blob: d47e1fd35a641760337fc0bccacce57a929e1749 [file] [log] [blame]
Owen Anderson1ed5b712009-03-11 22:31:21 +00001//===-- llvm/CodeGen/Spiller.cpp - Spiller -------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "spiller"
11#include "Spiller.h"
Owen Anderson0ff4e212009-03-12 06:58:19 +000012#include "llvm/Support/Compiler.h"
13#include "llvm/ADT/DepthFirstIterator.h"
14#include "llvm/ADT/Statistic.h"
15#include "llvm/ADT/STLExtras.h"
Owen Anderson1ed5b712009-03-11 22:31:21 +000016#include <algorithm>
17using namespace llvm;
18
19STATISTIC(NumDSE , "Number of dead stores elided");
20STATISTIC(NumDSS , "Number of dead spill slots removed");
21STATISTIC(NumCommutes, "Number of instructions commuted");
22STATISTIC(NumDRM , "Number of re-materializable defs elided");
23STATISTIC(NumStores , "Number of stores added");
24STATISTIC(NumPSpills , "Number of physical register spills");
25STATISTIC(NumOmitted , "Number of reloads omited");
26STATISTIC(NumCopified, "Number of available reloads turned into copies");
27STATISTIC(NumReMats , "Number of re-materialization");
28STATISTIC(NumLoads , "Number of loads added");
29STATISTIC(NumReused , "Number of values reused");
30STATISTIC(NumDCE , "Number of copies elided");
Evan Chenge47b0082009-03-17 01:23:09 +000031STATISTIC(NumSUnfold , "Number of stores unfolded");
Owen Anderson1ed5b712009-03-11 22:31:21 +000032
33namespace {
34 enum SpillerName { simple, local };
35}
36
37static cl::opt<SpillerName>
38SpillerOpt("spiller",
39 cl::desc("Spiller to use: (default: local)"),
40 cl::Prefix,
41 cl::values(clEnumVal(simple, "simple spiller"),
42 clEnumVal(local, "local spiller"),
43 clEnumValEnd),
44 cl::init(local));
45
46// ****************************** //
47// Simple Spiller Implementation //
48// ****************************** //
49
50Spiller::~Spiller() {}
51
52bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
53 DOUT << "********** REWRITE MACHINE CODE **********\n";
54 DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
55 const TargetMachine &TM = MF.getTarget();
56 const TargetInstrInfo &TII = *TM.getInstrInfo();
57 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
58
59
60 // LoadedRegs - Keep track of which vregs are loaded, so that we only load
61 // each vreg once (in the case where a spilled vreg is used by multiple
62 // operands). This is always smaller than the number of operands to the
63 // current machine instr, so it should be small.
64 std::vector<unsigned> LoadedRegs;
65
66 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
67 MBBI != E; ++MBBI) {
68 DOUT << MBBI->getBasicBlock()->getName() << ":\n";
69 MachineBasicBlock &MBB = *MBBI;
70 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
71 MII != E; ++MII) {
72 MachineInstr &MI = *MII;
73 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
74 MachineOperand &MO = MI.getOperand(i);
75 if (MO.isReg() && MO.getReg()) {
76 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
77 unsigned VirtReg = MO.getReg();
78 unsigned SubIdx = MO.getSubReg();
79 unsigned PhysReg = VRM.getPhys(VirtReg);
80 unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
81 if (!VRM.isAssignedReg(VirtReg)) {
82 int StackSlot = VRM.getStackSlot(VirtReg);
83 const TargetRegisterClass* RC =
84 MF.getRegInfo().getRegClass(VirtReg);
85
86 if (MO.isUse() &&
87 std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
88 == LoadedRegs.end()) {
89 TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
90 MachineInstr *LoadMI = prior(MII);
91 VRM.addSpillSlotUse(StackSlot, LoadMI);
92 LoadedRegs.push_back(VirtReg);
93 ++NumLoads;
94 DOUT << '\t' << *LoadMI;
95 }
96
97 if (MO.isDef()) {
98 TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
99 StackSlot, RC);
100 MachineInstr *StoreMI = next(MII);
101 VRM.addSpillSlotUse(StackSlot, StoreMI);
102 ++NumStores;
103 }
104 }
105 MF.getRegInfo().setPhysRegUsed(RReg);
106 MI.getOperand(i).setReg(RReg);
107 } else {
108 MF.getRegInfo().setPhysRegUsed(MO.getReg());
109 }
110 }
111 }
112
113 DOUT << '\t' << MI;
114 LoadedRegs.clear();
115 }
116 }
117 return true;
118}
119
120// ****************** //
121// Utility Functions //
122// ****************** //
123
124/// InvalidateKill - A MI that defines the specified register is being deleted,
125/// invalidate the register kill information.
126static void InvalidateKill(unsigned Reg, BitVector &RegKills,
127 std::vector<MachineOperand*> &KillOps) {
128 if (RegKills[Reg]) {
129 KillOps[Reg]->setIsKill(false);
130 KillOps[Reg] = NULL;
131 RegKills.reset(Reg);
132 }
133}
134
135/// findSinglePredSuccessor - Return via reference a vector of machine basic
136/// blocks each of which is a successor of the specified BB and has no other
137/// predecessor.
138static void findSinglePredSuccessor(MachineBasicBlock *MBB,
139 SmallVectorImpl<MachineBasicBlock *> &Succs) {
140 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
141 SE = MBB->succ_end(); SI != SE; ++SI) {
142 MachineBasicBlock *SuccMBB = *SI;
143 if (SuccMBB->pred_size() == 1)
144 Succs.push_back(SuccMBB);
145 }
146}
147
148/// InvalidateKills - MI is going to be deleted. If any of its operands are
149/// marked kill, then invalidate the information.
150static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
151 std::vector<MachineOperand*> &KillOps,
152 SmallVector<unsigned, 2> *KillRegs = NULL) {
153 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
154 MachineOperand &MO = MI.getOperand(i);
155 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
156 continue;
157 unsigned Reg = MO.getReg();
158 if (TargetRegisterInfo::isVirtualRegister(Reg))
159 continue;
160 if (KillRegs)
161 KillRegs->push_back(Reg);
162 assert(Reg < KillOps.size());
163 if (KillOps[Reg] == &MO) {
164 RegKills.reset(Reg);
165 KillOps[Reg] = NULL;
166 }
167 }
168}
169
170/// InvalidateRegDef - If the def operand of the specified def MI is now dead
171/// (since it's spill instruction is removed), mark it isDead. Also checks if
172/// the def MI has other definition operands that are not dead. Returns it by
173/// reference.
174static bool InvalidateRegDef(MachineBasicBlock::iterator I,
175 MachineInstr &NewDef, unsigned Reg,
176 bool &HasLiveDef) {
177 // Due to remat, it's possible this reg isn't being reused. That is,
178 // the def of this reg (by prev MI) is now dead.
179 MachineInstr *DefMI = I;
180 MachineOperand *DefOp = NULL;
181 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
182 MachineOperand &MO = DefMI->getOperand(i);
183 if (MO.isReg() && MO.isDef()) {
184 if (MO.getReg() == Reg)
185 DefOp = &MO;
186 else if (!MO.isDead())
187 HasLiveDef = true;
188 }
189 }
190 if (!DefOp)
191 return false;
192
193 bool FoundUse = false, Done = false;
194 MachineBasicBlock::iterator E = &NewDef;
195 ++I; ++E;
196 for (; !Done && I != E; ++I) {
197 MachineInstr *NMI = I;
198 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
199 MachineOperand &MO = NMI->getOperand(j);
200 if (!MO.isReg() || MO.getReg() != Reg)
201 continue;
202 if (MO.isUse())
203 FoundUse = true;
204 Done = true; // Stop after scanning all the operands of this MI.
205 }
206 }
207 if (!FoundUse) {
208 // Def is dead!
209 DefOp->setIsDead();
210 return true;
211 }
212 return false;
213}
214
215/// UpdateKills - Track and update kill info. If a MI reads a register that is
216/// marked kill, then it must be due to register reuse. Transfer the kill info
217/// over.
218static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
219 std::vector<MachineOperand*> &KillOps,
220 const TargetRegisterInfo* TRI) {
221 const TargetInstrDesc &TID = MI.getDesc();
222 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
223 MachineOperand &MO = MI.getOperand(i);
224 if (!MO.isReg() || !MO.isUse())
225 continue;
226 unsigned Reg = MO.getReg();
227 if (Reg == 0)
228 continue;
229
230 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
231 // That can't be right. Register is killed but not re-defined and it's
232 // being reused. Let's fix that.
233 KillOps[Reg]->setIsKill(false);
234 KillOps[Reg] = NULL;
235 RegKills.reset(Reg);
236 if (i < TID.getNumOperands() &&
237 TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
238 // Unless it's a two-address operand, this is the new kill.
239 MO.setIsKill();
240 }
241 if (MO.isKill()) {
242 RegKills.set(Reg);
243 KillOps[Reg] = &MO;
244 }
245 }
246
247 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
248 const MachineOperand &MO = MI.getOperand(i);
249 if (!MO.isReg() || !MO.isDef())
250 continue;
251 unsigned Reg = MO.getReg();
252 RegKills.reset(Reg);
253 KillOps[Reg] = NULL;
254 // It also defines (or partially define) aliases.
255 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
256 RegKills.reset(*AS);
257 KillOps[*AS] = NULL;
258 }
259 }
260}
261
262/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
263///
264static void ReMaterialize(MachineBasicBlock &MBB,
265 MachineBasicBlock::iterator &MII,
266 unsigned DestReg, unsigned Reg,
267 const TargetInstrInfo *TII,
268 const TargetRegisterInfo *TRI,
269 VirtRegMap &VRM) {
270 TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
271 MachineInstr *NewMI = prior(MII);
272 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
273 MachineOperand &MO = NewMI->getOperand(i);
274 if (!MO.isReg() || MO.getReg() == 0)
275 continue;
276 unsigned VirtReg = MO.getReg();
277 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
278 continue;
279 assert(MO.isUse());
280 unsigned SubIdx = MO.getSubReg();
281 unsigned Phys = VRM.getPhys(VirtReg);
282 assert(Phys);
283 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
284 MO.setReg(RReg);
285 }
286 ++NumReMats;
287}
288
289/// findSuperReg - Find the SubReg's super-register of given register class
290/// where its SubIdx sub-register is SubReg.
291static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
292 unsigned SubIdx, const TargetRegisterInfo *TRI) {
293 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
294 I != E; ++I) {
295 unsigned Reg = *I;
296 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
297 return Reg;
298 }
299 return 0;
300}
301
302// ******************************** //
303// Available Spills Implementation //
304// ******************************** //
305
306/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
307/// stackslot register. The register is still available but is no longer
308/// allowed to be modifed.
309void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
310 std::multimap<unsigned, int>::iterator I =
311 PhysRegsAvailable.lower_bound(PhysReg);
312 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
313 int SlotOrReMat = I->second;
314 I++;
315 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
316 "Bidirectional map mismatch!");
317 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
318 DOUT << "PhysReg " << TRI->getName(PhysReg)
319 << " copied, it is available for use but can no longer be modified\n";
320 }
321}
322
323/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
324/// stackslot register and its aliases. The register and its aliases may
325/// still available but is no longer allowed to be modifed.
326void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
327 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
328 disallowClobberPhysRegOnly(*AS);
329 disallowClobberPhysRegOnly(PhysReg);
330}
331
332/// ClobberPhysRegOnly - This is called when the specified physreg changes
333/// value. We use this to invalidate any info about stuff we thing lives in it.
334void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
335 std::multimap<unsigned, int>::iterator I =
336 PhysRegsAvailable.lower_bound(PhysReg);
337 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
338 int SlotOrReMat = I->second;
339 PhysRegsAvailable.erase(I++);
340 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
341 "Bidirectional map mismatch!");
342 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
343 DOUT << "PhysReg " << TRI->getName(PhysReg)
344 << " clobbered, invalidating ";
345 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
346 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
347 else
348 DOUT << "SS#" << SlotOrReMat << "\n";
349 }
350}
351
352/// ClobberPhysReg - This is called when the specified physreg changes
353/// value. We use this to invalidate any info about stuff we thing lives in
354/// it and any of its aliases.
355void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
356 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
357 ClobberPhysRegOnly(*AS);
358 ClobberPhysRegOnly(PhysReg);
359}
360
361/// AddAvailableRegsToLiveIn - Availability information is being kept coming
362/// into the specified MBB. Add available physical registers as potential
363/// live-in's. If they are reused in the MBB, they will be added to the
364/// live-in set to make register scavenger and post-allocation scheduler.
365void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
366 BitVector &RegKills,
367 std::vector<MachineOperand*> &KillOps) {
368 std::set<unsigned> NotAvailable;
369 for (std::multimap<unsigned, int>::iterator
370 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
371 I != E; ++I) {
372 unsigned Reg = I->first;
373 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
374 // FIXME: A temporary workaround. We can't reuse available value if it's
375 // not safe to move the def of the virtual register's class. e.g.
376 // X86::RFP* register classes. Do not add it as a live-in.
377 if (!TII->isSafeToMoveRegClassDefs(RC))
378 // This is no longer available.
379 NotAvailable.insert(Reg);
380 else {
381 MBB.addLiveIn(Reg);
382 InvalidateKill(Reg, RegKills, KillOps);
383 }
384
385 // Skip over the same register.
386 std::multimap<unsigned, int>::iterator NI = next(I);
387 while (NI != E && NI->first == Reg) {
388 ++I;
389 ++NI;
390 }
391 }
392
393 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
394 E = NotAvailable.end(); I != E; ++I) {
395 ClobberPhysReg(*I);
396 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
397 *SubRegs; ++SubRegs)
398 ClobberPhysReg(*SubRegs);
399 }
400}
401
402/// ModifyStackSlotOrReMat - This method is called when the value in a stack
403/// slot changes. This removes information about which register the previous
404/// value for this slot lives in (as the previous value is dead now).
405void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
406 std::map<int, unsigned>::iterator It =
407 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
408 if (It == SpillSlotsOrReMatsAvailable.end()) return;
409 unsigned Reg = It->second >> 1;
410 SpillSlotsOrReMatsAvailable.erase(It);
411
412 // This register may hold the value of multiple stack slots, only remove this
413 // stack slot from the set of values the register contains.
414 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
415 for (; ; ++I) {
416 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
417 "Map inverse broken!");
418 if (I->second == SlotOrReMat) break;
419 }
420 PhysRegsAvailable.erase(I);
421}
422
423// ************************** //
424// Reuse Info Implementation //
425// ************************** //
426
427/// GetRegForReload - We are about to emit a reload into PhysReg. If there
428/// is some other operand that is using the specified register, either pick
429/// a new register to use, or evict the previous reload and use this reg.
430unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
431 AvailableSpills &Spills,
432 std::vector<MachineInstr*> &MaybeDeadStores,
433 SmallSet<unsigned, 8> &Rejected,
434 BitVector &RegKills,
435 std::vector<MachineOperand*> &KillOps,
436 VirtRegMap &VRM) {
437 const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
438 .getInstrInfo();
439
440 if (Reuses.empty()) return PhysReg; // This is most often empty.
441
442 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
443 ReusedOp &Op = Reuses[ro];
444 // If we find some other reuse that was supposed to use this register
445 // exactly for its reload, we can change this reload to use ITS reload
446 // register. That is, unless its reload register has already been
447 // considered and subsequently rejected because it has also been reused
448 // by another operand.
449 if (Op.PhysRegReused == PhysReg &&
450 Rejected.count(Op.AssignedPhysReg) == 0) {
451 // Yup, use the reload register that we didn't use before.
452 unsigned NewReg = Op.AssignedPhysReg;
453 Rejected.insert(PhysReg);
454 return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
455 RegKills, KillOps, VRM);
456 } else {
457 // Otherwise, we might also have a problem if a previously reused
458 // value aliases the new register. If so, codegen the previous reload
459 // and use this one.
460 unsigned PRRU = Op.PhysRegReused;
461 const TargetRegisterInfo *TRI = Spills.getRegInfo();
462 if (TRI->areAliases(PRRU, PhysReg)) {
463 // Okay, we found out that an alias of a reused register
464 // was used. This isn't good because it means we have
465 // to undo a previous reuse.
466 MachineBasicBlock *MBB = MI->getParent();
467 const TargetRegisterClass *AliasRC =
468 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
469
470 // Copy Op out of the vector and remove it, we're going to insert an
471 // explicit load for it.
472 ReusedOp NewOp = Op;
473 Reuses.erase(Reuses.begin()+ro);
474
475 // Ok, we're going to try to reload the assigned physreg into the
476 // slot that we were supposed to in the first place. However, that
477 // register could hold a reuse. Check to see if it conflicts or
478 // would prefer us to use a different register.
479 unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
480 MI, Spills, MaybeDeadStores,
481 Rejected, RegKills, KillOps, VRM);
482
483 MachineBasicBlock::iterator MII = MI;
484 if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
485 ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
486 } else {
487 TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
488 NewOp.StackSlotOrReMat, AliasRC);
489 MachineInstr *LoadMI = prior(MII);
490 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
491 // Any stores to this stack slot are not dead anymore.
492 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
493 ++NumLoads;
494 }
495 Spills.ClobberPhysReg(NewPhysReg);
496 Spills.ClobberPhysReg(NewOp.PhysRegReused);
497
498 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
499 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
500 MI->getOperand(NewOp.Operand).setReg(RReg);
501
502 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
503 --MII;
504 UpdateKills(*MII, RegKills, KillOps, TRI);
505 DOUT << '\t' << *MII;
506
507 DOUT << "Reuse undone!\n";
508 --NumReused;
509
510 // Finally, PhysReg is now available, go ahead and use it.
511 return PhysReg;
512 }
513 }
514 }
515 return PhysReg;
516}
517
518// ***************************** //
519// Local Spiller Implementation //
520// ***************************** //
521
522bool LocalSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
523 RegInfo = &MF.getRegInfo();
524 TRI = MF.getTarget().getRegisterInfo();
525 TII = MF.getTarget().getInstrInfo();
526 DOUT << "\n**** Local spiller rewriting function '"
527 << MF.getFunction()->getName() << "':\n";
528 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
529 " ****\n";
530 DEBUG(MF.dump());
531
532 // Spills - Keep track of which spilled values are available in physregs
533 // so that we can choose to reuse the physregs instead of emitting
534 // reloads. This is usually refreshed per basic block.
535 AvailableSpills Spills(TRI, TII);
536
537 // Keep track of kill information.
538 BitVector RegKills(TRI->getNumRegs());
539 std::vector<MachineOperand*> KillOps;
540 KillOps.resize(TRI->getNumRegs(), NULL);
541
542 // SingleEntrySuccs - Successor blocks which have a single predecessor.
543 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
544 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
545
546 // Traverse the basic blocks depth first.
547 MachineBasicBlock *Entry = MF.begin();
548 SmallPtrSet<MachineBasicBlock*,16> Visited;
549 for (df_ext_iterator<MachineBasicBlock*,
550 SmallPtrSet<MachineBasicBlock*,16> >
551 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
552 DFI != E; ++DFI) {
553 MachineBasicBlock *MBB = *DFI;
554 if (!EarlyVisited.count(MBB))
555 RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps);
556
557 // If this MBB is the only predecessor of a successor. Keep the
558 // availability information and visit it next.
559 do {
560 // Keep visiting single predecessor successor as long as possible.
561 SinglePredSuccs.clear();
562 findSinglePredSuccessor(MBB, SinglePredSuccs);
563 if (SinglePredSuccs.empty())
564 MBB = 0;
565 else {
566 // FIXME: More than one successors, each of which has MBB has
567 // the only predecessor.
568 MBB = SinglePredSuccs[0];
569 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
570 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
571 RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps);
572 }
573 }
574 } while (MBB);
575
576 // Clear the availability info.
577 Spills.clear();
578 }
579
580 DOUT << "**** Post Machine Instrs ****\n";
581 DEBUG(MF.dump());
582
583 // Mark unused spill slots.
584 MachineFrameInfo *MFI = MF.getFrameInfo();
585 int SS = VRM.getLowSpillSlot();
586 if (SS != VirtRegMap::NO_STACK_SLOT)
587 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
588 if (!VRM.isSpillSlotUsed(SS)) {
589 MFI->RemoveStackObject(SS);
590 ++NumDSS;
591 }
592
593 return true;
594}
595
596
597/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
598/// instruction. e.g.
599/// xorl %edi, %eax
600/// movl %eax, -32(%ebp)
601/// movl -36(%ebp), %eax
602/// orl %eax, -32(%ebp)
603/// ==>
604/// xorl %edi, %eax
605/// orl -36(%ebp), %eax
606/// mov %eax, -32(%ebp)
607/// This enables unfolding optimization for a subsequent instruction which will
608/// also eliminate the newly introduced store instruction.
609bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
610 MachineBasicBlock::iterator &MII,
611 std::vector<MachineInstr*> &MaybeDeadStores,
612 AvailableSpills &Spills,
613 BitVector &RegKills,
614 std::vector<MachineOperand*> &KillOps,
615 VirtRegMap &VRM) {
616 MachineFunction &MF = *MBB.getParent();
617 MachineInstr &MI = *MII;
618 unsigned UnfoldedOpc = 0;
619 unsigned UnfoldPR = 0;
620 unsigned UnfoldVR = 0;
621 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
622 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
623 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
624 // Only transform a MI that folds a single register.
625 if (UnfoldedOpc)
626 return false;
627 UnfoldVR = I->second.first;
628 VirtRegMap::ModRef MR = I->second.second;
629 // MI2VirtMap be can updated which invalidate the iterator.
630 // Increment the iterator first.
631 ++I;
632 if (VRM.isAssignedReg(UnfoldVR))
633 continue;
634 // If this reference is not a use, any previous store is now dead.
635 // Otherwise, the store to this stack slot is not dead anymore.
636 FoldedSS = VRM.getStackSlot(UnfoldVR);
637 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
638 if (DeadStore && (MR & VirtRegMap::isModRef)) {
639 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
640 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
641 continue;
642 UnfoldPR = PhysReg;
643 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
644 false, true);
645 }
646 }
647
648 if (!UnfoldedOpc)
649 return false;
650
651 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
652 MachineOperand &MO = MI.getOperand(i);
653 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
654 continue;
655 unsigned VirtReg = MO.getReg();
656 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
657 continue;
658 if (VRM.isAssignedReg(VirtReg)) {
659 unsigned PhysReg = VRM.getPhys(VirtReg);
660 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
661 return false;
662 } else if (VRM.isReMaterialized(VirtReg))
663 continue;
664 int SS = VRM.getStackSlot(VirtReg);
665 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
666 if (PhysReg) {
667 if (TRI->regsOverlap(PhysReg, UnfoldPR))
668 return false;
669 continue;
670 }
671 if (VRM.hasPhys(VirtReg)) {
672 PhysReg = VRM.getPhys(VirtReg);
673 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
674 continue;
675 }
676
677 // Ok, we'll need to reload the value into a register which makes
678 // it impossible to perform the store unfolding optimization later.
679 // Let's see if it is possible to fold the load if the store is
680 // unfolded. This allows us to perform the store unfolding
681 // optimization.
682 SmallVector<MachineInstr*, 4> NewMIs;
683 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
684 assert(NewMIs.size() == 1);
685 MachineInstr *NewMI = NewMIs.back();
686 NewMIs.clear();
687 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
688 assert(Idx != -1);
689 SmallVector<unsigned, 1> Ops;
690 Ops.push_back(Idx);
691 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
692 if (FoldedMI) {
693 VRM.addSpillSlotUse(SS, FoldedMI);
694 if (!VRM.hasPhys(UnfoldVR))
695 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
696 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
697 MII = MBB.insert(MII, FoldedMI);
698 InvalidateKills(MI, RegKills, KillOps);
699 VRM.RemoveMachineInstrFromMaps(&MI);
700 MBB.erase(&MI);
701 MF.DeleteMachineInstr(NewMI);
702 return true;
703 }
704 MF.DeleteMachineInstr(NewMI);
705 }
706 }
707 return false;
708}
709
710/// CommuteToFoldReload -
711/// Look for
712/// r1 = load fi#1
713/// r1 = op r1, r2<kill>
714/// store r1, fi#1
715///
716/// If op is commutable and r2 is killed, then we can xform these to
717/// r2 = op r2, fi#1
718/// store r2, fi#1
719bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
720 MachineBasicBlock::iterator &MII,
721 unsigned VirtReg, unsigned SrcReg, int SS,
722 AvailableSpills &Spills,
723 BitVector &RegKills,
724 std::vector<MachineOperand*> &KillOps,
725 const TargetRegisterInfo *TRI,
726 VirtRegMap &VRM) {
727 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
728 return false;
729
730 MachineFunction &MF = *MBB.getParent();
731 MachineInstr &MI = *MII;
732 MachineBasicBlock::iterator DefMII = prior(MII);
733 MachineInstr *DefMI = DefMII;
734 const TargetInstrDesc &TID = DefMI->getDesc();
735 unsigned NewDstIdx;
736 if (DefMII != MBB.begin() &&
737 TID.isCommutable() &&
738 TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
739 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
740 unsigned NewReg = NewDstMO.getReg();
741 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
742 return false;
743 MachineInstr *ReloadMI = prior(DefMII);
744 int FrameIdx;
745 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
746 if (DestReg != SrcReg || FrameIdx != SS)
747 return false;
748 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
749 if (UseIdx == -1)
750 return false;
751 int DefIdx = TID.getOperandConstraint(UseIdx, TOI::TIED_TO);
752 if (DefIdx == -1)
753 return false;
754 assert(DefMI->getOperand(DefIdx).isReg() &&
755 DefMI->getOperand(DefIdx).getReg() == SrcReg);
756
757 // Now commute def instruction.
758 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
759 if (!CommutedMI)
760 return false;
761 SmallVector<unsigned, 1> Ops;
762 Ops.push_back(NewDstIdx);
763 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
764 // Not needed since foldMemoryOperand returns new MI.
765 MF.DeleteMachineInstr(CommutedMI);
766 if (!FoldedMI)
767 return false;
768
769 VRM.addSpillSlotUse(SS, FoldedMI);
770 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
771 // Insert new def MI and spill MI.
772 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
773 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
774 MII = prior(MII);
775 MachineInstr *StoreMI = MII;
776 VRM.addSpillSlotUse(SS, StoreMI);
777 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
778 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
779
780 // Delete all 3 old instructions.
781 InvalidateKills(*ReloadMI, RegKills, KillOps);
782 VRM.RemoveMachineInstrFromMaps(ReloadMI);
783 MBB.erase(ReloadMI);
784 InvalidateKills(*DefMI, RegKills, KillOps);
785 VRM.RemoveMachineInstrFromMaps(DefMI);
786 MBB.erase(DefMI);
787 InvalidateKills(MI, RegKills, KillOps);
788 VRM.RemoveMachineInstrFromMaps(&MI);
789 MBB.erase(&MI);
790
791 // If NewReg was previously holding value of some SS, it's now clobbered.
792 // This has to be done now because it's a physical register. When this
793 // instruction is re-visited, it's ignored.
794 Spills.ClobberPhysReg(NewReg);
795
796 ++NumCommutes;
797 return true;
798 }
799
800 return false;
801}
802
803/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
804/// the last store to the same slot is now dead. If so, remove the last store.
805void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
806 MachineBasicBlock::iterator &MII,
807 int Idx, unsigned PhysReg, int StackSlot,
808 const TargetRegisterClass *RC,
809 bool isAvailable, MachineInstr *&LastStore,
810 AvailableSpills &Spills,
811 SmallSet<MachineInstr*, 4> &ReMatDefs,
812 BitVector &RegKills,
813 std::vector<MachineOperand*> &KillOps,
814 VirtRegMap &VRM) {
815 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
816 MachineInstr *StoreMI = next(MII);
817 VRM.addSpillSlotUse(StackSlot, StoreMI);
818 DOUT << "Store:\t" << *StoreMI;
819
820 // If there is a dead store to this stack slot, nuke it now.
821 if (LastStore) {
822 DOUT << "Removed dead store:\t" << *LastStore;
823 ++NumDSE;
824 SmallVector<unsigned, 2> KillRegs;
825 InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
826 MachineBasicBlock::iterator PrevMII = LastStore;
827 bool CheckDef = PrevMII != MBB.begin();
828 if (CheckDef)
829 --PrevMII;
830 VRM.RemoveMachineInstrFromMaps(LastStore);
831 MBB.erase(LastStore);
832 if (CheckDef) {
833 // Look at defs of killed registers on the store. Mark the defs
834 // as dead since the store has been deleted and they aren't
835 // being reused.
836 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
837 bool HasOtherDef = false;
838 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
839 MachineInstr *DeadDef = PrevMII;
840 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
841 // FIXME: This assumes a remat def does not have side
842 // effects.
843 VRM.RemoveMachineInstrFromMaps(DeadDef);
844 MBB.erase(DeadDef);
845 ++NumDRM;
846 }
847 }
848 }
849 }
850 }
851
852 LastStore = next(MII);
853
854 // If the stack slot value was previously available in some other
855 // register, change it now. Otherwise, make the register available,
856 // in PhysReg.
857 Spills.ModifyStackSlotOrReMat(StackSlot);
858 Spills.ClobberPhysReg(PhysReg);
859 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
860 ++NumStores;
861}
862
863/// TransferDeadness - A identity copy definition is dead and it's being
864/// removed. Find the last def or use and mark it as dead / kill.
865void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
866 unsigned Reg, BitVector &RegKills,
867 std::vector<MachineOperand*> &KillOps) {
868 int LastUDDist = -1;
869 MachineInstr *LastUDMI = NULL;
870 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
871 RE = RegInfo->reg_end(); RI != RE; ++RI) {
872 MachineInstr *UDMI = &*RI;
873 if (UDMI->getParent() != MBB)
874 continue;
875 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
876 if (DI == DistanceMap.end() || DI->second > CurDist)
877 continue;
878 if ((int)DI->second < LastUDDist)
879 continue;
880 LastUDDist = DI->second;
881 LastUDMI = UDMI;
882 }
883
884 if (LastUDMI) {
885 const TargetInstrDesc &TID = LastUDMI->getDesc();
886 MachineOperand *LastUD = NULL;
887 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
888 MachineOperand &MO = LastUDMI->getOperand(i);
889 if (!MO.isReg() || MO.getReg() != Reg)
890 continue;
891 if (!LastUD || (LastUD->isUse() && MO.isDef()))
892 LastUD = &MO;
893 if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1)
894 return;
895 }
896 if (LastUD->isDef())
897 LastUD->setIsDead();
898 else {
899 LastUD->setIsKill();
900 RegKills.set(Reg);
901 KillOps[Reg] = LastUD;
902 }
903 }
904}
905
906/// rewriteMBB - Keep track of which spills are available even after the
907/// register allocator is done with them. If possible, avid reloading vregs.
908void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
909 AvailableSpills &Spills, BitVector &RegKills,
910 std::vector<MachineOperand*> &KillOps) {
911 DOUT << "\n**** Local spiller rewriting MBB '"
912 << MBB.getBasicBlock()->getName() << ":\n";
913
914 MachineFunction &MF = *MBB.getParent();
915
916 // MaybeDeadStores - When we need to write a value back into a stack slot,
917 // keep track of the inserted store. If the stack slot value is never read
918 // (because the value was used from some available register, for example), and
919 // subsequently stored to, the original store is dead. This map keeps track
920 // of inserted stores that are not used. If we see a subsequent store to the
921 // same stack slot, the original store is deleted.
922 std::vector<MachineInstr*> MaybeDeadStores;
923 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
924
925 // ReMatDefs - These are rematerializable def MIs which are not deleted.
926 SmallSet<MachineInstr*, 4> ReMatDefs;
927
928 // Clear kill info.
929 SmallSet<unsigned, 2> KilledMIRegs;
930 RegKills.reset();
931 KillOps.clear();
932 KillOps.resize(TRI->getNumRegs(), NULL);
933
934 unsigned Dist = 0;
935 DistanceMap.clear();
936 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
937 MII != E; ) {
938 MachineBasicBlock::iterator NextMII = MII; ++NextMII;
939
940 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
941 bool Erased = false;
942 bool BackTracked = false;
943 if (PrepForUnfoldOpti(MBB, MII,
944 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
945 NextMII = next(MII);
946
947 MachineInstr &MI = *MII;
948 const TargetInstrDesc &TID = MI.getDesc();
949
950 if (VRM.hasEmergencySpills(&MI)) {
951 // Spill physical register(s) in the rare case the allocator has run out
952 // of registers to allocate.
953 SmallSet<int, 4> UsedSS;
954 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
955 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
956 unsigned PhysReg = EmSpills[i];
957 const TargetRegisterClass *RC =
958 TRI->getPhysicalRegisterRegClass(PhysReg);
959 assert(RC && "Unable to determine register class!");
960 int SS = VRM.getEmergencySpillSlot(RC);
961 if (UsedSS.count(SS))
962 assert(0 && "Need to spill more than one physical registers!");
963 UsedSS.insert(SS);
964 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
965 MachineInstr *StoreMI = prior(MII);
966 VRM.addSpillSlotUse(SS, StoreMI);
967 TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
968 MachineInstr *LoadMI = next(MII);
969 VRM.addSpillSlotUse(SS, LoadMI);
970 ++NumPSpills;
971 }
972 NextMII = next(MII);
973 }
974
975 // Insert restores here if asked to.
976 if (VRM.isRestorePt(&MI)) {
977 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
978 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
979 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
980 if (!VRM.getPreSplitReg(VirtReg))
981 continue; // Split interval spilled again.
982 unsigned Phys = VRM.getPhys(VirtReg);
983 RegInfo->setPhysRegUsed(Phys);
984
985 // Check if the value being restored if available. If so, it must be
986 // from a predecessor BB that fallthrough into this BB. We do not
987 // expect:
988 // BB1:
989 // r1 = load fi#1
990 // ...
991 // = r1<kill>
992 // ... # r1 not clobbered
993 // ...
994 // = load fi#1
995 bool DoReMat = VRM.isReMaterialized(VirtReg);
996 int SSorRMId = DoReMat
997 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
998 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
999 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1000 if (InReg == Phys) {
1001 // If the value is already available in the expected register, save
1002 // a reload / remat.
1003 if (SSorRMId)
1004 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1005 else
1006 DOUT << "Reusing SS#" << SSorRMId;
1007 DOUT << " from physreg "
1008 << TRI->getName(InReg) << " for vreg"
1009 << VirtReg <<" instead of reloading into physreg "
1010 << TRI->getName(Phys) << "\n";
1011 ++NumOmitted;
1012 continue;
1013 } else if (InReg && InReg != Phys) {
1014 if (SSorRMId)
1015 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1016 else
1017 DOUT << "Reusing SS#" << SSorRMId;
1018 DOUT << " from physreg "
1019 << TRI->getName(InReg) << " for vreg"
1020 << VirtReg <<" by copying it into physreg "
1021 << TRI->getName(Phys) << "\n";
1022
1023 // If the reloaded / remat value is available in another register,
1024 // copy it to the desired register.
1025 TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
1026
1027 // This invalidates Phys.
1028 Spills.ClobberPhysReg(Phys);
1029 // Remember it's available.
1030 Spills.addAvailable(SSorRMId, Phys);
1031
1032 // Mark is killed.
1033 MachineInstr *CopyMI = prior(MII);
1034 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1035 KillOpnd->setIsKill();
1036 UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1037
1038 DOUT << '\t' << *CopyMI;
1039 ++NumCopified;
1040 continue;
1041 }
1042
1043 if (VRM.isReMaterialized(VirtReg)) {
1044 ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1045 } else {
1046 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1047 TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
1048 MachineInstr *LoadMI = prior(MII);
1049 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1050 ++NumLoads;
1051 }
1052
1053 // This invalidates Phys.
1054 Spills.ClobberPhysReg(Phys);
1055 // Remember it's available.
1056 Spills.addAvailable(SSorRMId, Phys);
1057
1058 UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1059 DOUT << '\t' << *prior(MII);
1060 }
1061 }
1062
1063 // Insert spills here if asked to.
1064 if (VRM.isSpillPt(&MI)) {
1065 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1066 VRM.getSpillPtSpills(&MI);
1067 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1068 unsigned VirtReg = SpillRegs[i].first;
1069 bool isKill = SpillRegs[i].second;
1070 if (!VRM.getPreSplitReg(VirtReg))
1071 continue; // Split interval spilled again.
1072 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1073 unsigned Phys = VRM.getPhys(VirtReg);
1074 int StackSlot = VRM.getStackSlot(VirtReg);
1075 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1076 MachineInstr *StoreMI = next(MII);
1077 VRM.addSpillSlotUse(StackSlot, StoreMI);
1078 DOUT << "Store:\t" << *StoreMI;
1079 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1080 }
1081 NextMII = next(MII);
1082 }
1083
1084 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1085 /// reuse.
1086 ReuseInfo ReusedOperands(MI, TRI);
1087 SmallVector<unsigned, 4> VirtUseOps;
1088 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1089 MachineOperand &MO = MI.getOperand(i);
1090 if (!MO.isReg() || MO.getReg() == 0)
1091 continue; // Ignore non-register operands.
1092
1093 unsigned VirtReg = MO.getReg();
1094 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1095 // Ignore physregs for spilling, but remember that it is used by this
1096 // function.
1097 RegInfo->setPhysRegUsed(VirtReg);
1098 continue;
1099 }
1100
1101 // We want to process implicit virtual register uses first.
1102 if (MO.isImplicit())
1103 // If the virtual register is implicitly defined, emit a implicit_def
1104 // before so scavenger knows it's "defined".
1105 VirtUseOps.insert(VirtUseOps.begin(), i);
1106 else
1107 VirtUseOps.push_back(i);
1108 }
1109
1110 // Process all of the spilled uses and all non spilled reg references.
1111 SmallVector<int, 2> PotentialDeadStoreSlots;
1112 KilledMIRegs.clear();
1113 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1114 unsigned i = VirtUseOps[j];
1115 MachineOperand &MO = MI.getOperand(i);
1116 unsigned VirtReg = MO.getReg();
1117 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1118 "Not a virtual register?");
1119
1120 unsigned SubIdx = MO.getSubReg();
1121 if (VRM.isAssignedReg(VirtReg)) {
1122 // This virtual register was assigned a physreg!
1123 unsigned Phys = VRM.getPhys(VirtReg);
1124 RegInfo->setPhysRegUsed(Phys);
1125 if (MO.isDef())
1126 ReusedOperands.markClobbered(Phys);
1127 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1128 MI.getOperand(i).setReg(RReg);
1129 if (VRM.isImplicitlyDefined(VirtReg))
1130 BuildMI(MBB, &MI, MI.getDebugLoc(),
1131 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1132 continue;
1133 }
1134
1135 // This virtual register is now known to be a spilled value.
1136 if (!MO.isUse())
1137 continue; // Handle defs in the loop below (handle use&def here though)
1138
1139 bool DoReMat = VRM.isReMaterialized(VirtReg);
1140 int SSorRMId = DoReMat
1141 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1142 int ReuseSlot = SSorRMId;
1143
1144 // Check to see if this stack slot is available.
1145 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1146
1147 // If this is a sub-register use, make sure the reuse register is in the
1148 // right register class. For example, for x86 not all of the 32-bit
1149 // registers have accessible sub-registers.
1150 // Similarly so for EXTRACT_SUBREG. Consider this:
1151 // EDI = op
1152 // MOV32_mr fi#1, EDI
1153 // ...
1154 // = EXTRACT_SUBREG fi#1
1155 // fi#1 is available in EDI, but it cannot be reused because it's not in
1156 // the right register file.
1157 if (PhysReg &&
1158 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1159 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1160 if (!RC->contains(PhysReg))
1161 PhysReg = 0;
1162 }
1163
1164 if (PhysReg) {
1165 // This spilled operand might be part of a two-address operand. If this
1166 // is the case, then changing it will necessarily require changing the
1167 // def part of the instruction as well. However, in some cases, we
1168 // aren't allowed to modify the reused register. If none of these cases
1169 // apply, reuse it.
1170 bool CanReuse = true;
1171 int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
1172 if (ti != -1) {
1173 // Okay, we have a two address operand. We can reuse this physreg as
1174 // long as we are allowed to clobber the value and there isn't an
1175 // earlier def that has already clobbered the physreg.
Evan Chenge47b0082009-03-17 01:23:09 +00001176 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1177 Spills.canClobberPhysReg(PhysReg);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001178 }
1179
1180 if (CanReuse) {
1181 // If this stack slot value is already available, reuse it!
1182 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1183 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1184 else
1185 DOUT << "Reusing SS#" << ReuseSlot;
1186 DOUT << " from physreg "
1187 << TRI->getName(PhysReg) << " for vreg"
1188 << VirtReg <<" instead of reloading into physreg "
1189 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1190 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1191 MI.getOperand(i).setReg(RReg);
1192
1193 // The only technical detail we have is that we don't know that
1194 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1195 // later in the instruction. In particular, consider 'op V1, V2'.
1196 // If V1 is available in physreg R0, we would choose to reuse it
1197 // here, instead of reloading it into the register the allocator
1198 // indicated (say R1). However, V2 might have to be reloaded
1199 // later, and it might indicate that it needs to live in R0. When
1200 // this occurs, we need to have information available that
1201 // indicates it is safe to use R1 for the reload instead of R0.
1202 //
1203 // To further complicate matters, we might conflict with an alias,
1204 // or R0 and R1 might not be compatible with each other. In this
1205 // case, we actually insert a reload for V1 in R1, ensuring that
1206 // we can get at R0 or its alias.
1207 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1208 VRM.getPhys(VirtReg), VirtReg);
1209 if (ti != -1)
1210 // Only mark it clobbered if this is a use&def operand.
1211 ReusedOperands.markClobbered(PhysReg);
1212 ++NumReused;
1213
1214 if (MI.getOperand(i).isKill() &&
1215 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1216
1217 // The store of this spilled value is potentially dead, but we
1218 // won't know for certain until we've confirmed that the re-use
1219 // above is valid, which means waiting until the other operands
1220 // are processed. For now we just track the spill slot, we'll
1221 // remove it after the other operands are processed if valid.
1222
1223 PotentialDeadStoreSlots.push_back(ReuseSlot);
1224 }
1225
1226 // Mark is isKill if it's there no other uses of the same virtual
1227 // register and it's not a two-address operand. IsKill will be
1228 // unset if reg is reused.
1229 if (ti == -1 && KilledMIRegs.count(VirtReg) == 0) {
1230 MI.getOperand(i).setIsKill();
1231 KilledMIRegs.insert(VirtReg);
1232 }
1233
1234 continue;
1235 } // CanReuse
1236
1237 // Otherwise we have a situation where we have a two-address instruction
1238 // whose mod/ref operand needs to be reloaded. This reload is already
1239 // available in some register "PhysReg", but if we used PhysReg as the
1240 // operand to our 2-addr instruction, the instruction would modify
1241 // PhysReg. This isn't cool if something later uses PhysReg and expects
1242 // to get its initial value.
1243 //
1244 // To avoid this problem, and to avoid doing a load right after a store,
1245 // we emit a copy from PhysReg into the designated register for this
1246 // operand.
1247 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1248 assert(DesignatedReg && "Must map virtreg to physreg!");
1249
1250 // Note that, if we reused a register for a previous operand, the
1251 // register we want to reload into might not actually be
1252 // available. If this occurs, use the register indicated by the
1253 // reuser.
1254 if (ReusedOperands.hasReuses())
1255 DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1256 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1257
1258 // If the mapped designated register is actually the physreg we have
1259 // incoming, we don't need to inserted a dead copy.
1260 if (DesignatedReg == PhysReg) {
1261 // If this stack slot value is already available, reuse it!
1262 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1263 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1264 else
1265 DOUT << "Reusing SS#" << ReuseSlot;
1266 DOUT << " from physreg " << TRI->getName(PhysReg)
1267 << " for vreg" << VirtReg
1268 << " instead of reloading into same physreg.\n";
1269 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1270 MI.getOperand(i).setReg(RReg);
1271 ReusedOperands.markClobbered(RReg);
1272 ++NumReused;
1273 continue;
1274 }
1275
1276 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1277 RegInfo->setPhysRegUsed(DesignatedReg);
1278 ReusedOperands.markClobbered(DesignatedReg);
1279 TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1280
1281 MachineInstr *CopyMI = prior(MII);
1282 UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1283
1284 // This invalidates DesignatedReg.
1285 Spills.ClobberPhysReg(DesignatedReg);
1286
1287 Spills.addAvailable(ReuseSlot, DesignatedReg);
1288 unsigned RReg =
1289 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1290 MI.getOperand(i).setReg(RReg);
1291 DOUT << '\t' << *prior(MII);
1292 ++NumReused;
1293 continue;
1294 } // if (PhysReg)
1295
1296 // Otherwise, reload it and remember that we have it.
1297 PhysReg = VRM.getPhys(VirtReg);
1298 assert(PhysReg && "Must map virtreg to physreg!");
1299
1300 // Note that, if we reused a register for a previous operand, the
1301 // register we want to reload into might not actually be
1302 // available. If this occurs, use the register indicated by the
1303 // reuser.
1304 if (ReusedOperands.hasReuses())
1305 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1306 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1307
1308 RegInfo->setPhysRegUsed(PhysReg);
1309 ReusedOperands.markClobbered(PhysReg);
1310 if (DoReMat) {
1311 ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1312 } else {
1313 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1314 TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1315 MachineInstr *LoadMI = prior(MII);
1316 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1317 ++NumLoads;
1318 }
1319 // This invalidates PhysReg.
1320 Spills.ClobberPhysReg(PhysReg);
1321
1322 // Any stores to this stack slot are not dead anymore.
1323 if (!DoReMat)
1324 MaybeDeadStores[SSorRMId] = NULL;
1325 Spills.addAvailable(SSorRMId, PhysReg);
1326 // Assumes this is the last use. IsKill will be unset if reg is reused
1327 // unless it's a two-address operand.
1328 if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1 &&
1329 KilledMIRegs.count(VirtReg) == 0) {
1330 MI.getOperand(i).setIsKill();
1331 KilledMIRegs.insert(VirtReg);
1332 }
1333 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1334 MI.getOperand(i).setReg(RReg);
1335 UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1336 DOUT << '\t' << *prior(MII);
1337 }
1338
1339 // Ok - now we can remove stores that have been confirmed dead.
1340 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
1341 // This was the last use and the spilled value is still available
1342 // for reuse. That means the spill was unnecessary!
1343 int PDSSlot = PotentialDeadStoreSlots[j];
1344 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
1345 if (DeadStore) {
1346 DOUT << "Removed dead store:\t" << *DeadStore;
1347 InvalidateKills(*DeadStore, RegKills, KillOps);
1348 VRM.RemoveMachineInstrFromMaps(DeadStore);
1349 MBB.erase(DeadStore);
1350 MaybeDeadStores[PDSSlot] = NULL;
1351 ++NumDSE;
1352 }
1353 }
1354
1355
1356 DOUT << '\t' << MI;
1357
1358
1359 // If we have folded references to memory operands, make sure we clear all
1360 // physical registers that may contain the value of the spilled virtual
1361 // register
1362 SmallSet<int, 2> FoldedSS;
1363 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1364 unsigned VirtReg = I->second.first;
1365 VirtRegMap::ModRef MR = I->second.second;
1366 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
1367
1368 // MI2VirtMap be can updated which invalidate the iterator.
1369 // Increment the iterator first.
1370 ++I;
1371 int SS = VRM.getStackSlot(VirtReg);
1372 if (SS == VirtRegMap::NO_STACK_SLOT)
1373 continue;
1374 FoldedSS.insert(SS);
1375 DOUT << " - StackSlot: " << SS << "\n";
1376
1377 // If this folded instruction is just a use, check to see if it's a
1378 // straight load from the virt reg slot.
1379 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1380 int FrameIdx;
1381 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1382 if (DestReg && FrameIdx == SS) {
1383 // If this spill slot is available, turn it into a copy (or nothing)
1384 // instead of leaving it as a load!
1385 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1386 DOUT << "Promoted Load To Copy: " << MI;
1387 if (DestReg != InReg) {
1388 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1389 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1390 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1391 unsigned SubIdx = DefMO->getSubReg();
1392 // Revisit the copy so we make sure to notice the effects of the
1393 // operation on the destreg (either needing to RA it if it's
1394 // virtual or needing to clobber any values if it's physical).
1395 NextMII = &MI;
1396 --NextMII; // backtrack to the copy.
1397 // Propagate the sub-register index over.
1398 if (SubIdx) {
1399 DefMO = NextMII->findRegisterDefOperand(DestReg);
1400 DefMO->setSubReg(SubIdx);
1401 }
1402
1403 // Mark is killed.
1404 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
1405 KillOpnd->setIsKill();
1406
1407 BackTracked = true;
1408 } else {
1409 DOUT << "Removing now-noop copy: " << MI;
1410 // Unset last kill since it's being reused.
1411 InvalidateKill(InReg, RegKills, KillOps);
Evan Chenge47b0082009-03-17 01:23:09 +00001412 Spills.disallowClobberPhysReg(InReg);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001413 }
1414
1415 InvalidateKills(MI, RegKills, KillOps);
1416 VRM.RemoveMachineInstrFromMaps(&MI);
1417 MBB.erase(&MI);
1418 Erased = true;
1419 goto ProcessNextInst;
1420 }
1421 } else {
1422 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1423 SmallVector<MachineInstr*, 4> NewMIs;
1424 if (PhysReg &&
1425 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1426 MBB.insert(MII, NewMIs[0]);
1427 InvalidateKills(MI, RegKills, KillOps);
1428 VRM.RemoveMachineInstrFromMaps(&MI);
1429 MBB.erase(&MI);
1430 Erased = true;
1431 --NextMII; // backtrack to the unfolded instruction.
1432 BackTracked = true;
1433 goto ProcessNextInst;
1434 }
1435 }
1436 }
1437
1438 // If this reference is not a use, any previous store is now dead.
1439 // Otherwise, the store to this stack slot is not dead anymore.
1440 MachineInstr* DeadStore = MaybeDeadStores[SS];
1441 if (DeadStore) {
1442 bool isDead = !(MR & VirtRegMap::isRef);
1443 MachineInstr *NewStore = NULL;
1444 if (MR & VirtRegMap::isModRef) {
1445 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1446 SmallVector<MachineInstr*, 4> NewMIs;
1447 // We can reuse this physreg as long as we are allowed to clobber
1448 // the value and there isn't an earlier def that has already clobbered
1449 // the physreg.
1450 if (PhysReg &&
Evan Chenge47b0082009-03-17 01:23:09 +00001451 !ReusedOperands.isClobbered(PhysReg) &&
1452 Spills.canClobberPhysReg(PhysReg) &&
Owen Anderson1ed5b712009-03-11 22:31:21 +00001453 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1454 MachineOperand *KillOpnd =
1455 DeadStore->findRegisterUseOperand(PhysReg, true);
1456 // Note, if the store is storing a sub-register, it's possible the
1457 // super-register is needed below.
1458 if (KillOpnd && !KillOpnd->getSubReg() &&
1459 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
Evan Chenge47b0082009-03-17 01:23:09 +00001460 MBB.insert(MII, NewMIs[0]);
Owen Anderson1ed5b712009-03-11 22:31:21 +00001461 NewStore = NewMIs[1];
1462 MBB.insert(MII, NewStore);
1463 VRM.addSpillSlotUse(SS, NewStore);
1464 InvalidateKills(MI, RegKills, KillOps);
1465 VRM.RemoveMachineInstrFromMaps(&MI);
1466 MBB.erase(&MI);
1467 Erased = true;
1468 --NextMII;
1469 --NextMII; // backtrack to the unfolded instruction.
1470 BackTracked = true;
1471 isDead = true;
Evan Chenge47b0082009-03-17 01:23:09 +00001472 ++NumSUnfold;
Owen Anderson1ed5b712009-03-11 22:31:21 +00001473 }
1474 }
1475 }
1476
1477 if (isDead) { // Previous store is dead.
1478 // If we get here, the store is dead, nuke it now.
1479 DOUT << "Removed dead store:\t" << *DeadStore;
1480 InvalidateKills(*DeadStore, RegKills, KillOps);
1481 VRM.RemoveMachineInstrFromMaps(DeadStore);
1482 MBB.erase(DeadStore);
1483 if (!NewStore)
1484 ++NumDSE;
1485 }
1486
1487 MaybeDeadStores[SS] = NULL;
1488 if (NewStore) {
1489 // Treat this store as a spill merged into a copy. That makes the
1490 // stack slot value available.
1491 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1492 goto ProcessNextInst;
1493 }
1494 }
1495
1496 // If the spill slot value is available, and this is a new definition of
1497 // the value, the value is not available anymore.
1498 if (MR & VirtRegMap::isMod) {
1499 // Notice that the value in this stack slot has been modified.
1500 Spills.ModifyStackSlotOrReMat(SS);
1501
1502 // If this is *just* a mod of the value, check to see if this is just a
1503 // store to the spill slot (i.e. the spill got merged into the copy). If
1504 // so, realize that the vreg is available now, and add the store to the
1505 // MaybeDeadStore info.
1506 int StackSlot;
1507 if (!(MR & VirtRegMap::isRef)) {
1508 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1509 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1510 "Src hasn't been allocated yet?");
1511
1512 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
1513 Spills, RegKills, KillOps, TRI, VRM)) {
1514 NextMII = next(MII);
1515 BackTracked = true;
1516 goto ProcessNextInst;
1517 }
1518
1519 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
1520 // this as a potentially dead store in case there is a subsequent
1521 // store into the stack slot without a read from it.
1522 MaybeDeadStores[StackSlot] = &MI;
1523
1524 // If the stack slot value was previously available in some other
1525 // register, change it now. Otherwise, make the register
1526 // available in PhysReg.
Evan Chenge47b0082009-03-17 01:23:09 +00001527 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
Owen Anderson1ed5b712009-03-11 22:31:21 +00001528 }
1529 }
1530 }
1531 }
1532
1533 // Process all of the spilled defs.
1534 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1535 MachineOperand &MO = MI.getOperand(i);
1536 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
1537 continue;
1538
1539 unsigned VirtReg = MO.getReg();
1540 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1541 // Check to see if this is a noop copy. If so, eliminate the
1542 // instruction before considering the dest reg to be changed.
1543 unsigned Src, Dst, SrcSR, DstSR;
1544 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
1545 ++NumDCE;
1546 DOUT << "Removing now-noop copy: " << MI;
1547 SmallVector<unsigned, 2> KillRegs;
1548 InvalidateKills(MI, RegKills, KillOps, &KillRegs);
1549 if (MO.isDead() && !KillRegs.empty()) {
1550 // Source register or an implicit super/sub-register use is killed.
1551 assert(KillRegs[0] == Dst ||
1552 TRI->isSubRegister(KillRegs[0], Dst) ||
1553 TRI->isSuperRegister(KillRegs[0], Dst));
1554 // Last def is now dead.
1555 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
1556 }
1557 VRM.RemoveMachineInstrFromMaps(&MI);
1558 MBB.erase(&MI);
1559 Erased = true;
1560 Spills.disallowClobberPhysReg(VirtReg);
1561 goto ProcessNextInst;
1562 }
1563
1564 // If it's not a no-op copy, it clobbers the value in the destreg.
1565 Spills.ClobberPhysReg(VirtReg);
1566 ReusedOperands.markClobbered(VirtReg);
1567
1568 // Check to see if this instruction is a load from a stack slot into
1569 // a register. If so, this provides the stack slot value in the reg.
1570 int FrameIdx;
1571 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1572 assert(DestReg == VirtReg && "Unknown load situation!");
1573
1574 // If it is a folded reference, then it's not safe to clobber.
1575 bool Folded = FoldedSS.count(FrameIdx);
1576 // Otherwise, if it wasn't available, remember that it is now!
1577 Spills.addAvailable(FrameIdx, DestReg, !Folded);
1578 goto ProcessNextInst;
1579 }
1580
1581 continue;
1582 }
1583
1584 unsigned SubIdx = MO.getSubReg();
1585 bool DoReMat = VRM.isReMaterialized(VirtReg);
1586 if (DoReMat)
1587 ReMatDefs.insert(&MI);
1588
1589 // The only vregs left are stack slot definitions.
1590 int StackSlot = VRM.getStackSlot(VirtReg);
1591 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1592
1593 // If this def is part of a two-address operand, make sure to execute
1594 // the store from the correct physical register.
1595 unsigned PhysReg;
1596 int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
1597 if (TiedOp != -1) {
1598 PhysReg = MI.getOperand(TiedOp).getReg();
1599 if (SubIdx) {
1600 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1601 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1602 "Can't find corresponding super-register!");
1603 PhysReg = SuperReg;
1604 }
1605 } else {
1606 PhysReg = VRM.getPhys(VirtReg);
1607 if (ReusedOperands.isClobbered(PhysReg)) {
1608 // Another def has taken the assigned physreg. It must have been a
1609 // use&def which got it due to reuse. Undo the reuse!
1610 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1611 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1612 }
1613 }
1614
1615 assert(PhysReg && "VR not assigned a physical register?");
1616 RegInfo->setPhysRegUsed(PhysReg);
1617 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1618 ReusedOperands.markClobbered(RReg);
1619 MI.getOperand(i).setReg(RReg);
1620
1621 if (!MO.isDead()) {
1622 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1623 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1624 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1625 NextMII = next(MII);
1626
1627 // Check to see if this is a noop copy. If so, eliminate the
1628 // instruction before considering the dest reg to be changed.
1629 {
1630 unsigned Src, Dst, SrcSR, DstSR;
1631 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
1632 ++NumDCE;
1633 DOUT << "Removing now-noop copy: " << MI;
1634 InvalidateKills(MI, RegKills, KillOps);
1635 VRM.RemoveMachineInstrFromMaps(&MI);
1636 MBB.erase(&MI);
1637 Erased = true;
1638 UpdateKills(*LastStore, RegKills, KillOps, TRI);
1639 goto ProcessNextInst;
1640 }
1641 }
1642 }
1643 }
1644 ProcessNextInst:
1645 DistanceMap.insert(std::make_pair(&MI, Dist++));
1646 if (!Erased && !BackTracked) {
1647 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
1648 UpdateKills(*II, RegKills, KillOps, TRI);
1649 }
1650 MII = NextMII;
1651 }
1652
1653}
1654
1655llvm::Spiller* llvm::createSpiller() {
1656 switch (SpillerOpt) {
1657 default: assert(0 && "Unreachable!");
1658 case local:
1659 return new LocalSpiller();
1660 case simple:
1661 return new SimpleSpiller();
1662 }
Daniel Dunbarcfbf05e2009-03-14 01:53:05 +00001663}