blob: 82be9cd5c4e3f45e8105990c705abf8f4921f08a [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
102 "symbolically execute a constant "
103 "derived loop"),
104 cl::init(100));
105
106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121 print(dbgs());
122 dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144 SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148 return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153 return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158 return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
181 new (S) SCEVConstant(ID, V);
182 UniqueSCEVs.InsertNode(S, IP);
183 return S;
184}
185
186const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
187 return getConstant(ConstantInt::get(getContext(), Val));
188}
189
190const SCEV *
191ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
192 return getConstant(
193 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
194}
195
196const Type *SCEVConstant::getType() const { return V->getType(); }
197
198void SCEVConstant::print(raw_ostream &OS) const {
199 WriteAsOperand(OS, V, false);
200}
201
202SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
203 unsigned SCEVTy, const SCEV *op, const Type *ty)
204 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
205
206bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
207 return Op->dominates(BB, DT);
208}
209
210bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
211 return Op->properlyDominates(BB, DT);
212}
213
214SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
215 const SCEV *op, const Type *ty)
216 : SCEVCastExpr(ID, scTruncate, op, ty) {
217 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
218 (Ty->isInteger() || isa<PointerType>(Ty)) &&
219 "Cannot truncate non-integer value!");
220}
221
222void SCEVTruncateExpr::print(raw_ostream &OS) const {
223 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
224}
225
226SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
227 const SCEV *op, const Type *ty)
228 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
229 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
230 (Ty->isInteger() || isa<PointerType>(Ty)) &&
231 "Cannot zero extend non-integer value!");
232}
233
234void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
235 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
236}
237
238SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
239 const SCEV *op, const Type *ty)
240 : SCEVCastExpr(ID, scSignExtend, op, ty) {
241 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
242 (Ty->isInteger() || isa<PointerType>(Ty)) &&
243 "Cannot sign extend non-integer value!");
244}
245
246void SCEVSignExtendExpr::print(raw_ostream &OS) const {
247 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
248}
249
250void SCEVCommutativeExpr::print(raw_ostream &OS) const {
251 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
252 const char *OpStr = getOperationStr();
253 OS << "(" << *Operands[0];
254 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
255 OS << OpStr << *Operands[i];
256 OS << ")";
257}
258
259bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
260 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
261 if (!getOperand(i)->dominates(BB, DT))
262 return false;
263 }
264 return true;
265}
266
267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
268 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
269 if (!getOperand(i)->properlyDominates(BB, DT))
270 return false;
271 }
272 return true;
273}
274
275bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
276 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
277}
278
279bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
280 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
281}
282
283void SCEVUDivExpr::print(raw_ostream &OS) const {
284 OS << "(" << *LHS << " /u " << *RHS << ")";
285}
286
287const Type *SCEVUDivExpr::getType() const {
288 // In most cases the types of LHS and RHS will be the same, but in some
289 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
290 // depend on the type for correctness, but handling types carefully can
291 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
292 // a pointer type than the RHS, so use the RHS' type here.
293 return RHS->getType();
294}
295
296bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
297 // Add recurrences are never invariant in the function-body (null loop).
298 if (!QueryLoop)
299 return false;
300
301 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
302 if (QueryLoop->contains(L))
303 return false;
304
305 // This recurrence is variant w.r.t. QueryLoop if any of its operands
306 // are variant.
307 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
308 if (!getOperand(i)->isLoopInvariant(QueryLoop))
309 return false;
310
311 // Otherwise it's loop-invariant.
312 return true;
313}
314
315void SCEVAddRecExpr::print(raw_ostream &OS) const {
316 OS << "{" << *Operands[0];
317 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
318 OS << ",+," << *Operands[i];
319 OS << "}<";
320 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
321 OS << ">";
322}
323
324bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
325 // All non-instruction values are loop invariant. All instructions are loop
326 // invariant if they are not contained in the specified loop.
327 // Instructions are never considered invariant in the function body
328 // (null loop) because they are defined within the "loop".
329 if (Instruction *I = dyn_cast<Instruction>(V))
330 return L && !L->contains(I);
331 return true;
332}
333
334bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
335 if (Instruction *I = dyn_cast<Instruction>(getValue()))
336 return DT->dominates(I->getParent(), BB);
337 return true;
338}
339
340bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
341 if (Instruction *I = dyn_cast<Instruction>(getValue()))
342 return DT->properlyDominates(I->getParent(), BB);
343 return true;
344}
345
346const Type *SCEVUnknown::getType() const {
347 return V->getType();
348}
349
350bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
351 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
352 if (VCE->getOpcode() == Instruction::PtrToInt)
353 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
354 if (CE->getOpcode() == Instruction::GetElementPtr &&
355 CE->getOperand(0)->isNullValue() &&
356 CE->getNumOperands() == 2)
357 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
358 if (CI->isOne()) {
359 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
360 ->getElementType();
361 return true;
362 }
363
364 return false;
365}
366
367bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
368 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
369 if (VCE->getOpcode() == Instruction::PtrToInt)
370 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
371 if (CE->getOpcode() == Instruction::GetElementPtr &&
372 CE->getOperand(0)->isNullValue()) {
373 const Type *Ty =
374 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
375 if (const StructType *STy = dyn_cast<StructType>(Ty))
376 if (!STy->isPacked() &&
377 CE->getNumOperands() == 3 &&
378 CE->getOperand(1)->isNullValue()) {
379 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
380 if (CI->isOne() &&
381 STy->getNumElements() == 2 &&
382 STy->getElementType(0)->isInteger(1)) {
383 AllocTy = STy->getElementType(1);
384 return true;
385 }
386 }
387 }
388
389 return false;
390}
391
392bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
393 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
394 if (VCE->getOpcode() == Instruction::PtrToInt)
395 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
396 if (CE->getOpcode() == Instruction::GetElementPtr &&
397 CE->getNumOperands() == 3 &&
398 CE->getOperand(0)->isNullValue() &&
399 CE->getOperand(1)->isNullValue()) {
400 const Type *Ty =
401 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
402 // Ignore vector types here so that ScalarEvolutionExpander doesn't
403 // emit getelementptrs that index into vectors.
404 if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
405 CTy = Ty;
406 FieldNo = CE->getOperand(2);
407 return true;
408 }
409 }
410
411 return false;
412}
413
414void SCEVUnknown::print(raw_ostream &OS) const {
415 const Type *AllocTy;
416 if (isSizeOf(AllocTy)) {
417 OS << "sizeof(" << *AllocTy << ")";
418 return;
419 }
420 if (isAlignOf(AllocTy)) {
421 OS << "alignof(" << *AllocTy << ")";
422 return;
423 }
424
425 const Type *CTy;
426 Constant *FieldNo;
427 if (isOffsetOf(CTy, FieldNo)) {
428 OS << "offsetof(" << *CTy << ", ";
429 WriteAsOperand(OS, FieldNo, false);
430 OS << ")";
431 return;
432 }
433
434 // Otherwise just print it normally.
435 WriteAsOperand(OS, V, false);
436}
437
438//===----------------------------------------------------------------------===//
439// SCEV Utilities
440//===----------------------------------------------------------------------===//
441
442static bool CompareTypes(const Type *A, const Type *B) {
443 if (A->getTypeID() != B->getTypeID())
444 return A->getTypeID() < B->getTypeID();
445 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
446 const IntegerType *BI = cast<IntegerType>(B);
447 return AI->getBitWidth() < BI->getBitWidth();
448 }
449 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
450 const PointerType *BI = cast<PointerType>(B);
451 return CompareTypes(AI->getElementType(), BI->getElementType());
452 }
453 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
454 const ArrayType *BI = cast<ArrayType>(B);
455 if (AI->getNumElements() != BI->getNumElements())
456 return AI->getNumElements() < BI->getNumElements();
457 return CompareTypes(AI->getElementType(), BI->getElementType());
458 }
459 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
460 const VectorType *BI = cast<VectorType>(B);
461 if (AI->getNumElements() != BI->getNumElements())
462 return AI->getNumElements() < BI->getNumElements();
463 return CompareTypes(AI->getElementType(), BI->getElementType());
464 }
465 if (const StructType *AI = dyn_cast<StructType>(A)) {
466 const StructType *BI = cast<StructType>(B);
467 if (AI->getNumElements() != BI->getNumElements())
468 return AI->getNumElements() < BI->getNumElements();
469 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
470 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
471 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
472 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
473 }
474 return false;
475}
476
477namespace {
478 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
479 /// than the complexity of the RHS. This comparator is used to canonicalize
480 /// expressions.
481 class SCEVComplexityCompare {
482 LoopInfo *LI;
483 public:
484 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
485
486 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
487 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
488 if (LHS == RHS)
489 return false;
490
491 // Primarily, sort the SCEVs by their getSCEVType().
492 if (LHS->getSCEVType() != RHS->getSCEVType())
493 return LHS->getSCEVType() < RHS->getSCEVType();
494
495 // Aside from the getSCEVType() ordering, the particular ordering
496 // isn't very important except that it's beneficial to be consistent,
497 // so that (a + b) and (b + a) don't end up as different expressions.
498
499 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
500 // not as complete as it could be.
501 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
502 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
503
504 // Order pointer values after integer values. This helps SCEVExpander
505 // form GEPs.
506 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
507 return false;
508 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
509 return true;
510
511 // Compare getValueID values.
512 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
513 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
514
515 // Sort arguments by their position.
516 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
517 const Argument *RA = cast<Argument>(RU->getValue());
518 return LA->getArgNo() < RA->getArgNo();
519 }
520
521 // For instructions, compare their loop depth, and their opcode.
522 // This is pretty loose.
523 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
524 Instruction *RV = cast<Instruction>(RU->getValue());
525
526 // Compare loop depths.
527 if (LI->getLoopDepth(LV->getParent()) !=
528 LI->getLoopDepth(RV->getParent()))
529 return LI->getLoopDepth(LV->getParent()) <
530 LI->getLoopDepth(RV->getParent());
531
532 // Compare opcodes.
533 if (LV->getOpcode() != RV->getOpcode())
534 return LV->getOpcode() < RV->getOpcode();
535
536 // Compare the number of operands.
537 if (LV->getNumOperands() != RV->getNumOperands())
538 return LV->getNumOperands() < RV->getNumOperands();
539 }
540
541 return false;
542 }
543
544 // Compare constant values.
545 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
546 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
547 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
548 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
549 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
550 }
551
552 // Compare addrec loop depths.
553 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
554 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
555 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
556 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
557 }
558
559 // Lexicographically compare n-ary expressions.
560 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
561 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
562 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
563 if (i >= RC->getNumOperands())
564 return false;
565 if (operator()(LC->getOperand(i), RC->getOperand(i)))
566 return true;
567 if (operator()(RC->getOperand(i), LC->getOperand(i)))
568 return false;
569 }
570 return LC->getNumOperands() < RC->getNumOperands();
571 }
572
573 // Lexicographically compare udiv expressions.
574 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
575 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
576 if (operator()(LC->getLHS(), RC->getLHS()))
577 return true;
578 if (operator()(RC->getLHS(), LC->getLHS()))
579 return false;
580 if (operator()(LC->getRHS(), RC->getRHS()))
581 return true;
582 if (operator()(RC->getRHS(), LC->getRHS()))
583 return false;
584 return false;
585 }
586
587 // Compare cast expressions by operand.
588 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
589 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
590 return operator()(LC->getOperand(), RC->getOperand());
591 }
592
593 llvm_unreachable("Unknown SCEV kind!");
594 return false;
595 }
596 };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
604/// Note that we go take special precautions to ensure that we get determinstic
605/// results from this routine. In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
610 LoopInfo *LI) {
611 if (Ops.size() < 2) return; // Noop
612 if (Ops.size() == 2) {
613 // This is the common case, which also happens to be trivially simple.
614 // Special case it.
615 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
616 std::swap(Ops[0], Ops[1]);
617 return;
618 }
619
620 // Do the rough sort by complexity.
621 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
622
623 // Now that we are sorted by complexity, group elements of the same
624 // complexity. Note that this is, at worst, N^2, but the vector is likely to
625 // be extremely short in practice. Note that we take this approach because we
626 // do not want to depend on the addresses of the objects we are grouping.
627 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
628 const SCEV *S = Ops[i];
629 unsigned Complexity = S->getSCEVType();
630
631 // If there are any objects of the same complexity and same value as this
632 // one, group them.
633 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
634 if (Ops[j] == S) { // Found a duplicate.
635 // Move it to immediately after i'th element.
636 std::swap(Ops[i+1], Ops[j]);
637 ++i; // no need to rescan it.
638 if (i == e-2) return; // Done!
639 }
640 }
641 }
642}
643
644
645
646//===----------------------------------------------------------------------===//
647// Simple SCEV method implementations
648//===----------------------------------------------------------------------===//
649
650/// BinomialCoefficient - Compute BC(It, K). The result has width W.
651/// Assume, K > 0.
652static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
653 ScalarEvolution &SE,
654 const Type* ResultTy) {
655 // Handle the simplest case efficiently.
656 if (K == 1)
657 return SE.getTruncateOrZeroExtend(It, ResultTy);
658
659 // We are using the following formula for BC(It, K):
660 //
661 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
662 //
663 // Suppose, W is the bitwidth of the return value. We must be prepared for
664 // overflow. Hence, we must assure that the result of our computation is
665 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
666 // safe in modular arithmetic.
667 //
668 // However, this code doesn't use exactly that formula; the formula it uses
669 // is something like the following, where T is the number of factors of 2 in
670 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
671 // exponentiation:
672 //
673 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
674 //
675 // This formula is trivially equivalent to the previous formula. However,
676 // this formula can be implemented much more efficiently. The trick is that
677 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
678 // arithmetic. To do exact division in modular arithmetic, all we have
679 // to do is multiply by the inverse. Therefore, this step can be done at
680 // width W.
681 //
682 // The next issue is how to safely do the division by 2^T. The way this
683 // is done is by doing the multiplication step at a width of at least W + T
684 // bits. This way, the bottom W+T bits of the product are accurate. Then,
685 // when we perform the division by 2^T (which is equivalent to a right shift
686 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
687 // truncated out after the division by 2^T.
688 //
689 // In comparison to just directly using the first formula, this technique
690 // is much more efficient; using the first formula requires W * K bits,
691 // but this formula less than W + K bits. Also, the first formula requires
692 // a division step, whereas this formula only requires multiplies and shifts.
693 //
694 // It doesn't matter whether the subtraction step is done in the calculation
695 // width or the input iteration count's width; if the subtraction overflows,
696 // the result must be zero anyway. We prefer here to do it in the width of
697 // the induction variable because it helps a lot for certain cases; CodeGen
698 // isn't smart enough to ignore the overflow, which leads to much less
699 // efficient code if the width of the subtraction is wider than the native
700 // register width.
701 //
702 // (It's possible to not widen at all by pulling out factors of 2 before
703 // the multiplication; for example, K=2 can be calculated as
704 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
705 // extra arithmetic, so it's not an obvious win, and it gets
706 // much more complicated for K > 3.)
707
708 // Protection from insane SCEVs; this bound is conservative,
709 // but it probably doesn't matter.
710 if (K > 1000)
711 return SE.getCouldNotCompute();
712
713 unsigned W = SE.getTypeSizeInBits(ResultTy);
714
715 // Calculate K! / 2^T and T; we divide out the factors of two before
716 // multiplying for calculating K! / 2^T to avoid overflow.
717 // Other overflow doesn't matter because we only care about the bottom
718 // W bits of the result.
719 APInt OddFactorial(W, 1);
720 unsigned T = 1;
721 for (unsigned i = 3; i <= K; ++i) {
722 APInt Mult(W, i);
723 unsigned TwoFactors = Mult.countTrailingZeros();
724 T += TwoFactors;
725 Mult = Mult.lshr(TwoFactors);
726 OddFactorial *= Mult;
727 }
728
729 // We need at least W + T bits for the multiplication step
730 unsigned CalculationBits = W + T;
731
732 // Calcuate 2^T, at width T+W.
733 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
734
735 // Calculate the multiplicative inverse of K! / 2^T;
736 // this multiplication factor will perform the exact division by
737 // K! / 2^T.
738 APInt Mod = APInt::getSignedMinValue(W+1);
739 APInt MultiplyFactor = OddFactorial.zext(W+1);
740 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
741 MultiplyFactor = MultiplyFactor.trunc(W);
742
743 // Calculate the product, at width T+W
744 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
745 CalculationBits);
746 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
747 for (unsigned i = 1; i != K; ++i) {
748 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
749 Dividend = SE.getMulExpr(Dividend,
750 SE.getTruncateOrZeroExtend(S, CalculationTy));
751 }
752
753 // Divide by 2^T
754 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
755
756 // Truncate the result, and divide by K! / 2^T.
757
758 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
759 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
760}
761
762/// evaluateAtIteration - Return the value of this chain of recurrences at
763/// the specified iteration number. We can evaluate this recurrence by
764/// multiplying each element in the chain by the binomial coefficient
765/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
766///
767/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
768///
769/// where BC(It, k) stands for binomial coefficient.
770///
771const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
772 ScalarEvolution &SE) const {
773 const SCEV *Result = getStart();
774 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
775 // The computation is correct in the face of overflow provided that the
776 // multiplication is performed _after_ the evaluation of the binomial
777 // coefficient.
778 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
779 if (isa<SCEVCouldNotCompute>(Coeff))
780 return Coeff;
781
782 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
783 }
784 return Result;
785}
786
787//===----------------------------------------------------------------------===//
788// SCEV Expression folder implementations
789//===----------------------------------------------------------------------===//
790
791const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
792 const Type *Ty) {
793 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
794 "This is not a truncating conversion!");
795 assert(isSCEVable(Ty) &&
796 "This is not a conversion to a SCEVable type!");
797 Ty = getEffectiveSCEVType(Ty);
798
799 FoldingSetNodeID ID;
800 ID.AddInteger(scTruncate);
801 ID.AddPointer(Op);
802 ID.AddPointer(Ty);
803 void *IP = 0;
804 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
805
806 // Fold if the operand is constant.
807 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
808 return getConstant(
809 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
810
811 // trunc(trunc(x)) --> trunc(x)
812 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
813 return getTruncateExpr(ST->getOperand(), Ty);
814
815 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
816 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
817 return getTruncateOrSignExtend(SS->getOperand(), Ty);
818
819 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
820 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
821 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
822
823 // If the input value is a chrec scev, truncate the chrec's operands.
824 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
825 SmallVector<const SCEV *, 4> Operands;
826 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
827 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
828 return getAddRecExpr(Operands, AddRec->getLoop());
829 }
830
831 // The cast wasn't folded; create an explicit cast node.
832 // Recompute the insert position, as it may have been invalidated.
833 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
834 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
835 new (S) SCEVTruncateExpr(ID, Op, Ty);
836 UniqueSCEVs.InsertNode(S, IP);
837 return S;
838}
839
840const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
841 const Type *Ty) {
842 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
843 "This is not an extending conversion!");
844 assert(isSCEVable(Ty) &&
845 "This is not a conversion to a SCEVable type!");
846 Ty = getEffectiveSCEVType(Ty);
847
848 // Fold if the operand is constant.
849 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
850 const Type *IntTy = getEffectiveSCEVType(Ty);
851 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
852 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
853 return getConstant(cast<ConstantInt>(C));
854 }
855
856 // zext(zext(x)) --> zext(x)
857 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
858 return getZeroExtendExpr(SZ->getOperand(), Ty);
859
860 // Before doing any expensive analysis, check to see if we've already
861 // computed a SCEV for this Op and Ty.
862 FoldingSetNodeID ID;
863 ID.AddInteger(scZeroExtend);
864 ID.AddPointer(Op);
865 ID.AddPointer(Ty);
866 void *IP = 0;
867 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
868
869 // If the input value is a chrec scev, and we can prove that the value
870 // did not overflow the old, smaller, value, we can zero extend all of the
871 // operands (often constants). This allows analysis of something like
872 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
873 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
874 if (AR->isAffine()) {
875 const SCEV *Start = AR->getStart();
876 const SCEV *Step = AR->getStepRecurrence(*this);
877 unsigned BitWidth = getTypeSizeInBits(AR->getType());
878 const Loop *L = AR->getLoop();
879
880 // If we have special knowledge that this addrec won't overflow,
881 // we don't need to do any further analysis.
882 if (AR->hasNoUnsignedWrap())
883 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
884 getZeroExtendExpr(Step, Ty),
885 L);
886
887 // Check whether the backedge-taken count is SCEVCouldNotCompute.
888 // Note that this serves two purposes: It filters out loops that are
889 // simply not analyzable, and it covers the case where this code is
890 // being called from within backedge-taken count analysis, such that
891 // attempting to ask for the backedge-taken count would likely result
892 // in infinite recursion. In the later case, the analysis code will
893 // cope with a conservative value, and it will take care to purge
894 // that value once it has finished.
895 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
896 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
897 // Manually compute the final value for AR, checking for
898 // overflow.
899
900 // Check whether the backedge-taken count can be losslessly casted to
901 // the addrec's type. The count is always unsigned.
902 const SCEV *CastedMaxBECount =
903 getTruncateOrZeroExtend(MaxBECount, Start->getType());
904 const SCEV *RecastedMaxBECount =
905 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
906 if (MaxBECount == RecastedMaxBECount) {
907 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
908 // Check whether Start+Step*MaxBECount has no unsigned overflow.
909 const SCEV *ZMul =
910 getMulExpr(CastedMaxBECount,
911 getTruncateOrZeroExtend(Step, Start->getType()));
912 const SCEV *Add = getAddExpr(Start, ZMul);
913 const SCEV *OperandExtendedAdd =
914 getAddExpr(getZeroExtendExpr(Start, WideTy),
915 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
916 getZeroExtendExpr(Step, WideTy)));
917 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
918 // Return the expression with the addrec on the outside.
919 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
920 getZeroExtendExpr(Step, Ty),
921 L);
922
923 // Similar to above, only this time treat the step value as signed.
924 // This covers loops that count down.
925 const SCEV *SMul =
926 getMulExpr(CastedMaxBECount,
927 getTruncateOrSignExtend(Step, Start->getType()));
928 Add = getAddExpr(Start, SMul);
929 OperandExtendedAdd =
930 getAddExpr(getZeroExtendExpr(Start, WideTy),
931 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
932 getSignExtendExpr(Step, WideTy)));
933 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
934 // Return the expression with the addrec on the outside.
935 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
936 getSignExtendExpr(Step, Ty),
937 L);
938 }
939
940 // If the backedge is guarded by a comparison with the pre-inc value
941 // the addrec is safe. Also, if the entry is guarded by a comparison
942 // with the start value and the backedge is guarded by a comparison
943 // with the post-inc value, the addrec is safe.
944 if (isKnownPositive(Step)) {
945 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
946 getUnsignedRange(Step).getUnsignedMax());
947 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
948 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
949 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
950 AR->getPostIncExpr(*this), N)))
951 // Return the expression with the addrec on the outside.
952 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
953 getZeroExtendExpr(Step, Ty),
954 L);
955 } else if (isKnownNegative(Step)) {
956 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
957 getSignedRange(Step).getSignedMin());
958 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
959 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
960 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
961 AR->getPostIncExpr(*this), N)))
962 // Return the expression with the addrec on the outside.
963 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964 getSignExtendExpr(Step, Ty),
965 L);
966 }
967 }
968 }
969
970 // The cast wasn't folded; create an explicit cast node.
971 // Recompute the insert position, as it may have been invalidated.
972 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
973 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
974 new (S) SCEVZeroExtendExpr(ID, Op, Ty);
975 UniqueSCEVs.InsertNode(S, IP);
976 return S;
977}
978
979const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
980 const Type *Ty) {
981 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
982 "This is not an extending conversion!");
983 assert(isSCEVable(Ty) &&
984 "This is not a conversion to a SCEVable type!");
985 Ty = getEffectiveSCEVType(Ty);
986
987 // Fold if the operand is constant.
988 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
989 const Type *IntTy = getEffectiveSCEVType(Ty);
990 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
991 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
992 return getConstant(cast<ConstantInt>(C));
993 }
994
995 // sext(sext(x)) --> sext(x)
996 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
997 return getSignExtendExpr(SS->getOperand(), Ty);
998
999 // Before doing any expensive analysis, check to see if we've already
1000 // computed a SCEV for this Op and Ty.
1001 FoldingSetNodeID ID;
1002 ID.AddInteger(scSignExtend);
1003 ID.AddPointer(Op);
1004 ID.AddPointer(Ty);
1005 void *IP = 0;
1006 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1007
1008 // If the input value is a chrec scev, and we can prove that the value
1009 // did not overflow the old, smaller, value, we can sign extend all of the
1010 // operands (often constants). This allows analysis of something like
1011 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1012 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1013 if (AR->isAffine()) {
1014 const SCEV *Start = AR->getStart();
1015 const SCEV *Step = AR->getStepRecurrence(*this);
1016 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1017 const Loop *L = AR->getLoop();
1018
1019 // If we have special knowledge that this addrec won't overflow,
1020 // we don't need to do any further analysis.
1021 if (AR->hasNoSignedWrap())
1022 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1023 getSignExtendExpr(Step, Ty),
1024 L);
1025
1026 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1027 // Note that this serves two purposes: It filters out loops that are
1028 // simply not analyzable, and it covers the case where this code is
1029 // being called from within backedge-taken count analysis, such that
1030 // attempting to ask for the backedge-taken count would likely result
1031 // in infinite recursion. In the later case, the analysis code will
1032 // cope with a conservative value, and it will take care to purge
1033 // that value once it has finished.
1034 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1035 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1036 // Manually compute the final value for AR, checking for
1037 // overflow.
1038
1039 // Check whether the backedge-taken count can be losslessly casted to
1040 // the addrec's type. The count is always unsigned.
1041 const SCEV *CastedMaxBECount =
1042 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1043 const SCEV *RecastedMaxBECount =
1044 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1045 if (MaxBECount == RecastedMaxBECount) {
1046 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1047 // Check whether Start+Step*MaxBECount has no signed overflow.
1048 const SCEV *SMul =
1049 getMulExpr(CastedMaxBECount,
1050 getTruncateOrSignExtend(Step, Start->getType()));
1051 const SCEV *Add = getAddExpr(Start, SMul);
1052 const SCEV *OperandExtendedAdd =
1053 getAddExpr(getSignExtendExpr(Start, WideTy),
1054 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1055 getSignExtendExpr(Step, WideTy)));
1056 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1057 // Return the expression with the addrec on the outside.
1058 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1059 getSignExtendExpr(Step, Ty),
1060 L);
1061
1062 // Similar to above, only this time treat the step value as unsigned.
1063 // This covers loops that count up with an unsigned step.
1064 const SCEV *UMul =
1065 getMulExpr(CastedMaxBECount,
1066 getTruncateOrZeroExtend(Step, Start->getType()));
1067 Add = getAddExpr(Start, UMul);
1068 OperandExtendedAdd =
1069 getAddExpr(getSignExtendExpr(Start, WideTy),
1070 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1071 getZeroExtendExpr(Step, WideTy)));
1072 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1073 // Return the expression with the addrec on the outside.
1074 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1075 getZeroExtendExpr(Step, Ty),
1076 L);
1077 }
1078
1079 // If the backedge is guarded by a comparison with the pre-inc value
1080 // the addrec is safe. Also, if the entry is guarded by a comparison
1081 // with the start value and the backedge is guarded by a comparison
1082 // with the post-inc value, the addrec is safe.
1083 if (isKnownPositive(Step)) {
1084 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1085 getSignedRange(Step).getSignedMax());
1086 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1087 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1088 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1089 AR->getPostIncExpr(*this), N)))
1090 // Return the expression with the addrec on the outside.
1091 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1092 getSignExtendExpr(Step, Ty),
1093 L);
1094 } else if (isKnownNegative(Step)) {
1095 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1096 getSignedRange(Step).getSignedMin());
1097 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1098 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1099 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1100 AR->getPostIncExpr(*this), N)))
1101 // Return the expression with the addrec on the outside.
1102 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1103 getSignExtendExpr(Step, Ty),
1104 L);
1105 }
1106 }
1107 }
1108
1109 // The cast wasn't folded; create an explicit cast node.
1110 // Recompute the insert position, as it may have been invalidated.
1111 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1112 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
1113 new (S) SCEVSignExtendExpr(ID, Op, Ty);
1114 UniqueSCEVs.InsertNode(S, IP);
1115 return S;
1116}
1117
1118/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1119/// unspecified bits out to the given type.
1120///
1121const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1122 const Type *Ty) {
1123 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1124 "This is not an extending conversion!");
1125 assert(isSCEVable(Ty) &&
1126 "This is not a conversion to a SCEVable type!");
1127 Ty = getEffectiveSCEVType(Ty);
1128
1129 // Sign-extend negative constants.
1130 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1131 if (SC->getValue()->getValue().isNegative())
1132 return getSignExtendExpr(Op, Ty);
1133
1134 // Peel off a truncate cast.
1135 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1136 const SCEV *NewOp = T->getOperand();
1137 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1138 return getAnyExtendExpr(NewOp, Ty);
1139 return getTruncateOrNoop(NewOp, Ty);
1140 }
1141
1142 // Next try a zext cast. If the cast is folded, use it.
1143 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1144 if (!isa<SCEVZeroExtendExpr>(ZExt))
1145 return ZExt;
1146
1147 // Next try a sext cast. If the cast is folded, use it.
1148 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1149 if (!isa<SCEVSignExtendExpr>(SExt))
1150 return SExt;
1151
1152 // Force the cast to be folded into the operands of an addrec.
1153 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1154 SmallVector<const SCEV *, 4> Ops;
1155 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1156 I != E; ++I)
1157 Ops.push_back(getAnyExtendExpr(*I, Ty));
1158 return getAddRecExpr(Ops, AR->getLoop());
1159 }
1160
1161 // If the expression is obviously signed, use the sext cast value.
1162 if (isa<SCEVSMaxExpr>(Op))
1163 return SExt;
1164
1165 // Absent any other information, use the zext cast value.
1166 return ZExt;
1167}
1168
1169/// CollectAddOperandsWithScales - Process the given Ops list, which is
1170/// a list of operands to be added under the given scale, update the given
1171/// map. This is a helper function for getAddRecExpr. As an example of
1172/// what it does, given a sequence of operands that would form an add
1173/// expression like this:
1174///
1175/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1176///
1177/// where A and B are constants, update the map with these values:
1178///
1179/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1180///
1181/// and add 13 + A*B*29 to AccumulatedConstant.
1182/// This will allow getAddRecExpr to produce this:
1183///
1184/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1185///
1186/// This form often exposes folding opportunities that are hidden in
1187/// the original operand list.
1188///
1189/// Return true iff it appears that any interesting folding opportunities
1190/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1191/// the common case where no interesting opportunities are present, and
1192/// is also used as a check to avoid infinite recursion.
1193///
1194static bool
1195CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1196 SmallVector<const SCEV *, 8> &NewOps,
1197 APInt &AccumulatedConstant,
1198 const SmallVectorImpl<const SCEV *> &Ops,
1199 const APInt &Scale,
1200 ScalarEvolution &SE) {
1201 bool Interesting = false;
1202
1203 // Iterate over the add operands.
1204 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1205 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1206 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1207 APInt NewScale =
1208 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1209 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1210 // A multiplication of a constant with another add; recurse.
1211 Interesting |=
1212 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1213 cast<SCEVAddExpr>(Mul->getOperand(1))
1214 ->getOperands(),
1215 NewScale, SE);
1216 } else {
1217 // A multiplication of a constant with some other value. Update
1218 // the map.
1219 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1220 const SCEV *Key = SE.getMulExpr(MulOps);
1221 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1222 M.insert(std::make_pair(Key, NewScale));
1223 if (Pair.second) {
1224 NewOps.push_back(Pair.first->first);
1225 } else {
1226 Pair.first->second += NewScale;
1227 // The map already had an entry for this value, which may indicate
1228 // a folding opportunity.
1229 Interesting = true;
1230 }
1231 }
1232 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1233 // Pull a buried constant out to the outside.
1234 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1235 Interesting = true;
1236 AccumulatedConstant += Scale * C->getValue()->getValue();
1237 } else {
1238 // An ordinary operand. Update the map.
1239 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1240 M.insert(std::make_pair(Ops[i], Scale));
1241 if (Pair.second) {
1242 NewOps.push_back(Pair.first->first);
1243 } else {
1244 Pair.first->second += Scale;
1245 // The map already had an entry for this value, which may indicate
1246 // a folding opportunity.
1247 Interesting = true;
1248 }
1249 }
1250 }
1251
1252 return Interesting;
1253}
1254
1255namespace {
1256 struct APIntCompare {
1257 bool operator()(const APInt &LHS, const APInt &RHS) const {
1258 return LHS.ult(RHS);
1259 }
1260 };
1261}
1262
1263/// getAddExpr - Get a canonical add expression, or something simpler if
1264/// possible.
1265const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1266 bool HasNUW, bool HasNSW) {
1267 assert(!Ops.empty() && "Cannot get empty add!");
1268 if (Ops.size() == 1) return Ops[0];
1269#ifndef NDEBUG
1270 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1271 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1272 getEffectiveSCEVType(Ops[0]->getType()) &&
1273 "SCEVAddExpr operand types don't match!");
1274#endif
1275
1276 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1277 if (!HasNUW && HasNSW) {
1278 bool All = true;
1279 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1280 if (!isKnownNonNegative(Ops[i])) {
1281 All = false;
1282 break;
1283 }
1284 if (All) HasNUW = true;
1285 }
1286
1287 // Sort by complexity, this groups all similar expression types together.
1288 GroupByComplexity(Ops, LI);
1289
1290 // If there are any constants, fold them together.
1291 unsigned Idx = 0;
1292 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1293 ++Idx;
1294 assert(Idx < Ops.size());
1295 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1296 // We found two constants, fold them together!
1297 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1298 RHSC->getValue()->getValue());
1299 if (Ops.size() == 2) return Ops[0];
1300 Ops.erase(Ops.begin()+1); // Erase the folded element
1301 LHSC = cast<SCEVConstant>(Ops[0]);
1302 }
1303
1304 // If we are left with a constant zero being added, strip it off.
1305 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1306 Ops.erase(Ops.begin());
1307 --Idx;
1308 }
1309 }
1310
1311 if (Ops.size() == 1) return Ops[0];
1312
1313 // Okay, check to see if the same value occurs in the operand list twice. If
1314 // so, merge them together into an multiply expression. Since we sorted the
1315 // list, these values are required to be adjacent.
1316 const Type *Ty = Ops[0]->getType();
1317 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1318 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1319 // Found a match, merge the two values into a multiply, and add any
1320 // remaining values to the result.
1321 const SCEV *Two = getIntegerSCEV(2, Ty);
1322 const SCEV *Mul = getMulExpr(Ops[i], Two);
1323 if (Ops.size() == 2)
1324 return Mul;
1325 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1326 Ops.push_back(Mul);
1327 return getAddExpr(Ops, HasNUW, HasNSW);
1328 }
1329
1330 // Check for truncates. If all the operands are truncated from the same
1331 // type, see if factoring out the truncate would permit the result to be
1332 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1333 // if the contents of the resulting outer trunc fold to something simple.
1334 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1335 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1336 const Type *DstType = Trunc->getType();
1337 const Type *SrcType = Trunc->getOperand()->getType();
1338 SmallVector<const SCEV *, 8> LargeOps;
1339 bool Ok = true;
1340 // Check all the operands to see if they can be represented in the
1341 // source type of the truncate.
1342 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1343 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1344 if (T->getOperand()->getType() != SrcType) {
1345 Ok = false;
1346 break;
1347 }
1348 LargeOps.push_back(T->getOperand());
1349 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1350 // This could be either sign or zero extension, but sign extension
1351 // is much more likely to be foldable here.
1352 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1353 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1354 SmallVector<const SCEV *, 8> LargeMulOps;
1355 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1356 if (const SCEVTruncateExpr *T =
1357 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1358 if (T->getOperand()->getType() != SrcType) {
1359 Ok = false;
1360 break;
1361 }
1362 LargeMulOps.push_back(T->getOperand());
1363 } else if (const SCEVConstant *C =
1364 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1365 // This could be either sign or zero extension, but sign extension
1366 // is much more likely to be foldable here.
1367 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1368 } else {
1369 Ok = false;
1370 break;
1371 }
1372 }
1373 if (Ok)
1374 LargeOps.push_back(getMulExpr(LargeMulOps));
1375 } else {
1376 Ok = false;
1377 break;
1378 }
1379 }
1380 if (Ok) {
1381 // Evaluate the expression in the larger type.
1382 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1383 // If it folds to something simple, use it. Otherwise, don't.
1384 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1385 return getTruncateExpr(Fold, DstType);
1386 }
1387 }
1388
1389 // Skip past any other cast SCEVs.
1390 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1391 ++Idx;
1392
1393 // If there are add operands they would be next.
1394 if (Idx < Ops.size()) {
1395 bool DeletedAdd = false;
1396 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1397 // If we have an add, expand the add operands onto the end of the operands
1398 // list.
1399 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1400 Ops.erase(Ops.begin()+Idx);
1401 DeletedAdd = true;
1402 }
1403
1404 // If we deleted at least one add, we added operands to the end of the list,
1405 // and they are not necessarily sorted. Recurse to resort and resimplify
1406 // any operands we just aquired.
1407 if (DeletedAdd)
1408 return getAddExpr(Ops);
1409 }
1410
1411 // Skip over the add expression until we get to a multiply.
1412 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1413 ++Idx;
1414
1415 // Check to see if there are any folding opportunities present with
1416 // operands multiplied by constant values.
1417 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1418 uint64_t BitWidth = getTypeSizeInBits(Ty);
1419 DenseMap<const SCEV *, APInt> M;
1420 SmallVector<const SCEV *, 8> NewOps;
1421 APInt AccumulatedConstant(BitWidth, 0);
1422 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1423 Ops, APInt(BitWidth, 1), *this)) {
1424 // Some interesting folding opportunity is present, so its worthwhile to
1425 // re-generate the operands list. Group the operands by constant scale,
1426 // to avoid multiplying by the same constant scale multiple times.
1427 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1428 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1429 E = NewOps.end(); I != E; ++I)
1430 MulOpLists[M.find(*I)->second].push_back(*I);
1431 // Re-generate the operands list.
1432 Ops.clear();
1433 if (AccumulatedConstant != 0)
1434 Ops.push_back(getConstant(AccumulatedConstant));
1435 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1436 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1437 if (I->first != 0)
1438 Ops.push_back(getMulExpr(getConstant(I->first),
1439 getAddExpr(I->second)));
1440 if (Ops.empty())
1441 return getIntegerSCEV(0, Ty);
1442 if (Ops.size() == 1)
1443 return Ops[0];
1444 return getAddExpr(Ops);
1445 }
1446 }
1447
1448 // If we are adding something to a multiply expression, make sure the
1449 // something is not already an operand of the multiply. If so, merge it into
1450 // the multiply.
1451 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1452 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1453 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1454 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1455 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1456 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1457 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1458 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1459 if (Mul->getNumOperands() != 2) {
1460 // If the multiply has more than two operands, we must get the
1461 // Y*Z term.
1462 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1463 MulOps.erase(MulOps.begin()+MulOp);
1464 InnerMul = getMulExpr(MulOps);
1465 }
1466 const SCEV *One = getIntegerSCEV(1, Ty);
1467 const SCEV *AddOne = getAddExpr(InnerMul, One);
1468 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1469 if (Ops.size() == 2) return OuterMul;
1470 if (AddOp < Idx) {
1471 Ops.erase(Ops.begin()+AddOp);
1472 Ops.erase(Ops.begin()+Idx-1);
1473 } else {
1474 Ops.erase(Ops.begin()+Idx);
1475 Ops.erase(Ops.begin()+AddOp-1);
1476 }
1477 Ops.push_back(OuterMul);
1478 return getAddExpr(Ops);
1479 }
1480
1481 // Check this multiply against other multiplies being added together.
1482 for (unsigned OtherMulIdx = Idx+1;
1483 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1484 ++OtherMulIdx) {
1485 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1486 // If MulOp occurs in OtherMul, we can fold the two multiplies
1487 // together.
1488 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1489 OMulOp != e; ++OMulOp)
1490 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1491 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1492 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1493 if (Mul->getNumOperands() != 2) {
1494 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1495 Mul->op_end());
1496 MulOps.erase(MulOps.begin()+MulOp);
1497 InnerMul1 = getMulExpr(MulOps);
1498 }
1499 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1500 if (OtherMul->getNumOperands() != 2) {
1501 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1502 OtherMul->op_end());
1503 MulOps.erase(MulOps.begin()+OMulOp);
1504 InnerMul2 = getMulExpr(MulOps);
1505 }
1506 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1507 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1508 if (Ops.size() == 2) return OuterMul;
1509 Ops.erase(Ops.begin()+Idx);
1510 Ops.erase(Ops.begin()+OtherMulIdx-1);
1511 Ops.push_back(OuterMul);
1512 return getAddExpr(Ops);
1513 }
1514 }
1515 }
1516 }
1517
1518 // If there are any add recurrences in the operands list, see if any other
1519 // added values are loop invariant. If so, we can fold them into the
1520 // recurrence.
1521 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1522 ++Idx;
1523
1524 // Scan over all recurrences, trying to fold loop invariants into them.
1525 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1526 // Scan all of the other operands to this add and add them to the vector if
1527 // they are loop invariant w.r.t. the recurrence.
1528 SmallVector<const SCEV *, 8> LIOps;
1529 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1530 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1531 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1532 LIOps.push_back(Ops[i]);
1533 Ops.erase(Ops.begin()+i);
1534 --i; --e;
1535 }
1536
1537 // If we found some loop invariants, fold them into the recurrence.
1538 if (!LIOps.empty()) {
1539 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1540 LIOps.push_back(AddRec->getStart());
1541
1542 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1543 AddRec->op_end());
1544 AddRecOps[0] = getAddExpr(LIOps);
1545
1546 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
1547 // is not associative so this isn't necessarily safe.
1548 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1549
1550 // If all of the other operands were loop invariant, we are done.
1551 if (Ops.size() == 1) return NewRec;
1552
1553 // Otherwise, add the folded AddRec by the non-liv parts.
1554 for (unsigned i = 0;; ++i)
1555 if (Ops[i] == AddRec) {
1556 Ops[i] = NewRec;
1557 break;
1558 }
1559 return getAddExpr(Ops);
1560 }
1561
1562 // Okay, if there weren't any loop invariants to be folded, check to see if
1563 // there are multiple AddRec's with the same loop induction variable being
1564 // added together. If so, we can fold them.
1565 for (unsigned OtherIdx = Idx+1;
1566 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1567 if (OtherIdx != Idx) {
1568 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1569 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1570 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1571 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1572 AddRec->op_end());
1573 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1574 if (i >= NewOps.size()) {
1575 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1576 OtherAddRec->op_end());
1577 break;
1578 }
1579 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1580 }
1581 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1582
1583 if (Ops.size() == 2) return NewAddRec;
1584
1585 Ops.erase(Ops.begin()+Idx);
1586 Ops.erase(Ops.begin()+OtherIdx-1);
1587 Ops.push_back(NewAddRec);
1588 return getAddExpr(Ops);
1589 }
1590 }
1591
1592 // Otherwise couldn't fold anything into this recurrence. Move onto the
1593 // next one.
1594 }
1595
1596 // Okay, it looks like we really DO need an add expr. Check to see if we
1597 // already have one, otherwise create a new one.
1598 FoldingSetNodeID ID;
1599 ID.AddInteger(scAddExpr);
1600 ID.AddInteger(Ops.size());
1601 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1602 ID.AddPointer(Ops[i]);
1603 void *IP = 0;
1604 SCEVAddExpr *S =
1605 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1606 if (!S) {
1607 S = SCEVAllocator.Allocate<SCEVAddExpr>();
1608 new (S) SCEVAddExpr(ID, Ops);
1609 UniqueSCEVs.InsertNode(S, IP);
1610 }
1611 if (HasNUW) S->setHasNoUnsignedWrap(true);
1612 if (HasNSW) S->setHasNoSignedWrap(true);
1613 return S;
1614}
1615
1616/// getMulExpr - Get a canonical multiply expression, or something simpler if
1617/// possible.
1618const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1619 bool HasNUW, bool HasNSW) {
1620 assert(!Ops.empty() && "Cannot get empty mul!");
1621 if (Ops.size() == 1) return Ops[0];
1622#ifndef NDEBUG
1623 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1624 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1625 getEffectiveSCEVType(Ops[0]->getType()) &&
1626 "SCEVMulExpr operand types don't match!");
1627#endif
1628
1629 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1630 if (!HasNUW && HasNSW) {
1631 bool All = true;
1632 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1633 if (!isKnownNonNegative(Ops[i])) {
1634 All = false;
1635 break;
1636 }
1637 if (All) HasNUW = true;
1638 }
1639
1640 // Sort by complexity, this groups all similar expression types together.
1641 GroupByComplexity(Ops, LI);
1642
1643 // If there are any constants, fold them together.
1644 unsigned Idx = 0;
1645 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1646
1647 // C1*(C2+V) -> C1*C2 + C1*V
1648 if (Ops.size() == 2)
1649 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1650 if (Add->getNumOperands() == 2 &&
1651 isa<SCEVConstant>(Add->getOperand(0)))
1652 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1653 getMulExpr(LHSC, Add->getOperand(1)));
1654
1655 ++Idx;
1656 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1657 // We found two constants, fold them together!
1658 ConstantInt *Fold = ConstantInt::get(getContext(),
1659 LHSC->getValue()->getValue() *
1660 RHSC->getValue()->getValue());
1661 Ops[0] = getConstant(Fold);
1662 Ops.erase(Ops.begin()+1); // Erase the folded element
1663 if (Ops.size() == 1) return Ops[0];
1664 LHSC = cast<SCEVConstant>(Ops[0]);
1665 }
1666
1667 // If we are left with a constant one being multiplied, strip it off.
1668 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1669 Ops.erase(Ops.begin());
1670 --Idx;
1671 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1672 // If we have a multiply of zero, it will always be zero.
1673 return Ops[0];
1674 } else if (Ops[0]->isAllOnesValue()) {
1675 // If we have a mul by -1 of an add, try distributing the -1 among the
1676 // add operands.
1677 if (Ops.size() == 2)
1678 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1679 SmallVector<const SCEV *, 4> NewOps;
1680 bool AnyFolded = false;
1681 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1682 I != E; ++I) {
1683 const SCEV *Mul = getMulExpr(Ops[0], *I);
1684 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1685 NewOps.push_back(Mul);
1686 }
1687 if (AnyFolded)
1688 return getAddExpr(NewOps);
1689 }
1690 }
1691 }
1692
1693 // Skip over the add expression until we get to a multiply.
1694 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1695 ++Idx;
1696
1697 if (Ops.size() == 1)
1698 return Ops[0];
1699
1700 // If there are mul operands inline them all into this expression.
1701 if (Idx < Ops.size()) {
1702 bool DeletedMul = false;
1703 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1704 // If we have an mul, expand the mul operands onto the end of the operands
1705 // list.
1706 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1707 Ops.erase(Ops.begin()+Idx);
1708 DeletedMul = true;
1709 }
1710
1711 // If we deleted at least one mul, we added operands to the end of the list,
1712 // and they are not necessarily sorted. Recurse to resort and resimplify
1713 // any operands we just aquired.
1714 if (DeletedMul)
1715 return getMulExpr(Ops);
1716 }
1717
1718 // If there are any add recurrences in the operands list, see if any other
1719 // added values are loop invariant. If so, we can fold them into the
1720 // recurrence.
1721 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1722 ++Idx;
1723
1724 // Scan over all recurrences, trying to fold loop invariants into them.
1725 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1726 // Scan all of the other operands to this mul and add them to the vector if
1727 // they are loop invariant w.r.t. the recurrence.
1728 SmallVector<const SCEV *, 8> LIOps;
1729 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1730 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1731 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1732 LIOps.push_back(Ops[i]);
1733 Ops.erase(Ops.begin()+i);
1734 --i; --e;
1735 }
1736
1737 // If we found some loop invariants, fold them into the recurrence.
1738 if (!LIOps.empty()) {
1739 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
1740 SmallVector<const SCEV *, 4> NewOps;
1741 NewOps.reserve(AddRec->getNumOperands());
1742 if (LIOps.size() == 1) {
1743 const SCEV *Scale = LIOps[0];
1744 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1745 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1746 } else {
1747 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1748 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1749 MulOps.push_back(AddRec->getOperand(i));
1750 NewOps.push_back(getMulExpr(MulOps));
1751 }
1752 }
1753
1754 // It's tempting to propagate the NSW flag here, but nsw multiplication
1755 // is not associative so this isn't necessarily safe.
1756 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1757 HasNUW && AddRec->hasNoUnsignedWrap(),
1758 /*HasNSW=*/false);
1759
1760 // If all of the other operands were loop invariant, we are done.
1761 if (Ops.size() == 1) return NewRec;
1762
1763 // Otherwise, multiply the folded AddRec by the non-liv parts.
1764 for (unsigned i = 0;; ++i)
1765 if (Ops[i] == AddRec) {
1766 Ops[i] = NewRec;
1767 break;
1768 }
1769 return getMulExpr(Ops);
1770 }
1771
1772 // Okay, if there weren't any loop invariants to be folded, check to see if
1773 // there are multiple AddRec's with the same loop induction variable being
1774 // multiplied together. If so, we can fold them.
1775 for (unsigned OtherIdx = Idx+1;
1776 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1777 if (OtherIdx != Idx) {
1778 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1779 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1780 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1781 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1782 const SCEV *NewStart = getMulExpr(F->getStart(),
1783 G->getStart());
1784 const SCEV *B = F->getStepRecurrence(*this);
1785 const SCEV *D = G->getStepRecurrence(*this);
1786 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1787 getMulExpr(G, B),
1788 getMulExpr(B, D));
1789 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1790 F->getLoop());
1791 if (Ops.size() == 2) return NewAddRec;
1792
1793 Ops.erase(Ops.begin()+Idx);
1794 Ops.erase(Ops.begin()+OtherIdx-1);
1795 Ops.push_back(NewAddRec);
1796 return getMulExpr(Ops);
1797 }
1798 }
1799
1800 // Otherwise couldn't fold anything into this recurrence. Move onto the
1801 // next one.
1802 }
1803
1804 // Okay, it looks like we really DO need an mul expr. Check to see if we
1805 // already have one, otherwise create a new one.
1806 FoldingSetNodeID ID;
1807 ID.AddInteger(scMulExpr);
1808 ID.AddInteger(Ops.size());
1809 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1810 ID.AddPointer(Ops[i]);
1811 void *IP = 0;
1812 SCEVMulExpr *S =
1813 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1814 if (!S) {
1815 S = SCEVAllocator.Allocate<SCEVMulExpr>();
1816 new (S) SCEVMulExpr(ID, Ops);
1817 UniqueSCEVs.InsertNode(S, IP);
1818 }
1819 if (HasNUW) S->setHasNoUnsignedWrap(true);
1820 if (HasNSW) S->setHasNoSignedWrap(true);
1821 return S;
1822}
1823
1824/// getUDivExpr - Get a canonical unsigned division expression, or something
1825/// simpler if possible.
1826const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1827 const SCEV *RHS) {
1828 assert(getEffectiveSCEVType(LHS->getType()) ==
1829 getEffectiveSCEVType(RHS->getType()) &&
1830 "SCEVUDivExpr operand types don't match!");
1831
1832 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1833 if (RHSC->getValue()->equalsInt(1))
1834 return LHS; // X udiv 1 --> x
1835 if (RHSC->isZero())
1836 return getIntegerSCEV(0, LHS->getType()); // value is undefined
1837
1838 // Determine if the division can be folded into the operands of
1839 // its operands.
1840 // TODO: Generalize this to non-constants by using known-bits information.
1841 const Type *Ty = LHS->getType();
1842 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1843 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1844 // For non-power-of-two values, effectively round the value up to the
1845 // nearest power of two.
1846 if (!RHSC->getValue()->getValue().isPowerOf2())
1847 ++MaxShiftAmt;
1848 const IntegerType *ExtTy =
1849 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1850 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1851 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1852 if (const SCEVConstant *Step =
1853 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1854 if (!Step->getValue()->getValue()
1855 .urem(RHSC->getValue()->getValue()) &&
1856 getZeroExtendExpr(AR, ExtTy) ==
1857 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1858 getZeroExtendExpr(Step, ExtTy),
1859 AR->getLoop())) {
1860 SmallVector<const SCEV *, 4> Operands;
1861 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1862 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1863 return getAddRecExpr(Operands, AR->getLoop());
1864 }
1865 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1866 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1867 SmallVector<const SCEV *, 4> Operands;
1868 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1869 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1870 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1871 // Find an operand that's safely divisible.
1872 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1873 const SCEV *Op = M->getOperand(i);
1874 const SCEV *Div = getUDivExpr(Op, RHSC);
1875 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1876 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1877 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
1878 MOperands.end());
1879 Operands[i] = Div;
1880 return getMulExpr(Operands);
1881 }
1882 }
1883 }
1884 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1885 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1886 SmallVector<const SCEV *, 4> Operands;
1887 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1888 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1889 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1890 Operands.clear();
1891 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1892 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1893 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1894 break;
1895 Operands.push_back(Op);
1896 }
1897 if (Operands.size() == A->getNumOperands())
1898 return getAddExpr(Operands);
1899 }
1900 }
1901
1902 // Fold if both operands are constant.
1903 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1904 Constant *LHSCV = LHSC->getValue();
1905 Constant *RHSCV = RHSC->getValue();
1906 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1907 RHSCV)));
1908 }
1909 }
1910
1911 FoldingSetNodeID ID;
1912 ID.AddInteger(scUDivExpr);
1913 ID.AddPointer(LHS);
1914 ID.AddPointer(RHS);
1915 void *IP = 0;
1916 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1917 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
1918 new (S) SCEVUDivExpr(ID, LHS, RHS);
1919 UniqueSCEVs.InsertNode(S, IP);
1920 return S;
1921}
1922
1923
1924/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1925/// Simplify the expression as much as possible.
1926const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1927 const SCEV *Step, const Loop *L,
1928 bool HasNUW, bool HasNSW) {
1929 SmallVector<const SCEV *, 4> Operands;
1930 Operands.push_back(Start);
1931 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1932 if (StepChrec->getLoop() == L) {
1933 Operands.insert(Operands.end(), StepChrec->op_begin(),
1934 StepChrec->op_end());
1935 return getAddRecExpr(Operands, L);
1936 }
1937
1938 Operands.push_back(Step);
1939 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1940}
1941
1942/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1943/// Simplify the expression as much as possible.
1944const SCEV *
1945ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1946 const Loop *L,
1947 bool HasNUW, bool HasNSW) {
1948 if (Operands.size() == 1) return Operands[0];
1949#ifndef NDEBUG
1950 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1951 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1952 getEffectiveSCEVType(Operands[0]->getType()) &&
1953 "SCEVAddRecExpr operand types don't match!");
1954#endif
1955
1956 if (Operands.back()->isZero()) {
1957 Operands.pop_back();
1958 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
1959 }
1960
1961 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1962 if (!HasNUW && HasNSW) {
1963 bool All = true;
1964 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1965 if (!isKnownNonNegative(Operands[i])) {
1966 All = false;
1967 break;
1968 }
1969 if (All) HasNUW = true;
1970 }
1971
1972 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1973 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1974 const Loop *NestedLoop = NestedAR->getLoop();
1975 if (L->contains(NestedLoop->getHeader()) ?
1976 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1977 (!NestedLoop->contains(L->getHeader()) &&
1978 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
1979 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1980 NestedAR->op_end());
1981 Operands[0] = NestedAR->getStart();
1982 // AddRecs require their operands be loop-invariant with respect to their
1983 // loops. Don't perform this transformation if it would break this
1984 // requirement.
1985 bool AllInvariant = true;
1986 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1987 if (!Operands[i]->isLoopInvariant(L)) {
1988 AllInvariant = false;
1989 break;
1990 }
1991 if (AllInvariant) {
1992 NestedOperands[0] = getAddRecExpr(Operands, L);
1993 AllInvariant = true;
1994 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1995 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1996 AllInvariant = false;
1997 break;
1998 }
1999 if (AllInvariant)
2000 // Ok, both add recurrences are valid after the transformation.
2001 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2002 }
2003 // Reset Operands to its original state.
2004 Operands[0] = NestedAR;
2005 }
2006 }
2007
2008 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2009 // already have one, otherwise create a new one.
2010 FoldingSetNodeID ID;
2011 ID.AddInteger(scAddRecExpr);
2012 ID.AddInteger(Operands.size());
2013 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2014 ID.AddPointer(Operands[i]);
2015 ID.AddPointer(L);
2016 void *IP = 0;
2017 SCEVAddRecExpr *S =
2018 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2019 if (!S) {
2020 S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
2021 new (S) SCEVAddRecExpr(ID, Operands, L);
2022 UniqueSCEVs.InsertNode(S, IP);
2023 }
2024 if (HasNUW) S->setHasNoUnsignedWrap(true);
2025 if (HasNSW) S->setHasNoSignedWrap(true);
2026 return S;
2027}
2028
2029const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2030 const SCEV *RHS) {
2031 SmallVector<const SCEV *, 2> Ops;
2032 Ops.push_back(LHS);
2033 Ops.push_back(RHS);
2034 return getSMaxExpr(Ops);
2035}
2036
2037const SCEV *
2038ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2039 assert(!Ops.empty() && "Cannot get empty smax!");
2040 if (Ops.size() == 1) return Ops[0];
2041#ifndef NDEBUG
2042 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2043 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2044 getEffectiveSCEVType(Ops[0]->getType()) &&
2045 "SCEVSMaxExpr operand types don't match!");
2046#endif
2047
2048 // Sort by complexity, this groups all similar expression types together.
2049 GroupByComplexity(Ops, LI);
2050
2051 // If there are any constants, fold them together.
2052 unsigned Idx = 0;
2053 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2054 ++Idx;
2055 assert(Idx < Ops.size());
2056 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2057 // We found two constants, fold them together!
2058 ConstantInt *Fold = ConstantInt::get(getContext(),
2059 APIntOps::smax(LHSC->getValue()->getValue(),
2060 RHSC->getValue()->getValue()));
2061 Ops[0] = getConstant(Fold);
2062 Ops.erase(Ops.begin()+1); // Erase the folded element
2063 if (Ops.size() == 1) return Ops[0];
2064 LHSC = cast<SCEVConstant>(Ops[0]);
2065 }
2066
2067 // If we are left with a constant minimum-int, strip it off.
2068 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2069 Ops.erase(Ops.begin());
2070 --Idx;
2071 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2072 // If we have an smax with a constant maximum-int, it will always be
2073 // maximum-int.
2074 return Ops[0];
2075 }
2076 }
2077
2078 if (Ops.size() == 1) return Ops[0];
2079
2080 // Find the first SMax
2081 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2082 ++Idx;
2083
2084 // Check to see if one of the operands is an SMax. If so, expand its operands
2085 // onto our operand list, and recurse to simplify.
2086 if (Idx < Ops.size()) {
2087 bool DeletedSMax = false;
2088 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2089 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2090 Ops.erase(Ops.begin()+Idx);
2091 DeletedSMax = true;
2092 }
2093
2094 if (DeletedSMax)
2095 return getSMaxExpr(Ops);
2096 }
2097
2098 // Okay, check to see if the same value occurs in the operand list twice. If
2099 // so, delete one. Since we sorted the list, these values are required to
2100 // be adjacent.
2101 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2102 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
2103 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2104 --i; --e;
2105 }
2106
2107 if (Ops.size() == 1) return Ops[0];
2108
2109 assert(!Ops.empty() && "Reduced smax down to nothing!");
2110
2111 // Okay, it looks like we really DO need an smax expr. Check to see if we
2112 // already have one, otherwise create a new one.
2113 FoldingSetNodeID ID;
2114 ID.AddInteger(scSMaxExpr);
2115 ID.AddInteger(Ops.size());
2116 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2117 ID.AddPointer(Ops[i]);
2118 void *IP = 0;
2119 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2120 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
2121 new (S) SCEVSMaxExpr(ID, Ops);
2122 UniqueSCEVs.InsertNode(S, IP);
2123 return S;
2124}
2125
2126const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2127 const SCEV *RHS) {
2128 SmallVector<const SCEV *, 2> Ops;
2129 Ops.push_back(LHS);
2130 Ops.push_back(RHS);
2131 return getUMaxExpr(Ops);
2132}
2133
2134const SCEV *
2135ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2136 assert(!Ops.empty() && "Cannot get empty umax!");
2137 if (Ops.size() == 1) return Ops[0];
2138#ifndef NDEBUG
2139 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2140 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2141 getEffectiveSCEVType(Ops[0]->getType()) &&
2142 "SCEVUMaxExpr operand types don't match!");
2143#endif
2144
2145 // Sort by complexity, this groups all similar expression types together.
2146 GroupByComplexity(Ops, LI);
2147
2148 // If there are any constants, fold them together.
2149 unsigned Idx = 0;
2150 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2151 ++Idx;
2152 assert(Idx < Ops.size());
2153 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2154 // We found two constants, fold them together!
2155 ConstantInt *Fold = ConstantInt::get(getContext(),
2156 APIntOps::umax(LHSC->getValue()->getValue(),
2157 RHSC->getValue()->getValue()));
2158 Ops[0] = getConstant(Fold);
2159 Ops.erase(Ops.begin()+1); // Erase the folded element
2160 if (Ops.size() == 1) return Ops[0];
2161 LHSC = cast<SCEVConstant>(Ops[0]);
2162 }
2163
2164 // If we are left with a constant minimum-int, strip it off.
2165 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2166 Ops.erase(Ops.begin());
2167 --Idx;
2168 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2169 // If we have an umax with a constant maximum-int, it will always be
2170 // maximum-int.
2171 return Ops[0];
2172 }
2173 }
2174
2175 if (Ops.size() == 1) return Ops[0];
2176
2177 // Find the first UMax
2178 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2179 ++Idx;
2180
2181 // Check to see if one of the operands is a UMax. If so, expand its operands
2182 // onto our operand list, and recurse to simplify.
2183 if (Idx < Ops.size()) {
2184 bool DeletedUMax = false;
2185 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2186 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2187 Ops.erase(Ops.begin()+Idx);
2188 DeletedUMax = true;
2189 }
2190
2191 if (DeletedUMax)
2192 return getUMaxExpr(Ops);
2193 }
2194
2195 // Okay, check to see if the same value occurs in the operand list twice. If
2196 // so, delete one. Since we sorted the list, these values are required to
2197 // be adjacent.
2198 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2199 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
2200 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2201 --i; --e;
2202 }
2203
2204 if (Ops.size() == 1) return Ops[0];
2205
2206 assert(!Ops.empty() && "Reduced umax down to nothing!");
2207
2208 // Okay, it looks like we really DO need a umax expr. Check to see if we
2209 // already have one, otherwise create a new one.
2210 FoldingSetNodeID ID;
2211 ID.AddInteger(scUMaxExpr);
2212 ID.AddInteger(Ops.size());
2213 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2214 ID.AddPointer(Ops[i]);
2215 void *IP = 0;
2216 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2217 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
2218 new (S) SCEVUMaxExpr(ID, Ops);
2219 UniqueSCEVs.InsertNode(S, IP);
2220 return S;
2221}
2222
2223const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2224 const SCEV *RHS) {
2225 // ~smax(~x, ~y) == smin(x, y).
2226 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2227}
2228
2229const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2230 const SCEV *RHS) {
2231 // ~umax(~x, ~y) == umin(x, y)
2232 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2233}
2234
2235const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2236 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2237 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2238 C = ConstantFoldConstantExpression(CE, TD);
2239 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2240 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2241}
2242
2243const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2244 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2245 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2246 C = ConstantFoldConstantExpression(CE, TD);
2247 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2248 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2249}
2250
2251const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2252 unsigned FieldNo) {
2253 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2254 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2255 C = ConstantFoldConstantExpression(CE, TD);
2256 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2257 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2258}
2259
2260const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2261 Constant *FieldNo) {
2262 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2263 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2264 C = ConstantFoldConstantExpression(CE, TD);
2265 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2266 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2267}
2268
2269const SCEV *ScalarEvolution::getUnknown(Value *V) {
2270 // Don't attempt to do anything other than create a SCEVUnknown object
2271 // here. createSCEV only calls getUnknown after checking for all other
2272 // interesting possibilities, and any other code that calls getUnknown
2273 // is doing so in order to hide a value from SCEV canonicalization.
2274
2275 FoldingSetNodeID ID;
2276 ID.AddInteger(scUnknown);
2277 ID.AddPointer(V);
2278 void *IP = 0;
2279 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2280 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
2281 new (S) SCEVUnknown(ID, V);
2282 UniqueSCEVs.InsertNode(S, IP);
2283 return S;
2284}
2285
2286//===----------------------------------------------------------------------===//
2287// Basic SCEV Analysis and PHI Idiom Recognition Code
2288//
2289
2290/// isSCEVable - Test if values of the given type are analyzable within
2291/// the SCEV framework. This primarily includes integer types, and it
2292/// can optionally include pointer types if the ScalarEvolution class
2293/// has access to target-specific information.
2294bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2295 // Integers and pointers are always SCEVable.
2296 return Ty->isInteger() || isa<PointerType>(Ty);
2297}
2298
2299/// getTypeSizeInBits - Return the size in bits of the specified type,
2300/// for which isSCEVable must return true.
2301uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2302 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2303
2304 // If we have a TargetData, use it!
2305 if (TD)
2306 return TD->getTypeSizeInBits(Ty);
2307
2308 // Integer types have fixed sizes.
2309 if (Ty->isInteger())
2310 return Ty->getPrimitiveSizeInBits();
2311
2312 // The only other support type is pointer. Without TargetData, conservatively
2313 // assume pointers are 64-bit.
2314 assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!");
2315 return 64;
2316}
2317
2318/// getEffectiveSCEVType - Return a type with the same bitwidth as
2319/// the given type and which represents how SCEV will treat the given
2320/// type, for which isSCEVable must return true. For pointer types,
2321/// this is the pointer-sized integer type.
2322const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2323 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2324
2325 if (Ty->isInteger())
2326 return Ty;
2327
2328 // The only other support type is pointer.
2329 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2330 if (TD) return TD->getIntPtrType(getContext());
2331
2332 // Without TargetData, conservatively assume pointers are 64-bit.
2333 return Type::getInt64Ty(getContext());
2334}
2335
2336const SCEV *ScalarEvolution::getCouldNotCompute() {
2337 return &CouldNotCompute;
2338}
2339
2340/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2341/// expression and create a new one.
2342const SCEV *ScalarEvolution::getSCEV(Value *V) {
2343 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2344
2345 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2346 if (I != Scalars.end()) return I->second;
2347 const SCEV *S = createSCEV(V);
2348 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2349 return S;
2350}
2351
2352/// getIntegerSCEV - Given a SCEVable type, create a constant for the
2353/// specified signed integer value and return a SCEV for the constant.
2354const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
2355 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2356 return getConstant(ConstantInt::get(ITy, Val));
2357}
2358
2359/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2360///
2361const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2362 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2363 return getConstant(
2364 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2365
2366 const Type *Ty = V->getType();
2367 Ty = getEffectiveSCEVType(Ty);
2368 return getMulExpr(V,
2369 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2370}
2371
2372/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2373const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2374 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2375 return getConstant(
2376 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2377
2378 const Type *Ty = V->getType();
2379 Ty = getEffectiveSCEVType(Ty);
2380 const SCEV *AllOnes =
2381 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2382 return getMinusSCEV(AllOnes, V);
2383}
2384
2385/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2386///
2387const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2388 const SCEV *RHS) {
2389 // X - Y --> X + -Y
2390 return getAddExpr(LHS, getNegativeSCEV(RHS));
2391}
2392
2393/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2394/// input value to the specified type. If the type must be extended, it is zero
2395/// extended.
2396const SCEV *
2397ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2398 const Type *Ty) {
2399 const Type *SrcTy = V->getType();
2400 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2401 (Ty->isInteger() || isa<PointerType>(Ty)) &&
2402 "Cannot truncate or zero extend with non-integer arguments!");
2403 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2404 return V; // No conversion
2405 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2406 return getTruncateExpr(V, Ty);
2407 return getZeroExtendExpr(V, Ty);
2408}
2409
2410/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2411/// input value to the specified type. If the type must be extended, it is sign
2412/// extended.
2413const SCEV *
2414ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2415 const Type *Ty) {
2416 const Type *SrcTy = V->getType();
2417 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2418 (Ty->isInteger() || isa<PointerType>(Ty)) &&
2419 "Cannot truncate or zero extend with non-integer arguments!");
2420 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2421 return V; // No conversion
2422 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2423 return getTruncateExpr(V, Ty);
2424 return getSignExtendExpr(V, Ty);
2425}
2426
2427/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2428/// input value to the specified type. If the type must be extended, it is zero
2429/// extended. The conversion must not be narrowing.
2430const SCEV *
2431ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2432 const Type *SrcTy = V->getType();
2433 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2434 (Ty->isInteger() || isa<PointerType>(Ty)) &&
2435 "Cannot noop or zero extend with non-integer arguments!");
2436 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2437 "getNoopOrZeroExtend cannot truncate!");
2438 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2439 return V; // No conversion
2440 return getZeroExtendExpr(V, Ty);
2441}
2442
2443/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2444/// input value to the specified type. If the type must be extended, it is sign
2445/// extended. The conversion must not be narrowing.
2446const SCEV *
2447ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2448 const Type *SrcTy = V->getType();
2449 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2450 (Ty->isInteger() || isa<PointerType>(Ty)) &&
2451 "Cannot noop or sign extend with non-integer arguments!");
2452 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2453 "getNoopOrSignExtend cannot truncate!");
2454 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2455 return V; // No conversion
2456 return getSignExtendExpr(V, Ty);
2457}
2458
2459/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2460/// the input value to the specified type. If the type must be extended,
2461/// it is extended with unspecified bits. The conversion must not be
2462/// narrowing.
2463const SCEV *
2464ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2465 const Type *SrcTy = V->getType();
2466 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2467 (Ty->isInteger() || isa<PointerType>(Ty)) &&
2468 "Cannot noop or any extend with non-integer arguments!");
2469 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2470 "getNoopOrAnyExtend cannot truncate!");
2471 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2472 return V; // No conversion
2473 return getAnyExtendExpr(V, Ty);
2474}
2475
2476/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2477/// input value to the specified type. The conversion must not be widening.
2478const SCEV *
2479ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2480 const Type *SrcTy = V->getType();
2481 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2482 (Ty->isInteger() || isa<PointerType>(Ty)) &&
2483 "Cannot truncate or noop with non-integer arguments!");
2484 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2485 "getTruncateOrNoop cannot extend!");
2486 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2487 return V; // No conversion
2488 return getTruncateExpr(V, Ty);
2489}
2490
2491/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2492/// the types using zero-extension, and then perform a umax operation
2493/// with them.
2494const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2495 const SCEV *RHS) {
2496 const SCEV *PromotedLHS = LHS;
2497 const SCEV *PromotedRHS = RHS;
2498
2499 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2500 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2501 else
2502 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2503
2504 return getUMaxExpr(PromotedLHS, PromotedRHS);
2505}
2506
2507/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2508/// the types using zero-extension, and then perform a umin operation
2509/// with them.
2510const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2511 const SCEV *RHS) {
2512 const SCEV *PromotedLHS = LHS;
2513 const SCEV *PromotedRHS = RHS;
2514
2515 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2516 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2517 else
2518 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2519
2520 return getUMinExpr(PromotedLHS, PromotedRHS);
2521}
2522
2523/// PushDefUseChildren - Push users of the given Instruction
2524/// onto the given Worklist.
2525static void
2526PushDefUseChildren(Instruction *I,
2527 SmallVectorImpl<Instruction *> &Worklist) {
2528 // Push the def-use children onto the Worklist stack.
2529 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2530 UI != UE; ++UI)
2531 Worklist.push_back(cast<Instruction>(UI));
2532}
2533
2534/// ForgetSymbolicValue - This looks up computed SCEV values for all
2535/// instructions that depend on the given instruction and removes them from
2536/// the Scalars map if they reference SymName. This is used during PHI
2537/// resolution.
2538void
2539ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
2540 SmallVector<Instruction *, 16> Worklist;
2541 PushDefUseChildren(I, Worklist);
2542
2543 SmallPtrSet<Instruction *, 8> Visited;
2544 Visited.insert(I);
2545 while (!Worklist.empty()) {
2546 Instruction *I = Worklist.pop_back_val();
2547 if (!Visited.insert(I)) continue;
2548
2549 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
2550 Scalars.find(static_cast<Value *>(I));
2551 if (It != Scalars.end()) {
2552 // Short-circuit the def-use traversal if the symbolic name
2553 // ceases to appear in expressions.
2554 if (!It->second->hasOperand(SymName))
2555 continue;
2556
2557 // SCEVUnknown for a PHI either means that it has an unrecognized
2558 // structure, or it's a PHI that's in the progress of being computed
2559 // by createNodeForPHI. In the former case, additional loop trip
2560 // count information isn't going to change anything. In the later
2561 // case, createNodeForPHI will perform the necessary updates on its
2562 // own when it gets to that point.
2563 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
2564 ValuesAtScopes.erase(It->second);
2565 Scalars.erase(It);
2566 }
2567 }
2568
2569 PushDefUseChildren(I, Worklist);
2570 }
2571}
2572
2573/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2574/// a loop header, making it a potential recurrence, or it doesn't.
2575///
2576const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2577 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
2578 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2579 if (L->getHeader() == PN->getParent()) {
2580 // If it lives in the loop header, it has two incoming values, one
2581 // from outside the loop, and one from inside.
2582 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2583 unsigned BackEdge = IncomingEdge^1;
2584
2585 // While we are analyzing this PHI node, handle its value symbolically.
2586 const SCEV *SymbolicName = getUnknown(PN);
2587 assert(Scalars.find(PN) == Scalars.end() &&
2588 "PHI node already processed?");
2589 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2590
2591 // Using this symbolic name for the PHI, analyze the value coming around
2592 // the back-edge.
2593 Value *BEValueV = PN->getIncomingValue(BackEdge);
2594 const SCEV *BEValue = getSCEV(BEValueV);
2595
2596 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2597 // has a special value for the first iteration of the loop.
2598
2599 // If the value coming around the backedge is an add with the symbolic
2600 // value we just inserted, then we found a simple induction variable!
2601 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2602 // If there is a single occurrence of the symbolic value, replace it
2603 // with a recurrence.
2604 unsigned FoundIndex = Add->getNumOperands();
2605 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2606 if (Add->getOperand(i) == SymbolicName)
2607 if (FoundIndex == e) {
2608 FoundIndex = i;
2609 break;
2610 }
2611
2612 if (FoundIndex != Add->getNumOperands()) {
2613 // Create an add with everything but the specified operand.
2614 SmallVector<const SCEV *, 8> Ops;
2615 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2616 if (i != FoundIndex)
2617 Ops.push_back(Add->getOperand(i));
2618 const SCEV *Accum = getAddExpr(Ops);
2619
2620 // This is not a valid addrec if the step amount is varying each
2621 // loop iteration, but is not itself an addrec in this loop.
2622 if (Accum->isLoopInvariant(L) ||
2623 (isa<SCEVAddRecExpr>(Accum) &&
2624 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2625 bool HasNUW = false;
2626 bool HasNSW = false;
2627
2628 // If the increment doesn't overflow, then neither the addrec nor
2629 // the post-increment will overflow.
2630 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2631 if (OBO->hasNoUnsignedWrap())
2632 HasNUW = true;
2633 if (OBO->hasNoSignedWrap())
2634 HasNSW = true;
2635 }
2636
2637 const SCEV *StartVal =
2638 getSCEV(PN->getIncomingValue(IncomingEdge));
2639 const SCEV *PHISCEV =
2640 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2641
2642 // Since the no-wrap flags are on the increment, they apply to the
2643 // post-incremented value as well.
2644 if (Accum->isLoopInvariant(L))
2645 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2646 Accum, L, HasNUW, HasNSW);
2647
2648 // Okay, for the entire analysis of this edge we assumed the PHI
2649 // to be symbolic. We now need to go back and purge all of the
2650 // entries for the scalars that use the symbolic expression.
2651 ForgetSymbolicName(PN, SymbolicName);
2652 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2653 return PHISCEV;
2654 }
2655 }
2656 } else if (const SCEVAddRecExpr *AddRec =
2657 dyn_cast<SCEVAddRecExpr>(BEValue)) {
2658 // Otherwise, this could be a loop like this:
2659 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2660 // In this case, j = {1,+,1} and BEValue is j.
2661 // Because the other in-value of i (0) fits the evolution of BEValue
2662 // i really is an addrec evolution.
2663 if (AddRec->getLoop() == L && AddRec->isAffine()) {
2664 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2665
2666 // If StartVal = j.start - j.stride, we can use StartVal as the
2667 // initial step of the addrec evolution.
2668 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2669 AddRec->getOperand(1))) {
2670 const SCEV *PHISCEV =
2671 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2672
2673 // Okay, for the entire analysis of this edge we assumed the PHI
2674 // to be symbolic. We now need to go back and purge all of the
2675 // entries for the scalars that use the symbolic expression.
2676 ForgetSymbolicName(PN, SymbolicName);
2677 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2678 return PHISCEV;
2679 }
2680 }
2681 }
2682
2683 return SymbolicName;
2684 }
2685
2686 // It's tempting to recognize PHIs with a unique incoming value, however
2687 // this leads passes like indvars to break LCSSA form. Fortunately, such
2688 // PHIs are rare, as instcombine zaps them.
2689
2690 // If it's not a loop phi, we can't handle it yet.
2691 return getUnknown(PN);
2692}
2693
2694/// createNodeForGEP - Expand GEP instructions into add and multiply
2695/// operations. This allows them to be analyzed by regular SCEV code.
2696///
2697const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2698
2699 bool InBounds = GEP->isInBounds();
2700 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2701 Value *Base = GEP->getOperand(0);
2702 // Don't attempt to analyze GEPs over unsized objects.
2703 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2704 return getUnknown(GEP);
2705 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
2706 gep_type_iterator GTI = gep_type_begin(GEP);
2707 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2708 E = GEP->op_end();
2709 I != E; ++I) {
2710 Value *Index = *I;
2711 // Compute the (potentially symbolic) offset in bytes for this index.
2712 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2713 // For a struct, add the member offset.
2714 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2715 TotalOffset = getAddExpr(TotalOffset,
2716 getOffsetOfExpr(STy, FieldNo),
2717 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2718 } else {
2719 // For an array, add the element offset, explicitly scaled.
2720 const SCEV *LocalOffset = getSCEV(Index);
2721 // Getelementptr indicies are signed.
2722 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2723 // Lower "inbounds" GEPs to NSW arithmetic.
2724 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
2725 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2726 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2727 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2728 }
2729 }
2730 return getAddExpr(getSCEV(Base), TotalOffset,
2731 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2732}
2733
2734/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2735/// guaranteed to end in (at every loop iteration). It is, at the same time,
2736/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2737/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
2738uint32_t
2739ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2740 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2741 return C->getValue()->getValue().countTrailingZeros();
2742
2743 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2744 return std::min(GetMinTrailingZeros(T->getOperand()),
2745 (uint32_t)getTypeSizeInBits(T->getType()));
2746
2747 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2748 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2749 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2750 getTypeSizeInBits(E->getType()) : OpRes;
2751 }
2752
2753 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2754 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2755 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2756 getTypeSizeInBits(E->getType()) : OpRes;
2757 }
2758
2759 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2760 // The result is the min of all operands results.
2761 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2762 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2763 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2764 return MinOpRes;
2765 }
2766
2767 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2768 // The result is the sum of all operands results.
2769 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2770 uint32_t BitWidth = getTypeSizeInBits(M->getType());
2771 for (unsigned i = 1, e = M->getNumOperands();
2772 SumOpRes != BitWidth && i != e; ++i)
2773 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2774 BitWidth);
2775 return SumOpRes;
2776 }
2777
2778 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2779 // The result is the min of all operands results.
2780 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2781 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2782 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2783 return MinOpRes;
2784 }
2785
2786 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2787 // The result is the min of all operands results.
2788 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2789 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2790 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2791 return MinOpRes;
2792 }
2793
2794 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2795 // The result is the min of all operands results.
2796 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2797 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2798 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2799 return MinOpRes;
2800 }
2801
2802 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2803 // For a SCEVUnknown, ask ValueTracking.
2804 unsigned BitWidth = getTypeSizeInBits(U->getType());
2805 APInt Mask = APInt::getAllOnesValue(BitWidth);
2806 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2807 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2808 return Zeros.countTrailingOnes();
2809 }
2810
2811 // SCEVUDivExpr
2812 return 0;
2813}
2814
2815/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2816///
2817ConstantRange
2818ScalarEvolution::getUnsignedRange(const SCEV *S) {
2819
2820 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2821 return ConstantRange(C->getValue()->getValue());
2822
2823 unsigned BitWidth = getTypeSizeInBits(S->getType());
2824 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2825
2826 // If the value has known zeros, the maximum unsigned value will have those
2827 // known zeros as well.
2828 uint32_t TZ = GetMinTrailingZeros(S);
2829 if (TZ != 0)
2830 ConservativeResult =
2831 ConstantRange(APInt::getMinValue(BitWidth),
2832 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2833
2834 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2835 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2836 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2837 X = X.add(getUnsignedRange(Add->getOperand(i)));
2838 return ConservativeResult.intersectWith(X);
2839 }
2840
2841 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2842 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2843 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2844 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2845 return ConservativeResult.intersectWith(X);
2846 }
2847
2848 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2849 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2850 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2851 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2852 return ConservativeResult.intersectWith(X);
2853 }
2854
2855 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2856 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2857 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2858 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2859 return ConservativeResult.intersectWith(X);
2860 }
2861
2862 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2863 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2864 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2865 return ConservativeResult.intersectWith(X.udiv(Y));
2866 }
2867
2868 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2869 ConstantRange X = getUnsignedRange(ZExt->getOperand());
2870 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
2871 }
2872
2873 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2874 ConstantRange X = getUnsignedRange(SExt->getOperand());
2875 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
2876 }
2877
2878 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2879 ConstantRange X = getUnsignedRange(Trunc->getOperand());
2880 return ConservativeResult.intersectWith(X.truncate(BitWidth));
2881 }
2882
2883 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2884 // If there's no unsigned wrap, the value will never be less than its
2885 // initial value.
2886 if (AddRec->hasNoUnsignedWrap())
2887 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
2888 ConservativeResult =
2889 ConstantRange(C->getValue()->getValue(),
2890 APInt(getTypeSizeInBits(C->getType()), 0));
2891
2892 // TODO: non-affine addrec
2893 if (AddRec->isAffine()) {
2894 const Type *Ty = AddRec->getType();
2895 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2896 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2897 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
2898 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2899
2900 const SCEV *Start = AddRec->getStart();
2901 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2902
2903 // Check for overflow.
2904 if (!AddRec->hasNoUnsignedWrap())
2905 return ConservativeResult;
2906
2907 ConstantRange StartRange = getUnsignedRange(Start);
2908 ConstantRange EndRange = getUnsignedRange(End);
2909 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2910 EndRange.getUnsignedMin());
2911 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2912 EndRange.getUnsignedMax());
2913 if (Min.isMinValue() && Max.isMaxValue())
2914 return ConservativeResult;
2915 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
2916 }
2917 }
2918
2919 return ConservativeResult;
2920 }
2921
2922 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2923 // For a SCEVUnknown, ask ValueTracking.
2924 unsigned BitWidth = getTypeSizeInBits(U->getType());
2925 APInt Mask = APInt::getAllOnesValue(BitWidth);
2926 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2927 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2928 if (Ones == ~Zeros + 1)
2929 return ConservativeResult;
2930 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
2931 }
2932
2933 return ConservativeResult;
2934}
2935
2936/// getSignedRange - Determine the signed range for a particular SCEV.
2937///
2938ConstantRange
2939ScalarEvolution::getSignedRange(const SCEV *S) {
2940
2941 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2942 return ConstantRange(C->getValue()->getValue());
2943
2944 unsigned BitWidth = getTypeSizeInBits(S->getType());
2945 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2946
2947 // If the value has known zeros, the maximum signed value will have those
2948 // known zeros as well.
2949 uint32_t TZ = GetMinTrailingZeros(S);
2950 if (TZ != 0)
2951 ConservativeResult =
2952 ConstantRange(APInt::getSignedMinValue(BitWidth),
2953 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
2954
2955 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2956 ConstantRange X = getSignedRange(Add->getOperand(0));
2957 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2958 X = X.add(getSignedRange(Add->getOperand(i)));
2959 return ConservativeResult.intersectWith(X);
2960 }
2961
2962 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2963 ConstantRange X = getSignedRange(Mul->getOperand(0));
2964 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2965 X = X.multiply(getSignedRange(Mul->getOperand(i)));
2966 return ConservativeResult.intersectWith(X);
2967 }
2968
2969 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2970 ConstantRange X = getSignedRange(SMax->getOperand(0));
2971 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2972 X = X.smax(getSignedRange(SMax->getOperand(i)));
2973 return ConservativeResult.intersectWith(X);
2974 }
2975
2976 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2977 ConstantRange X = getSignedRange(UMax->getOperand(0));
2978 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2979 X = X.umax(getSignedRange(UMax->getOperand(i)));
2980 return ConservativeResult.intersectWith(X);
2981 }
2982
2983 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2984 ConstantRange X = getSignedRange(UDiv->getLHS());
2985 ConstantRange Y = getSignedRange(UDiv->getRHS());
2986 return ConservativeResult.intersectWith(X.udiv(Y));
2987 }
2988
2989 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2990 ConstantRange X = getSignedRange(ZExt->getOperand());
2991 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
2992 }
2993
2994 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2995 ConstantRange X = getSignedRange(SExt->getOperand());
2996 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
2997 }
2998
2999 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3000 ConstantRange X = getSignedRange(Trunc->getOperand());
3001 return ConservativeResult.intersectWith(X.truncate(BitWidth));
3002 }
3003
3004 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3005 // If there's no signed wrap, and all the operands have the same sign or
3006 // zero, the value won't ever change sign.
3007 if (AddRec->hasNoSignedWrap()) {
3008 bool AllNonNeg = true;
3009 bool AllNonPos = true;
3010 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3011 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3012 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3013 }
3014 if (AllNonNeg)
3015 ConservativeResult = ConservativeResult.intersectWith(
3016 ConstantRange(APInt(BitWidth, 0),
3017 APInt::getSignedMinValue(BitWidth)));
3018 else if (AllNonPos)
3019 ConservativeResult = ConservativeResult.intersectWith(
3020 ConstantRange(APInt::getSignedMinValue(BitWidth),
3021 APInt(BitWidth, 1)));
3022 }
3023
3024 // TODO: non-affine addrec
3025 if (AddRec->isAffine()) {
3026 const Type *Ty = AddRec->getType();
3027 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3028 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3029 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3030 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3031
3032 const SCEV *Start = AddRec->getStart();
3033 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
3034
3035 // Check for overflow.
3036 if (!AddRec->hasNoSignedWrap())
3037 return ConservativeResult;
3038
3039 ConstantRange StartRange = getSignedRange(Start);
3040 ConstantRange EndRange = getSignedRange(End);
3041 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3042 EndRange.getSignedMin());
3043 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3044 EndRange.getSignedMax());
3045 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3046 return ConservativeResult;
3047 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3048 }
3049 }
3050
3051 return ConservativeResult;
3052 }
3053
3054 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3055 // For a SCEVUnknown, ask ValueTracking.
3056 if (!U->getValue()->getType()->isInteger() && !TD)
3057 return ConservativeResult;
3058 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3059 if (NS == 1)
3060 return ConservativeResult;
3061 return ConservativeResult.intersectWith(
3062 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3063 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3064 }
3065
3066 return ConservativeResult;
3067}
3068
3069/// createSCEV - We know that there is no SCEV for the specified value.
3070/// Analyze the expression.
3071///
3072const SCEV *ScalarEvolution::createSCEV(Value *V) {
3073 if (!isSCEVable(V->getType()))
3074 return getUnknown(V);
3075
3076 unsigned Opcode = Instruction::UserOp1;
3077 if (Instruction *I = dyn_cast<Instruction>(V))
3078 Opcode = I->getOpcode();
3079 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3080 Opcode = CE->getOpcode();
3081 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3082 return getConstant(CI);
3083 else if (isa<ConstantPointerNull>(V))
3084 return getIntegerSCEV(0, V->getType());
3085 else if (isa<UndefValue>(V))
3086 return getIntegerSCEV(0, V->getType());
3087 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3088 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3089 else
3090 return getUnknown(V);
3091
3092 Operator *U = cast<Operator>(V);
3093 switch (Opcode) {
3094 case Instruction::Add:
3095 // Don't transfer the NSW and NUW bits from the Add instruction to the
3096 // Add expression, because the Instruction may be guarded by control
3097 // flow and the no-overflow bits may not be valid for the expression in
3098 // any context.
3099 return getAddExpr(getSCEV(U->getOperand(0)),
3100 getSCEV(U->getOperand(1)));
3101 case Instruction::Mul:
3102 // Don't transfer the NSW and NUW bits from the Mul instruction to the
3103 // Mul expression, as with Add.
3104 return getMulExpr(getSCEV(U->getOperand(0)),
3105 getSCEV(U->getOperand(1)));
3106 case Instruction::UDiv:
3107 return getUDivExpr(getSCEV(U->getOperand(0)),
3108 getSCEV(U->getOperand(1)));
3109 case Instruction::Sub:
3110 return getMinusSCEV(getSCEV(U->getOperand(0)),
3111 getSCEV(U->getOperand(1)));
3112 case Instruction::And:
3113 // For an expression like x&255 that merely masks off the high bits,
3114 // use zext(trunc(x)) as the SCEV expression.
3115 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3116 if (CI->isNullValue())
3117 return getSCEV(U->getOperand(1));
3118 if (CI->isAllOnesValue())
3119 return getSCEV(U->getOperand(0));
3120 const APInt &A = CI->getValue();
3121
3122 // Instcombine's ShrinkDemandedConstant may strip bits out of
3123 // constants, obscuring what would otherwise be a low-bits mask.
3124 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3125 // knew about to reconstruct a low-bits mask value.
3126 unsigned LZ = A.countLeadingZeros();
3127 unsigned BitWidth = A.getBitWidth();
3128 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3129 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3130 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3131
3132 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3133
3134 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3135 return
3136 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3137 IntegerType::get(getContext(), BitWidth - LZ)),
3138 U->getType());
3139 }
3140 break;
3141
3142 case Instruction::Or:
3143 // If the RHS of the Or is a constant, we may have something like:
3144 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3145 // optimizations will transparently handle this case.
3146 //
3147 // In order for this transformation to be safe, the LHS must be of the
3148 // form X*(2^n) and the Or constant must be less than 2^n.
3149 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3150 const SCEV *LHS = getSCEV(U->getOperand(0));
3151 const APInt &CIVal = CI->getValue();
3152 if (GetMinTrailingZeros(LHS) >=
3153 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3154 // Build a plain add SCEV.
3155 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3156 // If the LHS of the add was an addrec and it has no-wrap flags,
3157 // transfer the no-wrap flags, since an or won't introduce a wrap.
3158 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3159 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3160 if (OldAR->hasNoUnsignedWrap())
3161 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3162 if (OldAR->hasNoSignedWrap())
3163 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3164 }
3165 return S;
3166 }
3167 }
3168 break;
3169 case Instruction::Xor:
3170 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3171 // If the RHS of the xor is a signbit, then this is just an add.
3172 // Instcombine turns add of signbit into xor as a strength reduction step.
3173 if (CI->getValue().isSignBit())
3174 return getAddExpr(getSCEV(U->getOperand(0)),
3175 getSCEV(U->getOperand(1)));
3176
3177 // If the RHS of xor is -1, then this is a not operation.
3178 if (CI->isAllOnesValue())
3179 return getNotSCEV(getSCEV(U->getOperand(0)));
3180
3181 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3182 // This is a variant of the check for xor with -1, and it handles
3183 // the case where instcombine has trimmed non-demanded bits out
3184 // of an xor with -1.
3185 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3186 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3187 if (BO->getOpcode() == Instruction::And &&
3188 LCI->getValue() == CI->getValue())
3189 if (const SCEVZeroExtendExpr *Z =
3190 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3191 const Type *UTy = U->getType();
3192 const SCEV *Z0 = Z->getOperand();
3193 const Type *Z0Ty = Z0->getType();
3194 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3195
3196 // If C is a low-bits mask, the zero extend is zerving to
3197 // mask off the high bits. Complement the operand and
3198 // re-apply the zext.
3199 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3200 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3201
3202 // If C is a single bit, it may be in the sign-bit position
3203 // before the zero-extend. In this case, represent the xor
3204 // using an add, which is equivalent, and re-apply the zext.
3205 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3206 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3207 Trunc.isSignBit())
3208 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3209 UTy);
3210 }
3211 }
3212 break;
3213
3214 case Instruction::Shl:
3215 // Turn shift left of a constant amount into a multiply.
3216 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3217 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3218 Constant *X = ConstantInt::get(getContext(),
3219 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
3220 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3221 }
3222 break;
3223
3224 case Instruction::LShr:
3225 // Turn logical shift right of a constant into a unsigned divide.
3226 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3227 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3228 Constant *X = ConstantInt::get(getContext(),
3229 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
3230 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3231 }
3232 break;
3233
3234 case Instruction::AShr:
3235 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3236 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3237 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
3238 if (L->getOpcode() == Instruction::Shl &&
3239 L->getOperand(1) == U->getOperand(1)) {
3240 unsigned BitWidth = getTypeSizeInBits(U->getType());
3241 uint64_t Amt = BitWidth - CI->getZExtValue();
3242 if (Amt == BitWidth)
3243 return getSCEV(L->getOperand(0)); // shift by zero --> noop
3244 if (Amt > BitWidth)
3245 return getIntegerSCEV(0, U->getType()); // value is undefined
3246 return
3247 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3248 IntegerType::get(getContext(), Amt)),
3249 U->getType());
3250 }
3251 break;
3252
3253 case Instruction::Trunc:
3254 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3255
3256 case Instruction::ZExt:
3257 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3258
3259 case Instruction::SExt:
3260 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3261
3262 case Instruction::BitCast:
3263 // BitCasts are no-op casts so we just eliminate the cast.
3264 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3265 return getSCEV(U->getOperand(0));
3266 break;
3267
3268 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3269 // lead to pointer expressions which cannot safely be expanded to GEPs,
3270 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3271 // simplifying integer expressions.
3272
3273 case Instruction::GetElementPtr:
3274 return createNodeForGEP(cast<GEPOperator>(U));
3275
3276 case Instruction::PHI:
3277 return createNodeForPHI(cast<PHINode>(U));
3278
3279 case Instruction::Select:
3280 // This could be a smax or umax that was lowered earlier.
3281 // Try to recover it.
3282 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3283 Value *LHS = ICI->getOperand(0);
3284 Value *RHS = ICI->getOperand(1);
3285 switch (ICI->getPredicate()) {
3286 case ICmpInst::ICMP_SLT:
3287 case ICmpInst::ICMP_SLE:
3288 std::swap(LHS, RHS);
3289 // fall through
3290 case ICmpInst::ICMP_SGT:
3291 case ICmpInst::ICMP_SGE:
3292 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
3293 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
3294 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
3295 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
3296 break;
3297 case ICmpInst::ICMP_ULT:
3298 case ICmpInst::ICMP_ULE:
3299 std::swap(LHS, RHS);
3300 // fall through
3301 case ICmpInst::ICMP_UGT:
3302 case ICmpInst::ICMP_UGE:
3303 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
3304 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
3305 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
3306 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
3307 break;
3308 case ICmpInst::ICMP_NE:
3309 // n != 0 ? n : 1 -> umax(n, 1)
3310 if (LHS == U->getOperand(1) &&
3311 isa<ConstantInt>(U->getOperand(2)) &&
3312 cast<ConstantInt>(U->getOperand(2))->isOne() &&
3313 isa<ConstantInt>(RHS) &&
3314 cast<ConstantInt>(RHS)->isZero())
3315 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
3316 break;
3317 case ICmpInst::ICMP_EQ:
3318 // n == 0 ? 1 : n -> umax(n, 1)
3319 if (LHS == U->getOperand(2) &&
3320 isa<ConstantInt>(U->getOperand(1)) &&
3321 cast<ConstantInt>(U->getOperand(1))->isOne() &&
3322 isa<ConstantInt>(RHS) &&
3323 cast<ConstantInt>(RHS)->isZero())
3324 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3325 break;
3326 default:
3327 break;
3328 }
3329 }
3330
3331 default: // We cannot analyze this expression.
3332 break;
3333 }
3334
3335 return getUnknown(V);
3336}
3337
3338
3339
3340//===----------------------------------------------------------------------===//
3341// Iteration Count Computation Code
3342//
3343
3344/// getBackedgeTakenCount - If the specified loop has a predictable
3345/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3346/// object. The backedge-taken count is the number of times the loop header
3347/// will be branched to from within the loop. This is one less than the
3348/// trip count of the loop, since it doesn't count the first iteration,
3349/// when the header is branched to from outside the loop.
3350///
3351/// Note that it is not valid to call this method on a loop without a
3352/// loop-invariant backedge-taken count (see
3353/// hasLoopInvariantBackedgeTakenCount).
3354///
3355const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3356 return getBackedgeTakenInfo(L).Exact;
3357}
3358
3359/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3360/// return the least SCEV value that is known never to be less than the
3361/// actual backedge taken count.
3362const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3363 return getBackedgeTakenInfo(L).Max;
3364}
3365
3366/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3367/// onto the given Worklist.
3368static void
3369PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3370 BasicBlock *Header = L->getHeader();
3371
3372 // Push all Loop-header PHIs onto the Worklist stack.
3373 for (BasicBlock::iterator I = Header->begin();
3374 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3375 Worklist.push_back(PN);
3376}
3377
3378const ScalarEvolution::BackedgeTakenInfo &
3379ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3380 // Initially insert a CouldNotCompute for this loop. If the insertion
3381 // succeeds, procede to actually compute a backedge-taken count and
3382 // update the value. The temporary CouldNotCompute value tells SCEV
3383 // code elsewhere that it shouldn't attempt to request a new
3384 // backedge-taken count, which could result in infinite recursion.
3385 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3386 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3387 if (Pair.second) {
3388 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3389 if (BECount.Exact != getCouldNotCompute()) {
3390 assert(BECount.Exact->isLoopInvariant(L) &&
3391 BECount.Max->isLoopInvariant(L) &&
3392 "Computed backedge-taken count isn't loop invariant for loop!");
3393 ++NumTripCountsComputed;
3394
3395 // Update the value in the map.
3396 Pair.first->second = BECount;
3397 } else {
3398 if (BECount.Max != getCouldNotCompute())
3399 // Update the value in the map.
3400 Pair.first->second = BECount;
3401 if (isa<PHINode>(L->getHeader()->begin()))
3402 // Only count loops that have phi nodes as not being computable.
3403 ++NumTripCountsNotComputed;
3404 }
3405
3406 // Now that we know more about the trip count for this loop, forget any
3407 // existing SCEV values for PHI nodes in this loop since they are only
3408 // conservative estimates made without the benefit of trip count
3409 // information. This is similar to the code in forgetLoop, except that
3410 // it handles SCEVUnknown PHI nodes specially.
3411 if (BECount.hasAnyInfo()) {
3412 SmallVector<Instruction *, 16> Worklist;
3413 PushLoopPHIs(L, Worklist);
3414
3415 SmallPtrSet<Instruction *, 8> Visited;
3416 while (!Worklist.empty()) {
3417 Instruction *I = Worklist.pop_back_val();
3418 if (!Visited.insert(I)) continue;
3419
3420 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3421 Scalars.find(static_cast<Value *>(I));
3422 if (It != Scalars.end()) {
3423 // SCEVUnknown for a PHI either means that it has an unrecognized
3424 // structure, or it's a PHI that's in the progress of being computed
3425 // by createNodeForPHI. In the former case, additional loop trip
3426 // count information isn't going to change anything. In the later
3427 // case, createNodeForPHI will perform the necessary updates on its
3428 // own when it gets to that point.
3429 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3430 ValuesAtScopes.erase(It->second);
3431 Scalars.erase(It);
3432 }
3433 if (PHINode *PN = dyn_cast<PHINode>(I))
3434 ConstantEvolutionLoopExitValue.erase(PN);
3435 }
3436
3437 PushDefUseChildren(I, Worklist);
3438 }
3439 }
3440 }
3441 return Pair.first->second;
3442}
3443
3444/// forgetLoop - This method should be called by the client when it has
3445/// changed a loop in a way that may effect ScalarEvolution's ability to
3446/// compute a trip count, or if the loop is deleted.
3447void ScalarEvolution::forgetLoop(const Loop *L) {
3448 // Drop any stored trip count value.
3449 BackedgeTakenCounts.erase(L);
3450
3451 // Drop information about expressions based on loop-header PHIs.
3452 SmallVector<Instruction *, 16> Worklist;
3453 PushLoopPHIs(L, Worklist);
3454
3455 SmallPtrSet<Instruction *, 8> Visited;
3456 while (!Worklist.empty()) {
3457 Instruction *I = Worklist.pop_back_val();
3458 if (!Visited.insert(I)) continue;
3459
3460 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3461 Scalars.find(static_cast<Value *>(I));
3462 if (It != Scalars.end()) {
3463 ValuesAtScopes.erase(It->second);
3464 Scalars.erase(It);
3465 if (PHINode *PN = dyn_cast<PHINode>(I))
3466 ConstantEvolutionLoopExitValue.erase(PN);
3467 }
3468
3469 PushDefUseChildren(I, Worklist);
3470 }
3471}
3472
3473/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3474/// of the specified loop will execute.
3475ScalarEvolution::BackedgeTakenInfo
3476ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3477 SmallVector<BasicBlock *, 8> ExitingBlocks;
3478 L->getExitingBlocks(ExitingBlocks);
3479
3480 // Examine all exits and pick the most conservative values.
3481 const SCEV *BECount = getCouldNotCompute();
3482 const SCEV *MaxBECount = getCouldNotCompute();
3483 bool CouldNotComputeBECount = false;
3484 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3485 BackedgeTakenInfo NewBTI =
3486 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3487
3488 if (NewBTI.Exact == getCouldNotCompute()) {
3489 // We couldn't compute an exact value for this exit, so
3490 // we won't be able to compute an exact value for the loop.
3491 CouldNotComputeBECount = true;
3492 BECount = getCouldNotCompute();
3493 } else if (!CouldNotComputeBECount) {
3494 if (BECount == getCouldNotCompute())
3495 BECount = NewBTI.Exact;
3496 else
3497 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3498 }
3499 if (MaxBECount == getCouldNotCompute())
3500 MaxBECount = NewBTI.Max;
3501 else if (NewBTI.Max != getCouldNotCompute())
3502 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3503 }
3504
3505 return BackedgeTakenInfo(BECount, MaxBECount);
3506}
3507
3508/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3509/// of the specified loop will execute if it exits via the specified block.
3510ScalarEvolution::BackedgeTakenInfo
3511ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3512 BasicBlock *ExitingBlock) {
3513
3514 // Okay, we've chosen an exiting block. See what condition causes us to
3515 // exit at this block.
3516 //
3517 // FIXME: we should be able to handle switch instructions (with a single exit)
3518 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3519 if (ExitBr == 0) return getCouldNotCompute();
3520 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3521
3522 // At this point, we know we have a conditional branch that determines whether
3523 // the loop is exited. However, we don't know if the branch is executed each
3524 // time through the loop. If not, then the execution count of the branch will
3525 // not be equal to the trip count of the loop.
3526 //
3527 // Currently we check for this by checking to see if the Exit branch goes to
3528 // the loop header. If so, we know it will always execute the same number of
3529 // times as the loop. We also handle the case where the exit block *is* the
3530 // loop header. This is common for un-rotated loops.
3531 //
3532 // If both of those tests fail, walk up the unique predecessor chain to the
3533 // header, stopping if there is an edge that doesn't exit the loop. If the
3534 // header is reached, the execution count of the branch will be equal to the
3535 // trip count of the loop.
3536 //
3537 // More extensive analysis could be done to handle more cases here.
3538 //
3539 if (ExitBr->getSuccessor(0) != L->getHeader() &&
3540 ExitBr->getSuccessor(1) != L->getHeader() &&
3541 ExitBr->getParent() != L->getHeader()) {
3542 // The simple checks failed, try climbing the unique predecessor chain
3543 // up to the header.
3544 bool Ok = false;
3545 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3546 BasicBlock *Pred = BB->getUniquePredecessor();
3547 if (!Pred)
3548 return getCouldNotCompute();
3549 TerminatorInst *PredTerm = Pred->getTerminator();
3550 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3551 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3552 if (PredSucc == BB)
3553 continue;
3554 // If the predecessor has a successor that isn't BB and isn't
3555 // outside the loop, assume the worst.
3556 if (L->contains(PredSucc))
3557 return getCouldNotCompute();
3558 }
3559 if (Pred == L->getHeader()) {
3560 Ok = true;
3561 break;
3562 }
3563 BB = Pred;
3564 }
3565 if (!Ok)
3566 return getCouldNotCompute();
3567 }
3568
3569 // Procede to the next level to examine the exit condition expression.
3570 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3571 ExitBr->getSuccessor(0),
3572 ExitBr->getSuccessor(1));
3573}
3574
3575/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3576/// backedge of the specified loop will execute if its exit condition
3577/// were a conditional branch of ExitCond, TBB, and FBB.
3578ScalarEvolution::BackedgeTakenInfo
3579ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3580 Value *ExitCond,
3581 BasicBlock *TBB,
3582 BasicBlock *FBB) {
3583 // Check if the controlling expression for this loop is an And or Or.
3584 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3585 if (BO->getOpcode() == Instruction::And) {
3586 // Recurse on the operands of the and.
3587 BackedgeTakenInfo BTI0 =
3588 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3589 BackedgeTakenInfo BTI1 =
3590 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3591 const SCEV *BECount = getCouldNotCompute();
3592 const SCEV *MaxBECount = getCouldNotCompute();
3593 if (L->contains(TBB)) {
3594 // Both conditions must be true for the loop to continue executing.
3595 // Choose the less conservative count.
3596 if (BTI0.Exact == getCouldNotCompute() ||
3597 BTI1.Exact == getCouldNotCompute())
3598 BECount = getCouldNotCompute();
3599 else
3600 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3601 if (BTI0.Max == getCouldNotCompute())
3602 MaxBECount = BTI1.Max;
3603 else if (BTI1.Max == getCouldNotCompute())
3604 MaxBECount = BTI0.Max;
3605 else
3606 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3607 } else {
3608 // Both conditions must be true for the loop to exit.
3609 assert(L->contains(FBB) && "Loop block has no successor in loop!");
3610 if (BTI0.Exact != getCouldNotCompute() &&
3611 BTI1.Exact != getCouldNotCompute())
3612 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3613 if (BTI0.Max != getCouldNotCompute() &&
3614 BTI1.Max != getCouldNotCompute())
3615 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3616 }
3617
3618 return BackedgeTakenInfo(BECount, MaxBECount);
3619 }
3620 if (BO->getOpcode() == Instruction::Or) {
3621 // Recurse on the operands of the or.
3622 BackedgeTakenInfo BTI0 =
3623 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3624 BackedgeTakenInfo BTI1 =
3625 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3626 const SCEV *BECount = getCouldNotCompute();
3627 const SCEV *MaxBECount = getCouldNotCompute();
3628 if (L->contains(FBB)) {
3629 // Both conditions must be false for the loop to continue executing.
3630 // Choose the less conservative count.
3631 if (BTI0.Exact == getCouldNotCompute() ||
3632 BTI1.Exact == getCouldNotCompute())
3633 BECount = getCouldNotCompute();
3634 else
3635 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3636 if (BTI0.Max == getCouldNotCompute())
3637 MaxBECount = BTI1.Max;
3638 else if (BTI1.Max == getCouldNotCompute())
3639 MaxBECount = BTI0.Max;
3640 else
3641 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3642 } else {
3643 // Both conditions must be false for the loop to exit.
3644 assert(L->contains(TBB) && "Loop block has no successor in loop!");
3645 if (BTI0.Exact != getCouldNotCompute() &&
3646 BTI1.Exact != getCouldNotCompute())
3647 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3648 if (BTI0.Max != getCouldNotCompute() &&
3649 BTI1.Max != getCouldNotCompute())
3650 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3651 }
3652
3653 return BackedgeTakenInfo(BECount, MaxBECount);
3654 }
3655 }
3656
3657 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3658 // Procede to the next level to examine the icmp.
3659 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3660 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3661
3662 // If it's not an integer or pointer comparison then compute it the hard way.
3663 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3664}
3665
3666/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3667/// backedge of the specified loop will execute if its exit condition
3668/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3669ScalarEvolution::BackedgeTakenInfo
3670ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3671 ICmpInst *ExitCond,
3672 BasicBlock *TBB,
3673 BasicBlock *FBB) {
3674
3675 // If the condition was exit on true, convert the condition to exit on false
3676 ICmpInst::Predicate Cond;
3677 if (!L->contains(FBB))
3678 Cond = ExitCond->getPredicate();
3679 else
3680 Cond = ExitCond->getInversePredicate();
3681
3682 // Handle common loops like: for (X = "string"; *X; ++X)
3683 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3684 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3685 const SCEV *ItCnt =
3686 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3687 if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3688 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3689 return BackedgeTakenInfo(ItCnt,
3690 isa<SCEVConstant>(ItCnt) ? ItCnt :
3691 getConstant(APInt::getMaxValue(BitWidth)-1));
3692 }
3693 }
3694
3695 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3696 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3697
3698 // Try to evaluate any dependencies out of the loop.
3699 LHS = getSCEVAtScope(LHS, L);
3700 RHS = getSCEVAtScope(RHS, L);
3701
3702 // At this point, we would like to compute how many iterations of the
3703 // loop the predicate will return true for these inputs.
3704 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3705 // If there is a loop-invariant, force it into the RHS.
3706 std::swap(LHS, RHS);
3707 Cond = ICmpInst::getSwappedPredicate(Cond);
3708 }
3709
3710 // If we have a comparison of a chrec against a constant, try to use value
3711 // ranges to answer this query.
3712 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3713 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3714 if (AddRec->getLoop() == L) {
3715 // Form the constant range.
3716 ConstantRange CompRange(
3717 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3718
3719 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3720 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3721 }
3722
3723 switch (Cond) {
3724 case ICmpInst::ICMP_NE: { // while (X != Y)
3725 // Convert to: while (X-Y != 0)
3726 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3727 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3728 break;
3729 }
3730 case ICmpInst::ICMP_EQ: { // while (X == Y)
3731 // Convert to: while (X-Y == 0)
3732 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3733 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3734 break;
3735 }
3736 case ICmpInst::ICMP_SLT: {
3737 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3738 if (BTI.hasAnyInfo()) return BTI;
3739 break;
3740 }
3741 case ICmpInst::ICMP_SGT: {
3742 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3743 getNotSCEV(RHS), L, true);
3744 if (BTI.hasAnyInfo()) return BTI;
3745 break;
3746 }
3747 case ICmpInst::ICMP_ULT: {
3748 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3749 if (BTI.hasAnyInfo()) return BTI;
3750 break;
3751 }
3752 case ICmpInst::ICMP_UGT: {
3753 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3754 getNotSCEV(RHS), L, false);
3755 if (BTI.hasAnyInfo()) return BTI;
3756 break;
3757 }
3758 default:
3759#if 0
3760 dbgs() << "ComputeBackedgeTakenCount ";
3761 if (ExitCond->getOperand(0)->getType()->isUnsigned())
3762 dbgs() << "[unsigned] ";
3763 dbgs() << *LHS << " "
3764 << Instruction::getOpcodeName(Instruction::ICmp)
3765 << " " << *RHS << "\n";
3766#endif
3767 break;
3768 }
3769 return
3770 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3771}
3772
3773static ConstantInt *
3774EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3775 ScalarEvolution &SE) {
3776 const SCEV *InVal = SE.getConstant(C);
3777 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3778 assert(isa<SCEVConstant>(Val) &&
3779 "Evaluation of SCEV at constant didn't fold correctly?");
3780 return cast<SCEVConstant>(Val)->getValue();
3781}
3782
3783/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3784/// and a GEP expression (missing the pointer index) indexing into it, return
3785/// the addressed element of the initializer or null if the index expression is
3786/// invalid.
3787static Constant *
3788GetAddressedElementFromGlobal(GlobalVariable *GV,
3789 const std::vector<ConstantInt*> &Indices) {
3790 Constant *Init = GV->getInitializer();
3791 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3792 uint64_t Idx = Indices[i]->getZExtValue();
3793 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3794 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3795 Init = cast<Constant>(CS->getOperand(Idx));
3796 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3797 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3798 Init = cast<Constant>(CA->getOperand(Idx));
3799 } else if (isa<ConstantAggregateZero>(Init)) {
3800 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3801 assert(Idx < STy->getNumElements() && "Bad struct index!");
3802 Init = Constant::getNullValue(STy->getElementType(Idx));
3803 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3804 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
3805 Init = Constant::getNullValue(ATy->getElementType());
3806 } else {
3807 llvm_unreachable("Unknown constant aggregate type!");
3808 }
3809 return 0;
3810 } else {
3811 return 0; // Unknown initializer type
3812 }
3813 }
3814 return Init;
3815}
3816
3817/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3818/// 'icmp op load X, cst', try to see if we can compute the backedge
3819/// execution count.
3820const SCEV *
3821ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3822 LoadInst *LI,
3823 Constant *RHS,
3824 const Loop *L,
3825 ICmpInst::Predicate predicate) {
3826 if (LI->isVolatile()) return getCouldNotCompute();
3827
3828 // Check to see if the loaded pointer is a getelementptr of a global.
3829 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3830 if (!GEP) return getCouldNotCompute();
3831
3832 // Make sure that it is really a constant global we are gepping, with an
3833 // initializer, and make sure the first IDX is really 0.
3834 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3835 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
3836 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3837 !cast<Constant>(GEP->getOperand(1))->isNullValue())
3838 return getCouldNotCompute();
3839
3840 // Okay, we allow one non-constant index into the GEP instruction.
3841 Value *VarIdx = 0;
3842 std::vector<ConstantInt*> Indexes;
3843 unsigned VarIdxNum = 0;
3844 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3845 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3846 Indexes.push_back(CI);
3847 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3848 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
3849 VarIdx = GEP->getOperand(i);
3850 VarIdxNum = i-2;
3851 Indexes.push_back(0);
3852 }
3853
3854 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3855 // Check to see if X is a loop variant variable value now.
3856 const SCEV *Idx = getSCEV(VarIdx);
3857 Idx = getSCEVAtScope(Idx, L);
3858
3859 // We can only recognize very limited forms of loop index expressions, in
3860 // particular, only affine AddRec's like {C1,+,C2}.
3861 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3862 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3863 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3864 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3865 return getCouldNotCompute();
3866
3867 unsigned MaxSteps = MaxBruteForceIterations;
3868 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3869 ConstantInt *ItCst = ConstantInt::get(
3870 cast<IntegerType>(IdxExpr->getType()), IterationNum);
3871 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3872
3873 // Form the GEP offset.
3874 Indexes[VarIdxNum] = Val;
3875
3876 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
3877 if (Result == 0) break; // Cannot compute!
3878
3879 // Evaluate the condition for this iteration.
3880 Result = ConstantExpr::getICmp(predicate, Result, RHS);
3881 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
3882 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3883#if 0
3884 dbgs() << "\n***\n*** Computed loop count " << *ItCst
3885 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3886 << "***\n";
3887#endif
3888 ++NumArrayLenItCounts;
3889 return getConstant(ItCst); // Found terminating iteration!
3890 }
3891 }
3892 return getCouldNotCompute();
3893}
3894
3895
3896/// CanConstantFold - Return true if we can constant fold an instruction of the
3897/// specified type, assuming that all operands were constants.
3898static bool CanConstantFold(const Instruction *I) {
3899 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3900 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3901 return true;
3902
3903 if (const CallInst *CI = dyn_cast<CallInst>(I))
3904 if (const Function *F = CI->getCalledFunction())
3905 return canConstantFoldCallTo(F);
3906 return false;
3907}
3908
3909/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3910/// in the loop that V is derived from. We allow arbitrary operations along the
3911/// way, but the operands of an operation must either be constants or a value
3912/// derived from a constant PHI. If this expression does not fit with these
3913/// constraints, return null.
3914static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3915 // If this is not an instruction, or if this is an instruction outside of the
3916 // loop, it can't be derived from a loop PHI.
3917 Instruction *I = dyn_cast<Instruction>(V);
3918 if (I == 0 || !L->contains(I)) return 0;
3919
3920 if (PHINode *PN = dyn_cast<PHINode>(I)) {
3921 if (L->getHeader() == I->getParent())
3922 return PN;
3923 else
3924 // We don't currently keep track of the control flow needed to evaluate
3925 // PHIs, so we cannot handle PHIs inside of loops.
3926 return 0;
3927 }
3928
3929 // If we won't be able to constant fold this expression even if the operands
3930 // are constants, return early.
3931 if (!CanConstantFold(I)) return 0;
3932
3933 // Otherwise, we can evaluate this instruction if all of its operands are
3934 // constant or derived from a PHI node themselves.
3935 PHINode *PHI = 0;
3936 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3937 if (!(isa<Constant>(I->getOperand(Op)) ||
3938 isa<GlobalValue>(I->getOperand(Op)))) {
3939 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3940 if (P == 0) return 0; // Not evolving from PHI
3941 if (PHI == 0)
3942 PHI = P;
3943 else if (PHI != P)
3944 return 0; // Evolving from multiple different PHIs.
3945 }
3946
3947 // This is a expression evolving from a constant PHI!
3948 return PHI;
3949}
3950
3951/// EvaluateExpression - Given an expression that passes the
3952/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3953/// in the loop has the value PHIVal. If we can't fold this expression for some
3954/// reason, return null.
3955static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
3956 const TargetData *TD) {
3957 if (isa<PHINode>(V)) return PHIVal;
3958 if (Constant *C = dyn_cast<Constant>(V)) return C;
3959 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3960 Instruction *I = cast<Instruction>(V);
3961
3962 std::vector<Constant*> Operands;
3963 Operands.resize(I->getNumOperands());
3964
3965 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3966 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
3967 if (Operands[i] == 0) return 0;
3968 }
3969
3970 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3971 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
3972 Operands[1], TD);
3973 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3974 &Operands[0], Operands.size(), TD);
3975}
3976
3977/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3978/// in the header of its containing loop, we know the loop executes a
3979/// constant number of times, and the PHI node is just a recurrence
3980/// involving constants, fold it.
3981Constant *
3982ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3983 const APInt &BEs,
3984 const Loop *L) {
3985 std::map<PHINode*, Constant*>::iterator I =
3986 ConstantEvolutionLoopExitValue.find(PN);
3987 if (I != ConstantEvolutionLoopExitValue.end())
3988 return I->second;
3989
3990 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3991 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
3992
3993 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3994
3995 // Since the loop is canonicalized, the PHI node must have two entries. One
3996 // entry must be a constant (coming in from outside of the loop), and the
3997 // second must be derived from the same PHI.
3998 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3999 Constant *StartCST =
4000 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4001 if (StartCST == 0)
4002 return RetVal = 0; // Must be a constant.
4003
4004 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4005 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4006 if (PN2 != PN)
4007 return RetVal = 0; // Not derived from same PHI.
4008
4009 // Execute the loop symbolically to determine the exit value.
4010 if (BEs.getActiveBits() >= 32)
4011 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4012
4013 unsigned NumIterations = BEs.getZExtValue(); // must be in range
4014 unsigned IterationNum = 0;
4015 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4016 if (IterationNum == NumIterations)
4017 return RetVal = PHIVal; // Got exit value!
4018
4019 // Compute the value of the PHI node for the next iteration.
4020 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4021 if (NextPHI == PHIVal)
4022 return RetVal = NextPHI; // Stopped evolving!
4023 if (NextPHI == 0)
4024 return 0; // Couldn't evaluate!
4025 PHIVal = NextPHI;
4026 }
4027}
4028
4029/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4030/// constant number of times (the condition evolves only from constants),
4031/// try to evaluate a few iterations of the loop until we get the exit
4032/// condition gets a value of ExitWhen (true or false). If we cannot
4033/// evaluate the trip count of the loop, return getCouldNotCompute().
4034const SCEV *
4035ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4036 Value *Cond,
4037 bool ExitWhen) {
4038 PHINode *PN = getConstantEvolvingPHI(Cond, L);
4039 if (PN == 0) return getCouldNotCompute();
4040
4041 // Since the loop is canonicalized, the PHI node must have two entries. One
4042 // entry must be a constant (coming in from outside of the loop), and the
4043 // second must be derived from the same PHI.
4044 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4045 Constant *StartCST =
4046 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4047 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
4048
4049 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4050 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4051 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
4052
4053 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4054 // the loop symbolically to determine when the condition gets a value of
4055 // "ExitWhen".
4056 unsigned IterationNum = 0;
4057 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4058 for (Constant *PHIVal = StartCST;
4059 IterationNum != MaxIterations; ++IterationNum) {
4060 ConstantInt *CondVal =
4061 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4062
4063 // Couldn't symbolically evaluate.
4064 if (!CondVal) return getCouldNotCompute();
4065
4066 if (CondVal->getValue() == uint64_t(ExitWhen)) {
4067 ++NumBruteForceTripCountsComputed;
4068 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4069 }
4070
4071 // Compute the value of the PHI node for the next iteration.
4072 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4073 if (NextPHI == 0 || NextPHI == PHIVal)
4074 return getCouldNotCompute();// Couldn't evaluate or not making progress...
4075 PHIVal = NextPHI;
4076 }
4077
4078 // Too many iterations were needed to evaluate.
4079 return getCouldNotCompute();
4080}
4081
4082/// getSCEVAtScope - Return a SCEV expression for the specified value
4083/// at the specified scope in the program. The L value specifies a loop
4084/// nest to evaluate the expression at, where null is the top-level or a
4085/// specified loop is immediately inside of the loop.
4086///
4087/// This method can be used to compute the exit value for a variable defined
4088/// in a loop by querying what the value will hold in the parent loop.
4089///
4090/// In the case that a relevant loop exit value cannot be computed, the
4091/// original value V is returned.
4092const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4093 // Check to see if we've folded this expression at this loop before.
4094 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4095 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4096 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4097 if (!Pair.second)
4098 return Pair.first->second ? Pair.first->second : V;
4099
4100 // Otherwise compute it.
4101 const SCEV *C = computeSCEVAtScope(V, L);
4102 ValuesAtScopes[V][L] = C;
4103 return C;
4104}
4105
4106const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4107 if (isa<SCEVConstant>(V)) return V;
4108
4109 // If this instruction is evolved from a constant-evolving PHI, compute the
4110 // exit value from the loop without using SCEVs.
4111 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4112 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4113 const Loop *LI = (*this->LI)[I->getParent()];
4114 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4115 if (PHINode *PN = dyn_cast<PHINode>(I))
4116 if (PN->getParent() == LI->getHeader()) {
4117 // Okay, there is no closed form solution for the PHI node. Check
4118 // to see if the loop that contains it has a known backedge-taken
4119 // count. If so, we may be able to force computation of the exit
4120 // value.
4121 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4122 if (const SCEVConstant *BTCC =
4123 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4124 // Okay, we know how many times the containing loop executes. If
4125 // this is a constant evolving PHI node, get the final value at
4126 // the specified iteration number.
4127 Constant *RV = getConstantEvolutionLoopExitValue(PN,
4128 BTCC->getValue()->getValue(),
4129 LI);
4130 if (RV) return getSCEV(RV);
4131 }
4132 }
4133
4134 // Okay, this is an expression that we cannot symbolically evaluate
4135 // into a SCEV. Check to see if it's possible to symbolically evaluate
4136 // the arguments into constants, and if so, try to constant propagate the
4137 // result. This is particularly useful for computing loop exit values.
4138 if (CanConstantFold(I)) {
4139 std::vector<Constant*> Operands;
4140 Operands.reserve(I->getNumOperands());
4141 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4142 Value *Op = I->getOperand(i);
4143 if (Constant *C = dyn_cast<Constant>(Op)) {
4144 Operands.push_back(C);
4145 } else {
4146 // If any of the operands is non-constant and if they are
4147 // non-integer and non-pointer, don't even try to analyze them
4148 // with scev techniques.
4149 if (!isSCEVable(Op->getType()))
4150 return V;
4151
4152 const SCEV *OpV = getSCEVAtScope(Op, L);
4153 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
4154 Constant *C = SC->getValue();
4155 if (C->getType() != Op->getType())
4156 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4157 Op->getType(),
4158 false),
4159 C, Op->getType());
4160 Operands.push_back(C);
4161 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
4162 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4163 if (C->getType() != Op->getType())
4164 C =
4165 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4166 Op->getType(),
4167 false),
4168 C, Op->getType());
4169 Operands.push_back(C);
4170 } else
4171 return V;
4172 } else {
4173 return V;
4174 }
4175 }
4176 }
4177
4178 Constant *C;
4179 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4180 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4181 Operands[0], Operands[1], TD);
4182 else
4183 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4184 &Operands[0], Operands.size(), TD);
4185 return getSCEV(C);
4186 }
4187 }
4188
4189 // This is some other type of SCEVUnknown, just return it.
4190 return V;
4191 }
4192
4193 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4194 // Avoid performing the look-up in the common case where the specified
4195 // expression has no loop-variant portions.
4196 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4197 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4198 if (OpAtScope != Comm->getOperand(i)) {
4199 // Okay, at least one of these operands is loop variant but might be
4200 // foldable. Build a new instance of the folded commutative expression.
4201 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4202 Comm->op_begin()+i);
4203 NewOps.push_back(OpAtScope);
4204
4205 for (++i; i != e; ++i) {
4206 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4207 NewOps.push_back(OpAtScope);
4208 }
4209 if (isa<SCEVAddExpr>(Comm))
4210 return getAddExpr(NewOps);
4211 if (isa<SCEVMulExpr>(Comm))
4212 return getMulExpr(NewOps);
4213 if (isa<SCEVSMaxExpr>(Comm))
4214 return getSMaxExpr(NewOps);
4215 if (isa<SCEVUMaxExpr>(Comm))
4216 return getUMaxExpr(NewOps);
4217 llvm_unreachable("Unknown commutative SCEV type!");
4218 }
4219 }
4220 // If we got here, all operands are loop invariant.
4221 return Comm;
4222 }
4223
4224 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4225 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4226 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4227 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4228 return Div; // must be loop invariant
4229 return getUDivExpr(LHS, RHS);
4230 }
4231
4232 // If this is a loop recurrence for a loop that does not contain L, then we
4233 // are dealing with the final value computed by the loop.
4234 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4235 if (!L || !AddRec->getLoop()->contains(L)) {
4236 // To evaluate this recurrence, we need to know how many times the AddRec
4237 // loop iterates. Compute this now.
4238 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4239 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4240
4241 // Then, evaluate the AddRec.
4242 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4243 }
4244 return AddRec;
4245 }
4246
4247 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4248 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4249 if (Op == Cast->getOperand())
4250 return Cast; // must be loop invariant
4251 return getZeroExtendExpr(Op, Cast->getType());
4252 }
4253
4254 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4255 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4256 if (Op == Cast->getOperand())
4257 return Cast; // must be loop invariant
4258 return getSignExtendExpr(Op, Cast->getType());
4259 }
4260
4261 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4262 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4263 if (Op == Cast->getOperand())
4264 return Cast; // must be loop invariant
4265 return getTruncateExpr(Op, Cast->getType());
4266 }
4267
4268 llvm_unreachable("Unknown SCEV type!");
4269 return 0;
4270}
4271
4272/// getSCEVAtScope - This is a convenience function which does
4273/// getSCEVAtScope(getSCEV(V), L).
4274const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4275 return getSCEVAtScope(getSCEV(V), L);
4276}
4277
4278/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4279/// following equation:
4280///
4281/// A * X = B (mod N)
4282///
4283/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4284/// A and B isn't important.
4285///
4286/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4287static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4288 ScalarEvolution &SE) {
4289 uint32_t BW = A.getBitWidth();
4290 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4291 assert(A != 0 && "A must be non-zero.");
4292
4293 // 1. D = gcd(A, N)
4294 //
4295 // The gcd of A and N may have only one prime factor: 2. The number of
4296 // trailing zeros in A is its multiplicity
4297 uint32_t Mult2 = A.countTrailingZeros();
4298 // D = 2^Mult2
4299
4300 // 2. Check if B is divisible by D.
4301 //
4302 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4303 // is not less than multiplicity of this prime factor for D.
4304 if (B.countTrailingZeros() < Mult2)
4305 return SE.getCouldNotCompute();
4306
4307 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4308 // modulo (N / D).
4309 //
4310 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4311 // bit width during computations.
4312 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4313 APInt Mod(BW + 1, 0);
4314 Mod.set(BW - Mult2); // Mod = N / D
4315 APInt I = AD.multiplicativeInverse(Mod);
4316
4317 // 4. Compute the minimum unsigned root of the equation:
4318 // I * (B / D) mod (N / D)
4319 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4320
4321 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4322 // bits.
4323 return SE.getConstant(Result.trunc(BW));
4324}
4325
4326/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4327/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4328/// might be the same) or two SCEVCouldNotCompute objects.
4329///
4330static std::pair<const SCEV *,const SCEV *>
4331SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4332 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4333 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4334 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4335 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4336
4337 // We currently can only solve this if the coefficients are constants.
4338 if (!LC || !MC || !NC) {
4339 const SCEV *CNC = SE.getCouldNotCompute();
4340 return std::make_pair(CNC, CNC);
4341 }
4342
4343 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4344 const APInt &L = LC->getValue()->getValue();
4345 const APInt &M = MC->getValue()->getValue();
4346 const APInt &N = NC->getValue()->getValue();
4347 APInt Two(BitWidth, 2);
4348 APInt Four(BitWidth, 4);
4349
4350 {
4351 using namespace APIntOps;
4352 const APInt& C = L;
4353 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4354 // The B coefficient is M-N/2
4355 APInt B(M);
4356 B -= sdiv(N,Two);
4357
4358 // The A coefficient is N/2
4359 APInt A(N.sdiv(Two));
4360
4361 // Compute the B^2-4ac term.
4362 APInt SqrtTerm(B);
4363 SqrtTerm *= B;
4364 SqrtTerm -= Four * (A * C);
4365
4366 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4367 // integer value or else APInt::sqrt() will assert.
4368 APInt SqrtVal(SqrtTerm.sqrt());
4369
4370 // Compute the two solutions for the quadratic formula.
4371 // The divisions must be performed as signed divisions.
4372 APInt NegB(-B);
4373 APInt TwoA( A << 1 );
4374 if (TwoA.isMinValue()) {
4375 const SCEV *CNC = SE.getCouldNotCompute();
4376 return std::make_pair(CNC, CNC);
4377 }
4378
4379 LLVMContext &Context = SE.getContext();
4380
4381 ConstantInt *Solution1 =
4382 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4383 ConstantInt *Solution2 =
4384 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4385
4386 return std::make_pair(SE.getConstant(Solution1),
4387 SE.getConstant(Solution2));
4388 } // end APIntOps namespace
4389}
4390
4391/// HowFarToZero - Return the number of times a backedge comparing the specified
4392/// value to zero will execute. If not computable, return CouldNotCompute.
4393const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4394 // If the value is a constant
4395 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4396 // If the value is already zero, the branch will execute zero times.
4397 if (C->getValue()->isZero()) return C;
4398 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4399 }
4400
4401 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4402 if (!AddRec || AddRec->getLoop() != L)
4403 return getCouldNotCompute();
4404
4405 if (AddRec->isAffine()) {
4406 // If this is an affine expression, the execution count of this branch is
4407 // the minimum unsigned root of the following equation:
4408 //
4409 // Start + Step*N = 0 (mod 2^BW)
4410 //
4411 // equivalent to:
4412 //
4413 // Step*N = -Start (mod 2^BW)
4414 //
4415 // where BW is the common bit width of Start and Step.
4416
4417 // Get the initial value for the loop.
4418 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4419 L->getParentLoop());
4420 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4421 L->getParentLoop());
4422
4423 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4424 // For now we handle only constant steps.
4425
4426 // First, handle unitary steps.
4427 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4428 return getNegativeSCEV(Start); // N = -Start (as unsigned)
4429 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4430 return Start; // N = Start (as unsigned)
4431
4432 // Then, try to solve the above equation provided that Start is constant.
4433 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4434 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4435 -StartC->getValue()->getValue(),
4436 *this);
4437 }
4438 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4439 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4440 // the quadratic equation to solve it.
4441 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4442 *this);
4443 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4444 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4445 if (R1) {
4446#if 0
4447 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4448 << " sol#2: " << *R2 << "\n";
4449#endif
4450 // Pick the smallest positive root value.
4451 if (ConstantInt *CB =
4452 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4453 R1->getValue(), R2->getValue()))) {
4454 if (CB->getZExtValue() == false)
4455 std::swap(R1, R2); // R1 is the minimum root now.
4456
4457 // We can only use this value if the chrec ends up with an exact zero
4458 // value at this index. When solving for "X*X != 5", for example, we
4459 // should not accept a root of 2.
4460 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4461 if (Val->isZero())
4462 return R1; // We found a quadratic root!
4463 }
4464 }
4465 }
4466
4467 return getCouldNotCompute();
4468}
4469
4470/// HowFarToNonZero - Return the number of times a backedge checking the
4471/// specified value for nonzero will execute. If not computable, return
4472/// CouldNotCompute
4473const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4474 // Loops that look like: while (X == 0) are very strange indeed. We don't
4475 // handle them yet except for the trivial case. This could be expanded in the
4476 // future as needed.
4477
4478 // If the value is a constant, check to see if it is known to be non-zero
4479 // already. If so, the backedge will execute zero times.
4480 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4481 if (!C->getValue()->isNullValue())
4482 return getIntegerSCEV(0, C->getType());
4483 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4484 }
4485
4486 // We could implement others, but I really doubt anyone writes loops like
4487 // this, and if they did, they would already be constant folded.
4488 return getCouldNotCompute();
4489}
4490
4491/// getLoopPredecessor - If the given loop's header has exactly one unique
4492/// predecessor outside the loop, return it. Otherwise return null.
4493///
4494BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4495 BasicBlock *Header = L->getHeader();
4496 BasicBlock *Pred = 0;
4497 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4498 PI != E; ++PI)
4499 if (!L->contains(*PI)) {
4500 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4501 Pred = *PI;
4502 }
4503 return Pred;
4504}
4505
4506/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4507/// (which may not be an immediate predecessor) which has exactly one
4508/// successor from which BB is reachable, or null if no such block is
4509/// found.
4510///
4511BasicBlock *
4512ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4513 // If the block has a unique predecessor, then there is no path from the
4514 // predecessor to the block that does not go through the direct edge
4515 // from the predecessor to the block.
4516 if (BasicBlock *Pred = BB->getSinglePredecessor())
4517 return Pred;
4518
4519 // A loop's header is defined to be a block that dominates the loop.
4520 // If the header has a unique predecessor outside the loop, it must be
4521 // a block that has exactly one successor that can reach the loop.
4522 if (Loop *L = LI->getLoopFor(BB))
4523 return getLoopPredecessor(L);
4524
4525 return 0;
4526}
4527
4528/// HasSameValue - SCEV structural equivalence is usually sufficient for
4529/// testing whether two expressions are equal, however for the purposes of
4530/// looking for a condition guarding a loop, it can be useful to be a little
4531/// more general, since a front-end may have replicated the controlling
4532/// expression.
4533///
4534static bool HasSameValue(const SCEV *A, const SCEV *B) {
4535 // Quick check to see if they are the same SCEV.
4536 if (A == B) return true;
4537
4538 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4539 // two different instructions with the same value. Check for this case.
4540 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4541 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4542 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4543 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4544 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4545 return true;
4546
4547 // Otherwise assume they may have a different value.
4548 return false;
4549}
4550
4551bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4552 return getSignedRange(S).getSignedMax().isNegative();
4553}
4554
4555bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4556 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4557}
4558
4559bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4560 return !getSignedRange(S).getSignedMin().isNegative();
4561}
4562
4563bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4564 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4565}
4566
4567bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4568 return isKnownNegative(S) || isKnownPositive(S);
4569}
4570
4571bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4572 const SCEV *LHS, const SCEV *RHS) {
4573
4574 if (HasSameValue(LHS, RHS))
4575 return ICmpInst::isTrueWhenEqual(Pred);
4576
4577 switch (Pred) {
4578 default:
4579 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4580 break;
4581 case ICmpInst::ICMP_SGT:
4582 Pred = ICmpInst::ICMP_SLT;
4583 std::swap(LHS, RHS);
4584 case ICmpInst::ICMP_SLT: {
4585 ConstantRange LHSRange = getSignedRange(LHS);
4586 ConstantRange RHSRange = getSignedRange(RHS);
4587 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4588 return true;
4589 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4590 return false;
4591 break;
4592 }
4593 case ICmpInst::ICMP_SGE:
4594 Pred = ICmpInst::ICMP_SLE;
4595 std::swap(LHS, RHS);
4596 case ICmpInst::ICMP_SLE: {
4597 ConstantRange LHSRange = getSignedRange(LHS);
4598 ConstantRange RHSRange = getSignedRange(RHS);
4599 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4600 return true;
4601 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4602 return false;
4603 break;
4604 }
4605 case ICmpInst::ICMP_UGT:
4606 Pred = ICmpInst::ICMP_ULT;
4607 std::swap(LHS, RHS);
4608 case ICmpInst::ICMP_ULT: {
4609 ConstantRange LHSRange = getUnsignedRange(LHS);
4610 ConstantRange RHSRange = getUnsignedRange(RHS);
4611 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4612 return true;
4613 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4614 return false;
4615 break;
4616 }
4617 case ICmpInst::ICMP_UGE:
4618 Pred = ICmpInst::ICMP_ULE;
4619 std::swap(LHS, RHS);
4620 case ICmpInst::ICMP_ULE: {
4621 ConstantRange LHSRange = getUnsignedRange(LHS);
4622 ConstantRange RHSRange = getUnsignedRange(RHS);
4623 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4624 return true;
4625 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4626 return false;
4627 break;
4628 }
4629 case ICmpInst::ICMP_NE: {
4630 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4631 return true;
4632 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4633 return true;
4634
4635 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4636 if (isKnownNonZero(Diff))
4637 return true;
4638 break;
4639 }
4640 case ICmpInst::ICMP_EQ:
4641 // The check at the top of the function catches the case where
4642 // the values are known to be equal.
4643 break;
4644 }
4645 return false;
4646}
4647
4648/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4649/// protected by a conditional between LHS and RHS. This is used to
4650/// to eliminate casts.
4651bool
4652ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4653 ICmpInst::Predicate Pred,
4654 const SCEV *LHS, const SCEV *RHS) {
4655 // Interpret a null as meaning no loop, where there is obviously no guard
4656 // (interprocedural conditions notwithstanding).
4657 if (!L) return true;
4658
4659 BasicBlock *Latch = L->getLoopLatch();
4660 if (!Latch)
4661 return false;
4662
4663 BranchInst *LoopContinuePredicate =
4664 dyn_cast<BranchInst>(Latch->getTerminator());
4665 if (!LoopContinuePredicate ||
4666 LoopContinuePredicate->isUnconditional())
4667 return false;
4668
4669 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4670 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
4671}
4672
4673/// isLoopGuardedByCond - Test whether entry to the loop is protected
4674/// by a conditional between LHS and RHS. This is used to help avoid max
4675/// expressions in loop trip counts, and to eliminate casts.
4676bool
4677ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4678 ICmpInst::Predicate Pred,
4679 const SCEV *LHS, const SCEV *RHS) {
4680 // Interpret a null as meaning no loop, where there is obviously no guard
4681 // (interprocedural conditions notwithstanding).
4682 if (!L) return false;
4683
4684 BasicBlock *Predecessor = getLoopPredecessor(L);
4685 BasicBlock *PredecessorDest = L->getHeader();
4686
4687 // Starting at the loop predecessor, climb up the predecessor chain, as long
4688 // as there are predecessors that can be found that have unique successors
4689 // leading to the original header.
4690 for (; Predecessor;
4691 PredecessorDest = Predecessor,
4692 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
4693
4694 BranchInst *LoopEntryPredicate =
4695 dyn_cast<BranchInst>(Predecessor->getTerminator());
4696 if (!LoopEntryPredicate ||
4697 LoopEntryPredicate->isUnconditional())
4698 continue;
4699
4700 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4701 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
4702 return true;
4703 }
4704
4705 return false;
4706}
4707
4708/// isImpliedCond - Test whether the condition described by Pred, LHS,
4709/// and RHS is true whenever the given Cond value evaluates to true.
4710bool ScalarEvolution::isImpliedCond(Value *CondValue,
4711 ICmpInst::Predicate Pred,
4712 const SCEV *LHS, const SCEV *RHS,
4713 bool Inverse) {
4714 // Recursivly handle And and Or conditions.
4715 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4716 if (BO->getOpcode() == Instruction::And) {
4717 if (!Inverse)
4718 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4719 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4720 } else if (BO->getOpcode() == Instruction::Or) {
4721 if (Inverse)
4722 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4723 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4724 }
4725 }
4726
4727 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4728 if (!ICI) return false;
4729
4730 // Bail if the ICmp's operands' types are wider than the needed type
4731 // before attempting to call getSCEV on them. This avoids infinite
4732 // recursion, since the analysis of widening casts can require loop
4733 // exit condition information for overflow checking, which would
4734 // lead back here.
4735 if (getTypeSizeInBits(LHS->getType()) <
4736 getTypeSizeInBits(ICI->getOperand(0)->getType()))
4737 return false;
4738
4739 // Now that we found a conditional branch that dominates the loop, check to
4740 // see if it is the comparison we are looking for.
4741 ICmpInst::Predicate FoundPred;
4742 if (Inverse)
4743 FoundPred = ICI->getInversePredicate();
4744 else
4745 FoundPred = ICI->getPredicate();
4746
4747 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4748 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
4749
4750 // Balance the types. The case where FoundLHS' type is wider than
4751 // LHS' type is checked for above.
4752 if (getTypeSizeInBits(LHS->getType()) >
4753 getTypeSizeInBits(FoundLHS->getType())) {
4754 if (CmpInst::isSigned(Pred)) {
4755 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4756 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4757 } else {
4758 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4759 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4760 }
4761 }
4762
4763 // Canonicalize the query to match the way instcombine will have
4764 // canonicalized the comparison.
4765 // First, put a constant operand on the right.
4766 if (isa<SCEVConstant>(LHS)) {
4767 std::swap(LHS, RHS);
4768 Pred = ICmpInst::getSwappedPredicate(Pred);
4769 }
4770 // Then, canonicalize comparisons with boundary cases.
4771 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4772 const APInt &RA = RC->getValue()->getValue();
4773 switch (Pred) {
4774 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4775 case ICmpInst::ICMP_EQ:
4776 case ICmpInst::ICMP_NE:
4777 break;
4778 case ICmpInst::ICMP_UGE:
4779 if ((RA - 1).isMinValue()) {
4780 Pred = ICmpInst::ICMP_NE;
4781 RHS = getConstant(RA - 1);
4782 break;
4783 }
4784 if (RA.isMaxValue()) {
4785 Pred = ICmpInst::ICMP_EQ;
4786 break;
4787 }
4788 if (RA.isMinValue()) return true;
4789 break;
4790 case ICmpInst::ICMP_ULE:
4791 if ((RA + 1).isMaxValue()) {
4792 Pred = ICmpInst::ICMP_NE;
4793 RHS = getConstant(RA + 1);
4794 break;
4795 }
4796 if (RA.isMinValue()) {
4797 Pred = ICmpInst::ICMP_EQ;
4798 break;
4799 }
4800 if (RA.isMaxValue()) return true;
4801 break;
4802 case ICmpInst::ICMP_SGE:
4803 if ((RA - 1).isMinSignedValue()) {
4804 Pred = ICmpInst::ICMP_NE;
4805 RHS = getConstant(RA - 1);
4806 break;
4807 }
4808 if (RA.isMaxSignedValue()) {
4809 Pred = ICmpInst::ICMP_EQ;
4810 break;
4811 }
4812 if (RA.isMinSignedValue()) return true;
4813 break;
4814 case ICmpInst::ICMP_SLE:
4815 if ((RA + 1).isMaxSignedValue()) {
4816 Pred = ICmpInst::ICMP_NE;
4817 RHS = getConstant(RA + 1);
4818 break;
4819 }
4820 if (RA.isMinSignedValue()) {
4821 Pred = ICmpInst::ICMP_EQ;
4822 break;
4823 }
4824 if (RA.isMaxSignedValue()) return true;
4825 break;
4826 case ICmpInst::ICMP_UGT:
4827 if (RA.isMinValue()) {
4828 Pred = ICmpInst::ICMP_NE;
4829 break;
4830 }
4831 if ((RA + 1).isMaxValue()) {
4832 Pred = ICmpInst::ICMP_EQ;
4833 RHS = getConstant(RA + 1);
4834 break;
4835 }
4836 if (RA.isMaxValue()) return false;
4837 break;
4838 case ICmpInst::ICMP_ULT:
4839 if (RA.isMaxValue()) {
4840 Pred = ICmpInst::ICMP_NE;
4841 break;
4842 }
4843 if ((RA - 1).isMinValue()) {
4844 Pred = ICmpInst::ICMP_EQ;
4845 RHS = getConstant(RA - 1);
4846 break;
4847 }
4848 if (RA.isMinValue()) return false;
4849 break;
4850 case ICmpInst::ICMP_SGT:
4851 if (RA.isMinSignedValue()) {
4852 Pred = ICmpInst::ICMP_NE;
4853 break;
4854 }
4855 if ((RA + 1).isMaxSignedValue()) {
4856 Pred = ICmpInst::ICMP_EQ;
4857 RHS = getConstant(RA + 1);
4858 break;
4859 }
4860 if (RA.isMaxSignedValue()) return false;
4861 break;
4862 case ICmpInst::ICMP_SLT:
4863 if (RA.isMaxSignedValue()) {
4864 Pred = ICmpInst::ICMP_NE;
4865 break;
4866 }
4867 if ((RA - 1).isMinSignedValue()) {
4868 Pred = ICmpInst::ICMP_EQ;
4869 RHS = getConstant(RA - 1);
4870 break;
4871 }
4872 if (RA.isMinSignedValue()) return false;
4873 break;
4874 }
4875 }
4876
4877 // Check to see if we can make the LHS or RHS match.
4878 if (LHS == FoundRHS || RHS == FoundLHS) {
4879 if (isa<SCEVConstant>(RHS)) {
4880 std::swap(FoundLHS, FoundRHS);
4881 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4882 } else {
4883 std::swap(LHS, RHS);
4884 Pred = ICmpInst::getSwappedPredicate(Pred);
4885 }
4886 }
4887
4888 // Check whether the found predicate is the same as the desired predicate.
4889 if (FoundPred == Pred)
4890 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4891
4892 // Check whether swapping the found predicate makes it the same as the
4893 // desired predicate.
4894 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4895 if (isa<SCEVConstant>(RHS))
4896 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4897 else
4898 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4899 RHS, LHS, FoundLHS, FoundRHS);
4900 }
4901
4902 // Check whether the actual condition is beyond sufficient.
4903 if (FoundPred == ICmpInst::ICMP_EQ)
4904 if (ICmpInst::isTrueWhenEqual(Pred))
4905 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4906 return true;
4907 if (Pred == ICmpInst::ICMP_NE)
4908 if (!ICmpInst::isTrueWhenEqual(FoundPred))
4909 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4910 return true;
4911
4912 // Otherwise assume the worst.
4913 return false;
4914}
4915
4916/// isImpliedCondOperands - Test whether the condition described by Pred,
4917/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4918/// and FoundRHS is true.
4919bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4920 const SCEV *LHS, const SCEV *RHS,
4921 const SCEV *FoundLHS,
4922 const SCEV *FoundRHS) {
4923 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4924 FoundLHS, FoundRHS) ||
4925 // ~x < ~y --> x > y
4926 isImpliedCondOperandsHelper(Pred, LHS, RHS,
4927 getNotSCEV(FoundRHS),
4928 getNotSCEV(FoundLHS));
4929}
4930
4931/// isImpliedCondOperandsHelper - Test whether the condition described by
4932/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4933/// FoundLHS, and FoundRHS is true.
4934bool
4935ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4936 const SCEV *LHS, const SCEV *RHS,
4937 const SCEV *FoundLHS,
4938 const SCEV *FoundRHS) {
4939 switch (Pred) {
4940 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4941 case ICmpInst::ICMP_EQ:
4942 case ICmpInst::ICMP_NE:
4943 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4944 return true;
4945 break;
4946 case ICmpInst::ICMP_SLT:
4947 case ICmpInst::ICMP_SLE:
4948 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4949 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4950 return true;
4951 break;
4952 case ICmpInst::ICMP_SGT:
4953 case ICmpInst::ICMP_SGE:
4954 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4955 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4956 return true;
4957 break;
4958 case ICmpInst::ICMP_ULT:
4959 case ICmpInst::ICMP_ULE:
4960 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4961 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4962 return true;
4963 break;
4964 case ICmpInst::ICMP_UGT:
4965 case ICmpInst::ICMP_UGE:
4966 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4967 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4968 return true;
4969 break;
4970 }
4971
4972 return false;
4973}
4974
4975/// getBECount - Subtract the end and start values and divide by the step,
4976/// rounding up, to get the number of times the backedge is executed. Return
4977/// CouldNotCompute if an intermediate computation overflows.
4978const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
4979 const SCEV *End,
4980 const SCEV *Step,
4981 bool NoWrap) {
4982 assert(!isKnownNegative(Step) &&
4983 "This code doesn't handle negative strides yet!");
4984
4985 const Type *Ty = Start->getType();
4986 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4987 const SCEV *Diff = getMinusSCEV(End, Start);
4988 const SCEV *RoundUp = getAddExpr(Step, NegOne);
4989
4990 // Add an adjustment to the difference between End and Start so that
4991 // the division will effectively round up.
4992 const SCEV *Add = getAddExpr(Diff, RoundUp);
4993
4994 if (!NoWrap) {
4995 // Check Add for unsigned overflow.
4996 // TODO: More sophisticated things could be done here.
4997 const Type *WideTy = IntegerType::get(getContext(),
4998 getTypeSizeInBits(Ty) + 1);
4999 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5000 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5001 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5002 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5003 return getCouldNotCompute();
5004 }
5005
5006 return getUDivExpr(Add, Step);
5007}
5008
5009/// HowManyLessThans - Return the number of times a backedge containing the
5010/// specified less-than comparison will execute. If not computable, return
5011/// CouldNotCompute.
5012ScalarEvolution::BackedgeTakenInfo
5013ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5014 const Loop *L, bool isSigned) {
5015 // Only handle: "ADDREC < LoopInvariant".
5016 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5017
5018 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5019 if (!AddRec || AddRec->getLoop() != L)
5020 return getCouldNotCompute();
5021
5022 // Check to see if we have a flag which makes analysis easy.
5023 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5024 AddRec->hasNoUnsignedWrap();
5025
5026 if (AddRec->isAffine()) {
5027 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5028 const SCEV *Step = AddRec->getStepRecurrence(*this);
5029
5030 if (Step->isZero())
5031 return getCouldNotCompute();
5032 if (Step->isOne()) {
5033 // With unit stride, the iteration never steps past the limit value.
5034 } else if (isKnownPositive(Step)) {
5035 // Test whether a positive iteration can step past the limit
5036 // value and past the maximum value for its type in a single step.
5037 // Note that it's not sufficient to check NoWrap here, because even
5038 // though the value after a wrap is undefined, it's not undefined
5039 // behavior, so if wrap does occur, the loop could either terminate or
5040 // loop infinitely, but in either case, the loop is guaranteed to
5041 // iterate at least until the iteration where the wrapping occurs.
5042 const SCEV *One = getIntegerSCEV(1, Step->getType());
5043 if (isSigned) {
5044 APInt Max = APInt::getSignedMaxValue(BitWidth);
5045 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5046 .slt(getSignedRange(RHS).getSignedMax()))
5047 return getCouldNotCompute();
5048 } else {
5049 APInt Max = APInt::getMaxValue(BitWidth);
5050 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5051 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5052 return getCouldNotCompute();
5053 }
5054 } else
5055 // TODO: Handle negative strides here and below.
5056 return getCouldNotCompute();
5057
5058 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5059 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5060 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5061 // treat m-n as signed nor unsigned due to overflow possibility.
5062
5063 // First, we get the value of the LHS in the first iteration: n
5064 const SCEV *Start = AddRec->getOperand(0);
5065
5066 // Determine the minimum constant start value.
5067 const SCEV *MinStart = getConstant(isSigned ?
5068 getSignedRange(Start).getSignedMin() :
5069 getUnsignedRange(Start).getUnsignedMin());
5070
5071 // If we know that the condition is true in order to enter the loop,
5072 // then we know that it will run exactly (m-n)/s times. Otherwise, we
5073 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5074 // the division must round up.
5075 const SCEV *End = RHS;
5076 if (!isLoopGuardedByCond(L,
5077 isSigned ? ICmpInst::ICMP_SLT :
5078 ICmpInst::ICMP_ULT,
5079 getMinusSCEV(Start, Step), RHS))
5080 End = isSigned ? getSMaxExpr(RHS, Start)
5081 : getUMaxExpr(RHS, Start);
5082
5083 // Determine the maximum constant end value.
5084 const SCEV *MaxEnd = getConstant(isSigned ?
5085 getSignedRange(End).getSignedMax() :
5086 getUnsignedRange(End).getUnsignedMax());
5087
5088 // If MaxEnd is within a step of the maximum integer value in its type,
5089 // adjust it down to the minimum value which would produce the same effect.
5090 // This allows the subsequent ceiling divison of (N+(step-1))/step to
5091 // compute the correct value.
5092 const SCEV *StepMinusOne = getMinusSCEV(Step,
5093 getIntegerSCEV(1, Step->getType()));
5094 MaxEnd = isSigned ?
5095 getSMinExpr(MaxEnd,
5096 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5097 StepMinusOne)) :
5098 getUMinExpr(MaxEnd,
5099 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5100 StepMinusOne));
5101
5102 // Finally, we subtract these two values and divide, rounding up, to get
5103 // the number of times the backedge is executed.
5104 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5105
5106 // The maximum backedge count is similar, except using the minimum start
5107 // value and the maximum end value.
5108 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5109
5110 return BackedgeTakenInfo(BECount, MaxBECount);
5111 }
5112
5113 return getCouldNotCompute();
5114}
5115
5116/// getNumIterationsInRange - Return the number of iterations of this loop that
5117/// produce values in the specified constant range. Another way of looking at
5118/// this is that it returns the first iteration number where the value is not in
5119/// the condition, thus computing the exit count. If the iteration count can't
5120/// be computed, an instance of SCEVCouldNotCompute is returned.
5121const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5122 ScalarEvolution &SE) const {
5123 if (Range.isFullSet()) // Infinite loop.
5124 return SE.getCouldNotCompute();
5125
5126 // If the start is a non-zero constant, shift the range to simplify things.
5127 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5128 if (!SC->getValue()->isZero()) {
5129 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5130 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
5131 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5132 if (const SCEVAddRecExpr *ShiftedAddRec =
5133 dyn_cast<SCEVAddRecExpr>(Shifted))
5134 return ShiftedAddRec->getNumIterationsInRange(
5135 Range.subtract(SC->getValue()->getValue()), SE);
5136 // This is strange and shouldn't happen.
5137 return SE.getCouldNotCompute();
5138 }
5139
5140 // The only time we can solve this is when we have all constant indices.
5141 // Otherwise, we cannot determine the overflow conditions.
5142 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5143 if (!isa<SCEVConstant>(getOperand(i)))
5144 return SE.getCouldNotCompute();
5145
5146
5147 // Okay at this point we know that all elements of the chrec are constants and
5148 // that the start element is zero.
5149
5150 // First check to see if the range contains zero. If not, the first
5151 // iteration exits.
5152 unsigned BitWidth = SE.getTypeSizeInBits(getType());
5153 if (!Range.contains(APInt(BitWidth, 0)))
5154 return SE.getIntegerSCEV(0, getType());
5155
5156 if (isAffine()) {
5157 // If this is an affine expression then we have this situation:
5158 // Solve {0,+,A} in Range === Ax in Range
5159
5160 // We know that zero is in the range. If A is positive then we know that
5161 // the upper value of the range must be the first possible exit value.
5162 // If A is negative then the lower of the range is the last possible loop
5163 // value. Also note that we already checked for a full range.
5164 APInt One(BitWidth,1);
5165 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5166 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5167
5168 // The exit value should be (End+A)/A.
5169 APInt ExitVal = (End + A).udiv(A);
5170 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5171
5172 // Evaluate at the exit value. If we really did fall out of the valid
5173 // range, then we computed our trip count, otherwise wrap around or other
5174 // things must have happened.
5175 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5176 if (Range.contains(Val->getValue()))
5177 return SE.getCouldNotCompute(); // Something strange happened
5178
5179 // Ensure that the previous value is in the range. This is a sanity check.
5180 assert(Range.contains(
5181 EvaluateConstantChrecAtConstant(this,
5182 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5183 "Linear scev computation is off in a bad way!");
5184 return SE.getConstant(ExitValue);
5185 } else if (isQuadratic()) {
5186 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5187 // quadratic equation to solve it. To do this, we must frame our problem in
5188 // terms of figuring out when zero is crossed, instead of when
5189 // Range.getUpper() is crossed.
5190 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5191 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5192 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5193
5194 // Next, solve the constructed addrec
5195 std::pair<const SCEV *,const SCEV *> Roots =
5196 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5197 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5198 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5199 if (R1) {
5200 // Pick the smallest positive root value.
5201 if (ConstantInt *CB =
5202 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5203 R1->getValue(), R2->getValue()))) {
5204 if (CB->getZExtValue() == false)
5205 std::swap(R1, R2); // R1 is the minimum root now.
5206
5207 // Make sure the root is not off by one. The returned iteration should
5208 // not be in the range, but the previous one should be. When solving
5209 // for "X*X < 5", for example, we should not return a root of 2.
5210 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5211 R1->getValue(),
5212 SE);
5213 if (Range.contains(R1Val->getValue())) {
5214 // The next iteration must be out of the range...
5215 ConstantInt *NextVal =
5216 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5217
5218 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5219 if (!Range.contains(R1Val->getValue()))
5220 return SE.getConstant(NextVal);
5221 return SE.getCouldNotCompute(); // Something strange happened
5222 }
5223
5224 // If R1 was not in the range, then it is a good return value. Make
5225 // sure that R1-1 WAS in the range though, just in case.
5226 ConstantInt *NextVal =
5227 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5228 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5229 if (Range.contains(R1Val->getValue()))
5230 return R1;
5231 return SE.getCouldNotCompute(); // Something strange happened
5232 }
5233 }
5234 }
5235
5236 return SE.getCouldNotCompute();
5237}
5238
5239
5240
5241//===----------------------------------------------------------------------===//
5242// SCEVCallbackVH Class Implementation
5243//===----------------------------------------------------------------------===//
5244
5245void ScalarEvolution::SCEVCallbackVH::deleted() {
5246 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5247 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5248 SE->ConstantEvolutionLoopExitValue.erase(PN);
5249 SE->Scalars.erase(getValPtr());
5250 // this now dangles!
5251}
5252
5253void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
5254 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5255
5256 // Forget all the expressions associated with users of the old value,
5257 // so that future queries will recompute the expressions using the new
5258 // value.
5259 SmallVector<User *, 16> Worklist;
5260 SmallPtrSet<User *, 8> Visited;
5261 Value *Old = getValPtr();
5262 bool DeleteOld = false;
5263 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5264 UI != UE; ++UI)
5265 Worklist.push_back(*UI);
5266 while (!Worklist.empty()) {
5267 User *U = Worklist.pop_back_val();
5268 // Deleting the Old value will cause this to dangle. Postpone
5269 // that until everything else is done.
5270 if (U == Old) {
5271 DeleteOld = true;
5272 continue;
5273 }
5274 if (!Visited.insert(U))
5275 continue;
5276 if (PHINode *PN = dyn_cast<PHINode>(U))
5277 SE->ConstantEvolutionLoopExitValue.erase(PN);
5278 SE->Scalars.erase(U);
5279 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5280 UI != UE; ++UI)
5281 Worklist.push_back(*UI);
5282 }
5283 // Delete the Old value if it (indirectly) references itself.
5284 if (DeleteOld) {
5285 if (PHINode *PN = dyn_cast<PHINode>(Old))
5286 SE->ConstantEvolutionLoopExitValue.erase(PN);
5287 SE->Scalars.erase(Old);
5288 // this now dangles!
5289 }
5290 // this may dangle!
5291}
5292
5293ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5294 : CallbackVH(V), SE(se) {}
5295
5296//===----------------------------------------------------------------------===//
5297// ScalarEvolution Class Implementation
5298//===----------------------------------------------------------------------===//
5299
5300ScalarEvolution::ScalarEvolution()
5301 : FunctionPass(&ID) {
5302}
5303
5304bool ScalarEvolution::runOnFunction(Function &F) {
5305 this->F = &F;
5306 LI = &getAnalysis<LoopInfo>();
5307 DT = &getAnalysis<DominatorTree>();
5308 TD = getAnalysisIfAvailable<TargetData>();
5309 return false;
5310}
5311
5312void ScalarEvolution::releaseMemory() {
5313 Scalars.clear();
5314 BackedgeTakenCounts.clear();
5315 ConstantEvolutionLoopExitValue.clear();
5316 ValuesAtScopes.clear();
5317 UniqueSCEVs.clear();
5318 SCEVAllocator.Reset();
5319}
5320
5321void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5322 AU.setPreservesAll();
5323 AU.addRequiredTransitive<LoopInfo>();
5324 AU.addRequiredTransitive<DominatorTree>();
5325}
5326
5327bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5328 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5329}
5330
5331static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5332 const Loop *L) {
5333 // Print all inner loops first
5334 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5335 PrintLoopInfo(OS, SE, *I);
5336
5337 OS << "Loop ";
5338 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5339 OS << ": ";
5340
5341 SmallVector<BasicBlock *, 8> ExitBlocks;
5342 L->getExitBlocks(ExitBlocks);
5343 if (ExitBlocks.size() != 1)
5344 OS << "<multiple exits> ";
5345
5346 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5347 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5348 } else {
5349 OS << "Unpredictable backedge-taken count. ";
5350 }
5351
5352 OS << "\n"
5353 "Loop ";
5354 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5355 OS << ": ";
5356
5357 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5358 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5359 } else {
5360 OS << "Unpredictable max backedge-taken count. ";
5361 }
5362
5363 OS << "\n";
5364}
5365
5366void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5367 // ScalarEvolution's implementaiton of the print method is to print
5368 // out SCEV values of all instructions that are interesting. Doing
5369 // this potentially causes it to create new SCEV objects though,
5370 // which technically conflicts with the const qualifier. This isn't
5371 // observable from outside the class though, so casting away the
5372 // const isn't dangerous.
5373 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5374
5375 OS << "Classifying expressions for: ";
5376 WriteAsOperand(OS, F, /*PrintType=*/false);
5377 OS << "\n";
5378 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5379 if (isSCEVable(I->getType())) {
5380 OS << *I << '\n';
5381 OS << " --> ";
5382 const SCEV *SV = SE.getSCEV(&*I);
5383 SV->print(OS);
5384
5385 const Loop *L = LI->getLoopFor((*I).getParent());
5386
5387 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5388 if (AtUse != SV) {
5389 OS << " --> ";
5390 AtUse->print(OS);
5391 }
5392
5393 if (L) {
5394 OS << "\t\t" "Exits: ";
5395 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5396 if (!ExitValue->isLoopInvariant(L)) {
5397 OS << "<<Unknown>>";
5398 } else {
5399 OS << *ExitValue;
5400 }
5401 }
5402
5403 OS << "\n";
5404 }
5405
5406 OS << "Determining loop execution counts for: ";
5407 WriteAsOperand(OS, F, /*PrintType=*/false);
5408 OS << "\n";
5409 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5410 PrintLoopInfo(OS, &SE, *I);
5411}
5412