blob: 7123adaad27d6e7a9b486bb671b5433321f1fbf0 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/CodeGen/SelectionDAG.h"
Rafael Espindoladdb88da2007-08-31 15:06:30 +000022#include "llvm/CodeGen/CallingConvLower.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023
24namespace llvm {
25 namespace X86ISD {
26 // X86 Specific DAG Nodes
27 enum NodeType {
28 // Start the numbering where the builtin ops leave off.
29 FIRST_NUMBER = ISD::BUILTIN_OP_END+X86::INSTRUCTION_LIST_END,
30
31 /// SHLD, SHRD - Double shift instructions. These correspond to
32 /// X86::SHLDxx and X86::SHRDxx instructions.
33 SHLD,
34 SHRD,
35
36 /// FAND - Bitwise logical AND of floating point values. This corresponds
37 /// to X86::ANDPS or X86::ANDPD.
38 FAND,
39
40 /// FOR - Bitwise logical OR of floating point values. This corresponds
41 /// to X86::ORPS or X86::ORPD.
42 FOR,
43
44 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
45 /// to X86::XORPS or X86::XORPD.
46 FXOR,
47
48 /// FSRL - Bitwise logical right shift of floating point values. These
49 /// corresponds to X86::PSRLDQ.
50 FSRL,
51
52 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
53 /// integer source in memory and FP reg result. This corresponds to the
54 /// X86::FILD*m instructions. It has three inputs (token chain, address,
55 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
56 /// also produces a flag).
57 FILD,
58 FILD_FLAG,
59
60 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
61 /// integer destination in memory and a FP reg source. This corresponds
62 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
63 /// has two inputs (token chain and address) and two outputs (int value
64 /// and token chain).
65 FP_TO_INT16_IN_MEM,
66 FP_TO_INT32_IN_MEM,
67 FP_TO_INT64_IN_MEM,
68
69 /// FLD - This instruction implements an extending load to FP stack slots.
70 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
71 /// operand, ptr to load from, and a ValueType node indicating the type
72 /// to load to.
73 FLD,
74
75 /// FST - This instruction implements a truncating store to FP stack
76 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
77 /// chain operand, value to store, address, and a ValueType to store it
78 /// as.
79 FST,
80
81 /// FP_GET_RESULT - This corresponds to FpGETRESULT pseudo instruction
82 /// which copies from ST(0) to the destination. It takes a chain and
83 /// writes a RFP result and a chain.
84 FP_GET_RESULT,
85
86 /// FP_SET_RESULT - This corresponds to FpSETRESULT pseudo instruction
87 /// which copies the source operand to ST(0). It takes a chain+value and
88 /// returns a chain and a flag.
89 FP_SET_RESULT,
90
91 /// CALL/TAILCALL - These operations represent an abstract X86 call
92 /// instruction, which includes a bunch of information. In particular the
93 /// operands of these node are:
94 ///
95 /// #0 - The incoming token chain
96 /// #1 - The callee
97 /// #2 - The number of arg bytes the caller pushes on the stack.
98 /// #3 - The number of arg bytes the callee pops off the stack.
99 /// #4 - The value to pass in AL/AX/EAX (optional)
100 /// #5 - The value to pass in DL/DX/EDX (optional)
101 ///
102 /// The result values of these nodes are:
103 ///
104 /// #0 - The outgoing token chain
105 /// #1 - The first register result value (optional)
106 /// #2 - The second register result value (optional)
107 ///
108 /// The CALL vs TAILCALL distinction boils down to whether the callee is
109 /// known not to modify the caller's stack frame, as is standard with
110 /// LLVM.
111 CALL,
112 TAILCALL,
113
114 /// RDTSC_DAG - This operation implements the lowering for
115 /// readcyclecounter
116 RDTSC_DAG,
117
118 /// X86 compare and logical compare instructions.
Evan Cheng904febe2007-09-17 17:42:53 +0000119 CMP, COMI, UCOMI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120
121 /// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag
122 /// operand produced by a CMP instruction.
123 SETCC,
124
125 /// X86 conditional moves. Operand 1 and operand 2 are the two values
126 /// to select from (operand 1 is a R/W operand). Operand 3 is the
127 /// condition code, and operand 4 is the flag operand produced by a CMP
128 /// or TEST instruction. It also writes a flag result.
129 CMOV,
130
131 /// X86 conditional branches. Operand 1 is the chain operand, operand 2
132 /// is the block to branch if condition is true, operand 3 is the
133 /// condition code, and operand 4 is the flag operand produced by a CMP
134 /// or TEST instruction.
135 BRCOND,
136
137 /// Return with a flag operand. Operand 1 is the chain operand, operand
138 /// 2 is the number of bytes of stack to pop.
139 RET_FLAG,
140
141 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
142 REP_STOS,
143
144 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
145 REP_MOVS,
146
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000147 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
148 /// at function entry, used for PIC code.
149 GlobalBaseReg,
150
151 /// Wrapper - A wrapper node for TargetConstantPool,
152 /// TargetExternalSymbol, and TargetGlobalAddress.
153 Wrapper,
154
155 /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
156 /// relative displacements.
157 WrapperRIP,
158
159 /// S2VEC - X86 version of SCALAR_TO_VECTOR. The destination base does not
160 /// have to match the operand type.
161 S2VEC,
162
163 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
164 /// i32, corresponds to X86::PEXTRW.
165 PEXTRW,
166
167 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
168 /// corresponds to X86::PINSRW.
169 PINSRW,
170
171 /// FMAX, FMIN - Floating point max and min.
172 ///
173 FMAX, FMIN,
174
175 /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
176 /// approximation. Note that these typically require refinement
177 /// in order to obtain suitable precision.
178 FRSQRT, FRCP,
179
180 // Thread Local Storage
181 TLSADDR, THREAD_POINTER,
182
183 // Exception Handling helpers
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000184 EH_RETURN,
185
186 // tail call return
187 // oeprand #0 chain
188 // operand #1 callee (register or absolute)
189 // operand #2 stack adjustment
190 // operand #3 optional in flag
191 TC_RETURN
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000192 };
193 }
194
195 /// Define some predicates that are used for node matching.
196 namespace X86 {
197 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
198 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
199 bool isPSHUFDMask(SDNode *N);
200
201 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
202 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
203 bool isPSHUFHWMask(SDNode *N);
204
205 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
206 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
207 bool isPSHUFLWMask(SDNode *N);
208
209 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
210 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
211 bool isSHUFPMask(SDNode *N);
212
213 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
214 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
215 bool isMOVHLPSMask(SDNode *N);
216
217 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
218 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
219 /// <2, 3, 2, 3>
220 bool isMOVHLPS_v_undef_Mask(SDNode *N);
221
222 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
223 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
224 bool isMOVLPMask(SDNode *N);
225
226 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
227 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
228 /// as well as MOVLHPS.
229 bool isMOVHPMask(SDNode *N);
230
231 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
232 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
233 bool isUNPCKLMask(SDNode *N, bool V2IsSplat = false);
234
235 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
236 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
237 bool isUNPCKHMask(SDNode *N, bool V2IsSplat = false);
238
239 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
240 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
241 /// <0, 0, 1, 1>
242 bool isUNPCKL_v_undef_Mask(SDNode *N);
243
244 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
245 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
246 /// <2, 2, 3, 3>
247 bool isUNPCKH_v_undef_Mask(SDNode *N);
248
249 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
250 /// specifies a shuffle of elements that is suitable for input to MOVSS,
251 /// MOVSD, and MOVD, i.e. setting the lowest element.
252 bool isMOVLMask(SDNode *N);
253
254 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
255 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
256 bool isMOVSHDUPMask(SDNode *N);
257
258 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
259 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
260 bool isMOVSLDUPMask(SDNode *N);
261
262 /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand
263 /// specifies a splat of a single element.
264 bool isSplatMask(SDNode *N);
265
266 /// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
267 /// specifies a splat of zero element.
268 bool isSplatLoMask(SDNode *N);
269
270 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
271 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
272 /// instructions.
273 unsigned getShuffleSHUFImmediate(SDNode *N);
274
275 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
276 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
277 /// instructions.
278 unsigned getShufflePSHUFHWImmediate(SDNode *N);
279
280 /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle
281 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
282 /// instructions.
283 unsigned getShufflePSHUFLWImmediate(SDNode *N);
284 }
285
286 //===--------------------------------------------------------------------===//
287 // X86TargetLowering - X86 Implementation of the TargetLowering interface
288 class X86TargetLowering : public TargetLowering {
289 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
290 int RegSaveFrameIndex; // X86-64 vararg func register save area.
291 unsigned VarArgsGPOffset; // X86-64 vararg func int reg offset.
292 unsigned VarArgsFPOffset; // X86-64 vararg func fp reg offset.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000293 int BytesToPopOnReturn; // Number of arg bytes ret should pop.
294 int BytesCallerReserves; // Number of arg bytes caller makes.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000295
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000296 public:
Dan Gohman3a78bbf2007-08-02 21:21:54 +0000297 explicit X86TargetLowering(TargetMachine &TM);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000298
299 // Return the number of bytes that a function should pop when it returns (in
300 // addition to the space used by the return address).
301 //
302 unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
303
304 // Return the number of bytes that the caller reserves for arguments passed
305 // to this function.
306 unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
307
308 /// getStackPtrReg - Return the stack pointer register we are using: either
309 /// ESP or RSP.
310 unsigned getStackPtrReg() const { return X86StackPtr; }
311
312 /// LowerOperation - Provide custom lowering hooks for some operations.
313 ///
314 virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
315
316 virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
317
318 virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
319 MachineBasicBlock *MBB);
320
321 /// getTargetNodeName - This method returns the name of a target specific
322 /// DAG node.
323 virtual const char *getTargetNodeName(unsigned Opcode) const;
324
325 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
326 /// in Mask are known to be either zero or one and return them in the
327 /// KnownZero/KnownOne bitsets.
328 virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
329 uint64_t Mask,
330 uint64_t &KnownZero,
331 uint64_t &KnownOne,
332 const SelectionDAG &DAG,
333 unsigned Depth = 0) const;
334
335 SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG);
336
337 ConstraintType getConstraintType(const std::string &Constraint) const;
338
339 std::vector<unsigned>
340 getRegClassForInlineAsmConstraint(const std::string &Constraint,
341 MVT::ValueType VT) const;
Chris Lattnera531abc2007-08-25 00:47:38 +0000342
343 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
344 /// vector. If it is invalid, don't add anything to Ops.
345 virtual void LowerAsmOperandForConstraint(SDOperand Op,
346 char ConstraintLetter,
347 std::vector<SDOperand> &Ops,
348 SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349
350 /// getRegForInlineAsmConstraint - Given a physical register constraint
351 /// (e.g. {edx}), return the register number and the register class for the
352 /// register. This should only be used for C_Register constraints. On
353 /// error, this returns a register number of 0.
354 std::pair<unsigned, const TargetRegisterClass*>
355 getRegForInlineAsmConstraint(const std::string &Constraint,
356 MVT::ValueType VT) const;
357
358 /// isLegalAddressingMode - Return true if the addressing mode represented
359 /// by AM is legal for this target, for a load/store of the specified type.
360 virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
361
362 /// isShuffleMaskLegal - Targets can use this to indicate that they only
363 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
364 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
365 /// values are assumed to be legal.
366 virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const;
367
368 /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
369 /// used by Targets can use this to indicate if there is a suitable
370 /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
371 /// pool entry.
372 virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
373 MVT::ValueType EVT,
374 SelectionDAG &DAG) const;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000375
376 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
377 /// for tail call optimization. Target which want to do tail call
378 /// optimization should implement this function.
379 virtual bool IsEligibleForTailCallOptimization(SDOperand Call,
380 SDOperand Ret,
381 SelectionDAG &DAG) const;
382
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000383 private:
384 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
385 /// make the right decision when generating code for different targets.
386 const X86Subtarget *Subtarget;
387 const MRegisterInfo *RegInfo;
388
389 /// X86StackPtr - X86 physical register used as stack ptr.
390 unsigned X86StackPtr;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000391
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000392 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
393 /// floating point ops.
394 /// When SSE is available, use it for f32 operations.
395 /// When SSE2 is available, use it for f64 operations.
396 bool X86ScalarSSEf32;
397 bool X86ScalarSSEf64;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398
399 SDNode *LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode*TheCall,
400 unsigned CallingConv, SelectionDAG &DAG);
401
Rafael Espindoladdb88da2007-08-31 15:06:30 +0000402
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000403 SDOperand LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
404 const CCValAssign &VA, MachineFrameInfo *MFI,
405 SDOperand Root, unsigned i);
406
Rafael Espindoladdb88da2007-08-31 15:06:30 +0000407 SDOperand LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
408 const SDOperand &StackPtr,
409 const CCValAssign &VA, SDOperand Chain,
410 SDOperand Arg);
411
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000412 // C and StdCall Calling Convention implementation.
413 SDOperand LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
414 bool isStdCall = false);
415 SDOperand LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG, unsigned CC);
416
417 // X86-64 C Calling Convention implementation.
418 SDOperand LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG);
419 SDOperand LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,unsigned CC);
420
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000421 // fast calling convention (tail call) implementation for 32/64bit
422 SDOperand LowerX86_TailCallTo(SDOperand Op,
423 SelectionDAG & DAG, unsigned CC);
424 unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000425 // Fast and FastCall Calling Convention implementation.
426 SDOperand LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG);
427 SDOperand LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG, unsigned CC);
428
429 SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG);
430 SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG);
431 SDOperand LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG);
432 SDOperand LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG);
433 SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG);
434 SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG);
435 SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG);
436 SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG);
437 SDOperand LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG);
438 SDOperand LowerShift(SDOperand Op, SelectionDAG &DAG);
439 SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG);
440 SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG);
441 SDOperand LowerFABS(SDOperand Op, SelectionDAG &DAG);
442 SDOperand LowerFNEG(SDOperand Op, SelectionDAG &DAG);
443 SDOperand LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG);
Evan Cheng621216e2007-09-29 00:00:36 +0000444 SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 SDOperand LowerSELECT(SDOperand Op, SelectionDAG &DAG);
446 SDOperand LowerBRCOND(SDOperand Op, SelectionDAG &DAG);
447 SDOperand LowerMEMSET(SDOperand Op, SelectionDAG &DAG);
Rafael Espindolaf12f3a92007-09-28 12:53:01 +0000448 SDOperand LowerMEMCPYInline(SDOperand Dest, SDOperand Source,
449 SDOperand Chain, unsigned Size, unsigned Align,
450 SelectionDAG &DAG);
451 SDOperand LowerMEMCPYCall(SDOperand ChainOp, SDOperand DestOp,
452 SDOperand SourceOp, SDOperand CountOp,
453 SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000454 SDOperand LowerMEMCPY(SDOperand Op, SelectionDAG &DAG);
455 SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG);
456 SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG);
457 SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG);
458 SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG);
459 SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG);
460 SDOperand LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG);
461 SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG);
462 SDOperand LowerVACOPY(SDOperand Op, SelectionDAG &DAG);
463 SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG);
464 SDOperand LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG);
465 SDOperand LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG);
466 SDOperand LowerFRAME_TO_ARGS_OFFSET(SDOperand Op, SelectionDAG &DAG);
467 SDOperand LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000468 SDOperand LowerTRAMPOLINE(SDOperand Op, SelectionDAG &DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000469 };
470}
471
472#endif // X86ISELLOWERING_H