP64_TO_INT16_IN_MEM:
4689 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004690 case X86::FP64_TO_INT64_IN_MEM:
4691 case X86::FP80_TO_INT16_IN_MEM:
4692 case X86::FP80_TO_INT32_IN_MEM:
4693 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004694 // Change the floating point control register to use "round towards zero"
4695 // mode when truncating to an integer value.
4696 MachineFunction *F = BB->getParent();
4697 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4698 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4699
4700 // Load the old value of the high byte of the control word...
4701 unsigned OldCW =
4702 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4703 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4704
4705 // Set the high part to be round to zero...
4706 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4707 .addImm(0xC7F);
4708
4709 // Reload the modified control word now...
4710 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4711
4712 // Restore the memory image of control word to original value
4713 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4714 .addReg(OldCW);
4715
4716 // Get the X86 opcode to use.
4717 unsigned Opc;
4718 switch (MI->getOpcode()) {
4719 default: assert(0 && "illegal opcode!");
4720 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4721 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4722 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4723 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4724 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4725 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00004726 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
4727 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
4728 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004729 }
4730
4731 X86AddressMode AM;
4732 MachineOperand &Op = MI->getOperand(0);
4733 if (Op.isRegister()) {
4734 AM.BaseType = X86AddressMode::RegBase;
4735 AM.Base.Reg = Op.getReg();
4736 } else {
4737 AM.BaseType = X86AddressMode::FrameIndexBase;
4738 AM.Base.FrameIndex = Op.getFrameIndex();
4739 }
4740 Op = MI->getOperand(1);
4741 if (Op.isImmediate())
4742 AM.Scale = Op.getImm();
4743 Op = MI->getOperand(2);
4744 if (Op.isImmediate())
4745 AM.IndexReg = Op.getImm();
4746 Op = MI->getOperand(3);
4747 if (Op.isGlobalAddress()) {
4748 AM.GV = Op.getGlobal();
4749 } else {
4750 AM.Disp = Op.getImm();
4751 }
4752 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4753 .addReg(MI->getOperand(4).getReg());
4754
4755 // Reload the original control word now.
4756 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4757
4758 delete MI; // The pseudo instruction is gone now.
4759 return BB;
4760 }
4761 }
4762}
4763
4764//===----------------------------------------------------------------------===//
4765// X86 Optimization Hooks
4766//===----------------------------------------------------------------------===//
4767
4768void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4769 uint64_t Mask,
4770 uint64_t &KnownZero,
4771 uint64_t &KnownOne,
4772 const SelectionDAG &DAG,
4773 unsigned Depth) const {
4774 unsigned Opc = Op.getOpcode();
4775 assert((Opc >= ISD::BUILTIN_OP_END ||
4776 Opc == ISD::INTRINSIC_WO_CHAIN ||
4777 Opc == ISD::INTRINSIC_W_CHAIN ||
4778 Opc == ISD::INTRINSIC_VOID) &&
4779 "Should use MaskedValueIsZero if you don't know whether Op"
4780 " is a target node!");
4781
4782 KnownZero = KnownOne = 0; // Don't know anything.
4783 switch (Opc) {
4784 default: break;
4785 case X86ISD::SETCC:
4786 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4787 break;
4788 }
4789}
4790
4791/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4792/// element of the result of the vector shuffle.
4793static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4794 MVT::ValueType VT = N->getValueType(0);
4795 SDOperand PermMask = N->getOperand(2);
4796 unsigned NumElems = PermMask.getNumOperands();
4797 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4798 i %= NumElems;
4799 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4800 return (i == 0)
4801 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4802 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4803 SDOperand Idx = PermMask.getOperand(i);
4804 if (Idx.getOpcode() == ISD::UNDEF)
4805 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4806 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4807 }
4808 return SDOperand();
4809}
4810
4811/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4812/// node is a GlobalAddress + an offset.
4813static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4814 unsigned Opc = N->getOpcode();
4815 if (Opc == X86ISD::Wrapper) {
4816 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4817 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4818 return true;
4819 }
4820 } else if (Opc == ISD::ADD) {
4821 SDOperand N1 = N->getOperand(0);
4822 SDOperand N2 = N->getOperand(1);
4823 if (isGAPlusOffset(N1.Val, GA, Offset)) {
4824 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4825 if (V) {
4826 Offset += V->getSignExtended();
4827 return true;
4828 }
4829 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4830 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4831 if (V) {
4832 Offset += V->getSignExtended();
4833 return true;
4834 }
4835 }
4836 }
4837 return false;
4838}
4839
4840/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4841/// + Dist * Size.
4842static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4843 MachineFrameInfo *MFI) {
4844 if (N->getOperand(0).Val != Base->getOperand(0).Val)
4845 return false;
4846
4847 SDOperand Loc = N->getOperand(1);
4848 SDOperand BaseLoc = Base->getOperand(1);
4849 if (Loc.getOpcode() == ISD::FrameIndex) {
4850 if (BaseLoc.getOpcode() != ISD::FrameIndex)
4851 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00004852 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
4853 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004854 int FS = MFI->getObjectSize(FI);
4855 int BFS = MFI->getObjectSize(BFI);
4856 if (FS != BFS || FS != Size) return false;
4857 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4858 } else {
4859 GlobalValue *GV1 = NULL;
4860 GlobalValue *GV2 = NULL;
4861 int64_t Offset1 = 0;
4862 int64_t Offset2 = 0;
4863 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4864 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4865 if (isGA1 && isGA2 && GV1 == GV2)
4866 return Offset1 == (Offset2 + Dist*Size);
4867 }
4868
4869 return false;
4870}
4871
4872static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4873 const X86Subtarget *Subtarget) {
4874 GlobalValue *GV;
4875 int64_t Offset;
4876 if (isGAPlusOffset(Base, GV, Offset))
4877 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4878 else {
4879 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00004880 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004881 if (BFI < 0)
4882 // Fixed objects do not specify alignment, however the offsets are known.
4883 return ((Subtarget->getStackAlignment() % 16) == 0 &&
4884 (MFI->getObjectOffset(BFI) % 16) == 0);
4885 else
4886 return MFI->getObjectAlignment(BFI) >= 16;
4887 }
4888 return false;
4889}
4890
4891
4892/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4893/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4894/// if the load addresses are consecutive, non-overlapping, and in the right
4895/// order.
4896static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4897 const X86Subtarget *Subtarget) {
4898 MachineFunction &MF = DAG.getMachineFunction();
4899 MachineFrameInfo *MFI = MF.getFrameInfo();
4900 MVT::ValueType VT = N->getValueType(0);
4901 MVT::ValueType EVT = MVT::getVectorElementType(VT);
4902 SDOperand PermMask = N->getOperand(2);
4903 int NumElems = (int)PermMask.getNumOperands();
4904 SDNode *Base = NULL;
4905 for (int i = 0; i < NumElems; ++i) {
4906 SDOperand Idx = PermMask.getOperand(i);
4907 if (Idx.getOpcode() == ISD::UNDEF) {
4908 if (!Base) return SDOperand();
4909 } else {
4910 SDOperand Arg =
4911 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4912 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4913 return SDOperand();
4914 if (!Base)
4915 Base = Arg.Val;
4916 else if (!isConsecutiveLoad(Arg.Val, Base,
4917 i, MVT::getSizeInBits(EVT)/8,MFI))
4918 return SDOperand();
4919 }
4920 }
4921
4922 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00004923 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004924 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004925 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00004926 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004927 } else {
Dan Gohman11821702007-07-27 17:16:43 +00004928 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4929 LD->getSrcValueOffset(), LD->isVolatile(),
4930 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004931 }
4932}
4933
4934/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4935static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4936 const X86Subtarget *Subtarget) {
4937 SDOperand Cond = N->getOperand(0);
4938
4939 // If we have SSE[12] support, try to form min/max nodes.
4940 if (Subtarget->hasSSE2() &&
4941 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4942 if (Cond.getOpcode() == ISD::SETCC) {
4943 // Get the LHS/RHS of the select.
4944 SDOperand LHS = N->getOperand(1);
4945 SDOperand RHS = N->getOperand(2);
4946 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4947
4948 unsigned Opcode = 0;
4949 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4950 switch (CC) {
4951 default: break;
4952 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4953 case ISD::SETULE:
4954 case ISD::SETLE:
4955 if (!UnsafeFPMath) break;
4956 // FALL THROUGH.
4957 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
4958 case ISD::SETLT:
4959 Opcode = X86ISD::FMIN;
4960 break;
4961
4962 case ISD::SETOGT: // (X > Y) ? X : Y -> max
4963 case ISD::SETUGT:
4964 case ISD::SETGT:
4965 if (!UnsafeFPMath) break;
4966 // FALL THROUGH.
4967 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
4968 case ISD::SETGE:
4969 Opcode = X86ISD::FMAX;
4970 break;
4971 }
4972 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4973 switch (CC) {
4974 default: break;
4975 case ISD::SETOGT: // (X > Y) ? Y : X -> min
4976 case ISD::SETUGT:
4977 case ISD::SETGT:
4978 if (!UnsafeFPMath) break;
4979 // FALL THROUGH.
4980 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
4981 case ISD::SETGE:
4982 Opcode = X86ISD::FMIN;
4983 break;
4984
4985 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
4986 case ISD::SETULE:
4987 case ISD::SETLE:
4988 if (!UnsafeFPMath) break;
4989 // FALL THROUGH.
4990 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
4991 case ISD::SETLT:
4992 Opcode = X86ISD::FMAX;
4993 break;
4994 }
4995 }
4996
4997 if (Opcode)
4998 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4999 }
5000
5001 }
5002
5003 return SDOperand();
5004}
5005
5006
5007SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5008 DAGCombinerInfo &DCI) const {
5009 SelectionDAG &DAG = DCI.DAG;
5010 switch (N->getOpcode()) {
5011 default: break;
5012 case ISD::VECTOR_SHUFFLE:
5013 return PerformShuffleCombine(N, DAG, Subtarget);
5014 case ISD::SELECT:
5015 return PerformSELECTCombine(N, DAG, Subtarget);
5016 }
5017
5018 return SDOperand();
5019}
5020
5021//===----------------------------------------------------------------------===//
5022// X86 Inline Assembly Support
5023//===----------------------------------------------------------------------===//
5024
5025/// getConstraintType - Given a constraint letter, return the type of
5026/// constraint it is for this target.
5027X86TargetLowering::ConstraintType
5028X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5029 if (Constraint.size() == 1) {
5030 switch (Constraint[0]) {
5031 case 'A':
5032 case 'r':
5033 case 'R':
5034 case 'l':
5035 case 'q':
5036 case 'Q':
5037 case 'x':
5038 case 'Y':
5039 return C_RegisterClass;
5040 default:
5041 break;
5042 }
5043 }
5044 return TargetLowering::getConstraintType(Constraint);
5045}
5046
Chris Lattnera531abc2007-08-25 00:47:38 +00005047/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5048/// vector. If it is invalid, don't add anything to Ops.
5049void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5050 char Constraint,
5051 std::vector<SDOperand>&Ops,
5052 SelectionDAG &DAG) {
5053 SDOperand Result(0, 0);
5054
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005055 switch (Constraint) {
5056 default: break;
5057 case 'I':
5058 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005059 if (C->getValue() <= 31) {
5060 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5061 break;
5062 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005063 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005064 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005065 case 'N':
5066 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005067 if (C->getValue() <= 255) {
5068 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5069 break;
5070 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005071 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005072 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005073 case 'i': {
5074 // Literal immediates are always ok.
Chris Lattnera531abc2007-08-25 00:47:38 +00005075 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5076 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5077 break;
5078 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005079
5080 // If we are in non-pic codegen mode, we allow the address of a global (with
5081 // an optional displacement) to be used with 'i'.
5082 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5083 int64_t Offset = 0;
5084
5085 // Match either (GA) or (GA+C)
5086 if (GA) {
5087 Offset = GA->getOffset();
5088 } else if (Op.getOpcode() == ISD::ADD) {
5089 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5090 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5091 if (C && GA) {
5092 Offset = GA->getOffset()+C->getValue();
5093 } else {
5094 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5095 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5096 if (C && GA)
5097 Offset = GA->getOffset()+C->getValue();
5098 else
5099 C = 0, GA = 0;
5100 }
5101 }
5102
5103 if (GA) {
5104 // If addressing this global requires a load (e.g. in PIC mode), we can't
5105 // match.
5106 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5107 false))
Chris Lattnera531abc2007-08-25 00:47:38 +00005108 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005109
5110 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5111 Offset);
Chris Lattnera531abc2007-08-25 00:47:38 +00005112 Result = Op;
5113 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005114 }
5115
5116 // Otherwise, not valid for this mode.
Chris Lattnera531abc2007-08-25 00:47:38 +00005117 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005118 }
5119 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005120
5121 if (Result.Val) {
5122 Ops.push_back(Result);
5123 return;
5124 }
5125 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005126}
5127
5128std::vector<unsigned> X86TargetLowering::
5129getRegClassForInlineAsmConstraint(const std::string &Constraint,
5130 MVT::ValueType VT) const {
5131 if (Constraint.size() == 1) {
5132 // FIXME: not handling fp-stack yet!
5133 switch (Constraint[0]) { // GCC X86 Constraint Letters
5134 default: break; // Unknown constraint letter
5135 case 'A': // EAX/EDX
5136 if (VT == MVT::i32 || VT == MVT::i64)
5137 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5138 break;
5139 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5140 case 'Q': // Q_REGS
5141 if (VT == MVT::i32)
5142 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5143 else if (VT == MVT::i16)
5144 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5145 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00005146 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005147 break;
5148 }
5149 }
5150
5151 return std::vector<unsigned>();
5152}
5153
5154std::pair<unsigned, const TargetRegisterClass*>
5155X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5156 MVT::ValueType VT) const {
5157 // First, see if this is a constraint that directly corresponds to an LLVM
5158 // register class.
5159 if (Constraint.size() == 1) {
5160 // GCC Constraint Letters
5161 switch (Constraint[0]) {
5162 default: break;
5163 case 'r': // GENERAL_REGS
5164 case 'R': // LEGACY_REGS
5165 case 'l': // INDEX_REGS
5166 if (VT == MVT::i64 && Subtarget->is64Bit())
5167 return std::make_pair(0U, X86::GR64RegisterClass);
5168 if (VT == MVT::i32)
5169 return std::make_pair(0U, X86::GR32RegisterClass);
5170 else if (VT == MVT::i16)
5171 return std::make_pair(0U, X86::GR16RegisterClass);
5172 else if (VT == MVT::i8)
5173 return std::make_pair(0U, X86::GR8RegisterClass);
5174 break;
5175 case 'y': // MMX_REGS if MMX allowed.
5176 if (!Subtarget->hasMMX()) break;
5177 return std::make_pair(0U, X86::VR64RegisterClass);
5178 break;
5179 case 'Y': // SSE_REGS if SSE2 allowed
5180 if (!Subtarget->hasSSE2()) break;
5181 // FALL THROUGH.
5182 case 'x': // SSE_REGS if SSE1 allowed
5183 if (!Subtarget->hasSSE1()) break;
5184
5185 switch (VT) {
5186 default: break;
5187 // Scalar SSE types.
5188 case MVT::f32:
5189 case MVT::i32:
5190 return std::make_pair(0U, X86::FR32RegisterClass);
5191 case MVT::f64:
5192 case MVT::i64:
5193 return std::make_pair(0U, X86::FR64RegisterClass);
5194 // Vector types.
5195 case MVT::v16i8:
5196 case MVT::v8i16:
5197 case MVT::v4i32:
5198 case MVT::v2i64:
5199 case MVT::v4f32:
5200 case MVT::v2f64:
5201 return std::make_pair(0U, X86::VR128RegisterClass);
5202 }
5203 break;
5204 }
5205 }
5206
5207 // Use the default implementation in TargetLowering to convert the register
5208 // constraint into a member of a register class.
5209 std::pair<unsigned, const TargetRegisterClass*> Res;
5210 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5211
5212 // Not found as a standard register?
5213 if (Res.second == 0) {
5214 // GCC calls "st(0)" just plain "st".
5215 if (StringsEqualNoCase("{st}", Constraint)) {
5216 Res.first = X86::ST0;
5217 Res.second = X86::RSTRegisterClass;
5218 }
5219
5220 return Res;
5221 }
5222
5223 // Otherwise, check to see if this is a register class of the wrong value
5224 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5225 // turn into {ax},{dx}.
5226 if (Res.second->hasType(VT))
5227 return Res; // Correct type already, nothing to do.
5228
5229 // All of the single-register GCC register classes map their values onto
5230 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5231 // really want an 8-bit or 32-bit register, map to the appropriate register
5232 // class and return the appropriate register.
5233 if (Res.second != X86::GR16RegisterClass)
5234 return Res;
5235
5236 if (VT == MVT::i8) {
5237 unsigned DestReg = 0;
5238 switch (Res.first) {
5239 default: break;
5240 case X86::AX: DestReg = X86::AL; break;
5241 case X86::DX: DestReg = X86::DL; break;
5242 case X86::CX: DestReg = X86::CL; break;
5243 case X86::BX: DestReg = X86::BL; break;
5244 }
5245 if (DestReg) {
5246 Res.first = DestReg;
5247 Res.second = Res.second = X86::GR8RegisterClass;
5248 }
5249 } else if (VT == MVT::i32) {
5250 unsigned DestReg = 0;
5251 switch (Res.first) {
5252 default: break;
5253 case X86::AX: DestReg = X86::EAX; break;
5254 case X86::DX: DestReg = X86::EDX; break;
5255 case X86::CX: DestReg = X86::ECX; break;
5256 case X86::BX: DestReg = X86::EBX; break;
5257 case X86::SI: DestReg = X86::ESI; break;
5258 case X86::DI: DestReg = X86::EDI; break;
5259 case X86::BP: DestReg = X86::EBP; break;
5260 case X86::SP: DestReg = X86::ESP; break;
5261 }
5262 if (DestReg) {
5263 Res.first = DestReg;
5264 Res.second = Res.second = X86::GR32RegisterClass;
5265 }
5266 } else if (VT == MVT::i64) {
5267 unsigned DestReg = 0;
5268 switch (Res.first) {
5269 default: break;
5270 case X86::AX: DestReg = X86::RAX; break;
5271 case X86::DX: DestReg = X86::RDX; break;
5272 case X86::CX: DestReg = X86::RCX; break;
5273 case X86::BX: DestReg = X86::RBX; break;
5274 case X86::SI: DestReg = X86::RSI; break;
5275 case X86::DI: DestReg = X86::RDI; break;
5276 case X86::BP: DestReg = X86::RBP; break;
5277 case X86::SP: DestReg = X86::RSP; break;
5278 }
5279 if (DestReg) {
5280 Res.first = DestReg;
5281 Res.second = Res.second = X86::GR64RegisterClass;
5282 }
5283 }
5284
5285 return Res;
5286}