blob: 746d4e2e1a5487311b06aebc19b9ab48e8f6d5b2 [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "llvm/Constants.h"
17#include "llvm/Analysis/ValueTracking.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalAlias.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CallingConv.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetIntrinsicInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/ManagedStatic.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/System/Mutex.h"
45#include "llvm/ADT/SetVector.h"
46#include "llvm/ADT/SmallPtrSet.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/StringExtras.h"
50#include <algorithm>
51#include <cmath>
52using namespace llvm;
53
54/// makeVTList - Return an instance of the SDVTList struct initialized with the
55/// specified members.
56static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
57 SDVTList Res = {VTs, NumVTs};
58 return Res;
59}
60
61static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
62 switch (VT.getSimpleVT().SimpleTy) {
63 default: llvm_unreachable("Unknown FP format");
64 case MVT::f32: return &APFloat::IEEEsingle;
65 case MVT::f64: return &APFloat::IEEEdouble;
66 case MVT::f80: return &APFloat::x87DoubleExtended;
67 case MVT::f128: return &APFloat::IEEEquad;
68 case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
69 }
70}
71
72SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
73
74//===----------------------------------------------------------------------===//
75// ConstantFPSDNode Class
76//===----------------------------------------------------------------------===//
77
78/// isExactlyValue - We don't rely on operator== working on double values, as
79/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
80/// As such, this method can be used to do an exact bit-for-bit comparison of
81/// two floating point values.
82bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
83 return getValueAPF().bitwiseIsEqual(V);
84}
85
86bool ConstantFPSDNode::isValueValidForType(EVT VT,
87 const APFloat& Val) {
88 assert(VT.isFloatingPoint() && "Can only convert between FP types");
89
90 // PPC long double cannot be converted to any other type.
91 if (VT == MVT::ppcf128 ||
92 &Val.getSemantics() == &APFloat::PPCDoubleDouble)
93 return false;
94
95 // convert modifies in place, so make a copy.
96 APFloat Val2 = APFloat(Val);
97 bool losesInfo;
98 (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
99 &losesInfo);
100 return !losesInfo;
101}
102
103//===----------------------------------------------------------------------===//
104// ISD Namespace
105//===----------------------------------------------------------------------===//
106
107/// isBuildVectorAllOnes - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are ~0 or undef.
109bool ISD::isBuildVectorAllOnes(const SDNode *N) {
110 // Look through a bit convert.
111 if (N->getOpcode() == ISD::BIT_CONVERT)
112 N = N->getOperand(0).getNode();
113
114 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116 unsigned i = 0, e = N->getNumOperands();
117
118 // Skip over all of the undef values.
119 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120 ++i;
121
122 // Do not accept an all-undef vector.
123 if (i == e) return false;
124
125 // Do not accept build_vectors that aren't all constants or which have non-~0
126 // elements.
127 SDValue NotZero = N->getOperand(i);
128 if (isa<ConstantSDNode>(NotZero)) {
129 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
130 return false;
131 } else if (isa<ConstantFPSDNode>(NotZero)) {
132 if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
133 bitcastToAPInt().isAllOnesValue())
134 return false;
135 } else
136 return false;
137
138 // Okay, we have at least one ~0 value, check to see if the rest match or are
139 // undefs.
140 for (++i; i != e; ++i)
141 if (N->getOperand(i) != NotZero &&
142 N->getOperand(i).getOpcode() != ISD::UNDEF)
143 return false;
144 return true;
145}
146
147
148/// isBuildVectorAllZeros - Return true if the specified node is a
149/// BUILD_VECTOR where all of the elements are 0 or undef.
150bool ISD::isBuildVectorAllZeros(const SDNode *N) {
151 // Look through a bit convert.
152 if (N->getOpcode() == ISD::BIT_CONVERT)
153 N = N->getOperand(0).getNode();
154
155 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156
157 unsigned i = 0, e = N->getNumOperands();
158
159 // Skip over all of the undef values.
160 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
161 ++i;
162
163 // Do not accept an all-undef vector.
164 if (i == e) return false;
165
166 // Do not accept build_vectors that aren't all constants or which have non-0
167 // elements.
168 SDValue Zero = N->getOperand(i);
169 if (isa<ConstantSDNode>(Zero)) {
170 if (!cast<ConstantSDNode>(Zero)->isNullValue())
171 return false;
172 } else if (isa<ConstantFPSDNode>(Zero)) {
173 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
174 return false;
175 } else
176 return false;
177
178 // Okay, we have at least one 0 value, check to see if the rest match or are
179 // undefs.
180 for (++i; i != e; ++i)
181 if (N->getOperand(i) != Zero &&
182 N->getOperand(i).getOpcode() != ISD::UNDEF)
183 return false;
184 return true;
185}
186
187/// isScalarToVector - Return true if the specified node is a
188/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
189/// element is not an undef.
190bool ISD::isScalarToVector(const SDNode *N) {
191 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
192 return true;
193
194 if (N->getOpcode() != ISD::BUILD_VECTOR)
195 return false;
196 if (N->getOperand(0).getOpcode() == ISD::UNDEF)
197 return false;
198 unsigned NumElems = N->getNumOperands();
199 for (unsigned i = 1; i < NumElems; ++i) {
200 SDValue V = N->getOperand(i);
201 if (V.getOpcode() != ISD::UNDEF)
202 return false;
203 }
204 return true;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210 // To perform this operation, we just need to swap the L and G bits of the
211 // operation.
212 unsigned OldL = (Operation >> 2) & 1;
213 unsigned OldG = (Operation >> 1) & 1;
214 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
215 (OldL << 1) | // New G bit
216 (OldG << 2)); // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222 unsigned Operation = Op;
223 if (isInteger)
224 Operation ^= 7; // Flip L, G, E bits, but not U.
225 else
226 Operation ^= 15; // Flip all of the condition bits.
227
228 if (Operation > ISD::SETTRUE2)
229 Operation &= ~8; // Don't let N and U bits get set.
230
231 return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison. Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239 switch (Opcode) {
240 default: llvm_unreachable("Illegal integer setcc operation!");
241 case ISD::SETEQ:
242 case ISD::SETNE: return 0;
243 case ISD::SETLT:
244 case ISD::SETLE:
245 case ISD::SETGT:
246 case ISD::SETGE: return 1;
247 case ISD::SETULT:
248 case ISD::SETULE:
249 case ISD::SETUGT:
250 case ISD::SETUGE: return 2;
251 }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259 bool isInteger) {
260 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261 // Cannot fold a signed integer setcc with an unsigned integer setcc.
262 return ISD::SETCC_INVALID;
263
264 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
265
266 // If the N and U bits get set then the resultant comparison DOES suddenly
267 // care about orderedness, and is true when ordered.
268 if (Op > ISD::SETTRUE2)
269 Op &= ~16; // Clear the U bit if the N bit is set.
270
271 // Canonicalize illegal integer setcc's.
272 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
273 Op = ISD::SETNE;
274
275 return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283 bool isInteger) {
284 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285 // Cannot fold a signed setcc with an unsigned setcc.
286 return ISD::SETCC_INVALID;
287
288 // Combine all of the condition bits.
289 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291 // Canonicalize illegal integer setcc's.
292 if (isInteger) {
293 switch (Result) {
294 default: break;
295 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
296 case ISD::SETOEQ: // SETEQ & SETU[LG]E
297 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
298 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
299 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
300 }
301 }
302
303 return Result;
304}
305
306const TargetMachine &SelectionDAG::getTarget() const {
307 return MF->getTarget();
308}
309
310//===----------------------------------------------------------------------===//
311// SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
317 ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323 ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329 const SDValue *Ops, unsigned NumOps) {
330 for (; NumOps; --NumOps, ++Ops) {
331 ID.AddPointer(Ops->getNode());
332 ID.AddInteger(Ops->getResNo());
333 }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339 const SDUse *Ops, unsigned NumOps) {
340 for (; NumOps; --NumOps, ++Ops) {
341 ID.AddPointer(Ops->getNode());
342 ID.AddInteger(Ops->getResNo());
343 }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347 unsigned short OpC, SDVTList VTList,
348 const SDValue *OpList, unsigned N) {
349 AddNodeIDOpcode(ID, OpC);
350 AddNodeIDValueTypes(ID, VTList);
351 AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357 switch (N->getOpcode()) {
358 case ISD::TargetExternalSymbol:
359 case ISD::ExternalSymbol:
360 llvm_unreachable("Should only be used on nodes with operands");
361 default: break; // Normal nodes don't need extra info.
362 case ISD::TargetConstant:
363 case ISD::Constant:
364 ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365 break;
366 case ISD::TargetConstantFP:
367 case ISD::ConstantFP: {
368 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369 break;
370 }
371 case ISD::TargetGlobalAddress:
372 case ISD::GlobalAddress:
373 case ISD::TargetGlobalTLSAddress:
374 case ISD::GlobalTLSAddress: {
375 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376 ID.AddPointer(GA->getGlobal());
377 ID.AddInteger(GA->getOffset());
378 ID.AddInteger(GA->getTargetFlags());
379 break;
380 }
381 case ISD::BasicBlock:
382 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383 break;
384 case ISD::Register:
385 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386 break;
387
388 case ISD::SRCVALUE:
389 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390 break;
391 case ISD::FrameIndex:
392 case ISD::TargetFrameIndex:
393 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394 break;
395 case ISD::JumpTable:
396 case ISD::TargetJumpTable:
397 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399 break;
400 case ISD::ConstantPool:
401 case ISD::TargetConstantPool: {
402 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403 ID.AddInteger(CP->getAlignment());
404 ID.AddInteger(CP->getOffset());
405 if (CP->isMachineConstantPoolEntry())
406 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407 else
408 ID.AddPointer(CP->getConstVal());
409 ID.AddInteger(CP->getTargetFlags());
410 break;
411 }
412 case ISD::LOAD: {
413 const LoadSDNode *LD = cast<LoadSDNode>(N);
414 ID.AddInteger(LD->getMemoryVT().getRawBits());
415 ID.AddInteger(LD->getRawSubclassData());
416 break;
417 }
418 case ISD::STORE: {
419 const StoreSDNode *ST = cast<StoreSDNode>(N);
420 ID.AddInteger(ST->getMemoryVT().getRawBits());
421 ID.AddInteger(ST->getRawSubclassData());
422 break;
423 }
424 case ISD::ATOMIC_CMP_SWAP:
425 case ISD::ATOMIC_SWAP:
426 case ISD::ATOMIC_LOAD_ADD:
427 case ISD::ATOMIC_LOAD_SUB:
428 case ISD::ATOMIC_LOAD_AND:
429 case ISD::ATOMIC_LOAD_OR:
430 case ISD::ATOMIC_LOAD_XOR:
431 case ISD::ATOMIC_LOAD_NAND:
432 case ISD::ATOMIC_LOAD_MIN:
433 case ISD::ATOMIC_LOAD_MAX:
434 case ISD::ATOMIC_LOAD_UMIN:
435 case ISD::ATOMIC_LOAD_UMAX: {
436 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437 ID.AddInteger(AT->getMemoryVT().getRawBits());
438 ID.AddInteger(AT->getRawSubclassData());
439 break;
440 }
441 case ISD::VECTOR_SHUFFLE: {
442 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444 i != e; ++i)
445 ID.AddInteger(SVN->getMaskElt(i));
446 break;
447 }
448 case ISD::TargetBlockAddress:
449 case ISD::BlockAddress: {
450 ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451 ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452 break;
453 }
454 } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460 AddNodeIDOpcode(ID, N->getOpcode());
461 // Add the return value info.
462 AddNodeIDValueTypes(ID, N->getVTList());
463 // Add the operand info.
464 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466 // Handle SDNode leafs with special info.
467 AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700471/// the CSE map that carries volatility, temporalness, indexing mode, and
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800472/// extension/truncation information.
473///
474static inline unsigned
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476 bool isNonTemporal) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800477 assert((ConvType & 3) == ConvType &&
478 "ConvType may not require more than 2 bits!");
479 assert((AM & 7) == AM &&
480 "AM may not require more than 3 bits!");
481 return ConvType |
482 (AM << 2) |
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700483 (isVolatile << 5) |
484 (isNonTemporal << 6);
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800485}
486
487//===----------------------------------------------------------------------===//
488// SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493 if (N->getValueType(0) == MVT::Flag)
494 return true; // Never CSE anything that produces a flag.
495
496 switch (N->getOpcode()) {
497 default: break;
498 case ISD::HANDLENODE:
499 case ISD::EH_LABEL:
500 return true; // Never CSE these nodes.
501 }
502
503 // Check that remaining values produced are not flags.
504 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505 if (N->getValueType(i) == MVT::Flag)
506 return true; // Never CSE anything that produces a flag.
507
508 return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514 // Create a dummy node (which is not added to allnodes), that adds a reference
515 // to the root node, preventing it from being deleted.
516 HandleSDNode Dummy(getRoot());
517
518 SmallVector<SDNode*, 128> DeadNodes;
519
520 // Add all obviously-dead nodes to the DeadNodes worklist.
521 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522 if (I->use_empty())
523 DeadNodes.push_back(I);
524
525 RemoveDeadNodes(DeadNodes);
526
527 // If the root changed (e.g. it was a dead load, update the root).
528 setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534 DAGUpdateListener *UpdateListener) {
535
536 // Process the worklist, deleting the nodes and adding their uses to the
537 // worklist.
538 while (!DeadNodes.empty()) {
539 SDNode *N = DeadNodes.pop_back_val();
540
541 if (UpdateListener)
542 UpdateListener->NodeDeleted(N, 0);
543
544 // Take the node out of the appropriate CSE map.
545 RemoveNodeFromCSEMaps(N);
546
547 // Next, brutally remove the operand list. This is safe to do, as there are
548 // no cycles in the graph.
549 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550 SDUse &Use = *I++;
551 SDNode *Operand = Use.getNode();
552 Use.set(SDValue());
553
554 // Now that we removed this operand, see if there are no uses of it left.
555 if (Operand->use_empty())
556 DeadNodes.push_back(Operand);
557 }
558
559 DeallocateNode(N);
560 }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564 SmallVector<SDNode*, 16> DeadNodes(1, N);
565 RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569 // First take this out of the appropriate CSE map.
570 RemoveNodeFromCSEMaps(N);
571
572 // Finally, remove uses due to operands of this node, remove from the
573 // AllNodes list, and delete the node.
574 DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578 assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579 assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581 // Drop all of the operands and decrement used node's use counts.
582 N->DropOperands();
583
584 DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588 if (N->OperandsNeedDelete)
589 delete[] N->OperandList;
590
591 // Set the opcode to DELETED_NODE to help catch bugs when node
592 // memory is reallocated.
593 N->NodeType = ISD::DELETED_NODE;
594
595 NodeAllocator.Deallocate(AllNodes.remove(N));
596
597 // Remove the ordering of this node.
598 Ordering->remove(N);
599}
600
601/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
602/// correspond to it. This is useful when we're about to delete or repurpose
603/// the node. We don't want future request for structurally identical nodes
604/// to return N anymore.
605bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
606 bool Erased = false;
607 switch (N->getOpcode()) {
608 case ISD::EntryToken:
609 llvm_unreachable("EntryToken should not be in CSEMaps!");
610 return false;
611 case ISD::HANDLENODE: return false; // noop.
612 case ISD::CONDCODE:
613 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
614 "Cond code doesn't exist!");
615 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
616 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
617 break;
618 case ISD::ExternalSymbol:
619 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
620 break;
621 case ISD::TargetExternalSymbol: {
622 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
623 Erased = TargetExternalSymbols.erase(
624 std::pair<std::string,unsigned char>(ESN->getSymbol(),
625 ESN->getTargetFlags()));
626 break;
627 }
628 case ISD::VALUETYPE: {
629 EVT VT = cast<VTSDNode>(N)->getVT();
630 if (VT.isExtended()) {
631 Erased = ExtendedValueTypeNodes.erase(VT);
632 } else {
633 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
634 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
635 }
636 break;
637 }
638 default:
639 // Remove it from the CSE Map.
640 Erased = CSEMap.RemoveNode(N);
641 break;
642 }
643#ifndef NDEBUG
644 // Verify that the node was actually in one of the CSE maps, unless it has a
645 // flag result (which cannot be CSE'd) or is one of the special cases that are
646 // not subject to CSE.
647 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
648 !N->isMachineOpcode() && !doNotCSE(N)) {
649 N->dump(this);
650 dbgs() << "\n";
651 llvm_unreachable("Node is not in map!");
652 }
653#endif
654 return Erased;
655}
656
657/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
658/// maps and modified in place. Add it back to the CSE maps, unless an identical
659/// node already exists, in which case transfer all its users to the existing
660/// node. This transfer can potentially trigger recursive merging.
661///
662void
663SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
664 DAGUpdateListener *UpdateListener) {
665 // For node types that aren't CSE'd, just act as if no identical node
666 // already exists.
667 if (!doNotCSE(N)) {
668 SDNode *Existing = CSEMap.GetOrInsertNode(N);
669 if (Existing != N) {
670 // If there was already an existing matching node, use ReplaceAllUsesWith
671 // to replace the dead one with the existing one. This can cause
672 // recursive merging of other unrelated nodes down the line.
673 ReplaceAllUsesWith(N, Existing, UpdateListener);
674
675 // N is now dead. Inform the listener if it exists and delete it.
676 if (UpdateListener)
677 UpdateListener->NodeDeleted(N, Existing);
678 DeleteNodeNotInCSEMaps(N);
679 return;
680 }
681 }
682
683 // If the node doesn't already exist, we updated it. Inform a listener if
684 // it exists.
685 if (UpdateListener)
686 UpdateListener->NodeUpdated(N);
687}
688
689/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
690/// were replaced with those specified. If this node is never memoized,
691/// return null, otherwise return a pointer to the slot it would take. If a
692/// node already exists with these operands, the slot will be non-null.
693SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
694 void *&InsertPos) {
695 if (doNotCSE(N))
696 return 0;
697
698 SDValue Ops[] = { Op };
699 FoldingSetNodeID ID;
700 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
701 AddNodeIDCustom(ID, N);
702 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
703 return Node;
704}
705
706/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
707/// were replaced with those specified. If this node is never memoized,
708/// return null, otherwise return a pointer to the slot it would take. If a
709/// node already exists with these operands, the slot will be non-null.
710SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
711 SDValue Op1, SDValue Op2,
712 void *&InsertPos) {
713 if (doNotCSE(N))
714 return 0;
715
716 SDValue Ops[] = { Op1, Op2 };
717 FoldingSetNodeID ID;
718 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
719 AddNodeIDCustom(ID, N);
720 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
721 return Node;
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified. If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take. If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730 const SDValue *Ops,unsigned NumOps,
731 void *&InsertPos) {
732 if (doNotCSE(N))
733 return 0;
734
735 FoldingSetNodeID ID;
736 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737 AddNodeIDCustom(ID, N);
738 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739 return Node;
740}
741
742/// VerifyNode - Sanity check the given node. Aborts if it is invalid.
743void SelectionDAG::VerifyNode(SDNode *N) {
744 switch (N->getOpcode()) {
745 default:
746 break;
747 case ISD::BUILD_PAIR: {
748 EVT VT = N->getValueType(0);
749 assert(N->getNumValues() == 1 && "Too many results!");
750 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
751 "Wrong return type!");
752 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
753 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
754 "Mismatched operand types!");
755 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
756 "Wrong operand type!");
757 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
758 "Wrong return type size");
759 break;
760 }
761 case ISD::BUILD_VECTOR: {
762 assert(N->getNumValues() == 1 && "Too many results!");
763 assert(N->getValueType(0).isVector() && "Wrong return type!");
764 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
765 "Wrong number of operands!");
766 EVT EltVT = N->getValueType(0).getVectorElementType();
767 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
768 assert((I->getValueType() == EltVT ||
769 (EltVT.isInteger() && I->getValueType().isInteger() &&
770 EltVT.bitsLE(I->getValueType()))) &&
771 "Wrong operand type!");
772 break;
773 }
774 }
775}
776
777/// getEVTAlignment - Compute the default alignment value for the
778/// given type.
779///
780unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
781 const Type *Ty = VT == MVT::iPTR ?
782 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
783 VT.getTypeForEVT(*getContext());
784
785 return TLI.getTargetData()->getABITypeAlignment(Ty);
786}
787
788// EntryNode could meaningfully have debug info if we can find it...
789SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
790 : TLI(tli), FLI(fli), DW(0),
791 EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
792 getVTList(MVT::Other)),
793 Root(getEntryNode()), Ordering(0) {
794 AllNodes.push_back(&EntryNode);
795 Ordering = new SDNodeOrdering();
796}
797
798void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
799 DwarfWriter *dw) {
800 MF = &mf;
801 MMI = mmi;
802 DW = dw;
803 Context = &mf.getFunction()->getContext();
804}
805
806SelectionDAG::~SelectionDAG() {
807 allnodes_clear();
808 delete Ordering;
809}
810
811void SelectionDAG::allnodes_clear() {
812 assert(&*AllNodes.begin() == &EntryNode);
813 AllNodes.remove(AllNodes.begin());
814 while (!AllNodes.empty())
815 DeallocateNode(AllNodes.begin());
816}
817
818void SelectionDAG::clear() {
819 allnodes_clear();
820 OperandAllocator.Reset();
821 CSEMap.clear();
822
823 ExtendedValueTypeNodes.clear();
824 ExternalSymbols.clear();
825 TargetExternalSymbols.clear();
826 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
827 static_cast<CondCodeSDNode*>(0));
828 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
829 static_cast<SDNode*>(0));
830
831 EntryNode.UseList = 0;
832 AllNodes.push_back(&EntryNode);
833 Root = getEntryNode();
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700834 delete Ordering;
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800835 Ordering = new SDNodeOrdering();
836}
837
838SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
839 return VT.bitsGT(Op.getValueType()) ?
840 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
841 getNode(ISD::TRUNCATE, DL, VT, Op);
842}
843
844SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
845 return VT.bitsGT(Op.getValueType()) ?
846 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
847 getNode(ISD::TRUNCATE, DL, VT, Op);
848}
849
850SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
851 assert(!VT.isVector() &&
852 "getZeroExtendInReg should use the vector element type instead of "
853 "the vector type!");
854 if (Op.getValueType() == VT) return Op;
855 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
856 APInt Imm = APInt::getLowBitsSet(BitWidth,
857 VT.getSizeInBits());
858 return getNode(ISD::AND, DL, Op.getValueType(), Op,
859 getConstant(Imm, Op.getValueType()));
860}
861
862/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
863///
864SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700865 EVT EltVT = VT.getScalarType();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800866 SDValue NegOne =
867 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
868 return getNode(ISD::XOR, DL, VT, Val, NegOne);
869}
870
871SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700872 EVT EltVT = VT.getScalarType();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800873 assert((EltVT.getSizeInBits() >= 64 ||
874 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
875 "getConstant with a uint64_t value that doesn't fit in the type!");
876 return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
877}
878
879SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
880 return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
881}
882
883SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
884 assert(VT.isInteger() && "Cannot create FP integer constant!");
885
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700886 EVT EltVT = VT.getScalarType();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800887 assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
888 "APInt size does not match type size!");
889
890 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
891 FoldingSetNodeID ID;
892 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
893 ID.AddPointer(&Val);
894 void *IP = 0;
895 SDNode *N = NULL;
896 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
897 if (!VT.isVector())
898 return SDValue(N, 0);
899
900 if (!N) {
901 N = NodeAllocator.Allocate<ConstantSDNode>();
902 new (N) ConstantSDNode(isT, &Val, EltVT);
903 CSEMap.InsertNode(N, IP);
904 AllNodes.push_back(N);
905 }
906
907 SDValue Result(N, 0);
908 if (VT.isVector()) {
909 SmallVector<SDValue, 8> Ops;
910 Ops.assign(VT.getVectorNumElements(), Result);
911 Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
912 VT, &Ops[0], Ops.size());
913 }
914 return Result;
915}
916
917SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
918 return getConstant(Val, TLI.getPointerTy(), isTarget);
919}
920
921
922SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
923 return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
924}
925
926SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
927 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
928
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700929 EVT EltVT = VT.getScalarType();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800930
931 // Do the map lookup using the actual bit pattern for the floating point
932 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
933 // we don't have issues with SNANs.
934 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
935 FoldingSetNodeID ID;
936 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
937 ID.AddPointer(&V);
938 void *IP = 0;
939 SDNode *N = NULL;
940 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
941 if (!VT.isVector())
942 return SDValue(N, 0);
943
944 if (!N) {
945 N = NodeAllocator.Allocate<ConstantFPSDNode>();
946 new (N) ConstantFPSDNode(isTarget, &V, EltVT);
947 CSEMap.InsertNode(N, IP);
948 AllNodes.push_back(N);
949 }
950
951 SDValue Result(N, 0);
952 if (VT.isVector()) {
953 SmallVector<SDValue, 8> Ops;
954 Ops.assign(VT.getVectorNumElements(), Result);
955 // FIXME DebugLoc info might be appropriate here
956 Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
957 VT, &Ops[0], Ops.size());
958 }
959 return Result;
960}
961
962SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -0700963 EVT EltVT = VT.getScalarType();
Shih-wei Liaoe264f622010-02-10 11:10:31 -0800964 if (EltVT==MVT::f32)
965 return getConstantFP(APFloat((float)Val), VT, isTarget);
966 else
967 return getConstantFP(APFloat(Val), VT, isTarget);
968}
969
970SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
971 EVT VT, int64_t Offset,
972 bool isTargetGA,
973 unsigned char TargetFlags) {
974 assert((TargetFlags == 0 || isTargetGA) &&
975 "Cannot set target flags on target-independent globals");
976
977 // Truncate (with sign-extension) the offset value to the pointer size.
978 EVT PTy = TLI.getPointerTy();
979 unsigned BitWidth = PTy.getSizeInBits();
980 if (BitWidth < 64)
981 Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
982
983 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
984 if (!GVar) {
985 // If GV is an alias then use the aliasee for determining thread-localness.
986 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
987 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
988 }
989
990 unsigned Opc;
991 if (GVar && GVar->isThreadLocal())
992 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
993 else
994 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
995
996 FoldingSetNodeID ID;
997 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
998 ID.AddPointer(GV);
999 ID.AddInteger(Offset);
1000 ID.AddInteger(TargetFlags);
1001 void *IP = 0;
1002 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1003 return SDValue(E, 0);
1004
1005 SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1006 new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1007 CSEMap.InsertNode(N, IP);
1008 AllNodes.push_back(N);
1009 return SDValue(N, 0);
1010}
1011
1012SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1013 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1014 FoldingSetNodeID ID;
1015 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1016 ID.AddInteger(FI);
1017 void *IP = 0;
1018 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1019 return SDValue(E, 0);
1020
1021 SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1022 new (N) FrameIndexSDNode(FI, VT, isTarget);
1023 CSEMap.InsertNode(N, IP);
1024 AllNodes.push_back(N);
1025 return SDValue(N, 0);
1026}
1027
1028SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1029 unsigned char TargetFlags) {
1030 assert((TargetFlags == 0 || isTarget) &&
1031 "Cannot set target flags on target-independent jump tables");
1032 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1033 FoldingSetNodeID ID;
1034 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1035 ID.AddInteger(JTI);
1036 ID.AddInteger(TargetFlags);
1037 void *IP = 0;
1038 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1039 return SDValue(E, 0);
1040
1041 SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1042 new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1043 CSEMap.InsertNode(N, IP);
1044 AllNodes.push_back(N);
1045 return SDValue(N, 0);
1046}
1047
1048SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1049 unsigned Alignment, int Offset,
1050 bool isTarget,
1051 unsigned char TargetFlags) {
1052 assert((TargetFlags == 0 || isTarget) &&
1053 "Cannot set target flags on target-independent globals");
1054 if (Alignment == 0)
1055 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1056 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1057 FoldingSetNodeID ID;
1058 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1059 ID.AddInteger(Alignment);
1060 ID.AddInteger(Offset);
1061 ID.AddPointer(C);
1062 ID.AddInteger(TargetFlags);
1063 void *IP = 0;
1064 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1065 return SDValue(E, 0);
1066
1067 SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1068 new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1069 CSEMap.InsertNode(N, IP);
1070 AllNodes.push_back(N);
1071 return SDValue(N, 0);
1072}
1073
1074
1075SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1076 unsigned Alignment, int Offset,
1077 bool isTarget,
1078 unsigned char TargetFlags) {
1079 assert((TargetFlags == 0 || isTarget) &&
1080 "Cannot set target flags on target-independent globals");
1081 if (Alignment == 0)
1082 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1083 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1084 FoldingSetNodeID ID;
1085 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1086 ID.AddInteger(Alignment);
1087 ID.AddInteger(Offset);
1088 C->AddSelectionDAGCSEId(ID);
1089 ID.AddInteger(TargetFlags);
1090 void *IP = 0;
1091 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1092 return SDValue(E, 0);
1093
1094 SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1095 new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1096 CSEMap.InsertNode(N, IP);
1097 AllNodes.push_back(N);
1098 return SDValue(N, 0);
1099}
1100
1101SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1102 FoldingSetNodeID ID;
1103 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1104 ID.AddPointer(MBB);
1105 void *IP = 0;
1106 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1107 return SDValue(E, 0);
1108
1109 SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1110 new (N) BasicBlockSDNode(MBB);
1111 CSEMap.InsertNode(N, IP);
1112 AllNodes.push_back(N);
1113 return SDValue(N, 0);
1114}
1115
1116SDValue SelectionDAG::getValueType(EVT VT) {
1117 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1118 ValueTypeNodes.size())
1119 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1120
1121 SDNode *&N = VT.isExtended() ?
1122 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1123
1124 if (N) return SDValue(N, 0);
1125 N = NodeAllocator.Allocate<VTSDNode>();
1126 new (N) VTSDNode(VT);
1127 AllNodes.push_back(N);
1128 return SDValue(N, 0);
1129}
1130
1131SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1132 SDNode *&N = ExternalSymbols[Sym];
1133 if (N) return SDValue(N, 0);
1134 N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1135 new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1136 AllNodes.push_back(N);
1137 return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1141 unsigned char TargetFlags) {
1142 SDNode *&N =
1143 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1144 TargetFlags)];
1145 if (N) return SDValue(N, 0);
1146 N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1147 new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1148 AllNodes.push_back(N);
1149 return SDValue(N, 0);
1150}
1151
1152SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1153 if ((unsigned)Cond >= CondCodeNodes.size())
1154 CondCodeNodes.resize(Cond+1);
1155
1156 if (CondCodeNodes[Cond] == 0) {
1157 CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1158 new (N) CondCodeSDNode(Cond);
1159 CondCodeNodes[Cond] = N;
1160 AllNodes.push_back(N);
1161 }
1162
1163 return SDValue(CondCodeNodes[Cond], 0);
1164}
1165
1166// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1167// the shuffle mask M that point at N1 to point at N2, and indices that point
1168// N2 to point at N1.
1169static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1170 std::swap(N1, N2);
1171 int NElts = M.size();
1172 for (int i = 0; i != NElts; ++i) {
1173 if (M[i] >= NElts)
1174 M[i] -= NElts;
1175 else if (M[i] >= 0)
1176 M[i] += NElts;
1177 }
1178}
1179
1180SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1181 SDValue N2, const int *Mask) {
1182 assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1183 assert(VT.isVector() && N1.getValueType().isVector() &&
1184 "Vector Shuffle VTs must be a vectors");
1185 assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1186 && "Vector Shuffle VTs must have same element type");
1187
1188 // Canonicalize shuffle undef, undef -> undef
1189 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1190 return getUNDEF(VT);
1191
1192 // Validate that all indices in Mask are within the range of the elements
1193 // input to the shuffle.
1194 unsigned NElts = VT.getVectorNumElements();
1195 SmallVector<int, 8> MaskVec;
1196 for (unsigned i = 0; i != NElts; ++i) {
1197 assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1198 MaskVec.push_back(Mask[i]);
1199 }
1200
1201 // Canonicalize shuffle v, v -> v, undef
1202 if (N1 == N2) {
1203 N2 = getUNDEF(VT);
1204 for (unsigned i = 0; i != NElts; ++i)
1205 if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1206 }
1207
1208 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1209 if (N1.getOpcode() == ISD::UNDEF)
1210 commuteShuffle(N1, N2, MaskVec);
1211
1212 // Canonicalize all index into lhs, -> shuffle lhs, undef
1213 // Canonicalize all index into rhs, -> shuffle rhs, undef
1214 bool AllLHS = true, AllRHS = true;
1215 bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1216 for (unsigned i = 0; i != NElts; ++i) {
1217 if (MaskVec[i] >= (int)NElts) {
1218 if (N2Undef)
1219 MaskVec[i] = -1;
1220 else
1221 AllLHS = false;
1222 } else if (MaskVec[i] >= 0) {
1223 AllRHS = false;
1224 }
1225 }
1226 if (AllLHS && AllRHS)
1227 return getUNDEF(VT);
1228 if (AllLHS && !N2Undef)
1229 N2 = getUNDEF(VT);
1230 if (AllRHS) {
1231 N1 = getUNDEF(VT);
1232 commuteShuffle(N1, N2, MaskVec);
1233 }
1234
1235 // If Identity shuffle, or all shuffle in to undef, return that node.
1236 bool AllUndef = true;
1237 bool Identity = true;
1238 for (unsigned i = 0; i != NElts; ++i) {
1239 if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1240 if (MaskVec[i] >= 0) AllUndef = false;
1241 }
1242 if (Identity && NElts == N1.getValueType().getVectorNumElements())
1243 return N1;
1244 if (AllUndef)
1245 return getUNDEF(VT);
1246
1247 FoldingSetNodeID ID;
1248 SDValue Ops[2] = { N1, N2 };
1249 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1250 for (unsigned i = 0; i != NElts; ++i)
1251 ID.AddInteger(MaskVec[i]);
1252
1253 void* IP = 0;
1254 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1255 return SDValue(E, 0);
1256
1257 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1258 // SDNode doesn't have access to it. This memory will be "leaked" when
1259 // the node is deallocated, but recovered when the NodeAllocator is released.
1260 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1261 memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1262
1263 ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1264 new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1265 CSEMap.InsertNode(N, IP);
1266 AllNodes.push_back(N);
1267 return SDValue(N, 0);
1268}
1269
1270SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1271 SDValue Val, SDValue DTy,
1272 SDValue STy, SDValue Rnd, SDValue Sat,
1273 ISD::CvtCode Code) {
1274 // If the src and dest types are the same and the conversion is between
1275 // integer types of the same sign or two floats, no conversion is necessary.
1276 if (DTy == STy &&
1277 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1278 return Val;
1279
1280 FoldingSetNodeID ID;
1281 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1282 AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1283 void* IP = 0;
1284 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1285 return SDValue(E, 0);
1286
1287 CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1288 new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1289 CSEMap.InsertNode(N, IP);
1290 AllNodes.push_back(N);
1291 return SDValue(N, 0);
1292}
1293
1294SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1295 FoldingSetNodeID ID;
1296 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1297 ID.AddInteger(RegNo);
1298 void *IP = 0;
1299 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1300 return SDValue(E, 0);
1301
1302 SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1303 new (N) RegisterSDNode(RegNo, VT);
1304 CSEMap.InsertNode(N, IP);
1305 AllNodes.push_back(N);
1306 return SDValue(N, 0);
1307}
1308
1309SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1310 SDValue Root,
1311 unsigned LabelID) {
1312 FoldingSetNodeID ID;
1313 SDValue Ops[] = { Root };
1314 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1315 ID.AddInteger(LabelID);
1316 void *IP = 0;
1317 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1318 return SDValue(E, 0);
1319
1320 SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1321 new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1322 CSEMap.InsertNode(N, IP);
1323 AllNodes.push_back(N);
1324 return SDValue(N, 0);
1325}
1326
1327SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1328 bool isTarget,
1329 unsigned char TargetFlags) {
1330 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1331
1332 FoldingSetNodeID ID;
1333 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1334 ID.AddPointer(BA);
1335 ID.AddInteger(TargetFlags);
1336 void *IP = 0;
1337 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1338 return SDValue(E, 0);
1339
1340 SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1341 new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1342 CSEMap.InsertNode(N, IP);
1343 AllNodes.push_back(N);
1344 return SDValue(N, 0);
1345}
1346
1347SDValue SelectionDAG::getSrcValue(const Value *V) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -07001348 assert((!V || V->getType()->isPointerTy()) &&
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001349 "SrcValue is not a pointer?");
1350
1351 FoldingSetNodeID ID;
1352 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1353 ID.AddPointer(V);
1354
1355 void *IP = 0;
1356 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1357 return SDValue(E, 0);
1358
1359 SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1360 new (N) SrcValueSDNode(V);
1361 CSEMap.InsertNode(N, IP);
1362 AllNodes.push_back(N);
1363 return SDValue(N, 0);
1364}
1365
1366/// getShiftAmountOperand - Return the specified value casted to
1367/// the target's desired shift amount type.
1368SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1369 EVT OpTy = Op.getValueType();
1370 MVT ShTy = TLI.getShiftAmountTy();
1371 if (OpTy == ShTy || OpTy.isVector()) return Op;
1372
1373 ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
1374 return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1375}
1376
1377/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1378/// specified value type.
1379SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1380 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1381 unsigned ByteSize = VT.getStoreSize();
1382 const Type *Ty = VT.getTypeForEVT(*getContext());
1383 unsigned StackAlign =
1384 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1385
1386 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1387 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1388}
1389
1390/// CreateStackTemporary - Create a stack temporary suitable for holding
1391/// either of the specified value types.
1392SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1393 unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1394 VT2.getStoreSizeInBits())/8;
1395 const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1396 const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1397 const TargetData *TD = TLI.getTargetData();
1398 unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1399 TD->getPrefTypeAlignment(Ty2));
1400
1401 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1402 int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1403 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1404}
1405
1406SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1407 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1408 // These setcc operations always fold.
1409 switch (Cond) {
1410 default: break;
1411 case ISD::SETFALSE:
1412 case ISD::SETFALSE2: return getConstant(0, VT);
1413 case ISD::SETTRUE:
1414 case ISD::SETTRUE2: return getConstant(1, VT);
1415
1416 case ISD::SETOEQ:
1417 case ISD::SETOGT:
1418 case ISD::SETOGE:
1419 case ISD::SETOLT:
1420 case ISD::SETOLE:
1421 case ISD::SETONE:
1422 case ISD::SETO:
1423 case ISD::SETUO:
1424 case ISD::SETUEQ:
1425 case ISD::SETUNE:
1426 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1427 break;
1428 }
1429
1430 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1431 const APInt &C2 = N2C->getAPIntValue();
1432 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1433 const APInt &C1 = N1C->getAPIntValue();
1434
1435 switch (Cond) {
1436 default: llvm_unreachable("Unknown integer setcc!");
1437 case ISD::SETEQ: return getConstant(C1 == C2, VT);
1438 case ISD::SETNE: return getConstant(C1 != C2, VT);
1439 case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1440 case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1441 case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1442 case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1443 case ISD::SETLT: return getConstant(C1.slt(C2), VT);
1444 case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
1445 case ISD::SETLE: return getConstant(C1.sle(C2), VT);
1446 case ISD::SETGE: return getConstant(C1.sge(C2), VT);
1447 }
1448 }
1449 }
1450 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1451 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1452 // No compile time operations on this type yet.
1453 if (N1C->getValueType(0) == MVT::ppcf128)
1454 return SDValue();
1455
1456 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1457 switch (Cond) {
1458 default: break;
1459 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1460 return getUNDEF(VT);
1461 // fall through
1462 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1463 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1464 return getUNDEF(VT);
1465 // fall through
1466 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1467 R==APFloat::cmpLessThan, VT);
1468 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1469 return getUNDEF(VT);
1470 // fall through
1471 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1472 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1473 return getUNDEF(VT);
1474 // fall through
1475 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1476 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1477 return getUNDEF(VT);
1478 // fall through
1479 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1480 R==APFloat::cmpEqual, VT);
1481 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1482 return getUNDEF(VT);
1483 // fall through
1484 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1485 R==APFloat::cmpEqual, VT);
1486 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1487 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1488 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1489 R==APFloat::cmpEqual, VT);
1490 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1491 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1492 R==APFloat::cmpLessThan, VT);
1493 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1494 R==APFloat::cmpUnordered, VT);
1495 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1496 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1497 }
1498 } else {
1499 // Ensure that the constant occurs on the RHS.
1500 return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1501 }
1502 }
1503
1504 // Could not fold it.
1505 return SDValue();
1506}
1507
1508/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1509/// use this predicate to simplify operations downstream.
1510bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1511 // This predicate is not safe for vector operations.
1512 if (Op.getValueType().isVector())
1513 return false;
1514
1515 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1516 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1517}
1518
1519/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1520/// this predicate to simplify operations downstream. Mask is known to be zero
1521/// for bits that V cannot have.
1522bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1523 unsigned Depth) const {
1524 APInt KnownZero, KnownOne;
1525 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1526 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1527 return (KnownZero & Mask) == Mask;
1528}
1529
1530/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1531/// known to be either zero or one and return them in the KnownZero/KnownOne
1532/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1533/// processing.
1534void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1535 APInt &KnownZero, APInt &KnownOne,
1536 unsigned Depth) const {
1537 unsigned BitWidth = Mask.getBitWidth();
1538 assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1539 "Mask size mismatches value type size!");
1540
1541 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
1542 if (Depth == 6 || Mask == 0)
1543 return; // Limit search depth.
1544
1545 APInt KnownZero2, KnownOne2;
1546
1547 switch (Op.getOpcode()) {
1548 case ISD::Constant:
1549 // We know all of the bits for a constant!
1550 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1551 KnownZero = ~KnownOne & Mask;
1552 return;
1553 case ISD::AND:
1554 // If either the LHS or the RHS are Zero, the result is zero.
1555 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1556 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1557 KnownZero2, KnownOne2, Depth+1);
1558 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1559 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1560
1561 // Output known-1 bits are only known if set in both the LHS & RHS.
1562 KnownOne &= KnownOne2;
1563 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1564 KnownZero |= KnownZero2;
1565 return;
1566 case ISD::OR:
1567 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1568 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1569 KnownZero2, KnownOne2, Depth+1);
1570 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1571 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1572
1573 // Output known-0 bits are only known if clear in both the LHS & RHS.
1574 KnownZero &= KnownZero2;
1575 // Output known-1 are known to be set if set in either the LHS | RHS.
1576 KnownOne |= KnownOne2;
1577 return;
1578 case ISD::XOR: {
1579 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1580 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1581 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1582 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1583
1584 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1585 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1586 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1587 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1588 KnownZero = KnownZeroOut;
1589 return;
1590 }
1591 case ISD::MUL: {
1592 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1593 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1594 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1595 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1596 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1597
1598 // If low bits are zero in either operand, output low known-0 bits.
1599 // Also compute a conserative estimate for high known-0 bits.
1600 // More trickiness is possible, but this is sufficient for the
1601 // interesting case of alignment computation.
1602 KnownOne.clear();
1603 unsigned TrailZ = KnownZero.countTrailingOnes() +
1604 KnownZero2.countTrailingOnes();
1605 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
1606 KnownZero2.countLeadingOnes(),
1607 BitWidth) - BitWidth;
1608
1609 TrailZ = std::min(TrailZ, BitWidth);
1610 LeadZ = std::min(LeadZ, BitWidth);
1611 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1612 APInt::getHighBitsSet(BitWidth, LeadZ);
1613 KnownZero &= Mask;
1614 return;
1615 }
1616 case ISD::UDIV: {
1617 // For the purposes of computing leading zeros we can conservatively
1618 // treat a udiv as a logical right shift by the power of 2 known to
1619 // be less than the denominator.
1620 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1621 ComputeMaskedBits(Op.getOperand(0),
1622 AllOnes, KnownZero2, KnownOne2, Depth+1);
1623 unsigned LeadZ = KnownZero2.countLeadingOnes();
1624
1625 KnownOne2.clear();
1626 KnownZero2.clear();
1627 ComputeMaskedBits(Op.getOperand(1),
1628 AllOnes, KnownZero2, KnownOne2, Depth+1);
1629 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1630 if (RHSUnknownLeadingOnes != BitWidth)
1631 LeadZ = std::min(BitWidth,
1632 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1633
1634 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1635 return;
1636 }
1637 case ISD::SELECT:
1638 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1639 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1640 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1641 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1642
1643 // Only known if known in both the LHS and RHS.
1644 KnownOne &= KnownOne2;
1645 KnownZero &= KnownZero2;
1646 return;
1647 case ISD::SELECT_CC:
1648 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1649 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1650 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1651 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1652
1653 // Only known if known in both the LHS and RHS.
1654 KnownOne &= KnownOne2;
1655 KnownZero &= KnownZero2;
1656 return;
1657 case ISD::SADDO:
1658 case ISD::UADDO:
1659 case ISD::SSUBO:
1660 case ISD::USUBO:
1661 case ISD::SMULO:
1662 case ISD::UMULO:
1663 if (Op.getResNo() != 1)
1664 return;
1665 // The boolean result conforms to getBooleanContents. Fall through.
1666 case ISD::SETCC:
1667 // If we know the result of a setcc has the top bits zero, use this info.
1668 if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1669 BitWidth > 1)
1670 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1671 return;
1672 case ISD::SHL:
1673 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1674 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1675 unsigned ShAmt = SA->getZExtValue();
1676
1677 // If the shift count is an invalid immediate, don't do anything.
1678 if (ShAmt >= BitWidth)
1679 return;
1680
1681 ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1682 KnownZero, KnownOne, Depth+1);
1683 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1684 KnownZero <<= ShAmt;
1685 KnownOne <<= ShAmt;
1686 // low bits known zero.
1687 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1688 }
1689 return;
1690 case ISD::SRL:
1691 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1692 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1693 unsigned ShAmt = SA->getZExtValue();
1694
1695 // If the shift count is an invalid immediate, don't do anything.
1696 if (ShAmt >= BitWidth)
1697 return;
1698
1699 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1700 KnownZero, KnownOne, Depth+1);
1701 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1702 KnownZero = KnownZero.lshr(ShAmt);
1703 KnownOne = KnownOne.lshr(ShAmt);
1704
1705 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1706 KnownZero |= HighBits; // High bits known zero.
1707 }
1708 return;
1709 case ISD::SRA:
1710 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1711 unsigned ShAmt = SA->getZExtValue();
1712
1713 // If the shift count is an invalid immediate, don't do anything.
1714 if (ShAmt >= BitWidth)
1715 return;
1716
1717 APInt InDemandedMask = (Mask << ShAmt);
1718 // If any of the demanded bits are produced by the sign extension, we also
1719 // demand the input sign bit.
1720 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1721 if (HighBits.getBoolValue())
1722 InDemandedMask |= APInt::getSignBit(BitWidth);
1723
1724 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1725 Depth+1);
1726 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1727 KnownZero = KnownZero.lshr(ShAmt);
1728 KnownOne = KnownOne.lshr(ShAmt);
1729
1730 // Handle the sign bits.
1731 APInt SignBit = APInt::getSignBit(BitWidth);
1732 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
1733
1734 if (KnownZero.intersects(SignBit)) {
1735 KnownZero |= HighBits; // New bits are known zero.
1736 } else if (KnownOne.intersects(SignBit)) {
1737 KnownOne |= HighBits; // New bits are known one.
1738 }
1739 }
1740 return;
1741 case ISD::SIGN_EXTEND_INREG: {
1742 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1743 unsigned EBits = EVT.getScalarType().getSizeInBits();
1744
1745 // Sign extension. Compute the demanded bits in the result that are not
1746 // present in the input.
1747 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1748
1749 APInt InSignBit = APInt::getSignBit(EBits);
1750 APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1751
1752 // If the sign extended bits are demanded, we know that the sign
1753 // bit is demanded.
1754 InSignBit.zext(BitWidth);
1755 if (NewBits.getBoolValue())
1756 InputDemandedBits |= InSignBit;
1757
1758 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1759 KnownZero, KnownOne, Depth+1);
1760 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1761
1762 // If the sign bit of the input is known set or clear, then we know the
1763 // top bits of the result.
1764 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
1765 KnownZero |= NewBits;
1766 KnownOne &= ~NewBits;
1767 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1768 KnownOne |= NewBits;
1769 KnownZero &= ~NewBits;
1770 } else { // Input sign bit unknown
1771 KnownZero &= ~NewBits;
1772 KnownOne &= ~NewBits;
1773 }
1774 return;
1775 }
1776 case ISD::CTTZ:
1777 case ISD::CTLZ:
1778 case ISD::CTPOP: {
1779 unsigned LowBits = Log2_32(BitWidth)+1;
1780 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1781 KnownOne.clear();
1782 return;
1783 }
1784 case ISD::LOAD: {
1785 if (ISD::isZEXTLoad(Op.getNode())) {
1786 LoadSDNode *LD = cast<LoadSDNode>(Op);
1787 EVT VT = LD->getMemoryVT();
1788 unsigned MemBits = VT.getScalarType().getSizeInBits();
1789 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1790 }
1791 return;
1792 }
1793 case ISD::ZERO_EXTEND: {
1794 EVT InVT = Op.getOperand(0).getValueType();
1795 unsigned InBits = InVT.getScalarType().getSizeInBits();
1796 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1797 APInt InMask = Mask;
1798 InMask.trunc(InBits);
1799 KnownZero.trunc(InBits);
1800 KnownOne.trunc(InBits);
1801 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1802 KnownZero.zext(BitWidth);
1803 KnownOne.zext(BitWidth);
1804 KnownZero |= NewBits;
1805 return;
1806 }
1807 case ISD::SIGN_EXTEND: {
1808 EVT InVT = Op.getOperand(0).getValueType();
1809 unsigned InBits = InVT.getScalarType().getSizeInBits();
1810 APInt InSignBit = APInt::getSignBit(InBits);
1811 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1812 APInt InMask = Mask;
1813 InMask.trunc(InBits);
1814
1815 // If any of the sign extended bits are demanded, we know that the sign
1816 // bit is demanded. Temporarily set this bit in the mask for our callee.
1817 if (NewBits.getBoolValue())
1818 InMask |= InSignBit;
1819
1820 KnownZero.trunc(InBits);
1821 KnownOne.trunc(InBits);
1822 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1823
1824 // Note if the sign bit is known to be zero or one.
1825 bool SignBitKnownZero = KnownZero.isNegative();
1826 bool SignBitKnownOne = KnownOne.isNegative();
1827 assert(!(SignBitKnownZero && SignBitKnownOne) &&
1828 "Sign bit can't be known to be both zero and one!");
1829
1830 // If the sign bit wasn't actually demanded by our caller, we don't
1831 // want it set in the KnownZero and KnownOne result values. Reset the
1832 // mask and reapply it to the result values.
1833 InMask = Mask;
1834 InMask.trunc(InBits);
1835 KnownZero &= InMask;
1836 KnownOne &= InMask;
1837
1838 KnownZero.zext(BitWidth);
1839 KnownOne.zext(BitWidth);
1840
1841 // If the sign bit is known zero or one, the top bits match.
1842 if (SignBitKnownZero)
1843 KnownZero |= NewBits;
1844 else if (SignBitKnownOne)
1845 KnownOne |= NewBits;
1846 return;
1847 }
1848 case ISD::ANY_EXTEND: {
1849 EVT InVT = Op.getOperand(0).getValueType();
1850 unsigned InBits = InVT.getScalarType().getSizeInBits();
1851 APInt InMask = Mask;
1852 InMask.trunc(InBits);
1853 KnownZero.trunc(InBits);
1854 KnownOne.trunc(InBits);
1855 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1856 KnownZero.zext(BitWidth);
1857 KnownOne.zext(BitWidth);
1858 return;
1859 }
1860 case ISD::TRUNCATE: {
1861 EVT InVT = Op.getOperand(0).getValueType();
1862 unsigned InBits = InVT.getScalarType().getSizeInBits();
1863 APInt InMask = Mask;
1864 InMask.zext(InBits);
1865 KnownZero.zext(InBits);
1866 KnownOne.zext(InBits);
1867 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1868 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1869 KnownZero.trunc(BitWidth);
1870 KnownOne.trunc(BitWidth);
1871 break;
1872 }
1873 case ISD::AssertZext: {
1874 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1875 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1876 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1877 KnownOne, Depth+1);
1878 KnownZero |= (~InMask) & Mask;
1879 return;
1880 }
1881 case ISD::FGETSIGN:
1882 // All bits are zero except the low bit.
1883 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1884 return;
1885
1886 case ISD::SUB: {
1887 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1888 // We know that the top bits of C-X are clear if X contains less bits
1889 // than C (i.e. no wrap-around can happen). For example, 20-X is
1890 // positive if we can prove that X is >= 0 and < 16.
1891 if (CLHS->getAPIntValue().isNonNegative()) {
1892 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1893 // NLZ can't be BitWidth with no sign bit
1894 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1895 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1896 Depth+1);
1897
1898 // If all of the MaskV bits are known to be zero, then we know the
1899 // output top bits are zero, because we now know that the output is
1900 // from [0-C].
1901 if ((KnownZero2 & MaskV) == MaskV) {
1902 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1903 // Top bits known zero.
1904 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1905 }
1906 }
1907 }
1908 }
1909 // fall through
1910 case ISD::ADD: {
1911 // Output known-0 bits are known if clear or set in both the low clear bits
1912 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1913 // low 3 bits clear.
1914 APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1915 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1916 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1917 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1918
1919 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1920 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1921 KnownZeroOut = std::min(KnownZeroOut,
1922 KnownZero2.countTrailingOnes());
1923
1924 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1925 return;
1926 }
1927 case ISD::SREM:
1928 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1929 const APInt &RA = Rem->getAPIntValue().abs();
1930 if (RA.isPowerOf2()) {
1931 APInt LowBits = RA - 1;
1932 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1933 ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1934
1935 // The low bits of the first operand are unchanged by the srem.
1936 KnownZero = KnownZero2 & LowBits;
1937 KnownOne = KnownOne2 & LowBits;
1938
1939 // If the first operand is non-negative or has all low bits zero, then
1940 // the upper bits are all zero.
1941 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1942 KnownZero |= ~LowBits;
1943
1944 // If the first operand is negative and not all low bits are zero, then
1945 // the upper bits are all one.
1946 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1947 KnownOne |= ~LowBits;
1948
1949 KnownZero &= Mask;
1950 KnownOne &= Mask;
1951
1952 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1953 }
1954 }
1955 return;
1956 case ISD::UREM: {
1957 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1958 const APInt &RA = Rem->getAPIntValue();
1959 if (RA.isPowerOf2()) {
1960 APInt LowBits = (RA - 1);
1961 APInt Mask2 = LowBits & Mask;
1962 KnownZero |= ~LowBits & Mask;
1963 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1964 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1965 break;
1966 }
1967 }
1968
1969 // Since the result is less than or equal to either operand, any leading
1970 // zero bits in either operand must also exist in the result.
1971 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1972 ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1973 Depth+1);
1974 ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1975 Depth+1);
1976
1977 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1978 KnownZero2.countLeadingOnes());
1979 KnownOne.clear();
1980 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1981 return;
1982 }
1983 default:
1984 // Allow the target to implement this method for its nodes.
1985 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1986 case ISD::INTRINSIC_WO_CHAIN:
1987 case ISD::INTRINSIC_W_CHAIN:
1988 case ISD::INTRINSIC_VOID:
1989 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1990 Depth);
1991 }
1992 return;
1993 }
1994}
1995
1996/// ComputeNumSignBits - Return the number of times the sign bit of the
1997/// register is replicated into the other bits. We know that at least 1 bit
1998/// is always equal to the sign bit (itself), but other cases can give us
1999/// information. For example, immediately after an "SRA X, 2", we know that
2000/// the top 3 bits are all equal to each other, so we return 3.
2001unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2002 EVT VT = Op.getValueType();
2003 assert(VT.isInteger() && "Invalid VT!");
2004 unsigned VTBits = VT.getScalarType().getSizeInBits();
2005 unsigned Tmp, Tmp2;
2006 unsigned FirstAnswer = 1;
2007
2008 if (Depth == 6)
2009 return 1; // Limit search depth.
2010
2011 switch (Op.getOpcode()) {
2012 default: break;
2013 case ISD::AssertSext:
2014 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2015 return VTBits-Tmp+1;
2016 case ISD::AssertZext:
2017 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2018 return VTBits-Tmp;
2019
2020 case ISD::Constant: {
2021 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2022 // If negative, return # leading ones.
2023 if (Val.isNegative())
2024 return Val.countLeadingOnes();
2025
2026 // Return # leading zeros.
2027 return Val.countLeadingZeros();
2028 }
2029
2030 case ISD::SIGN_EXTEND:
2031 Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2032 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2033
2034 case ISD::SIGN_EXTEND_INREG:
2035 // Max of the input and what this extends.
2036 Tmp =
2037 cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2038 Tmp = VTBits-Tmp+1;
2039
2040 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2041 return std::max(Tmp, Tmp2);
2042
2043 case ISD::SRA:
2044 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2045 // SRA X, C -> adds C sign bits.
2046 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2047 Tmp += C->getZExtValue();
2048 if (Tmp > VTBits) Tmp = VTBits;
2049 }
2050 return Tmp;
2051 case ISD::SHL:
2052 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2053 // shl destroys sign bits.
2054 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2055 if (C->getZExtValue() >= VTBits || // Bad shift.
2056 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
2057 return Tmp - C->getZExtValue();
2058 }
2059 break;
2060 case ISD::AND:
2061 case ISD::OR:
2062 case ISD::XOR: // NOT is handled here.
2063 // Logical binary ops preserve the number of sign bits at the worst.
2064 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2065 if (Tmp != 1) {
2066 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2067 FirstAnswer = std::min(Tmp, Tmp2);
2068 // We computed what we know about the sign bits as our first
2069 // answer. Now proceed to the generic code that uses
2070 // ComputeMaskedBits, and pick whichever answer is better.
2071 }
2072 break;
2073
2074 case ISD::SELECT:
2075 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2076 if (Tmp == 1) return 1; // Early out.
2077 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2078 return std::min(Tmp, Tmp2);
2079
2080 case ISD::SADDO:
2081 case ISD::UADDO:
2082 case ISD::SSUBO:
2083 case ISD::USUBO:
2084 case ISD::SMULO:
2085 case ISD::UMULO:
2086 if (Op.getResNo() != 1)
2087 break;
2088 // The boolean result conforms to getBooleanContents. Fall through.
2089 case ISD::SETCC:
2090 // If setcc returns 0/-1, all bits are sign bits.
2091 if (TLI.getBooleanContents() ==
2092 TargetLowering::ZeroOrNegativeOneBooleanContent)
2093 return VTBits;
2094 break;
2095 case ISD::ROTL:
2096 case ISD::ROTR:
2097 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2098 unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2099
2100 // Handle rotate right by N like a rotate left by 32-N.
2101 if (Op.getOpcode() == ISD::ROTR)
2102 RotAmt = (VTBits-RotAmt) & (VTBits-1);
2103
2104 // If we aren't rotating out all of the known-in sign bits, return the
2105 // number that are left. This handles rotl(sext(x), 1) for example.
2106 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2107 if (Tmp > RotAmt+1) return Tmp-RotAmt;
2108 }
2109 break;
2110 case ISD::ADD:
2111 // Add can have at most one carry bit. Thus we know that the output
2112 // is, at worst, one more bit than the inputs.
2113 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2114 if (Tmp == 1) return 1; // Early out.
2115
2116 // Special case decrementing a value (ADD X, -1):
2117 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2118 if (CRHS->isAllOnesValue()) {
2119 APInt KnownZero, KnownOne;
2120 APInt Mask = APInt::getAllOnesValue(VTBits);
2121 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2122
2123 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2124 // sign bits set.
2125 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2126 return VTBits;
2127
2128 // If we are subtracting one from a positive number, there is no carry
2129 // out of the result.
2130 if (KnownZero.isNegative())
2131 return Tmp;
2132 }
2133
2134 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2135 if (Tmp2 == 1) return 1;
2136 return std::min(Tmp, Tmp2)-1;
2137 break;
2138
2139 case ISD::SUB:
2140 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2141 if (Tmp2 == 1) return 1;
2142
2143 // Handle NEG.
2144 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2145 if (CLHS->isNullValue()) {
2146 APInt KnownZero, KnownOne;
2147 APInt Mask = APInt::getAllOnesValue(VTBits);
2148 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2149 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2150 // sign bits set.
2151 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2152 return VTBits;
2153
2154 // If the input is known to be positive (the sign bit is known clear),
2155 // the output of the NEG has the same number of sign bits as the input.
2156 if (KnownZero.isNegative())
2157 return Tmp2;
2158
2159 // Otherwise, we treat this like a SUB.
2160 }
2161
2162 // Sub can have at most one carry bit. Thus we know that the output
2163 // is, at worst, one more bit than the inputs.
2164 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2165 if (Tmp == 1) return 1; // Early out.
2166 return std::min(Tmp, Tmp2)-1;
2167 break;
2168 case ISD::TRUNCATE:
2169 // FIXME: it's tricky to do anything useful for this, but it is an important
2170 // case for targets like X86.
2171 break;
2172 }
2173
2174 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2175 if (Op.getOpcode() == ISD::LOAD) {
2176 LoadSDNode *LD = cast<LoadSDNode>(Op);
2177 unsigned ExtType = LD->getExtensionType();
2178 switch (ExtType) {
2179 default: break;
2180 case ISD::SEXTLOAD: // '17' bits known
2181 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2182 return VTBits-Tmp+1;
2183 case ISD::ZEXTLOAD: // '16' bits known
2184 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2185 return VTBits-Tmp;
2186 }
2187 }
2188
2189 // Allow the target to implement this method for its nodes.
2190 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2191 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2192 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2193 Op.getOpcode() == ISD::INTRINSIC_VOID) {
2194 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2195 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2196 }
2197
2198 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2199 // use this information.
2200 APInt KnownZero, KnownOne;
2201 APInt Mask = APInt::getAllOnesValue(VTBits);
2202 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2203
2204 if (KnownZero.isNegative()) { // sign bit is 0
2205 Mask = KnownZero;
2206 } else if (KnownOne.isNegative()) { // sign bit is 1;
2207 Mask = KnownOne;
2208 } else {
2209 // Nothing known.
2210 return FirstAnswer;
2211 }
2212
2213 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2214 // the number of identical bits in the top of the input value.
2215 Mask = ~Mask;
2216 Mask <<= Mask.getBitWidth()-VTBits;
2217 // Return # leading zeros. We use 'min' here in case Val was zero before
2218 // shifting. We don't want to return '64' as for an i32 "0".
2219 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2220}
2221
2222bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2223 // If we're told that NaNs won't happen, assume they won't.
2224 if (FiniteOnlyFPMath())
2225 return true;
2226
2227 // If the value is a constant, we can obviously see if it is a NaN or not.
2228 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2229 return !C->getValueAPF().isNaN();
2230
2231 // TODO: Recognize more cases here.
2232
2233 return false;
2234}
2235
Shih-wei Liaoe4454322010-04-07 12:21:42 -07002236bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2237 // If the value is a constant, we can obviously see if it is a zero or not.
2238 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2239 return !C->isZero();
2240
2241 // TODO: Recognize more cases here.
2242
2243 return false;
2244}
2245
2246bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2247 // Check the obvious case.
2248 if (A == B) return true;
2249
2250 // For for negative and positive zero.
2251 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2252 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2253 if (CA->isZero() && CB->isZero()) return true;
2254
2255 // Otherwise they may not be equal.
2256 return false;
2257}
2258
Shih-wei Liaoe264f622010-02-10 11:10:31 -08002259bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2260 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2261 if (!GA) return false;
2262 if (GA->getOffset() != 0) return false;
2263 GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2264 if (!GV) return false;
2265 MachineModuleInfo *MMI = getMachineModuleInfo();
2266 return MMI && MMI->hasDebugInfo();
2267}
2268
2269
2270/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2271/// element of the result of the vector shuffle.
2272SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2273 unsigned i) {
2274 EVT VT = N->getValueType(0);
2275 DebugLoc dl = N->getDebugLoc();
2276 if (N->getMaskElt(i) < 0)
2277 return getUNDEF(VT.getVectorElementType());
2278 unsigned Index = N->getMaskElt(i);
2279 unsigned NumElems = VT.getVectorNumElements();
2280 SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2281 Index %= NumElems;
2282
2283 if (V.getOpcode() == ISD::BIT_CONVERT) {
2284 V = V.getOperand(0);
2285 EVT VVT = V.getValueType();
2286 if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2287 return SDValue();
2288 }
2289 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2290 return (Index == 0) ? V.getOperand(0)
2291 : getUNDEF(VT.getVectorElementType());
2292 if (V.getOpcode() == ISD::BUILD_VECTOR)
2293 return V.getOperand(Index);
2294 if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2295 return getShuffleScalarElt(SVN, Index);
2296 return SDValue();
2297}
2298
2299
2300/// getNode - Gets or creates the specified node.
2301///
2302SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2303 FoldingSetNodeID ID;
2304 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2305 void *IP = 0;
2306 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2307 return SDValue(E, 0);
2308
2309 SDNode *N = NodeAllocator.Allocate<SDNode>();
2310 new (N) SDNode(Opcode, DL, getVTList(VT));
2311 CSEMap.InsertNode(N, IP);
2312
2313 AllNodes.push_back(N);
2314#ifndef NDEBUG
2315 VerifyNode(N);
2316#endif
2317 return SDValue(N, 0);
2318}
2319
2320SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2321 EVT VT, SDValue Operand) {
2322 // Constant fold unary operations with an integer constant operand.
2323 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2324 const APInt &Val = C->getAPIntValue();
2325 unsigned BitWidth = VT.getSizeInBits();
2326 switch (Opcode) {
2327 default: break;
2328 case ISD::SIGN_EXTEND:
2329 return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2330 case ISD::ANY_EXTEND:
2331 case ISD::ZERO_EXTEND:
2332 case ISD::TRUNCATE:
2333 return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2334 case ISD::UINT_TO_FP:
2335 case ISD::SINT_TO_FP: {
2336 const uint64_t zero[] = {0, 0};
2337 // No compile time operations on this type.
2338 if (VT==MVT::ppcf128)
2339 break;
2340 APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2341 (void)apf.convertFromAPInt(Val,
2342 Opcode==ISD::SINT_TO_FP,
2343 APFloat::rmNearestTiesToEven);
2344 return getConstantFP(apf, VT);
2345 }
2346 case ISD::BIT_CONVERT:
2347 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2348 return getConstantFP(Val.bitsToFloat(), VT);
2349 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2350 return getConstantFP(Val.bitsToDouble(), VT);
2351 break;
2352 case ISD::BSWAP:
2353 return getConstant(Val.byteSwap(), VT);
2354 case ISD::CTPOP:
2355 return getConstant(Val.countPopulation(), VT);
2356 case ISD::CTLZ:
2357 return getConstant(Val.countLeadingZeros(), VT);
2358 case ISD::CTTZ:
2359 return getConstant(Val.countTrailingZeros(), VT);
2360 }
2361 }
2362
2363 // Constant fold unary operations with a floating point constant operand.
2364 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2365 APFloat V = C->getValueAPF(); // make copy
2366 if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2367 switch (Opcode) {
2368 case ISD::FNEG:
2369 V.changeSign();
2370 return getConstantFP(V, VT);
2371 case ISD::FABS:
2372 V.clearSign();
2373 return getConstantFP(V, VT);
2374 case ISD::FP_ROUND:
2375 case ISD::FP_EXTEND: {
2376 bool ignored;
2377 // This can return overflow, underflow, or inexact; we don't care.
2378 // FIXME need to be more flexible about rounding mode.
2379 (void)V.convert(*EVTToAPFloatSemantics(VT),
2380 APFloat::rmNearestTiesToEven, &ignored);
2381 return getConstantFP(V, VT);
2382 }
2383 case ISD::FP_TO_SINT:
2384 case ISD::FP_TO_UINT: {
2385 integerPart x[2];
2386 bool ignored;
2387 assert(integerPartWidth >= 64);
2388 // FIXME need to be more flexible about rounding mode.
2389 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2390 Opcode==ISD::FP_TO_SINT,
2391 APFloat::rmTowardZero, &ignored);
2392 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
2393 break;
2394 APInt api(VT.getSizeInBits(), 2, x);
2395 return getConstant(api, VT);
2396 }
2397 case ISD::BIT_CONVERT:
2398 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2399 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2400 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2401 return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2402 break;
2403 }
2404 }
2405 }
2406
2407 unsigned OpOpcode = Operand.getNode()->getOpcode();
2408 switch (Opcode) {
2409 case ISD::TokenFactor:
2410 case ISD::MERGE_VALUES:
2411 case ISD::CONCAT_VECTORS:
2412 return Operand; // Factor, merge or concat of one node? No need.
2413 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2414 case ISD::FP_EXTEND:
2415 assert(VT.isFloatingPoint() &&
2416 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2417 if (Operand.getValueType() == VT) return Operand; // noop conversion.
2418 assert((!VT.isVector() ||
2419 VT.getVectorNumElements() ==
2420 Operand.getValueType().getVectorNumElements()) &&
2421 "Vector element count mismatch!");
2422 if (Operand.getOpcode() == ISD::UNDEF)
2423 return getUNDEF(VT);
2424 break;
2425 case ISD::SIGN_EXTEND:
2426 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2427 "Invalid SIGN_EXTEND!");
2428 if (Operand.getValueType() == VT) return Operand; // noop extension
2429 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2430 "Invalid sext node, dst < src!");
2431 assert((!VT.isVector() ||
2432 VT.getVectorNumElements() ==
2433 Operand.getValueType().getVectorNumElements()) &&
2434 "Vector element count mismatch!");
2435 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2436 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2437 break;
2438 case ISD::ZERO_EXTEND:
2439 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2440 "Invalid ZERO_EXTEND!");
2441 if (Operand.getValueType() == VT) return Operand; // noop extension
2442 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2443 "Invalid zext node, dst < src!");
2444 assert((!VT.isVector() ||
2445 VT.getVectorNumElements() ==
2446 Operand.getValueType().getVectorNumElements()) &&
2447 "Vector element count mismatch!");
2448 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
2449 return getNode(ISD::ZERO_EXTEND, DL, VT,
2450 Operand.getNode()->getOperand(0));
2451 break;
2452 case ISD::ANY_EXTEND:
2453 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2454 "Invalid ANY_EXTEND!");
2455 if (Operand.getValueType() == VT) return Operand; // noop extension
2456 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2457 "Invalid anyext node, dst < src!");
2458 assert((!VT.isVector() ||
2459 VT.getVectorNumElements() ==
2460 Operand.getValueType().getVectorNumElements()) &&
2461 "Vector element count mismatch!");
2462 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2463 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2464 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2465 break;
2466 case ISD::TRUNCATE:
2467 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2468 "Invalid TRUNCATE!");
2469 if (Operand.getValueType() == VT) return Operand; // noop truncate
2470 assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2471 "Invalid truncate node, src < dst!");
2472 assert((!VT.isVector() ||
2473 VT.getVectorNumElements() ==
2474 Operand.getValueType().getVectorNumElements()) &&
2475 "Vector element count mismatch!");
2476 if (OpOpcode == ISD::TRUNCATE)
2477 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2478 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2479 OpOpcode == ISD::ANY_EXTEND) {
2480 // If the source is smaller than the dest, we still need an extend.
2481 if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2482 .bitsLT(VT.getScalarType()))
2483 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2484 else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2485 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2486 else
2487 return Operand.getNode()->getOperand(0);
2488 }
2489 break;
2490 case ISD::BIT_CONVERT:
2491 // Basic sanity checking.
2492 assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2493 && "Cannot BIT_CONVERT between types of different sizes!");
2494 if (VT == Operand.getValueType()) return Operand; // noop conversion.
2495 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
2496 return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2497 if (OpOpcode == ISD::UNDEF)
2498 return getUNDEF(VT);
2499 break;
2500 case ISD::SCALAR_TO_VECTOR:
2501 assert(VT.isVector() && !Operand.getValueType().isVector() &&
2502 (VT.getVectorElementType() == Operand.getValueType() ||
2503 (VT.getVectorElementType().isInteger() &&
2504 Operand.getValueType().isInteger() &&
2505 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2506 "Illegal SCALAR_TO_VECTOR node!");
2507 if (OpOpcode == ISD::UNDEF)
2508 return getUNDEF(VT);
2509 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2510 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2511 isa<ConstantSDNode>(Operand.getOperand(1)) &&
2512 Operand.getConstantOperandVal(1) == 0 &&
2513 Operand.getOperand(0).getValueType() == VT)
2514 return Operand.getOperand(0);
2515 break;
2516 case ISD::FNEG:
2517 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2518 if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2519 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2520 Operand.getNode()->getOperand(0));
2521 if (OpOpcode == ISD::FNEG) // --X -> X
2522 return Operand.getNode()->getOperand(0);
2523 break;
2524 case ISD::FABS:
2525 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
2526 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2527 break;
2528 }
2529
2530 SDNode *N;
2531 SDVTList VTs = getVTList(VT);
2532 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2533 FoldingSetNodeID ID;
2534 SDValue Ops[1] = { Operand };
2535 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2536 void *IP = 0;
2537 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2538 return SDValue(E, 0);
2539
2540 N = NodeAllocator.Allocate<UnarySDNode>();
2541 new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2542 CSEMap.InsertNode(N, IP);
2543 } else {
2544 N = NodeAllocator.Allocate<UnarySDNode>();
2545 new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2546 }
2547
2548 AllNodes.push_back(N);
2549#ifndef NDEBUG
2550 VerifyNode(N);
2551#endif
2552 return SDValue(N, 0);
2553}
2554
2555SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2556 EVT VT,
2557 ConstantSDNode *Cst1,
2558 ConstantSDNode *Cst2) {
2559 const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2560
2561 switch (Opcode) {
2562 case ISD::ADD: return getConstant(C1 + C2, VT);
2563 case ISD::SUB: return getConstant(C1 - C2, VT);
2564 case ISD::MUL: return getConstant(C1 * C2, VT);
2565 case ISD::UDIV:
2566 if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2567 break;
2568 case ISD::UREM:
2569 if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2570 break;
2571 case ISD::SDIV:
2572 if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2573 break;
2574 case ISD::SREM:
2575 if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2576 break;
2577 case ISD::AND: return getConstant(C1 & C2, VT);
2578 case ISD::OR: return getConstant(C1 | C2, VT);
2579 case ISD::XOR: return getConstant(C1 ^ C2, VT);
2580 case ISD::SHL: return getConstant(C1 << C2, VT);
2581 case ISD::SRL: return getConstant(C1.lshr(C2), VT);
2582 case ISD::SRA: return getConstant(C1.ashr(C2), VT);
2583 case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2584 case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2585 default: break;
2586 }
2587
2588 return SDValue();
2589}
2590
2591SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2592 SDValue N1, SDValue N2) {
2593 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2594 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2595 switch (Opcode) {
2596 default: break;
2597 case ISD::TokenFactor:
2598 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2599 N2.getValueType() == MVT::Other && "Invalid token factor!");
2600 // Fold trivial token factors.
2601 if (N1.getOpcode() == ISD::EntryToken) return N2;
2602 if (N2.getOpcode() == ISD::EntryToken) return N1;
2603 if (N1 == N2) return N1;
2604 break;
2605 case ISD::CONCAT_VECTORS:
2606 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2607 // one big BUILD_VECTOR.
2608 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2609 N2.getOpcode() == ISD::BUILD_VECTOR) {
2610 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2611 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2612 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2613 }
2614 break;
2615 case ISD::AND:
2616 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2617 N1.getValueType() == VT && "Binary operator types must match!");
2618 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2619 // worth handling here.
2620 if (N2C && N2C->isNullValue())
2621 return N2;
2622 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
2623 return N1;
2624 break;
2625 case ISD::OR:
2626 case ISD::XOR:
2627 case ISD::ADD:
2628 case ISD::SUB:
2629 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2630 N1.getValueType() == VT && "Binary operator types must match!");
2631 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2632 // it's worth handling here.
2633 if (N2C && N2C->isNullValue())
2634 return N1;
2635 break;
2636 case ISD::UDIV:
2637 case ISD::UREM:
2638 case ISD::MULHU:
2639 case ISD::MULHS:
2640 case ISD::MUL:
2641 case ISD::SDIV:
2642 case ISD::SREM:
2643 assert(VT.isInteger() && "This operator does not apply to FP types!");
2644 // fall through
2645 case ISD::FADD:
2646 case ISD::FSUB:
2647 case ISD::FMUL:
2648 case ISD::FDIV:
2649 case ISD::FREM:
2650 if (UnsafeFPMath) {
2651 if (Opcode == ISD::FADD) {
2652 // 0+x --> x
2653 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2654 if (CFP->getValueAPF().isZero())
2655 return N2;
2656 // x+0 --> x
2657 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2658 if (CFP->getValueAPF().isZero())
2659 return N1;
2660 } else if (Opcode == ISD::FSUB) {
2661 // x-0 --> x
2662 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2663 if (CFP->getValueAPF().isZero())
2664 return N1;
2665 }
2666 }
2667 assert(N1.getValueType() == N2.getValueType() &&
2668 N1.getValueType() == VT && "Binary operator types must match!");
2669 break;
2670 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
2671 assert(N1.getValueType() == VT &&
2672 N1.getValueType().isFloatingPoint() &&
2673 N2.getValueType().isFloatingPoint() &&
2674 "Invalid FCOPYSIGN!");
2675 break;
2676 case ISD::SHL:
2677 case ISD::SRA:
2678 case ISD::SRL:
2679 case ISD::ROTL:
2680 case ISD::ROTR:
2681 assert(VT == N1.getValueType() &&
2682 "Shift operators return type must be the same as their first arg");
2683 assert(VT.isInteger() && N2.getValueType().isInteger() &&
2684 "Shifts only work on integers");
2685
2686 // Always fold shifts of i1 values so the code generator doesn't need to
2687 // handle them. Since we know the size of the shift has to be less than the
2688 // size of the value, the shift/rotate count is guaranteed to be zero.
2689 if (VT == MVT::i1)
2690 return N1;
2691 if (N2C && N2C->isNullValue())
2692 return N1;
2693 break;
2694 case ISD::FP_ROUND_INREG: {
2695 EVT EVT = cast<VTSDNode>(N2)->getVT();
2696 assert(VT == N1.getValueType() && "Not an inreg round!");
2697 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2698 "Cannot FP_ROUND_INREG integer types");
2699 assert(EVT.isVector() == VT.isVector() &&
2700 "FP_ROUND_INREG type should be vector iff the operand "
2701 "type is vector!");
2702 assert((!EVT.isVector() ||
2703 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2704 "Vector element counts must match in FP_ROUND_INREG");
2705 assert(EVT.bitsLE(VT) && "Not rounding down!");
2706 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2707 break;
2708 }
2709 case ISD::FP_ROUND:
2710 assert(VT.isFloatingPoint() &&
2711 N1.getValueType().isFloatingPoint() &&
2712 VT.bitsLE(N1.getValueType()) &&
2713 isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2714 if (N1.getValueType() == VT) return N1; // noop conversion.
2715 break;
2716 case ISD::AssertSext:
2717 case ISD::AssertZext: {
2718 EVT EVT = cast<VTSDNode>(N2)->getVT();
2719 assert(VT == N1.getValueType() && "Not an inreg extend!");
2720 assert(VT.isInteger() && EVT.isInteger() &&
2721 "Cannot *_EXTEND_INREG FP types");
2722 assert(!EVT.isVector() &&
2723 "AssertSExt/AssertZExt type should be the vector element type "
2724 "rather than the vector type!");
2725 assert(EVT.bitsLE(VT) && "Not extending!");
2726 if (VT == EVT) return N1; // noop assertion.
2727 break;
2728 }
2729 case ISD::SIGN_EXTEND_INREG: {
2730 EVT EVT = cast<VTSDNode>(N2)->getVT();
2731 assert(VT == N1.getValueType() && "Not an inreg extend!");
2732 assert(VT.isInteger() && EVT.isInteger() &&
2733 "Cannot *_EXTEND_INREG FP types");
2734 assert(EVT.isVector() == VT.isVector() &&
2735 "SIGN_EXTEND_INREG type should be vector iff the operand "
2736 "type is vector!");
2737 assert((!EVT.isVector() ||
2738 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2739 "Vector element counts must match in SIGN_EXTEND_INREG");
2740 assert(EVT.bitsLE(VT) && "Not extending!");
2741 if (EVT == VT) return N1; // Not actually extending
2742
2743 if (N1C) {
2744 APInt Val = N1C->getAPIntValue();
2745 unsigned FromBits = EVT.getScalarType().getSizeInBits();
2746 Val <<= Val.getBitWidth()-FromBits;
2747 Val = Val.ashr(Val.getBitWidth()-FromBits);
2748 return getConstant(Val, VT);
2749 }
2750 break;
2751 }
2752 case ISD::EXTRACT_VECTOR_ELT:
2753 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2754 if (N1.getOpcode() == ISD::UNDEF)
2755 return getUNDEF(VT);
2756
2757 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2758 // expanding copies of large vectors from registers.
2759 if (N2C &&
2760 N1.getOpcode() == ISD::CONCAT_VECTORS &&
2761 N1.getNumOperands() > 0) {
2762 unsigned Factor =
2763 N1.getOperand(0).getValueType().getVectorNumElements();
2764 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2765 N1.getOperand(N2C->getZExtValue() / Factor),
2766 getConstant(N2C->getZExtValue() % Factor,
2767 N2.getValueType()));
2768 }
2769
2770 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2771 // expanding large vector constants.
2772 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2773 SDValue Elt = N1.getOperand(N2C->getZExtValue());
2774 EVT VEltTy = N1.getValueType().getVectorElementType();
2775 if (Elt.getValueType() != VEltTy) {
2776 // If the vector element type is not legal, the BUILD_VECTOR operands
2777 // are promoted and implicitly truncated. Make that explicit here.
2778 Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2779 }
2780 if (VT != VEltTy) {
2781 // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2782 // result is implicitly extended.
2783 Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2784 }
2785 return Elt;
2786 }
2787
2788 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2789 // operations are lowered to scalars.
2790 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2791 // If the indices are the same, return the inserted element else
2792 // if the indices are known different, extract the element from
2793 // the original vector.
2794 if (N1.getOperand(2) == N2) {
2795 if (VT == N1.getOperand(1).getValueType())
2796 return N1.getOperand(1);
2797 else
2798 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2799 } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2800 isa<ConstantSDNode>(N2))
2801 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2802 }
2803 break;
2804 case ISD::EXTRACT_ELEMENT:
2805 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2806 assert(!N1.getValueType().isVector() && !VT.isVector() &&
2807 (N1.getValueType().isInteger() == VT.isInteger()) &&
2808 "Wrong types for EXTRACT_ELEMENT!");
2809
2810 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2811 // 64-bit integers into 32-bit parts. Instead of building the extract of
2812 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2813 if (N1.getOpcode() == ISD::BUILD_PAIR)
2814 return N1.getOperand(N2C->getZExtValue());
2815
2816 // EXTRACT_ELEMENT of a constant int is also very common.
2817 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2818 unsigned ElementSize = VT.getSizeInBits();
2819 unsigned Shift = ElementSize * N2C->getZExtValue();
2820 APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2821 return getConstant(ShiftedVal.trunc(ElementSize), VT);
2822 }
2823 break;
2824 case ISD::EXTRACT_SUBVECTOR:
2825 if (N1.getValueType() == VT) // Trivial extraction.
2826 return N1;
2827 break;
2828 }
2829
2830 if (N1C) {
2831 if (N2C) {
2832 SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2833 if (SV.getNode()) return SV;
2834 } else { // Cannonicalize constant to RHS if commutative
2835 if (isCommutativeBinOp(Opcode)) {
2836 std::swap(N1C, N2C);
2837 std::swap(N1, N2);
2838 }
2839 }
2840 }
2841
2842 // Constant fold FP operations.
2843 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2844 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2845 if (N1CFP) {
2846 if (!N2CFP && isCommutativeBinOp(Opcode)) {
2847 // Cannonicalize constant to RHS if commutative
2848 std::swap(N1CFP, N2CFP);
2849 std::swap(N1, N2);
2850 } else if (N2CFP && VT != MVT::ppcf128) {
2851 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2852 APFloat::opStatus s;
2853 switch (Opcode) {
2854 case ISD::FADD:
2855 s = V1.add(V2, APFloat::rmNearestTiesToEven);
2856 if (s != APFloat::opInvalidOp)
2857 return getConstantFP(V1, VT);
2858 break;
2859 case ISD::FSUB:
2860 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2861 if (s!=APFloat::opInvalidOp)
2862 return getConstantFP(V1, VT);
2863 break;
2864 case ISD::FMUL:
2865 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2866 if (s!=APFloat::opInvalidOp)
2867 return getConstantFP(V1, VT);
2868 break;
2869 case ISD::FDIV:
2870 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2871 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2872 return getConstantFP(V1, VT);
2873 break;
2874 case ISD::FREM :
2875 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2876 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2877 return getConstantFP(V1, VT);
2878 break;
2879 case ISD::FCOPYSIGN:
2880 V1.copySign(V2);
2881 return getConstantFP(V1, VT);
2882 default: break;
2883 }
2884 }
2885 }
2886
2887 // Canonicalize an UNDEF to the RHS, even over a constant.
2888 if (N1.getOpcode() == ISD::UNDEF) {
2889 if (isCommutativeBinOp(Opcode)) {
2890 std::swap(N1, N2);
2891 } else {
2892 switch (Opcode) {
2893 case ISD::FP_ROUND_INREG:
2894 case ISD::SIGN_EXTEND_INREG:
2895 case ISD::SUB:
2896 case ISD::FSUB:
2897 case ISD::FDIV:
2898 case ISD::FREM:
2899 case ISD::SRA:
2900 return N1; // fold op(undef, arg2) -> undef
2901 case ISD::UDIV:
2902 case ISD::SDIV:
2903 case ISD::UREM:
2904 case ISD::SREM:
2905 case ISD::SRL:
2906 case ISD::SHL:
2907 if (!VT.isVector())
2908 return getConstant(0, VT); // fold op(undef, arg2) -> 0
2909 // For vectors, we can't easily build an all zero vector, just return
2910 // the LHS.
2911 return N2;
2912 }
2913 }
2914 }
2915
2916 // Fold a bunch of operators when the RHS is undef.
2917 if (N2.getOpcode() == ISD::UNDEF) {
2918 switch (Opcode) {
2919 case ISD::XOR:
2920 if (N1.getOpcode() == ISD::UNDEF)
2921 // Handle undef ^ undef -> 0 special case. This is a common
2922 // idiom (misuse).
2923 return getConstant(0, VT);
2924 // fallthrough
2925 case ISD::ADD:
2926 case ISD::ADDC:
2927 case ISD::ADDE:
2928 case ISD::SUB:
2929 case ISD::UDIV:
2930 case ISD::SDIV:
2931 case ISD::UREM:
2932 case ISD::SREM:
2933 return N2; // fold op(arg1, undef) -> undef
2934 case ISD::FADD:
2935 case ISD::FSUB:
2936 case ISD::FMUL:
2937 case ISD::FDIV:
2938 case ISD::FREM:
2939 if (UnsafeFPMath)
2940 return N2;
2941 break;
2942 case ISD::MUL:
2943 case ISD::AND:
2944 case ISD::SRL:
2945 case ISD::SHL:
2946 if (!VT.isVector())
2947 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2948 // For vectors, we can't easily build an all zero vector, just return
2949 // the LHS.
2950 return N1;
2951 case ISD::OR:
2952 if (!VT.isVector())
2953 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2954 // For vectors, we can't easily build an all one vector, just return
2955 // the LHS.
2956 return N1;
2957 case ISD::SRA:
2958 return N1;
2959 }
2960 }
2961
2962 // Memoize this node if possible.
2963 SDNode *N;
2964 SDVTList VTs = getVTList(VT);
2965 if (VT != MVT::Flag) {
2966 SDValue Ops[] = { N1, N2 };
2967 FoldingSetNodeID ID;
2968 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2969 void *IP = 0;
2970 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2971 return SDValue(E, 0);
2972
2973 N = NodeAllocator.Allocate<BinarySDNode>();
2974 new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2975 CSEMap.InsertNode(N, IP);
2976 } else {
2977 N = NodeAllocator.Allocate<BinarySDNode>();
2978 new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2979 }
2980
2981 AllNodes.push_back(N);
2982#ifndef NDEBUG
2983 VerifyNode(N);
2984#endif
2985 return SDValue(N, 0);
2986}
2987
2988SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2989 SDValue N1, SDValue N2, SDValue N3) {
2990 // Perform various simplifications.
2991 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2992 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2993 switch (Opcode) {
2994 case ISD::CONCAT_VECTORS:
2995 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2996 // one big BUILD_VECTOR.
2997 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2998 N2.getOpcode() == ISD::BUILD_VECTOR &&
2999 N3.getOpcode() == ISD::BUILD_VECTOR) {
3000 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3001 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3002 Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3003 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3004 }
3005 break;
3006 case ISD::SETCC: {
3007 // Use FoldSetCC to simplify SETCC's.
3008 SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3009 if (Simp.getNode()) return Simp;
3010 break;
3011 }
3012 case ISD::SELECT:
3013 if (N1C) {
3014 if (N1C->getZExtValue())
3015 return N2; // select true, X, Y -> X
3016 else
3017 return N3; // select false, X, Y -> Y
3018 }
3019
3020 if (N2 == N3) return N2; // select C, X, X -> X
3021 break;
3022 case ISD::BRCOND:
3023 if (N2C) {
3024 if (N2C->getZExtValue()) // Unconditional branch
3025 return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3026 else
3027 return N1; // Never-taken branch
3028 }
3029 break;
3030 case ISD::VECTOR_SHUFFLE:
3031 llvm_unreachable("should use getVectorShuffle constructor!");
3032 break;
3033 case ISD::BIT_CONVERT:
3034 // Fold bit_convert nodes from a type to themselves.
3035 if (N1.getValueType() == VT)
3036 return N1;
3037 break;
3038 }
3039
3040 // Memoize node if it doesn't produce a flag.
3041 SDNode *N;
3042 SDVTList VTs = getVTList(VT);
3043 if (VT != MVT::Flag) {
3044 SDValue Ops[] = { N1, N2, N3 };
3045 FoldingSetNodeID ID;
3046 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3047 void *IP = 0;
3048 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3049 return SDValue(E, 0);
3050
3051 N = NodeAllocator.Allocate<TernarySDNode>();
3052 new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3053 CSEMap.InsertNode(N, IP);
3054 } else {
3055 N = NodeAllocator.Allocate<TernarySDNode>();
3056 new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3057 }
3058
3059 AllNodes.push_back(N);
3060#ifndef NDEBUG
3061 VerifyNode(N);
3062#endif
3063 return SDValue(N, 0);
3064}
3065
3066SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3067 SDValue N1, SDValue N2, SDValue N3,
3068 SDValue N4) {
3069 SDValue Ops[] = { N1, N2, N3, N4 };
3070 return getNode(Opcode, DL, VT, Ops, 4);
3071}
3072
3073SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3074 SDValue N1, SDValue N2, SDValue N3,
3075 SDValue N4, SDValue N5) {
3076 SDValue Ops[] = { N1, N2, N3, N4, N5 };
3077 return getNode(Opcode, DL, VT, Ops, 5);
3078}
3079
3080/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3081/// the incoming stack arguments to be loaded from the stack.
3082SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3083 SmallVector<SDValue, 8> ArgChains;
3084
3085 // Include the original chain at the beginning of the list. When this is
3086 // used by target LowerCall hooks, this helps legalize find the
3087 // CALLSEQ_BEGIN node.
3088 ArgChains.push_back(Chain);
3089
3090 // Add a chain value for each stack argument.
3091 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3092 UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3093 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3094 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3095 if (FI->getIndex() < 0)
3096 ArgChains.push_back(SDValue(L, 1));
3097
3098 // Build a tokenfactor for all the chains.
3099 return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3100 &ArgChains[0], ArgChains.size());
3101}
3102
3103/// getMemsetValue - Vectorized representation of the memset value
3104/// operand.
3105static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3106 DebugLoc dl) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003107 unsigned NumBits = VT.getScalarType().getSizeInBits();
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003108 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3109 APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3110 unsigned Shift = 8;
3111 for (unsigned i = NumBits; i > 8; i >>= 1) {
3112 Val = (Val << Shift) | Val;
3113 Shift <<= 1;
3114 }
3115 if (VT.isInteger())
3116 return DAG.getConstant(Val, VT);
3117 return DAG.getConstantFP(APFloat(Val), VT);
3118 }
3119
3120 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3121 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3122 unsigned Shift = 8;
3123 for (unsigned i = NumBits; i > 8; i >>= 1) {
3124 Value = DAG.getNode(ISD::OR, dl, VT,
3125 DAG.getNode(ISD::SHL, dl, VT, Value,
3126 DAG.getConstant(Shift,
3127 TLI.getShiftAmountTy())),
3128 Value);
3129 Shift <<= 1;
3130 }
3131
3132 return Value;
3133}
3134
3135/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3136/// used when a memcpy is turned into a memset when the source is a constant
3137/// string ptr.
3138static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3139 const TargetLowering &TLI,
3140 std::string &Str, unsigned Offset) {
3141 // Handle vector with all elements zero.
3142 if (Str.empty()) {
3143 if (VT.isInteger())
3144 return DAG.getConstant(0, VT);
3145 unsigned NumElts = VT.getVectorNumElements();
3146 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3147 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3148 DAG.getConstant(0,
3149 EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3150 }
3151
3152 assert(!VT.isVector() && "Can't handle vector type here!");
3153 unsigned NumBits = VT.getSizeInBits();
3154 unsigned MSB = NumBits / 8;
3155 uint64_t Val = 0;
3156 if (TLI.isLittleEndian())
3157 Offset = Offset + MSB - 1;
3158 for (unsigned i = 0; i != MSB; ++i) {
3159 Val = (Val << 8) | (unsigned char)Str[Offset];
3160 Offset += TLI.isLittleEndian() ? -1 : 1;
3161 }
3162 return DAG.getConstant(Val, VT);
3163}
3164
3165/// getMemBasePlusOffset - Returns base and offset node for the
3166///
3167static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3168 SelectionDAG &DAG) {
3169 EVT VT = Base.getValueType();
3170 return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3171 VT, Base, DAG.getConstant(Offset, VT));
3172}
3173
3174/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3175///
3176static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3177 unsigned SrcDelta = 0;
3178 GlobalAddressSDNode *G = NULL;
3179 if (Src.getOpcode() == ISD::GlobalAddress)
3180 G = cast<GlobalAddressSDNode>(Src);
3181 else if (Src.getOpcode() == ISD::ADD &&
3182 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3183 Src.getOperand(1).getOpcode() == ISD::Constant) {
3184 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3185 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3186 }
3187 if (!G)
3188 return false;
3189
3190 GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3191 if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3192 return true;
3193
3194 return false;
3195}
3196
3197/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3198/// to replace the memset / memcpy is below the threshold. It also returns the
3199/// types of the sequence of memory ops to perform memset / memcpy.
3200static
3201bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3202 SDValue Dst, SDValue Src,
3203 unsigned Limit, uint64_t Size, unsigned &Align,
3204 std::string &Str, bool &isSrcStr,
3205 SelectionDAG &DAG,
3206 const TargetLowering &TLI) {
3207 isSrcStr = isMemSrcFromString(Src, Str);
3208 bool isSrcConst = isa<ConstantSDNode>(Src);
3209 EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3210 bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003211 if (VT != MVT::Other) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003212 const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3213 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3214 // If source is a string constant, this will require an unaligned load.
3215 if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3216 if (Dst.getOpcode() != ISD::FrameIndex) {
3217 // Can't change destination alignment. It requires a unaligned store.
3218 if (AllowUnalign)
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003219 VT = MVT::Other;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003220 } else {
3221 int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3222 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3223 if (MFI->isFixedObjectIndex(FI)) {
3224 // Can't change destination alignment. It requires a unaligned store.
3225 if (AllowUnalign)
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003226 VT = MVT::Other;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003227 } else {
3228 // Give the stack frame object a larger alignment if needed.
3229 if (MFI->getObjectAlignment(FI) < NewAlign)
3230 MFI->setObjectAlignment(FI, NewAlign);
3231 Align = NewAlign;
3232 }
3233 }
3234 }
3235 }
3236
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003237 if (VT == MVT::Other) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003238 if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3239 VT = MVT::i64;
3240 } else {
3241 switch (Align & 7) {
3242 case 0: VT = MVT::i64; break;
3243 case 4: VT = MVT::i32; break;
3244 case 2: VT = MVT::i16; break;
3245 default: VT = MVT::i8; break;
3246 }
3247 }
3248
3249 MVT LVT = MVT::i64;
3250 while (!TLI.isTypeLegal(LVT))
3251 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3252 assert(LVT.isInteger());
3253
3254 if (VT.bitsGT(LVT))
3255 VT = LVT;
3256 }
3257
3258 unsigned NumMemOps = 0;
3259 while (Size != 0) {
3260 unsigned VTSize = VT.getSizeInBits() / 8;
3261 while (VTSize > Size) {
3262 // For now, only use non-vector load / store's for the left-over pieces.
3263 if (VT.isVector()) {
3264 VT = MVT::i64;
3265 while (!TLI.isTypeLegal(VT))
3266 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3267 VTSize = VT.getSizeInBits() / 8;
3268 } else {
3269 // This can result in a type that is not legal on the target, e.g.
3270 // 1 or 2 bytes on PPC.
3271 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3272 VTSize >>= 1;
3273 }
3274 }
3275
3276 if (++NumMemOps > Limit)
3277 return false;
3278 MemOps.push_back(VT);
3279 Size -= VTSize;
3280 }
3281
3282 return true;
3283}
3284
3285static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3286 SDValue Chain, SDValue Dst,
3287 SDValue Src, uint64_t Size,
3288 unsigned Align, bool AlwaysInline,
3289 const Value *DstSV, uint64_t DstSVOff,
3290 const Value *SrcSV, uint64_t SrcSVOff){
3291 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3292
3293 // Expand memcpy to a series of load and store ops if the size operand falls
3294 // below a certain threshold.
3295 std::vector<EVT> MemOps;
3296 uint64_t Limit = -1ULL;
3297 if (!AlwaysInline)
3298 Limit = TLI.getMaxStoresPerMemcpy();
3299 unsigned DstAlign = Align; // Destination alignment can change.
3300 std::string Str;
3301 bool CopyFromStr;
3302 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3303 Str, CopyFromStr, DAG, TLI))
3304 return SDValue();
3305
3306
3307 bool isZeroStr = CopyFromStr && Str.empty();
3308 SmallVector<SDValue, 8> OutChains;
3309 unsigned NumMemOps = MemOps.size();
3310 uint64_t SrcOff = 0, DstOff = 0;
3311 for (unsigned i = 0; i != NumMemOps; ++i) {
3312 EVT VT = MemOps[i];
3313 unsigned VTSize = VT.getSizeInBits() / 8;
3314 SDValue Value, Store;
3315
3316 if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3317 // It's unlikely a store of a vector immediate can be done in a single
3318 // instruction. It would require a load from a constantpool first.
3319 // We also handle store a vector with all zero's.
3320 // FIXME: Handle other cases where store of vector immediate is done in
3321 // a single instruction.
3322 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3323 Store = DAG.getStore(Chain, dl, Value,
3324 getMemBasePlusOffset(Dst, DstOff, DAG),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003325 DstSV, DstSVOff + DstOff, false, false, DstAlign);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003326 } else {
3327 // The type might not be legal for the target. This should only happen
3328 // if the type is smaller than a legal type, as on PPC, so the right
3329 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
3330 // to Load/Store if NVT==VT.
3331 // FIXME does the case above also need this?
3332 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3333 assert(NVT.bitsGE(VT));
3334 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3335 getMemBasePlusOffset(Src, SrcOff, DAG),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003336 SrcSV, SrcSVOff + SrcOff, VT, false, false, Align);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003337 Store = DAG.getTruncStore(Chain, dl, Value,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003338 getMemBasePlusOffset(Dst, DstOff, DAG),
3339 DstSV, DstSVOff + DstOff, VT, false, false,
3340 DstAlign);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003341 }
3342 OutChains.push_back(Store);
3343 SrcOff += VTSize;
3344 DstOff += VTSize;
3345 }
3346
3347 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3348 &OutChains[0], OutChains.size());
3349}
3350
3351static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3352 SDValue Chain, SDValue Dst,
3353 SDValue Src, uint64_t Size,
3354 unsigned Align, bool AlwaysInline,
3355 const Value *DstSV, uint64_t DstSVOff,
3356 const Value *SrcSV, uint64_t SrcSVOff){
3357 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3358
3359 // Expand memmove to a series of load and store ops if the size operand falls
3360 // below a certain threshold.
3361 std::vector<EVT> MemOps;
3362 uint64_t Limit = -1ULL;
3363 if (!AlwaysInline)
3364 Limit = TLI.getMaxStoresPerMemmove();
3365 unsigned DstAlign = Align; // Destination alignment can change.
3366 std::string Str;
3367 bool CopyFromStr;
3368 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3369 Str, CopyFromStr, DAG, TLI))
3370 return SDValue();
3371
3372 uint64_t SrcOff = 0, DstOff = 0;
3373
3374 SmallVector<SDValue, 8> LoadValues;
3375 SmallVector<SDValue, 8> LoadChains;
3376 SmallVector<SDValue, 8> OutChains;
3377 unsigned NumMemOps = MemOps.size();
3378 for (unsigned i = 0; i < NumMemOps; i++) {
3379 EVT VT = MemOps[i];
3380 unsigned VTSize = VT.getSizeInBits() / 8;
3381 SDValue Value, Store;
3382
3383 Value = DAG.getLoad(VT, dl, Chain,
3384 getMemBasePlusOffset(Src, SrcOff, DAG),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003385 SrcSV, SrcSVOff + SrcOff, false, false, Align);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003386 LoadValues.push_back(Value);
3387 LoadChains.push_back(Value.getValue(1));
3388 SrcOff += VTSize;
3389 }
3390 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3391 &LoadChains[0], LoadChains.size());
3392 OutChains.clear();
3393 for (unsigned i = 0; i < NumMemOps; i++) {
3394 EVT VT = MemOps[i];
3395 unsigned VTSize = VT.getSizeInBits() / 8;
3396 SDValue Value, Store;
3397
3398 Store = DAG.getStore(Chain, dl, LoadValues[i],
3399 getMemBasePlusOffset(Dst, DstOff, DAG),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003400 DstSV, DstSVOff + DstOff, false, false, DstAlign);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003401 OutChains.push_back(Store);
3402 DstOff += VTSize;
3403 }
3404
3405 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3406 &OutChains[0], OutChains.size());
3407}
3408
3409static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3410 SDValue Chain, SDValue Dst,
3411 SDValue Src, uint64_t Size,
3412 unsigned Align,
3413 const Value *DstSV, uint64_t DstSVOff) {
3414 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3415
3416 // Expand memset to a series of load/store ops if the size operand
3417 // falls below a certain threshold.
3418 std::vector<EVT> MemOps;
3419 std::string Str;
3420 bool CopyFromStr;
3421 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3422 Size, Align, Str, CopyFromStr, DAG, TLI))
3423 return SDValue();
3424
3425 SmallVector<SDValue, 8> OutChains;
3426 uint64_t DstOff = 0;
3427
3428 unsigned NumMemOps = MemOps.size();
3429 for (unsigned i = 0; i < NumMemOps; i++) {
3430 EVT VT = MemOps[i];
3431 unsigned VTSize = VT.getSizeInBits() / 8;
3432 SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3433 SDValue Store = DAG.getStore(Chain, dl, Value,
3434 getMemBasePlusOffset(Dst, DstOff, DAG),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003435 DstSV, DstSVOff + DstOff, false, false, 0);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003436 OutChains.push_back(Store);
3437 DstOff += VTSize;
3438 }
3439
3440 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3441 &OutChains[0], OutChains.size());
3442}
3443
3444SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3445 SDValue Src, SDValue Size,
3446 unsigned Align, bool AlwaysInline,
3447 const Value *DstSV, uint64_t DstSVOff,
3448 const Value *SrcSV, uint64_t SrcSVOff) {
3449
3450 // Check to see if we should lower the memcpy to loads and stores first.
3451 // For cases within the target-specified limits, this is the best choice.
3452 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3453 if (ConstantSize) {
3454 // Memcpy with size zero? Just return the original chain.
3455 if (ConstantSize->isNullValue())
3456 return Chain;
3457
3458 SDValue Result =
3459 getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3460 ConstantSize->getZExtValue(),
3461 Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3462 if (Result.getNode())
3463 return Result;
3464 }
3465
3466 // Then check to see if we should lower the memcpy with target-specific
3467 // code. If the target chooses to do this, this is the next best.
3468 SDValue Result =
3469 TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3470 AlwaysInline,
3471 DstSV, DstSVOff, SrcSV, SrcSVOff);
3472 if (Result.getNode())
3473 return Result;
3474
3475 // If we really need inline code and the target declined to provide it,
3476 // use a (potentially long) sequence of loads and stores.
3477 if (AlwaysInline) {
3478 assert(ConstantSize && "AlwaysInline requires a constant size!");
3479 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3480 ConstantSize->getZExtValue(), Align, true,
3481 DstSV, DstSVOff, SrcSV, SrcSVOff);
3482 }
3483
3484 // Emit a library call.
3485 TargetLowering::ArgListTy Args;
3486 TargetLowering::ArgListEntry Entry;
3487 Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3488 Entry.Node = Dst; Args.push_back(Entry);
3489 Entry.Node = Src; Args.push_back(Entry);
3490 Entry.Node = Size; Args.push_back(Entry);
3491 // FIXME: pass in DebugLoc
3492 std::pair<SDValue,SDValue> CallResult =
3493 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3494 false, false, false, false, 0,
3495 TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3496 /*isReturnValueUsed=*/false,
3497 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3498 TLI.getPointerTy()),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003499 Args, *this, dl);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003500 return CallResult.second;
3501}
3502
3503SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3504 SDValue Src, SDValue Size,
3505 unsigned Align,
3506 const Value *DstSV, uint64_t DstSVOff,
3507 const Value *SrcSV, uint64_t SrcSVOff) {
3508
3509 // Check to see if we should lower the memmove to loads and stores first.
3510 // For cases within the target-specified limits, this is the best choice.
3511 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3512 if (ConstantSize) {
3513 // Memmove with size zero? Just return the original chain.
3514 if (ConstantSize->isNullValue())
3515 return Chain;
3516
3517 SDValue Result =
3518 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3519 ConstantSize->getZExtValue(),
3520 Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3521 if (Result.getNode())
3522 return Result;
3523 }
3524
3525 // Then check to see if we should lower the memmove with target-specific
3526 // code. If the target chooses to do this, this is the next best.
3527 SDValue Result =
3528 TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3529 DstSV, DstSVOff, SrcSV, SrcSVOff);
3530 if (Result.getNode())
3531 return Result;
3532
3533 // Emit a library call.
3534 TargetLowering::ArgListTy Args;
3535 TargetLowering::ArgListEntry Entry;
3536 Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3537 Entry.Node = Dst; Args.push_back(Entry);
3538 Entry.Node = Src; Args.push_back(Entry);
3539 Entry.Node = Size; Args.push_back(Entry);
3540 // FIXME: pass in DebugLoc
3541 std::pair<SDValue,SDValue> CallResult =
3542 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3543 false, false, false, false, 0,
3544 TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3545 /*isReturnValueUsed=*/false,
3546 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3547 TLI.getPointerTy()),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003548 Args, *this, dl);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003549 return CallResult.second;
3550}
3551
3552SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3553 SDValue Src, SDValue Size,
3554 unsigned Align,
3555 const Value *DstSV, uint64_t DstSVOff) {
3556
3557 // Check to see if we should lower the memset to stores first.
3558 // For cases within the target-specified limits, this is the best choice.
3559 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3560 if (ConstantSize) {
3561 // Memset with size zero? Just return the original chain.
3562 if (ConstantSize->isNullValue())
3563 return Chain;
3564
3565 SDValue Result =
3566 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3567 Align, DstSV, DstSVOff);
3568 if (Result.getNode())
3569 return Result;
3570 }
3571
3572 // Then check to see if we should lower the memset with target-specific
3573 // code. If the target chooses to do this, this is the next best.
3574 SDValue Result =
3575 TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3576 DstSV, DstSVOff);
3577 if (Result.getNode())
3578 return Result;
3579
3580 // Emit a library call.
3581 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3582 TargetLowering::ArgListTy Args;
3583 TargetLowering::ArgListEntry Entry;
3584 Entry.Node = Dst; Entry.Ty = IntPtrTy;
3585 Args.push_back(Entry);
3586 // Extend or truncate the argument to be an i32 value for the call.
3587 if (Src.getValueType().bitsGT(MVT::i32))
3588 Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3589 else
3590 Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3591 Entry.Node = Src;
3592 Entry.Ty = Type::getInt32Ty(*getContext());
3593 Entry.isSExt = true;
3594 Args.push_back(Entry);
3595 Entry.Node = Size;
3596 Entry.Ty = IntPtrTy;
3597 Entry.isSExt = false;
3598 Args.push_back(Entry);
3599 // FIXME: pass in DebugLoc
3600 std::pair<SDValue,SDValue> CallResult =
3601 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3602 false, false, false, false, 0,
3603 TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3604 /*isReturnValueUsed=*/false,
3605 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3606 TLI.getPointerTy()),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003607 Args, *this, dl);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003608 return CallResult.second;
3609}
3610
3611SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3612 SDValue Chain,
3613 SDValue Ptr, SDValue Cmp,
3614 SDValue Swp, const Value* PtrVal,
3615 unsigned Alignment) {
3616 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3617 Alignment = getEVTAlignment(MemVT);
3618
3619 // Check if the memory reference references a frame index
3620 if (!PtrVal)
3621 if (const FrameIndexSDNode *FI =
3622 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3623 PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3624
3625 MachineFunction &MF = getMachineFunction();
3626 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3627
3628 // For now, atomics are considered to be volatile always.
3629 Flags |= MachineMemOperand::MOVolatile;
3630
3631 MachineMemOperand *MMO =
3632 MF.getMachineMemOperand(PtrVal, Flags, 0,
3633 MemVT.getStoreSize(), Alignment);
3634
3635 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3636}
3637
3638SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3639 SDValue Chain,
3640 SDValue Ptr, SDValue Cmp,
3641 SDValue Swp, MachineMemOperand *MMO) {
3642 assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3643 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3644
3645 EVT VT = Cmp.getValueType();
3646
3647 SDVTList VTs = getVTList(VT, MVT::Other);
3648 FoldingSetNodeID ID;
3649 ID.AddInteger(MemVT.getRawBits());
3650 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3651 AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3652 void* IP = 0;
3653 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3654 cast<AtomicSDNode>(E)->refineAlignment(MMO);
3655 return SDValue(E, 0);
3656 }
3657 SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3658 new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3659 CSEMap.InsertNode(N, IP);
3660 AllNodes.push_back(N);
3661 return SDValue(N, 0);
3662}
3663
3664SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3665 SDValue Chain,
3666 SDValue Ptr, SDValue Val,
3667 const Value* PtrVal,
3668 unsigned Alignment) {
3669 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3670 Alignment = getEVTAlignment(MemVT);
3671
3672 // Check if the memory reference references a frame index
3673 if (!PtrVal)
3674 if (const FrameIndexSDNode *FI =
3675 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3676 PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3677
3678 MachineFunction &MF = getMachineFunction();
3679 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3680
3681 // For now, atomics are considered to be volatile always.
3682 Flags |= MachineMemOperand::MOVolatile;
3683
3684 MachineMemOperand *MMO =
3685 MF.getMachineMemOperand(PtrVal, Flags, 0,
3686 MemVT.getStoreSize(), Alignment);
3687
3688 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3689}
3690
3691SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3692 SDValue Chain,
3693 SDValue Ptr, SDValue Val,
3694 MachineMemOperand *MMO) {
3695 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3696 Opcode == ISD::ATOMIC_LOAD_SUB ||
3697 Opcode == ISD::ATOMIC_LOAD_AND ||
3698 Opcode == ISD::ATOMIC_LOAD_OR ||
3699 Opcode == ISD::ATOMIC_LOAD_XOR ||
3700 Opcode == ISD::ATOMIC_LOAD_NAND ||
3701 Opcode == ISD::ATOMIC_LOAD_MIN ||
3702 Opcode == ISD::ATOMIC_LOAD_MAX ||
3703 Opcode == ISD::ATOMIC_LOAD_UMIN ||
3704 Opcode == ISD::ATOMIC_LOAD_UMAX ||
3705 Opcode == ISD::ATOMIC_SWAP) &&
3706 "Invalid Atomic Op");
3707
3708 EVT VT = Val.getValueType();
3709
3710 SDVTList VTs = getVTList(VT, MVT::Other);
3711 FoldingSetNodeID ID;
3712 ID.AddInteger(MemVT.getRawBits());
3713 SDValue Ops[] = {Chain, Ptr, Val};
3714 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3715 void* IP = 0;
3716 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3717 cast<AtomicSDNode>(E)->refineAlignment(MMO);
3718 return SDValue(E, 0);
3719 }
3720 SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3721 new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3722 CSEMap.InsertNode(N, IP);
3723 AllNodes.push_back(N);
3724 return SDValue(N, 0);
3725}
3726
3727/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3728/// Allowed to return something different (and simpler) if Simplify is true.
3729SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3730 DebugLoc dl) {
3731 if (NumOps == 1)
3732 return Ops[0];
3733
3734 SmallVector<EVT, 4> VTs;
3735 VTs.reserve(NumOps);
3736 for (unsigned i = 0; i < NumOps; ++i)
3737 VTs.push_back(Ops[i].getValueType());
3738 return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3739 Ops, NumOps);
3740}
3741
3742SDValue
3743SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3744 const EVT *VTs, unsigned NumVTs,
3745 const SDValue *Ops, unsigned NumOps,
3746 EVT MemVT, const Value *srcValue, int SVOff,
3747 unsigned Align, bool Vol,
3748 bool ReadMem, bool WriteMem) {
3749 return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3750 MemVT, srcValue, SVOff, Align, Vol,
3751 ReadMem, WriteMem);
3752}
3753
3754SDValue
3755SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3756 const SDValue *Ops, unsigned NumOps,
3757 EVT MemVT, const Value *srcValue, int SVOff,
3758 unsigned Align, bool Vol,
3759 bool ReadMem, bool WriteMem) {
3760 if (Align == 0) // Ensure that codegen never sees alignment 0
3761 Align = getEVTAlignment(MemVT);
3762
3763 MachineFunction &MF = getMachineFunction();
3764 unsigned Flags = 0;
3765 if (WriteMem)
3766 Flags |= MachineMemOperand::MOStore;
3767 if (ReadMem)
3768 Flags |= MachineMemOperand::MOLoad;
3769 if (Vol)
3770 Flags |= MachineMemOperand::MOVolatile;
3771 MachineMemOperand *MMO =
3772 MF.getMachineMemOperand(srcValue, Flags, SVOff,
3773 MemVT.getStoreSize(), Align);
3774
3775 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3776}
3777
3778SDValue
3779SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3780 const SDValue *Ops, unsigned NumOps,
3781 EVT MemVT, MachineMemOperand *MMO) {
3782 assert((Opcode == ISD::INTRINSIC_VOID ||
3783 Opcode == ISD::INTRINSIC_W_CHAIN ||
3784 (Opcode <= INT_MAX &&
3785 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3786 "Opcode is not a memory-accessing opcode!");
3787
3788 // Memoize the node unless it returns a flag.
3789 MemIntrinsicSDNode *N;
3790 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3791 FoldingSetNodeID ID;
3792 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3793 void *IP = 0;
3794 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3795 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3796 return SDValue(E, 0);
3797 }
3798
3799 N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3800 new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3801 CSEMap.InsertNode(N, IP);
3802 } else {
3803 N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3804 new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3805 }
3806 AllNodes.push_back(N);
3807 return SDValue(N, 0);
3808}
3809
3810SDValue
3811SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3812 ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3813 SDValue Ptr, SDValue Offset,
3814 const Value *SV, int SVOffset, EVT MemVT,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003815 bool isVolatile, bool isNonTemporal,
3816 unsigned Alignment) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003817 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3818 Alignment = getEVTAlignment(VT);
3819
3820 // Check if the memory reference references a frame index
3821 if (!SV)
3822 if (const FrameIndexSDNode *FI =
3823 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3824 SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3825
3826 MachineFunction &MF = getMachineFunction();
3827 unsigned Flags = MachineMemOperand::MOLoad;
3828 if (isVolatile)
3829 Flags |= MachineMemOperand::MOVolatile;
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003830 if (isNonTemporal)
3831 Flags |= MachineMemOperand::MONonTemporal;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003832 MachineMemOperand *MMO =
3833 MF.getMachineMemOperand(SV, Flags, SVOffset,
3834 MemVT.getStoreSize(), Alignment);
3835 return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3836}
3837
3838SDValue
3839SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3840 ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3841 SDValue Ptr, SDValue Offset, EVT MemVT,
3842 MachineMemOperand *MMO) {
3843 if (VT == MemVT) {
3844 ExtType = ISD::NON_EXTLOAD;
3845 } else if (ExtType == ISD::NON_EXTLOAD) {
3846 assert(VT == MemVT && "Non-extending load from different memory type!");
3847 } else {
3848 // Extending load.
3849 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3850 "Should only be an extending load, not truncating!");
3851 assert(VT.isInteger() == MemVT.isInteger() &&
3852 "Cannot convert from FP to Int or Int -> FP!");
3853 assert(VT.isVector() == MemVT.isVector() &&
3854 "Cannot use trunc store to convert to or from a vector!");
3855 assert((!VT.isVector() ||
3856 VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3857 "Cannot use trunc store to change the number of vector elements!");
3858 }
3859
3860 bool Indexed = AM != ISD::UNINDEXED;
3861 assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3862 "Unindexed load with an offset!");
3863
3864 SDVTList VTs = Indexed ?
3865 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3866 SDValue Ops[] = { Chain, Ptr, Offset };
3867 FoldingSetNodeID ID;
3868 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3869 ID.AddInteger(MemVT.getRawBits());
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003870 ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3871 MMO->isNonTemporal()));
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003872 void *IP = 0;
3873 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3874 cast<LoadSDNode>(E)->refineAlignment(MMO);
3875 return SDValue(E, 0);
3876 }
3877 SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3878 new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3879 CSEMap.InsertNode(N, IP);
3880 AllNodes.push_back(N);
3881 return SDValue(N, 0);
3882}
3883
3884SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3885 SDValue Chain, SDValue Ptr,
3886 const Value *SV, int SVOffset,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003887 bool isVolatile, bool isNonTemporal,
3888 unsigned Alignment) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003889 SDValue Undef = getUNDEF(Ptr.getValueType());
3890 return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003891 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003892}
3893
3894SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3895 SDValue Chain, SDValue Ptr,
3896 const Value *SV,
3897 int SVOffset, EVT MemVT,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003898 bool isVolatile, bool isNonTemporal,
3899 unsigned Alignment) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003900 SDValue Undef = getUNDEF(Ptr.getValueType());
3901 return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003902 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003903}
3904
3905SDValue
3906SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3907 SDValue Offset, ISD::MemIndexedMode AM) {
3908 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3909 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3910 "Load is already a indexed load!");
3911 return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3912 LD->getChain(), Base, Offset, LD->getSrcValue(),
3913 LD->getSrcValueOffset(), LD->getMemoryVT(),
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003914 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003915}
3916
3917SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3918 SDValue Ptr, const Value *SV, int SVOffset,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003919 bool isVolatile, bool isNonTemporal,
3920 unsigned Alignment) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003921 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3922 Alignment = getEVTAlignment(Val.getValueType());
3923
3924 // Check if the memory reference references a frame index
3925 if (!SV)
3926 if (const FrameIndexSDNode *FI =
3927 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3928 SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3929
3930 MachineFunction &MF = getMachineFunction();
3931 unsigned Flags = MachineMemOperand::MOStore;
3932 if (isVolatile)
3933 Flags |= MachineMemOperand::MOVolatile;
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003934 if (isNonTemporal)
3935 Flags |= MachineMemOperand::MONonTemporal;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003936 MachineMemOperand *MMO =
3937 MF.getMachineMemOperand(SV, Flags, SVOffset,
3938 Val.getValueType().getStoreSize(), Alignment);
3939
3940 return getStore(Chain, dl, Val, Ptr, MMO);
3941}
3942
3943SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3944 SDValue Ptr, MachineMemOperand *MMO) {
3945 EVT VT = Val.getValueType();
3946 SDVTList VTs = getVTList(MVT::Other);
3947 SDValue Undef = getUNDEF(Ptr.getValueType());
3948 SDValue Ops[] = { Chain, Val, Ptr, Undef };
3949 FoldingSetNodeID ID;
3950 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3951 ID.AddInteger(VT.getRawBits());
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003952 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3953 MMO->isNonTemporal()));
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003954 void *IP = 0;
3955 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3956 cast<StoreSDNode>(E)->refineAlignment(MMO);
3957 return SDValue(E, 0);
3958 }
3959 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3960 new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3961 CSEMap.InsertNode(N, IP);
3962 AllNodes.push_back(N);
3963 return SDValue(N, 0);
3964}
3965
3966SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3967 SDValue Ptr, const Value *SV,
3968 int SVOffset, EVT SVT,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003969 bool isVolatile, bool isNonTemporal,
3970 unsigned Alignment) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003971 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3972 Alignment = getEVTAlignment(SVT);
3973
3974 // Check if the memory reference references a frame index
3975 if (!SV)
3976 if (const FrameIndexSDNode *FI =
3977 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3978 SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3979
3980 MachineFunction &MF = getMachineFunction();
3981 unsigned Flags = MachineMemOperand::MOStore;
3982 if (isVolatile)
3983 Flags |= MachineMemOperand::MOVolatile;
Shih-wei Liaoe4454322010-04-07 12:21:42 -07003984 if (isNonTemporal)
3985 Flags |= MachineMemOperand::MONonTemporal;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08003986 MachineMemOperand *MMO =
3987 MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3988
3989 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3990}
3991
3992SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3993 SDValue Ptr, EVT SVT,
3994 MachineMemOperand *MMO) {
3995 EVT VT = Val.getValueType();
3996
3997 if (VT == SVT)
3998 return getStore(Chain, dl, Val, Ptr, MMO);
3999
4000 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4001 "Should only be a truncating store, not extending!");
4002 assert(VT.isInteger() == SVT.isInteger() &&
4003 "Can't do FP-INT conversion!");
4004 assert(VT.isVector() == SVT.isVector() &&
4005 "Cannot use trunc store to convert to or from a vector!");
4006 assert((!VT.isVector() ||
4007 VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4008 "Cannot use trunc store to change the number of vector elements!");
4009
4010 SDVTList VTs = getVTList(MVT::Other);
4011 SDValue Undef = getUNDEF(Ptr.getValueType());
4012 SDValue Ops[] = { Chain, Val, Ptr, Undef };
4013 FoldingSetNodeID ID;
4014 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4015 ID.AddInteger(SVT.getRawBits());
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004016 ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4017 MMO->isNonTemporal()));
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004018 void *IP = 0;
4019 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4020 cast<StoreSDNode>(E)->refineAlignment(MMO);
4021 return SDValue(E, 0);
4022 }
4023 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4024 new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
4025 CSEMap.InsertNode(N, IP);
4026 AllNodes.push_back(N);
4027 return SDValue(N, 0);
4028}
4029
4030SDValue
4031SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4032 SDValue Offset, ISD::MemIndexedMode AM) {
4033 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4034 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4035 "Store is already a indexed store!");
4036 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4037 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4038 FoldingSetNodeID ID;
4039 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4040 ID.AddInteger(ST->getMemoryVT().getRawBits());
4041 ID.AddInteger(ST->getRawSubclassData());
4042 void *IP = 0;
4043 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4044 return SDValue(E, 0);
4045
4046 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4047 new (N) StoreSDNode(Ops, dl, VTs, AM,
4048 ST->isTruncatingStore(), ST->getMemoryVT(),
4049 ST->getMemOperand());
4050 CSEMap.InsertNode(N, IP);
4051 AllNodes.push_back(N);
4052 return SDValue(N, 0);
4053}
4054
4055SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4056 SDValue Chain, SDValue Ptr,
4057 SDValue SV) {
4058 SDValue Ops[] = { Chain, Ptr, SV };
4059 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4060}
4061
4062SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4063 const SDUse *Ops, unsigned NumOps) {
4064 switch (NumOps) {
4065 case 0: return getNode(Opcode, DL, VT);
4066 case 1: return getNode(Opcode, DL, VT, Ops[0]);
4067 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4068 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4069 default: break;
4070 }
4071
4072 // Copy from an SDUse array into an SDValue array for use with
4073 // the regular getNode logic.
4074 SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4075 return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4076}
4077
4078SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4079 const SDValue *Ops, unsigned NumOps) {
4080 switch (NumOps) {
4081 case 0: return getNode(Opcode, DL, VT);
4082 case 1: return getNode(Opcode, DL, VT, Ops[0]);
4083 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4084 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4085 default: break;
4086 }
4087
4088 switch (Opcode) {
4089 default: break;
4090 case ISD::SELECT_CC: {
4091 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4092 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4093 "LHS and RHS of condition must have same type!");
4094 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4095 "True and False arms of SelectCC must have same type!");
4096 assert(Ops[2].getValueType() == VT &&
4097 "select_cc node must be of same type as true and false value!");
4098 break;
4099 }
4100 case ISD::BR_CC: {
4101 assert(NumOps == 5 && "BR_CC takes 5 operands!");
4102 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4103 "LHS/RHS of comparison should match types!");
4104 break;
4105 }
4106 }
4107
4108 // Memoize nodes.
4109 SDNode *N;
4110 SDVTList VTs = getVTList(VT);
4111
4112 if (VT != MVT::Flag) {
4113 FoldingSetNodeID ID;
4114 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4115 void *IP = 0;
4116
4117 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4118 return SDValue(E, 0);
4119
4120 N = NodeAllocator.Allocate<SDNode>();
4121 new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4122 CSEMap.InsertNode(N, IP);
4123 } else {
4124 N = NodeAllocator.Allocate<SDNode>();
4125 new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4126 }
4127
4128 AllNodes.push_back(N);
4129#ifndef NDEBUG
4130 VerifyNode(N);
4131#endif
4132 return SDValue(N, 0);
4133}
4134
4135SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4136 const std::vector<EVT> &ResultTys,
4137 const SDValue *Ops, unsigned NumOps) {
4138 return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4139 Ops, NumOps);
4140}
4141
4142SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4143 const EVT *VTs, unsigned NumVTs,
4144 const SDValue *Ops, unsigned NumOps) {
4145 if (NumVTs == 1)
4146 return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4147 return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4148}
4149
4150SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4151 const SDValue *Ops, unsigned NumOps) {
4152 if (VTList.NumVTs == 1)
4153 return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4154
4155#if 0
4156 switch (Opcode) {
4157 // FIXME: figure out how to safely handle things like
4158 // int foo(int x) { return 1 << (x & 255); }
4159 // int bar() { return foo(256); }
4160 case ISD::SRA_PARTS:
4161 case ISD::SRL_PARTS:
4162 case ISD::SHL_PARTS:
4163 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4164 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4165 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4166 else if (N3.getOpcode() == ISD::AND)
4167 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4168 // If the and is only masking out bits that cannot effect the shift,
4169 // eliminate the and.
4170 unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4171 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4172 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4173 }
4174 break;
4175 }
4176#endif
4177
4178 // Memoize the node unless it returns a flag.
4179 SDNode *N;
4180 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4181 FoldingSetNodeID ID;
4182 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4183 void *IP = 0;
4184 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4185 return SDValue(E, 0);
4186
4187 if (NumOps == 1) {
4188 N = NodeAllocator.Allocate<UnarySDNode>();
4189 new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4190 } else if (NumOps == 2) {
4191 N = NodeAllocator.Allocate<BinarySDNode>();
4192 new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4193 } else if (NumOps == 3) {
4194 N = NodeAllocator.Allocate<TernarySDNode>();
4195 new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4196 } else {
4197 N = NodeAllocator.Allocate<SDNode>();
4198 new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4199 }
4200 CSEMap.InsertNode(N, IP);
4201 } else {
4202 if (NumOps == 1) {
4203 N = NodeAllocator.Allocate<UnarySDNode>();
4204 new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4205 } else if (NumOps == 2) {
4206 N = NodeAllocator.Allocate<BinarySDNode>();
4207 new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4208 } else if (NumOps == 3) {
4209 N = NodeAllocator.Allocate<TernarySDNode>();
4210 new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4211 } else {
4212 N = NodeAllocator.Allocate<SDNode>();
4213 new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4214 }
4215 }
4216 AllNodes.push_back(N);
4217#ifndef NDEBUG
4218 VerifyNode(N);
4219#endif
4220 return SDValue(N, 0);
4221}
4222
4223SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4224 return getNode(Opcode, DL, VTList, 0, 0);
4225}
4226
4227SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4228 SDValue N1) {
4229 SDValue Ops[] = { N1 };
4230 return getNode(Opcode, DL, VTList, Ops, 1);
4231}
4232
4233SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4234 SDValue N1, SDValue N2) {
4235 SDValue Ops[] = { N1, N2 };
4236 return getNode(Opcode, DL, VTList, Ops, 2);
4237}
4238
4239SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4240 SDValue N1, SDValue N2, SDValue N3) {
4241 SDValue Ops[] = { N1, N2, N3 };
4242 return getNode(Opcode, DL, VTList, Ops, 3);
4243}
4244
4245SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4246 SDValue N1, SDValue N2, SDValue N3,
4247 SDValue N4) {
4248 SDValue Ops[] = { N1, N2, N3, N4 };
4249 return getNode(Opcode, DL, VTList, Ops, 4);
4250}
4251
4252SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4253 SDValue N1, SDValue N2, SDValue N3,
4254 SDValue N4, SDValue N5) {
4255 SDValue Ops[] = { N1, N2, N3, N4, N5 };
4256 return getNode(Opcode, DL, VTList, Ops, 5);
4257}
4258
4259SDVTList SelectionDAG::getVTList(EVT VT) {
4260 return makeVTList(SDNode::getValueTypeList(VT), 1);
4261}
4262
4263SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4264 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4265 E = VTList.rend(); I != E; ++I)
4266 if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4267 return *I;
4268
4269 EVT *Array = Allocator.Allocate<EVT>(2);
4270 Array[0] = VT1;
4271 Array[1] = VT2;
4272 SDVTList Result = makeVTList(Array, 2);
4273 VTList.push_back(Result);
4274 return Result;
4275}
4276
4277SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4278 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4279 E = VTList.rend(); I != E; ++I)
4280 if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4281 I->VTs[2] == VT3)
4282 return *I;
4283
4284 EVT *Array = Allocator.Allocate<EVT>(3);
4285 Array[0] = VT1;
4286 Array[1] = VT2;
4287 Array[2] = VT3;
4288 SDVTList Result = makeVTList(Array, 3);
4289 VTList.push_back(Result);
4290 return Result;
4291}
4292
4293SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4294 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4295 E = VTList.rend(); I != E; ++I)
4296 if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4297 I->VTs[2] == VT3 && I->VTs[3] == VT4)
4298 return *I;
4299
4300 EVT *Array = Allocator.Allocate<EVT>(4);
4301 Array[0] = VT1;
4302 Array[1] = VT2;
4303 Array[2] = VT3;
4304 Array[3] = VT4;
4305 SDVTList Result = makeVTList(Array, 4);
4306 VTList.push_back(Result);
4307 return Result;
4308}
4309
4310SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4311 switch (NumVTs) {
4312 case 0: llvm_unreachable("Cannot have nodes without results!");
4313 case 1: return getVTList(VTs[0]);
4314 case 2: return getVTList(VTs[0], VTs[1]);
4315 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4316 case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4317 default: break;
4318 }
4319
4320 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4321 E = VTList.rend(); I != E; ++I) {
4322 if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4323 continue;
4324
4325 bool NoMatch = false;
4326 for (unsigned i = 2; i != NumVTs; ++i)
4327 if (VTs[i] != I->VTs[i]) {
4328 NoMatch = true;
4329 break;
4330 }
4331 if (!NoMatch)
4332 return *I;
4333 }
4334
4335 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4336 std::copy(VTs, VTs+NumVTs, Array);
4337 SDVTList Result = makeVTList(Array, NumVTs);
4338 VTList.push_back(Result);
4339 return Result;
4340}
4341
4342
4343/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4344/// specified operands. If the resultant node already exists in the DAG,
4345/// this does not modify the specified node, instead it returns the node that
4346/// already exists. If the resultant node does not exist in the DAG, the
4347/// input node is returned. As a degenerate case, if you specify the same
4348/// input operands as the node already has, the input node is returned.
4349SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4350 SDNode *N = InN.getNode();
4351 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4352
4353 // Check to see if there is no change.
4354 if (Op == N->getOperand(0)) return InN;
4355
4356 // See if the modified node already exists.
4357 void *InsertPos = 0;
4358 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4359 return SDValue(Existing, InN.getResNo());
4360
4361 // Nope it doesn't. Remove the node from its current place in the maps.
4362 if (InsertPos)
4363 if (!RemoveNodeFromCSEMaps(N))
4364 InsertPos = 0;
4365
4366 // Now we update the operands.
4367 N->OperandList[0].set(Op);
4368
4369 // If this gets put into a CSE map, add it.
4370 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4371 return InN;
4372}
4373
4374SDValue SelectionDAG::
4375UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4376 SDNode *N = InN.getNode();
4377 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4378
4379 // Check to see if there is no change.
4380 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4381 return InN; // No operands changed, just return the input node.
4382
4383 // See if the modified node already exists.
4384 void *InsertPos = 0;
4385 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4386 return SDValue(Existing, InN.getResNo());
4387
4388 // Nope it doesn't. Remove the node from its current place in the maps.
4389 if (InsertPos)
4390 if (!RemoveNodeFromCSEMaps(N))
4391 InsertPos = 0;
4392
4393 // Now we update the operands.
4394 if (N->OperandList[0] != Op1)
4395 N->OperandList[0].set(Op1);
4396 if (N->OperandList[1] != Op2)
4397 N->OperandList[1].set(Op2);
4398
4399 // If this gets put into a CSE map, add it.
4400 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4401 return InN;
4402}
4403
4404SDValue SelectionDAG::
4405UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4406 SDValue Ops[] = { Op1, Op2, Op3 };
4407 return UpdateNodeOperands(N, Ops, 3);
4408}
4409
4410SDValue SelectionDAG::
4411UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4412 SDValue Op3, SDValue Op4) {
4413 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4414 return UpdateNodeOperands(N, Ops, 4);
4415}
4416
4417SDValue SelectionDAG::
4418UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4419 SDValue Op3, SDValue Op4, SDValue Op5) {
4420 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4421 return UpdateNodeOperands(N, Ops, 5);
4422}
4423
4424SDValue SelectionDAG::
4425UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4426 SDNode *N = InN.getNode();
4427 assert(N->getNumOperands() == NumOps &&
4428 "Update with wrong number of operands");
4429
4430 // Check to see if there is no change.
4431 bool AnyChange = false;
4432 for (unsigned i = 0; i != NumOps; ++i) {
4433 if (Ops[i] != N->getOperand(i)) {
4434 AnyChange = true;
4435 break;
4436 }
4437 }
4438
4439 // No operands changed, just return the input node.
4440 if (!AnyChange) return InN;
4441
4442 // See if the modified node already exists.
4443 void *InsertPos = 0;
4444 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4445 return SDValue(Existing, InN.getResNo());
4446
4447 // Nope it doesn't. Remove the node from its current place in the maps.
4448 if (InsertPos)
4449 if (!RemoveNodeFromCSEMaps(N))
4450 InsertPos = 0;
4451
4452 // Now we update the operands.
4453 for (unsigned i = 0; i != NumOps; ++i)
4454 if (N->OperandList[i] != Ops[i])
4455 N->OperandList[i].set(Ops[i]);
4456
4457 // If this gets put into a CSE map, add it.
4458 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4459 return InN;
4460}
4461
4462/// DropOperands - Release the operands and set this node to have
4463/// zero operands.
4464void SDNode::DropOperands() {
4465 // Unlike the code in MorphNodeTo that does this, we don't need to
4466 // watch for dead nodes here.
4467 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4468 SDUse &Use = *I++;
4469 Use.set(SDValue());
4470 }
4471}
4472
4473/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4474/// machine opcode.
4475///
4476SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4477 EVT VT) {
4478 SDVTList VTs = getVTList(VT);
4479 return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4480}
4481
4482SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4483 EVT VT, SDValue Op1) {
4484 SDVTList VTs = getVTList(VT);
4485 SDValue Ops[] = { Op1 };
4486 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4487}
4488
4489SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4490 EVT VT, SDValue Op1,
4491 SDValue Op2) {
4492 SDVTList VTs = getVTList(VT);
4493 SDValue Ops[] = { Op1, Op2 };
4494 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4495}
4496
4497SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4498 EVT VT, SDValue Op1,
4499 SDValue Op2, SDValue Op3) {
4500 SDVTList VTs = getVTList(VT);
4501 SDValue Ops[] = { Op1, Op2, Op3 };
4502 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4503}
4504
4505SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4506 EVT VT, const SDValue *Ops,
4507 unsigned NumOps) {
4508 SDVTList VTs = getVTList(VT);
4509 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4510}
4511
4512SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4513 EVT VT1, EVT VT2, const SDValue *Ops,
4514 unsigned NumOps) {
4515 SDVTList VTs = getVTList(VT1, VT2);
4516 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4517}
4518
4519SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4520 EVT VT1, EVT VT2) {
4521 SDVTList VTs = getVTList(VT1, VT2);
4522 return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4523}
4524
4525SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4526 EVT VT1, EVT VT2, EVT VT3,
4527 const SDValue *Ops, unsigned NumOps) {
4528 SDVTList VTs = getVTList(VT1, VT2, VT3);
4529 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4530}
4531
4532SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4533 EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4534 const SDValue *Ops, unsigned NumOps) {
4535 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4536 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4537}
4538
4539SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4540 EVT VT1, EVT VT2,
4541 SDValue Op1) {
4542 SDVTList VTs = getVTList(VT1, VT2);
4543 SDValue Ops[] = { Op1 };
4544 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4545}
4546
4547SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4548 EVT VT1, EVT VT2,
4549 SDValue Op1, SDValue Op2) {
4550 SDVTList VTs = getVTList(VT1, VT2);
4551 SDValue Ops[] = { Op1, Op2 };
4552 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4553}
4554
4555SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4556 EVT VT1, EVT VT2,
4557 SDValue Op1, SDValue Op2,
4558 SDValue Op3) {
4559 SDVTList VTs = getVTList(VT1, VT2);
4560 SDValue Ops[] = { Op1, Op2, Op3 };
4561 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4562}
4563
4564SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4565 EVT VT1, EVT VT2, EVT VT3,
4566 SDValue Op1, SDValue Op2,
4567 SDValue Op3) {
4568 SDVTList VTs = getVTList(VT1, VT2, VT3);
4569 SDValue Ops[] = { Op1, Op2, Op3 };
4570 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4571}
4572
4573SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4574 SDVTList VTs, const SDValue *Ops,
4575 unsigned NumOps) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004576 N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4577 // Reset the NodeID to -1.
4578 N->setNodeId(-1);
4579 return N;
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004580}
4581
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004582/// MorphNodeTo - This *mutates* the specified node to have the specified
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004583/// return type, opcode, and operands.
4584///
4585/// Note that MorphNodeTo returns the resultant node. If there is already a
4586/// node of the specified opcode and operands, it returns that node instead of
4587/// the current one. Note that the DebugLoc need not be the same.
4588///
4589/// Using MorphNodeTo is faster than creating a new node and swapping it in
4590/// with ReplaceAllUsesWith both because it often avoids allocating a new
4591/// node, and because it doesn't require CSE recalculation for any of
4592/// the node's users.
4593///
4594SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4595 SDVTList VTs, const SDValue *Ops,
4596 unsigned NumOps) {
4597 // If an identical node already exists, use it.
4598 void *IP = 0;
4599 if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4600 FoldingSetNodeID ID;
4601 AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4602 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4603 return ON;
4604 }
4605
4606 if (!RemoveNodeFromCSEMaps(N))
4607 IP = 0;
4608
4609 // Start the morphing.
4610 N->NodeType = Opc;
4611 N->ValueList = VTs.VTs;
4612 N->NumValues = VTs.NumVTs;
4613
4614 // Clear the operands list, updating used nodes to remove this from their
4615 // use list. Keep track of any operands that become dead as a result.
4616 SmallPtrSet<SDNode*, 16> DeadNodeSet;
4617 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4618 SDUse &Use = *I++;
4619 SDNode *Used = Use.getNode();
4620 Use.set(SDValue());
4621 if (Used->use_empty())
4622 DeadNodeSet.insert(Used);
4623 }
4624
4625 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4626 // Initialize the memory references information.
4627 MN->setMemRefs(0, 0);
4628 // If NumOps is larger than the # of operands we can have in a
4629 // MachineSDNode, reallocate the operand list.
4630 if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4631 if (MN->OperandsNeedDelete)
4632 delete[] MN->OperandList;
4633 if (NumOps > array_lengthof(MN->LocalOperands))
4634 // We're creating a final node that will live unmorphed for the
4635 // remainder of the current SelectionDAG iteration, so we can allocate
4636 // the operands directly out of a pool with no recycling metadata.
4637 MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4638 Ops, NumOps);
4639 else
4640 MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4641 MN->OperandsNeedDelete = false;
4642 } else
4643 MN->InitOperands(MN->OperandList, Ops, NumOps);
4644 } else {
4645 // If NumOps is larger than the # of operands we currently have, reallocate
4646 // the operand list.
4647 if (NumOps > N->NumOperands) {
4648 if (N->OperandsNeedDelete)
4649 delete[] N->OperandList;
4650 N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4651 N->OperandsNeedDelete = true;
4652 } else
4653 N->InitOperands(N->OperandList, Ops, NumOps);
4654 }
4655
4656 // Delete any nodes that are still dead after adding the uses for the
4657 // new operands.
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004658 if (!DeadNodeSet.empty()) {
4659 SmallVector<SDNode *, 16> DeadNodes;
4660 for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4661 E = DeadNodeSet.end(); I != E; ++I)
4662 if ((*I)->use_empty())
4663 DeadNodes.push_back(*I);
4664 RemoveDeadNodes(DeadNodes);
4665 }
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004666
4667 if (IP)
4668 CSEMap.InsertNode(N, IP); // Memoize the new node.
4669 return N;
4670}
4671
4672
4673/// getMachineNode - These are used for target selectors to create a new node
4674/// with specified return type(s), MachineInstr opcode, and operands.
4675///
4676/// Note that getMachineNode returns the resultant node. If there is already a
4677/// node of the specified opcode and operands, it returns that node instead of
4678/// the current one.
4679MachineSDNode *
4680SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4681 SDVTList VTs = getVTList(VT);
4682 return getMachineNode(Opcode, dl, VTs, 0, 0);
4683}
4684
4685MachineSDNode *
4686SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4687 SDVTList VTs = getVTList(VT);
4688 SDValue Ops[] = { Op1 };
4689 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4690}
4691
4692MachineSDNode *
4693SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4694 SDValue Op1, SDValue Op2) {
4695 SDVTList VTs = getVTList(VT);
4696 SDValue Ops[] = { Op1, Op2 };
4697 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4698}
4699
4700MachineSDNode *
4701SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4702 SDValue Op1, SDValue Op2, SDValue Op3) {
4703 SDVTList VTs = getVTList(VT);
4704 SDValue Ops[] = { Op1, Op2, Op3 };
4705 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4706}
4707
4708MachineSDNode *
4709SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4710 const SDValue *Ops, unsigned NumOps) {
4711 SDVTList VTs = getVTList(VT);
4712 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4713}
4714
4715MachineSDNode *
4716SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4717 SDVTList VTs = getVTList(VT1, VT2);
4718 return getMachineNode(Opcode, dl, VTs, 0, 0);
4719}
4720
4721MachineSDNode *
4722SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4723 EVT VT1, EVT VT2, SDValue Op1) {
4724 SDVTList VTs = getVTList(VT1, VT2);
4725 SDValue Ops[] = { Op1 };
4726 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4727}
4728
4729MachineSDNode *
4730SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4731 EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4732 SDVTList VTs = getVTList(VT1, VT2);
4733 SDValue Ops[] = { Op1, Op2 };
4734 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4735}
4736
4737MachineSDNode *
4738SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4739 EVT VT1, EVT VT2, SDValue Op1,
4740 SDValue Op2, SDValue Op3) {
4741 SDVTList VTs = getVTList(VT1, VT2);
4742 SDValue Ops[] = { Op1, Op2, Op3 };
4743 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4744}
4745
4746MachineSDNode *
4747SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4748 EVT VT1, EVT VT2,
4749 const SDValue *Ops, unsigned NumOps) {
4750 SDVTList VTs = getVTList(VT1, VT2);
4751 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4752}
4753
4754MachineSDNode *
4755SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4756 EVT VT1, EVT VT2, EVT VT3,
4757 SDValue Op1, SDValue Op2) {
4758 SDVTList VTs = getVTList(VT1, VT2, VT3);
4759 SDValue Ops[] = { Op1, Op2 };
4760 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4761}
4762
4763MachineSDNode *
4764SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4765 EVT VT1, EVT VT2, EVT VT3,
4766 SDValue Op1, SDValue Op2, SDValue Op3) {
4767 SDVTList VTs = getVTList(VT1, VT2, VT3);
4768 SDValue Ops[] = { Op1, Op2, Op3 };
4769 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4770}
4771
4772MachineSDNode *
4773SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4774 EVT VT1, EVT VT2, EVT VT3,
4775 const SDValue *Ops, unsigned NumOps) {
4776 SDVTList VTs = getVTList(VT1, VT2, VT3);
4777 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4778}
4779
4780MachineSDNode *
4781SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4782 EVT VT2, EVT VT3, EVT VT4,
4783 const SDValue *Ops, unsigned NumOps) {
4784 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4785 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4786}
4787
4788MachineSDNode *
4789SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4790 const std::vector<EVT> &ResultTys,
4791 const SDValue *Ops, unsigned NumOps) {
4792 SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4793 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4794}
4795
4796MachineSDNode *
4797SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4798 const SDValue *Ops, unsigned NumOps) {
4799 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4800 MachineSDNode *N;
4801 void *IP;
4802
4803 if (DoCSE) {
4804 FoldingSetNodeID ID;
4805 AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4806 IP = 0;
4807 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4808 return cast<MachineSDNode>(E);
4809 }
4810
4811 // Allocate a new MachineSDNode.
4812 N = NodeAllocator.Allocate<MachineSDNode>();
4813 new (N) MachineSDNode(~Opcode, DL, VTs);
4814
4815 // Initialize the operands list.
4816 if (NumOps > array_lengthof(N->LocalOperands))
4817 // We're creating a final node that will live unmorphed for the
4818 // remainder of the current SelectionDAG iteration, so we can allocate
4819 // the operands directly out of a pool with no recycling metadata.
4820 N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4821 Ops, NumOps);
4822 else
4823 N->InitOperands(N->LocalOperands, Ops, NumOps);
4824 N->OperandsNeedDelete = false;
4825
4826 if (DoCSE)
4827 CSEMap.InsertNode(N, IP);
4828
4829 AllNodes.push_back(N);
4830#ifndef NDEBUG
4831 VerifyNode(N);
4832#endif
4833 return N;
4834}
4835
4836/// getTargetExtractSubreg - A convenience function for creating
4837/// TargetOpcode::EXTRACT_SUBREG nodes.
4838SDValue
4839SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4840 SDValue Operand) {
4841 SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4842 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4843 VT, Operand, SRIdxVal);
4844 return SDValue(Subreg, 0);
4845}
4846
4847/// getTargetInsertSubreg - A convenience function for creating
4848/// TargetOpcode::INSERT_SUBREG nodes.
4849SDValue
4850SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4851 SDValue Operand, SDValue Subreg) {
4852 SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4853 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4854 VT, Operand, Subreg, SRIdxVal);
4855 return SDValue(Result, 0);
4856}
4857
4858/// getNodeIfExists - Get the specified node if it's already available, or
4859/// else return NULL.
4860SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4861 const SDValue *Ops, unsigned NumOps) {
4862 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4863 FoldingSetNodeID ID;
4864 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4865 void *IP = 0;
4866 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4867 return E;
4868 }
4869 return NULL;
4870}
4871
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004872namespace {
4873
4874/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4875/// pointed to by a use iterator is deleted, increment the use iterator
4876/// so that it doesn't dangle.
4877///
4878/// This class also manages a "downlink" DAGUpdateListener, to forward
4879/// messages to ReplaceAllUsesWith's callers.
4880///
4881class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4882 SelectionDAG::DAGUpdateListener *DownLink;
4883 SDNode::use_iterator &UI;
4884 SDNode::use_iterator &UE;
4885
4886 virtual void NodeDeleted(SDNode *N, SDNode *E) {
4887 // Increment the iterator as needed.
4888 while (UI != UE && N == *UI)
4889 ++UI;
4890
4891 // Then forward the message.
4892 if (DownLink) DownLink->NodeDeleted(N, E);
4893 }
4894
4895 virtual void NodeUpdated(SDNode *N) {
4896 // Just forward the message.
4897 if (DownLink) DownLink->NodeUpdated(N);
4898 }
4899
4900public:
4901 RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4902 SDNode::use_iterator &ui,
4903 SDNode::use_iterator &ue)
4904 : DownLink(dl), UI(ui), UE(ue) {}
4905};
4906
4907}
4908
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004909/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4910/// This can cause recursive merging of nodes in the DAG.
4911///
4912/// This version assumes From has a single result value.
4913///
4914void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4915 DAGUpdateListener *UpdateListener) {
4916 SDNode *From = FromN.getNode();
4917 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4918 "Cannot replace with this method!");
4919 assert(From != To.getNode() && "Cannot replace uses of with self");
4920
4921 // Iterate over all the existing uses of From. New uses will be added
4922 // to the beginning of the use list, which we avoid visiting.
4923 // This specifically avoids visiting uses of From that arise while the
4924 // replacement is happening, because any such uses would be the result
4925 // of CSE: If an existing node looks like From after one of its operands
4926 // is replaced by To, we don't want to replace of all its users with To
4927 // too. See PR3018 for more info.
4928 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004929 RAUWUpdateListener Listener(UpdateListener, UI, UE);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004930 while (UI != UE) {
4931 SDNode *User = *UI;
4932
4933 // This node is about to morph, remove its old self from the CSE maps.
4934 RemoveNodeFromCSEMaps(User);
4935
4936 // A user can appear in a use list multiple times, and when this
4937 // happens the uses are usually next to each other in the list.
4938 // To help reduce the number of CSE recomputations, process all
4939 // the uses of this user that we can find this way.
4940 do {
4941 SDUse &Use = UI.getUse();
4942 ++UI;
4943 Use.set(To);
4944 } while (UI != UE && *UI == User);
4945
4946 // Now that we have modified User, add it back to the CSE maps. If it
4947 // already exists there, recursively merge the results together.
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004948 AddModifiedNodeToCSEMaps(User, &Listener);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004949 }
4950}
4951
4952/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4953/// This can cause recursive merging of nodes in the DAG.
4954///
4955/// This version assumes that for each value of From, there is a
4956/// corresponding value in To in the same position with the same type.
4957///
4958void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4959 DAGUpdateListener *UpdateListener) {
4960#ifndef NDEBUG
4961 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4962 assert((!From->hasAnyUseOfValue(i) ||
4963 From->getValueType(i) == To->getValueType(i)) &&
4964 "Cannot use this version of ReplaceAllUsesWith!");
4965#endif
4966
4967 // Handle the trivial case.
4968 if (From == To)
4969 return;
4970
4971 // Iterate over just the existing users of From. See the comments in
4972 // the ReplaceAllUsesWith above.
4973 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004974 RAUWUpdateListener Listener(UpdateListener, UI, UE);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004975 while (UI != UE) {
4976 SDNode *User = *UI;
4977
4978 // This node is about to morph, remove its old self from the CSE maps.
4979 RemoveNodeFromCSEMaps(User);
4980
4981 // A user can appear in a use list multiple times, and when this
4982 // happens the uses are usually next to each other in the list.
4983 // To help reduce the number of CSE recomputations, process all
4984 // the uses of this user that we can find this way.
4985 do {
4986 SDUse &Use = UI.getUse();
4987 ++UI;
4988 Use.setNode(To);
4989 } while (UI != UE && *UI == User);
4990
4991 // Now that we have modified User, add it back to the CSE maps. If it
4992 // already exists there, recursively merge the results together.
Shih-wei Liaoe4454322010-04-07 12:21:42 -07004993 AddModifiedNodeToCSEMaps(User, &Listener);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08004994 }
4995}
4996
4997/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4998/// This can cause recursive merging of nodes in the DAG.
4999///
5000/// This version can replace From with any result values. To must match the
5001/// number and types of values returned by From.
5002void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5003 const SDValue *To,
5004 DAGUpdateListener *UpdateListener) {
5005 if (From->getNumValues() == 1) // Handle the simple case efficiently.
5006 return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5007
5008 // Iterate over just the existing users of From. See the comments in
5009 // the ReplaceAllUsesWith above.
5010 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005011 RAUWUpdateListener Listener(UpdateListener, UI, UE);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005012 while (UI != UE) {
5013 SDNode *User = *UI;
5014
5015 // This node is about to morph, remove its old self from the CSE maps.
5016 RemoveNodeFromCSEMaps(User);
5017
5018 // A user can appear in a use list multiple times, and when this
5019 // happens the uses are usually next to each other in the list.
5020 // To help reduce the number of CSE recomputations, process all
5021 // the uses of this user that we can find this way.
5022 do {
5023 SDUse &Use = UI.getUse();
5024 const SDValue &ToOp = To[Use.getResNo()];
5025 ++UI;
5026 Use.set(ToOp);
5027 } while (UI != UE && *UI == User);
5028
5029 // Now that we have modified User, add it back to the CSE maps. If it
5030 // already exists there, recursively merge the results together.
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005031 AddModifiedNodeToCSEMaps(User, &Listener);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005032 }
5033}
5034
5035/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5036/// uses of other values produced by From.getNode() alone. The Deleted
5037/// vector is handled the same way as for ReplaceAllUsesWith.
5038void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5039 DAGUpdateListener *UpdateListener){
5040 // Handle the really simple, really trivial case efficiently.
5041 if (From == To) return;
5042
5043 // Handle the simple, trivial, case efficiently.
5044 if (From.getNode()->getNumValues() == 1) {
5045 ReplaceAllUsesWith(From, To, UpdateListener);
5046 return;
5047 }
5048
5049 // Iterate over just the existing users of From. See the comments in
5050 // the ReplaceAllUsesWith above.
5051 SDNode::use_iterator UI = From.getNode()->use_begin(),
5052 UE = From.getNode()->use_end();
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005053 RAUWUpdateListener Listener(UpdateListener, UI, UE);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005054 while (UI != UE) {
5055 SDNode *User = *UI;
5056 bool UserRemovedFromCSEMaps = false;
5057
5058 // A user can appear in a use list multiple times, and when this
5059 // happens the uses are usually next to each other in the list.
5060 // To help reduce the number of CSE recomputations, process all
5061 // the uses of this user that we can find this way.
5062 do {
5063 SDUse &Use = UI.getUse();
5064
5065 // Skip uses of different values from the same node.
5066 if (Use.getResNo() != From.getResNo()) {
5067 ++UI;
5068 continue;
5069 }
5070
5071 // If this node hasn't been modified yet, it's still in the CSE maps,
5072 // so remove its old self from the CSE maps.
5073 if (!UserRemovedFromCSEMaps) {
5074 RemoveNodeFromCSEMaps(User);
5075 UserRemovedFromCSEMaps = true;
5076 }
5077
5078 ++UI;
5079 Use.set(To);
5080 } while (UI != UE && *UI == User);
5081
5082 // We are iterating over all uses of the From node, so if a use
5083 // doesn't use the specific value, no changes are made.
5084 if (!UserRemovedFromCSEMaps)
5085 continue;
5086
5087 // Now that we have modified User, add it back to the CSE maps. If it
5088 // already exists there, recursively merge the results together.
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005089 AddModifiedNodeToCSEMaps(User, &Listener);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005090 }
5091}
5092
5093namespace {
5094 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5095 /// to record information about a use.
5096 struct UseMemo {
5097 SDNode *User;
5098 unsigned Index;
5099 SDUse *Use;
5100 };
5101
5102 /// operator< - Sort Memos by User.
5103 bool operator<(const UseMemo &L, const UseMemo &R) {
5104 return (intptr_t)L.User < (intptr_t)R.User;
5105 }
5106}
5107
5108/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5109/// uses of other values produced by From.getNode() alone. The same value
5110/// may appear in both the From and To list. The Deleted vector is
5111/// handled the same way as for ReplaceAllUsesWith.
5112void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5113 const SDValue *To,
5114 unsigned Num,
5115 DAGUpdateListener *UpdateListener){
5116 // Handle the simple, trivial case efficiently.
5117 if (Num == 1)
5118 return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5119
5120 // Read up all the uses and make records of them. This helps
5121 // processing new uses that are introduced during the
5122 // replacement process.
5123 SmallVector<UseMemo, 4> Uses;
5124 for (unsigned i = 0; i != Num; ++i) {
5125 unsigned FromResNo = From[i].getResNo();
5126 SDNode *FromNode = From[i].getNode();
5127 for (SDNode::use_iterator UI = FromNode->use_begin(),
5128 E = FromNode->use_end(); UI != E; ++UI) {
5129 SDUse &Use = UI.getUse();
5130 if (Use.getResNo() == FromResNo) {
5131 UseMemo Memo = { *UI, i, &Use };
5132 Uses.push_back(Memo);
5133 }
5134 }
5135 }
5136
5137 // Sort the uses, so that all the uses from a given User are together.
5138 std::sort(Uses.begin(), Uses.end());
5139
5140 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5141 UseIndex != UseIndexEnd; ) {
5142 // We know that this user uses some value of From. If it is the right
5143 // value, update it.
5144 SDNode *User = Uses[UseIndex].User;
5145
5146 // This node is about to morph, remove its old self from the CSE maps.
5147 RemoveNodeFromCSEMaps(User);
5148
5149 // The Uses array is sorted, so all the uses for a given User
5150 // are next to each other in the list.
5151 // To help reduce the number of CSE recomputations, process all
5152 // the uses of this user that we can find this way.
5153 do {
5154 unsigned i = Uses[UseIndex].Index;
5155 SDUse &Use = *Uses[UseIndex].Use;
5156 ++UseIndex;
5157
5158 Use.set(To[i]);
5159 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5160
5161 // Now that we have modified User, add it back to the CSE maps. If it
5162 // already exists there, recursively merge the results together.
5163 AddModifiedNodeToCSEMaps(User, UpdateListener);
5164 }
5165}
5166
5167/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5168/// based on their topological order. It returns the maximum id and a vector
5169/// of the SDNodes* in assigned order by reference.
5170unsigned SelectionDAG::AssignTopologicalOrder() {
5171
5172 unsigned DAGSize = 0;
5173
5174 // SortedPos tracks the progress of the algorithm. Nodes before it are
5175 // sorted, nodes after it are unsorted. When the algorithm completes
5176 // it is at the end of the list.
5177 allnodes_iterator SortedPos = allnodes_begin();
5178
5179 // Visit all the nodes. Move nodes with no operands to the front of
5180 // the list immediately. Annotate nodes that do have operands with their
5181 // operand count. Before we do this, the Node Id fields of the nodes
5182 // may contain arbitrary values. After, the Node Id fields for nodes
5183 // before SortedPos will contain the topological sort index, and the
5184 // Node Id fields for nodes At SortedPos and after will contain the
5185 // count of outstanding operands.
5186 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5187 SDNode *N = I++;
5188 checkForCycles(N);
5189 unsigned Degree = N->getNumOperands();
5190 if (Degree == 0) {
5191 // A node with no uses, add it to the result array immediately.
5192 N->setNodeId(DAGSize++);
5193 allnodes_iterator Q = N;
5194 if (Q != SortedPos)
5195 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5196 assert(SortedPos != AllNodes.end() && "Overran node list");
5197 ++SortedPos;
5198 } else {
5199 // Temporarily use the Node Id as scratch space for the degree count.
5200 N->setNodeId(Degree);
5201 }
5202 }
5203
5204 // Visit all the nodes. As we iterate, moves nodes into sorted order,
5205 // such that by the time the end is reached all nodes will be sorted.
5206 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5207 SDNode *N = I;
5208 checkForCycles(N);
5209 // N is in sorted position, so all its uses have one less operand
5210 // that needs to be sorted.
5211 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5212 UI != UE; ++UI) {
5213 SDNode *P = *UI;
5214 unsigned Degree = P->getNodeId();
5215 assert(Degree != 0 && "Invalid node degree");
5216 --Degree;
5217 if (Degree == 0) {
5218 // All of P's operands are sorted, so P may sorted now.
5219 P->setNodeId(DAGSize++);
5220 if (P != SortedPos)
5221 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5222 assert(SortedPos != AllNodes.end() && "Overran node list");
5223 ++SortedPos;
5224 } else {
5225 // Update P's outstanding operand count.
5226 P->setNodeId(Degree);
5227 }
5228 }
5229 if (I == SortedPos) {
5230#ifndef NDEBUG
5231 SDNode *S = ++I;
5232 dbgs() << "Overran sorted position:\n";
5233 S->dumprFull();
5234#endif
5235 llvm_unreachable(0);
5236 }
5237 }
5238
5239 assert(SortedPos == AllNodes.end() &&
5240 "Topological sort incomplete!");
5241 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5242 "First node in topological sort is not the entry token!");
5243 assert(AllNodes.front().getNodeId() == 0 &&
5244 "First node in topological sort has non-zero id!");
5245 assert(AllNodes.front().getNumOperands() == 0 &&
5246 "First node in topological sort has operands!");
5247 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5248 "Last node in topologic sort has unexpected id!");
5249 assert(AllNodes.back().use_empty() &&
5250 "Last node in topologic sort has users!");
5251 assert(DAGSize == allnodes_size() && "Node count mismatch!");
5252 return DAGSize;
5253}
5254
5255/// AssignOrdering - Assign an order to the SDNode.
5256void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5257 assert(SD && "Trying to assign an order to a null node!");
5258 Ordering->add(SD, Order);
5259}
5260
5261/// GetOrdering - Get the order for the SDNode.
5262unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5263 assert(SD && "Trying to get the order of a null node!");
5264 return Ordering->getOrder(SD);
5265}
5266
5267
5268//===----------------------------------------------------------------------===//
5269// SDNode Class
5270//===----------------------------------------------------------------------===//
5271
5272HandleSDNode::~HandleSDNode() {
5273 DropOperands();
5274}
5275
5276GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5277 EVT VT, int64_t o, unsigned char TF)
5278 : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5279 Offset(o), TargetFlags(TF) {
5280 TheGlobal = const_cast<GlobalValue*>(GA);
5281}
5282
5283MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5284 MachineMemOperand *mmo)
5285 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005286 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5287 MMO->isNonTemporal());
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005288 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005289 assert(isNonTemporal() == MMO->isNonTemporal() &&
5290 "Non-temporal encoding error!");
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005291 assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5292}
5293
5294MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5295 const SDValue *Ops, unsigned NumOps, EVT memvt,
5296 MachineMemOperand *mmo)
5297 : SDNode(Opc, dl, VTs, Ops, NumOps),
5298 MemoryVT(memvt), MMO(mmo) {
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005299 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5300 MMO->isNonTemporal());
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005301 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5302 assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5303}
5304
5305/// Profile - Gather unique data for the node.
5306///
5307void SDNode::Profile(FoldingSetNodeID &ID) const {
5308 AddNodeIDNode(ID, this);
5309}
5310
5311namespace {
5312 struct EVTArray {
5313 std::vector<EVT> VTs;
5314
5315 EVTArray() {
5316 VTs.reserve(MVT::LAST_VALUETYPE);
5317 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5318 VTs.push_back(MVT((MVT::SimpleValueType)i));
5319 }
5320 };
5321}
5322
5323static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5324static ManagedStatic<EVTArray> SimpleVTArray;
5325static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5326
5327/// getValueTypeList - Return a pointer to the specified value type.
5328///
5329const EVT *SDNode::getValueTypeList(EVT VT) {
5330 if (VT.isExtended()) {
5331 sys::SmartScopedLock<true> Lock(*VTMutex);
5332 return &(*EVTs->insert(VT).first);
5333 } else {
5334 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5335 }
5336}
5337
5338/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5339/// indicated value. This method ignores uses of other values defined by this
5340/// operation.
5341bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5342 assert(Value < getNumValues() && "Bad value!");
5343
5344 // TODO: Only iterate over uses of a given value of the node
5345 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5346 if (UI.getUse().getResNo() == Value) {
5347 if (NUses == 0)
5348 return false;
5349 --NUses;
5350 }
5351 }
5352
5353 // Found exactly the right number of uses?
5354 return NUses == 0;
5355}
5356
5357
5358/// hasAnyUseOfValue - Return true if there are any use of the indicated
5359/// value. This method ignores uses of other values defined by this operation.
5360bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5361 assert(Value < getNumValues() && "Bad value!");
5362
5363 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5364 if (UI.getUse().getResNo() == Value)
5365 return true;
5366
5367 return false;
5368}
5369
5370
5371/// isOnlyUserOf - Return true if this node is the only use of N.
5372///
5373bool SDNode::isOnlyUserOf(SDNode *N) const {
5374 bool Seen = false;
5375 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5376 SDNode *User = *I;
5377 if (User == this)
5378 Seen = true;
5379 else
5380 return false;
5381 }
5382
5383 return Seen;
5384}
5385
5386/// isOperand - Return true if this node is an operand of N.
5387///
5388bool SDValue::isOperandOf(SDNode *N) const {
5389 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5390 if (*this == N->getOperand(i))
5391 return true;
5392 return false;
5393}
5394
5395bool SDNode::isOperandOf(SDNode *N) const {
5396 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5397 if (this == N->OperandList[i].getNode())
5398 return true;
5399 return false;
5400}
5401
5402/// reachesChainWithoutSideEffects - Return true if this operand (which must
5403/// be a chain) reaches the specified operand without crossing any
5404/// side-effecting instructions. In practice, this looks through token
5405/// factors and non-volatile loads. In order to remain efficient, this only
5406/// looks a couple of nodes in, it does not do an exhaustive search.
5407bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5408 unsigned Depth) const {
5409 if (*this == Dest) return true;
5410
5411 // Don't search too deeply, we just want to be able to see through
5412 // TokenFactor's etc.
5413 if (Depth == 0) return false;
5414
5415 // If this is a token factor, all inputs to the TF happen in parallel. If any
5416 // of the operands of the TF reach dest, then we can do the xform.
5417 if (getOpcode() == ISD::TokenFactor) {
5418 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5419 if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5420 return true;
5421 return false;
5422 }
5423
5424 // Loads don't have side effects, look through them.
5425 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5426 if (!Ld->isVolatile())
5427 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5428 }
5429 return false;
5430}
5431
5432/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5433/// is either an operand of N or it can be reached by traversing up the operands.
5434/// NOTE: this is an expensive method. Use it carefully.
5435bool SDNode::isPredecessorOf(SDNode *N) const {
5436 SmallPtrSet<SDNode *, 32> Visited;
5437 SmallVector<SDNode *, 16> Worklist;
5438 Worklist.push_back(N);
5439
5440 do {
5441 N = Worklist.pop_back_val();
5442 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5443 SDNode *Op = N->getOperand(i).getNode();
5444 if (Op == this)
5445 return true;
5446 if (Visited.insert(Op))
5447 Worklist.push_back(Op);
5448 }
5449 } while (!Worklist.empty());
5450
5451 return false;
5452}
5453
5454uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5455 assert(Num < NumOperands && "Invalid child # of SDNode!");
5456 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5457}
5458
5459std::string SDNode::getOperationName(const SelectionDAG *G) const {
5460 switch (getOpcode()) {
5461 default:
5462 if (getOpcode() < ISD::BUILTIN_OP_END)
5463 return "<<Unknown DAG Node>>";
5464 if (isMachineOpcode()) {
5465 if (G)
5466 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5467 if (getMachineOpcode() < TII->getNumOpcodes())
5468 return TII->get(getMachineOpcode()).getName();
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005469 return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005470 }
5471 if (G) {
5472 const TargetLowering &TLI = G->getTargetLoweringInfo();
5473 const char *Name = TLI.getTargetNodeName(getOpcode());
5474 if (Name) return Name;
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005475 return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005476 }
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005477 return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005478
5479#ifndef NDEBUG
5480 case ISD::DELETED_NODE:
5481 return "<<Deleted Node!>>";
5482#endif
5483 case ISD::PREFETCH: return "Prefetch";
5484 case ISD::MEMBARRIER: return "MemBarrier";
5485 case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
5486 case ISD::ATOMIC_SWAP: return "AtomicSwap";
5487 case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
5488 case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
5489 case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
5490 case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
5491 case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
5492 case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
5493 case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
5494 case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
5495 case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
5496 case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
5497 case ISD::PCMARKER: return "PCMarker";
5498 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5499 case ISD::SRCVALUE: return "SrcValue";
5500 case ISD::EntryToken: return "EntryToken";
5501 case ISD::TokenFactor: return "TokenFactor";
5502 case ISD::AssertSext: return "AssertSext";
5503 case ISD::AssertZext: return "AssertZext";
5504
5505 case ISD::BasicBlock: return "BasicBlock";
5506 case ISD::VALUETYPE: return "ValueType";
5507 case ISD::Register: return "Register";
5508
5509 case ISD::Constant: return "Constant";
5510 case ISD::ConstantFP: return "ConstantFP";
5511 case ISD::GlobalAddress: return "GlobalAddress";
5512 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5513 case ISD::FrameIndex: return "FrameIndex";
5514 case ISD::JumpTable: return "JumpTable";
5515 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5516 case ISD::RETURNADDR: return "RETURNADDR";
5517 case ISD::FRAMEADDR: return "FRAMEADDR";
5518 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5519 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5520 case ISD::LSDAADDR: return "LSDAADDR";
5521 case ISD::EHSELECTION: return "EHSELECTION";
5522 case ISD::EH_RETURN: return "EH_RETURN";
5523 case ISD::ConstantPool: return "ConstantPool";
5524 case ISD::ExternalSymbol: return "ExternalSymbol";
5525 case ISD::BlockAddress: return "BlockAddress";
5526 case ISD::INTRINSIC_WO_CHAIN:
5527 case ISD::INTRINSIC_VOID:
5528 case ISD::INTRINSIC_W_CHAIN: {
5529 unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5530 unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5531 if (IID < Intrinsic::num_intrinsics)
5532 return Intrinsic::getName((Intrinsic::ID)IID);
5533 else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5534 return TII->getName(IID);
5535 llvm_unreachable("Invalid intrinsic ID");
5536 }
5537
5538 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
5539 case ISD::TargetConstant: return "TargetConstant";
5540 case ISD::TargetConstantFP:return "TargetConstantFP";
5541 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5542 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5543 case ISD::TargetFrameIndex: return "TargetFrameIndex";
5544 case ISD::TargetJumpTable: return "TargetJumpTable";
5545 case ISD::TargetConstantPool: return "TargetConstantPool";
5546 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5547 case ISD::TargetBlockAddress: return "TargetBlockAddress";
5548
5549 case ISD::CopyToReg: return "CopyToReg";
5550 case ISD::CopyFromReg: return "CopyFromReg";
5551 case ISD::UNDEF: return "undef";
5552 case ISD::MERGE_VALUES: return "merge_values";
5553 case ISD::INLINEASM: return "inlineasm";
5554 case ISD::EH_LABEL: return "eh_label";
5555 case ISD::HANDLENODE: return "handlenode";
5556
5557 // Unary operators
5558 case ISD::FABS: return "fabs";
5559 case ISD::FNEG: return "fneg";
5560 case ISD::FSQRT: return "fsqrt";
5561 case ISD::FSIN: return "fsin";
5562 case ISD::FCOS: return "fcos";
5563 case ISD::FPOWI: return "fpowi";
5564 case ISD::FPOW: return "fpow";
5565 case ISD::FTRUNC: return "ftrunc";
5566 case ISD::FFLOOR: return "ffloor";
5567 case ISD::FCEIL: return "fceil";
5568 case ISD::FRINT: return "frint";
5569 case ISD::FNEARBYINT: return "fnearbyint";
5570
5571 // Binary operators
5572 case ISD::ADD: return "add";
5573 case ISD::SUB: return "sub";
5574 case ISD::MUL: return "mul";
5575 case ISD::MULHU: return "mulhu";
5576 case ISD::MULHS: return "mulhs";
5577 case ISD::SDIV: return "sdiv";
5578 case ISD::UDIV: return "udiv";
5579 case ISD::SREM: return "srem";
5580 case ISD::UREM: return "urem";
5581 case ISD::SMUL_LOHI: return "smul_lohi";
5582 case ISD::UMUL_LOHI: return "umul_lohi";
5583 case ISD::SDIVREM: return "sdivrem";
5584 case ISD::UDIVREM: return "udivrem";
5585 case ISD::AND: return "and";
5586 case ISD::OR: return "or";
5587 case ISD::XOR: return "xor";
5588 case ISD::SHL: return "shl";
5589 case ISD::SRA: return "sra";
5590 case ISD::SRL: return "srl";
5591 case ISD::ROTL: return "rotl";
5592 case ISD::ROTR: return "rotr";
5593 case ISD::FADD: return "fadd";
5594 case ISD::FSUB: return "fsub";
5595 case ISD::FMUL: return "fmul";
5596 case ISD::FDIV: return "fdiv";
5597 case ISD::FREM: return "frem";
5598 case ISD::FCOPYSIGN: return "fcopysign";
5599 case ISD::FGETSIGN: return "fgetsign";
5600
5601 case ISD::SETCC: return "setcc";
5602 case ISD::VSETCC: return "vsetcc";
5603 case ISD::SELECT: return "select";
5604 case ISD::SELECT_CC: return "select_cc";
5605 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
5606 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
5607 case ISD::CONCAT_VECTORS: return "concat_vectors";
5608 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
5609 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
5610 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
5611 case ISD::CARRY_FALSE: return "carry_false";
5612 case ISD::ADDC: return "addc";
5613 case ISD::ADDE: return "adde";
5614 case ISD::SADDO: return "saddo";
5615 case ISD::UADDO: return "uaddo";
5616 case ISD::SSUBO: return "ssubo";
5617 case ISD::USUBO: return "usubo";
5618 case ISD::SMULO: return "smulo";
5619 case ISD::UMULO: return "umulo";
5620 case ISD::SUBC: return "subc";
5621 case ISD::SUBE: return "sube";
5622 case ISD::SHL_PARTS: return "shl_parts";
5623 case ISD::SRA_PARTS: return "sra_parts";
5624 case ISD::SRL_PARTS: return "srl_parts";
5625
5626 // Conversion operators.
5627 case ISD::SIGN_EXTEND: return "sign_extend";
5628 case ISD::ZERO_EXTEND: return "zero_extend";
5629 case ISD::ANY_EXTEND: return "any_extend";
5630 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5631 case ISD::TRUNCATE: return "truncate";
5632 case ISD::FP_ROUND: return "fp_round";
5633 case ISD::FLT_ROUNDS_: return "flt_rounds";
5634 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5635 case ISD::FP_EXTEND: return "fp_extend";
5636
5637 case ISD::SINT_TO_FP: return "sint_to_fp";
5638 case ISD::UINT_TO_FP: return "uint_to_fp";
5639 case ISD::FP_TO_SINT: return "fp_to_sint";
5640 case ISD::FP_TO_UINT: return "fp_to_uint";
5641 case ISD::BIT_CONVERT: return "bit_convert";
5642
5643 case ISD::CONVERT_RNDSAT: {
5644 switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5645 default: llvm_unreachable("Unknown cvt code!");
5646 case ISD::CVT_FF: return "cvt_ff";
5647 case ISD::CVT_FS: return "cvt_fs";
5648 case ISD::CVT_FU: return "cvt_fu";
5649 case ISD::CVT_SF: return "cvt_sf";
5650 case ISD::CVT_UF: return "cvt_uf";
5651 case ISD::CVT_SS: return "cvt_ss";
5652 case ISD::CVT_SU: return "cvt_su";
5653 case ISD::CVT_US: return "cvt_us";
5654 case ISD::CVT_UU: return "cvt_uu";
5655 }
5656 }
5657
5658 // Control flow instructions
5659 case ISD::BR: return "br";
5660 case ISD::BRIND: return "brind";
5661 case ISD::BR_JT: return "br_jt";
5662 case ISD::BRCOND: return "brcond";
5663 case ISD::BR_CC: return "br_cc";
5664 case ISD::CALLSEQ_START: return "callseq_start";
5665 case ISD::CALLSEQ_END: return "callseq_end";
5666
5667 // Other operators
5668 case ISD::LOAD: return "load";
5669 case ISD::STORE: return "store";
5670 case ISD::VAARG: return "vaarg";
5671 case ISD::VACOPY: return "vacopy";
5672 case ISD::VAEND: return "vaend";
5673 case ISD::VASTART: return "vastart";
5674 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5675 case ISD::EXTRACT_ELEMENT: return "extract_element";
5676 case ISD::BUILD_PAIR: return "build_pair";
5677 case ISD::STACKSAVE: return "stacksave";
5678 case ISD::STACKRESTORE: return "stackrestore";
5679 case ISD::TRAP: return "trap";
5680
5681 // Bit manipulation
5682 case ISD::BSWAP: return "bswap";
5683 case ISD::CTPOP: return "ctpop";
5684 case ISD::CTTZ: return "cttz";
5685 case ISD::CTLZ: return "ctlz";
5686
5687 // Trampolines
5688 case ISD::TRAMPOLINE: return "trampoline";
5689
5690 case ISD::CONDCODE:
5691 switch (cast<CondCodeSDNode>(this)->get()) {
5692 default: llvm_unreachable("Unknown setcc condition!");
5693 case ISD::SETOEQ: return "setoeq";
5694 case ISD::SETOGT: return "setogt";
5695 case ISD::SETOGE: return "setoge";
5696 case ISD::SETOLT: return "setolt";
5697 case ISD::SETOLE: return "setole";
5698 case ISD::SETONE: return "setone";
5699
5700 case ISD::SETO: return "seto";
5701 case ISD::SETUO: return "setuo";
5702 case ISD::SETUEQ: return "setue";
5703 case ISD::SETUGT: return "setugt";
5704 case ISD::SETUGE: return "setuge";
5705 case ISD::SETULT: return "setult";
5706 case ISD::SETULE: return "setule";
5707 case ISD::SETUNE: return "setune";
5708
5709 case ISD::SETEQ: return "seteq";
5710 case ISD::SETGT: return "setgt";
5711 case ISD::SETGE: return "setge";
5712 case ISD::SETLT: return "setlt";
5713 case ISD::SETLE: return "setle";
5714 case ISD::SETNE: return "setne";
5715 }
5716 }
5717}
5718
5719const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5720 switch (AM) {
5721 default:
5722 return "";
5723 case ISD::PRE_INC:
5724 return "<pre-inc>";
5725 case ISD::PRE_DEC:
5726 return "<pre-dec>";
5727 case ISD::POST_INC:
5728 return "<post-inc>";
5729 case ISD::POST_DEC:
5730 return "<post-dec>";
5731 }
5732}
5733
5734std::string ISD::ArgFlagsTy::getArgFlagsString() {
5735 std::string S = "< ";
5736
5737 if (isZExt())
5738 S += "zext ";
5739 if (isSExt())
5740 S += "sext ";
5741 if (isInReg())
5742 S += "inreg ";
5743 if (isSRet())
5744 S += "sret ";
5745 if (isByVal())
5746 S += "byval ";
5747 if (isNest())
5748 S += "nest ";
5749 if (getByValAlign())
5750 S += "byval-align:" + utostr(getByValAlign()) + " ";
5751 if (getOrigAlign())
5752 S += "orig-align:" + utostr(getOrigAlign()) + " ";
5753 if (getByValSize())
5754 S += "byval-size:" + utostr(getByValSize()) + " ";
5755 return S + ">";
5756}
5757
5758void SDNode::dump() const { dump(0); }
5759void SDNode::dump(const SelectionDAG *G) const {
5760 print(dbgs(), G);
5761}
5762
5763void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5764 OS << (void*)this << ": ";
5765
5766 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5767 if (i) OS << ",";
5768 if (getValueType(i) == MVT::Other)
5769 OS << "ch";
5770 else
5771 OS << getValueType(i).getEVTString();
5772 }
5773 OS << " = " << getOperationName(G);
5774}
5775
5776void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5777 if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5778 if (!MN->memoperands_empty()) {
5779 OS << "<";
5780 OS << "Mem:";
5781 for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5782 e = MN->memoperands_end(); i != e; ++i) {
5783 OS << **i;
5784 if (next(i) != e)
5785 OS << " ";
5786 }
5787 OS << ">";
5788 }
5789 } else if (const ShuffleVectorSDNode *SVN =
5790 dyn_cast<ShuffleVectorSDNode>(this)) {
5791 OS << "<";
5792 for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5793 int Idx = SVN->getMaskElt(i);
5794 if (i) OS << ",";
5795 if (Idx < 0)
5796 OS << "u";
5797 else
5798 OS << Idx;
5799 }
5800 OS << ">";
5801 } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5802 OS << '<' << CSDN->getAPIntValue() << '>';
5803 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5804 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5805 OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5806 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5807 OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5808 else {
5809 OS << "<APFloat(";
5810 CSDN->getValueAPF().bitcastToAPInt().dump();
5811 OS << ")>";
5812 }
5813 } else if (const GlobalAddressSDNode *GADN =
5814 dyn_cast<GlobalAddressSDNode>(this)) {
5815 int64_t offset = GADN->getOffset();
5816 OS << '<';
5817 WriteAsOperand(OS, GADN->getGlobal());
5818 OS << '>';
5819 if (offset > 0)
5820 OS << " + " << offset;
5821 else
5822 OS << " " << offset;
5823 if (unsigned int TF = GADN->getTargetFlags())
5824 OS << " [TF=" << TF << ']';
5825 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5826 OS << "<" << FIDN->getIndex() << ">";
5827 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5828 OS << "<" << JTDN->getIndex() << ">";
5829 if (unsigned int TF = JTDN->getTargetFlags())
5830 OS << " [TF=" << TF << ']';
5831 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5832 int offset = CP->getOffset();
5833 if (CP->isMachineConstantPoolEntry())
5834 OS << "<" << *CP->getMachineCPVal() << ">";
5835 else
5836 OS << "<" << *CP->getConstVal() << ">";
5837 if (offset > 0)
5838 OS << " + " << offset;
5839 else
5840 OS << " " << offset;
5841 if (unsigned int TF = CP->getTargetFlags())
5842 OS << " [TF=" << TF << ']';
5843 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5844 OS << "<";
5845 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5846 if (LBB)
5847 OS << LBB->getName() << " ";
5848 OS << (const void*)BBDN->getBasicBlock() << ">";
5849 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5850 if (G && R->getReg() &&
5851 TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5852 OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5853 } else {
5854 OS << " %reg" << R->getReg();
5855 }
5856 } else if (const ExternalSymbolSDNode *ES =
5857 dyn_cast<ExternalSymbolSDNode>(this)) {
5858 OS << "'" << ES->getSymbol() << "'";
5859 if (unsigned int TF = ES->getTargetFlags())
5860 OS << " [TF=" << TF << ']';
5861 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5862 if (M->getValue())
5863 OS << "<" << M->getValue() << ">";
5864 else
5865 OS << "<null>";
5866 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5867 OS << ":" << N->getVT().getEVTString();
5868 }
5869 else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5870 OS << "<" << *LD->getMemOperand();
5871
5872 bool doExt = true;
5873 switch (LD->getExtensionType()) {
5874 default: doExt = false; break;
5875 case ISD::EXTLOAD: OS << ", anyext"; break;
5876 case ISD::SEXTLOAD: OS << ", sext"; break;
5877 case ISD::ZEXTLOAD: OS << ", zext"; break;
5878 }
5879 if (doExt)
5880 OS << " from " << LD->getMemoryVT().getEVTString();
5881
5882 const char *AM = getIndexedModeName(LD->getAddressingMode());
5883 if (*AM)
5884 OS << ", " << AM;
5885
5886 OS << ">";
5887 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5888 OS << "<" << *ST->getMemOperand();
5889
5890 if (ST->isTruncatingStore())
5891 OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5892
5893 const char *AM = getIndexedModeName(ST->getAddressingMode());
5894 if (*AM)
5895 OS << ", " << AM;
5896
5897 OS << ">";
5898 } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5899 OS << "<" << *M->getMemOperand() << ">";
5900 } else if (const BlockAddressSDNode *BA =
5901 dyn_cast<BlockAddressSDNode>(this)) {
5902 OS << "<";
5903 WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5904 OS << ", ";
5905 WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5906 OS << ">";
5907 if (unsigned int TF = BA->getTargetFlags())
5908 OS << " [TF=" << TF << ']';
5909 }
5910
5911 if (G)
5912 if (unsigned Order = G->GetOrdering(this))
5913 OS << " [ORD=" << Order << ']';
Shih-wei Liaoe4454322010-04-07 12:21:42 -07005914
5915 if (getNodeId() != -1)
5916 OS << " [ID=" << getNodeId() << ']';
Shih-wei Liaoe264f622010-02-10 11:10:31 -08005917}
5918
5919void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5920 print_types(OS, G);
5921 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5922 if (i) OS << ", "; else OS << " ";
5923 OS << (void*)getOperand(i).getNode();
5924 if (unsigned RN = getOperand(i).getResNo())
5925 OS << ":" << RN;
5926 }
5927 print_details(OS, G);
5928}
5929
5930static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5931 const SelectionDAG *G, unsigned depth,
5932 unsigned indent)
5933{
5934 if (depth == 0)
5935 return;
5936
5937 OS.indent(indent);
5938
5939 N->print(OS, G);
5940
5941 if (depth < 1)
5942 return;
5943
5944 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5945 OS << '\n';
5946 printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5947 }
5948}
5949
5950void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5951 unsigned depth) const {
5952 printrWithDepthHelper(OS, this, G, depth, 0);
5953}
5954
5955void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
5956 // Don't print impossibly deep things.
5957 printrWithDepth(OS, G, 100);
5958}
5959
5960void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
5961 printrWithDepth(dbgs(), G, depth);
5962}
5963
5964void SDNode::dumprFull(const SelectionDAG *G) const {
5965 // Don't print impossibly deep things.
5966 dumprWithDepth(G, 100);
5967}
5968
5969static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5970 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5971 if (N->getOperand(i).getNode()->hasOneUse())
5972 DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5973 else
5974 dbgs() << "\n" << std::string(indent+2, ' ')
5975 << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5976
5977
5978 dbgs() << "\n";
5979 dbgs().indent(indent);
5980 N->dump(G);
5981}
5982
5983SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5984 assert(N->getNumValues() == 1 &&
5985 "Can't unroll a vector with multiple results!");
5986
5987 EVT VT = N->getValueType(0);
5988 unsigned NE = VT.getVectorNumElements();
5989 EVT EltVT = VT.getVectorElementType();
5990 DebugLoc dl = N->getDebugLoc();
5991
5992 SmallVector<SDValue, 8> Scalars;
5993 SmallVector<SDValue, 4> Operands(N->getNumOperands());
5994
5995 // If ResNE is 0, fully unroll the vector op.
5996 if (ResNE == 0)
5997 ResNE = NE;
5998 else if (NE > ResNE)
5999 NE = ResNE;
6000
6001 unsigned i;
6002 for (i= 0; i != NE; ++i) {
6003 for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6004 SDValue Operand = N->getOperand(j);
6005 EVT OperandVT = Operand.getValueType();
6006 if (OperandVT.isVector()) {
6007 // A vector operand; extract a single element.
6008 EVT OperandEltVT = OperandVT.getVectorElementType();
6009 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6010 OperandEltVT,
6011 Operand,
6012 getConstant(i, MVT::i32));
6013 } else {
6014 // A scalar operand; just use it as is.
6015 Operands[j] = Operand;
6016 }
6017 }
6018
6019 switch (N->getOpcode()) {
6020 default:
6021 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6022 &Operands[0], Operands.size()));
6023 break;
6024 case ISD::SHL:
6025 case ISD::SRA:
6026 case ISD::SRL:
6027 case ISD::ROTL:
6028 case ISD::ROTR:
6029 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6030 getShiftAmountOperand(Operands[1])));
6031 break;
6032 case ISD::SIGN_EXTEND_INREG:
6033 case ISD::FP_ROUND_INREG: {
6034 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6035 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6036 Operands[0],
6037 getValueType(ExtVT)));
6038 }
6039 }
6040 }
6041
6042 for (; i < ResNE; ++i)
6043 Scalars.push_back(getUNDEF(EltVT));
6044
6045 return getNode(ISD::BUILD_VECTOR, dl,
6046 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6047 &Scalars[0], Scalars.size());
6048}
6049
6050
6051/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6052/// location that is 'Dist' units away from the location that the 'Base' load
6053/// is loading from.
6054bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6055 unsigned Bytes, int Dist) const {
6056 if (LD->getChain() != Base->getChain())
6057 return false;
6058 EVT VT = LD->getValueType(0);
6059 if (VT.getSizeInBits() / 8 != Bytes)
6060 return false;
6061
6062 SDValue Loc = LD->getOperand(1);
6063 SDValue BaseLoc = Base->getOperand(1);
6064 if (Loc.getOpcode() == ISD::FrameIndex) {
6065 if (BaseLoc.getOpcode() != ISD::FrameIndex)
6066 return false;
6067 const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6068 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
6069 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6070 int FS = MFI->getObjectSize(FI);
6071 int BFS = MFI->getObjectSize(BFI);
6072 if (FS != BFS || FS != (int)Bytes) return false;
6073 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6074 }
6075 if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6076 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6077 if (V && (V->getSExtValue() == Dist*Bytes))
6078 return true;
6079 }
6080
6081 GlobalValue *GV1 = NULL;
6082 GlobalValue *GV2 = NULL;
6083 int64_t Offset1 = 0;
6084 int64_t Offset2 = 0;
6085 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6086 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6087 if (isGA1 && isGA2 && GV1 == GV2)
6088 return Offset1 == (Offset2 + Dist*Bytes);
6089 return false;
6090}
6091
6092
6093/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6094/// it cannot be inferred.
6095unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6096 // If this is a GlobalAddress + cst, return the alignment.
6097 GlobalValue *GV;
6098 int64_t GVOffset = 0;
6099 if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6100 return MinAlign(GV->getAlignment(), GVOffset);
6101
6102 // If this is a direct reference to a stack slot, use information about the
6103 // stack slot's alignment.
6104 int FrameIdx = 1 << 31;
6105 int64_t FrameOffset = 0;
6106 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6107 FrameIdx = FI->getIndex();
6108 } else if (Ptr.getOpcode() == ISD::ADD &&
6109 isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6110 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6111 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6112 FrameOffset = Ptr.getConstantOperandVal(1);
6113 }
6114
6115 if (FrameIdx != (1 << 31)) {
6116 // FIXME: Handle FI+CST.
6117 const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6118 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6119 FrameOffset);
6120 if (MFI.isFixedObjectIndex(FrameIdx)) {
6121 int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6122
6123 // The alignment of the frame index can be determined from its offset from
6124 // the incoming frame position. If the frame object is at offset 32 and
6125 // the stack is guaranteed to be 16-byte aligned, then we know that the
6126 // object is 16-byte aligned.
6127 unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6128 unsigned Align = MinAlign(ObjectOffset, StackAlign);
6129
6130 // Finally, the frame object itself may have a known alignment. Factor
6131 // the alignment + offset into a new alignment. For example, if we know
6132 // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6133 // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
6134 // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6135 return std::max(Align, FIInfoAlign);
6136 }
6137 return FIInfoAlign;
6138 }
6139
6140 return 0;
6141}
6142
6143void SelectionDAG::dump() const {
6144 dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6145
6146 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6147 I != E; ++I) {
6148 const SDNode *N = I;
6149 if (!N->hasOneUse() && N != getRoot().getNode())
6150 DumpNodes(N, 2, this);
6151 }
6152
6153 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6154
6155 dbgs() << "\n\n";
6156}
6157
6158void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6159 print_types(OS, G);
6160 print_details(OS, G);
6161}
6162
6163typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6164static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6165 const SelectionDAG *G, VisitedSDNodeSet &once) {
6166 if (!once.insert(N)) // If we've been here before, return now.
6167 return;
6168
6169 // Dump the current SDNode, but don't end the line yet.
6170 OS << std::string(indent, ' ');
6171 N->printr(OS, G);
6172
6173 // Having printed this SDNode, walk the children:
6174 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6175 const SDNode *child = N->getOperand(i).getNode();
6176
6177 if (i) OS << ",";
6178 OS << " ";
6179
6180 if (child->getNumOperands() == 0) {
6181 // This child has no grandchildren; print it inline right here.
6182 child->printr(OS, G);
6183 once.insert(child);
6184 } else { // Just the address. FIXME: also print the child's opcode.
6185 OS << (void*)child;
6186 if (unsigned RN = N->getOperand(i).getResNo())
6187 OS << ":" << RN;
6188 }
6189 }
6190
6191 OS << "\n";
6192
6193 // Dump children that have grandchildren on their own line(s).
6194 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6195 const SDNode *child = N->getOperand(i).getNode();
6196 DumpNodesr(OS, child, indent+2, G, once);
6197 }
6198}
6199
6200void SDNode::dumpr() const {
6201 VisitedSDNodeSet once;
6202 DumpNodesr(dbgs(), this, 0, 0, once);
6203}
6204
6205void SDNode::dumpr(const SelectionDAG *G) const {
6206 VisitedSDNodeSet once;
6207 DumpNodesr(dbgs(), this, 0, G, once);
6208}
6209
6210
6211// getAddressSpace - Return the address space this GlobalAddress belongs to.
6212unsigned GlobalAddressSDNode::getAddressSpace() const {
6213 return getGlobal()->getType()->getAddressSpace();
6214}
6215
6216
6217const Type *ConstantPoolSDNode::getType() const {
6218 if (isMachineConstantPoolEntry())
6219 return Val.MachineCPVal->getType();
6220 return Val.ConstVal->getType();
6221}
6222
6223bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6224 APInt &SplatUndef,
6225 unsigned &SplatBitSize,
6226 bool &HasAnyUndefs,
6227 unsigned MinSplatBits,
6228 bool isBigEndian) {
6229 EVT VT = getValueType(0);
6230 assert(VT.isVector() && "Expected a vector type");
6231 unsigned sz = VT.getSizeInBits();
6232 if (MinSplatBits > sz)
6233 return false;
6234
6235 SplatValue = APInt(sz, 0);
6236 SplatUndef = APInt(sz, 0);
6237
6238 // Get the bits. Bits with undefined values (when the corresponding element
6239 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6240 // in SplatValue. If any of the values are not constant, give up and return
6241 // false.
6242 unsigned int nOps = getNumOperands();
6243 assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6244 unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6245
6246 for (unsigned j = 0; j < nOps; ++j) {
6247 unsigned i = isBigEndian ? nOps-1-j : j;
6248 SDValue OpVal = getOperand(i);
6249 unsigned BitPos = j * EltBitSize;
6250
6251 if (OpVal.getOpcode() == ISD::UNDEF)
6252 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6253 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6254 SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6255 zextOrTrunc(sz) << BitPos);
6256 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6257 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6258 else
6259 return false;
6260 }
6261
6262 // The build_vector is all constants or undefs. Find the smallest element
6263 // size that splats the vector.
6264
6265 HasAnyUndefs = (SplatUndef != 0);
6266 while (sz > 8) {
6267
6268 unsigned HalfSize = sz / 2;
6269 APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6270 APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6271 APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6272 APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6273
6274 // If the two halves do not match (ignoring undef bits), stop here.
6275 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6276 MinSplatBits > HalfSize)
6277 break;
6278
6279 SplatValue = HighValue | LowValue;
6280 SplatUndef = HighUndef & LowUndef;
6281
6282 sz = HalfSize;
6283 }
6284
6285 SplatBitSize = sz;
6286 return true;
6287}
6288
6289bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6290 // Find the first non-undef value in the shuffle mask.
6291 unsigned i, e;
6292 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6293 /* search */;
6294
6295 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6296
6297 // Make sure all remaining elements are either undef or the same as the first
6298 // non-undef value.
6299 for (int Idx = Mask[i]; i != e; ++i)
6300 if (Mask[i] >= 0 && Mask[i] != Idx)
6301 return false;
6302 return true;
6303}
6304
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006305#ifdef XDEBUG
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006306static void checkForCyclesHelper(const SDNode *N,
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006307 SmallPtrSet<const SDNode*, 32> &Visited,
6308 SmallPtrSet<const SDNode*, 32> &Checked) {
6309 // If this node has already been checked, don't check it again.
6310 if (Checked.count(N))
6311 return;
6312
6313 // If a node has already been visited on this depth-first walk, reject it as
6314 // a cycle.
6315 if (!Visited.insert(N)) {
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006316 dbgs() << "Offending node:\n";
6317 N->dumprFull();
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006318 errs() << "Detected cycle in SelectionDAG\n";
6319 abort();
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006320 }
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006321
6322 for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6323 checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6324
6325 Checked.insert(N);
6326 Visited.erase(N);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006327}
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006328#endif
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006329
6330void llvm::checkForCycles(const llvm::SDNode *N) {
6331#ifdef XDEBUG
6332 assert(N && "Checking nonexistant SDNode");
Shih-wei Liaoe4454322010-04-07 12:21:42 -07006333 SmallPtrSet<const SDNode*, 32> visited;
6334 SmallPtrSet<const SDNode*, 32> checked;
6335 checkForCyclesHelper(N, visited, checked);
Shih-wei Liaoe264f622010-02-10 11:10:31 -08006336#endif
6337}
6338
6339void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6340 checkForCycles(DAG->getRoot().getNode());
6341}