blob: a0185ad51e8d20a139c9e1efae715a832e4f7f73 [file] [log] [blame]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Neil Booth and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision floating
11// point values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#include <cassert>
16#include "llvm/ADT/APFloat.h"
Dale Johannesend3b51fd2007-08-24 05:08:11 +000017#include "llvm/Support/MathExtras.h"
Chris Lattnerb39cdde2007-08-20 22:49:32 +000018
19using namespace llvm;
20
21#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
22
23/* Assumed in hexadecimal significand parsing. */
24COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
25
26namespace llvm {
27
28 /* Represents floating point arithmetic semantics. */
29 struct fltSemantics {
30 /* The largest E such that 2^E is representable; this matches the
31 definition of IEEE 754. */
32 exponent_t maxExponent;
33
34 /* The smallest E such that 2^E is a normalized number; this
35 matches the definition of IEEE 754. */
36 exponent_t minExponent;
37
38 /* Number of bits in the significand. This includes the integer
39 bit. */
40 unsigned char precision;
41
42 /* If the target format has an implicit integer bit. */
43 bool implicitIntegerBit;
44 };
45
46 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
47 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
48 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
49 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, false };
Dale Johannesen343e7702007-08-24 00:56:33 +000050 const fltSemantics APFloat::Bogus = { 0, 0, 0, false };
Chris Lattnerb39cdde2007-08-20 22:49:32 +000051}
52
53/* Put a bunch of private, handy routines in an anonymous namespace. */
54namespace {
55
56 inline unsigned int
57 partCountForBits(unsigned int bits)
58 {
59 return ((bits) + integerPartWidth - 1) / integerPartWidth;
60 }
61
62 unsigned int
63 digitValue(unsigned int c)
64 {
65 unsigned int r;
66
67 r = c - '0';
68 if(r <= 9)
69 return r;
70
71 return -1U;
72 }
73
74 unsigned int
75 hexDigitValue (unsigned int c)
76 {
77 unsigned int r;
78
79 r = c - '0';
80 if(r <= 9)
81 return r;
82
83 r = c - 'A';
84 if(r <= 5)
85 return r + 10;
86
87 r = c - 'a';
88 if(r <= 5)
89 return r + 10;
90
91 return -1U;
92 }
93
94 /* This is ugly and needs cleaning up, but I don't immediately see
95 how whilst remaining safe. */
96 static int
97 totalExponent(const char *p, int exponentAdjustment)
98 {
99 integerPart unsignedExponent;
100 bool negative, overflow;
101 long exponent;
102
103 /* Move past the exponent letter and sign to the digits. */
104 p++;
105 negative = *p == '-';
106 if(*p == '-' || *p == '+')
107 p++;
108
109 unsignedExponent = 0;
110 overflow = false;
111 for(;;) {
112 unsigned int value;
113
114 value = digitValue(*p);
115 if(value == -1U)
116 break;
117
118 p++;
119 unsignedExponent = unsignedExponent * 10 + value;
120 if(unsignedExponent > 65535)
121 overflow = true;
122 }
123
124 if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
125 overflow = true;
126
127 if(!overflow) {
128 exponent = unsignedExponent;
129 if(negative)
130 exponent = -exponent;
131 exponent += exponentAdjustment;
132 if(exponent > 65535 || exponent < -65536)
133 overflow = true;
134 }
135
136 if(overflow)
137 exponent = negative ? -65536: 65535;
138
139 return exponent;
140 }
141
142 const char *
143 skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
144 {
145 *dot = 0;
146 while(*p == '0')
147 p++;
148
149 if(*p == '.') {
150 *dot = p++;
151 while(*p == '0')
152 p++;
153 }
154
155 return p;
156 }
157
158 /* Return the trailing fraction of a hexadecimal number.
159 DIGITVALUE is the first hex digit of the fraction, P points to
160 the next digit. */
161 lostFraction
162 trailingHexadecimalFraction(const char *p, unsigned int digitValue)
163 {
164 unsigned int hexDigit;
165
166 /* If the first trailing digit isn't 0 or 8 we can work out the
167 fraction immediately. */
168 if(digitValue > 8)
169 return lfMoreThanHalf;
170 else if(digitValue < 8 && digitValue > 0)
171 return lfLessThanHalf;
172
173 /* Otherwise we need to find the first non-zero digit. */
174 while(*p == '0')
175 p++;
176
177 hexDigit = hexDigitValue(*p);
178
179 /* If we ran off the end it is exactly zero or one-half, otherwise
180 a little more. */
181 if(hexDigit == -1U)
182 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
183 else
184 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
185 }
186
187 /* Return the fraction lost were a bignum truncated. */
188 lostFraction
189 lostFractionThroughTruncation(integerPart *parts,
190 unsigned int partCount,
191 unsigned int bits)
192 {
193 unsigned int lsb;
194
195 lsb = APInt::tcLSB(parts, partCount);
196
197 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
198 if(bits <= lsb)
199 return lfExactlyZero;
200 if(bits == lsb + 1)
201 return lfExactlyHalf;
202 if(bits <= partCount * integerPartWidth
203 && APInt::tcExtractBit(parts, bits - 1))
204 return lfMoreThanHalf;
205
206 return lfLessThanHalf;
207 }
208
209 /* Shift DST right BITS bits noting lost fraction. */
210 lostFraction
211 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
212 {
213 lostFraction lost_fraction;
214
215 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
216
217 APInt::tcShiftRight(dst, parts, bits);
218
219 return lost_fraction;
220 }
221}
222
223/* Constructors. */
224void
225APFloat::initialize(const fltSemantics *ourSemantics)
226{
227 unsigned int count;
228
229 semantics = ourSemantics;
230 count = partCount();
231 if(count > 1)
232 significand.parts = new integerPart[count];
233}
234
235void
236APFloat::freeSignificand()
237{
238 if(partCount() > 1)
239 delete [] significand.parts;
240}
241
242void
243APFloat::assign(const APFloat &rhs)
244{
245 assert(semantics == rhs.semantics);
246
247 sign = rhs.sign;
248 category = rhs.category;
249 exponent = rhs.exponent;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000250 if(category == fcNormal || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000251 copySignificand(rhs);
252}
253
254void
255APFloat::copySignificand(const APFloat &rhs)
256{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000257 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000258 assert(rhs.partCount() >= partCount());
259
260 APInt::tcAssign(significandParts(), rhs.significandParts(),
261 partCount());
262}
263
264APFloat &
265APFloat::operator=(const APFloat &rhs)
266{
267 if(this != &rhs) {
268 if(semantics != rhs.semantics) {
269 freeSignificand();
270 initialize(rhs.semantics);
271 }
272 assign(rhs);
273 }
274
275 return *this;
276}
277
Dale Johannesen343e7702007-08-24 00:56:33 +0000278bool
Dale Johannesen12595d72007-08-24 22:09:56 +0000279APFloat::bitwiseIsEqual(const APFloat &rhs) const {
Dale Johannesen343e7702007-08-24 00:56:33 +0000280 if (this == &rhs)
281 return true;
282 if (semantics != rhs.semantics ||
Dale Johanneseneaf08942007-08-31 04:03:46 +0000283 category != rhs.category ||
284 sign != rhs.sign)
Dale Johannesen343e7702007-08-24 00:56:33 +0000285 return false;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000286 if (category==fcZero || category==fcInfinity)
Dale Johannesen343e7702007-08-24 00:56:33 +0000287 return true;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000288 else if (category==fcNormal && exponent!=rhs.exponent)
289 return false;
Dale Johannesen343e7702007-08-24 00:56:33 +0000290 else {
Dale Johannesen343e7702007-08-24 00:56:33 +0000291 int i= partCount();
292 const integerPart* p=significandParts();
293 const integerPart* q=rhs.significandParts();
294 for (; i>0; i--, p++, q++) {
295 if (*p != *q)
296 return false;
297 }
298 return true;
299 }
300}
301
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000302APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
303{
304 initialize(&ourSemantics);
305 sign = 0;
306 zeroSignificand();
307 exponent = ourSemantics.precision - 1;
308 significandParts()[0] = value;
309 normalize(rmNearestTiesToEven, lfExactlyZero);
310}
311
312APFloat::APFloat(const fltSemantics &ourSemantics,
313 fltCategory ourCategory, bool negative)
314{
315 initialize(&ourSemantics);
316 category = ourCategory;
317 sign = negative;
318 if(category == fcNormal)
319 category = fcZero;
320}
321
322APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
323{
324 initialize(&ourSemantics);
325 convertFromString(text, rmNearestTiesToEven);
326}
327
328APFloat::APFloat(const APFloat &rhs)
329{
330 initialize(rhs.semantics);
331 assign(rhs);
332}
333
334APFloat::~APFloat()
335{
336 freeSignificand();
337}
338
339unsigned int
340APFloat::partCount() const
341{
342 return partCountForBits(semantics->precision + 1);
343}
344
345unsigned int
346APFloat::semanticsPrecision(const fltSemantics &semantics)
347{
348 return semantics.precision;
349}
350
351const integerPart *
352APFloat::significandParts() const
353{
354 return const_cast<APFloat *>(this)->significandParts();
355}
356
357integerPart *
358APFloat::significandParts()
359{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000360 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000361
362 if(partCount() > 1)
363 return significand.parts;
364 else
365 return &significand.part;
366}
367
368/* Combine the effect of two lost fractions. */
369lostFraction
370APFloat::combineLostFractions(lostFraction moreSignificant,
371 lostFraction lessSignificant)
372{
373 if(lessSignificant != lfExactlyZero) {
374 if(moreSignificant == lfExactlyZero)
375 moreSignificant = lfLessThanHalf;
376 else if(moreSignificant == lfExactlyHalf)
377 moreSignificant = lfMoreThanHalf;
378 }
379
380 return moreSignificant;
381}
382
383void
384APFloat::zeroSignificand()
385{
386 category = fcNormal;
387 APInt::tcSet(significandParts(), 0, partCount());
388}
389
390/* Increment an fcNormal floating point number's significand. */
391void
392APFloat::incrementSignificand()
393{
394 integerPart carry;
395
396 carry = APInt::tcIncrement(significandParts(), partCount());
397
398 /* Our callers should never cause us to overflow. */
399 assert(carry == 0);
400}
401
402/* Add the significand of the RHS. Returns the carry flag. */
403integerPart
404APFloat::addSignificand(const APFloat &rhs)
405{
406 integerPart *parts;
407
408 parts = significandParts();
409
410 assert(semantics == rhs.semantics);
411 assert(exponent == rhs.exponent);
412
413 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
414}
415
416/* Subtract the significand of the RHS with a borrow flag. Returns
417 the borrow flag. */
418integerPart
419APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
420{
421 integerPart *parts;
422
423 parts = significandParts();
424
425 assert(semantics == rhs.semantics);
426 assert(exponent == rhs.exponent);
427
428 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
429 partCount());
430}
431
432/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
433 on to the full-precision result of the multiplication. Returns the
434 lost fraction. */
435lostFraction
436APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
437{
438 unsigned int omsb; // One, not zero, based MSB.
439 unsigned int partsCount, newPartsCount, precision;
440 integerPart *lhsSignificand;
441 integerPart scratch[4];
442 integerPart *fullSignificand;
443 lostFraction lost_fraction;
444
445 assert(semantics == rhs.semantics);
446
447 precision = semantics->precision;
448 newPartsCount = partCountForBits(precision * 2);
449
450 if(newPartsCount > 4)
451 fullSignificand = new integerPart[newPartsCount];
452 else
453 fullSignificand = scratch;
454
455 lhsSignificand = significandParts();
456 partsCount = partCount();
457
458 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
459 rhs.significandParts(), partsCount);
460
461 lost_fraction = lfExactlyZero;
462 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
463 exponent += rhs.exponent;
464
465 if(addend) {
466 Significand savedSignificand = significand;
467 const fltSemantics *savedSemantics = semantics;
468 fltSemantics extendedSemantics;
469 opStatus status;
470 unsigned int extendedPrecision;
471
472 /* Normalize our MSB. */
473 extendedPrecision = precision + precision - 1;
474 if(omsb != extendedPrecision)
475 {
476 APInt::tcShiftLeft(fullSignificand, newPartsCount,
477 extendedPrecision - omsb);
478 exponent -= extendedPrecision - omsb;
479 }
480
481 /* Create new semantics. */
482 extendedSemantics = *semantics;
483 extendedSemantics.precision = extendedPrecision;
484
485 if(newPartsCount == 1)
486 significand.part = fullSignificand[0];
487 else
488 significand.parts = fullSignificand;
489 semantics = &extendedSemantics;
490
491 APFloat extendedAddend(*addend);
492 status = extendedAddend.convert(extendedSemantics, rmTowardZero);
493 assert(status == opOK);
494 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
495
496 /* Restore our state. */
497 if(newPartsCount == 1)
498 fullSignificand[0] = significand.part;
499 significand = savedSignificand;
500 semantics = savedSemantics;
501
502 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
503 }
504
505 exponent -= (precision - 1);
506
507 if(omsb > precision) {
508 unsigned int bits, significantParts;
509 lostFraction lf;
510
511 bits = omsb - precision;
512 significantParts = partCountForBits(omsb);
513 lf = shiftRight(fullSignificand, significantParts, bits);
514 lost_fraction = combineLostFractions(lf, lost_fraction);
515 exponent += bits;
516 }
517
518 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
519
520 if(newPartsCount > 4)
521 delete [] fullSignificand;
522
523 return lost_fraction;
524}
525
526/* Multiply the significands of LHS and RHS to DST. */
527lostFraction
528APFloat::divideSignificand(const APFloat &rhs)
529{
530 unsigned int bit, i, partsCount;
531 const integerPart *rhsSignificand;
532 integerPart *lhsSignificand, *dividend, *divisor;
533 integerPart scratch[4];
534 lostFraction lost_fraction;
535
536 assert(semantics == rhs.semantics);
537
538 lhsSignificand = significandParts();
539 rhsSignificand = rhs.significandParts();
540 partsCount = partCount();
541
542 if(partsCount > 2)
543 dividend = new integerPart[partsCount * 2];
544 else
545 dividend = scratch;
546
547 divisor = dividend + partsCount;
548
549 /* Copy the dividend and divisor as they will be modified in-place. */
550 for(i = 0; i < partsCount; i++) {
551 dividend[i] = lhsSignificand[i];
552 divisor[i] = rhsSignificand[i];
553 lhsSignificand[i] = 0;
554 }
555
556 exponent -= rhs.exponent;
557
558 unsigned int precision = semantics->precision;
559
560 /* Normalize the divisor. */
561 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
562 if(bit) {
563 exponent += bit;
564 APInt::tcShiftLeft(divisor, partsCount, bit);
565 }
566
567 /* Normalize the dividend. */
568 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
569 if(bit) {
570 exponent -= bit;
571 APInt::tcShiftLeft(dividend, partsCount, bit);
572 }
573
574 if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
575 exponent--;
576 APInt::tcShiftLeft(dividend, partsCount, 1);
577 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
578 }
579
580 /* Long division. */
581 for(bit = precision; bit; bit -= 1) {
582 if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
583 APInt::tcSubtract(dividend, divisor, 0, partsCount);
584 APInt::tcSetBit(lhsSignificand, bit - 1);
585 }
586
587 APInt::tcShiftLeft(dividend, partsCount, 1);
588 }
589
590 /* Figure out the lost fraction. */
591 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
592
593 if(cmp > 0)
594 lost_fraction = lfMoreThanHalf;
595 else if(cmp == 0)
596 lost_fraction = lfExactlyHalf;
597 else if(APInt::tcIsZero(dividend, partsCount))
598 lost_fraction = lfExactlyZero;
599 else
600 lost_fraction = lfLessThanHalf;
601
602 if(partsCount > 2)
603 delete [] dividend;
604
605 return lost_fraction;
606}
607
608unsigned int
609APFloat::significandMSB() const
610{
611 return APInt::tcMSB(significandParts(), partCount());
612}
613
614unsigned int
615APFloat::significandLSB() const
616{
617 return APInt::tcLSB(significandParts(), partCount());
618}
619
620/* Note that a zero result is NOT normalized to fcZero. */
621lostFraction
622APFloat::shiftSignificandRight(unsigned int bits)
623{
624 /* Our exponent should not overflow. */
625 assert((exponent_t) (exponent + bits) >= exponent);
626
627 exponent += bits;
628
629 return shiftRight(significandParts(), partCount(), bits);
630}
631
632/* Shift the significand left BITS bits, subtract BITS from its exponent. */
633void
634APFloat::shiftSignificandLeft(unsigned int bits)
635{
636 assert(bits < semantics->precision);
637
638 if(bits) {
639 unsigned int partsCount = partCount();
640
641 APInt::tcShiftLeft(significandParts(), partsCount, bits);
642 exponent -= bits;
643
644 assert(!APInt::tcIsZero(significandParts(), partsCount));
645 }
646}
647
648APFloat::cmpResult
649APFloat::compareAbsoluteValue(const APFloat &rhs) const
650{
651 int compare;
652
653 assert(semantics == rhs.semantics);
654 assert(category == fcNormal);
655 assert(rhs.category == fcNormal);
656
657 compare = exponent - rhs.exponent;
658
659 /* If exponents are equal, do an unsigned bignum comparison of the
660 significands. */
661 if(compare == 0)
662 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
663 partCount());
664
665 if(compare > 0)
666 return cmpGreaterThan;
667 else if(compare < 0)
668 return cmpLessThan;
669 else
670 return cmpEqual;
671}
672
673/* Handle overflow. Sign is preserved. We either become infinity or
674 the largest finite number. */
675APFloat::opStatus
676APFloat::handleOverflow(roundingMode rounding_mode)
677{
678 /* Infinity? */
679 if(rounding_mode == rmNearestTiesToEven
680 || rounding_mode == rmNearestTiesToAway
681 || (rounding_mode == rmTowardPositive && !sign)
682 || (rounding_mode == rmTowardNegative && sign))
683 {
684 category = fcInfinity;
685 return (opStatus) (opOverflow | opInexact);
686 }
687
688 /* Otherwise we become the largest finite number. */
689 category = fcNormal;
690 exponent = semantics->maxExponent;
691 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
692 semantics->precision);
693
694 return opInexact;
695}
696
697/* This routine must work for fcZero of both signs, and fcNormal
698 numbers. */
699bool
700APFloat::roundAwayFromZero(roundingMode rounding_mode,
701 lostFraction lost_fraction)
702{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000703 /* NaNs and infinities should not have lost fractions. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000704 assert(category == fcNormal || category == fcZero);
705
706 /* Our caller has already handled this case. */
707 assert(lost_fraction != lfExactlyZero);
708
709 switch(rounding_mode) {
710 default:
711 assert(0);
712
713 case rmNearestTiesToAway:
714 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
715
716 case rmNearestTiesToEven:
717 if(lost_fraction == lfMoreThanHalf)
718 return true;
719
720 /* Our zeroes don't have a significand to test. */
721 if(lost_fraction == lfExactlyHalf && category != fcZero)
722 return significandParts()[0] & 1;
723
724 return false;
725
726 case rmTowardZero:
727 return false;
728
729 case rmTowardPositive:
730 return sign == false;
731
732 case rmTowardNegative:
733 return sign == true;
734 }
735}
736
737APFloat::opStatus
738APFloat::normalize(roundingMode rounding_mode,
739 lostFraction lost_fraction)
740{
741 unsigned int omsb; /* One, not zero, based MSB. */
742 int exponentChange;
743
744 if(category != fcNormal)
745 return opOK;
746
747 /* Before rounding normalize the exponent of fcNormal numbers. */
748 omsb = significandMSB() + 1;
749
750 if(omsb) {
751 /* OMSB is numbered from 1. We want to place it in the integer
752 bit numbered PRECISON if possible, with a compensating change in
753 the exponent. */
754 exponentChange = omsb - semantics->precision;
755
756 /* If the resulting exponent is too high, overflow according to
757 the rounding mode. */
758 if(exponent + exponentChange > semantics->maxExponent)
759 return handleOverflow(rounding_mode);
760
761 /* Subnormal numbers have exponent minExponent, and their MSB
762 is forced based on that. */
763 if(exponent + exponentChange < semantics->minExponent)
764 exponentChange = semantics->minExponent - exponent;
765
766 /* Shifting left is easy as we don't lose precision. */
767 if(exponentChange < 0) {
768 assert(lost_fraction == lfExactlyZero);
769
770 shiftSignificandLeft(-exponentChange);
771
772 return opOK;
773 }
774
775 if(exponentChange > 0) {
776 lostFraction lf;
777
778 /* Shift right and capture any new lost fraction. */
779 lf = shiftSignificandRight(exponentChange);
780
781 lost_fraction = combineLostFractions(lf, lost_fraction);
782
783 /* Keep OMSB up-to-date. */
784 if(omsb > (unsigned) exponentChange)
785 omsb -= (unsigned) exponentChange;
786 else
787 omsb = 0;
788 }
789 }
790
791 /* Now round the number according to rounding_mode given the lost
792 fraction. */
793
794 /* As specified in IEEE 754, since we do not trap we do not report
795 underflow for exact results. */
796 if(lost_fraction == lfExactlyZero) {
797 /* Canonicalize zeroes. */
798 if(omsb == 0)
799 category = fcZero;
800
801 return opOK;
802 }
803
804 /* Increment the significand if we're rounding away from zero. */
805 if(roundAwayFromZero(rounding_mode, lost_fraction)) {
806 if(omsb == 0)
807 exponent = semantics->minExponent;
808
809 incrementSignificand();
810 omsb = significandMSB() + 1;
811
812 /* Did the significand increment overflow? */
813 if(omsb == (unsigned) semantics->precision + 1) {
814 /* Renormalize by incrementing the exponent and shifting our
815 significand right one. However if we already have the
816 maximum exponent we overflow to infinity. */
817 if(exponent == semantics->maxExponent) {
818 category = fcInfinity;
819
820 return (opStatus) (opOverflow | opInexact);
821 }
822
823 shiftSignificandRight(1);
824
825 return opInexact;
826 }
827 }
828
829 /* The normal case - we were and are not denormal, and any
830 significand increment above didn't overflow. */
831 if(omsb == semantics->precision)
832 return opInexact;
833
834 /* We have a non-zero denormal. */
835 assert(omsb < semantics->precision);
836 assert(exponent == semantics->minExponent);
837
838 /* Canonicalize zeroes. */
839 if(omsb == 0)
840 category = fcZero;
841
842 /* The fcZero case is a denormal that underflowed to zero. */
843 return (opStatus) (opUnderflow | opInexact);
844}
845
846APFloat::opStatus
847APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
848{
849 switch(convolve(category, rhs.category)) {
850 default:
851 assert(0);
852
Dale Johanneseneaf08942007-08-31 04:03:46 +0000853 case convolve(fcNaN, fcZero):
854 case convolve(fcNaN, fcNormal):
855 case convolve(fcNaN, fcInfinity):
856 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000857 case convolve(fcNormal, fcZero):
858 case convolve(fcInfinity, fcNormal):
859 case convolve(fcInfinity, fcZero):
860 return opOK;
861
Dale Johanneseneaf08942007-08-31 04:03:46 +0000862 case convolve(fcZero, fcNaN):
863 case convolve(fcNormal, fcNaN):
864 case convolve(fcInfinity, fcNaN):
865 category = fcNaN;
866 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000867 return opOK;
868
869 case convolve(fcNormal, fcInfinity):
870 case convolve(fcZero, fcInfinity):
871 category = fcInfinity;
872 sign = rhs.sign ^ subtract;
873 return opOK;
874
875 case convolve(fcZero, fcNormal):
876 assign(rhs);
877 sign = rhs.sign ^ subtract;
878 return opOK;
879
880 case convolve(fcZero, fcZero):
881 /* Sign depends on rounding mode; handled by caller. */
882 return opOK;
883
884 case convolve(fcInfinity, fcInfinity):
885 /* Differently signed infinities can only be validly
886 subtracted. */
887 if(sign ^ rhs.sign != subtract) {
Dale Johanneseneaf08942007-08-31 04:03:46 +0000888 category = fcNaN;
889 // Arbitrary but deterministic value for significand
890 APInt::tcSet(significandParts(), ~0U, partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000891 return opInvalidOp;
892 }
893
894 return opOK;
895
896 case convolve(fcNormal, fcNormal):
897 return opDivByZero;
898 }
899}
900
901/* Add or subtract two normal numbers. */
902lostFraction
903APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
904{
905 integerPart carry;
906 lostFraction lost_fraction;
907 int bits;
908
909 /* Determine if the operation on the absolute values is effectively
910 an addition or subtraction. */
911 subtract ^= (sign ^ rhs.sign);
912
913 /* Are we bigger exponent-wise than the RHS? */
914 bits = exponent - rhs.exponent;
915
916 /* Subtraction is more subtle than one might naively expect. */
917 if(subtract) {
918 APFloat temp_rhs(rhs);
919 bool reverse;
920
Chris Lattnerada530b2007-08-24 03:02:34 +0000921 if (bits == 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000922 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
923 lost_fraction = lfExactlyZero;
Chris Lattnerada530b2007-08-24 03:02:34 +0000924 } else if (bits > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000925 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
926 shiftSignificandLeft(1);
927 reverse = false;
Chris Lattnerada530b2007-08-24 03:02:34 +0000928 } else {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000929 lost_fraction = shiftSignificandRight(-bits - 1);
930 temp_rhs.shiftSignificandLeft(1);
931 reverse = true;
932 }
933
Chris Lattnerada530b2007-08-24 03:02:34 +0000934 if (reverse) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000935 carry = temp_rhs.subtractSignificand
936 (*this, lost_fraction != lfExactlyZero);
937 copySignificand(temp_rhs);
938 sign = !sign;
939 } else {
940 carry = subtractSignificand
941 (temp_rhs, lost_fraction != lfExactlyZero);
942 }
943
944 /* Invert the lost fraction - it was on the RHS and
945 subtracted. */
946 if(lost_fraction == lfLessThanHalf)
947 lost_fraction = lfMoreThanHalf;
948 else if(lost_fraction == lfMoreThanHalf)
949 lost_fraction = lfLessThanHalf;
950
951 /* The code above is intended to ensure that no borrow is
952 necessary. */
953 assert(!carry);
954 } else {
955 if(bits > 0) {
956 APFloat temp_rhs(rhs);
957
958 lost_fraction = temp_rhs.shiftSignificandRight(bits);
959 carry = addSignificand(temp_rhs);
960 } else {
961 lost_fraction = shiftSignificandRight(-bits);
962 carry = addSignificand(rhs);
963 }
964
965 /* We have a guard bit; generating a carry cannot happen. */
966 assert(!carry);
967 }
968
969 return lost_fraction;
970}
971
972APFloat::opStatus
973APFloat::multiplySpecials(const APFloat &rhs)
974{
975 switch(convolve(category, rhs.category)) {
976 default:
977 assert(0);
978
Dale Johanneseneaf08942007-08-31 04:03:46 +0000979 case convolve(fcNaN, fcZero):
980 case convolve(fcNaN, fcNormal):
981 case convolve(fcNaN, fcInfinity):
982 case convolve(fcNaN, fcNaN):
983 return opOK;
984
985 case convolve(fcZero, fcNaN):
986 case convolve(fcNormal, fcNaN):
987 case convolve(fcInfinity, fcNaN):
988 category = fcNaN;
989 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000990 return opOK;
991
992 case convolve(fcNormal, fcInfinity):
993 case convolve(fcInfinity, fcNormal):
994 case convolve(fcInfinity, fcInfinity):
995 category = fcInfinity;
996 return opOK;
997
998 case convolve(fcZero, fcNormal):
999 case convolve(fcNormal, fcZero):
1000 case convolve(fcZero, fcZero):
1001 category = fcZero;
1002 return opOK;
1003
1004 case convolve(fcZero, fcInfinity):
1005 case convolve(fcInfinity, fcZero):
Dale Johanneseneaf08942007-08-31 04:03:46 +00001006 category = fcNaN;
1007 // Arbitrary but deterministic value for significand
1008 APInt::tcSet(significandParts(), ~0U, partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001009 return opInvalidOp;
1010
1011 case convolve(fcNormal, fcNormal):
1012 return opOK;
1013 }
1014}
1015
1016APFloat::opStatus
1017APFloat::divideSpecials(const APFloat &rhs)
1018{
1019 switch(convolve(category, rhs.category)) {
1020 default:
1021 assert(0);
1022
Dale Johanneseneaf08942007-08-31 04:03:46 +00001023 case convolve(fcNaN, fcZero):
1024 case convolve(fcNaN, fcNormal):
1025 case convolve(fcNaN, fcInfinity):
1026 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001027 case convolve(fcInfinity, fcZero):
1028 case convolve(fcInfinity, fcNormal):
1029 case convolve(fcZero, fcInfinity):
1030 case convolve(fcZero, fcNormal):
1031 return opOK;
1032
Dale Johanneseneaf08942007-08-31 04:03:46 +00001033 case convolve(fcZero, fcNaN):
1034 case convolve(fcNormal, fcNaN):
1035 case convolve(fcInfinity, fcNaN):
1036 category = fcNaN;
1037 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001038 return opOK;
1039
1040 case convolve(fcNormal, fcInfinity):
1041 category = fcZero;
1042 return opOK;
1043
1044 case convolve(fcNormal, fcZero):
1045 category = fcInfinity;
1046 return opDivByZero;
1047
1048 case convolve(fcInfinity, fcInfinity):
1049 case convolve(fcZero, fcZero):
Dale Johanneseneaf08942007-08-31 04:03:46 +00001050 category = fcNaN;
1051 // Arbitrary but deterministic value for significand
1052 APInt::tcSet(significandParts(), ~0U, partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001053 return opInvalidOp;
1054
1055 case convolve(fcNormal, fcNormal):
1056 return opOK;
1057 }
1058}
1059
1060/* Change sign. */
1061void
1062APFloat::changeSign()
1063{
1064 /* Look mummy, this one's easy. */
1065 sign = !sign;
1066}
1067
Dale Johannesene15c2db2007-08-31 23:35:31 +00001068void
1069APFloat::clearSign()
1070{
1071 /* So is this one. */
1072 sign = 0;
1073}
1074
1075void
1076APFloat::copySign(const APFloat &rhs)
1077{
1078 /* And this one. */
1079 sign = rhs.sign;
1080}
1081
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001082/* Normalized addition or subtraction. */
1083APFloat::opStatus
1084APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
1085 bool subtract)
1086{
1087 opStatus fs;
1088
1089 fs = addOrSubtractSpecials(rhs, subtract);
1090
1091 /* This return code means it was not a simple case. */
1092 if(fs == opDivByZero) {
1093 lostFraction lost_fraction;
1094
1095 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1096 fs = normalize(rounding_mode, lost_fraction);
1097
1098 /* Can only be zero if we lost no fraction. */
1099 assert(category != fcZero || lost_fraction == lfExactlyZero);
1100 }
1101
1102 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1103 positive zero unless rounding to minus infinity, except that
1104 adding two like-signed zeroes gives that zero. */
1105 if(category == fcZero) {
1106 if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
1107 sign = (rounding_mode == rmTowardNegative);
1108 }
1109
1110 return fs;
1111}
1112
1113/* Normalized addition. */
1114APFloat::opStatus
1115APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1116{
1117 return addOrSubtract(rhs, rounding_mode, false);
1118}
1119
1120/* Normalized subtraction. */
1121APFloat::opStatus
1122APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1123{
1124 return addOrSubtract(rhs, rounding_mode, true);
1125}
1126
1127/* Normalized multiply. */
1128APFloat::opStatus
1129APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1130{
1131 opStatus fs;
1132
1133 sign ^= rhs.sign;
1134 fs = multiplySpecials(rhs);
1135
1136 if(category == fcNormal) {
1137 lostFraction lost_fraction = multiplySignificand(rhs, 0);
1138 fs = normalize(rounding_mode, lost_fraction);
1139 if(lost_fraction != lfExactlyZero)
1140 fs = (opStatus) (fs | opInexact);
1141 }
1142
1143 return fs;
1144}
1145
1146/* Normalized divide. */
1147APFloat::opStatus
1148APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1149{
1150 opStatus fs;
1151
1152 sign ^= rhs.sign;
1153 fs = divideSpecials(rhs);
1154
1155 if(category == fcNormal) {
1156 lostFraction lost_fraction = divideSignificand(rhs);
1157 fs = normalize(rounding_mode, lost_fraction);
1158 if(lost_fraction != lfExactlyZero)
1159 fs = (opStatus) (fs | opInexact);
1160 }
1161
1162 return fs;
1163}
1164
Dale Johannesene15c2db2007-08-31 23:35:31 +00001165/* Normalized remainder. */
1166APFloat::opStatus
1167APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1168{
1169 opStatus fs;
1170 APFloat V = *this;
1171 fs = V.divide(rhs, rmNearestTiesToEven);
1172 if (fs == opDivByZero)
1173 return fs;
1174
1175 integerPart x;
1176 fs = V.convertToInteger(&x, integerPartWidth, true, rmNearestTiesToEven);
1177 if (fs==opInvalidOp)
1178 return fs;
1179
1180 fs = V.convertFromInteger(&x, integerPartWidth, true, rmNearestTiesToEven);
1181 assert(fs==opOK); // should always work
1182 fs = V.multiply(rhs, rounding_mode);
1183 assert(fs==opOK); // should not overflow or underflow
1184 fs = subtract(V, rounding_mode);
1185 assert(fs==opOK);
1186 return fs;
1187}
1188
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001189/* Normalized fused-multiply-add. */
1190APFloat::opStatus
1191APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
1192 const APFloat &addend,
1193 roundingMode rounding_mode)
1194{
1195 opStatus fs;
1196
1197 /* Post-multiplication sign, before addition. */
1198 sign ^= multiplicand.sign;
1199
1200 /* If and only if all arguments are normal do we need to do an
1201 extended-precision calculation. */
1202 if(category == fcNormal
1203 && multiplicand.category == fcNormal
1204 && addend.category == fcNormal) {
1205 lostFraction lost_fraction;
1206
1207 lost_fraction = multiplySignificand(multiplicand, &addend);
1208 fs = normalize(rounding_mode, lost_fraction);
1209 if(lost_fraction != lfExactlyZero)
1210 fs = (opStatus) (fs | opInexact);
1211
1212 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1213 positive zero unless rounding to minus infinity, except that
1214 adding two like-signed zeroes gives that zero. */
1215 if(category == fcZero && sign != addend.sign)
1216 sign = (rounding_mode == rmTowardNegative);
1217 } else {
1218 fs = multiplySpecials(multiplicand);
1219
1220 /* FS can only be opOK or opInvalidOp. There is no more work
1221 to do in the latter case. The IEEE-754R standard says it is
1222 implementation-defined in this case whether, if ADDEND is a
Dale Johanneseneaf08942007-08-31 04:03:46 +00001223 quiet NaN, we raise invalid op; this implementation does so.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001224
1225 If we need to do the addition we can do so with normal
1226 precision. */
1227 if(fs == opOK)
1228 fs = addOrSubtract(addend, rounding_mode, false);
1229 }
1230
1231 return fs;
1232}
1233
1234/* Comparison requires normalized numbers. */
1235APFloat::cmpResult
1236APFloat::compare(const APFloat &rhs) const
1237{
1238 cmpResult result;
1239
1240 assert(semantics == rhs.semantics);
1241
1242 switch(convolve(category, rhs.category)) {
1243 default:
1244 assert(0);
1245
Dale Johanneseneaf08942007-08-31 04:03:46 +00001246 case convolve(fcNaN, fcZero):
1247 case convolve(fcNaN, fcNormal):
1248 case convolve(fcNaN, fcInfinity):
1249 case convolve(fcNaN, fcNaN):
1250 case convolve(fcZero, fcNaN):
1251 case convolve(fcNormal, fcNaN):
1252 case convolve(fcInfinity, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001253 return cmpUnordered;
1254
1255 case convolve(fcInfinity, fcNormal):
1256 case convolve(fcInfinity, fcZero):
1257 case convolve(fcNormal, fcZero):
1258 if(sign)
1259 return cmpLessThan;
1260 else
1261 return cmpGreaterThan;
1262
1263 case convolve(fcNormal, fcInfinity):
1264 case convolve(fcZero, fcInfinity):
1265 case convolve(fcZero, fcNormal):
1266 if(rhs.sign)
1267 return cmpGreaterThan;
1268 else
1269 return cmpLessThan;
1270
1271 case convolve(fcInfinity, fcInfinity):
1272 if(sign == rhs.sign)
1273 return cmpEqual;
1274 else if(sign)
1275 return cmpLessThan;
1276 else
1277 return cmpGreaterThan;
1278
1279 case convolve(fcZero, fcZero):
1280 return cmpEqual;
1281
1282 case convolve(fcNormal, fcNormal):
1283 break;
1284 }
1285
1286 /* Two normal numbers. Do they have the same sign? */
1287 if(sign != rhs.sign) {
1288 if(sign)
1289 result = cmpLessThan;
1290 else
1291 result = cmpGreaterThan;
1292 } else {
1293 /* Compare absolute values; invert result if negative. */
1294 result = compareAbsoluteValue(rhs);
1295
1296 if(sign) {
1297 if(result == cmpLessThan)
1298 result = cmpGreaterThan;
1299 else if(result == cmpGreaterThan)
1300 result = cmpLessThan;
1301 }
1302 }
1303
1304 return result;
1305}
1306
1307APFloat::opStatus
1308APFloat::convert(const fltSemantics &toSemantics,
1309 roundingMode rounding_mode)
1310{
1311 unsigned int newPartCount;
1312 opStatus fs;
1313
1314 newPartCount = partCountForBits(toSemantics.precision + 1);
1315
1316 /* If our new form is wider, re-allocate our bit pattern into wider
1317 storage. */
1318 if(newPartCount > partCount()) {
1319 integerPart *newParts;
1320
1321 newParts = new integerPart[newPartCount];
1322 APInt::tcSet(newParts, 0, newPartCount);
1323 APInt::tcAssign(newParts, significandParts(), partCount());
1324 freeSignificand();
1325 significand.parts = newParts;
1326 }
1327
1328 if(category == fcNormal) {
1329 /* Re-interpret our bit-pattern. */
1330 exponent += toSemantics.precision - semantics->precision;
1331 semantics = &toSemantics;
1332 fs = normalize(rounding_mode, lfExactlyZero);
1333 } else {
1334 semantics = &toSemantics;
1335 fs = opOK;
1336 }
1337
1338 return fs;
1339}
1340
1341/* Convert a floating point number to an integer according to the
1342 rounding mode. If the rounded integer value is out of range this
1343 returns an invalid operation exception. If the rounded value is in
1344 range but the floating point number is not the exact integer, the C
1345 standard doesn't require an inexact exception to be raised. IEEE
1346 854 does require it so we do that.
1347
1348 Note that for conversions to integer type the C standard requires
1349 round-to-zero to always be used. */
1350APFloat::opStatus
1351APFloat::convertToInteger(integerPart *parts, unsigned int width,
1352 bool isSigned,
1353 roundingMode rounding_mode) const
1354{
1355 lostFraction lost_fraction;
1356 unsigned int msb, partsCount;
1357 int bits;
1358
1359 /* Handle the three special cases first. */
Dale Johanneseneaf08942007-08-31 04:03:46 +00001360 if(category == fcInfinity || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001361 return opInvalidOp;
1362
1363 partsCount = partCountForBits(width);
1364
1365 if(category == fcZero) {
1366 APInt::tcSet(parts, 0, partsCount);
1367 return opOK;
1368 }
1369
1370 /* Shift the bit pattern so the fraction is lost. */
1371 APFloat tmp(*this);
1372
1373 bits = (int) semantics->precision - 1 - exponent;
1374
1375 if(bits > 0) {
1376 lost_fraction = tmp.shiftSignificandRight(bits);
1377 } else {
1378 tmp.shiftSignificandLeft(-bits);
1379 lost_fraction = lfExactlyZero;
1380 }
1381
1382 if(lost_fraction != lfExactlyZero
1383 && tmp.roundAwayFromZero(rounding_mode, lost_fraction))
1384 tmp.incrementSignificand();
1385
1386 msb = tmp.significandMSB();
1387
1388 /* Negative numbers cannot be represented as unsigned. */
1389 if(!isSigned && tmp.sign && msb != -1U)
1390 return opInvalidOp;
1391
1392 /* It takes exponent + 1 bits to represent the truncated floating
1393 point number without its sign. We lose a bit for the sign, but
1394 the maximally negative integer is a special case. */
1395 if(msb + 1 > width) /* !! Not same as msb >= width !! */
1396 return opInvalidOp;
1397
1398 if(isSigned && msb + 1 == width
1399 && (!tmp.sign || tmp.significandLSB() != msb))
1400 return opInvalidOp;
1401
1402 APInt::tcAssign(parts, tmp.significandParts(), partsCount);
1403
1404 if(tmp.sign)
1405 APInt::tcNegate(parts, partsCount);
1406
1407 if(lost_fraction == lfExactlyZero)
1408 return opOK;
1409 else
1410 return opInexact;
1411}
1412
1413APFloat::opStatus
1414APFloat::convertFromUnsignedInteger(integerPart *parts,
1415 unsigned int partCount,
1416 roundingMode rounding_mode)
1417{
1418 unsigned int msb, precision;
1419 lostFraction lost_fraction;
1420
1421 msb = APInt::tcMSB(parts, partCount) + 1;
1422 precision = semantics->precision;
1423
1424 category = fcNormal;
1425 exponent = precision - 1;
1426
1427 if(msb > precision) {
1428 exponent += (msb - precision);
1429 lost_fraction = shiftRight(parts, partCount, msb - precision);
1430 msb = precision;
1431 } else
1432 lost_fraction = lfExactlyZero;
1433
1434 /* Copy the bit image. */
1435 zeroSignificand();
1436 APInt::tcAssign(significandParts(), parts, partCountForBits(msb));
1437
1438 return normalize(rounding_mode, lost_fraction);
1439}
1440
1441APFloat::opStatus
1442APFloat::convertFromInteger(const integerPart *parts,
1443 unsigned int partCount, bool isSigned,
1444 roundingMode rounding_mode)
1445{
1446 unsigned int width;
1447 opStatus status;
1448 integerPart *copy;
1449
1450 copy = new integerPart[partCount];
1451 APInt::tcAssign(copy, parts, partCount);
1452
1453 width = partCount * integerPartWidth;
1454
1455 sign = false;
1456 if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
1457 sign = true;
1458 APInt::tcNegate(copy, partCount);
1459 }
1460
1461 status = convertFromUnsignedInteger(copy, partCount, rounding_mode);
1462 delete [] copy;
1463
1464 return status;
1465}
1466
1467APFloat::opStatus
1468APFloat::convertFromHexadecimalString(const char *p,
1469 roundingMode rounding_mode)
1470{
1471 lostFraction lost_fraction;
1472 integerPart *significand;
1473 unsigned int bitPos, partsCount;
1474 const char *dot, *firstSignificantDigit;
1475
1476 zeroSignificand();
1477 exponent = 0;
1478 category = fcNormal;
1479
1480 significand = significandParts();
1481 partsCount = partCount();
1482 bitPos = partsCount * integerPartWidth;
1483
1484 /* Skip leading zeroes and any(hexa)decimal point. */
1485 p = skipLeadingZeroesAndAnyDot(p, &dot);
1486 firstSignificantDigit = p;
1487
1488 for(;;) {
1489 integerPart hex_value;
1490
1491 if(*p == '.') {
1492 assert(dot == 0);
1493 dot = p++;
1494 }
1495
1496 hex_value = hexDigitValue(*p);
1497 if(hex_value == -1U) {
1498 lost_fraction = lfExactlyZero;
1499 break;
1500 }
1501
1502 p++;
1503
1504 /* Store the number whilst 4-bit nibbles remain. */
1505 if(bitPos) {
1506 bitPos -= 4;
1507 hex_value <<= bitPos % integerPartWidth;
1508 significand[bitPos / integerPartWidth] |= hex_value;
1509 } else {
1510 lost_fraction = trailingHexadecimalFraction(p, hex_value);
1511 while(hexDigitValue(*p) != -1U)
1512 p++;
1513 break;
1514 }
1515 }
1516
1517 /* Hex floats require an exponent but not a hexadecimal point. */
1518 assert(*p == 'p' || *p == 'P');
1519
1520 /* Ignore the exponent if we are zero. */
1521 if(p != firstSignificantDigit) {
1522 int expAdjustment;
1523
1524 /* Implicit hexadecimal point? */
1525 if(!dot)
1526 dot = p;
1527
1528 /* Calculate the exponent adjustment implicit in the number of
1529 significant digits. */
1530 expAdjustment = dot - firstSignificantDigit;
1531 if(expAdjustment < 0)
1532 expAdjustment++;
1533 expAdjustment = expAdjustment * 4 - 1;
1534
1535 /* Adjust for writing the significand starting at the most
1536 significant nibble. */
1537 expAdjustment += semantics->precision;
1538 expAdjustment -= partsCount * integerPartWidth;
1539
1540 /* Adjust for the given exponent. */
1541 exponent = totalExponent(p, expAdjustment);
1542 }
1543
1544 return normalize(rounding_mode, lost_fraction);
1545}
1546
1547APFloat::opStatus
Chris Lattnerada530b2007-08-24 03:02:34 +00001548APFloat::convertFromString(const char *p, roundingMode rounding_mode) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001549 /* Handle a leading minus sign. */
1550 if(*p == '-')
1551 sign = 1, p++;
1552 else
1553 sign = 0;
1554
1555 if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
1556 return convertFromHexadecimalString(p + 2, rounding_mode);
Chris Lattnerada530b2007-08-24 03:02:34 +00001557
1558 assert(0 && "Decimal to binary conversions not yet implemented");
1559 abort();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001560}
Dale Johannesen343e7702007-08-24 00:56:33 +00001561
1562// For good performance it is desirable for different APFloats
1563// to produce different integers.
1564uint32_t
1565APFloat::getHashValue() const {
1566 if (category==fcZero) return sign<<8 | semantics->precision ;
1567 else if (category==fcInfinity) return sign<<9 | semantics->precision;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001568 else if (category==fcNaN) return 1<<10 | semantics->precision;
Dale Johannesen343e7702007-08-24 00:56:33 +00001569 else {
1570 uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
1571 const integerPart* p = significandParts();
1572 for (int i=partCount(); i>0; i--, p++)
1573 hash ^= ((uint32_t)*p) ^ (*p)>>32;
1574 return hash;
1575 }
1576}
1577
1578// Conversion from APFloat to/from host float/double. It may eventually be
1579// possible to eliminate these and have everybody deal with APFloats, but that
1580// will take a while. This approach will not easily extend to long double.
1581// Current implementation requires partCount()==1, which is correct at the
1582// moment but could be made more general.
1583
1584double
1585APFloat::convertToDouble() const {
Dale Johannesen343e7702007-08-24 00:56:33 +00001586 assert(semantics == (const llvm::fltSemantics* const)&IEEEdouble);
1587 assert (partCount()==1);
1588
Dale Johanneseneaf08942007-08-31 04:03:46 +00001589 uint64_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001590
1591 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001592 mysignificand = *significandParts();
1593 myexponent = exponent+1023; //bias
1594 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001595 myexponent = 0;
1596 mysignificand = 0;
1597 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001598 myexponent = 0x7ff;
1599 mysignificand = 0;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001600 } else if (category==fcNaN) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001601 myexponent = 0x7ff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001602 mysignificand = *significandParts();
Dale Johannesen343e7702007-08-24 00:56:33 +00001603 } else
1604 assert(0);
1605
Dale Johanneseneaf08942007-08-31 04:03:46 +00001606 return BitsToDouble((((uint64_t)sign & 1) << 63) |
1607 ((myexponent & 0x7ff) << 52) |
Dale Johannesend3b51fd2007-08-24 05:08:11 +00001608 (mysignificand & 0xfffffffffffffLL));
Dale Johannesen343e7702007-08-24 00:56:33 +00001609}
1610
1611float
1612APFloat::convertToFloat() const {
Dale Johannesen343e7702007-08-24 00:56:33 +00001613 assert(semantics == (const llvm::fltSemantics* const)&IEEEsingle);
1614 assert (partCount()==1);
1615
Dale Johanneseneaf08942007-08-31 04:03:46 +00001616 uint32_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001617
1618 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001619 myexponent = exponent+127; //bias
1620 mysignificand = *significandParts();
1621 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001622 myexponent = 0;
1623 mysignificand = 0;
1624 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001625 myexponent = 0xff;
1626 mysignificand = 0;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001627 } else if (category==fcNaN) {
Dale Johannesen343e7702007-08-24 00:56:33 +00001628 myexponent = 0x7ff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001629 mysignificand = *significandParts();
Dale Johannesen343e7702007-08-24 00:56:33 +00001630 } else
1631 assert(0);
1632
Dale Johanneseneaf08942007-08-31 04:03:46 +00001633 return BitsToFloat(((sign&1) << 31) | ((myexponent&0xff) << 23) |
Dale Johannesend3b51fd2007-08-24 05:08:11 +00001634 (mysignificand & 0x7fffff));
Dale Johannesen343e7702007-08-24 00:56:33 +00001635}
1636
1637APFloat::APFloat(double d) {
Dale Johannesend3b51fd2007-08-24 05:08:11 +00001638 uint64_t i = DoubleToBits(d);
Dale Johannesend3b51fd2007-08-24 05:08:11 +00001639 uint64_t myexponent = (i >> 52) & 0x7ff;
1640 uint64_t mysignificand = i & 0xfffffffffffffLL;
1641
Dale Johannesen343e7702007-08-24 00:56:33 +00001642 initialize(&APFloat::IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00001643 assert(partCount()==1);
1644
Dale Johanneseneaf08942007-08-31 04:03:46 +00001645 sign = i>>63;
Dale Johannesen343e7702007-08-24 00:56:33 +00001646 if (myexponent==0 && mysignificand==0) {
1647 // exponent, significand meaningless
1648 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00001649 } else if (myexponent==0x7ff && mysignificand==0) {
1650 // exponent, significand meaningless
1651 category = fcInfinity;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001652 } else if (myexponent==0x7ff && mysignificand!=0) {
1653 // exponent meaningless
1654 category = fcNaN;
1655 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001656 } else {
Dale Johannesen343e7702007-08-24 00:56:33 +00001657 category = fcNormal;
1658 exponent = myexponent - 1023;
Dale Johanneseneaf08942007-08-31 04:03:46 +00001659 *significandParts() = mysignificand | 0x10000000000000LL;
1660 }
Dale Johannesen343e7702007-08-24 00:56:33 +00001661}
1662
1663APFloat::APFloat(float f) {
Dale Johannesend3b51fd2007-08-24 05:08:11 +00001664 uint32_t i = FloatToBits(f);
Dale Johannesend3b51fd2007-08-24 05:08:11 +00001665 uint32_t myexponent = (i >> 23) & 0xff;
1666 uint32_t mysignificand = i & 0x7fffff;
1667
Dale Johannesen343e7702007-08-24 00:56:33 +00001668 initialize(&APFloat::IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00001669 assert(partCount()==1);
1670
Dale Johanneseneaf08942007-08-31 04:03:46 +00001671 sign = i >> 31;
Dale Johannesen343e7702007-08-24 00:56:33 +00001672 if (myexponent==0 && mysignificand==0) {
1673 // exponent, significand meaningless
1674 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00001675 } else if (myexponent==0xff && mysignificand==0) {
1676 // exponent, significand meaningless
1677 category = fcInfinity;
Dale Johannesen343e7702007-08-24 00:56:33 +00001678 } else if (myexponent==0xff && (mysignificand & 0x400000)) {
1679 // sign, exponent, significand meaningless
Dale Johanneseneaf08942007-08-31 04:03:46 +00001680 category = fcNaN;
1681 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00001682 } else {
1683 category = fcNormal;
Dale Johannesen343e7702007-08-24 00:56:33 +00001684 exponent = myexponent - 127; //bias
1685 *significandParts() = mysignificand | 0x800000; // integer bit
1686 }
1687}