blob: febd7f528cbab5055e48feaff9a99aea4c9ff8cf [file] [log] [blame]
Erick Tryzelaar37c076b2008-03-30 09:57:12 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6 <title>Kaleidoscope: Implementing code generation to LLVM IR</title>
7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8 <meta name="author" content="Chris Lattner">
9 <meta name="author" content="Erick Tryzelaar">
10 <link rel="stylesheet" href="../llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div>
16
17<ul>
18<li><a href="index.html">Up to Tutorial Index</a></li>
19<li>Chapter 3
20 <ol>
21 <li><a href="#intro">Chapter 3 Introduction</a></li>
22 <li><a href="#basics">Code Generation Setup</a></li>
23 <li><a href="#exprs">Expression Code Generation</a></li>
24 <li><a href="#funcs">Function Code Generation</a></li>
25 <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
26 <li><a href="#code">Full Code Listing</a></li>
27 </ol>
28</li>
Chris Lattnerff17b032008-12-12 04:20:01 +000029<li><a href="OCamlLangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer
Erick Tryzelaar37c076b2008-03-30 09:57:12 +000030Support</li>
31</ul>
32
33<div class="doc_author">
34 <p>
35 Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
36 and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
37 </p>
38</div>
39
40<!-- *********************************************************************** -->
41<div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div>
42<!-- *********************************************************************** -->
43
44<div class="doc_text">
45
46<p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
47with LLVM</a>" tutorial. This chapter shows you how to transform the <a
48href="OCamlLangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into
49LLVM IR. This will teach you a little bit about how LLVM does things, as well
50as demonstrate how easy it is to use. It's much more work to build a lexer and
51parser than it is to generate LLVM IR code. :)
52</p>
53
54<p><b>Please note</b>: the code in this chapter and later require LLVM 2.3 or
55LLVM SVN to work. LLVM 2.2 and before will not work with it.</p>
56
57</div>
58
59<!-- *********************************************************************** -->
60<div class="doc_section"><a name="basics">Code Generation Setup</a></div>
61<!-- *********************************************************************** -->
62
63<div class="doc_text">
64
65<p>
66In order to generate LLVM IR, we want some simple setup to get started. First
67we define virtual code generation (codegen) methods in each AST class:</p>
68
69<div class="doc_code">
70<pre>
71let rec codegen_expr = function
72 | Ast.Number n -&gt; ...
73 | Ast.Variable name -&gt; ...
74</pre>
75</div>
76
77<p>The <tt>Codegen.codegen_expr</tt> function says to emit IR for that AST node
78along with all the things it depends on, and they all return an LLVM Value
79object. "Value" is the class used to represent a "<a
80href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
81Assignment (SSA)</a> register" or "SSA value" in LLVM. The most distinct aspect
82of SSA values is that their value is computed as the related instruction
83executes, and it does not get a new value until (and if) the instruction
84re-executes. In other words, there is no way to "change" an SSA value. For
85more information, please read up on <a
86href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
87Assignment</a> - the concepts are really quite natural once you grok them.</p>
88
89<p>The
90second thing we want is an "Error" exception like we used for the parser, which
91will be used to report errors found during code generation (for example, use of
92an undeclared parameter):</p>
93
94<div class="doc_code">
95<pre>
96exception Error of string
97
Erick Tryzelaar1f3d2762009-08-19 17:32:38 +000098let the_module = create_module (global_context ()) "my cool jit"
99let builder = builder (global_context ())
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000100let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
Erick Tryzelaar9ef76b92010-03-08 19:32:18 +0000101let double_type = double_type context
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000102</pre>
103</div>
104
105<p>The static variables will be used during code generation.
106<tt>Codgen.the_module</tt> is the LLVM construct that contains all of the
107functions and global variables in a chunk of code. In many ways, it is the
108top-level structure that the LLVM IR uses to contain code.</p>
109
110<p>The <tt>Codegen.builder</tt> object is a helper object that makes it easy to
111generate LLVM instructions. Instances of the <a
Duncan Sands89f6d882008-04-13 06:22:09 +0000112href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a>
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000113class keep track of the current place to insert instructions and has methods to
114create new instructions.</p>
115
116<p>The <tt>Codegen.named_values</tt> map keeps track of which values are defined
117in the current scope and what their LLVM representation is. (In other words, it
118is a symbol table for the code). In this form of Kaleidoscope, the only things
119that can be referenced are function parameters. As such, function parameters
120will be in this map when generating code for their function body.</p>
121
122<p>
123With these basics in place, we can start talking about how to generate code for
124each expression. Note that this assumes that the <tt>Codgen.builder</tt> has
125been set up to generate code <em>into</em> something. For now, we'll assume
126that this has already been done, and we'll just use it to emit code.</p>
127
128</div>
129
130<!-- *********************************************************************** -->
131<div class="doc_section"><a name="exprs">Expression Code Generation</a></div>
132<!-- *********************************************************************** -->
133
134<div class="doc_text">
135
136<p>Generating LLVM code for expression nodes is very straightforward: less
137than 30 lines of commented code for all four of our expression nodes. First
138we'll do numeric literals:</p>
139
140<div class="doc_code">
141<pre>
142 | Ast.Number n -&gt; const_float double_type n
143</pre>
144</div>
145
146<p>In the LLVM IR, numeric constants are represented with the
147<tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt>
148internally (<tt>APFloat</tt> has the capability of holding floating point
149constants of <em>A</em>rbitrary <em>P</em>recision). This code basically just
150creates and returns a <tt>ConstantFP</tt>. Note that in the LLVM IR
151that constants are all uniqued together and shared. For this reason, the API
Gabor Greif97e378e2008-05-21 18:30:15 +0000152uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::Create(..)".</p>
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000153
154<div class="doc_code">
155<pre>
156 | Ast.Variable name -&gt;
157 (try Hashtbl.find named_values name with
158 | Not_found -&gt; raise (Error "unknown variable name"))
159</pre>
160</div>
161
162<p>References to variables are also quite simple using LLVM. In the simple
Benjamin Kramer8040cd32009-10-12 14:46:08 +0000163version of Kaleidoscope, we assume that the variable has already been emitted
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000164somewhere and its value is available. In practice, the only values that can be
165in the <tt>Codegen.named_values</tt> map are function arguments. This code
166simply checks to see that the specified name is in the map (if not, an unknown
167variable is being referenced) and returns the value for it. In future chapters,
168we'll add support for <a href="LangImpl5.html#for">loop induction variables</a>
169in the symbol table, and for <a href="LangImpl7.html#localvars">local
170variables</a>.</p>
171
172<div class="doc_code">
173<pre>
174 | Ast.Binary (op, lhs, rhs) -&gt;
175 let lhs_val = codegen_expr lhs in
176 let rhs_val = codegen_expr rhs in
177 begin
178 match op with
179 | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
180 | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
181 | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
182 | '&lt;' -&gt;
183 (* Convert bool 0/1 to double 0.0 or 1.0 *)
184 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
185 build_uitofp i double_type "booltmp" builder
186 | _ -&gt; raise (Error "invalid binary operator")
Erick Tryzelaar35295ff2008-03-31 08:44:50 +0000187 end
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000188</pre>
189</div>
190
191<p>Binary operators start to get more interesting. The basic idea here is that
192we recursively emit code for the left-hand side of the expression, then the
193right-hand side, then we compute the result of the binary expression. In this
194code, we do a simple switch on the opcode to create the right LLVM instruction.
195</p>
196
197<p>In the example above, the LLVM builder class is starting to show its value.
Duncan Sands89f6d882008-04-13 06:22:09 +0000198IRBuilder knows where to insert the newly created instruction, all you have to
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000199do is specify what instruction to create (e.g. with <tt>Llvm.create_add</tt>),
200which operands to use (<tt>lhs</tt> and <tt>rhs</tt> here) and optionally
201provide a name for the generated instruction.</p>
202
203<p>One nice thing about LLVM is that the name is just a hint. For instance, if
204the code above emits multiple "addtmp" variables, LLVM will automatically
205provide each one with an increasing, unique numeric suffix. Local value names
206for instructions are purely optional, but it makes it much easier to read the
207IR dumps.</p>
208
209<p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
210strict rules: for example, the Left and Right operators of
211an <a href="../LangRef.html#i_add">add instruction</a> must have the same
212type, and the result type of the add must match the operand types. Because
213all values in Kaleidoscope are doubles, this makes for very simple code for add,
214sub and mul.</p>
215
216<p>On the other hand, LLVM specifies that the <a
217href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
218(a one bit integer). The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value. In order to get these semantics, we combine the fcmp instruction with
219a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>. This instruction
220converts its input integer into a floating point value by treating the input
221as an unsigned value. In contrast, if we used the <a
222href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '&lt;'
223operator would return 0.0 and -1.0, depending on the input value.</p>
224
225<div class="doc_code">
226<pre>
227 | Ast.Call (callee, args) -&gt;
228 (* Look up the name in the module table. *)
229 let callee =
230 match lookup_function callee the_module with
231 | Some callee -&gt; callee
232 | None -&gt; raise (Error "unknown function referenced")
233 in
234 let params = params callee in
235
236 (* If argument mismatch error. *)
237 if Array.length params == Array.length args then () else
238 raise (Error "incorrect # arguments passed");
239 let args = Array.map codegen_expr args in
240 build_call callee args "calltmp" builder
241</pre>
242</div>
243
244<p>Code generation for function calls is quite straightforward with LLVM. The
245code above initially does a function name lookup in the LLVM Module's symbol
246table. Recall that the LLVM Module is the container that holds all of the
247functions we are JIT'ing. By giving each function the same name as what the
248user specifies, we can use the LLVM symbol table to resolve function names for
249us.</p>
250
251<p>Once we have the function to call, we recursively codegen each argument that
252is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
253instruction</a>. Note that LLVM uses the native C calling conventions by
254default, allowing these calls to also call into standard library functions like
255"sin" and "cos", with no additional effort.</p>
256
257<p>This wraps up our handling of the four basic expressions that we have so far
258in Kaleidoscope. Feel free to go in and add some more. For example, by
259browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find
260several other interesting instructions that are really easy to plug into our
261basic framework.</p>
262
263</div>
264
265<!-- *********************************************************************** -->
266<div class="doc_section"><a name="funcs">Function Code Generation</a></div>
267<!-- *********************************************************************** -->
268
269<div class="doc_text">
270
271<p>Code generation for prototypes and functions must handle a number of
272details, which make their code less beautiful than expression code
273generation, but allows us to illustrate some important points. First, lets
274talk about code generation for prototypes: they are used both for function
275bodies and external function declarations. The code starts with:</p>
276
277<div class="doc_code">
278<pre>
279let codegen_proto = function
280 | Ast.Prototype (name, args) -&gt;
281 (* Make the function type: double(double,double) etc. *)
282 let doubles = Array.make (Array.length args) double_type in
283 let ft = function_type double_type doubles in
Erick Tryzelaar35295ff2008-03-31 08:44:50 +0000284 let f =
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000285 match lookup_function name the_module with
286</pre>
287</div>
288
289<p>This code packs a lot of power into a few lines. Note first that this
290function returns a "Function*" instead of a "Value*" (although at the moment
291they both are modeled by <tt>llvalue</tt> in ocaml). Because a "prototype"
292really talks about the external interface for a function (not the value computed
293by an expression), it makes sense for it to return the LLVM Function it
294corresponds to when codegen'd.</p>
295
296<p>The call to <tt>Llvm.function_type</tt> creates the <tt>Llvm.llvalue</tt>
297that should be used for a given Prototype. Since all function arguments in
298Kaleidoscope are of type double, the first line creates a vector of "N" LLVM
299double types. It then uses the <tt>Llvm.function_type</tt> method to create a
300function type that takes "N" doubles as arguments, returns one double as a
301result, and that is not vararg (that uses the function
302<tt>Llvm.var_arg_function_type</tt>). Note that Types in LLVM are uniqued just
303like <tt>Constant</tt>s are, so you don't "new" a type, you "get" it.</p>
304
305<p>The final line above checks if the function has already been defined in
306<tt>Codegen.the_module</tt>. If not, we will create it.</p>
307
308<div class="doc_code">
309<pre>
310 | None -&gt; declare_function name ft the_module
311</pre>
312</div>
313
314<p>This indicates the type and name to use, as well as which module to insert
315into. By default we assume a function has
316<tt>Llvm.Linkage.ExternalLinkage</tt>. "<a href="LangRef.html#linkage">external
317linkage</a>" means that the function may be defined outside the current module
318and/or that it is callable by functions outside the module. The "<tt>name</tt>"
319passed in is the name the user specified: this name is registered in
320"<tt>Codegen.the_module</tt>"s symbol table, which is used by the function call
321code above.</p>
322
323<p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
324first, we want to allow 'extern'ing a function more than once, as long as the
325prototypes for the externs match (since all arguments have the same type, we
326just have to check that the number of arguments match). Second, we want to
Benjamin Kramer8040cd32009-10-12 14:46:08 +0000327allow 'extern'ing a function and then defining a body for it. This is useful
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000328when defining mutually recursive functions.</p>
329
330<div class="doc_code">
331<pre>
332 (* If 'f' conflicted, there was already something named 'name'. If it
333 * has a body, don't allow redefinition or reextern. *)
334 | Some f -&gt;
335 (* If 'f' already has a body, reject this. *)
336 if Array.length (basic_blocks f) == 0 then () else
337 raise (Error "redefinition of function");
338
339 (* If 'f' took a different number of arguments, reject. *)
340 if Array.length (params f) == Array.length args then () else
341 raise (Error "redefinition of function with different # args");
342 f
343 in
344</pre>
345</div>
346
347<p>In order to verify the logic above, we first check to see if the pre-existing
348function is "empty". In this case, empty means that it has no basic blocks in
349it, which means it has no body. If it has no body, it is a forward
350declaration. Since we don't allow anything after a full definition of the
351function, the code rejects this case. If the previous reference to a function
352was an 'extern', we simply verify that the number of arguments for that
353definition and this one match up. If not, we emit an error.</p>
354
355<div class="doc_code">
356<pre>
357 (* Set names for all arguments. *)
358 Array.iteri (fun i a -&gt;
359 let n = args.(i) in
360 set_value_name n a;
361 Hashtbl.add named_values n a;
362 ) (params f);
363 f
364</pre>
365</div>
366
367<p>The last bit of code for prototypes loops over all of the arguments in the
368function, setting the name of the LLVM Argument objects to match, and registering
369the arguments in the <tt>Codegen.named_values</tt> map for future use by the
370<tt>Ast.Variable</tt> variant. Once this is set up, it returns the Function
371object to the caller. Note that we don't check for conflicting
372argument names here (e.g. "extern foo(a b a)"). Doing so would be very
373straight-forward with the mechanics we have already used above.</p>
374
375<div class="doc_code">
376<pre>
377let codegen_func = function
378 | Ast.Function (proto, body) -&gt;
379 Hashtbl.clear named_values;
380 let the_function = codegen_proto proto in
381</pre>
382</div>
383
384<p>Code generation for function definitions starts out simply enough: we just
385codegen the prototype (Proto) and verify that it is ok. We then clear out the
386<tt>Codegen.named_values</tt> map to make sure that there isn't anything in it
387from the last function we compiled. Code generation of the prototype ensures
388that there is an LLVM Function object that is ready to go for us.</p>
389
390<div class="doc_code">
391<pre>
392 (* Create a new basic block to start insertion into. *)
Erick Tryzelaar9ef76b92010-03-08 19:32:18 +0000393 let bb = append_block context "entry" the_function in
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000394 position_at_end bb builder;
395
396 try
397 let ret_val = codegen_expr body in
398</pre>
399</div>
400
401<p>Now we get to the point where the <tt>Codegen.builder</tt> is set up. The
402first line creates a new
403<a href="http://en.wikipedia.org/wiki/Basic_block">basic block</a> (named
404"entry"), which is inserted into <tt>the_function</tt>. The second line then
405tells the builder that new instructions should be inserted into the end of the
406new basic block. Basic blocks in LLVM are an important part of functions that
407define the <a
408href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
409Since we don't have any control flow, our functions will only contain one
410block at this point. We'll fix this in <a href="OCamlLangImpl5.html">Chapter
4115</a> :).</p>
412
413<div class="doc_code">
414<pre>
415 let ret_val = codegen_expr body in
416
417 (* Finish off the function. *)
418 let _ = build_ret ret_val builder in
419
420 (* Validate the generated code, checking for consistency. *)
421 Llvm_analysis.assert_valid_function the_function;
422
423 the_function
424</pre>
425</div>
426
427<p>Once the insertion point is set up, we call the <tt>Codegen.codegen_func</tt>
428method for the root expression of the function. If no error happens, this emits
429code to compute the expression into the entry block and returns the value that
430was computed. Assuming no error, we then create an LLVM <a
431href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
432Once the function is built, we call
433<tt>Llvm_analysis.assert_valid_function</tt>, which is provided by LLVM. This
434function does a variety of consistency checks on the generated code, to
435determine if our compiler is doing everything right. Using this is important:
436it can catch a lot of bugs. Once the function is finished and validated, we
437return it.</p>
438
439<div class="doc_code">
440<pre>
441 with e -&gt;
442 delete_function the_function;
443 raise e
444</pre>
445</div>
446
447<p>The only piece left here is handling of the error case. For simplicity, we
448handle this by merely deleting the function we produced with the
449<tt>Llvm.delete_function</tt> method. This allows the user to redefine a
450function that they incorrectly typed in before: if we didn't delete it, it
451would live in the symbol table, with a body, preventing future redefinition.</p>
452
453<p>This code does have a bug, though. Since the <tt>Codegen.codegen_proto</tt>
454can return a previously defined forward declaration, our code can actually delete
455a forward declaration. There are a number of ways to fix this bug, see what you
456can come up with! Here is a testcase:</p>
457
458<div class="doc_code">
459<pre>
460extern foo(a b); # ok, defines foo.
461def foo(a b) c; # error, 'c' is invalid.
462def bar() foo(1, 2); # error, unknown function "foo"
463</pre>
464</div>
465
466</div>
467
468<!-- *********************************************************************** -->
469<div class="doc_section"><a name="driver">Driver Changes and
470Closing Thoughts</a></div>
471<!-- *********************************************************************** -->
472
473<div class="doc_text">
474
475<p>
476For now, code generation to LLVM doesn't really get us much, except that we can
477look at the pretty IR calls. The sample code inserts calls to Codegen into the
478"<tt>Toplevel.main_loop</tt>", and then dumps out the LLVM IR. This gives a
479nice way to look at the LLVM IR for simple functions. For example:
480</p>
481
482<div class="doc_code">
483<pre>
484ready&gt; <b>4+5</b>;
485Read top-level expression:
486define double @""() {
487entry:
Dan Gohmana9445e12010-03-02 01:11:08 +0000488 %addtmp = fadd double 4.000000e+00, 5.000000e+00
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000489 ret double %addtmp
490}
491</pre>
492</div>
493
494<p>Note how the parser turns the top-level expression into anonymous functions
Chris Lattnerff17b032008-12-12 04:20:01 +0000495for us. This will be handy when we add <a href="OCamlLangImpl4.html#jit">JIT
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000496support</a> in the next chapter. Also note that the code is very literally
497transcribed, no optimizations are being performed. We will
498<a href="OCamlLangImpl4.html#trivialconstfold">add optimizations</a> explicitly
499in the next chapter.</p>
500
501<div class="doc_code">
502<pre>
503ready&gt; <b>def foo(a b) a*a + 2*a*b + b*b;</b>
504Read function definition:
505define double @foo(double %a, double %b) {
506entry:
Dan Gohmana9445e12010-03-02 01:11:08 +0000507 %multmp = fmul double %a, %a
508 %multmp1 = fmul double 2.000000e+00, %a
509 %multmp2 = fmul double %multmp1, %b
510 %addtmp = fadd double %multmp, %multmp2
511 %multmp3 = fmul double %b, %b
512 %addtmp4 = fadd double %addtmp, %multmp3
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000513 ret double %addtmp4
514}
515</pre>
516</div>
517
518<p>This shows some simple arithmetic. Notice the striking similarity to the
519LLVM builder calls that we use to create the instructions.</p>
520
521<div class="doc_code">
522<pre>
523ready&gt; <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
524Read function definition:
525define double @bar(double %a) {
526entry:
527 %calltmp = call double @foo( double %a, double 4.000000e+00 )
528 %calltmp1 = call double @bar( double 3.133700e+04 )
Dan Gohmana9445e12010-03-02 01:11:08 +0000529 %addtmp = fadd double %calltmp, %calltmp1
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000530 ret double %addtmp
531}
532</pre>
533</div>
534
535<p>This shows some function calls. Note that this function will take a long
536time to execute if you call it. In the future we'll add conditional control
537flow to actually make recursion useful :).</p>
538
539<div class="doc_code">
540<pre>
541ready&gt; <b>extern cos(x);</b>
542Read extern:
543declare double @cos(double)
544
545ready&gt; <b>cos(1.234);</b>
546Read top-level expression:
547define double @""() {
548entry:
549 %calltmp = call double @cos( double 1.234000e+00 )
550 ret double %calltmp
551}
552</pre>
553</div>
554
555<p>This shows an extern for the libm "cos" function, and a call to it.</p>
556
557
558<div class="doc_code">
559<pre>
560ready&gt; <b>^D</b>
561; ModuleID = 'my cool jit'
562
563define double @""() {
564entry:
Dan Gohmana9445e12010-03-02 01:11:08 +0000565 %addtmp = fadd double 4.000000e+00, 5.000000e+00
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000566 ret double %addtmp
567}
568
569define double @foo(double %a, double %b) {
570entry:
Dan Gohmana9445e12010-03-02 01:11:08 +0000571 %multmp = fmul double %a, %a
572 %multmp1 = fmul double 2.000000e+00, %a
573 %multmp2 = fmul double %multmp1, %b
574 %addtmp = fadd double %multmp, %multmp2
575 %multmp3 = fmul double %b, %b
576 %addtmp4 = fadd double %addtmp, %multmp3
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000577 ret double %addtmp4
578}
579
580define double @bar(double %a) {
581entry:
582 %calltmp = call double @foo( double %a, double 4.000000e+00 )
583 %calltmp1 = call double @bar( double 3.133700e+04 )
Dan Gohmana9445e12010-03-02 01:11:08 +0000584 %addtmp = fadd double %calltmp, %calltmp1
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000585 ret double %addtmp
586}
587
588declare double @cos(double)
589
590define double @""() {
591entry:
592 %calltmp = call double @cos( double 1.234000e+00 )
593 ret double %calltmp
594}
595</pre>
596</div>
597
598<p>When you quit the current demo, it dumps out the IR for the entire module
599generated. Here you can see the big picture with all the functions referencing
600each other.</p>
601
602<p>This wraps up the third chapter of the Kaleidoscope tutorial. Up next, we'll
Chris Lattnerff17b032008-12-12 04:20:01 +0000603describe how to <a href="OCamlLangImpl4.html">add JIT codegen and optimizer
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000604support</a> to this so we can actually start running code!</p>
605
606</div>
607
608
609<!-- *********************************************************************** -->
610<div class="doc_section"><a name="code">Full Code Listing</a></div>
611<!-- *********************************************************************** -->
612
613<div class="doc_text">
614
615<p>
616Here is the complete code listing for our running example, enhanced with the
617LLVM code generator. Because this uses the LLVM libraries, we need to link
618them in. To do this, we use the <a
619href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
620our makefile/command line about which options to use:</p>
621
622<div class="doc_code">
623<pre>
624# Compile
625ocamlbuild toy.byte
626# Run
627./toy.byte
628</pre>
629</div>
630
631<p>Here is the code:</p>
632
633<dl>
634<dt>_tags:</dt>
635<dd class="doc_code">
636<pre>
637&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
638&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
639</pre>
640</dd>
641
642<dt>myocamlbuild.ml:</dt>
643<dd class="doc_code">
644<pre>
645open Ocamlbuild_plugin;;
646
647ocaml_lib ~extern:true "llvm";;
648ocaml_lib ~extern:true "llvm_analysis";;
649
650flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
651</pre>
652</dd>
653
654<dt>token.ml:</dt>
655<dd class="doc_code">
656<pre>
657(*===----------------------------------------------------------------------===
658 * Lexer Tokens
659 *===----------------------------------------------------------------------===*)
660
661(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
662 * these others for known things. *)
663type token =
664 (* commands *)
665 | Def | Extern
666
667 (* primary *)
668 | Ident of string | Number of float
669
670 (* unknown *)
671 | Kwd of char
672</pre>
673</dd>
674
675<dt>lexer.ml:</dt>
676<dd class="doc_code">
677<pre>
678(*===----------------------------------------------------------------------===
679 * Lexer
680 *===----------------------------------------------------------------------===*)
681
682let rec lex = parser
683 (* Skip any whitespace. *)
684 | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
685
686 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
687 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
688 let buffer = Buffer.create 1 in
689 Buffer.add_char buffer c;
690 lex_ident buffer stream
691
692 (* number: [0-9.]+ *)
693 | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
694 let buffer = Buffer.create 1 in
695 Buffer.add_char buffer c;
696 lex_number buffer stream
697
698 (* Comment until end of line. *)
699 | [&lt; ' ('#'); stream &gt;] -&gt;
700 lex_comment stream
701
702 (* Otherwise, just return the character as its ascii value. *)
703 | [&lt; 'c; stream &gt;] -&gt;
704 [&lt; 'Token.Kwd c; lex stream &gt;]
705
706 (* end of stream. *)
707 | [&lt; &gt;] -&gt; [&lt; &gt;]
708
709and lex_number buffer = parser
710 | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
711 Buffer.add_char buffer c;
712 lex_number buffer stream
713 | [&lt; stream=lex &gt;] -&gt;
714 [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
715
716and lex_ident buffer = parser
717 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
718 Buffer.add_char buffer c;
719 lex_ident buffer stream
720 | [&lt; stream=lex &gt;] -&gt;
721 match Buffer.contents buffer with
722 | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
723 | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
724 | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
725
726and lex_comment = parser
727 | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
728 | [&lt; 'c; e=lex_comment &gt;] -&gt; e
729 | [&lt; &gt;] -&gt; [&lt; &gt;]
730</pre>
731</dd>
732
733<dt>ast.ml:</dt>
734<dd class="doc_code">
735<pre>
736(*===----------------------------------------------------------------------===
737 * Abstract Syntax Tree (aka Parse Tree)
738 *===----------------------------------------------------------------------===*)
739
740(* expr - Base type for all expression nodes. *)
741type expr =
742 (* variant for numeric literals like "1.0". *)
743 | Number of float
744
745 (* variant for referencing a variable, like "a". *)
746 | Variable of string
747
748 (* variant for a binary operator. *)
749 | Binary of char * expr * expr
750
751 (* variant for function calls. *)
752 | Call of string * expr array
753
754(* proto - This type represents the "prototype" for a function, which captures
755 * its name, and its argument names (thus implicitly the number of arguments the
756 * function takes). *)
757type proto = Prototype of string * string array
758
759(* func - This type represents a function definition itself. *)
760type func = Function of proto * expr
761</pre>
762</dd>
763
764<dt>parser.ml:</dt>
765<dd class="doc_code">
766<pre>
767(*===---------------------------------------------------------------------===
768 * Parser
769 *===---------------------------------------------------------------------===*)
770
771(* binop_precedence - This holds the precedence for each binary operator that is
772 * defined *)
773let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
774
775(* precedence - Get the precedence of the pending binary operator token. *)
776let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
777
778(* primary
779 * ::= identifier
780 * ::= numberexpr
781 * ::= parenexpr *)
782let rec parse_primary = parser
783 (* numberexpr ::= number *)
784 | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
785
786 (* parenexpr ::= '(' expression ')' *)
787 | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
788
789 (* identifierexpr
790 * ::= identifier
791 * ::= identifier '(' argumentexpr ')' *)
792 | [&lt; 'Token.Ident id; stream &gt;] -&gt;
793 let rec parse_args accumulator = parser
794 | [&lt; e=parse_expr; stream &gt;] -&gt;
795 begin parser
796 | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
797 | [&lt; &gt;] -&gt; e :: accumulator
798 end stream
799 | [&lt; &gt;] -&gt; accumulator
800 in
801 let rec parse_ident id = parser
802 (* Call. *)
803 | [&lt; 'Token.Kwd '(';
804 args=parse_args [];
805 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
806 Ast.Call (id, Array.of_list (List.rev args))
807
808 (* Simple variable ref. *)
809 | [&lt; &gt;] -&gt; Ast.Variable id
810 in
811 parse_ident id stream
812
813 | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
814
815(* binoprhs
816 * ::= ('+' primary)* *)
817and parse_bin_rhs expr_prec lhs stream =
818 match Stream.peek stream with
819 (* If this is a binop, find its precedence. *)
820 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
821 let token_prec = precedence c in
822
823 (* If this is a binop that binds at least as tightly as the current binop,
824 * consume it, otherwise we are done. *)
825 if token_prec &lt; expr_prec then lhs else begin
826 (* Eat the binop. *)
827 Stream.junk stream;
828
829 (* Parse the primary expression after the binary operator. *)
830 let rhs = parse_primary stream in
831
832 (* Okay, we know this is a binop. *)
833 let rhs =
834 match Stream.peek stream with
835 | Some (Token.Kwd c2) -&gt;
836 (* If BinOp binds less tightly with rhs than the operator after
837 * rhs, let the pending operator take rhs as its lhs. *)
838 let next_prec = precedence c2 in
839 if token_prec &lt; next_prec
840 then parse_bin_rhs (token_prec + 1) rhs stream
841 else rhs
842 | _ -&gt; rhs
843 in
844
845 (* Merge lhs/rhs. *)
846 let lhs = Ast.Binary (c, lhs, rhs) in
847 parse_bin_rhs expr_prec lhs stream
848 end
849 | _ -&gt; lhs
850
851(* expression
852 * ::= primary binoprhs *)
853and parse_expr = parser
854 | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
855
856(* prototype
857 * ::= id '(' id* ')' *)
858let parse_prototype =
859 let rec parse_args accumulator = parser
860 | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
861 | [&lt; &gt;] -&gt; accumulator
862 in
863
864 parser
865 | [&lt; 'Token.Ident id;
866 'Token.Kwd '(' ?? "expected '(' in prototype";
867 args=parse_args [];
868 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
869 (* success. *)
870 Ast.Prototype (id, Array.of_list (List.rev args))
871
872 | [&lt; &gt;] -&gt;
873 raise (Stream.Error "expected function name in prototype")
874
875(* definition ::= 'def' prototype expression *)
876let parse_definition = parser
877 | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
878 Ast.Function (p, e)
879
880(* toplevelexpr ::= expression *)
881let parse_toplevel = parser
882 | [&lt; e=parse_expr &gt;] -&gt;
883 (* Make an anonymous proto. *)
884 Ast.Function (Ast.Prototype ("", [||]), e)
885
886(* external ::= 'extern' prototype *)
887let parse_extern = parser
888 | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
889</pre>
890</dd>
891
892<dt>codegen.ml:</dt>
893<dd class="doc_code">
894<pre>
895(*===----------------------------------------------------------------------===
896 * Code Generation
897 *===----------------------------------------------------------------------===*)
898
899open Llvm
900
901exception Error of string
902
Erick Tryzelaar1f3d2762009-08-19 17:32:38 +0000903let context = global_context ()
904let the_module = create_module context "my cool jit"
905let builder = builder context
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000906let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
Erick Tryzelaar9ef76b92010-03-08 19:32:18 +0000907let double_type = double_type context
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000908
909let rec codegen_expr = function
910 | Ast.Number n -&gt; const_float double_type n
911 | Ast.Variable name -&gt;
912 (try Hashtbl.find named_values name with
913 | Not_found -&gt; raise (Error "unknown variable name"))
914 | Ast.Binary (op, lhs, rhs) -&gt;
915 let lhs_val = codegen_expr lhs in
916 let rhs_val = codegen_expr rhs in
917 begin
918 match op with
919 | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
920 | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
921 | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
922 | '&lt;' -&gt;
923 (* Convert bool 0/1 to double 0.0 or 1.0 *)
924 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
925 build_uitofp i double_type "booltmp" builder
926 | _ -&gt; raise (Error "invalid binary operator")
927 end
928 | Ast.Call (callee, args) -&gt;
929 (* Look up the name in the module table. *)
930 let callee =
931 match lookup_function callee the_module with
932 | Some callee -&gt; callee
933 | None -&gt; raise (Error "unknown function referenced")
934 in
935 let params = params callee in
936
937 (* If argument mismatch error. *)
938 if Array.length params == Array.length args then () else
939 raise (Error "incorrect # arguments passed");
940 let args = Array.map codegen_expr args in
941 build_call callee args "calltmp" builder
942
943let codegen_proto = function
944 | Ast.Prototype (name, args) -&gt;
945 (* Make the function type: double(double,double) etc. *)
946 let doubles = Array.make (Array.length args) double_type in
947 let ft = function_type double_type doubles in
948 let f =
949 match lookup_function name the_module with
950 | None -&gt; declare_function name ft the_module
951
952 (* If 'f' conflicted, there was already something named 'name'. If it
953 * has a body, don't allow redefinition or reextern. *)
954 | Some f -&gt;
955 (* If 'f' already has a body, reject this. *)
956 if block_begin f &lt;&gt; At_end f then
957 raise (Error "redefinition of function");
958
959 (* If 'f' took a different number of arguments, reject. *)
960 if element_type (type_of f) &lt;&gt; ft then
961 raise (Error "redefinition of function with different # args");
962 f
963 in
964
965 (* Set names for all arguments. *)
966 Array.iteri (fun i a -&gt;
967 let n = args.(i) in
968 set_value_name n a;
969 Hashtbl.add named_values n a;
970 ) (params f);
971 f
972
973let codegen_func = function
974 | Ast.Function (proto, body) -&gt;
975 Hashtbl.clear named_values;
976 let the_function = codegen_proto proto in
977
978 (* Create a new basic block to start insertion into. *)
Erick Tryzelaar9ef76b92010-03-08 19:32:18 +0000979 let bb = append_block context "entry" the_function in
Erick Tryzelaar37c076b2008-03-30 09:57:12 +0000980 position_at_end bb builder;
981
982 try
983 let ret_val = codegen_expr body in
984
985 (* Finish off the function. *)
986 let _ = build_ret ret_val builder in
987
988 (* Validate the generated code, checking for consistency. *)
989 Llvm_analysis.assert_valid_function the_function;
990
991 the_function
992 with e -&gt;
993 delete_function the_function;
994 raise e
995</pre>
996</dd>
997
998<dt>toplevel.ml:</dt>
999<dd class="doc_code">
1000<pre>
1001(*===----------------------------------------------------------------------===
1002 * Top-Level parsing and JIT Driver
1003 *===----------------------------------------------------------------------===*)
1004
1005open Llvm
1006
1007(* top ::= definition | external | expression | ';' *)
1008let rec main_loop stream =
1009 match Stream.peek stream with
1010 | None -&gt; ()
1011
1012 (* ignore top-level semicolons. *)
1013 | Some (Token.Kwd ';') -&gt;
1014 Stream.junk stream;
1015 main_loop stream
1016
1017 | Some token -&gt;
1018 begin
1019 try match token with
1020 | Token.Def -&gt;
1021 let e = Parser.parse_definition stream in
1022 print_endline "parsed a function definition.";
1023 dump_value (Codegen.codegen_func e);
1024 | Token.Extern -&gt;
1025 let e = Parser.parse_extern stream in
1026 print_endline "parsed an extern.";
1027 dump_value (Codegen.codegen_proto e);
1028 | _ -&gt;
1029 (* Evaluate a top-level expression into an anonymous function. *)
1030 let e = Parser.parse_toplevel stream in
1031 print_endline "parsed a top-level expr";
1032 dump_value (Codegen.codegen_func e);
1033 with Stream.Error s | Codegen.Error s -&gt;
1034 (* Skip token for error recovery. *)
1035 Stream.junk stream;
1036 print_endline s;
1037 end;
1038 print_string "ready&gt; "; flush stdout;
1039 main_loop stream
1040</pre>
1041</dd>
1042
1043<dt>toy.ml:</dt>
1044<dd class="doc_code">
1045<pre>
1046(*===----------------------------------------------------------------------===
1047 * Main driver code.
1048 *===----------------------------------------------------------------------===*)
1049
1050open Llvm
1051
1052let main () =
1053 (* Install standard binary operators.
1054 * 1 is the lowest precedence. *)
1055 Hashtbl.add Parser.binop_precedence '&lt;' 10;
1056 Hashtbl.add Parser.binop_precedence '+' 20;
1057 Hashtbl.add Parser.binop_precedence '-' 20;
1058 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
1059
1060 (* Prime the first token. *)
1061 print_string "ready&gt; "; flush stdout;
1062 let stream = Lexer.lex (Stream.of_channel stdin) in
1063
1064 (* Run the main "interpreter loop" now. *)
1065 Toplevel.main_loop stream;
1066
1067 (* Print out all the generated code. *)
1068 dump_module Codegen.the_module
1069;;
1070
1071main ()
1072</pre>
1073</dd>
1074</dl>
1075
1076<a href="OCamlLangImpl4.html">Next: Adding JIT and Optimizer Support</a>
1077</div>
1078
1079<!-- *********************************************************************** -->
1080<hr>
1081<address>
1082 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1083 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1084 <a href="http://validator.w3.org/check/referer"><img
1085 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1086
1087 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1088 <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
1089 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Dan Gohman523e3922010-02-03 17:27:31 +00001090 Last modified: $Date$
Erick Tryzelaar37c076b2008-03-30 09:57:12 +00001091</address>
1092</body>
1093</html>