blob: 5dd65691a3d1f2449624a6bf6fffd117c72e3dbf [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30/// Run: module ::= toplevelentity*
31bool LLParser::Run() {
32 // Prime the lexer.
33 Lex.Lex();
34
35 return ParseTopLevelEntities() ||
36 ValidateEndOfModule();
37}
38
39/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
40/// module.
41bool LLParser::ValidateEndOfModule() {
42 // Update auto-upgraded malloc calls to "malloc".
43 // FIXME: Remove in LLVM 3.0.
44 if (MallocF) {
45 MallocF->setName("malloc");
46 // If setName() does not set the name to "malloc", then there is already a
47 // declaration of "malloc". In that case, iterate over all calls to MallocF
48 // and get them to call the declared "malloc" instead.
49 if (MallocF->getName() != "malloc") {
50 Constant *RealMallocF = M->getFunction("malloc");
51 if (RealMallocF->getType() != MallocF->getType())
52 RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
53 MallocF->replaceAllUsesWith(RealMallocF);
54 MallocF->eraseFromParent();
55 MallocF = NULL;
56 }
57 }
58
59
60 // If there are entries in ForwardRefBlockAddresses at this point, they are
61 // references after the function was defined. Resolve those now.
62 while (!ForwardRefBlockAddresses.empty()) {
63 // Okay, we are referencing an already-parsed function, resolve them now.
64 Function *TheFn = 0;
65 const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
66 if (Fn.Kind == ValID::t_GlobalName)
67 TheFn = M->getFunction(Fn.StrVal);
68 else if (Fn.UIntVal < NumberedVals.size())
69 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
70
71 if (TheFn == 0)
72 return Error(Fn.Loc, "unknown function referenced by blockaddress");
73
74 // Resolve all these references.
75 if (ResolveForwardRefBlockAddresses(TheFn,
76 ForwardRefBlockAddresses.begin()->second,
77 0))
78 return true;
79
80 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
81 }
82
83
84 if (!ForwardRefTypes.empty())
85 return Error(ForwardRefTypes.begin()->second.second,
86 "use of undefined type named '" +
87 ForwardRefTypes.begin()->first + "'");
88 if (!ForwardRefTypeIDs.empty())
89 return Error(ForwardRefTypeIDs.begin()->second.second,
90 "use of undefined type '%" +
91 utostr(ForwardRefTypeIDs.begin()->first) + "'");
92
93 if (!ForwardRefVals.empty())
94 return Error(ForwardRefVals.begin()->second.second,
95 "use of undefined value '@" + ForwardRefVals.begin()->first +
96 "'");
97
98 if (!ForwardRefValIDs.empty())
99 return Error(ForwardRefValIDs.begin()->second.second,
100 "use of undefined value '@" +
101 utostr(ForwardRefValIDs.begin()->first) + "'");
102
103 if (!ForwardRefMDNodes.empty())
104 return Error(ForwardRefMDNodes.begin()->second.second,
105 "use of undefined metadata '!" +
106 utostr(ForwardRefMDNodes.begin()->first) + "'");
107
108
109 // Look for intrinsic functions and CallInst that need to be upgraded
110 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
111 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
112
113 // Check debug info intrinsics.
114 CheckDebugInfoIntrinsics(M);
115 return false;
116}
117
118bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
119 std::vector<std::pair<ValID, GlobalValue*> > &Refs,
120 PerFunctionState *PFS) {
121 // Loop over all the references, resolving them.
122 for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
123 BasicBlock *Res;
124 if (PFS) {
125 if (Refs[i].first.Kind == ValID::t_LocalName)
126 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
127 else
128 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
129 } else if (Refs[i].first.Kind == ValID::t_LocalID) {
130 return Error(Refs[i].first.Loc,
131 "cannot take address of numeric label after the function is defined");
132 } else {
133 Res = dyn_cast_or_null<BasicBlock>(
134 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
135 }
136
137 if (Res == 0)
138 return Error(Refs[i].first.Loc,
139 "referenced value is not a basic block");
140
141 // Get the BlockAddress for this and update references to use it.
142 BlockAddress *BA = BlockAddress::get(TheFn, Res);
143 Refs[i].second->replaceAllUsesWith(BA);
144 Refs[i].second->eraseFromParent();
145 }
146 return false;
147}
148
149
150//===----------------------------------------------------------------------===//
151// Top-Level Entities
152//===----------------------------------------------------------------------===//
153
154bool LLParser::ParseTopLevelEntities() {
155 while (1) {
156 switch (Lex.getKind()) {
157 default: return TokError("expected top-level entity");
158 case lltok::Eof: return false;
159 //case lltok::kw_define:
160 case lltok::kw_declare: if (ParseDeclare()) return true; break;
161 case lltok::kw_define: if (ParseDefine()) return true; break;
162 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
163 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
164 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
165 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
166 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
167 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
168 case lltok::LocalVar: if (ParseNamedType()) return true; break;
169 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
170 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
171 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
172 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
173
174 // The Global variable production with no name can have many different
175 // optional leading prefixes, the production is:
176 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
177 // OptionalAddrSpace ('constant'|'global') ...
178 case lltok::kw_private : // OptionalLinkage
179 case lltok::kw_linker_private: // OptionalLinkage
180 case lltok::kw_internal: // OptionalLinkage
181 case lltok::kw_weak: // OptionalLinkage
182 case lltok::kw_weak_odr: // OptionalLinkage
183 case lltok::kw_linkonce: // OptionalLinkage
184 case lltok::kw_linkonce_odr: // OptionalLinkage
185 case lltok::kw_appending: // OptionalLinkage
186 case lltok::kw_dllexport: // OptionalLinkage
187 case lltok::kw_common: // OptionalLinkage
188 case lltok::kw_dllimport: // OptionalLinkage
189 case lltok::kw_extern_weak: // OptionalLinkage
190 case lltok::kw_external: { // OptionalLinkage
191 unsigned Linkage, Visibility;
192 if (ParseOptionalLinkage(Linkage) ||
193 ParseOptionalVisibility(Visibility) ||
194 ParseGlobal("", SMLoc(), Linkage, true, Visibility))
195 return true;
196 break;
197 }
198 case lltok::kw_default: // OptionalVisibility
199 case lltok::kw_hidden: // OptionalVisibility
200 case lltok::kw_protected: { // OptionalVisibility
201 unsigned Visibility;
202 if (ParseOptionalVisibility(Visibility) ||
203 ParseGlobal("", SMLoc(), 0, false, Visibility))
204 return true;
205 break;
206 }
207
208 case lltok::kw_thread_local: // OptionalThreadLocal
209 case lltok::kw_addrspace: // OptionalAddrSpace
210 case lltok::kw_constant: // GlobalType
211 case lltok::kw_global: // GlobalType
212 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
213 break;
214 }
215 }
216}
217
218
219/// toplevelentity
220/// ::= 'module' 'asm' STRINGCONSTANT
221bool LLParser::ParseModuleAsm() {
222 assert(Lex.getKind() == lltok::kw_module);
223 Lex.Lex();
224
225 std::string AsmStr;
226 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
227 ParseStringConstant(AsmStr)) return true;
228
229 const std::string &AsmSoFar = M->getModuleInlineAsm();
230 if (AsmSoFar.empty())
231 M->setModuleInlineAsm(AsmStr);
232 else
233 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
234 return false;
235}
236
237/// toplevelentity
238/// ::= 'target' 'triple' '=' STRINGCONSTANT
239/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
240bool LLParser::ParseTargetDefinition() {
241 assert(Lex.getKind() == lltok::kw_target);
242 std::string Str;
243 switch (Lex.Lex()) {
244 default: return TokError("unknown target property");
245 case lltok::kw_triple:
246 Lex.Lex();
247 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
248 ParseStringConstant(Str))
249 return true;
250 M->setTargetTriple(Str);
251 return false;
252 case lltok::kw_datalayout:
253 Lex.Lex();
254 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
255 ParseStringConstant(Str))
256 return true;
257 M->setDataLayout(Str);
258 return false;
259 }
260}
261
262/// toplevelentity
263/// ::= 'deplibs' '=' '[' ']'
264/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
265bool LLParser::ParseDepLibs() {
266 assert(Lex.getKind() == lltok::kw_deplibs);
267 Lex.Lex();
268 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
269 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
270 return true;
271
272 if (EatIfPresent(lltok::rsquare))
273 return false;
274
275 std::string Str;
276 if (ParseStringConstant(Str)) return true;
277 M->addLibrary(Str);
278
279 while (EatIfPresent(lltok::comma)) {
280 if (ParseStringConstant(Str)) return true;
281 M->addLibrary(Str);
282 }
283
284 return ParseToken(lltok::rsquare, "expected ']' at end of list");
285}
286
287/// ParseUnnamedType:
288/// ::= 'type' type
289/// ::= LocalVarID '=' 'type' type
290bool LLParser::ParseUnnamedType() {
291 unsigned TypeID = NumberedTypes.size();
292
293 // Handle the LocalVarID form.
294 if (Lex.getKind() == lltok::LocalVarID) {
295 if (Lex.getUIntVal() != TypeID)
296 return Error(Lex.getLoc(), "type expected to be numbered '%" +
297 utostr(TypeID) + "'");
298 Lex.Lex(); // eat LocalVarID;
299
300 if (ParseToken(lltok::equal, "expected '=' after name"))
301 return true;
302 }
303
304 assert(Lex.getKind() == lltok::kw_type);
305 LocTy TypeLoc = Lex.getLoc();
306 Lex.Lex(); // eat kw_type
307
308 PATypeHolder Ty(Type::getVoidTy(Context));
309 if (ParseType(Ty)) return true;
310
311 // See if this type was previously referenced.
312 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
313 FI = ForwardRefTypeIDs.find(TypeID);
314 if (FI != ForwardRefTypeIDs.end()) {
315 if (FI->second.first.get() == Ty)
316 return Error(TypeLoc, "self referential type is invalid");
317
318 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
319 Ty = FI->second.first.get();
320 ForwardRefTypeIDs.erase(FI);
321 }
322
323 NumberedTypes.push_back(Ty);
324
325 return false;
326}
327
328/// toplevelentity
329/// ::= LocalVar '=' 'type' type
330bool LLParser::ParseNamedType() {
331 std::string Name = Lex.getStrVal();
332 LocTy NameLoc = Lex.getLoc();
333 Lex.Lex(); // eat LocalVar.
334
335 PATypeHolder Ty(Type::getVoidTy(Context));
336
337 if (ParseToken(lltok::equal, "expected '=' after name") ||
338 ParseToken(lltok::kw_type, "expected 'type' after name") ||
339 ParseType(Ty))
340 return true;
341
342 // Set the type name, checking for conflicts as we do so.
343 bool AlreadyExists = M->addTypeName(Name, Ty);
344 if (!AlreadyExists) return false;
345
346 // See if this type is a forward reference. We need to eagerly resolve
347 // types to allow recursive type redefinitions below.
348 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
349 FI = ForwardRefTypes.find(Name);
350 if (FI != ForwardRefTypes.end()) {
351 if (FI->second.first.get() == Ty)
352 return Error(NameLoc, "self referential type is invalid");
353
354 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
355 Ty = FI->second.first.get();
356 ForwardRefTypes.erase(FI);
357 }
358
359 // Inserting a name that is already defined, get the existing name.
360 const Type *Existing = M->getTypeByName(Name);
361 assert(Existing && "Conflict but no matching type?!");
362
363 // Otherwise, this is an attempt to redefine a type. That's okay if
364 // the redefinition is identical to the original.
365 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
366 if (Existing == Ty) return false;
367
368 // Any other kind of (non-equivalent) redefinition is an error.
369 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
370 Ty->getDescription() + "'");
371}
372
373
374/// toplevelentity
375/// ::= 'declare' FunctionHeader
376bool LLParser::ParseDeclare() {
377 assert(Lex.getKind() == lltok::kw_declare);
378 Lex.Lex();
379
380 Function *F;
381 return ParseFunctionHeader(F, false);
382}
383
384/// toplevelentity
385/// ::= 'define' FunctionHeader '{' ...
386bool LLParser::ParseDefine() {
387 assert(Lex.getKind() == lltok::kw_define);
388 Lex.Lex();
389
390 Function *F;
391 return ParseFunctionHeader(F, true) ||
392 ParseFunctionBody(*F);
393}
394
395/// ParseGlobalType
396/// ::= 'constant'
397/// ::= 'global'
398bool LLParser::ParseGlobalType(bool &IsConstant) {
399 if (Lex.getKind() == lltok::kw_constant)
400 IsConstant = true;
401 else if (Lex.getKind() == lltok::kw_global)
402 IsConstant = false;
403 else {
404 IsConstant = false;
405 return TokError("expected 'global' or 'constant'");
406 }
407 Lex.Lex();
408 return false;
409}
410
411/// ParseUnnamedGlobal:
412/// OptionalVisibility ALIAS ...
413/// OptionalLinkage OptionalVisibility ... -> global variable
414/// GlobalID '=' OptionalVisibility ALIAS ...
415/// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
416bool LLParser::ParseUnnamedGlobal() {
417 unsigned VarID = NumberedVals.size();
418 std::string Name;
419 LocTy NameLoc = Lex.getLoc();
420
421 // Handle the GlobalID form.
422 if (Lex.getKind() == lltok::GlobalID) {
423 if (Lex.getUIntVal() != VarID)
424 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
425 utostr(VarID) + "'");
426 Lex.Lex(); // eat GlobalID;
427
428 if (ParseToken(lltok::equal, "expected '=' after name"))
429 return true;
430 }
431
432 bool HasLinkage;
433 unsigned Linkage, Visibility;
434 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
435 ParseOptionalVisibility(Visibility))
436 return true;
437
438 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
439 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
440 return ParseAlias(Name, NameLoc, Visibility);
441}
442
443/// ParseNamedGlobal:
444/// GlobalVar '=' OptionalVisibility ALIAS ...
445/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
446bool LLParser::ParseNamedGlobal() {
447 assert(Lex.getKind() == lltok::GlobalVar);
448 LocTy NameLoc = Lex.getLoc();
449 std::string Name = Lex.getStrVal();
450 Lex.Lex();
451
452 bool HasLinkage;
453 unsigned Linkage, Visibility;
454 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
455 ParseOptionalLinkage(Linkage, HasLinkage) ||
456 ParseOptionalVisibility(Visibility))
457 return true;
458
459 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
460 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
461 return ParseAlias(Name, NameLoc, Visibility);
462}
463
464// MDString:
465// ::= '!' STRINGCONSTANT
466bool LLParser::ParseMDString(MDString *&Result) {
467 std::string Str;
468 if (ParseStringConstant(Str)) return true;
469 Result = MDString::get(Context, Str);
470 return false;
471}
472
473// MDNode:
474// ::= '!' MDNodeNumber
475bool LLParser::ParseMDNodeID(MDNode *&Result) {
476 // !{ ..., !42, ... }
477 unsigned MID = 0;
478 if (ParseUInt32(MID)) return true;
479
480 // Check existing MDNode.
481 if (MID < NumberedMetadata.size() && NumberedMetadata[MID] != 0) {
482 Result = NumberedMetadata[MID];
483 return false;
484 }
485
486 // Create MDNode forward reference.
487
488 // FIXME: This is not unique enough!
489 std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
490 Value *V = MDString::get(Context, FwdRefName);
491 MDNode *FwdNode = MDNode::get(Context, &V, 1);
492 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
493
494 if (NumberedMetadata.size() <= MID)
495 NumberedMetadata.resize(MID+1);
496 NumberedMetadata[MID] = FwdNode;
497 Result = FwdNode;
498 return false;
499}
500
501/// ParseNamedMetadata:
502/// !foo = !{ !1, !2 }
503bool LLParser::ParseNamedMetadata() {
504 assert(Lex.getKind() == lltok::MetadataVar);
505 std::string Name = Lex.getStrVal();
506 Lex.Lex();
507
508 if (ParseToken(lltok::equal, "expected '=' here") ||
509 ParseToken(lltok::exclaim, "Expected '!' here") ||
510 ParseToken(lltok::lbrace, "Expected '{' here"))
511 return true;
512
513 SmallVector<MDNode *, 8> Elts;
514 do {
515 // Null is a special case since it is typeless.
516 if (EatIfPresent(lltok::kw_null)) {
517 Elts.push_back(0);
518 continue;
519 }
520
521 if (ParseToken(lltok::exclaim, "Expected '!' here"))
522 return true;
523
524 MDNode *N = 0;
525 if (ParseMDNodeID(N)) return true;
526 Elts.push_back(N);
527 } while (EatIfPresent(lltok::comma));
528
529 if (ParseToken(lltok::rbrace, "expected end of metadata node"))
530 return true;
531
532 NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
533 return false;
534}
535
536/// ParseStandaloneMetadata:
537/// !42 = !{...}
538bool LLParser::ParseStandaloneMetadata() {
539 assert(Lex.getKind() == lltok::exclaim);
540 Lex.Lex();
541 unsigned MetadataID = 0;
542
543 LocTy TyLoc;
544 PATypeHolder Ty(Type::getVoidTy(Context));
545 SmallVector<Value *, 16> Elts;
546 if (ParseUInt32(MetadataID) ||
547 ParseToken(lltok::equal, "expected '=' here") ||
548 ParseType(Ty, TyLoc) ||
549 ParseToken(lltok::exclaim, "Expected '!' here") ||
550 ParseToken(lltok::lbrace, "Expected '{' here") ||
551 ParseMDNodeVector(Elts, NULL) ||
552 ParseToken(lltok::rbrace, "expected end of metadata node"))
553 return true;
554
555 MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
556
557 // See if this was forward referenced, if so, handle it.
558 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
559 FI = ForwardRefMDNodes.find(MetadataID);
560 if (FI != ForwardRefMDNodes.end()) {
561 FI->second.first->replaceAllUsesWith(Init);
562 ForwardRefMDNodes.erase(FI);
563
564 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
565 } else {
566 if (MetadataID >= NumberedMetadata.size())
567 NumberedMetadata.resize(MetadataID+1);
568
569 if (NumberedMetadata[MetadataID] != 0)
570 return TokError("Metadata id is already used");
571 NumberedMetadata[MetadataID] = Init;
572 }
573
574 return false;
575}
576
577/// ParseAlias:
578/// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
579/// Aliasee
580/// ::= TypeAndValue
581/// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
582/// ::= 'getelementptr' 'inbounds'? '(' ... ')'
583///
584/// Everything through visibility has already been parsed.
585///
586bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
587 unsigned Visibility) {
588 assert(Lex.getKind() == lltok::kw_alias);
589 Lex.Lex();
590 unsigned Linkage;
591 LocTy LinkageLoc = Lex.getLoc();
592 if (ParseOptionalLinkage(Linkage))
593 return true;
594
595 if (Linkage != GlobalValue::ExternalLinkage &&
596 Linkage != GlobalValue::WeakAnyLinkage &&
597 Linkage != GlobalValue::WeakODRLinkage &&
598 Linkage != GlobalValue::InternalLinkage &&
599 Linkage != GlobalValue::PrivateLinkage &&
600 Linkage != GlobalValue::LinkerPrivateLinkage)
601 return Error(LinkageLoc, "invalid linkage type for alias");
602
603 Constant *Aliasee;
604 LocTy AliaseeLoc = Lex.getLoc();
605 if (Lex.getKind() != lltok::kw_bitcast &&
606 Lex.getKind() != lltok::kw_getelementptr) {
607 if (ParseGlobalTypeAndValue(Aliasee)) return true;
608 } else {
609 // The bitcast dest type is not present, it is implied by the dest type.
610 ValID ID;
611 if (ParseValID(ID)) return true;
612 if (ID.Kind != ValID::t_Constant)
613 return Error(AliaseeLoc, "invalid aliasee");
614 Aliasee = ID.ConstantVal;
615 }
616
617 if (!isa<PointerType>(Aliasee->getType()))
618 return Error(AliaseeLoc, "alias must have pointer type");
619
620 // Okay, create the alias but do not insert it into the module yet.
621 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
622 (GlobalValue::LinkageTypes)Linkage, Name,
623 Aliasee);
624 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
625
626 // See if this value already exists in the symbol table. If so, it is either
627 // a redefinition or a definition of a forward reference.
628 if (GlobalValue *Val = M->getNamedValue(Name)) {
629 // See if this was a redefinition. If so, there is no entry in
630 // ForwardRefVals.
631 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
632 I = ForwardRefVals.find(Name);
633 if (I == ForwardRefVals.end())
634 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
635
636 // Otherwise, this was a definition of forward ref. Verify that types
637 // agree.
638 if (Val->getType() != GA->getType())
639 return Error(NameLoc,
640 "forward reference and definition of alias have different types");
641
642 // If they agree, just RAUW the old value with the alias and remove the
643 // forward ref info.
644 Val->replaceAllUsesWith(GA);
645 Val->eraseFromParent();
646 ForwardRefVals.erase(I);
647 }
648
649 // Insert into the module, we know its name won't collide now.
650 M->getAliasList().push_back(GA);
651 assert(GA->getNameStr() == Name && "Should not be a name conflict!");
652
653 return false;
654}
655
656/// ParseGlobal
657/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
658/// OptionalAddrSpace GlobalType Type Const
659/// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
660/// OptionalAddrSpace GlobalType Type Const
661///
662/// Everything through visibility has been parsed already.
663///
664bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
665 unsigned Linkage, bool HasLinkage,
666 unsigned Visibility) {
667 unsigned AddrSpace;
668 bool ThreadLocal, IsConstant;
669 LocTy TyLoc;
670
671 PATypeHolder Ty(Type::getVoidTy(Context));
672 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
673 ParseOptionalAddrSpace(AddrSpace) ||
674 ParseGlobalType(IsConstant) ||
675 ParseType(Ty, TyLoc))
676 return true;
677
678 // If the linkage is specified and is external, then no initializer is
679 // present.
680 Constant *Init = 0;
681 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
682 Linkage != GlobalValue::ExternalWeakLinkage &&
683 Linkage != GlobalValue::ExternalLinkage)) {
684 if (ParseGlobalValue(Ty, Init))
685 return true;
686 }
687
688 if (isa<FunctionType>(Ty) || Ty->isLabelTy())
689 return Error(TyLoc, "invalid type for global variable");
690
691 GlobalVariable *GV = 0;
692
693 // See if the global was forward referenced, if so, use the global.
694 if (!Name.empty()) {
695 if (GlobalValue *GVal = M->getNamedValue(Name)) {
696 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
697 return Error(NameLoc, "redefinition of global '@" + Name + "'");
698 GV = cast<GlobalVariable>(GVal);
699 }
700 } else {
701 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
702 I = ForwardRefValIDs.find(NumberedVals.size());
703 if (I != ForwardRefValIDs.end()) {
704 GV = cast<GlobalVariable>(I->second.first);
705 ForwardRefValIDs.erase(I);
706 }
707 }
708
709 if (GV == 0) {
710 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
711 Name, 0, false, AddrSpace);
712 } else {
713 if (GV->getType()->getElementType() != Ty)
714 return Error(TyLoc,
715 "forward reference and definition of global have different types");
716
717 // Move the forward-reference to the correct spot in the module.
718 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
719 }
720
721 if (Name.empty())
722 NumberedVals.push_back(GV);
723
724 // Set the parsed properties on the global.
725 if (Init)
726 GV->setInitializer(Init);
727 GV->setConstant(IsConstant);
728 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
729 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
730 GV->setThreadLocal(ThreadLocal);
731
732 // Parse attributes on the global.
733 while (Lex.getKind() == lltok::comma) {
734 Lex.Lex();
735
736 if (Lex.getKind() == lltok::kw_section) {
737 Lex.Lex();
738 GV->setSection(Lex.getStrVal());
739 if (ParseToken(lltok::StringConstant, "expected global section string"))
740 return true;
741 } else if (Lex.getKind() == lltok::kw_align) {
742 unsigned Alignment;
743 if (ParseOptionalAlignment(Alignment)) return true;
744 GV->setAlignment(Alignment);
745 } else {
746 TokError("unknown global variable property!");
747 }
748 }
749
750 return false;
751}
752
753
754//===----------------------------------------------------------------------===//
755// GlobalValue Reference/Resolution Routines.
756//===----------------------------------------------------------------------===//
757
758/// GetGlobalVal - Get a value with the specified name or ID, creating a
759/// forward reference record if needed. This can return null if the value
760/// exists but does not have the right type.
761GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
762 LocTy Loc) {
763 const PointerType *PTy = dyn_cast<PointerType>(Ty);
764 if (PTy == 0) {
765 Error(Loc, "global variable reference must have pointer type");
766 return 0;
767 }
768
769 // Look this name up in the normal function symbol table.
770 GlobalValue *Val =
771 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
772
773 // If this is a forward reference for the value, see if we already created a
774 // forward ref record.
775 if (Val == 0) {
776 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
777 I = ForwardRefVals.find(Name);
778 if (I != ForwardRefVals.end())
779 Val = I->second.first;
780 }
781
782 // If we have the value in the symbol table or fwd-ref table, return it.
783 if (Val) {
784 if (Val->getType() == Ty) return Val;
785 Error(Loc, "'@" + Name + "' defined with type '" +
786 Val->getType()->getDescription() + "'");
787 return 0;
788 }
789
790 // Otherwise, create a new forward reference for this value and remember it.
791 GlobalValue *FwdVal;
792 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
793 // Function types can return opaque but functions can't.
794 if (isa<OpaqueType>(FT->getReturnType())) {
795 Error(Loc, "function may not return opaque type");
796 return 0;
797 }
798
799 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
800 } else {
801 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
802 GlobalValue::ExternalWeakLinkage, 0, Name);
803 }
804
805 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
806 return FwdVal;
807}
808
809GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
810 const PointerType *PTy = dyn_cast<PointerType>(Ty);
811 if (PTy == 0) {
812 Error(Loc, "global variable reference must have pointer type");
813 return 0;
814 }
815
816 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
817
818 // If this is a forward reference for the value, see if we already created a
819 // forward ref record.
820 if (Val == 0) {
821 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
822 I = ForwardRefValIDs.find(ID);
823 if (I != ForwardRefValIDs.end())
824 Val = I->second.first;
825 }
826
827 // If we have the value in the symbol table or fwd-ref table, return it.
828 if (Val) {
829 if (Val->getType() == Ty) return Val;
830 Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
831 Val->getType()->getDescription() + "'");
832 return 0;
833 }
834
835 // Otherwise, create a new forward reference for this value and remember it.
836 GlobalValue *FwdVal;
837 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
838 // Function types can return opaque but functions can't.
839 if (isa<OpaqueType>(FT->getReturnType())) {
840 Error(Loc, "function may not return opaque type");
841 return 0;
842 }
843 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
844 } else {
845 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
846 GlobalValue::ExternalWeakLinkage, 0, "");
847 }
848
849 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
850 return FwdVal;
851}
852
853
854//===----------------------------------------------------------------------===//
855// Helper Routines.
856//===----------------------------------------------------------------------===//
857
858/// ParseToken - If the current token has the specified kind, eat it and return
859/// success. Otherwise, emit the specified error and return failure.
860bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
861 if (Lex.getKind() != T)
862 return TokError(ErrMsg);
863 Lex.Lex();
864 return false;
865}
866
867/// ParseStringConstant
868/// ::= StringConstant
869bool LLParser::ParseStringConstant(std::string &Result) {
870 if (Lex.getKind() != lltok::StringConstant)
871 return TokError("expected string constant");
872 Result = Lex.getStrVal();
873 Lex.Lex();
874 return false;
875}
876
877/// ParseUInt32
878/// ::= uint32
879bool LLParser::ParseUInt32(unsigned &Val) {
880 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
881 return TokError("expected integer");
882 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
883 if (Val64 != unsigned(Val64))
884 return TokError("expected 32-bit integer (too large)");
885 Val = Val64;
886 Lex.Lex();
887 return false;
888}
889
890
891/// ParseOptionalAddrSpace
892/// := /*empty*/
893/// := 'addrspace' '(' uint32 ')'
894bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
895 AddrSpace = 0;
896 if (!EatIfPresent(lltok::kw_addrspace))
897 return false;
898 return ParseToken(lltok::lparen, "expected '(' in address space") ||
899 ParseUInt32(AddrSpace) ||
900 ParseToken(lltok::rparen, "expected ')' in address space");
901}
902
903/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
904/// indicates what kind of attribute list this is: 0: function arg, 1: result,
905/// 2: function attr.
906/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
907bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
908 Attrs = Attribute::None;
909 LocTy AttrLoc = Lex.getLoc();
910
911 while (1) {
912 switch (Lex.getKind()) {
913 case lltok::kw_sext:
914 case lltok::kw_zext:
915 // Treat these as signext/zeroext if they occur in the argument list after
916 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
917 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
918 // expr.
919 // FIXME: REMOVE THIS IN LLVM 3.0
920 if (AttrKind == 3) {
921 if (Lex.getKind() == lltok::kw_sext)
922 Attrs |= Attribute::SExt;
923 else
924 Attrs |= Attribute::ZExt;
925 break;
926 }
927 // FALL THROUGH.
928 default: // End of attributes.
929 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
930 return Error(AttrLoc, "invalid use of function-only attribute");
931
932 if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
933 return Error(AttrLoc, "invalid use of parameter-only attribute");
934
935 return false;
936 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
937 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
938 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
939 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
940 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
941 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
942 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
943 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
944
945 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
946 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
947 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
948 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
949 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
950 case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break;
951 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
952 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
953 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
954 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
955 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break;
956 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
957 case lltok::kw_naked: Attrs |= Attribute::Naked; break;
958
959 case lltok::kw_align: {
960 unsigned Alignment;
961 if (ParseOptionalAlignment(Alignment))
962 return true;
963 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
964 continue;
965 }
966 }
967 Lex.Lex();
968 }
969}
970
971/// ParseOptionalLinkage
972/// ::= /*empty*/
973/// ::= 'private'
974/// ::= 'linker_private'
975/// ::= 'internal'
976/// ::= 'weak'
977/// ::= 'weak_odr'
978/// ::= 'linkonce'
979/// ::= 'linkonce_odr'
980/// ::= 'appending'
981/// ::= 'dllexport'
982/// ::= 'common'
983/// ::= 'dllimport'
984/// ::= 'extern_weak'
985/// ::= 'external'
986bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
987 HasLinkage = false;
988 switch (Lex.getKind()) {
989 default: Res=GlobalValue::ExternalLinkage; return false;
990 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
991 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
992 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
993 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
994 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
995 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
996 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
997 case lltok::kw_available_externally:
998 Res = GlobalValue::AvailableExternallyLinkage;
999 break;
1000 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
1001 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
1002 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
1003 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
1004 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
1005 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
1006 }
1007 Lex.Lex();
1008 HasLinkage = true;
1009 return false;
1010}
1011
1012/// ParseOptionalVisibility
1013/// ::= /*empty*/
1014/// ::= 'default'
1015/// ::= 'hidden'
1016/// ::= 'protected'
1017///
1018bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1019 switch (Lex.getKind()) {
1020 default: Res = GlobalValue::DefaultVisibility; return false;
1021 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
1022 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
1023 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1024 }
1025 Lex.Lex();
1026 return false;
1027}
1028
1029/// ParseOptionalCallingConv
1030/// ::= /*empty*/
1031/// ::= 'ccc'
1032/// ::= 'fastcc'
1033/// ::= 'coldcc'
1034/// ::= 'x86_stdcallcc'
1035/// ::= 'x86_fastcallcc'
1036/// ::= 'arm_apcscc'
1037/// ::= 'arm_aapcscc'
1038/// ::= 'arm_aapcs_vfpcc'
1039/// ::= 'msp430_intrcc'
1040/// ::= 'cc' UINT
1041///
1042bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1043 switch (Lex.getKind()) {
1044 default: CC = CallingConv::C; return false;
1045 case lltok::kw_ccc: CC = CallingConv::C; break;
1046 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1047 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1048 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1049 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1050 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1051 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1052 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1053 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1054 case lltok::kw_cc: {
1055 unsigned ArbitraryCC;
1056 Lex.Lex();
1057 if (ParseUInt32(ArbitraryCC)) {
1058 return true;
1059 } else
1060 CC = static_cast<CallingConv::ID>(ArbitraryCC);
1061 return false;
1062 }
1063 break;
1064 }
1065
1066 Lex.Lex();
1067 return false;
1068}
1069
1070/// ParseInstructionMetadata
1071/// ::= !dbg !42 (',' !dbg !57)*
1072bool LLParser::
1073ParseInstructionMetadata(SmallVectorImpl<std::pair<unsigned,
1074 MDNode *> > &Result){
1075 do {
1076 if (Lex.getKind() != lltok::MetadataVar)
1077 return TokError("expected metadata after comma");
1078
1079 std::string Name = Lex.getStrVal();
1080 Lex.Lex();
1081
1082 MDNode *Node;
1083 if (ParseToken(lltok::exclaim, "expected '!' here") ||
1084 ParseMDNodeID(Node))
1085 return true;
1086
1087 unsigned MDK = M->getMDKindID(Name.c_str());
1088 Result.push_back(std::make_pair(MDK, Node));
1089
1090 // If this is the end of the list, we're done.
1091 } while (EatIfPresent(lltok::comma));
1092 return false;
1093}
1094
1095/// ParseOptionalAlignment
1096/// ::= /* empty */
1097/// ::= 'align' 4
1098bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1099 Alignment = 0;
1100 if (!EatIfPresent(lltok::kw_align))
1101 return false;
1102 LocTy AlignLoc = Lex.getLoc();
1103 if (ParseUInt32(Alignment)) return true;
1104 if (!isPowerOf2_32(Alignment))
1105 return Error(AlignLoc, "alignment is not a power of two");
1106 return false;
1107}
1108
1109/// ParseOptionalCommaAlign
1110/// ::=
1111/// ::= ',' align 4
1112///
1113/// This returns with AteExtraComma set to true if it ate an excess comma at the
1114/// end.
1115bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1116 bool &AteExtraComma) {
1117 AteExtraComma = false;
1118 while (EatIfPresent(lltok::comma)) {
1119 // Metadata at the end is an early exit.
1120 if (Lex.getKind() == lltok::MetadataVar) {
1121 AteExtraComma = true;
1122 return false;
1123 }
1124
1125 if (Lex.getKind() == lltok::kw_align) {
1126 if (ParseOptionalAlignment(Alignment)) return true;
1127 } else
1128 return true;
1129 }
1130
1131 return false;
1132}
1133
1134
1135/// ParseIndexList - This parses the index list for an insert/extractvalue
1136/// instruction. This sets AteExtraComma in the case where we eat an extra
1137/// comma at the end of the line and find that it is followed by metadata.
1138/// Clients that don't allow metadata can call the version of this function that
1139/// only takes one argument.
1140///
1141/// ParseIndexList
1142/// ::= (',' uint32)+
1143///
1144bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1145 bool &AteExtraComma) {
1146 AteExtraComma = false;
1147
1148 if (Lex.getKind() != lltok::comma)
1149 return TokError("expected ',' as start of index list");
1150
1151 while (EatIfPresent(lltok::comma)) {
1152 if (Lex.getKind() == lltok::MetadataVar) {
1153 AteExtraComma = true;
1154 return false;
1155 }
1156 unsigned Idx;
1157 if (ParseUInt32(Idx)) return true;
1158 Indices.push_back(Idx);
1159 }
1160
1161 return false;
1162}
1163
1164//===----------------------------------------------------------------------===//
1165// Type Parsing.
1166//===----------------------------------------------------------------------===//
1167
1168/// ParseType - Parse and resolve a full type.
1169bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1170 LocTy TypeLoc = Lex.getLoc();
1171 if (ParseTypeRec(Result)) return true;
1172
1173 // Verify no unresolved uprefs.
1174 if (!UpRefs.empty())
1175 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1176
1177 if (!AllowVoid && Result.get()->isVoidTy())
1178 return Error(TypeLoc, "void type only allowed for function results");
1179
1180 return false;
1181}
1182
1183/// HandleUpRefs - Every time we finish a new layer of types, this function is
1184/// called. It loops through the UpRefs vector, which is a list of the
1185/// currently active types. For each type, if the up-reference is contained in
1186/// the newly completed type, we decrement the level count. When the level
1187/// count reaches zero, the up-referenced type is the type that is passed in:
1188/// thus we can complete the cycle.
1189///
1190PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1191 // If Ty isn't abstract, or if there are no up-references in it, then there is
1192 // nothing to resolve here.
1193 if (!ty->isAbstract() || UpRefs.empty()) return ty;
1194
1195 PATypeHolder Ty(ty);
1196#if 0
1197 dbgs() << "Type '" << Ty->getDescription()
1198 << "' newly formed. Resolving upreferences.\n"
1199 << UpRefs.size() << " upreferences active!\n";
1200#endif
1201
1202 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1203 // to zero), we resolve them all together before we resolve them to Ty. At
1204 // the end of the loop, if there is anything to resolve to Ty, it will be in
1205 // this variable.
1206 OpaqueType *TypeToResolve = 0;
1207
1208 for (unsigned i = 0; i != UpRefs.size(); ++i) {
1209 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1210 bool ContainsType =
1211 std::find(Ty->subtype_begin(), Ty->subtype_end(),
1212 UpRefs[i].LastContainedTy) != Ty->subtype_end();
1213
1214#if 0
1215 dbgs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1216 << UpRefs[i].LastContainedTy->getDescription() << ") = "
1217 << (ContainsType ? "true" : "false")
1218 << " level=" << UpRefs[i].NestingLevel << "\n";
1219#endif
1220 if (!ContainsType)
1221 continue;
1222
1223 // Decrement level of upreference
1224 unsigned Level = --UpRefs[i].NestingLevel;
1225 UpRefs[i].LastContainedTy = Ty;
1226
1227 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1228 if (Level != 0)
1229 continue;
1230
1231#if 0
1232 dbgs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1233#endif
1234 if (!TypeToResolve)
1235 TypeToResolve = UpRefs[i].UpRefTy;
1236 else
1237 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1238 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
1239 --i; // Do not skip the next element.
1240 }
1241
1242 if (TypeToResolve)
1243 TypeToResolve->refineAbstractTypeTo(Ty);
1244
1245 return Ty;
1246}
1247
1248
1249/// ParseTypeRec - The recursive function used to process the internal
1250/// implementation details of types.
1251bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1252 switch (Lex.getKind()) {
1253 default:
1254 return TokError("expected type");
1255 case lltok::Type:
1256 // TypeRec ::= 'float' | 'void' (etc)
1257 Result = Lex.getTyVal();
1258 Lex.Lex();
1259 break;
1260 case lltok::kw_opaque:
1261 // TypeRec ::= 'opaque'
1262 Result = OpaqueType::get(Context);
1263 Lex.Lex();
1264 break;
1265 case lltok::lbrace:
1266 // TypeRec ::= '{' ... '}'
1267 if (ParseStructType(Result, false))
1268 return true;
1269 break;
1270 case lltok::lsquare:
1271 // TypeRec ::= '[' ... ']'
1272 Lex.Lex(); // eat the lsquare.
1273 if (ParseArrayVectorType(Result, false))
1274 return true;
1275 break;
1276 case lltok::less: // Either vector or packed struct.
1277 // TypeRec ::= '<' ... '>'
1278 Lex.Lex();
1279 if (Lex.getKind() == lltok::lbrace) {
1280 if (ParseStructType(Result, true) ||
1281 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1282 return true;
1283 } else if (ParseArrayVectorType(Result, true))
1284 return true;
1285 break;
1286 case lltok::LocalVar:
1287 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
1288 // TypeRec ::= %foo
1289 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1290 Result = T;
1291 } else {
1292 Result = OpaqueType::get(Context);
1293 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1294 std::make_pair(Result,
1295 Lex.getLoc())));
1296 M->addTypeName(Lex.getStrVal(), Result.get());
1297 }
1298 Lex.Lex();
1299 break;
1300
1301 case lltok::LocalVarID:
1302 // TypeRec ::= %4
1303 if (Lex.getUIntVal() < NumberedTypes.size())
1304 Result = NumberedTypes[Lex.getUIntVal()];
1305 else {
1306 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1307 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1308 if (I != ForwardRefTypeIDs.end())
1309 Result = I->second.first;
1310 else {
1311 Result = OpaqueType::get(Context);
1312 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1313 std::make_pair(Result,
1314 Lex.getLoc())));
1315 }
1316 }
1317 Lex.Lex();
1318 break;
1319 case lltok::backslash: {
1320 // TypeRec ::= '\' 4
1321 Lex.Lex();
1322 unsigned Val;
1323 if (ParseUInt32(Val)) return true;
1324 OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1325 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1326 Result = OT;
1327 break;
1328 }
1329 }
1330
1331 // Parse the type suffixes.
1332 while (1) {
1333 switch (Lex.getKind()) {
1334 // End of type.
1335 default: return false;
1336
1337 // TypeRec ::= TypeRec '*'
1338 case lltok::star:
1339 if (Result.get()->isLabelTy())
1340 return TokError("basic block pointers are invalid");
1341 if (Result.get()->isVoidTy())
1342 return TokError("pointers to void are invalid; use i8* instead");
1343 if (!PointerType::isValidElementType(Result.get()))
1344 return TokError("pointer to this type is invalid");
1345 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1346 Lex.Lex();
1347 break;
1348
1349 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1350 case lltok::kw_addrspace: {
1351 if (Result.get()->isLabelTy())
1352 return TokError("basic block pointers are invalid");
1353 if (Result.get()->isVoidTy())
1354 return TokError("pointers to void are invalid; use i8* instead");
1355 if (!PointerType::isValidElementType(Result.get()))
1356 return TokError("pointer to this type is invalid");
1357 unsigned AddrSpace;
1358 if (ParseOptionalAddrSpace(AddrSpace) ||
1359 ParseToken(lltok::star, "expected '*' in address space"))
1360 return true;
1361
1362 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1363 break;
1364 }
1365
1366 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1367 case lltok::lparen:
1368 if (ParseFunctionType(Result))
1369 return true;
1370 break;
1371 }
1372 }
1373}
1374
1375/// ParseParameterList
1376/// ::= '(' ')'
1377/// ::= '(' Arg (',' Arg)* ')'
1378/// Arg
1379/// ::= Type OptionalAttributes Value OptionalAttributes
1380bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1381 PerFunctionState &PFS) {
1382 if (ParseToken(lltok::lparen, "expected '(' in call"))
1383 return true;
1384
1385 while (Lex.getKind() != lltok::rparen) {
1386 // If this isn't the first argument, we need a comma.
1387 if (!ArgList.empty() &&
1388 ParseToken(lltok::comma, "expected ',' in argument list"))
1389 return true;
1390
1391 // Parse the argument.
1392 LocTy ArgLoc;
1393 PATypeHolder ArgTy(Type::getVoidTy(Context));
1394 unsigned ArgAttrs1 = Attribute::None;
1395 unsigned ArgAttrs2 = Attribute::None;
1396 Value *V;
1397 if (ParseType(ArgTy, ArgLoc))
1398 return true;
1399
1400 // Otherwise, handle normal operands.
1401 if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1402 ParseValue(ArgTy, V, PFS) ||
1403 // FIXME: Should not allow attributes after the argument, remove this
1404 // in LLVM 3.0.
1405 ParseOptionalAttrs(ArgAttrs2, 3))
1406 return true;
1407 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1408 }
1409
1410 Lex.Lex(); // Lex the ')'.
1411 return false;
1412}
1413
1414
1415
1416/// ParseArgumentList - Parse the argument list for a function type or function
1417/// prototype. If 'inType' is true then we are parsing a FunctionType.
1418/// ::= '(' ArgTypeListI ')'
1419/// ArgTypeListI
1420/// ::= /*empty*/
1421/// ::= '...'
1422/// ::= ArgTypeList ',' '...'
1423/// ::= ArgType (',' ArgType)*
1424///
1425bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1426 bool &isVarArg, bool inType) {
1427 isVarArg = false;
1428 assert(Lex.getKind() == lltok::lparen);
1429 Lex.Lex(); // eat the (.
1430
1431 if (Lex.getKind() == lltok::rparen) {
1432 // empty
1433 } else if (Lex.getKind() == lltok::dotdotdot) {
1434 isVarArg = true;
1435 Lex.Lex();
1436 } else {
1437 LocTy TypeLoc = Lex.getLoc();
1438 PATypeHolder ArgTy(Type::getVoidTy(Context));
1439 unsigned Attrs;
1440 std::string Name;
1441
1442 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1443 // types (such as a function returning a pointer to itself). If parsing a
1444 // function prototype, we require fully resolved types.
1445 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1446 ParseOptionalAttrs(Attrs, 0)) return true;
1447
1448 if (ArgTy->isVoidTy())
1449 return Error(TypeLoc, "argument can not have void type");
1450
1451 if (Lex.getKind() == lltok::LocalVar ||
1452 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1453 Name = Lex.getStrVal();
1454 Lex.Lex();
1455 }
1456
1457 if (!FunctionType::isValidArgumentType(ArgTy))
1458 return Error(TypeLoc, "invalid type for function argument");
1459
1460 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1461
1462 while (EatIfPresent(lltok::comma)) {
1463 // Handle ... at end of arg list.
1464 if (EatIfPresent(lltok::dotdotdot)) {
1465 isVarArg = true;
1466 break;
1467 }
1468
1469 // Otherwise must be an argument type.
1470 TypeLoc = Lex.getLoc();
1471 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1472 ParseOptionalAttrs(Attrs, 0)) return true;
1473
1474 if (ArgTy->isVoidTy())
1475 return Error(TypeLoc, "argument can not have void type");
1476
1477 if (Lex.getKind() == lltok::LocalVar ||
1478 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1479 Name = Lex.getStrVal();
1480 Lex.Lex();
1481 } else {
1482 Name = "";
1483 }
1484
1485 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1486 return Error(TypeLoc, "invalid type for function argument");
1487
1488 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1489 }
1490 }
1491
1492 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1493}
1494
1495/// ParseFunctionType
1496/// ::= Type ArgumentList OptionalAttrs
1497bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1498 assert(Lex.getKind() == lltok::lparen);
1499
1500 if (!FunctionType::isValidReturnType(Result))
1501 return TokError("invalid function return type");
1502
1503 std::vector<ArgInfo> ArgList;
1504 bool isVarArg;
1505 unsigned Attrs;
1506 if (ParseArgumentList(ArgList, isVarArg, true) ||
1507 // FIXME: Allow, but ignore attributes on function types!
1508 // FIXME: Remove in LLVM 3.0
1509 ParseOptionalAttrs(Attrs, 2))
1510 return true;
1511
1512 // Reject names on the arguments lists.
1513 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1514 if (!ArgList[i].Name.empty())
1515 return Error(ArgList[i].Loc, "argument name invalid in function type");
1516 if (!ArgList[i].Attrs != 0) {
1517 // Allow but ignore attributes on function types; this permits
1518 // auto-upgrade.
1519 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1520 }
1521 }
1522
1523 std::vector<const Type*> ArgListTy;
1524 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1525 ArgListTy.push_back(ArgList[i].Type);
1526
1527 Result = HandleUpRefs(FunctionType::get(Result.get(),
1528 ArgListTy, isVarArg));
1529 return false;
1530}
1531
1532/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1533/// TypeRec
1534/// ::= '{' '}'
1535/// ::= '{' TypeRec (',' TypeRec)* '}'
1536/// ::= '<' '{' '}' '>'
1537/// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1538bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1539 assert(Lex.getKind() == lltok::lbrace);
1540 Lex.Lex(); // Consume the '{'
1541
1542 if (EatIfPresent(lltok::rbrace)) {
1543 Result = StructType::get(Context, Packed);
1544 return false;
1545 }
1546
1547 std::vector<PATypeHolder> ParamsList;
1548 LocTy EltTyLoc = Lex.getLoc();
1549 if (ParseTypeRec(Result)) return true;
1550 ParamsList.push_back(Result);
1551
1552 if (Result->isVoidTy())
1553 return Error(EltTyLoc, "struct element can not have void type");
1554 if (!StructType::isValidElementType(Result))
1555 return Error(EltTyLoc, "invalid element type for struct");
1556
1557 while (EatIfPresent(lltok::comma)) {
1558 EltTyLoc = Lex.getLoc();
1559 if (ParseTypeRec(Result)) return true;
1560
1561 if (Result->isVoidTy())
1562 return Error(EltTyLoc, "struct element can not have void type");
1563 if (!StructType::isValidElementType(Result))
1564 return Error(EltTyLoc, "invalid element type for struct");
1565
1566 ParamsList.push_back(Result);
1567 }
1568
1569 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1570 return true;
1571
1572 std::vector<const Type*> ParamsListTy;
1573 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1574 ParamsListTy.push_back(ParamsList[i].get());
1575 Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1576 return false;
1577}
1578
1579/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1580/// token has already been consumed.
1581/// TypeRec
1582/// ::= '[' APSINTVAL 'x' Types ']'
1583/// ::= '<' APSINTVAL 'x' Types '>'
1584bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1585 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1586 Lex.getAPSIntVal().getBitWidth() > 64)
1587 return TokError("expected number in address space");
1588
1589 LocTy SizeLoc = Lex.getLoc();
1590 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1591 Lex.Lex();
1592
1593 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1594 return true;
1595
1596 LocTy TypeLoc = Lex.getLoc();
1597 PATypeHolder EltTy(Type::getVoidTy(Context));
1598 if (ParseTypeRec(EltTy)) return true;
1599
1600 if (EltTy->isVoidTy())
1601 return Error(TypeLoc, "array and vector element type cannot be void");
1602
1603 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1604 "expected end of sequential type"))
1605 return true;
1606
1607 if (isVector) {
1608 if (Size == 0)
1609 return Error(SizeLoc, "zero element vector is illegal");
1610 if ((unsigned)Size != Size)
1611 return Error(SizeLoc, "size too large for vector");
1612 if (!VectorType::isValidElementType(EltTy))
1613 return Error(TypeLoc, "vector element type must be fp or integer");
1614 Result = VectorType::get(EltTy, unsigned(Size));
1615 } else {
1616 if (!ArrayType::isValidElementType(EltTy))
1617 return Error(TypeLoc, "invalid array element type");
1618 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1619 }
1620 return false;
1621}
1622
1623//===----------------------------------------------------------------------===//
1624// Function Semantic Analysis.
1625//===----------------------------------------------------------------------===//
1626
1627LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1628 int functionNumber)
1629 : P(p), F(f), FunctionNumber(functionNumber) {
1630
1631 // Insert unnamed arguments into the NumberedVals list.
1632 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1633 AI != E; ++AI)
1634 if (!AI->hasName())
1635 NumberedVals.push_back(AI);
1636}
1637
1638LLParser::PerFunctionState::~PerFunctionState() {
1639 // If there were any forward referenced non-basicblock values, delete them.
1640 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1641 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1642 if (!isa<BasicBlock>(I->second.first)) {
1643 I->second.first->replaceAllUsesWith(
1644 UndefValue::get(I->second.first->getType()));
1645 delete I->second.first;
1646 I->second.first = 0;
1647 }
1648
1649 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1650 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1651 if (!isa<BasicBlock>(I->second.first)) {
1652 I->second.first->replaceAllUsesWith(
1653 UndefValue::get(I->second.first->getType()));
1654 delete I->second.first;
1655 I->second.first = 0;
1656 }
1657}
1658
1659bool LLParser::PerFunctionState::FinishFunction() {
1660 // Check to see if someone took the address of labels in this block.
1661 if (!P.ForwardRefBlockAddresses.empty()) {
1662 ValID FunctionID;
1663 if (!F.getName().empty()) {
1664 FunctionID.Kind = ValID::t_GlobalName;
1665 FunctionID.StrVal = F.getName();
1666 } else {
1667 FunctionID.Kind = ValID::t_GlobalID;
1668 FunctionID.UIntVal = FunctionNumber;
1669 }
1670
1671 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1672 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1673 if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1674 // Resolve all these references.
1675 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1676 return true;
1677
1678 P.ForwardRefBlockAddresses.erase(FRBAI);
1679 }
1680 }
1681
1682 if (!ForwardRefVals.empty())
1683 return P.Error(ForwardRefVals.begin()->second.second,
1684 "use of undefined value '%" + ForwardRefVals.begin()->first +
1685 "'");
1686 if (!ForwardRefValIDs.empty())
1687 return P.Error(ForwardRefValIDs.begin()->second.second,
1688 "use of undefined value '%" +
1689 utostr(ForwardRefValIDs.begin()->first) + "'");
1690 return false;
1691}
1692
1693
1694/// GetVal - Get a value with the specified name or ID, creating a
1695/// forward reference record if needed. This can return null if the value
1696/// exists but does not have the right type.
1697Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1698 const Type *Ty, LocTy Loc) {
1699 // Look this name up in the normal function symbol table.
1700 Value *Val = F.getValueSymbolTable().lookup(Name);
1701
1702 // If this is a forward reference for the value, see if we already created a
1703 // forward ref record.
1704 if (Val == 0) {
1705 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1706 I = ForwardRefVals.find(Name);
1707 if (I != ForwardRefVals.end())
1708 Val = I->second.first;
1709 }
1710
1711 // If we have the value in the symbol table or fwd-ref table, return it.
1712 if (Val) {
1713 if (Val->getType() == Ty) return Val;
1714 if (Ty->isLabelTy())
1715 P.Error(Loc, "'%" + Name + "' is not a basic block");
1716 else
1717 P.Error(Loc, "'%" + Name + "' defined with type '" +
1718 Val->getType()->getDescription() + "'");
1719 return 0;
1720 }
1721
1722 // Don't make placeholders with invalid type.
1723 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && !Ty->isLabelTy()) {
1724 P.Error(Loc, "invalid use of a non-first-class type");
1725 return 0;
1726 }
1727
1728 // Otherwise, create a new forward reference for this value and remember it.
1729 Value *FwdVal;
1730 if (Ty->isLabelTy())
1731 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1732 else
1733 FwdVal = new Argument(Ty, Name);
1734
1735 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1736 return FwdVal;
1737}
1738
1739Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1740 LocTy Loc) {
1741 // Look this name up in the normal function symbol table.
1742 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1743
1744 // If this is a forward reference for the value, see if we already created a
1745 // forward ref record.
1746 if (Val == 0) {
1747 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1748 I = ForwardRefValIDs.find(ID);
1749 if (I != ForwardRefValIDs.end())
1750 Val = I->second.first;
1751 }
1752
1753 // If we have the value in the symbol table or fwd-ref table, return it.
1754 if (Val) {
1755 if (Val->getType() == Ty) return Val;
1756 if (Ty->isLabelTy())
1757 P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1758 else
1759 P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1760 Val->getType()->getDescription() + "'");
1761 return 0;
1762 }
1763
1764 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && !Ty->isLabelTy()) {
1765 P.Error(Loc, "invalid use of a non-first-class type");
1766 return 0;
1767 }
1768
1769 // Otherwise, create a new forward reference for this value and remember it.
1770 Value *FwdVal;
1771 if (Ty->isLabelTy())
1772 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1773 else
1774 FwdVal = new Argument(Ty);
1775
1776 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1777 return FwdVal;
1778}
1779
1780/// SetInstName - After an instruction is parsed and inserted into its
1781/// basic block, this installs its name.
1782bool LLParser::PerFunctionState::SetInstName(int NameID,
1783 const std::string &NameStr,
1784 LocTy NameLoc, Instruction *Inst) {
1785 // If this instruction has void type, it cannot have a name or ID specified.
1786 if (Inst->getType()->isVoidTy()) {
1787 if (NameID != -1 || !NameStr.empty())
1788 return P.Error(NameLoc, "instructions returning void cannot have a name");
1789 return false;
1790 }
1791
1792 // If this was a numbered instruction, verify that the instruction is the
1793 // expected value and resolve any forward references.
1794 if (NameStr.empty()) {
1795 // If neither a name nor an ID was specified, just use the next ID.
1796 if (NameID == -1)
1797 NameID = NumberedVals.size();
1798
1799 if (unsigned(NameID) != NumberedVals.size())
1800 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1801 utostr(NumberedVals.size()) + "'");
1802
1803 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1804 ForwardRefValIDs.find(NameID);
1805 if (FI != ForwardRefValIDs.end()) {
1806 if (FI->second.first->getType() != Inst->getType())
1807 return P.Error(NameLoc, "instruction forward referenced with type '" +
1808 FI->second.first->getType()->getDescription() + "'");
1809 FI->second.first->replaceAllUsesWith(Inst);
1810 delete FI->second.first;
1811 ForwardRefValIDs.erase(FI);
1812 }
1813
1814 NumberedVals.push_back(Inst);
1815 return false;
1816 }
1817
1818 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1819 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1820 FI = ForwardRefVals.find(NameStr);
1821 if (FI != ForwardRefVals.end()) {
1822 if (FI->second.first->getType() != Inst->getType())
1823 return P.Error(NameLoc, "instruction forward referenced with type '" +
1824 FI->second.first->getType()->getDescription() + "'");
1825 FI->second.first->replaceAllUsesWith(Inst);
1826 delete FI->second.first;
1827 ForwardRefVals.erase(FI);
1828 }
1829
1830 // Set the name on the instruction.
1831 Inst->setName(NameStr);
1832
1833 if (Inst->getNameStr() != NameStr)
1834 return P.Error(NameLoc, "multiple definition of local value named '" +
1835 NameStr + "'");
1836 return false;
1837}
1838
1839/// GetBB - Get a basic block with the specified name or ID, creating a
1840/// forward reference record if needed.
1841BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1842 LocTy Loc) {
1843 return cast_or_null<BasicBlock>(GetVal(Name,
1844 Type::getLabelTy(F.getContext()), Loc));
1845}
1846
1847BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1848 return cast_or_null<BasicBlock>(GetVal(ID,
1849 Type::getLabelTy(F.getContext()), Loc));
1850}
1851
1852/// DefineBB - Define the specified basic block, which is either named or
1853/// unnamed. If there is an error, this returns null otherwise it returns
1854/// the block being defined.
1855BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1856 LocTy Loc) {
1857 BasicBlock *BB;
1858 if (Name.empty())
1859 BB = GetBB(NumberedVals.size(), Loc);
1860 else
1861 BB = GetBB(Name, Loc);
1862 if (BB == 0) return 0; // Already diagnosed error.
1863
1864 // Move the block to the end of the function. Forward ref'd blocks are
1865 // inserted wherever they happen to be referenced.
1866 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1867
1868 // Remove the block from forward ref sets.
1869 if (Name.empty()) {
1870 ForwardRefValIDs.erase(NumberedVals.size());
1871 NumberedVals.push_back(BB);
1872 } else {
1873 // BB forward references are already in the function symbol table.
1874 ForwardRefVals.erase(Name);
1875 }
1876
1877 return BB;
1878}
1879
1880//===----------------------------------------------------------------------===//
1881// Constants.
1882//===----------------------------------------------------------------------===//
1883
1884/// ParseValID - Parse an abstract value that doesn't necessarily have a
1885/// type implied. For example, if we parse "4" we don't know what integer type
1886/// it has. The value will later be combined with its type and checked for
1887/// sanity. PFS is used to convert function-local operands of metadata (since
1888/// metadata operands are not just parsed here but also converted to values).
1889/// PFS can be null when we are not parsing metadata values inside a function.
1890bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1891 ID.Loc = Lex.getLoc();
1892 switch (Lex.getKind()) {
1893 default: return TokError("expected value token");
1894 case lltok::GlobalID: // @42
1895 ID.UIntVal = Lex.getUIntVal();
1896 ID.Kind = ValID::t_GlobalID;
1897 break;
1898 case lltok::GlobalVar: // @foo
1899 ID.StrVal = Lex.getStrVal();
1900 ID.Kind = ValID::t_GlobalName;
1901 break;
1902 case lltok::LocalVarID: // %42
1903 ID.UIntVal = Lex.getUIntVal();
1904 ID.Kind = ValID::t_LocalID;
1905 break;
1906 case lltok::LocalVar: // %foo
1907 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
1908 ID.StrVal = Lex.getStrVal();
1909 ID.Kind = ValID::t_LocalName;
1910 break;
1911 case lltok::exclaim: // !{...} MDNode, !"foo" MDString
1912 Lex.Lex();
1913
1914 if (EatIfPresent(lltok::lbrace)) {
1915 SmallVector<Value*, 16> Elts;
1916 if (ParseMDNodeVector(Elts, PFS) ||
1917 ParseToken(lltok::rbrace, "expected end of metadata node"))
1918 return true;
1919
1920 ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
1921 ID.Kind = ValID::t_MDNode;
1922 return false;
1923 }
1924
1925 // Standalone metadata reference
1926 // !{ ..., !42, ... }
1927 if (Lex.getKind() == lltok::APSInt) {
1928 if (ParseMDNodeID(ID.MDNodeVal)) return true;
1929 ID.Kind = ValID::t_MDNode;
1930 return false;
1931 }
1932
1933 // MDString:
1934 // ::= '!' STRINGCONSTANT
1935 if (ParseMDString(ID.MDStringVal)) return true;
1936 ID.Kind = ValID::t_MDString;
1937 return false;
1938 case lltok::APSInt:
1939 ID.APSIntVal = Lex.getAPSIntVal();
1940 ID.Kind = ValID::t_APSInt;
1941 break;
1942 case lltok::APFloat:
1943 ID.APFloatVal = Lex.getAPFloatVal();
1944 ID.Kind = ValID::t_APFloat;
1945 break;
1946 case lltok::kw_true:
1947 ID.ConstantVal = ConstantInt::getTrue(Context);
1948 ID.Kind = ValID::t_Constant;
1949 break;
1950 case lltok::kw_false:
1951 ID.ConstantVal = ConstantInt::getFalse(Context);
1952 ID.Kind = ValID::t_Constant;
1953 break;
1954 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1955 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1956 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1957
1958 case lltok::lbrace: {
1959 // ValID ::= '{' ConstVector '}'
1960 Lex.Lex();
1961 SmallVector<Constant*, 16> Elts;
1962 if (ParseGlobalValueVector(Elts) ||
1963 ParseToken(lltok::rbrace, "expected end of struct constant"))
1964 return true;
1965
1966 ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1967 Elts.size(), false);
1968 ID.Kind = ValID::t_Constant;
1969 return false;
1970 }
1971 case lltok::less: {
1972 // ValID ::= '<' ConstVector '>' --> Vector.
1973 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1974 Lex.Lex();
1975 bool isPackedStruct = EatIfPresent(lltok::lbrace);
1976
1977 SmallVector<Constant*, 16> Elts;
1978 LocTy FirstEltLoc = Lex.getLoc();
1979 if (ParseGlobalValueVector(Elts) ||
1980 (isPackedStruct &&
1981 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1982 ParseToken(lltok::greater, "expected end of constant"))
1983 return true;
1984
1985 if (isPackedStruct) {
1986 ID.ConstantVal =
1987 ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
1988 ID.Kind = ValID::t_Constant;
1989 return false;
1990 }
1991
1992 if (Elts.empty())
1993 return Error(ID.Loc, "constant vector must not be empty");
1994
1995 if (!Elts[0]->getType()->isInteger() &&
1996 !Elts[0]->getType()->isFloatingPoint())
1997 return Error(FirstEltLoc,
1998 "vector elements must have integer or floating point type");
1999
2000 // Verify that all the vector elements have the same type.
2001 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2002 if (Elts[i]->getType() != Elts[0]->getType())
2003 return Error(FirstEltLoc,
2004 "vector element #" + utostr(i) +
2005 " is not of type '" + Elts[0]->getType()->getDescription());
2006
2007 ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2008 ID.Kind = ValID::t_Constant;
2009 return false;
2010 }
2011 case lltok::lsquare: { // Array Constant
2012 Lex.Lex();
2013 SmallVector<Constant*, 16> Elts;
2014 LocTy FirstEltLoc = Lex.getLoc();
2015 if (ParseGlobalValueVector(Elts) ||
2016 ParseToken(lltok::rsquare, "expected end of array constant"))
2017 return true;
2018
2019 // Handle empty element.
2020 if (Elts.empty()) {
2021 // Use undef instead of an array because it's inconvenient to determine
2022 // the element type at this point, there being no elements to examine.
2023 ID.Kind = ValID::t_EmptyArray;
2024 return false;
2025 }
2026
2027 if (!Elts[0]->getType()->isFirstClassType())
2028 return Error(FirstEltLoc, "invalid array element type: " +
2029 Elts[0]->getType()->getDescription());
2030
2031 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2032
2033 // Verify all elements are correct type!
2034 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2035 if (Elts[i]->getType() != Elts[0]->getType())
2036 return Error(FirstEltLoc,
2037 "array element #" + utostr(i) +
2038 " is not of type '" +Elts[0]->getType()->getDescription());
2039 }
2040
2041 ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2042 ID.Kind = ValID::t_Constant;
2043 return false;
2044 }
2045 case lltok::kw_c: // c "foo"
2046 Lex.Lex();
2047 ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2048 if (ParseToken(lltok::StringConstant, "expected string")) return true;
2049 ID.Kind = ValID::t_Constant;
2050 return false;
2051
2052 case lltok::kw_asm: {
2053 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2054 bool HasSideEffect, AlignStack;
2055 Lex.Lex();
2056 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2057 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2058 ParseStringConstant(ID.StrVal) ||
2059 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2060 ParseToken(lltok::StringConstant, "expected constraint string"))
2061 return true;
2062 ID.StrVal2 = Lex.getStrVal();
2063 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2064 ID.Kind = ValID::t_InlineAsm;
2065 return false;
2066 }
2067
2068 case lltok::kw_blockaddress: {
2069 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2070 Lex.Lex();
2071
2072 ValID Fn, Label;
2073 LocTy FnLoc, LabelLoc;
2074
2075 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2076 ParseValID(Fn) ||
2077 ParseToken(lltok::comma, "expected comma in block address expression")||
2078 ParseValID(Label) ||
2079 ParseToken(lltok::rparen, "expected ')' in block address expression"))
2080 return true;
2081
2082 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2083 return Error(Fn.Loc, "expected function name in blockaddress");
2084 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2085 return Error(Label.Loc, "expected basic block name in blockaddress");
2086
2087 // Make a global variable as a placeholder for this reference.
2088 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2089 false, GlobalValue::InternalLinkage,
2090 0, "");
2091 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2092 ID.ConstantVal = FwdRef;
2093 ID.Kind = ValID::t_Constant;
2094 return false;
2095 }
2096
2097 case lltok::kw_trunc:
2098 case lltok::kw_zext:
2099 case lltok::kw_sext:
2100 case lltok::kw_fptrunc:
2101 case lltok::kw_fpext:
2102 case lltok::kw_bitcast:
2103 case lltok::kw_uitofp:
2104 case lltok::kw_sitofp:
2105 case lltok::kw_fptoui:
2106 case lltok::kw_fptosi:
2107 case lltok::kw_inttoptr:
2108 case lltok::kw_ptrtoint: {
2109 unsigned Opc = Lex.getUIntVal();
2110 PATypeHolder DestTy(Type::getVoidTy(Context));
2111 Constant *SrcVal;
2112 Lex.Lex();
2113 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2114 ParseGlobalTypeAndValue(SrcVal) ||
2115 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2116 ParseType(DestTy) ||
2117 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2118 return true;
2119 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2120 return Error(ID.Loc, "invalid cast opcode for cast from '" +
2121 SrcVal->getType()->getDescription() + "' to '" +
2122 DestTy->getDescription() + "'");
2123 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2124 SrcVal, DestTy);
2125 ID.Kind = ValID::t_Constant;
2126 return false;
2127 }
2128 case lltok::kw_extractvalue: {
2129 Lex.Lex();
2130 Constant *Val;
2131 SmallVector<unsigned, 4> Indices;
2132 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2133 ParseGlobalTypeAndValue(Val) ||
2134 ParseIndexList(Indices) ||
2135 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2136 return true;
2137
2138 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
2139 return Error(ID.Loc, "extractvalue operand must be array or struct");
2140 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2141 Indices.end()))
2142 return Error(ID.Loc, "invalid indices for extractvalue");
2143 ID.ConstantVal =
2144 ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2145 ID.Kind = ValID::t_Constant;
2146 return false;
2147 }
2148 case lltok::kw_insertvalue: {
2149 Lex.Lex();
2150 Constant *Val0, *Val1;
2151 SmallVector<unsigned, 4> Indices;
2152 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2153 ParseGlobalTypeAndValue(Val0) ||
2154 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2155 ParseGlobalTypeAndValue(Val1) ||
2156 ParseIndexList(Indices) ||
2157 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2158 return true;
2159 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
2160 return Error(ID.Loc, "extractvalue operand must be array or struct");
2161 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2162 Indices.end()))
2163 return Error(ID.Loc, "invalid indices for insertvalue");
2164 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2165 Indices.data(), Indices.size());
2166 ID.Kind = ValID::t_Constant;
2167 return false;
2168 }
2169 case lltok::kw_icmp:
2170 case lltok::kw_fcmp: {
2171 unsigned PredVal, Opc = Lex.getUIntVal();
2172 Constant *Val0, *Val1;
2173 Lex.Lex();
2174 if (ParseCmpPredicate(PredVal, Opc) ||
2175 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2176 ParseGlobalTypeAndValue(Val0) ||
2177 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2178 ParseGlobalTypeAndValue(Val1) ||
2179 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2180 return true;
2181
2182 if (Val0->getType() != Val1->getType())
2183 return Error(ID.Loc, "compare operands must have the same type");
2184
2185 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2186
2187 if (Opc == Instruction::FCmp) {
2188 if (!Val0->getType()->isFPOrFPVector())
2189 return Error(ID.Loc, "fcmp requires floating point operands");
2190 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2191 } else {
2192 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2193 if (!Val0->getType()->isIntOrIntVector() &&
2194 !isa<PointerType>(Val0->getType()))
2195 return Error(ID.Loc, "icmp requires pointer or integer operands");
2196 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2197 }
2198 ID.Kind = ValID::t_Constant;
2199 return false;
2200 }
2201
2202 // Binary Operators.
2203 case lltok::kw_add:
2204 case lltok::kw_fadd:
2205 case lltok::kw_sub:
2206 case lltok::kw_fsub:
2207 case lltok::kw_mul:
2208 case lltok::kw_fmul:
2209 case lltok::kw_udiv:
2210 case lltok::kw_sdiv:
2211 case lltok::kw_fdiv:
2212 case lltok::kw_urem:
2213 case lltok::kw_srem:
2214 case lltok::kw_frem: {
2215 bool NUW = false;
2216 bool NSW = false;
2217 bool Exact = false;
2218 unsigned Opc = Lex.getUIntVal();
2219 Constant *Val0, *Val1;
2220 Lex.Lex();
2221 LocTy ModifierLoc = Lex.getLoc();
2222 if (Opc == Instruction::Add ||
2223 Opc == Instruction::Sub ||
2224 Opc == Instruction::Mul) {
2225 if (EatIfPresent(lltok::kw_nuw))
2226 NUW = true;
2227 if (EatIfPresent(lltok::kw_nsw)) {
2228 NSW = true;
2229 if (EatIfPresent(lltok::kw_nuw))
2230 NUW = true;
2231 }
2232 } else if (Opc == Instruction::SDiv) {
2233 if (EatIfPresent(lltok::kw_exact))
2234 Exact = true;
2235 }
2236 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2237 ParseGlobalTypeAndValue(Val0) ||
2238 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2239 ParseGlobalTypeAndValue(Val1) ||
2240 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2241 return true;
2242 if (Val0->getType() != Val1->getType())
2243 return Error(ID.Loc, "operands of constexpr must have same type");
2244 if (!Val0->getType()->isIntOrIntVector()) {
2245 if (NUW)
2246 return Error(ModifierLoc, "nuw only applies to integer operations");
2247 if (NSW)
2248 return Error(ModifierLoc, "nsw only applies to integer operations");
2249 }
2250 // API compatibility: Accept either integer or floating-point types with
2251 // add, sub, and mul.
2252 if (!Val0->getType()->isIntOrIntVector() &&
2253 !Val0->getType()->isFPOrFPVector())
2254 return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2255 unsigned Flags = 0;
2256 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2257 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
2258 if (Exact) Flags |= SDivOperator::IsExact;
2259 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2260 ID.ConstantVal = C;
2261 ID.Kind = ValID::t_Constant;
2262 return false;
2263 }
2264
2265 // Logical Operations
2266 case lltok::kw_shl:
2267 case lltok::kw_lshr:
2268 case lltok::kw_ashr:
2269 case lltok::kw_and:
2270 case lltok::kw_or:
2271 case lltok::kw_xor: {
2272 unsigned Opc = Lex.getUIntVal();
2273 Constant *Val0, *Val1;
2274 Lex.Lex();
2275 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2276 ParseGlobalTypeAndValue(Val0) ||
2277 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2278 ParseGlobalTypeAndValue(Val1) ||
2279 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2280 return true;
2281 if (Val0->getType() != Val1->getType())
2282 return Error(ID.Loc, "operands of constexpr must have same type");
2283 if (!Val0->getType()->isIntOrIntVector())
2284 return Error(ID.Loc,
2285 "constexpr requires integer or integer vector operands");
2286 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2287 ID.Kind = ValID::t_Constant;
2288 return false;
2289 }
2290
2291 case lltok::kw_getelementptr:
2292 case lltok::kw_shufflevector:
2293 case lltok::kw_insertelement:
2294 case lltok::kw_extractelement:
2295 case lltok::kw_select: {
2296 unsigned Opc = Lex.getUIntVal();
2297 SmallVector<Constant*, 16> Elts;
2298 bool InBounds = false;
2299 Lex.Lex();
2300 if (Opc == Instruction::GetElementPtr)
2301 InBounds = EatIfPresent(lltok::kw_inbounds);
2302 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2303 ParseGlobalValueVector(Elts) ||
2304 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2305 return true;
2306
2307 if (Opc == Instruction::GetElementPtr) {
2308 if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2309 return Error(ID.Loc, "getelementptr requires pointer operand");
2310
2311 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2312 (Value**)(Elts.data() + 1),
2313 Elts.size() - 1))
2314 return Error(ID.Loc, "invalid indices for getelementptr");
2315 ID.ConstantVal = InBounds ?
2316 ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2317 Elts.data() + 1,
2318 Elts.size() - 1) :
2319 ConstantExpr::getGetElementPtr(Elts[0],
2320 Elts.data() + 1, Elts.size() - 1);
2321 } else if (Opc == Instruction::Select) {
2322 if (Elts.size() != 3)
2323 return Error(ID.Loc, "expected three operands to select");
2324 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2325 Elts[2]))
2326 return Error(ID.Loc, Reason);
2327 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2328 } else if (Opc == Instruction::ShuffleVector) {
2329 if (Elts.size() != 3)
2330 return Error(ID.Loc, "expected three operands to shufflevector");
2331 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2332 return Error(ID.Loc, "invalid operands to shufflevector");
2333 ID.ConstantVal =
2334 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2335 } else if (Opc == Instruction::ExtractElement) {
2336 if (Elts.size() != 2)
2337 return Error(ID.Loc, "expected two operands to extractelement");
2338 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2339 return Error(ID.Loc, "invalid extractelement operands");
2340 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2341 } else {
2342 assert(Opc == Instruction::InsertElement && "Unknown opcode");
2343 if (Elts.size() != 3)
2344 return Error(ID.Loc, "expected three operands to insertelement");
2345 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2346 return Error(ID.Loc, "invalid insertelement operands");
2347 ID.ConstantVal =
2348 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2349 }
2350
2351 ID.Kind = ValID::t_Constant;
2352 return false;
2353 }
2354 }
2355
2356 Lex.Lex();
2357 return false;
2358}
2359
2360/// ParseGlobalValue - Parse a global value with the specified type.
2361bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
2362 C = 0;
2363 ValID ID;
2364 Value *V = NULL;
2365 bool Parsed = ParseValID(ID) ||
2366 ConvertValIDToValue(Ty, ID, V, NULL);
2367 if (V && !(C = dyn_cast<Constant>(V)))
2368 return Error(ID.Loc, "global values must be constants");
2369 return Parsed;
2370}
2371
2372bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2373 PATypeHolder Type(Type::getVoidTy(Context));
2374 return ParseType(Type) ||
2375 ParseGlobalValue(Type, V);
2376}
2377
2378/// ParseGlobalValueVector
2379/// ::= /*empty*/
2380/// ::= TypeAndValue (',' TypeAndValue)*
2381bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2382 // Empty list.
2383 if (Lex.getKind() == lltok::rbrace ||
2384 Lex.getKind() == lltok::rsquare ||
2385 Lex.getKind() == lltok::greater ||
2386 Lex.getKind() == lltok::rparen)
2387 return false;
2388
2389 Constant *C;
2390 if (ParseGlobalTypeAndValue(C)) return true;
2391 Elts.push_back(C);
2392
2393 while (EatIfPresent(lltok::comma)) {
2394 if (ParseGlobalTypeAndValue(C)) return true;
2395 Elts.push_back(C);
2396 }
2397
2398 return false;
2399}
2400
2401
2402//===----------------------------------------------------------------------===//
2403// Function Parsing.
2404//===----------------------------------------------------------------------===//
2405
2406bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2407 PerFunctionState *PFS) {
2408 if (isa<FunctionType>(Ty))
2409 return Error(ID.Loc, "functions are not values, refer to them as pointers");
2410
2411 switch (ID.Kind) {
2412 default: llvm_unreachable("Unknown ValID!");
2413 case ValID::t_LocalID:
2414 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2415 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2416 return (V == 0);
2417 case ValID::t_LocalName:
2418 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2419 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2420 return (V == 0);
2421 case ValID::t_InlineAsm: {
2422 const PointerType *PTy = dyn_cast<PointerType>(Ty);
2423 const FunctionType *FTy =
2424 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2425 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2426 return Error(ID.Loc, "invalid type for inline asm constraint string");
2427 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2428 return false;
2429 }
2430 case ValID::t_MDNode:
2431 if (!Ty->isMetadataTy())
2432 return Error(ID.Loc, "metadata value must have metadata type");
2433 V = ID.MDNodeVal;
2434 return false;
2435 case ValID::t_MDString:
2436 if (!Ty->isMetadataTy())
2437 return Error(ID.Loc, "metadata value must have metadata type");
2438 V = ID.MDStringVal;
2439 return false;
2440 case ValID::t_GlobalName:
2441 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2442 return V == 0;
2443 case ValID::t_GlobalID:
2444 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2445 return V == 0;
2446 case ValID::t_APSInt:
2447 if (!isa<IntegerType>(Ty))
2448 return Error(ID.Loc, "integer constant must have integer type");
2449 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2450 V = ConstantInt::get(Context, ID.APSIntVal);
2451 return false;
2452 case ValID::t_APFloat:
2453 if (!Ty->isFloatingPoint() ||
2454 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2455 return Error(ID.Loc, "floating point constant invalid for type");
2456
2457 // The lexer has no type info, so builds all float and double FP constants
2458 // as double. Fix this here. Long double does not need this.
2459 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2460 Ty->isFloatTy()) {
2461 bool Ignored;
2462 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2463 &Ignored);
2464 }
2465 V = ConstantFP::get(Context, ID.APFloatVal);
2466
2467 if (V->getType() != Ty)
2468 return Error(ID.Loc, "floating point constant does not have type '" +
2469 Ty->getDescription() + "'");
2470
2471 return false;
2472 case ValID::t_Null:
2473 if (!isa<PointerType>(Ty))
2474 return Error(ID.Loc, "null must be a pointer type");
2475 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2476 return false;
2477 case ValID::t_Undef:
2478 // FIXME: LabelTy should not be a first-class type.
2479 if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2480 !isa<OpaqueType>(Ty))
2481 return Error(ID.Loc, "invalid type for undef constant");
2482 V = UndefValue::get(Ty);
2483 return false;
2484 case ValID::t_EmptyArray:
2485 if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2486 return Error(ID.Loc, "invalid empty array initializer");
2487 V = UndefValue::get(Ty);
2488 return false;
2489 case ValID::t_Zero:
2490 // FIXME: LabelTy should not be a first-class type.
2491 if (!Ty->isFirstClassType() || Ty->isLabelTy())
2492 return Error(ID.Loc, "invalid type for null constant");
2493 V = Constant::getNullValue(Ty);
2494 return false;
2495 case ValID::t_Constant:
2496 if (ID.ConstantVal->getType() != Ty)
2497 return Error(ID.Loc, "constant expression type mismatch");
2498 V = ID.ConstantVal;
2499 return false;
2500 }
2501}
2502
2503bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2504 V = 0;
2505 ValID ID;
2506 return ParseValID(ID, &PFS) ||
2507 ConvertValIDToValue(Ty, ID, V, &PFS);
2508}
2509
2510bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2511 PATypeHolder T(Type::getVoidTy(Context));
2512 return ParseType(T) ||
2513 ParseValue(T, V, PFS);
2514}
2515
2516bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2517 PerFunctionState &PFS) {
2518 Value *V;
2519 Loc = Lex.getLoc();
2520 if (ParseTypeAndValue(V, PFS)) return true;
2521 if (!isa<BasicBlock>(V))
2522 return Error(Loc, "expected a basic block");
2523 BB = cast<BasicBlock>(V);
2524 return false;
2525}
2526
2527
2528/// FunctionHeader
2529/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2530/// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2531/// OptionalAlign OptGC
2532bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2533 // Parse the linkage.
2534 LocTy LinkageLoc = Lex.getLoc();
2535 unsigned Linkage;
2536
2537 unsigned Visibility, RetAttrs;
2538 CallingConv::ID CC;
2539 PATypeHolder RetType(Type::getVoidTy(Context));
2540 LocTy RetTypeLoc = Lex.getLoc();
2541 if (ParseOptionalLinkage(Linkage) ||
2542 ParseOptionalVisibility(Visibility) ||
2543 ParseOptionalCallingConv(CC) ||
2544 ParseOptionalAttrs(RetAttrs, 1) ||
2545 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2546 return true;
2547
2548 // Verify that the linkage is ok.
2549 switch ((GlobalValue::LinkageTypes)Linkage) {
2550 case GlobalValue::ExternalLinkage:
2551 break; // always ok.
2552 case GlobalValue::DLLImportLinkage:
2553 case GlobalValue::ExternalWeakLinkage:
2554 if (isDefine)
2555 return Error(LinkageLoc, "invalid linkage for function definition");
2556 break;
2557 case GlobalValue::PrivateLinkage:
2558 case GlobalValue::LinkerPrivateLinkage:
2559 case GlobalValue::InternalLinkage:
2560 case GlobalValue::AvailableExternallyLinkage:
2561 case GlobalValue::LinkOnceAnyLinkage:
2562 case GlobalValue::LinkOnceODRLinkage:
2563 case GlobalValue::WeakAnyLinkage:
2564 case GlobalValue::WeakODRLinkage:
2565 case GlobalValue::DLLExportLinkage:
2566 if (!isDefine)
2567 return Error(LinkageLoc, "invalid linkage for function declaration");
2568 break;
2569 case GlobalValue::AppendingLinkage:
2570 case GlobalValue::CommonLinkage:
2571 return Error(LinkageLoc, "invalid function linkage type");
2572 }
2573
2574 if (!FunctionType::isValidReturnType(RetType) ||
2575 isa<OpaqueType>(RetType))
2576 return Error(RetTypeLoc, "invalid function return type");
2577
2578 LocTy NameLoc = Lex.getLoc();
2579
2580 std::string FunctionName;
2581 if (Lex.getKind() == lltok::GlobalVar) {
2582 FunctionName = Lex.getStrVal();
2583 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2584 unsigned NameID = Lex.getUIntVal();
2585
2586 if (NameID != NumberedVals.size())
2587 return TokError("function expected to be numbered '%" +
2588 utostr(NumberedVals.size()) + "'");
2589 } else {
2590 return TokError("expected function name");
2591 }
2592
2593 Lex.Lex();
2594
2595 if (Lex.getKind() != lltok::lparen)
2596 return TokError("expected '(' in function argument list");
2597
2598 std::vector<ArgInfo> ArgList;
2599 bool isVarArg;
2600 unsigned FuncAttrs;
2601 std::string Section;
2602 unsigned Alignment;
2603 std::string GC;
2604
2605 if (ParseArgumentList(ArgList, isVarArg, false) ||
2606 ParseOptionalAttrs(FuncAttrs, 2) ||
2607 (EatIfPresent(lltok::kw_section) &&
2608 ParseStringConstant(Section)) ||
2609 ParseOptionalAlignment(Alignment) ||
2610 (EatIfPresent(lltok::kw_gc) &&
2611 ParseStringConstant(GC)))
2612 return true;
2613
2614 // If the alignment was parsed as an attribute, move to the alignment field.
2615 if (FuncAttrs & Attribute::Alignment) {
2616 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2617 FuncAttrs &= ~Attribute::Alignment;
2618 }
2619
2620 // Okay, if we got here, the function is syntactically valid. Convert types
2621 // and do semantic checks.
2622 std::vector<const Type*> ParamTypeList;
2623 SmallVector<AttributeWithIndex, 8> Attrs;
2624 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2625 // attributes.
2626 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2627 if (FuncAttrs & ObsoleteFuncAttrs) {
2628 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2629 FuncAttrs &= ~ObsoleteFuncAttrs;
2630 }
2631
2632 if (RetAttrs != Attribute::None)
2633 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2634
2635 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2636 ParamTypeList.push_back(ArgList[i].Type);
2637 if (ArgList[i].Attrs != Attribute::None)
2638 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2639 }
2640
2641 if (FuncAttrs != Attribute::None)
2642 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2643
2644 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2645
2646 if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2647 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2648
2649 const FunctionType *FT =
2650 FunctionType::get(RetType, ParamTypeList, isVarArg);
2651 const PointerType *PFT = PointerType::getUnqual(FT);
2652
2653 Fn = 0;
2654 if (!FunctionName.empty()) {
2655 // If this was a definition of a forward reference, remove the definition
2656 // from the forward reference table and fill in the forward ref.
2657 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2658 ForwardRefVals.find(FunctionName);
2659 if (FRVI != ForwardRefVals.end()) {
2660 Fn = M->getFunction(FunctionName);
2661 ForwardRefVals.erase(FRVI);
2662 } else if ((Fn = M->getFunction(FunctionName))) {
2663 // If this function already exists in the symbol table, then it is
2664 // multiply defined. We accept a few cases for old backwards compat.
2665 // FIXME: Remove this stuff for LLVM 3.0.
2666 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2667 (!Fn->isDeclaration() && isDefine)) {
2668 // If the redefinition has different type or different attributes,
2669 // reject it. If both have bodies, reject it.
2670 return Error(NameLoc, "invalid redefinition of function '" +
2671 FunctionName + "'");
2672 } else if (Fn->isDeclaration()) {
2673 // Make sure to strip off any argument names so we can't get conflicts.
2674 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2675 AI != AE; ++AI)
2676 AI->setName("");
2677 }
2678 } else if (M->getNamedValue(FunctionName)) {
2679 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2680 }
2681
2682 } else {
2683 // If this is a definition of a forward referenced function, make sure the
2684 // types agree.
2685 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2686 = ForwardRefValIDs.find(NumberedVals.size());
2687 if (I != ForwardRefValIDs.end()) {
2688 Fn = cast<Function>(I->second.first);
2689 if (Fn->getType() != PFT)
2690 return Error(NameLoc, "type of definition and forward reference of '@" +
2691 utostr(NumberedVals.size()) +"' disagree");
2692 ForwardRefValIDs.erase(I);
2693 }
2694 }
2695
2696 if (Fn == 0)
2697 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2698 else // Move the forward-reference to the correct spot in the module.
2699 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2700
2701 if (FunctionName.empty())
2702 NumberedVals.push_back(Fn);
2703
2704 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2705 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2706 Fn->setCallingConv(CC);
2707 Fn->setAttributes(PAL);
2708 Fn->setAlignment(Alignment);
2709 Fn->setSection(Section);
2710 if (!GC.empty()) Fn->setGC(GC.c_str());
2711
2712 // Add all of the arguments we parsed to the function.
2713 Function::arg_iterator ArgIt = Fn->arg_begin();
2714 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2715 // If we run out of arguments in the Function prototype, exit early.
2716 // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2717 if (ArgIt == Fn->arg_end()) break;
2718
2719 // If the argument has a name, insert it into the argument symbol table.
2720 if (ArgList[i].Name.empty()) continue;
2721
2722 // Set the name, if it conflicted, it will be auto-renamed.
2723 ArgIt->setName(ArgList[i].Name);
2724
2725 if (ArgIt->getNameStr() != ArgList[i].Name)
2726 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2727 ArgList[i].Name + "'");
2728 }
2729
2730 return false;
2731}
2732
2733
2734/// ParseFunctionBody
2735/// ::= '{' BasicBlock+ '}'
2736/// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2737///
2738bool LLParser::ParseFunctionBody(Function &Fn) {
2739 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2740 return TokError("expected '{' in function body");
2741 Lex.Lex(); // eat the {.
2742
2743 int FunctionNumber = -1;
2744 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2745
2746 PerFunctionState PFS(*this, Fn, FunctionNumber);
2747
2748 // We need at least one basic block.
2749 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
2750 return TokError("function body requires at least one basic block");
2751
2752 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2753 if (ParseBasicBlock(PFS)) return true;
2754
2755 // Eat the }.
2756 Lex.Lex();
2757
2758 // Verify function is ok.
2759 return PFS.FinishFunction();
2760}
2761
2762/// ParseBasicBlock
2763/// ::= LabelStr? Instruction*
2764bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2765 // If this basic block starts out with a name, remember it.
2766 std::string Name;
2767 LocTy NameLoc = Lex.getLoc();
2768 if (Lex.getKind() == lltok::LabelStr) {
2769 Name = Lex.getStrVal();
2770 Lex.Lex();
2771 }
2772
2773 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2774 if (BB == 0) return true;
2775
2776 std::string NameStr;
2777
2778 // Parse the instructions in this block until we get a terminator.
2779 Instruction *Inst;
2780 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2781 do {
2782 // This instruction may have three possibilities for a name: a) none
2783 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2784 LocTy NameLoc = Lex.getLoc();
2785 int NameID = -1;
2786 NameStr = "";
2787
2788 if (Lex.getKind() == lltok::LocalVarID) {
2789 NameID = Lex.getUIntVal();
2790 Lex.Lex();
2791 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2792 return true;
2793 } else if (Lex.getKind() == lltok::LocalVar ||
2794 // FIXME: REMOVE IN LLVM 3.0
2795 Lex.getKind() == lltok::StringConstant) {
2796 NameStr = Lex.getStrVal();
2797 Lex.Lex();
2798 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2799 return true;
2800 }
2801
2802 switch (ParseInstruction(Inst, BB, PFS)) {
2803 default: assert(0 && "Unknown ParseInstruction result!");
2804 case InstError: return true;
2805 case InstNormal:
2806 // With a normal result, we check to see if the instruction is followed by
2807 // a comma and metadata.
2808 if (EatIfPresent(lltok::comma))
2809 if (ParseInstructionMetadata(MetadataOnInst))
2810 return true;
2811 break;
2812 case InstExtraComma:
2813 // If the instruction parser ate an extra comma at the end of it, it
2814 // *must* be followed by metadata.
2815 if (ParseInstructionMetadata(MetadataOnInst))
2816 return true;
2817 break;
2818 }
2819
2820 // Set metadata attached with this instruction.
2821 for (unsigned i = 0, e = MetadataOnInst.size(); i != e; ++i)
2822 Inst->setMetadata(MetadataOnInst[i].first, MetadataOnInst[i].second);
2823 MetadataOnInst.clear();
2824
2825 BB->getInstList().push_back(Inst);
2826
2827 // Set the name on the instruction.
2828 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2829 } while (!isa<TerminatorInst>(Inst));
2830
2831 return false;
2832}
2833
2834//===----------------------------------------------------------------------===//
2835// Instruction Parsing.
2836//===----------------------------------------------------------------------===//
2837
2838/// ParseInstruction - Parse one of the many different instructions.
2839///
2840int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2841 PerFunctionState &PFS) {
2842 lltok::Kind Token = Lex.getKind();
2843 if (Token == lltok::Eof)
2844 return TokError("found end of file when expecting more instructions");
2845 LocTy Loc = Lex.getLoc();
2846 unsigned KeywordVal = Lex.getUIntVal();
2847 Lex.Lex(); // Eat the keyword.
2848
2849 switch (Token) {
2850 default: return Error(Loc, "expected instruction opcode");
2851 // Terminator Instructions.
2852 case lltok::kw_unwind: Inst = new UnwindInst(Context); return false;
2853 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2854 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2855 case lltok::kw_br: return ParseBr(Inst, PFS);
2856 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2857 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
2858 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2859 // Binary Operators.
2860 case lltok::kw_add:
2861 case lltok::kw_sub:
2862 case lltok::kw_mul: {
2863 bool NUW = false;
2864 bool NSW = false;
2865 LocTy ModifierLoc = Lex.getLoc();
2866 if (EatIfPresent(lltok::kw_nuw))
2867 NUW = true;
2868 if (EatIfPresent(lltok::kw_nsw)) {
2869 NSW = true;
2870 if (EatIfPresent(lltok::kw_nuw))
2871 NUW = true;
2872 }
2873 // API compatibility: Accept either integer or floating-point types.
2874 bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2875 if (!Result) {
2876 if (!Inst->getType()->isIntOrIntVector()) {
2877 if (NUW)
2878 return Error(ModifierLoc, "nuw only applies to integer operations");
2879 if (NSW)
2880 return Error(ModifierLoc, "nsw only applies to integer operations");
2881 }
2882 if (NUW)
2883 cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2884 if (NSW)
2885 cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2886 }
2887 return Result;
2888 }
2889 case lltok::kw_fadd:
2890 case lltok::kw_fsub:
2891 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2892
2893 case lltok::kw_sdiv: {
2894 bool Exact = false;
2895 if (EatIfPresent(lltok::kw_exact))
2896 Exact = true;
2897 bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2898 if (!Result)
2899 if (Exact)
2900 cast<BinaryOperator>(Inst)->setIsExact(true);
2901 return Result;
2902 }
2903
2904 case lltok::kw_udiv:
2905 case lltok::kw_urem:
2906 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2907 case lltok::kw_fdiv:
2908 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2909 case lltok::kw_shl:
2910 case lltok::kw_lshr:
2911 case lltok::kw_ashr:
2912 case lltok::kw_and:
2913 case lltok::kw_or:
2914 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
2915 case lltok::kw_icmp:
2916 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
2917 // Casts.
2918 case lltok::kw_trunc:
2919 case lltok::kw_zext:
2920 case lltok::kw_sext:
2921 case lltok::kw_fptrunc:
2922 case lltok::kw_fpext:
2923 case lltok::kw_bitcast:
2924 case lltok::kw_uitofp:
2925 case lltok::kw_sitofp:
2926 case lltok::kw_fptoui:
2927 case lltok::kw_fptosi:
2928 case lltok::kw_inttoptr:
2929 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
2930 // Other.
2931 case lltok::kw_select: return ParseSelect(Inst, PFS);
2932 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
2933 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2934 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2935 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2936 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2937 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2938 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2939 // Memory.
2940 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
2941 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, BB, false);
2942 case lltok::kw_free: return ParseFree(Inst, PFS, BB);
2943 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
2944 case lltok::kw_store: return ParseStore(Inst, PFS, false);
2945 case lltok::kw_volatile:
2946 if (EatIfPresent(lltok::kw_load))
2947 return ParseLoad(Inst, PFS, true);
2948 else if (EatIfPresent(lltok::kw_store))
2949 return ParseStore(Inst, PFS, true);
2950 else
2951 return TokError("expected 'load' or 'store'");
2952 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
2953 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2954 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2955 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2956 }
2957}
2958
2959/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2960bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2961 if (Opc == Instruction::FCmp) {
2962 switch (Lex.getKind()) {
2963 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2964 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2965 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2966 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2967 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2968 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2969 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2970 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2971 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2972 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2973 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2974 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2975 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2976 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2977 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2978 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2979 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2980 }
2981 } else {
2982 switch (Lex.getKind()) {
2983 default: TokError("expected icmp predicate (e.g. 'eq')");
2984 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2985 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2986 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2987 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2988 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2989 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2990 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2991 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2992 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2993 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2994 }
2995 }
2996 Lex.Lex();
2997 return false;
2998}
2999
3000//===----------------------------------------------------------------------===//
3001// Terminator Instructions.
3002//===----------------------------------------------------------------------===//
3003
3004/// ParseRet - Parse a return instruction.
3005/// ::= 'ret' void (',' !dbg, !1)*
3006/// ::= 'ret' TypeAndValue (',' !dbg, !1)*
3007/// ::= 'ret' TypeAndValue (',' TypeAndValue)+ (',' !dbg, !1)*
3008/// [[obsolete: LLVM 3.0]]
3009int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3010 PerFunctionState &PFS) {
3011 PATypeHolder Ty(Type::getVoidTy(Context));
3012 if (ParseType(Ty, true /*void allowed*/)) return true;
3013
3014 if (Ty->isVoidTy()) {
3015 Inst = ReturnInst::Create(Context);
3016 return false;
3017 }
3018
3019 Value *RV;
3020 if (ParseValue(Ty, RV, PFS)) return true;
3021
3022 bool ExtraComma = false;
3023 if (EatIfPresent(lltok::comma)) {
3024 // Parse optional custom metadata, e.g. !dbg
3025 if (Lex.getKind() == lltok::MetadataVar) {
3026 ExtraComma = true;
3027 } else {
3028 // The normal case is one return value.
3029 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3030 // use of 'ret {i32,i32} {i32 1, i32 2}'
3031 SmallVector<Value*, 8> RVs;
3032 RVs.push_back(RV);
3033
3034 do {
3035 // If optional custom metadata, e.g. !dbg is seen then this is the
3036 // end of MRV.
3037 if (Lex.getKind() == lltok::MetadataVar)
3038 break;
3039 if (ParseTypeAndValue(RV, PFS)) return true;
3040 RVs.push_back(RV);
3041 } while (EatIfPresent(lltok::comma));
3042
3043 RV = UndefValue::get(PFS.getFunction().getReturnType());
3044 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3045 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3046 BB->getInstList().push_back(I);
3047 RV = I;
3048 }
3049 }
3050 }
3051
3052 Inst = ReturnInst::Create(Context, RV);
3053 return ExtraComma ? InstExtraComma : InstNormal;
3054}
3055
3056
3057/// ParseBr
3058/// ::= 'br' TypeAndValue
3059/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3060bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3061 LocTy Loc, Loc2;
3062 Value *Op0;
3063 BasicBlock *Op1, *Op2;
3064 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3065
3066 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3067 Inst = BranchInst::Create(BB);
3068 return false;
3069 }
3070
3071 if (Op0->getType() != Type::getInt1Ty(Context))
3072 return Error(Loc, "branch condition must have 'i1' type");
3073
3074 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3075 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3076 ParseToken(lltok::comma, "expected ',' after true destination") ||
3077 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3078 return true;
3079
3080 Inst = BranchInst::Create(Op1, Op2, Op0);
3081 return false;
3082}
3083
3084/// ParseSwitch
3085/// Instruction
3086/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3087/// JumpTable
3088/// ::= (TypeAndValue ',' TypeAndValue)*
3089bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3090 LocTy CondLoc, BBLoc;
3091 Value *Cond;
3092 BasicBlock *DefaultBB;
3093 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3094 ParseToken(lltok::comma, "expected ',' after switch condition") ||
3095 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3096 ParseToken(lltok::lsquare, "expected '[' with switch table"))
3097 return true;
3098
3099 if (!isa<IntegerType>(Cond->getType()))
3100 return Error(CondLoc, "switch condition must have integer type");
3101
3102 // Parse the jump table pairs.
3103 SmallPtrSet<Value*, 32> SeenCases;
3104 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3105 while (Lex.getKind() != lltok::rsquare) {
3106 Value *Constant;
3107 BasicBlock *DestBB;
3108
3109 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3110 ParseToken(lltok::comma, "expected ',' after case value") ||
3111 ParseTypeAndBasicBlock(DestBB, PFS))
3112 return true;
3113
3114 if (!SeenCases.insert(Constant))
3115 return Error(CondLoc, "duplicate case value in switch");
3116 if (!isa<ConstantInt>(Constant))
3117 return Error(CondLoc, "case value is not a constant integer");
3118
3119 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3120 }
3121
3122 Lex.Lex(); // Eat the ']'.
3123
3124 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3125 for (unsigned i = 0, e = Table.size(); i != e; ++i)
3126 SI->addCase(Table[i].first, Table[i].second);
3127 Inst = SI;
3128 return false;
3129}
3130
3131/// ParseIndirectBr
3132/// Instruction
3133/// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3134bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3135 LocTy AddrLoc;
3136 Value *Address;
3137 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3138 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3139 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3140 return true;
3141
3142 if (!isa<PointerType>(Address->getType()))
3143 return Error(AddrLoc, "indirectbr address must have pointer type");
3144
3145 // Parse the destination list.
3146 SmallVector<BasicBlock*, 16> DestList;
3147
3148 if (Lex.getKind() != lltok::rsquare) {
3149 BasicBlock *DestBB;
3150 if (ParseTypeAndBasicBlock(DestBB, PFS))
3151 return true;
3152 DestList.push_back(DestBB);
3153
3154 while (EatIfPresent(lltok::comma)) {
3155 if (ParseTypeAndBasicBlock(DestBB, PFS))
3156 return true;
3157 DestList.push_back(DestBB);
3158 }
3159 }
3160
3161 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3162 return true;
3163
3164 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3165 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3166 IBI->addDestination(DestList[i]);
3167 Inst = IBI;
3168 return false;
3169}
3170
3171
3172/// ParseInvoke
3173/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3174/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3175bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3176 LocTy CallLoc = Lex.getLoc();
3177 unsigned RetAttrs, FnAttrs;
3178 CallingConv::ID CC;
3179 PATypeHolder RetType(Type::getVoidTy(Context));
3180 LocTy RetTypeLoc;
3181 ValID CalleeID;
3182 SmallVector<ParamInfo, 16> ArgList;
3183
3184 BasicBlock *NormalBB, *UnwindBB;
3185 if (ParseOptionalCallingConv(CC) ||
3186 ParseOptionalAttrs(RetAttrs, 1) ||
3187 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3188 ParseValID(CalleeID) ||
3189 ParseParameterList(ArgList, PFS) ||
3190 ParseOptionalAttrs(FnAttrs, 2) ||
3191 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3192 ParseTypeAndBasicBlock(NormalBB, PFS) ||
3193 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3194 ParseTypeAndBasicBlock(UnwindBB, PFS))
3195 return true;
3196
3197 // If RetType is a non-function pointer type, then this is the short syntax
3198 // for the call, which means that RetType is just the return type. Infer the
3199 // rest of the function argument types from the arguments that are present.
3200 const PointerType *PFTy = 0;
3201 const FunctionType *Ty = 0;
3202 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3203 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3204 // Pull out the types of all of the arguments...
3205 std::vector<const Type*> ParamTypes;
3206 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3207 ParamTypes.push_back(ArgList[i].V->getType());
3208
3209 if (!FunctionType::isValidReturnType(RetType))
3210 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3211
3212 Ty = FunctionType::get(RetType, ParamTypes, false);
3213 PFTy = PointerType::getUnqual(Ty);
3214 }
3215
3216 // Look up the callee.
3217 Value *Callee;
3218 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3219
3220 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3221 // function attributes.
3222 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3223 if (FnAttrs & ObsoleteFuncAttrs) {
3224 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3225 FnAttrs &= ~ObsoleteFuncAttrs;
3226 }
3227
3228 // Set up the Attributes for the function.
3229 SmallVector<AttributeWithIndex, 8> Attrs;
3230 if (RetAttrs != Attribute::None)
3231 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3232
3233 SmallVector<Value*, 8> Args;
3234
3235 // Loop through FunctionType's arguments and ensure they are specified
3236 // correctly. Also, gather any parameter attributes.
3237 FunctionType::param_iterator I = Ty->param_begin();
3238 FunctionType::param_iterator E = Ty->param_end();
3239 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3240 const Type *ExpectedTy = 0;
3241 if (I != E) {
3242 ExpectedTy = *I++;
3243 } else if (!Ty->isVarArg()) {
3244 return Error(ArgList[i].Loc, "too many arguments specified");
3245 }
3246
3247 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3248 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3249 ExpectedTy->getDescription() + "'");
3250 Args.push_back(ArgList[i].V);
3251 if (ArgList[i].Attrs != Attribute::None)
3252 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3253 }
3254
3255 if (I != E)
3256 return Error(CallLoc, "not enough parameters specified for call");
3257
3258 if (FnAttrs != Attribute::None)
3259 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3260
3261 // Finish off the Attributes and check them
3262 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3263
3264 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3265 Args.begin(), Args.end());
3266 II->setCallingConv(CC);
3267 II->setAttributes(PAL);
3268 Inst = II;
3269 return false;
3270}
3271
3272
3273
3274//===----------------------------------------------------------------------===//
3275// Binary Operators.
3276//===----------------------------------------------------------------------===//
3277
3278/// ParseArithmetic
3279/// ::= ArithmeticOps TypeAndValue ',' Value
3280///
3281/// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
3282/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3283bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3284 unsigned Opc, unsigned OperandType) {
3285 LocTy Loc; Value *LHS, *RHS;
3286 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3287 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3288 ParseValue(LHS->getType(), RHS, PFS))
3289 return true;
3290
3291 bool Valid;
3292 switch (OperandType) {
3293 default: llvm_unreachable("Unknown operand type!");
3294 case 0: // int or FP.
3295 Valid = LHS->getType()->isIntOrIntVector() ||
3296 LHS->getType()->isFPOrFPVector();
3297 break;
3298 case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3299 case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3300 }
3301
3302 if (!Valid)
3303 return Error(Loc, "invalid operand type for instruction");
3304
3305 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3306 return false;
3307}
3308
3309/// ParseLogical
3310/// ::= ArithmeticOps TypeAndValue ',' Value {
3311bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3312 unsigned Opc) {
3313 LocTy Loc; Value *LHS, *RHS;
3314 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3315 ParseToken(lltok::comma, "expected ',' in logical operation") ||
3316 ParseValue(LHS->getType(), RHS, PFS))
3317 return true;
3318
3319 if (!LHS->getType()->isIntOrIntVector())
3320 return Error(Loc,"instruction requires integer or integer vector operands");
3321
3322 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3323 return false;
3324}
3325
3326
3327/// ParseCompare
3328/// ::= 'icmp' IPredicates TypeAndValue ',' Value
3329/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
3330bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3331 unsigned Opc) {
3332 // Parse the integer/fp comparison predicate.
3333 LocTy Loc;
3334 unsigned Pred;
3335 Value *LHS, *RHS;
3336 if (ParseCmpPredicate(Pred, Opc) ||
3337 ParseTypeAndValue(LHS, Loc, PFS) ||
3338 ParseToken(lltok::comma, "expected ',' after compare value") ||
3339 ParseValue(LHS->getType(), RHS, PFS))
3340 return true;
3341
3342 if (Opc == Instruction::FCmp) {
3343 if (!LHS->getType()->isFPOrFPVector())
3344 return Error(Loc, "fcmp requires floating point operands");
3345 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3346 } else {
3347 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3348 if (!LHS->getType()->isIntOrIntVector() &&
3349 !isa<PointerType>(LHS->getType()))
3350 return Error(Loc, "icmp requires integer operands");
3351 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3352 }
3353 return false;
3354}
3355
3356//===----------------------------------------------------------------------===//
3357// Other Instructions.
3358//===----------------------------------------------------------------------===//
3359
3360
3361/// ParseCast
3362/// ::= CastOpc TypeAndValue 'to' Type
3363bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3364 unsigned Opc) {
3365 LocTy Loc; Value *Op;
3366 PATypeHolder DestTy(Type::getVoidTy(Context));
3367 if (ParseTypeAndValue(Op, Loc, PFS) ||
3368 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3369 ParseType(DestTy))
3370 return true;
3371
3372 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3373 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3374 return Error(Loc, "invalid cast opcode for cast from '" +
3375 Op->getType()->getDescription() + "' to '" +
3376 DestTy->getDescription() + "'");
3377 }
3378 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3379 return false;
3380}
3381
3382/// ParseSelect
3383/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3384bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3385 LocTy Loc;
3386 Value *Op0, *Op1, *Op2;
3387 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3388 ParseToken(lltok::comma, "expected ',' after select condition") ||
3389 ParseTypeAndValue(Op1, PFS) ||
3390 ParseToken(lltok::comma, "expected ',' after select value") ||
3391 ParseTypeAndValue(Op2, PFS))
3392 return true;
3393
3394 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3395 return Error(Loc, Reason);
3396
3397 Inst = SelectInst::Create(Op0, Op1, Op2);
3398 return false;
3399}
3400
3401/// ParseVA_Arg
3402/// ::= 'va_arg' TypeAndValue ',' Type
3403bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3404 Value *Op;
3405 PATypeHolder EltTy(Type::getVoidTy(Context));
3406 LocTy TypeLoc;
3407 if (ParseTypeAndValue(Op, PFS) ||
3408 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3409 ParseType(EltTy, TypeLoc))
3410 return true;
3411
3412 if (!EltTy->isFirstClassType())
3413 return Error(TypeLoc, "va_arg requires operand with first class type");
3414
3415 Inst = new VAArgInst(Op, EltTy);
3416 return false;
3417}
3418
3419/// ParseExtractElement
3420/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
3421bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3422 LocTy Loc;
3423 Value *Op0, *Op1;
3424 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3425 ParseToken(lltok::comma, "expected ',' after extract value") ||
3426 ParseTypeAndValue(Op1, PFS))
3427 return true;
3428
3429 if (!ExtractElementInst::isValidOperands(Op0, Op1))
3430 return Error(Loc, "invalid extractelement operands");
3431
3432 Inst = ExtractElementInst::Create(Op0, Op1);
3433 return false;
3434}
3435
3436/// ParseInsertElement
3437/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3438bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3439 LocTy Loc;
3440 Value *Op0, *Op1, *Op2;
3441 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3442 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3443 ParseTypeAndValue(Op1, PFS) ||
3444 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3445 ParseTypeAndValue(Op2, PFS))
3446 return true;
3447
3448 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3449 return Error(Loc, "invalid insertelement operands");
3450
3451 Inst = InsertElementInst::Create(Op0, Op1, Op2);
3452 return false;
3453}
3454
3455/// ParseShuffleVector
3456/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3457bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3458 LocTy Loc;
3459 Value *Op0, *Op1, *Op2;
3460 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3461 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3462 ParseTypeAndValue(Op1, PFS) ||
3463 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3464 ParseTypeAndValue(Op2, PFS))
3465 return true;
3466
3467 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3468 return Error(Loc, "invalid extractelement operands");
3469
3470 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3471 return false;
3472}
3473
3474/// ParsePHI
3475/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3476int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3477 PATypeHolder Ty(Type::getVoidTy(Context));
3478 Value *Op0, *Op1;
3479 LocTy TypeLoc = Lex.getLoc();
3480
3481 if (ParseType(Ty) ||
3482 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3483 ParseValue(Ty, Op0, PFS) ||
3484 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3485 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3486 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3487 return true;
3488
3489 bool AteExtraComma = false;
3490 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3491 while (1) {
3492 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3493
3494 if (!EatIfPresent(lltok::comma))
3495 break;
3496
3497 if (Lex.getKind() == lltok::MetadataVar) {
3498 AteExtraComma = true;
3499 break;
3500 }
3501
3502 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3503 ParseValue(Ty, Op0, PFS) ||
3504 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3505 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3506 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3507 return true;
3508 }
3509
3510 if (!Ty->isFirstClassType())
3511 return Error(TypeLoc, "phi node must have first class type");
3512
3513 PHINode *PN = PHINode::Create(Ty);
3514 PN->reserveOperandSpace(PHIVals.size());
3515 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3516 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3517 Inst = PN;
3518 return AteExtraComma ? InstExtraComma : InstNormal;
3519}
3520
3521/// ParseCall
3522/// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3523/// ParameterList OptionalAttrs
3524bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3525 bool isTail) {
3526 unsigned RetAttrs, FnAttrs;
3527 CallingConv::ID CC;
3528 PATypeHolder RetType(Type::getVoidTy(Context));
3529 LocTy RetTypeLoc;
3530 ValID CalleeID;
3531 SmallVector<ParamInfo, 16> ArgList;
3532 LocTy CallLoc = Lex.getLoc();
3533
3534 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3535 ParseOptionalCallingConv(CC) ||
3536 ParseOptionalAttrs(RetAttrs, 1) ||
3537 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3538 ParseValID(CalleeID) ||
3539 ParseParameterList(ArgList, PFS) ||
3540 ParseOptionalAttrs(FnAttrs, 2))
3541 return true;
3542
3543 // If RetType is a non-function pointer type, then this is the short syntax
3544 // for the call, which means that RetType is just the return type. Infer the
3545 // rest of the function argument types from the arguments that are present.
3546 const PointerType *PFTy = 0;
3547 const FunctionType *Ty = 0;
3548 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3549 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3550 // Pull out the types of all of the arguments...
3551 std::vector<const Type*> ParamTypes;
3552 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3553 ParamTypes.push_back(ArgList[i].V->getType());
3554
3555 if (!FunctionType::isValidReturnType(RetType))
3556 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3557
3558 Ty = FunctionType::get(RetType, ParamTypes, false);
3559 PFTy = PointerType::getUnqual(Ty);
3560 }
3561
3562 // Look up the callee.
3563 Value *Callee;
3564 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3565
3566 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3567 // function attributes.
3568 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3569 if (FnAttrs & ObsoleteFuncAttrs) {
3570 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3571 FnAttrs &= ~ObsoleteFuncAttrs;
3572 }
3573
3574 // Set up the Attributes for the function.
3575 SmallVector<AttributeWithIndex, 8> Attrs;
3576 if (RetAttrs != Attribute::None)
3577 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3578
3579 SmallVector<Value*, 8> Args;
3580
3581 // Loop through FunctionType's arguments and ensure they are specified
3582 // correctly. Also, gather any parameter attributes.
3583 FunctionType::param_iterator I = Ty->param_begin();
3584 FunctionType::param_iterator E = Ty->param_end();
3585 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3586 const Type *ExpectedTy = 0;
3587 if (I != E) {
3588 ExpectedTy = *I++;
3589 } else if (!Ty->isVarArg()) {
3590 return Error(ArgList[i].Loc, "too many arguments specified");
3591 }
3592
3593 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3594 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3595 ExpectedTy->getDescription() + "'");
3596 Args.push_back(ArgList[i].V);
3597 if (ArgList[i].Attrs != Attribute::None)
3598 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3599 }
3600
3601 if (I != E)
3602 return Error(CallLoc, "not enough parameters specified for call");
3603
3604 if (FnAttrs != Attribute::None)
3605 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3606
3607 // Finish off the Attributes and check them
3608 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3609
3610 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3611 CI->setTailCall(isTail);
3612 CI->setCallingConv(CC);
3613 CI->setAttributes(PAL);
3614 Inst = CI;
3615 return false;
3616}
3617
3618//===----------------------------------------------------------------------===//
3619// Memory Instructions.
3620//===----------------------------------------------------------------------===//
3621
3622/// ParseAlloc
3623/// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3624/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3625int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3626 BasicBlock* BB, bool isAlloca) {
3627 PATypeHolder Ty(Type::getVoidTy(Context));
3628 Value *Size = 0;
3629 LocTy SizeLoc;
3630 unsigned Alignment = 0;
3631 if (ParseType(Ty)) return true;
3632
3633 bool AteExtraComma = false;
3634 if (EatIfPresent(lltok::comma)) {
3635 if (Lex.getKind() == lltok::kw_align) {
3636 if (ParseOptionalAlignment(Alignment)) return true;
3637 } else if (Lex.getKind() == lltok::MetadataVar) {
3638 AteExtraComma = true;
3639 } else {
3640 if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3641 ParseOptionalCommaAlign(Alignment, AteExtraComma))
3642 return true;
3643 }
3644 }
3645
3646 if (Size && !Size->getType()->isInteger(32))
3647 return Error(SizeLoc, "element count must be i32");
3648
3649 if (isAlloca) {
3650 Inst = new AllocaInst(Ty, Size, Alignment);
3651 return AteExtraComma ? InstExtraComma : InstNormal;
3652 }
3653
3654 // Autoupgrade old malloc instruction to malloc call.
3655 // FIXME: Remove in LLVM 3.0.
3656 const Type *IntPtrTy = Type::getInt32Ty(Context);
3657 Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3658 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3659 if (!MallocF)
3660 // Prototype malloc as "void *(int32)".
3661 // This function is renamed as "malloc" in ValidateEndOfModule().
3662 MallocF = cast<Function>(
3663 M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3664 Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3665return AteExtraComma ? InstExtraComma : InstNormal;
3666}
3667
3668/// ParseFree
3669/// ::= 'free' TypeAndValue
3670bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3671 BasicBlock* BB) {
3672 Value *Val; LocTy Loc;
3673 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3674 if (!isa<PointerType>(Val->getType()))
3675 return Error(Loc, "operand to free must be a pointer");
3676 Inst = CallInst::CreateFree(Val, BB);
3677 return false;
3678}
3679
3680/// ParseLoad
3681/// ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3682int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3683 bool isVolatile) {
3684 Value *Val; LocTy Loc;
3685 unsigned Alignment = 0;
3686 bool AteExtraComma = false;
3687 if (ParseTypeAndValue(Val, Loc, PFS) ||
3688 ParseOptionalCommaAlign(Alignment, AteExtraComma))
3689 return true;
3690
3691 if (!isa<PointerType>(Val->getType()) ||
3692 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3693 return Error(Loc, "load operand must be a pointer to a first class type");
3694
3695 Inst = new LoadInst(Val, "", isVolatile, Alignment);
3696 return AteExtraComma ? InstExtraComma : InstNormal;
3697}
3698
3699/// ParseStore
3700/// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3701int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3702 bool isVolatile) {
3703 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3704 unsigned Alignment = 0;
3705 bool AteExtraComma = false;
3706 if (ParseTypeAndValue(Val, Loc, PFS) ||
3707 ParseToken(lltok::comma, "expected ',' after store operand") ||
3708 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3709 ParseOptionalCommaAlign(Alignment, AteExtraComma))
3710 return true;
3711
3712 if (!isa<PointerType>(Ptr->getType()))
3713 return Error(PtrLoc, "store operand must be a pointer");
3714 if (!Val->getType()->isFirstClassType())
3715 return Error(Loc, "store operand must be a first class value");
3716 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3717 return Error(Loc, "stored value and pointer type do not match");
3718
3719 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3720 return AteExtraComma ? InstExtraComma : InstNormal;
3721}
3722
3723/// ParseGetResult
3724/// ::= 'getresult' TypeAndValue ',' i32
3725/// FIXME: Remove support for getresult in LLVM 3.0
3726bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3727 Value *Val; LocTy ValLoc, EltLoc;
3728 unsigned Element;
3729 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3730 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3731 ParseUInt32(Element, EltLoc))
3732 return true;
3733
3734 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3735 return Error(ValLoc, "getresult inst requires an aggregate operand");
3736 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3737 return Error(EltLoc, "invalid getresult index for value");
3738 Inst = ExtractValueInst::Create(Val, Element);
3739 return false;
3740}
3741
3742/// ParseGetElementPtr
3743/// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3744int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3745 Value *Ptr, *Val; LocTy Loc, EltLoc;
3746
3747 bool InBounds = EatIfPresent(lltok::kw_inbounds);
3748
3749 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3750
3751 if (!isa<PointerType>(Ptr->getType()))
3752 return Error(Loc, "base of getelementptr must be a pointer");
3753
3754 SmallVector<Value*, 16> Indices;
3755 bool AteExtraComma = false;
3756 while (EatIfPresent(lltok::comma)) {
3757 if (Lex.getKind() == lltok::MetadataVar) {
3758 AteExtraComma = true;
3759 break;
3760 }
3761 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3762 if (!isa<IntegerType>(Val->getType()))
3763 return Error(EltLoc, "getelementptr index must be an integer");
3764 Indices.push_back(Val);
3765 }
3766
3767 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3768 Indices.begin(), Indices.end()))
3769 return Error(Loc, "invalid getelementptr indices");
3770 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3771 if (InBounds)
3772 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3773 return AteExtraComma ? InstExtraComma : InstNormal;
3774}
3775
3776/// ParseExtractValue
3777/// ::= 'extractvalue' TypeAndValue (',' uint32)+
3778int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3779 Value *Val; LocTy Loc;
3780 SmallVector<unsigned, 4> Indices;
3781 bool AteExtraComma;
3782 if (ParseTypeAndValue(Val, Loc, PFS) ||
3783 ParseIndexList(Indices, AteExtraComma))
3784 return true;
3785
3786 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3787 return Error(Loc, "extractvalue operand must be array or struct");
3788
3789 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3790 Indices.end()))
3791 return Error(Loc, "invalid indices for extractvalue");
3792 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3793 return AteExtraComma ? InstExtraComma : InstNormal;
3794}
3795
3796/// ParseInsertValue
3797/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3798int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3799 Value *Val0, *Val1; LocTy Loc0, Loc1;
3800 SmallVector<unsigned, 4> Indices;
3801 bool AteExtraComma;
3802 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3803 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3804 ParseTypeAndValue(Val1, Loc1, PFS) ||
3805 ParseIndexList(Indices, AteExtraComma))
3806 return true;
3807
3808 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3809 return Error(Loc0, "extractvalue operand must be array or struct");
3810
3811 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3812 Indices.end()))
3813 return Error(Loc0, "invalid indices for insertvalue");
3814 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3815 return AteExtraComma ? InstExtraComma : InstNormal;
3816}
3817
3818//===----------------------------------------------------------------------===//
3819// Embedded metadata.
3820//===----------------------------------------------------------------------===//
3821
3822/// ParseMDNodeVector
3823/// ::= Element (',' Element)*
3824/// Element
3825/// ::= 'null' | TypeAndValue
3826bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3827 PerFunctionState *PFS) {
3828 do {
3829 // Null is a special case since it is typeless.
3830 if (EatIfPresent(lltok::kw_null)) {
3831 Elts.push_back(0);
3832 continue;
3833 }
3834
3835 Value *V = 0;
3836 PATypeHolder Ty(Type::getVoidTy(Context));
3837 ValID ID;
3838 if (ParseType(Ty) || ParseValID(ID, PFS) ||
3839 ConvertValIDToValue(Ty, ID, V, PFS))
3840 return true;
3841
3842 Elts.push_back(V);
3843 } while (EatIfPresent(lltok::comma));
3844
3845 return false;
3846}