blob: 79d6f8820c433b3cb4da88ec9d03395a4d7f9ecc [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
29 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
30 <li><a href="#datalayout">Data Layout</a></li>
31 </ol>
32 </li>
33 <li><a href="#typesystem">Type System</a>
34 <ol>
35 <li><a href="#t_primitive">Primitive Types</a>
36 <ol>
37 <li><a href="#t_classifications">Type Classifications</a></li>
38 </ol>
39 </li>
40 <li><a href="#t_derived">Derived Types</a>
41 <ol>
42 <li><a href="#t_array">Array Type</a></li>
43 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
45 <li><a href="#t_struct">Structure Type</a></li>
46 <li><a href="#t_pstruct">Packed Structure Type</a></li>
47 <li><a href="#t_vector">Vector Type</a></li>
48 <li><a href="#t_opaque">Opaque Type</a></li>
49 </ol>
50 </li>
51 </ol>
52 </li>
53 <li><a href="#constants">Constants</a>
54 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
61 </li>
62 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
67 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
71 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
73 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
75 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
76 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
77 </ol>
78 </li>
79 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
81 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
84 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
87 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
90 </ol>
91 </li>
92 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
94 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
97 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
98 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
99 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
100 </ol>
101 </li>
102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
107 </ol>
108 </li>
109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
110 <ol>
111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
117 </ol>
118 </li>
119 <li><a href="#convertops">Conversion Operations</a>
120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
133 </ol>
134 <li><a href="#otherops">Other Operations</a>
135 <ol>
136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 </ol>
145 </li>
146 <li><a href="#intrinsics">Intrinsic Functions</a>
147 <ol>
148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
153 </ol>
154 </li>
155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160 </ol>
161 </li>
162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
171 </ol>
172 </li>
173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
180 </ol>
181 </li>
182 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
183 <ol>
184 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
185 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
188 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
190 </ol>
191 </li>
192 <li><a href="#int_debugger">Debugger intrinsics</a></li>
193 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Chandler Carruthc0470a82007-07-20 19:34:37 +0000194 <li><a href="#int_atomics">Atomic Operations and Synchronization Intrinsics</a>
195 <ol>
196 <li><a href="#int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a></li>
201 </ol>
202 </li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000203 <li><a href="#int_trampoline">Trampoline Intrinsics</a>
204 <ol>
205 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
206 <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
207 </ol>
208 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000209 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000210 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000211 <li><a href="#int_var_annotation">
212 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
213 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 </li>
215 </ol>
216 </li>
217</ol>
218
219<div class="doc_author">
220 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
221 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
222</div>
223
224<!-- *********************************************************************** -->
225<div class="doc_section"> <a name="abstract">Abstract </a></div>
226<!-- *********************************************************************** -->
227
228<div class="doc_text">
229<p>This document is a reference manual for the LLVM assembly language.
230LLVM is an SSA based representation that provides type safety,
231low-level operations, flexibility, and the capability of representing
232'all' high-level languages cleanly. It is the common code
233representation used throughout all phases of the LLVM compilation
234strategy.</p>
235</div>
236
237<!-- *********************************************************************** -->
238<div class="doc_section"> <a name="introduction">Introduction</a> </div>
239<!-- *********************************************************************** -->
240
241<div class="doc_text">
242
243<p>The LLVM code representation is designed to be used in three
244different forms: as an in-memory compiler IR, as an on-disk bitcode
245representation (suitable for fast loading by a Just-In-Time compiler),
246and as a human readable assembly language representation. This allows
247LLVM to provide a powerful intermediate representation for efficient
248compiler transformations and analysis, while providing a natural means
249to debug and visualize the transformations. The three different forms
250of LLVM are all equivalent. This document describes the human readable
251representation and notation.</p>
252
253<p>The LLVM representation aims to be light-weight and low-level
254while being expressive, typed, and extensible at the same time. It
255aims to be a "universal IR" of sorts, by being at a low enough level
256that high-level ideas may be cleanly mapped to it (similar to how
257microprocessors are "universal IR's", allowing many source languages to
258be mapped to them). By providing type information, LLVM can be used as
259the target of optimizations: for example, through pointer analysis, it
260can be proven that a C automatic variable is never accessed outside of
261the current function... allowing it to be promoted to a simple SSA
262value instead of a memory location.</p>
263
264</div>
265
266<!-- _______________________________________________________________________ -->
267<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
268
269<div class="doc_text">
270
271<p>It is important to note that this document describes 'well formed'
272LLVM assembly language. There is a difference between what the parser
273accepts and what is considered 'well formed'. For example, the
274following instruction is syntactically okay, but not well formed:</p>
275
276<div class="doc_code">
277<pre>
278%x = <a href="#i_add">add</a> i32 1, %x
279</pre>
280</div>
281
282<p>...because the definition of <tt>%x</tt> does not dominate all of
283its uses. The LLVM infrastructure provides a verification pass that may
284be used to verify that an LLVM module is well formed. This pass is
285automatically run by the parser after parsing input assembly and by
286the optimizer before it outputs bitcode. The violations pointed out
287by the verifier pass indicate bugs in transformation passes or input to
288the parser.</p>
289</div>
290
Reid Spencerb043f672007-07-20 19:59:11 +0000291<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292
293<!-- *********************************************************************** -->
294<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
295<!-- *********************************************************************** -->
296
297<div class="doc_text">
298
299<p>LLVM uses three different forms of identifiers, for different
300purposes:</p>
301
302<ol>
303 <li>Named values are represented as a string of characters with a '%' prefix.
304 For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual
305 regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
306 Identifiers which require other characters in their names can be surrounded
307 with quotes. In this way, anything except a <tt>&quot;</tt> character can be used
308 in a name.</li>
309
310 <li>Unnamed values are represented as an unsigned numeric value with a '%'
311 prefix. For example, %12, %2, %44.</li>
312
313 <li>Constants, which are described in a <a href="#constants">section about
314 constants</a>, below.</li>
315</ol>
316
317<p>LLVM requires that values start with a '%' sign for two reasons: Compilers
318don't need to worry about name clashes with reserved words, and the set of
319reserved words may be expanded in the future without penalty. Additionally,
320unnamed identifiers allow a compiler to quickly come up with a temporary
321variable without having to avoid symbol table conflicts.</p>
322
323<p>Reserved words in LLVM are very similar to reserved words in other
324languages. There are keywords for different opcodes
325('<tt><a href="#i_add">add</a></tt>',
326 '<tt><a href="#i_bitcast">bitcast</a></tt>',
327 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
328href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
329and others. These reserved words cannot conflict with variable names, because
330none of them start with a '%' character.</p>
331
332<p>Here is an example of LLVM code to multiply the integer variable
333'<tt>%X</tt>' by 8:</p>
334
335<p>The easy way:</p>
336
337<div class="doc_code">
338<pre>
339%result = <a href="#i_mul">mul</a> i32 %X, 8
340</pre>
341</div>
342
343<p>After strength reduction:</p>
344
345<div class="doc_code">
346<pre>
347%result = <a href="#i_shl">shl</a> i32 %X, i8 3
348</pre>
349</div>
350
351<p>And the hard way:</p>
352
353<div class="doc_code">
354<pre>
355<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
356<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
357%result = <a href="#i_add">add</a> i32 %1, %1
358</pre>
359</div>
360
361<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
362important lexical features of LLVM:</p>
363
364<ol>
365
366 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
367 line.</li>
368
369 <li>Unnamed temporaries are created when the result of a computation is not
370 assigned to a named value.</li>
371
372 <li>Unnamed temporaries are numbered sequentially</li>
373
374</ol>
375
376<p>...and it also shows a convention that we follow in this document. When
377demonstrating instructions, we will follow an instruction with a comment that
378defines the type and name of value produced. Comments are shown in italic
379text.</p>
380
381</div>
382
383<!-- *********************************************************************** -->
384<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
385<!-- *********************************************************************** -->
386
387<!-- ======================================================================= -->
388<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
389</div>
390
391<div class="doc_text">
392
393<p>LLVM programs are composed of "Module"s, each of which is a
394translation unit of the input programs. Each module consists of
395functions, global variables, and symbol table entries. Modules may be
396combined together with the LLVM linker, which merges function (and
397global variable) definitions, resolves forward declarations, and merges
398symbol table entries. Here is an example of the "hello world" module:</p>
399
400<div class="doc_code">
401<pre><i>; Declare the string constant as a global constant...</i>
402<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
403 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
404
405<i>; External declaration of the puts function</i>
406<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
407
408<i>; Definition of main function</i>
409define i32 @main() { <i>; i32()* </i>
410 <i>; Convert [13x i8 ]* to i8 *...</i>
411 %cast210 = <a
412 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
413
414 <i>; Call puts function to write out the string to stdout...</i>
415 <a
416 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
417 <a
418 href="#i_ret">ret</a> i32 0<br>}<br>
419</pre>
420</div>
421
422<p>This example is made up of a <a href="#globalvars">global variable</a>
423named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
424function, and a <a href="#functionstructure">function definition</a>
425for "<tt>main</tt>".</p>
426
427<p>In general, a module is made up of a list of global values,
428where both functions and global variables are global values. Global values are
429represented by a pointer to a memory location (in this case, a pointer to an
430array of char, and a pointer to a function), and have one of the following <a
431href="#linkage">linkage types</a>.</p>
432
433</div>
434
435<!-- ======================================================================= -->
436<div class="doc_subsection">
437 <a name="linkage">Linkage Types</a>
438</div>
439
440<div class="doc_text">
441
442<p>
443All Global Variables and Functions have one of the following types of linkage:
444</p>
445
446<dl>
447
448 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
449
450 <dd>Global values with internal linkage are only directly accessible by
451 objects in the current module. In particular, linking code into a module with
452 an internal global value may cause the internal to be renamed as necessary to
453 avoid collisions. Because the symbol is internal to the module, all
454 references can be updated. This corresponds to the notion of the
455 '<tt>static</tt>' keyword in C.
456 </dd>
457
458 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
459
460 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
461 the same name when linkage occurs. This is typically used to implement
462 inline functions, templates, or other code which must be generated in each
463 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
464 allowed to be discarded.
465 </dd>
466
467 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
468
469 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
470 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
471 used for globals that may be emitted in multiple translation units, but that
472 are not guaranteed to be emitted into every translation unit that uses them.
473 One example of this are common globals in C, such as "<tt>int X;</tt>" at
474 global scope.
475 </dd>
476
477 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
478
479 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
480 pointer to array type. When two global variables with appending linkage are
481 linked together, the two global arrays are appended together. This is the
482 LLVM, typesafe, equivalent of having the system linker append together
483 "sections" with identical names when .o files are linked.
484 </dd>
485
486 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
487 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
488 until linked, if not linked, the symbol becomes null instead of being an
489 undefined reference.
490 </dd>
491
492 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
493
494 <dd>If none of the above identifiers are used, the global is externally
495 visible, meaning that it participates in linkage and can be used to resolve
496 external symbol references.
497 </dd>
498</dl>
499
500 <p>
501 The next two types of linkage are targeted for Microsoft Windows platform
502 only. They are designed to support importing (exporting) symbols from (to)
503 DLLs.
504 </p>
505
506 <dl>
507 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
508
509 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
510 or variable via a global pointer to a pointer that is set up by the DLL
511 exporting the symbol. On Microsoft Windows targets, the pointer name is
512 formed by combining <code>_imp__</code> and the function or variable name.
513 </dd>
514
515 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
516
517 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
518 pointer to a pointer in a DLL, so that it can be referenced with the
519 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
520 name is formed by combining <code>_imp__</code> and the function or variable
521 name.
522 </dd>
523
524</dl>
525
526<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
527variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
528variable and was linked with this one, one of the two would be renamed,
529preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
530external (i.e., lacking any linkage declarations), they are accessible
531outside of the current module.</p>
532<p>It is illegal for a function <i>declaration</i>
533to have any linkage type other than "externally visible", <tt>dllimport</tt>,
534or <tt>extern_weak</tt>.</p>
535<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
536linkages.
537</div>
538
539<!-- ======================================================================= -->
540<div class="doc_subsection">
541 <a name="callingconv">Calling Conventions</a>
542</div>
543
544<div class="doc_text">
545
546<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
547and <a href="#i_invoke">invokes</a> can all have an optional calling convention
548specified for the call. The calling convention of any pair of dynamic
549caller/callee must match, or the behavior of the program is undefined. The
550following calling conventions are supported by LLVM, and more may be added in
551the future:</p>
552
553<dl>
554 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
555
556 <dd>This calling convention (the default if no other calling convention is
557 specified) matches the target C calling conventions. This calling convention
558 supports varargs function calls and tolerates some mismatch in the declared
559 prototype and implemented declaration of the function (as does normal C).
560 </dd>
561
562 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
563
564 <dd>This calling convention attempts to make calls as fast as possible
565 (e.g. by passing things in registers). This calling convention allows the
566 target to use whatever tricks it wants to produce fast code for the target,
567 without having to conform to an externally specified ABI. Implementations of
568 this convention should allow arbitrary tail call optimization to be supported.
569 This calling convention does not support varargs and requires the prototype of
570 all callees to exactly match the prototype of the function definition.
571 </dd>
572
573 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
574
575 <dd>This calling convention attempts to make code in the caller as efficient
576 as possible under the assumption that the call is not commonly executed. As
577 such, these calls often preserve all registers so that the call does not break
578 any live ranges in the caller side. This calling convention does not support
579 varargs and requires the prototype of all callees to exactly match the
580 prototype of the function definition.
581 </dd>
582
583 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
584
585 <dd>Any calling convention may be specified by number, allowing
586 target-specific calling conventions to be used. Target specific calling
587 conventions start at 64.
588 </dd>
589</dl>
590
591<p>More calling conventions can be added/defined on an as-needed basis, to
592support pascal conventions or any other well-known target-independent
593convention.</p>
594
595</div>
596
597<!-- ======================================================================= -->
598<div class="doc_subsection">
599 <a name="visibility">Visibility Styles</a>
600</div>
601
602<div class="doc_text">
603
604<p>
605All Global Variables and Functions have one of the following visibility styles:
606</p>
607
608<dl>
609 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
610
611 <dd>On ELF, default visibility means that the declaration is visible to other
612 modules and, in shared libraries, means that the declared entity may be
613 overridden. On Darwin, default visibility means that the declaration is
614 visible to other modules. Default visibility corresponds to "external
615 linkage" in the language.
616 </dd>
617
618 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
619
620 <dd>Two declarations of an object with hidden visibility refer to the same
621 object if they are in the same shared object. Usually, hidden visibility
622 indicates that the symbol will not be placed into the dynamic symbol table,
623 so no other module (executable or shared library) can reference it
624 directly.
625 </dd>
626
627 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
628
629 <dd>On ELF, protected visibility indicates that the symbol will be placed in
630 the dynamic symbol table, but that references within the defining module will
631 bind to the local symbol. That is, the symbol cannot be overridden by another
632 module.
633 </dd>
634</dl>
635
636</div>
637
638<!-- ======================================================================= -->
639<div class="doc_subsection">
640 <a name="globalvars">Global Variables</a>
641</div>
642
643<div class="doc_text">
644
645<p>Global variables define regions of memory allocated at compilation time
646instead of run-time. Global variables may optionally be initialized, may have
647an explicit section to be placed in, and may have an optional explicit alignment
648specified. A variable may be defined as "thread_local", which means that it
649will not be shared by threads (each thread will have a separated copy of the
650variable). A variable may be defined as a global "constant," which indicates
651that the contents of the variable will <b>never</b> be modified (enabling better
652optimization, allowing the global data to be placed in the read-only section of
653an executable, etc). Note that variables that need runtime initialization
654cannot be marked "constant" as there is a store to the variable.</p>
655
656<p>
657LLVM explicitly allows <em>declarations</em> of global variables to be marked
658constant, even if the final definition of the global is not. This capability
659can be used to enable slightly better optimization of the program, but requires
660the language definition to guarantee that optimizations based on the
661'constantness' are valid for the translation units that do not include the
662definition.
663</p>
664
665<p>As SSA values, global variables define pointer values that are in
666scope (i.e. they dominate) all basic blocks in the program. Global
667variables always define a pointer to their "content" type because they
668describe a region of memory, and all memory objects in LLVM are
669accessed through pointers.</p>
670
671<p>LLVM allows an explicit section to be specified for globals. If the target
672supports it, it will emit globals to the section specified.</p>
673
674<p>An explicit alignment may be specified for a global. If not present, or if
675the alignment is set to zero, the alignment of the global is set by the target
676to whatever it feels convenient. If an explicit alignment is specified, the
677global is forced to have at least that much alignment. All alignments must be
678a power of 2.</p>
679
680<p>For example, the following defines a global with an initializer, section,
681 and alignment:</p>
682
683<div class="doc_code">
684<pre>
685@G = constant float 1.0, section "foo", align 4
686</pre>
687</div>
688
689</div>
690
691
692<!-- ======================================================================= -->
693<div class="doc_subsection">
694 <a name="functionstructure">Functions</a>
695</div>
696
697<div class="doc_text">
698
699<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
700an optional <a href="#linkage">linkage type</a>, an optional
701<a href="#visibility">visibility style</a>, an optional
702<a href="#callingconv">calling convention</a>, a return type, an optional
703<a href="#paramattrs">parameter attribute</a> for the return type, a function
704name, a (possibly empty) argument list (each with optional
705<a href="#paramattrs">parameter attributes</a>), an optional section, an
706optional alignment, an opening curly brace, a list of basic blocks, and a
707closing curly brace.
708
709LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
710optional <a href="#linkage">linkage type</a>, an optional
711<a href="#visibility">visibility style</a>, an optional
712<a href="#callingconv">calling convention</a>, a return type, an optional
713<a href="#paramattrs">parameter attribute</a> for the return type, a function
714name, a possibly empty list of arguments, and an optional alignment.</p>
715
716<p>A function definition contains a list of basic blocks, forming the CFG for
717the function. Each basic block may optionally start with a label (giving the
718basic block a symbol table entry), contains a list of instructions, and ends
719with a <a href="#terminators">terminator</a> instruction (such as a branch or
720function return).</p>
721
722<p>The first basic block in a function is special in two ways: it is immediately
723executed on entrance to the function, and it is not allowed to have predecessor
724basic blocks (i.e. there can not be any branches to the entry block of a
725function). Because the block can have no predecessors, it also cannot have any
726<a href="#i_phi">PHI nodes</a>.</p>
727
728<p>LLVM allows an explicit section to be specified for functions. If the target
729supports it, it will emit functions to the section specified.</p>
730
731<p>An explicit alignment may be specified for a function. If not present, or if
732the alignment is set to zero, the alignment of the function is set by the target
733to whatever it feels convenient. If an explicit alignment is specified, the
734function is forced to have at least that much alignment. All alignments must be
735a power of 2.</p>
736
737</div>
738
739
740<!-- ======================================================================= -->
741<div class="doc_subsection">
742 <a name="aliasstructure">Aliases</a>
743</div>
744<div class="doc_text">
745 <p>Aliases act as "second name" for the aliasee value (which can be either
746 function or global variable or bitcast of global value). Aliases may have an
747 optional <a href="#linkage">linkage type</a>, and an
748 optional <a href="#visibility">visibility style</a>.</p>
749
750 <h5>Syntax:</h5>
751
752<div class="doc_code">
753<pre>
754@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
755</pre>
756</div>
757
758</div>
759
760
761
762<!-- ======================================================================= -->
763<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
764<div class="doc_text">
765 <p>The return type and each parameter of a function type may have a set of
766 <i>parameter attributes</i> associated with them. Parameter attributes are
767 used to communicate additional information about the result or parameters of
768 a function. Parameter attributes are considered to be part of the function
769 type so two functions types that differ only by the parameter attributes
770 are different function types.</p>
771
772 <p>Parameter attributes are simple keywords that follow the type specified. If
773 multiple parameter attributes are needed, they are space separated. For
774 example:</p>
775
776<div class="doc_code">
777<pre>
Reid Spencerf234bed2007-07-19 23:13:04 +0000778%someFunc = i16 (i8 signext %someParam) zeroext
779%someFunc = i16 (i8 zeroext %someParam) zeroext
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000780</pre>
781</div>
782
783 <p>Note that the two function types above are unique because the parameter has
Reid Spencerf234bed2007-07-19 23:13:04 +0000784 a different attribute (<tt>signext</tt> in the first one, <tt>zeroext</tt> in
785 the second). Also note that the attribute for the function result
786 (<tt>zeroext</tt>) comes immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787
788 <p>Currently, only the following parameter attributes are defined:</p>
789 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000790 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000791 <dd>This indicates that the parameter should be zero extended just before
792 a call to this function.</dd>
Reid Spencerf234bed2007-07-19 23:13:04 +0000793 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000794 <dd>This indicates that the parameter should be sign extended just before
795 a call to this function.</dd>
796 <dt><tt>inreg</tt></dt>
797 <dd>This indicates that the parameter should be placed in register (if
798 possible) during assembling function call. Support for this attribute is
799 target-specific</dd>
800 <dt><tt>sret</tt></dt>
801 <dd>This indicates that the parameter specifies the address of a structure
802 that is the return value of the function in the source program.</dd>
803 <dt><tt>noalias</tt></dt>
804 <dd>This indicates that the parameter not alias any other object or any
805 other "noalias" objects during the function call.
806 <dt><tt>noreturn</tt></dt>
807 <dd>This function attribute indicates that the function never returns. This
808 indicates to LLVM that every call to this function should be treated as if
809 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
810 <dt><tt>nounwind</tt></dt>
811 <dd>This function attribute indicates that the function type does not use
812 the unwind instruction and does not allow stack unwinding to propagate
813 through it.</dd>
Duncan Sands4ee46812007-07-27 19:57:41 +0000814 <dt><tt>nest</tt></dt>
815 <dd>This indicates that the parameter can be excised using the
816 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000817 </dl>
818
819</div>
820
821<!-- ======================================================================= -->
822<div class="doc_subsection">
823 <a name="moduleasm">Module-Level Inline Assembly</a>
824</div>
825
826<div class="doc_text">
827<p>
828Modules may contain "module-level inline asm" blocks, which corresponds to the
829GCC "file scope inline asm" blocks. These blocks are internally concatenated by
830LLVM and treated as a single unit, but may be separated in the .ll file if
831desired. The syntax is very simple:
832</p>
833
834<div class="doc_code">
835<pre>
836module asm "inline asm code goes here"
837module asm "more can go here"
838</pre>
839</div>
840
841<p>The strings can contain any character by escaping non-printable characters.
842 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
843 for the number.
844</p>
845
846<p>
847 The inline asm code is simply printed to the machine code .s file when
848 assembly code is generated.
849</p>
850</div>
851
852<!-- ======================================================================= -->
853<div class="doc_subsection">
854 <a name="datalayout">Data Layout</a>
855</div>
856
857<div class="doc_text">
858<p>A module may specify a target specific data layout string that specifies how
859data is to be laid out in memory. The syntax for the data layout is simply:</p>
860<pre> target datalayout = "<i>layout specification</i>"</pre>
861<p>The <i>layout specification</i> consists of a list of specifications
862separated by the minus sign character ('-'). Each specification starts with a
863letter and may include other information after the letter to define some
864aspect of the data layout. The specifications accepted are as follows: </p>
865<dl>
866 <dt><tt>E</tt></dt>
867 <dd>Specifies that the target lays out data in big-endian form. That is, the
868 bits with the most significance have the lowest address location.</dd>
869 <dt><tt>e</tt></dt>
870 <dd>Specifies that hte target lays out data in little-endian form. That is,
871 the bits with the least significance have the lowest address location.</dd>
872 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
873 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
874 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
875 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
876 too.</dd>
877 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
878 <dd>This specifies the alignment for an integer type of a given bit
879 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
880 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
881 <dd>This specifies the alignment for a vector type of a given bit
882 <i>size</i>.</dd>
883 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
884 <dd>This specifies the alignment for a floating point type of a given bit
885 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
886 (double).</dd>
887 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
888 <dd>This specifies the alignment for an aggregate type of a given bit
889 <i>size</i>.</dd>
890</dl>
891<p>When constructing the data layout for a given target, LLVM starts with a
892default set of specifications which are then (possibly) overriden by the
893specifications in the <tt>datalayout</tt> keyword. The default specifications
894are given in this list:</p>
895<ul>
896 <li><tt>E</tt> - big endian</li>
897 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
898 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
899 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
900 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
901 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
902 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
903 alignment of 64-bits</li>
904 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
905 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
906 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
907 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
908 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
909</ul>
910<p>When llvm is determining the alignment for a given type, it uses the
911following rules:
912<ol>
913 <li>If the type sought is an exact match for one of the specifications, that
914 specification is used.</li>
915 <li>If no match is found, and the type sought is an integer type, then the
916 smallest integer type that is larger than the bitwidth of the sought type is
917 used. If none of the specifications are larger than the bitwidth then the the
918 largest integer type is used. For example, given the default specifications
919 above, the i7 type will use the alignment of i8 (next largest) while both
920 i65 and i256 will use the alignment of i64 (largest specified).</li>
921 <li>If no match is found, and the type sought is a vector type, then the
922 largest vector type that is smaller than the sought vector type will be used
923 as a fall back. This happens because <128 x double> can be implemented in
924 terms of 64 <2 x double>, for example.</li>
925</ol>
926</div>
927
928<!-- *********************************************************************** -->
929<div class="doc_section"> <a name="typesystem">Type System</a> </div>
930<!-- *********************************************************************** -->
931
932<div class="doc_text">
933
934<p>The LLVM type system is one of the most important features of the
935intermediate representation. Being typed enables a number of
936optimizations to be performed on the IR directly, without having to do
937extra analyses on the side before the transformation. A strong type
938system makes it easier to read the generated code and enables novel
939analyses and transformations that are not feasible to perform on normal
940three address code representations.</p>
941
942</div>
943
944<!-- ======================================================================= -->
945<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
946<div class="doc_text">
947<p>The primitive types are the fundamental building blocks of the LLVM
948system. The current set of primitive types is as follows:</p>
949
950<table class="layout">
951 <tr class="layout">
952 <td class="left">
953 <table>
954 <tbody>
955 <tr><th>Type</th><th>Description</th></tr>
956 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
957 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
958 </tbody>
959 </table>
960 </td>
961 <td class="right">
962 <table>
963 <tbody>
964 <tr><th>Type</th><th>Description</th></tr>
965 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
966 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
967 </tbody>
968 </table>
969 </td>
970 </tr>
971</table>
972</div>
973
974<!-- _______________________________________________________________________ -->
975<div class="doc_subsubsection"> <a name="t_classifications">Type
976Classifications</a> </div>
977<div class="doc_text">
978<p>These different primitive types fall into a few useful
979classifications:</p>
980
981<table border="1" cellspacing="0" cellpadding="4">
982 <tbody>
983 <tr><th>Classification</th><th>Types</th></tr>
984 <tr>
985 <td><a name="t_integer">integer</a></td>
986 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
987 </tr>
988 <tr>
989 <td><a name="t_floating">floating point</a></td>
990 <td><tt>float, double</tt></td>
991 </tr>
992 <tr>
993 <td><a name="t_firstclass">first class</a></td>
994 <td><tt>i1, ..., float, double, <br/>
995 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
996 </td>
997 </tr>
998 </tbody>
999</table>
1000
1001<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1002most important. Values of these types are the only ones which can be
1003produced by instructions, passed as arguments, or used as operands to
1004instructions. This means that all structures and arrays must be
1005manipulated either by pointer or by component.</p>
1006</div>
1007
1008<!-- ======================================================================= -->
1009<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1010
1011<div class="doc_text">
1012
1013<p>The real power in LLVM comes from the derived types in the system.
1014This is what allows a programmer to represent arrays, functions,
1015pointers, and other useful types. Note that these derived types may be
1016recursive: For example, it is possible to have a two dimensional array.</p>
1017
1018</div>
1019
1020<!-- _______________________________________________________________________ -->
1021<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1022
1023<div class="doc_text">
1024
1025<h5>Overview:</h5>
1026<p>The integer type is a very simple derived type that simply specifies an
1027arbitrary bit width for the integer type desired. Any bit width from 1 bit to
10282^23-1 (about 8 million) can be specified.</p>
1029
1030<h5>Syntax:</h5>
1031
1032<pre>
1033 iN
1034</pre>
1035
1036<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1037value.</p>
1038
1039<h5>Examples:</h5>
1040<table class="layout">
1041 <tr class="layout">
1042 <td class="left">
1043 <tt>i1</tt><br/>
1044 <tt>i4</tt><br/>
1045 <tt>i8</tt><br/>
1046 <tt>i16</tt><br/>
1047 <tt>i32</tt><br/>
1048 <tt>i42</tt><br/>
1049 <tt>i64</tt><br/>
1050 <tt>i1942652</tt><br/>
1051 </td>
1052 <td class="left">
1053 A boolean integer of 1 bit<br/>
1054 A nibble sized integer of 4 bits.<br/>
1055 A byte sized integer of 8 bits.<br/>
1056 A half word sized integer of 16 bits.<br/>
1057 A word sized integer of 32 bits.<br/>
1058 An integer whose bit width is the answer. <br/>
1059 A double word sized integer of 64 bits.<br/>
1060 A really big integer of over 1 million bits.<br/>
1061 </td>
1062 </tr>
1063</table>
1064</div>
1065
1066<!-- _______________________________________________________________________ -->
1067<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1068
1069<div class="doc_text">
1070
1071<h5>Overview:</h5>
1072
1073<p>The array type is a very simple derived type that arranges elements
1074sequentially in memory. The array type requires a size (number of
1075elements) and an underlying data type.</p>
1076
1077<h5>Syntax:</h5>
1078
1079<pre>
1080 [&lt;# elements&gt; x &lt;elementtype&gt;]
1081</pre>
1082
1083<p>The number of elements is a constant integer value; elementtype may
1084be any type with a size.</p>
1085
1086<h5>Examples:</h5>
1087<table class="layout">
1088 <tr class="layout">
1089 <td class="left">
1090 <tt>[40 x i32 ]</tt><br/>
1091 <tt>[41 x i32 ]</tt><br/>
1092 <tt>[40 x i8]</tt><br/>
1093 </td>
1094 <td class="left">
1095 Array of 40 32-bit integer values.<br/>
1096 Array of 41 32-bit integer values.<br/>
1097 Array of 40 8-bit integer values.<br/>
1098 </td>
1099 </tr>
1100</table>
1101<p>Here are some examples of multidimensional arrays:</p>
1102<table class="layout">
1103 <tr class="layout">
1104 <td class="left">
1105 <tt>[3 x [4 x i32]]</tt><br/>
1106 <tt>[12 x [10 x float]]</tt><br/>
1107 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
1108 </td>
1109 <td class="left">
1110 3x4 array of 32-bit integer values.<br/>
1111 12x10 array of single precision floating point values.<br/>
1112 2x3x4 array of 16-bit integer values.<br/>
1113 </td>
1114 </tr>
1115</table>
1116
1117<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1118length array. Normally, accesses past the end of an array are undefined in
1119LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1120As a special case, however, zero length arrays are recognized to be variable
1121length. This allows implementation of 'pascal style arrays' with the LLVM
1122type "{ i32, [0 x float]}", for example.</p>
1123
1124</div>
1125
1126<!-- _______________________________________________________________________ -->
1127<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1128<div class="doc_text">
1129<h5>Overview:</h5>
1130<p>The function type can be thought of as a function signature. It
1131consists of a return type and a list of formal parameter types.
1132Function types are usually used to build virtual function tables
1133(which are structures of pointers to functions), for indirect function
1134calls, and when defining a function.</p>
1135<p>
1136The return type of a function type cannot be an aggregate type.
1137</p>
1138<h5>Syntax:</h5>
1139<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1140<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1141specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1142which indicates that the function takes a variable number of arguments.
1143Variable argument functions can access their arguments with the <a
1144 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1145<h5>Examples:</h5>
1146<table class="layout">
1147 <tr class="layout">
1148 <td class="left"><tt>i32 (i32)</tt></td>
1149 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1150 </td>
1151 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001152 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001153 </tt></td>
1154 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1155 an <tt>i16</tt> that should be sign extended and a
1156 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1157 <tt>float</tt>.
1158 </td>
1159 </tr><tr class="layout">
1160 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1161 <td class="left">A vararg function that takes at least one
1162 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1163 which returns an integer. This is the signature for <tt>printf</tt> in
1164 LLVM.
1165 </td>
1166 </tr>
1167</table>
1168
1169</div>
1170<!-- _______________________________________________________________________ -->
1171<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1172<div class="doc_text">
1173<h5>Overview:</h5>
1174<p>The structure type is used to represent a collection of data members
1175together in memory. The packing of the field types is defined to match
1176the ABI of the underlying processor. The elements of a structure may
1177be any type that has a size.</p>
1178<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1179and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1180field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1181instruction.</p>
1182<h5>Syntax:</h5>
1183<pre> { &lt;type list&gt; }<br></pre>
1184<h5>Examples:</h5>
1185<table class="layout">
1186 <tr class="layout">
1187 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1188 <td class="left">A triple of three <tt>i32</tt> values</td>
1189 </tr><tr class="layout">
1190 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1191 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1192 second element is a <a href="#t_pointer">pointer</a> to a
1193 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1194 an <tt>i32</tt>.</td>
1195 </tr>
1196</table>
1197</div>
1198
1199<!-- _______________________________________________________________________ -->
1200<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1201</div>
1202<div class="doc_text">
1203<h5>Overview:</h5>
1204<p>The packed structure type is used to represent a collection of data members
1205together in memory. There is no padding between fields. Further, the alignment
1206of a packed structure is 1 byte. The elements of a packed structure may
1207be any type that has a size.</p>
1208<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1209and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1210field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1211instruction.</p>
1212<h5>Syntax:</h5>
1213<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1214<h5>Examples:</h5>
1215<table class="layout">
1216 <tr class="layout">
1217 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1218 <td class="left">A triple of three <tt>i32</tt> values</td>
1219 </tr><tr class="layout">
1220 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1221 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1222 second element is a <a href="#t_pointer">pointer</a> to a
1223 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1224 an <tt>i32</tt>.</td>
1225 </tr>
1226</table>
1227</div>
1228
1229<!-- _______________________________________________________________________ -->
1230<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1231<div class="doc_text">
1232<h5>Overview:</h5>
1233<p>As in many languages, the pointer type represents a pointer or
1234reference to another object, which must live in memory.</p>
1235<h5>Syntax:</h5>
1236<pre> &lt;type&gt; *<br></pre>
1237<h5>Examples:</h5>
1238<table class="layout">
1239 <tr class="layout">
1240 <td class="left">
1241 <tt>[4x i32]*</tt><br/>
1242 <tt>i32 (i32 *) *</tt><br/>
1243 </td>
1244 <td class="left">
1245 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
1246 four <tt>i32</tt> values<br/>
1247 A <a href="#t_pointer">pointer</a> to a <a
1248 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1249 <tt>i32</tt>.<br/>
1250 </td>
1251 </tr>
1252</table>
1253</div>
1254
1255<!-- _______________________________________________________________________ -->
1256<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1257<div class="doc_text">
1258
1259<h5>Overview:</h5>
1260
1261<p>A vector type is a simple derived type that represents a vector
1262of elements. Vector types are used when multiple primitive data
1263are operated in parallel using a single instruction (SIMD).
1264A vector type requires a size (number of
1265elements) and an underlying primitive data type. Vectors must have a power
1266of two length (1, 2, 4, 8, 16 ...). Vector types are
1267considered <a href="#t_firstclass">first class</a>.</p>
1268
1269<h5>Syntax:</h5>
1270
1271<pre>
1272 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1273</pre>
1274
1275<p>The number of elements is a constant integer value; elementtype may
1276be any integer or floating point type.</p>
1277
1278<h5>Examples:</h5>
1279
1280<table class="layout">
1281 <tr class="layout">
1282 <td class="left">
1283 <tt>&lt;4 x i32&gt;</tt><br/>
1284 <tt>&lt;8 x float&gt;</tt><br/>
1285 <tt>&lt;2 x i64&gt;</tt><br/>
1286 </td>
1287 <td class="left">
1288 Vector of 4 32-bit integer values.<br/>
1289 Vector of 8 floating-point values.<br/>
1290 Vector of 2 64-bit integer values.<br/>
1291 </td>
1292 </tr>
1293</table>
1294</div>
1295
1296<!-- _______________________________________________________________________ -->
1297<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1298<div class="doc_text">
1299
1300<h5>Overview:</h5>
1301
1302<p>Opaque types are used to represent unknown types in the system. This
1303corresponds (for example) to the C notion of a foward declared structure type.
1304In LLVM, opaque types can eventually be resolved to any type (not just a
1305structure type).</p>
1306
1307<h5>Syntax:</h5>
1308
1309<pre>
1310 opaque
1311</pre>
1312
1313<h5>Examples:</h5>
1314
1315<table class="layout">
1316 <tr class="layout">
1317 <td class="left">
1318 <tt>opaque</tt>
1319 </td>
1320 <td class="left">
1321 An opaque type.<br/>
1322 </td>
1323 </tr>
1324</table>
1325</div>
1326
1327
1328<!-- *********************************************************************** -->
1329<div class="doc_section"> <a name="constants">Constants</a> </div>
1330<!-- *********************************************************************** -->
1331
1332<div class="doc_text">
1333
1334<p>LLVM has several different basic types of constants. This section describes
1335them all and their syntax.</p>
1336
1337</div>
1338
1339<!-- ======================================================================= -->
1340<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1341
1342<div class="doc_text">
1343
1344<dl>
1345 <dt><b>Boolean constants</b></dt>
1346
1347 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1348 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1349 </dd>
1350
1351 <dt><b>Integer constants</b></dt>
1352
1353 <dd>Standard integers (such as '4') are constants of the <a
1354 href="#t_integer">integer</a> type. Negative numbers may be used with
1355 integer types.
1356 </dd>
1357
1358 <dt><b>Floating point constants</b></dt>
1359
1360 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1361 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1362 notation (see below). Floating point constants must have a <a
1363 href="#t_floating">floating point</a> type. </dd>
1364
1365 <dt><b>Null pointer constants</b></dt>
1366
1367 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1368 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1369
1370</dl>
1371
1372<p>The one non-intuitive notation for constants is the optional hexadecimal form
1373of floating point constants. For example, the form '<tt>double
13740x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
13754.5e+15</tt>'. The only time hexadecimal floating point constants are required
1376(and the only time that they are generated by the disassembler) is when a
1377floating point constant must be emitted but it cannot be represented as a
1378decimal floating point number. For example, NaN's, infinities, and other
1379special values are represented in their IEEE hexadecimal format so that
1380assembly and disassembly do not cause any bits to change in the constants.</p>
1381
1382</div>
1383
1384<!-- ======================================================================= -->
1385<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1386</div>
1387
1388<div class="doc_text">
1389<p>Aggregate constants arise from aggregation of simple constants
1390and smaller aggregate constants.</p>
1391
1392<dl>
1393 <dt><b>Structure constants</b></dt>
1394
1395 <dd>Structure constants are represented with notation similar to structure
1396 type definitions (a comma separated list of elements, surrounded by braces
1397 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1398 where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
1399 must have <a href="#t_struct">structure type</a>, and the number and
1400 types of elements must match those specified by the type.
1401 </dd>
1402
1403 <dt><b>Array constants</b></dt>
1404
1405 <dd>Array constants are represented with notation similar to array type
1406 definitions (a comma separated list of elements, surrounded by square brackets
1407 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1408 constants must have <a href="#t_array">array type</a>, and the number and
1409 types of elements must match those specified by the type.
1410 </dd>
1411
1412 <dt><b>Vector constants</b></dt>
1413
1414 <dd>Vector constants are represented with notation similar to vector type
1415 definitions (a comma separated list of elements, surrounded by
1416 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1417 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1418 href="#t_vector">vector type</a>, and the number and types of elements must
1419 match those specified by the type.
1420 </dd>
1421
1422 <dt><b>Zero initialization</b></dt>
1423
1424 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1425 value to zero of <em>any</em> type, including scalar and aggregate types.
1426 This is often used to avoid having to print large zero initializers (e.g. for
1427 large arrays) and is always exactly equivalent to using explicit zero
1428 initializers.
1429 </dd>
1430</dl>
1431
1432</div>
1433
1434<!-- ======================================================================= -->
1435<div class="doc_subsection">
1436 <a name="globalconstants">Global Variable and Function Addresses</a>
1437</div>
1438
1439<div class="doc_text">
1440
1441<p>The addresses of <a href="#globalvars">global variables</a> and <a
1442href="#functionstructure">functions</a> are always implicitly valid (link-time)
1443constants. These constants are explicitly referenced when the <a
1444href="#identifiers">identifier for the global</a> is used and always have <a
1445href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1446file:</p>
1447
1448<div class="doc_code">
1449<pre>
1450@X = global i32 17
1451@Y = global i32 42
1452@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1453</pre>
1454</div>
1455
1456</div>
1457
1458<!-- ======================================================================= -->
1459<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1460<div class="doc_text">
1461 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1462 no specific value. Undefined values may be of any type and be used anywhere
1463 a constant is permitted.</p>
1464
1465 <p>Undefined values indicate to the compiler that the program is well defined
1466 no matter what value is used, giving the compiler more freedom to optimize.
1467 </p>
1468</div>
1469
1470<!-- ======================================================================= -->
1471<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1472</div>
1473
1474<div class="doc_text">
1475
1476<p>Constant expressions are used to allow expressions involving other constants
1477to be used as constants. Constant expressions may be of any <a
1478href="#t_firstclass">first class</a> type and may involve any LLVM operation
1479that does not have side effects (e.g. load and call are not supported). The
1480following is the syntax for constant expressions:</p>
1481
1482<dl>
1483 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1484 <dd>Truncate a constant to another type. The bit size of CST must be larger
1485 than the bit size of TYPE. Both types must be integers.</dd>
1486
1487 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1488 <dd>Zero extend a constant to another type. The bit size of CST must be
1489 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1490
1491 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1492 <dd>Sign extend a constant to another type. The bit size of CST must be
1493 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1494
1495 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1496 <dd>Truncate a floating point constant to another floating point type. The
1497 size of CST must be larger than the size of TYPE. Both types must be
1498 floating point.</dd>
1499
1500 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1501 <dd>Floating point extend a constant to another type. The size of CST must be
1502 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1503
Reid Spencere6adee82007-07-31 14:40:14 +00001504 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001505 <dd>Convert a floating point constant to the corresponding unsigned integer
1506 constant. TYPE must be an integer type. CST must be floating point. If the
1507 value won't fit in the integer type, the results are undefined.</dd>
1508
1509 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1510 <dd>Convert a floating point constant to the corresponding signed integer
1511 constant. TYPE must be an integer type. CST must be floating point. If the
1512 value won't fit in the integer type, the results are undefined.</dd>
1513
1514 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1515 <dd>Convert an unsigned integer constant to the corresponding floating point
1516 constant. TYPE must be floating point. CST must be of integer type. If the
1517 value won't fit in the floating point type, the results are undefined.</dd>
1518
1519 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1520 <dd>Convert a signed integer constant to the corresponding floating point
1521 constant. TYPE must be floating point. CST must be of integer type. If the
1522 value won't fit in the floating point type, the results are undefined.</dd>
1523
1524 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1525 <dd>Convert a pointer typed constant to the corresponding integer constant
1526 TYPE must be an integer type. CST must be of pointer type. The CST value is
1527 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1528
1529 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1530 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1531 pointer type. CST must be of integer type. The CST value is zero extended,
1532 truncated, or unchanged to make it fit in a pointer size. This one is
1533 <i>really</i> dangerous!</dd>
1534
1535 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1536 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1537 identical (same number of bits). The conversion is done as if the CST value
1538 was stored to memory and read back as TYPE. In other words, no bits change
1539 with this operator, just the type. This can be used for conversion of
1540 vector types to any other type, as long as they have the same bit width. For
1541 pointers it is only valid to cast to another pointer type.
1542 </dd>
1543
1544 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1545
1546 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1547 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1548 instruction, the index list may have zero or more indexes, which are required
1549 to make sense for the type of "CSTPTR".</dd>
1550
1551 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1552
1553 <dd>Perform the <a href="#i_select">select operation</a> on
1554 constants.</dd>
1555
1556 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1557 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1558
1559 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1560 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1561
1562 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1563
1564 <dd>Perform the <a href="#i_extractelement">extractelement
1565 operation</a> on constants.
1566
1567 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1568
1569 <dd>Perform the <a href="#i_insertelement">insertelement
1570 operation</a> on constants.</dd>
1571
1572
1573 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1574
1575 <dd>Perform the <a href="#i_shufflevector">shufflevector
1576 operation</a> on constants.</dd>
1577
1578 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1579
1580 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1581 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1582 binary</a> operations. The constraints on operands are the same as those for
1583 the corresponding instruction (e.g. no bitwise operations on floating point
1584 values are allowed).</dd>
1585</dl>
1586</div>
1587
1588<!-- *********************************************************************** -->
1589<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1590<!-- *********************************************************************** -->
1591
1592<!-- ======================================================================= -->
1593<div class="doc_subsection">
1594<a name="inlineasm">Inline Assembler Expressions</a>
1595</div>
1596
1597<div class="doc_text">
1598
1599<p>
1600LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1601Module-Level Inline Assembly</a>) through the use of a special value. This
1602value represents the inline assembler as a string (containing the instructions
1603to emit), a list of operand constraints (stored as a string), and a flag that
1604indicates whether or not the inline asm expression has side effects. An example
1605inline assembler expression is:
1606</p>
1607
1608<div class="doc_code">
1609<pre>
1610i32 (i32) asm "bswap $0", "=r,r"
1611</pre>
1612</div>
1613
1614<p>
1615Inline assembler expressions may <b>only</b> be used as the callee operand of
1616a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1617</p>
1618
1619<div class="doc_code">
1620<pre>
1621%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1622</pre>
1623</div>
1624
1625<p>
1626Inline asms with side effects not visible in the constraint list must be marked
1627as having side effects. This is done through the use of the
1628'<tt>sideeffect</tt>' keyword, like so:
1629</p>
1630
1631<div class="doc_code">
1632<pre>
1633call void asm sideeffect "eieio", ""()
1634</pre>
1635</div>
1636
1637<p>TODO: The format of the asm and constraints string still need to be
1638documented here. Constraints on what can be done (e.g. duplication, moving, etc
1639need to be documented).
1640</p>
1641
1642</div>
1643
1644<!-- *********************************************************************** -->
1645<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1646<!-- *********************************************************************** -->
1647
1648<div class="doc_text">
1649
1650<p>The LLVM instruction set consists of several different
1651classifications of instructions: <a href="#terminators">terminator
1652instructions</a>, <a href="#binaryops">binary instructions</a>,
1653<a href="#bitwiseops">bitwise binary instructions</a>, <a
1654 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1655instructions</a>.</p>
1656
1657</div>
1658
1659<!-- ======================================================================= -->
1660<div class="doc_subsection"> <a name="terminators">Terminator
1661Instructions</a> </div>
1662
1663<div class="doc_text">
1664
1665<p>As mentioned <a href="#functionstructure">previously</a>, every
1666basic block in a program ends with a "Terminator" instruction, which
1667indicates which block should be executed after the current block is
1668finished. These terminator instructions typically yield a '<tt>void</tt>'
1669value: they produce control flow, not values (the one exception being
1670the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1671<p>There are six different terminator instructions: the '<a
1672 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1673instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1674the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1675 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1676 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1677
1678</div>
1679
1680<!-- _______________________________________________________________________ -->
1681<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1682Instruction</a> </div>
1683<div class="doc_text">
1684<h5>Syntax:</h5>
1685<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1686 ret void <i>; Return from void function</i>
1687</pre>
1688<h5>Overview:</h5>
1689<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1690value) from a function back to the caller.</p>
1691<p>There are two forms of the '<tt>ret</tt>' instruction: one that
1692returns a value and then causes control flow, and one that just causes
1693control flow to occur.</p>
1694<h5>Arguments:</h5>
1695<p>The '<tt>ret</tt>' instruction may return any '<a
1696 href="#t_firstclass">first class</a>' type. Notice that a function is
1697not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1698instruction inside of the function that returns a value that does not
1699match the return type of the function.</p>
1700<h5>Semantics:</h5>
1701<p>When the '<tt>ret</tt>' instruction is executed, control flow
1702returns back to the calling function's context. If the caller is a "<a
1703 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1704the instruction after the call. If the caller was an "<a
1705 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1706at the beginning of the "normal" destination block. If the instruction
1707returns a value, that value shall set the call or invoke instruction's
1708return value.</p>
1709<h5>Example:</h5>
1710<pre> ret i32 5 <i>; Return an integer value of 5</i>
1711 ret void <i>; Return from a void function</i>
1712</pre>
1713</div>
1714<!-- _______________________________________________________________________ -->
1715<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1716<div class="doc_text">
1717<h5>Syntax:</h5>
1718<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1719</pre>
1720<h5>Overview:</h5>
1721<p>The '<tt>br</tt>' instruction is used to cause control flow to
1722transfer to a different basic block in the current function. There are
1723two forms of this instruction, corresponding to a conditional branch
1724and an unconditional branch.</p>
1725<h5>Arguments:</h5>
1726<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1727single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1728unconditional form of the '<tt>br</tt>' instruction takes a single
1729'<tt>label</tt>' value as a target.</p>
1730<h5>Semantics:</h5>
1731<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1732argument is evaluated. If the value is <tt>true</tt>, control flows
1733to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1734control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1735<h5>Example:</h5>
1736<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1737 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1738</div>
1739<!-- _______________________________________________________________________ -->
1740<div class="doc_subsubsection">
1741 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1742</div>
1743
1744<div class="doc_text">
1745<h5>Syntax:</h5>
1746
1747<pre>
1748 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1749</pre>
1750
1751<h5>Overview:</h5>
1752
1753<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1754several different places. It is a generalization of the '<tt>br</tt>'
1755instruction, allowing a branch to occur to one of many possible
1756destinations.</p>
1757
1758
1759<h5>Arguments:</h5>
1760
1761<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1762comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1763an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1764table is not allowed to contain duplicate constant entries.</p>
1765
1766<h5>Semantics:</h5>
1767
1768<p>The <tt>switch</tt> instruction specifies a table of values and
1769destinations. When the '<tt>switch</tt>' instruction is executed, this
1770table is searched for the given value. If the value is found, control flow is
1771transfered to the corresponding destination; otherwise, control flow is
1772transfered to the default destination.</p>
1773
1774<h5>Implementation:</h5>
1775
1776<p>Depending on properties of the target machine and the particular
1777<tt>switch</tt> instruction, this instruction may be code generated in different
1778ways. For example, it could be generated as a series of chained conditional
1779branches or with a lookup table.</p>
1780
1781<h5>Example:</h5>
1782
1783<pre>
1784 <i>; Emulate a conditional br instruction</i>
1785 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1786 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1787
1788 <i>; Emulate an unconditional br instruction</i>
1789 switch i32 0, label %dest [ ]
1790
1791 <i>; Implement a jump table:</i>
1792 switch i32 %val, label %otherwise [ i32 0, label %onzero
1793 i32 1, label %onone
1794 i32 2, label %ontwo ]
1795</pre>
1796</div>
1797
1798<!-- _______________________________________________________________________ -->
1799<div class="doc_subsubsection">
1800 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1801</div>
1802
1803<div class="doc_text">
1804
1805<h5>Syntax:</h5>
1806
1807<pre>
1808 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
1809 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1810</pre>
1811
1812<h5>Overview:</h5>
1813
1814<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1815function, with the possibility of control flow transfer to either the
1816'<tt>normal</tt>' label or the
1817'<tt>exception</tt>' label. If the callee function returns with the
1818"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1819"normal" label. If the callee (or any indirect callees) returns with the "<a
1820href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1821continued at the dynamically nearest "exception" label.</p>
1822
1823<h5>Arguments:</h5>
1824
1825<p>This instruction requires several arguments:</p>
1826
1827<ol>
1828 <li>
1829 The optional "cconv" marker indicates which <a href="#callingconv">calling
1830 convention</a> the call should use. If none is specified, the call defaults
1831 to using C calling conventions.
1832 </li>
1833 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1834 function value being invoked. In most cases, this is a direct function
1835 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1836 an arbitrary pointer to function value.
1837 </li>
1838
1839 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1840 function to be invoked. </li>
1841
1842 <li>'<tt>function args</tt>': argument list whose types match the function
1843 signature argument types. If the function signature indicates the function
1844 accepts a variable number of arguments, the extra arguments can be
1845 specified. </li>
1846
1847 <li>'<tt>normal label</tt>': the label reached when the called function
1848 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1849
1850 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1851 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1852
1853</ol>
1854
1855<h5>Semantics:</h5>
1856
1857<p>This instruction is designed to operate as a standard '<tt><a
1858href="#i_call">call</a></tt>' instruction in most regards. The primary
1859difference is that it establishes an association with a label, which is used by
1860the runtime library to unwind the stack.</p>
1861
1862<p>This instruction is used in languages with destructors to ensure that proper
1863cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1864exception. Additionally, this is important for implementation of
1865'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1866
1867<h5>Example:</h5>
1868<pre>
1869 %retval = invoke i32 %Test(i32 15) to label %Continue
1870 unwind label %TestCleanup <i>; {i32}:retval set</i>
1871 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1872 unwind label %TestCleanup <i>; {i32}:retval set</i>
1873</pre>
1874</div>
1875
1876
1877<!-- _______________________________________________________________________ -->
1878
1879<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1880Instruction</a> </div>
1881
1882<div class="doc_text">
1883
1884<h5>Syntax:</h5>
1885<pre>
1886 unwind
1887</pre>
1888
1889<h5>Overview:</h5>
1890
1891<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1892at the first callee in the dynamic call stack which used an <a
1893href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1894primarily used to implement exception handling.</p>
1895
1896<h5>Semantics:</h5>
1897
1898<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1899immediately halt. The dynamic call stack is then searched for the first <a
1900href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1901execution continues at the "exceptional" destination block specified by the
1902<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1903dynamic call chain, undefined behavior results.</p>
1904</div>
1905
1906<!-- _______________________________________________________________________ -->
1907
1908<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1909Instruction</a> </div>
1910
1911<div class="doc_text">
1912
1913<h5>Syntax:</h5>
1914<pre>
1915 unreachable
1916</pre>
1917
1918<h5>Overview:</h5>
1919
1920<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1921instruction is used to inform the optimizer that a particular portion of the
1922code is not reachable. This can be used to indicate that the code after a
1923no-return function cannot be reached, and other facts.</p>
1924
1925<h5>Semantics:</h5>
1926
1927<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1928</div>
1929
1930
1931
1932<!-- ======================================================================= -->
1933<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
1934<div class="doc_text">
1935<p>Binary operators are used to do most of the computation in a
1936program. They require two operands, execute an operation on them, and
1937produce a single value. The operands might represent
1938multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
1939The result value of a binary operator is not
1940necessarily the same type as its operands.</p>
1941<p>There are several different binary operators:</p>
1942</div>
1943<!-- _______________________________________________________________________ -->
1944<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1945Instruction</a> </div>
1946<div class="doc_text">
1947<h5>Syntax:</h5>
1948<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1949</pre>
1950<h5>Overview:</h5>
1951<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
1952<h5>Arguments:</h5>
1953<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
1954 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1955 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1956Both arguments must have identical types.</p>
1957<h5>Semantics:</h5>
1958<p>The value produced is the integer or floating point sum of the two
1959operands.</p>
1960<h5>Example:</h5>
1961<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
1962</pre>
1963</div>
1964<!-- _______________________________________________________________________ -->
1965<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1966Instruction</a> </div>
1967<div class="doc_text">
1968<h5>Syntax:</h5>
1969<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1970</pre>
1971<h5>Overview:</h5>
1972<p>The '<tt>sub</tt>' instruction returns the difference of its two
1973operands.</p>
1974<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1975instruction present in most other intermediate representations.</p>
1976<h5>Arguments:</h5>
1977<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
1978 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1979values.
1980This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1981Both arguments must have identical types.</p>
1982<h5>Semantics:</h5>
1983<p>The value produced is the integer or floating point difference of
1984the two operands.</p>
1985<h5>Example:</h5>
1986<pre>
1987 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1988 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
1989</pre>
1990</div>
1991<!-- _______________________________________________________________________ -->
1992<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1993Instruction</a> </div>
1994<div class="doc_text">
1995<h5>Syntax:</h5>
1996<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1997</pre>
1998<h5>Overview:</h5>
1999<p>The '<tt>mul</tt>' instruction returns the product of its two
2000operands.</p>
2001<h5>Arguments:</h5>
2002<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
2003 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2004values.
2005This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2006Both arguments must have identical types.</p>
2007<h5>Semantics:</h5>
2008<p>The value produced is the integer or floating point product of the
2009two operands.</p>
2010<p>Because the operands are the same width, the result of an integer
2011multiplication is the same whether the operands should be deemed unsigned or
2012signed.</p>
2013<h5>Example:</h5>
2014<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2015</pre>
2016</div>
2017<!-- _______________________________________________________________________ -->
2018<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2019</a></div>
2020<div class="doc_text">
2021<h5>Syntax:</h5>
2022<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2023</pre>
2024<h5>Overview:</h5>
2025<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2026operands.</p>
2027<h5>Arguments:</h5>
2028<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2029<a href="#t_integer">integer</a> values. Both arguments must have identical
2030types. This instruction can also take <a href="#t_vector">vector</a> versions
2031of the values in which case the elements must be integers.</p>
2032<h5>Semantics:</h5>
2033<p>The value produced is the unsigned integer quotient of the two operands. This
2034instruction always performs an unsigned division operation, regardless of
2035whether the arguments are unsigned or not.</p>
2036<h5>Example:</h5>
2037<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2038</pre>
2039</div>
2040<!-- _______________________________________________________________________ -->
2041<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2042</a> </div>
2043<div class="doc_text">
2044<h5>Syntax:</h5>
2045<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2046</pre>
2047<h5>Overview:</h5>
2048<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2049operands.</p>
2050<h5>Arguments:</h5>
2051<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2052<a href="#t_integer">integer</a> values. Both arguments must have identical
2053types. This instruction can also take <a href="#t_vector">vector</a> versions
2054of the values in which case the elements must be integers.</p>
2055<h5>Semantics:</h5>
2056<p>The value produced is the signed integer quotient of the two operands. This
2057instruction always performs a signed division operation, regardless of whether
2058the arguments are signed or not.</p>
2059<h5>Example:</h5>
2060<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2061</pre>
2062</div>
2063<!-- _______________________________________________________________________ -->
2064<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2065Instruction</a> </div>
2066<div class="doc_text">
2067<h5>Syntax:</h5>
2068<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2069</pre>
2070<h5>Overview:</h5>
2071<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2072operands.</p>
2073<h5>Arguments:</h5>
2074<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2075<a href="#t_floating">floating point</a> values. Both arguments must have
2076identical types. This instruction can also take <a href="#t_vector">vector</a>
2077versions of floating point values.</p>
2078<h5>Semantics:</h5>
2079<p>The value produced is the floating point quotient of the two operands.</p>
2080<h5>Example:</h5>
2081<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2082</pre>
2083</div>
2084<!-- _______________________________________________________________________ -->
2085<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2086</div>
2087<div class="doc_text">
2088<h5>Syntax:</h5>
2089<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2090</pre>
2091<h5>Overview:</h5>
2092<p>The '<tt>urem</tt>' instruction returns the remainder from the
2093unsigned division of its two arguments.</p>
2094<h5>Arguments:</h5>
2095<p>The two arguments to the '<tt>urem</tt>' instruction must be
2096<a href="#t_integer">integer</a> values. Both arguments must have identical
2097types.</p>
2098<h5>Semantics:</h5>
2099<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2100This instruction always performs an unsigned division to get the remainder,
2101regardless of whether the arguments are unsigned or not.</p>
2102<h5>Example:</h5>
2103<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2104</pre>
2105
2106</div>
2107<!-- _______________________________________________________________________ -->
2108<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2109Instruction</a> </div>
2110<div class="doc_text">
2111<h5>Syntax:</h5>
2112<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2113</pre>
2114<h5>Overview:</h5>
2115<p>The '<tt>srem</tt>' instruction returns the remainder from the
2116signed division of its two operands.</p>
2117<h5>Arguments:</h5>
2118<p>The two arguments to the '<tt>srem</tt>' instruction must be
2119<a href="#t_integer">integer</a> values. Both arguments must have identical
2120types.</p>
2121<h5>Semantics:</h5>
2122<p>This instruction returns the <i>remainder</i> of a division (where the result
2123has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2124operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2125a value. For more information about the difference, see <a
2126 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2127Math Forum</a>. For a table of how this is implemented in various languages,
2128please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2129Wikipedia: modulo operation</a>.</p>
2130<h5>Example:</h5>
2131<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2132</pre>
2133
2134</div>
2135<!-- _______________________________________________________________________ -->
2136<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2137Instruction</a> </div>
2138<div class="doc_text">
2139<h5>Syntax:</h5>
2140<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2141</pre>
2142<h5>Overview:</h5>
2143<p>The '<tt>frem</tt>' instruction returns the remainder from the
2144division of its two operands.</p>
2145<h5>Arguments:</h5>
2146<p>The two arguments to the '<tt>frem</tt>' instruction must be
2147<a href="#t_floating">floating point</a> values. Both arguments must have
2148identical types.</p>
2149<h5>Semantics:</h5>
2150<p>This instruction returns the <i>remainder</i> of a division.</p>
2151<h5>Example:</h5>
2152<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2153</pre>
2154</div>
2155
2156<!-- ======================================================================= -->
2157<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2158Operations</a> </div>
2159<div class="doc_text">
2160<p>Bitwise binary operators are used to do various forms of
2161bit-twiddling in a program. They are generally very efficient
2162instructions and can commonly be strength reduced from other
2163instructions. They require two operands, execute an operation on them,
2164and produce a single value. The resulting value of the bitwise binary
2165operators is always the same type as its first operand.</p>
2166</div>
2167
2168<!-- _______________________________________________________________________ -->
2169<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2170Instruction</a> </div>
2171<div class="doc_text">
2172<h5>Syntax:</h5>
2173<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2174</pre>
2175<h5>Overview:</h5>
2176<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2177the left a specified number of bits.</p>
2178<h5>Arguments:</h5>
2179<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2180 href="#t_integer">integer</a> type.</p>
2181<h5>Semantics:</h5>
2182<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2183<h5>Example:</h5><pre>
2184 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2185 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2186 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2187</pre>
2188</div>
2189<!-- _______________________________________________________________________ -->
2190<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2191Instruction</a> </div>
2192<div class="doc_text">
2193<h5>Syntax:</h5>
2194<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2195</pre>
2196
2197<h5>Overview:</h5>
2198<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2199operand shifted to the right a specified number of bits with zero fill.</p>
2200
2201<h5>Arguments:</h5>
2202<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2203<a href="#t_integer">integer</a> type.</p>
2204
2205<h5>Semantics:</h5>
2206<p>This instruction always performs a logical shift right operation. The most
2207significant bits of the result will be filled with zero bits after the
2208shift.</p>
2209
2210<h5>Example:</h5>
2211<pre>
2212 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2213 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2214 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2215 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2216</pre>
2217</div>
2218
2219<!-- _______________________________________________________________________ -->
2220<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2221Instruction</a> </div>
2222<div class="doc_text">
2223
2224<h5>Syntax:</h5>
2225<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2226</pre>
2227
2228<h5>Overview:</h5>
2229<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2230operand shifted to the right a specified number of bits with sign extension.</p>
2231
2232<h5>Arguments:</h5>
2233<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2234<a href="#t_integer">integer</a> type.</p>
2235
2236<h5>Semantics:</h5>
2237<p>This instruction always performs an arithmetic shift right operation,
2238The most significant bits of the result will be filled with the sign bit
2239of <tt>var1</tt>.</p>
2240
2241<h5>Example:</h5>
2242<pre>
2243 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2244 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2245 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2246 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2247</pre>
2248</div>
2249
2250<!-- _______________________________________________________________________ -->
2251<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2252Instruction</a> </div>
2253<div class="doc_text">
2254<h5>Syntax:</h5>
2255<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2256</pre>
2257<h5>Overview:</h5>
2258<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2259its two operands.</p>
2260<h5>Arguments:</h5>
2261<p>The two arguments to the '<tt>and</tt>' instruction must be <a
2262 href="#t_integer">integer</a> values. Both arguments must have
2263identical types.</p>
2264<h5>Semantics:</h5>
2265<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2266<p> </p>
2267<div style="align: center">
2268<table border="1" cellspacing="0" cellpadding="4">
2269 <tbody>
2270 <tr>
2271 <td>In0</td>
2272 <td>In1</td>
2273 <td>Out</td>
2274 </tr>
2275 <tr>
2276 <td>0</td>
2277 <td>0</td>
2278 <td>0</td>
2279 </tr>
2280 <tr>
2281 <td>0</td>
2282 <td>1</td>
2283 <td>0</td>
2284 </tr>
2285 <tr>
2286 <td>1</td>
2287 <td>0</td>
2288 <td>0</td>
2289 </tr>
2290 <tr>
2291 <td>1</td>
2292 <td>1</td>
2293 <td>1</td>
2294 </tr>
2295 </tbody>
2296</table>
2297</div>
2298<h5>Example:</h5>
2299<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2300 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2301 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2302</pre>
2303</div>
2304<!-- _______________________________________________________________________ -->
2305<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2306<div class="doc_text">
2307<h5>Syntax:</h5>
2308<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2309</pre>
2310<h5>Overview:</h5>
2311<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2312or of its two operands.</p>
2313<h5>Arguments:</h5>
2314<p>The two arguments to the '<tt>or</tt>' instruction must be <a
2315 href="#t_integer">integer</a> values. Both arguments must have
2316identical types.</p>
2317<h5>Semantics:</h5>
2318<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2319<p> </p>
2320<div style="align: center">
2321<table border="1" cellspacing="0" cellpadding="4">
2322 <tbody>
2323 <tr>
2324 <td>In0</td>
2325 <td>In1</td>
2326 <td>Out</td>
2327 </tr>
2328 <tr>
2329 <td>0</td>
2330 <td>0</td>
2331 <td>0</td>
2332 </tr>
2333 <tr>
2334 <td>0</td>
2335 <td>1</td>
2336 <td>1</td>
2337 </tr>
2338 <tr>
2339 <td>1</td>
2340 <td>0</td>
2341 <td>1</td>
2342 </tr>
2343 <tr>
2344 <td>1</td>
2345 <td>1</td>
2346 <td>1</td>
2347 </tr>
2348 </tbody>
2349</table>
2350</div>
2351<h5>Example:</h5>
2352<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2353 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2354 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2355</pre>
2356</div>
2357<!-- _______________________________________________________________________ -->
2358<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2359Instruction</a> </div>
2360<div class="doc_text">
2361<h5>Syntax:</h5>
2362<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2363</pre>
2364<h5>Overview:</h5>
2365<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2366or of its two operands. The <tt>xor</tt> is used to implement the
2367"one's complement" operation, which is the "~" operator in C.</p>
2368<h5>Arguments:</h5>
2369<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2370 href="#t_integer">integer</a> values. Both arguments must have
2371identical types.</p>
2372<h5>Semantics:</h5>
2373<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2374<p> </p>
2375<div style="align: center">
2376<table border="1" cellspacing="0" cellpadding="4">
2377 <tbody>
2378 <tr>
2379 <td>In0</td>
2380 <td>In1</td>
2381 <td>Out</td>
2382 </tr>
2383 <tr>
2384 <td>0</td>
2385 <td>0</td>
2386 <td>0</td>
2387 </tr>
2388 <tr>
2389 <td>0</td>
2390 <td>1</td>
2391 <td>1</td>
2392 </tr>
2393 <tr>
2394 <td>1</td>
2395 <td>0</td>
2396 <td>1</td>
2397 </tr>
2398 <tr>
2399 <td>1</td>
2400 <td>1</td>
2401 <td>0</td>
2402 </tr>
2403 </tbody>
2404</table>
2405</div>
2406<p> </p>
2407<h5>Example:</h5>
2408<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2409 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2410 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2411 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2412</pre>
2413</div>
2414
2415<!-- ======================================================================= -->
2416<div class="doc_subsection">
2417 <a name="vectorops">Vector Operations</a>
2418</div>
2419
2420<div class="doc_text">
2421
2422<p>LLVM supports several instructions to represent vector operations in a
2423target-independent manner. These instructions cover the element-access and
2424vector-specific operations needed to process vectors effectively. While LLVM
2425does directly support these vector operations, many sophisticated algorithms
2426will want to use target-specific intrinsics to take full advantage of a specific
2427target.</p>
2428
2429</div>
2430
2431<!-- _______________________________________________________________________ -->
2432<div class="doc_subsubsection">
2433 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2434</div>
2435
2436<div class="doc_text">
2437
2438<h5>Syntax:</h5>
2439
2440<pre>
2441 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2442</pre>
2443
2444<h5>Overview:</h5>
2445
2446<p>
2447The '<tt>extractelement</tt>' instruction extracts a single scalar
2448element from a vector at a specified index.
2449</p>
2450
2451
2452<h5>Arguments:</h5>
2453
2454<p>
2455The first operand of an '<tt>extractelement</tt>' instruction is a
2456value of <a href="#t_vector">vector</a> type. The second operand is
2457an index indicating the position from which to extract the element.
2458The index may be a variable.</p>
2459
2460<h5>Semantics:</h5>
2461
2462<p>
2463The result is a scalar of the same type as the element type of
2464<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2465<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2466results are undefined.
2467</p>
2468
2469<h5>Example:</h5>
2470
2471<pre>
2472 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2473</pre>
2474</div>
2475
2476
2477<!-- _______________________________________________________________________ -->
2478<div class="doc_subsubsection">
2479 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2480</div>
2481
2482<div class="doc_text">
2483
2484<h5>Syntax:</h5>
2485
2486<pre>
2487 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2488</pre>
2489
2490<h5>Overview:</h5>
2491
2492<p>
2493The '<tt>insertelement</tt>' instruction inserts a scalar
2494element into a vector at a specified index.
2495</p>
2496
2497
2498<h5>Arguments:</h5>
2499
2500<p>
2501The first operand of an '<tt>insertelement</tt>' instruction is a
2502value of <a href="#t_vector">vector</a> type. The second operand is a
2503scalar value whose type must equal the element type of the first
2504operand. The third operand is an index indicating the position at
2505which to insert the value. The index may be a variable.</p>
2506
2507<h5>Semantics:</h5>
2508
2509<p>
2510The result is a vector of the same type as <tt>val</tt>. Its
2511element values are those of <tt>val</tt> except at position
2512<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2513exceeds the length of <tt>val</tt>, the results are undefined.
2514</p>
2515
2516<h5>Example:</h5>
2517
2518<pre>
2519 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2520</pre>
2521</div>
2522
2523<!-- _______________________________________________________________________ -->
2524<div class="doc_subsubsection">
2525 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2526</div>
2527
2528<div class="doc_text">
2529
2530<h5>Syntax:</h5>
2531
2532<pre>
2533 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2534</pre>
2535
2536<h5>Overview:</h5>
2537
2538<p>
2539The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2540from two input vectors, returning a vector of the same type.
2541</p>
2542
2543<h5>Arguments:</h5>
2544
2545<p>
2546The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2547with types that match each other and types that match the result of the
2548instruction. The third argument is a shuffle mask, which has the same number
2549of elements as the other vector type, but whose element type is always 'i32'.
2550</p>
2551
2552<p>
2553The shuffle mask operand is required to be a constant vector with either
2554constant integer or undef values.
2555</p>
2556
2557<h5>Semantics:</h5>
2558
2559<p>
2560The elements of the two input vectors are numbered from left to right across
2561both of the vectors. The shuffle mask operand specifies, for each element of
2562the result vector, which element of the two input registers the result element
2563gets. The element selector may be undef (meaning "don't care") and the second
2564operand may be undef if performing a shuffle from only one vector.
2565</p>
2566
2567<h5>Example:</h5>
2568
2569<pre>
2570 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2571 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2572 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2573 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2574</pre>
2575</div>
2576
2577
2578<!-- ======================================================================= -->
2579<div class="doc_subsection">
2580 <a name="memoryops">Memory Access and Addressing Operations</a>
2581</div>
2582
2583<div class="doc_text">
2584
2585<p>A key design point of an SSA-based representation is how it
2586represents memory. In LLVM, no memory locations are in SSA form, which
2587makes things very simple. This section describes how to read, write,
2588allocate, and free memory in LLVM.</p>
2589
2590</div>
2591
2592<!-- _______________________________________________________________________ -->
2593<div class="doc_subsubsection">
2594 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2595</div>
2596
2597<div class="doc_text">
2598
2599<h5>Syntax:</h5>
2600
2601<pre>
2602 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2603</pre>
2604
2605<h5>Overview:</h5>
2606
2607<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2608heap and returns a pointer to it.</p>
2609
2610<h5>Arguments:</h5>
2611
2612<p>The '<tt>malloc</tt>' instruction allocates
2613<tt>sizeof(&lt;type&gt;)*NumElements</tt>
2614bytes of memory from the operating system and returns a pointer of the
2615appropriate type to the program. If "NumElements" is specified, it is the
2616number of elements allocated. If an alignment is specified, the value result
2617of the allocation is guaranteed to be aligned to at least that boundary. If
2618not specified, or if zero, the target can choose to align the allocation on any
2619convenient boundary.</p>
2620
2621<p>'<tt>type</tt>' must be a sized type.</p>
2622
2623<h5>Semantics:</h5>
2624
2625<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2626a pointer is returned.</p>
2627
2628<h5>Example:</h5>
2629
2630<pre>
2631 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
2632
2633 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2634 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2635 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2636 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2637 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
2638</pre>
2639</div>
2640
2641<!-- _______________________________________________________________________ -->
2642<div class="doc_subsubsection">
2643 <a name="i_free">'<tt>free</tt>' Instruction</a>
2644</div>
2645
2646<div class="doc_text">
2647
2648<h5>Syntax:</h5>
2649
2650<pre>
2651 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
2652</pre>
2653
2654<h5>Overview:</h5>
2655
2656<p>The '<tt>free</tt>' instruction returns memory back to the unused
2657memory heap to be reallocated in the future.</p>
2658
2659<h5>Arguments:</h5>
2660
2661<p>'<tt>value</tt>' shall be a pointer value that points to a value
2662that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2663instruction.</p>
2664
2665<h5>Semantics:</h5>
2666
2667<p>Access to the memory pointed to by the pointer is no longer defined
2668after this instruction executes.</p>
2669
2670<h5>Example:</h5>
2671
2672<pre>
2673 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2674 free [4 x i8]* %array
2675</pre>
2676</div>
2677
2678<!-- _______________________________________________________________________ -->
2679<div class="doc_subsubsection">
2680 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2681</div>
2682
2683<div class="doc_text">
2684
2685<h5>Syntax:</h5>
2686
2687<pre>
2688 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2689</pre>
2690
2691<h5>Overview:</h5>
2692
2693<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2694currently executing function, to be automatically released when this function
2695returns to its caller.</p>
2696
2697<h5>Arguments:</h5>
2698
2699<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2700bytes of memory on the runtime stack, returning a pointer of the
2701appropriate type to the program. If "NumElements" is specified, it is the
2702number of elements allocated. If an alignment is specified, the value result
2703of the allocation is guaranteed to be aligned to at least that boundary. If
2704not specified, or if zero, the target can choose to align the allocation on any
2705convenient boundary.</p>
2706
2707<p>'<tt>type</tt>' may be any sized type.</p>
2708
2709<h5>Semantics:</h5>
2710
2711<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
2712memory is automatically released when the function returns. The '<tt>alloca</tt>'
2713instruction is commonly used to represent automatic variables that must
2714have an address available. When the function returns (either with the <tt><a
2715 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2716instructions), the memory is reclaimed.</p>
2717
2718<h5>Example:</h5>
2719
2720<pre>
2721 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2722 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2723 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2724 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
2725</pre>
2726</div>
2727
2728<!-- _______________________________________________________________________ -->
2729<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2730Instruction</a> </div>
2731<div class="doc_text">
2732<h5>Syntax:</h5>
2733<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2734<h5>Overview:</h5>
2735<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2736<h5>Arguments:</h5>
2737<p>The argument to the '<tt>load</tt>' instruction specifies the memory
2738address from which to load. The pointer must point to a <a
2739 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
2740marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2741the number or order of execution of this <tt>load</tt> with other
2742volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2743instructions. </p>
2744<h5>Semantics:</h5>
2745<p>The location of memory pointed to is loaded.</p>
2746<h5>Examples:</h5>
2747<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2748 <a
2749 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2750 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2751</pre>
2752</div>
2753<!-- _______________________________________________________________________ -->
2754<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2755Instruction</a> </div>
2756<div class="doc_text">
2757<h5>Syntax:</h5>
2758<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2759 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2760</pre>
2761<h5>Overview:</h5>
2762<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2763<h5>Arguments:</h5>
2764<p>There are two arguments to the '<tt>store</tt>' instruction: a value
2765to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
2766operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2767operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2768optimizer is not allowed to modify the number or order of execution of
2769this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2770 href="#i_store">store</a></tt> instructions.</p>
2771<h5>Semantics:</h5>
2772<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2773at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2774<h5>Example:</h5>
2775<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2776 <a
2777 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2778 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2779</pre>
2780</div>
2781
2782<!-- _______________________________________________________________________ -->
2783<div class="doc_subsubsection">
2784 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2785</div>
2786
2787<div class="doc_text">
2788<h5>Syntax:</h5>
2789<pre>
2790 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2791</pre>
2792
2793<h5>Overview:</h5>
2794
2795<p>
2796The '<tt>getelementptr</tt>' instruction is used to get the address of a
2797subelement of an aggregate data structure.</p>
2798
2799<h5>Arguments:</h5>
2800
2801<p>This instruction takes a list of integer operands that indicate what
2802elements of the aggregate object to index to. The actual types of the arguments
2803provided depend on the type of the first pointer argument. The
2804'<tt>getelementptr</tt>' instruction is used to index down through the type
2805levels of a structure or to a specific index in an array. When indexing into a
2806structure, only <tt>i32</tt> integer constants are allowed. When indexing
2807into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2808be sign extended to 64-bit values.</p>
2809
2810<p>For example, let's consider a C code fragment and how it gets
2811compiled to LLVM:</p>
2812
2813<div class="doc_code">
2814<pre>
2815struct RT {
2816 char A;
2817 int B[10][20];
2818 char C;
2819};
2820struct ST {
2821 int X;
2822 double Y;
2823 struct RT Z;
2824};
2825
2826int *foo(struct ST *s) {
2827 return &amp;s[1].Z.B[5][13];
2828}
2829</pre>
2830</div>
2831
2832<p>The LLVM code generated by the GCC frontend is:</p>
2833
2834<div class="doc_code">
2835<pre>
2836%RT = type { i8 , [10 x [20 x i32]], i8 }
2837%ST = type { i32, double, %RT }
2838
2839define i32* %foo(%ST* %s) {
2840entry:
2841 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2842 ret i32* %reg
2843}
2844</pre>
2845</div>
2846
2847<h5>Semantics:</h5>
2848
2849<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2850on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2851and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2852<a href="#t_integer">integer</a> type but the value will always be sign extended
2853to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2854<b>constants</b>.</p>
2855
2856<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2857type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2858}</tt>' type, a structure. The second index indexes into the third element of
2859the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2860i8 }</tt>' type, another structure. The third index indexes into the second
2861element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2862array. The two dimensions of the array are subscripted into, yielding an
2863'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2864to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
2865
2866<p>Note that it is perfectly legal to index partially through a
2867structure, returning a pointer to an inner element. Because of this,
2868the LLVM code for the given testcase is equivalent to:</p>
2869
2870<pre>
2871 define i32* %foo(%ST* %s) {
2872 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2873 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2874 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2875 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2876 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2877 ret i32* %t5
2878 }
2879</pre>
2880
2881<p>Note that it is undefined to access an array out of bounds: array and
2882pointer indexes must always be within the defined bounds of the array type.
2883The one exception for this rules is zero length arrays. These arrays are
2884defined to be accessible as variable length arrays, which requires access
2885beyond the zero'th element.</p>
2886
2887<p>The getelementptr instruction is often confusing. For some more insight
2888into how it works, see <a href="GetElementPtr.html">the getelementptr
2889FAQ</a>.</p>
2890
2891<h5>Example:</h5>
2892
2893<pre>
2894 <i>; yields [12 x i8]*:aptr</i>
2895 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
2896</pre>
2897</div>
2898
2899<!-- ======================================================================= -->
2900<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
2901</div>
2902<div class="doc_text">
2903<p>The instructions in this category are the conversion instructions (casting)
2904which all take a single operand and a type. They perform various bit conversions
2905on the operand.</p>
2906</div>
2907
2908<!-- _______________________________________________________________________ -->
2909<div class="doc_subsubsection">
2910 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2911</div>
2912<div class="doc_text">
2913
2914<h5>Syntax:</h5>
2915<pre>
2916 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2917</pre>
2918
2919<h5>Overview:</h5>
2920<p>
2921The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2922</p>
2923
2924<h5>Arguments:</h5>
2925<p>
2926The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2927be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2928and type of the result, which must be an <a href="#t_integer">integer</a>
2929type. The bit size of <tt>value</tt> must be larger than the bit size of
2930<tt>ty2</tt>. Equal sized types are not allowed.</p>
2931
2932<h5>Semantics:</h5>
2933<p>
2934The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2935and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2936larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2937It will always truncate bits.</p>
2938
2939<h5>Example:</h5>
2940<pre>
2941 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
2942 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2943 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
2944</pre>
2945</div>
2946
2947<!-- _______________________________________________________________________ -->
2948<div class="doc_subsubsection">
2949 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2950</div>
2951<div class="doc_text">
2952
2953<h5>Syntax:</h5>
2954<pre>
2955 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2956</pre>
2957
2958<h5>Overview:</h5>
2959<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2960<tt>ty2</tt>.</p>
2961
2962
2963<h5>Arguments:</h5>
2964<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2965<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2966also be of <a href="#t_integer">integer</a> type. The bit size of the
2967<tt>value</tt> must be smaller than the bit size of the destination type,
2968<tt>ty2</tt>.</p>
2969
2970<h5>Semantics:</h5>
2971<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2972bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
2973
2974<p>When zero extending from i1, the result will always be either 0 or 1.</p>
2975
2976<h5>Example:</h5>
2977<pre>
2978 %X = zext i32 257 to i64 <i>; yields i64:257</i>
2979 %Y = zext i1 true to i32 <i>; yields i32:1</i>
2980</pre>
2981</div>
2982
2983<!-- _______________________________________________________________________ -->
2984<div class="doc_subsubsection">
2985 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2986</div>
2987<div class="doc_text">
2988
2989<h5>Syntax:</h5>
2990<pre>
2991 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2992</pre>
2993
2994<h5>Overview:</h5>
2995<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2996
2997<h5>Arguments:</h5>
2998<p>
2999The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3000<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3001also be of <a href="#t_integer">integer</a> type. The bit size of the
3002<tt>value</tt> must be smaller than the bit size of the destination type,
3003<tt>ty2</tt>.</p>
3004
3005<h5>Semantics:</h5>
3006<p>
3007The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3008bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3009the type <tt>ty2</tt>.</p>
3010
3011<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3012
3013<h5>Example:</h5>
3014<pre>
3015 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3016 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3017</pre>
3018</div>
3019
3020<!-- _______________________________________________________________________ -->
3021<div class="doc_subsubsection">
3022 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3023</div>
3024
3025<div class="doc_text">
3026
3027<h5>Syntax:</h5>
3028
3029<pre>
3030 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3031</pre>
3032
3033<h5>Overview:</h5>
3034<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3035<tt>ty2</tt>.</p>
3036
3037
3038<h5>Arguments:</h5>
3039<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3040 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3041cast it to. The size of <tt>value</tt> must be larger than the size of
3042<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3043<i>no-op cast</i>.</p>
3044
3045<h5>Semantics:</h5>
3046<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3047<a href="#t_floating">floating point</a> type to a smaller
3048<a href="#t_floating">floating point</a> type. If the value cannot fit within
3049the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3050
3051<h5>Example:</h5>
3052<pre>
3053 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3054 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3055</pre>
3056</div>
3057
3058<!-- _______________________________________________________________________ -->
3059<div class="doc_subsubsection">
3060 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3061</div>
3062<div class="doc_text">
3063
3064<h5>Syntax:</h5>
3065<pre>
3066 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3067</pre>
3068
3069<h5>Overview:</h5>
3070<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3071floating point value.</p>
3072
3073<h5>Arguments:</h5>
3074<p>The '<tt>fpext</tt>' instruction takes a
3075<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3076and a <a href="#t_floating">floating point</a> type to cast it to. The source
3077type must be smaller than the destination type.</p>
3078
3079<h5>Semantics:</h5>
3080<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3081<a href="#t_floating">floating point</a> type to a larger
3082<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3083used to make a <i>no-op cast</i> because it always changes bits. Use
3084<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3085
3086<h5>Example:</h5>
3087<pre>
3088 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3089 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3090</pre>
3091</div>
3092
3093<!-- _______________________________________________________________________ -->
3094<div class="doc_subsubsection">
3095 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3096</div>
3097<div class="doc_text">
3098
3099<h5>Syntax:</h5>
3100<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003101 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003102</pre>
3103
3104<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003105<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003106unsigned integer equivalent of type <tt>ty2</tt>.
3107</p>
3108
3109<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003110<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003111<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3112must be an <a href="#t_integer">integer</a> type.</p>
3113
3114<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003115<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003116<a href="#t_floating">floating point</a> operand into the nearest (rounding
3117towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3118the results are undefined.</p>
3119
3120<p>When converting to i1, the conversion is done as a comparison against
3121zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3122If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3123
3124<h5>Example:</h5>
3125<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003126 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
3127 %Y = fptoui float 1.0E+300 to i1 <i>; yields i1:true</i>
3128 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003129</pre>
3130</div>
3131
3132<!-- _______________________________________________________________________ -->
3133<div class="doc_subsubsection">
3134 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3135</div>
3136<div class="doc_text">
3137
3138<h5>Syntax:</h5>
3139<pre>
3140 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3141</pre>
3142
3143<h5>Overview:</h5>
3144<p>The '<tt>fptosi</tt>' instruction converts
3145<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3146</p>
3147
3148
3149<h5>Arguments:</h5>
3150<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
3151<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3152must also be an <a href="#t_integer">integer</a> type.</p>
3153
3154<h5>Semantics:</h5>
3155<p>The '<tt>fptosi</tt>' instruction converts its
3156<a href="#t_floating">floating point</a> operand into the nearest (rounding
3157towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3158the results are undefined.</p>
3159
3160<p>When converting to i1, the conversion is done as a comparison against
3161zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3162If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3163
3164<h5>Example:</h5>
3165<pre>
3166 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
3167 %Y = fptosi float 1.0E-247 to i1 <i>; yields i1:true</i>
3168 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3169</pre>
3170</div>
3171
3172<!-- _______________________________________________________________________ -->
3173<div class="doc_subsubsection">
3174 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3175</div>
3176<div class="doc_text">
3177
3178<h5>Syntax:</h5>
3179<pre>
3180 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3181</pre>
3182
3183<h5>Overview:</h5>
3184<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3185integer and converts that value to the <tt>ty2</tt> type.</p>
3186
3187
3188<h5>Arguments:</h5>
3189<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
3190<a href="#t_integer">integer</a> value, and a type to cast it to, which must
3191be a <a href="#t_floating">floating point</a> type.</p>
3192
3193<h5>Semantics:</h5>
3194<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3195integer quantity and converts it to the corresponding floating point value. If
3196the value cannot fit in the floating point value, the results are undefined.</p>
3197
3198
3199<h5>Example:</h5>
3200<pre>
3201 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3202 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3203</pre>
3204</div>
3205
3206<!-- _______________________________________________________________________ -->
3207<div class="doc_subsubsection">
3208 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3209</div>
3210<div class="doc_text">
3211
3212<h5>Syntax:</h5>
3213<pre>
3214 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3215</pre>
3216
3217<h5>Overview:</h5>
3218<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3219integer and converts that value to the <tt>ty2</tt> type.</p>
3220
3221<h5>Arguments:</h5>
3222<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
3223<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
3224a <a href="#t_floating">floating point</a> type.</p>
3225
3226<h5>Semantics:</h5>
3227<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3228integer quantity and converts it to the corresponding floating point value. If
3229the value cannot fit in the floating point value, the results are undefined.</p>
3230
3231<h5>Example:</h5>
3232<pre>
3233 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3234 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3235</pre>
3236</div>
3237
3238<!-- _______________________________________________________________________ -->
3239<div class="doc_subsubsection">
3240 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3241</div>
3242<div class="doc_text">
3243
3244<h5>Syntax:</h5>
3245<pre>
3246 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3247</pre>
3248
3249<h5>Overview:</h5>
3250<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3251the integer type <tt>ty2</tt>.</p>
3252
3253<h5>Arguments:</h5>
3254<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3255must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3256<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3257
3258<h5>Semantics:</h5>
3259<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3260<tt>ty2</tt> by interpreting the pointer value as an integer and either
3261truncating or zero extending that value to the size of the integer type. If
3262<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3263<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3264are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3265change.</p>
3266
3267<h5>Example:</h5>
3268<pre>
3269 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3270 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3271</pre>
3272</div>
3273
3274<!-- _______________________________________________________________________ -->
3275<div class="doc_subsubsection">
3276 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3277</div>
3278<div class="doc_text">
3279
3280<h5>Syntax:</h5>
3281<pre>
3282 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3283</pre>
3284
3285<h5>Overview:</h5>
3286<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3287a pointer type, <tt>ty2</tt>.</p>
3288
3289<h5>Arguments:</h5>
3290<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3291value to cast, and a type to cast it to, which must be a
3292<a href="#t_pointer">pointer</a> type.
3293
3294<h5>Semantics:</h5>
3295<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3296<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3297the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3298size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3299the size of a pointer then a zero extension is done. If they are the same size,
3300nothing is done (<i>no-op cast</i>).</p>
3301
3302<h5>Example:</h5>
3303<pre>
3304 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3305 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3306 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3307</pre>
3308</div>
3309
3310<!-- _______________________________________________________________________ -->
3311<div class="doc_subsubsection">
3312 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3313</div>
3314<div class="doc_text">
3315
3316<h5>Syntax:</h5>
3317<pre>
3318 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3319</pre>
3320
3321<h5>Overview:</h5>
3322<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3323<tt>ty2</tt> without changing any bits.</p>
3324
3325<h5>Arguments:</h5>
3326<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3327a first class value, and a type to cast it to, which must also be a <a
3328 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3329and the destination type, <tt>ty2</tt>, must be identical. If the source
3330type is a pointer, the destination type must also be a pointer.</p>
3331
3332<h5>Semantics:</h5>
3333<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3334<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3335this conversion. The conversion is done as if the <tt>value</tt> had been
3336stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3337converted to other pointer types with this instruction. To convert pointers to
3338other types, use the <a href="#i_inttoptr">inttoptr</a> or
3339<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3340
3341<h5>Example:</h5>
3342<pre>
3343 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3344 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3345 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3346</pre>
3347</div>
3348
3349<!-- ======================================================================= -->
3350<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3351<div class="doc_text">
3352<p>The instructions in this category are the "miscellaneous"
3353instructions, which defy better classification.</p>
3354</div>
3355
3356<!-- _______________________________________________________________________ -->
3357<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3358</div>
3359<div class="doc_text">
3360<h5>Syntax:</h5>
3361<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3362</pre>
3363<h5>Overview:</h5>
3364<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3365of its two integer operands.</p>
3366<h5>Arguments:</h5>
3367<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3368the condition code indicating the kind of comparison to perform. It is not
3369a value, just a keyword. The possible condition code are:
3370<ol>
3371 <li><tt>eq</tt>: equal</li>
3372 <li><tt>ne</tt>: not equal </li>
3373 <li><tt>ugt</tt>: unsigned greater than</li>
3374 <li><tt>uge</tt>: unsigned greater or equal</li>
3375 <li><tt>ult</tt>: unsigned less than</li>
3376 <li><tt>ule</tt>: unsigned less or equal</li>
3377 <li><tt>sgt</tt>: signed greater than</li>
3378 <li><tt>sge</tt>: signed greater or equal</li>
3379 <li><tt>slt</tt>: signed less than</li>
3380 <li><tt>sle</tt>: signed less or equal</li>
3381</ol>
3382<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3383<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3384<h5>Semantics:</h5>
3385<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3386the condition code given as <tt>cond</tt>. The comparison performed always
3387yields a <a href="#t_primitive">i1</a> result, as follows:
3388<ol>
3389 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3390 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3391 </li>
3392 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3393 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3394 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3395 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3396 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3397 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3398 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3399 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3400 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3401 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3402 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3403 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3404 <li><tt>sge</tt>: interprets the operands as signed values and yields
3405 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3406 <li><tt>slt</tt>: interprets the operands as signed values and yields
3407 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3408 <li><tt>sle</tt>: interprets the operands as signed values and yields
3409 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3410</ol>
3411<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3412values are compared as if they were integers.</p>
3413
3414<h5>Example:</h5>
3415<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3416 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3417 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3418 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3419 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3420 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3421</pre>
3422</div>
3423
3424<!-- _______________________________________________________________________ -->
3425<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3426</div>
3427<div class="doc_text">
3428<h5>Syntax:</h5>
3429<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3430</pre>
3431<h5>Overview:</h5>
3432<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3433of its floating point operands.</p>
3434<h5>Arguments:</h5>
3435<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3436the condition code indicating the kind of comparison to perform. It is not
3437a value, just a keyword. The possible condition code are:
3438<ol>
3439 <li><tt>false</tt>: no comparison, always returns false</li>
3440 <li><tt>oeq</tt>: ordered and equal</li>
3441 <li><tt>ogt</tt>: ordered and greater than </li>
3442 <li><tt>oge</tt>: ordered and greater than or equal</li>
3443 <li><tt>olt</tt>: ordered and less than </li>
3444 <li><tt>ole</tt>: ordered and less than or equal</li>
3445 <li><tt>one</tt>: ordered and not equal</li>
3446 <li><tt>ord</tt>: ordered (no nans)</li>
3447 <li><tt>ueq</tt>: unordered or equal</li>
3448 <li><tt>ugt</tt>: unordered or greater than </li>
3449 <li><tt>uge</tt>: unordered or greater than or equal</li>
3450 <li><tt>ult</tt>: unordered or less than </li>
3451 <li><tt>ule</tt>: unordered or less than or equal</li>
3452 <li><tt>une</tt>: unordered or not equal</li>
3453 <li><tt>uno</tt>: unordered (either nans)</li>
3454 <li><tt>true</tt>: no comparison, always returns true</li>
3455</ol>
3456<p><i>Ordered</i> means that neither operand is a QNAN while
3457<i>unordered</i> means that either operand may be a QNAN.</p>
3458<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3459<a href="#t_floating">floating point</a> typed. They must have identical
3460types.</p>
3461<h5>Semantics:</h5>
3462<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3463the condition code given as <tt>cond</tt>. The comparison performed always
3464yields a <a href="#t_primitive">i1</a> result, as follows:
3465<ol>
3466 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3467 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3468 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3469 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3470 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3471 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3472 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3473 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3474 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3475 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3476 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3477 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3478 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3479 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3480 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
3481 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3482 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
3483 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3484 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
3485 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3486 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
3487 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3488 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
3489 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3490 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
3491 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3492 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3493 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3494</ol>
3495
3496<h5>Example:</h5>
3497<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3498 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3499 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3500 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3501</pre>
3502</div>
3503
3504<!-- _______________________________________________________________________ -->
3505<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3506Instruction</a> </div>
3507<div class="doc_text">
3508<h5>Syntax:</h5>
3509<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3510<h5>Overview:</h5>
3511<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3512the SSA graph representing the function.</p>
3513<h5>Arguments:</h5>
3514<p>The type of the incoming values is specified with the first type
3515field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3516as arguments, with one pair for each predecessor basic block of the
3517current block. Only values of <a href="#t_firstclass">first class</a>
3518type may be used as the value arguments to the PHI node. Only labels
3519may be used as the label arguments.</p>
3520<p>There must be no non-phi instructions between the start of a basic
3521block and the PHI instructions: i.e. PHI instructions must be first in
3522a basic block.</p>
3523<h5>Semantics:</h5>
3524<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3525specified by the pair corresponding to the predecessor basic block that executed
3526just prior to the current block.</p>
3527<h5>Example:</h5>
3528<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
3529</div>
3530
3531<!-- _______________________________________________________________________ -->
3532<div class="doc_subsubsection">
3533 <a name="i_select">'<tt>select</tt>' Instruction</a>
3534</div>
3535
3536<div class="doc_text">
3537
3538<h5>Syntax:</h5>
3539
3540<pre>
3541 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3542</pre>
3543
3544<h5>Overview:</h5>
3545
3546<p>
3547The '<tt>select</tt>' instruction is used to choose one value based on a
3548condition, without branching.
3549</p>
3550
3551
3552<h5>Arguments:</h5>
3553
3554<p>
3555The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3556</p>
3557
3558<h5>Semantics:</h5>
3559
3560<p>
3561If the boolean condition evaluates to true, the instruction returns the first
3562value argument; otherwise, it returns the second value argument.
3563</p>
3564
3565<h5>Example:</h5>
3566
3567<pre>
3568 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
3569</pre>
3570</div>
3571
3572
3573<!-- _______________________________________________________________________ -->
3574<div class="doc_subsubsection">
3575 <a name="i_call">'<tt>call</tt>' Instruction</a>
3576</div>
3577
3578<div class="doc_text">
3579
3580<h5>Syntax:</h5>
3581<pre>
3582 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
3583</pre>
3584
3585<h5>Overview:</h5>
3586
3587<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3588
3589<h5>Arguments:</h5>
3590
3591<p>This instruction requires several arguments:</p>
3592
3593<ol>
3594 <li>
3595 <p>The optional "tail" marker indicates whether the callee function accesses
3596 any allocas or varargs in the caller. If the "tail" marker is present, the
3597 function call is eligible for tail call optimization. Note that calls may
3598 be marked "tail" even if they do not occur before a <a
3599 href="#i_ret"><tt>ret</tt></a> instruction.
3600 </li>
3601 <li>
3602 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3603 convention</a> the call should use. If none is specified, the call defaults
3604 to using C calling conventions.
3605 </li>
3606 <li>
3607 <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
3608 being invoked. The argument types must match the types implied by this
3609 signature. This type can be omitted if the function is not varargs and
3610 if the function type does not return a pointer to a function.</p>
3611 </li>
3612 <li>
3613 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3614 be invoked. In most cases, this is a direct function invocation, but
3615 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3616 to function value.</p>
3617 </li>
3618 <li>
3619 <p>'<tt>function args</tt>': argument list whose types match the
3620 function signature argument types. All arguments must be of
3621 <a href="#t_firstclass">first class</a> type. If the function signature
3622 indicates the function accepts a variable number of arguments, the extra
3623 arguments can be specified.</p>
3624 </li>
3625</ol>
3626
3627<h5>Semantics:</h5>
3628
3629<p>The '<tt>call</tt>' instruction is used to cause control flow to
3630transfer to a specified function, with its incoming arguments bound to
3631the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3632instruction in the called function, control flow continues with the
3633instruction after the function call, and the return value of the
3634function is bound to the result argument. This is a simpler case of
3635the <a href="#i_invoke">invoke</a> instruction.</p>
3636
3637<h5>Example:</h5>
3638
3639<pre>
3640 %retval = call i32 %test(i32 %argc)
3641 call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8 42);
3642 %X = tail call i32 %foo()
3643 %Y = tail call <a href="#callingconv">fastcc</a> i32 %foo()
3644</pre>
3645
3646</div>
3647
3648<!-- _______________________________________________________________________ -->
3649<div class="doc_subsubsection">
3650 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3651</div>
3652
3653<div class="doc_text">
3654
3655<h5>Syntax:</h5>
3656
3657<pre>
3658 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3659</pre>
3660
3661<h5>Overview:</h5>
3662
3663<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3664the "variable argument" area of a function call. It is used to implement the
3665<tt>va_arg</tt> macro in C.</p>
3666
3667<h5>Arguments:</h5>
3668
3669<p>This instruction takes a <tt>va_list*</tt> value and the type of
3670the argument. It returns a value of the specified argument type and
3671increments the <tt>va_list</tt> to point to the next argument. The
3672actual type of <tt>va_list</tt> is target specific.</p>
3673
3674<h5>Semantics:</h5>
3675
3676<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3677type from the specified <tt>va_list</tt> and causes the
3678<tt>va_list</tt> to point to the next argument. For more information,
3679see the variable argument handling <a href="#int_varargs">Intrinsic
3680Functions</a>.</p>
3681
3682<p>It is legal for this instruction to be called in a function which does not
3683take a variable number of arguments, for example, the <tt>vfprintf</tt>
3684function.</p>
3685
3686<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3687href="#intrinsics">intrinsic function</a> because it takes a type as an
3688argument.</p>
3689
3690<h5>Example:</h5>
3691
3692<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3693
3694</div>
3695
3696<!-- *********************************************************************** -->
3697<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3698<!-- *********************************************************************** -->
3699
3700<div class="doc_text">
3701
3702<p>LLVM supports the notion of an "intrinsic function". These functions have
3703well known names and semantics and are required to follow certain restrictions.
3704Overall, these intrinsics represent an extension mechanism for the LLVM
3705language that does not require changing all of the transformations in LLVM when
3706adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3707
3708<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3709prefix is reserved in LLVM for intrinsic names; thus, function names may not
3710begin with this prefix. Intrinsic functions must always be external functions:
3711you cannot define the body of intrinsic functions. Intrinsic functions may
3712only be used in call or invoke instructions: it is illegal to take the address
3713of an intrinsic function. Additionally, because intrinsic functions are part
3714of the LLVM language, it is required if any are added that they be documented
3715here.</p>
3716
3717<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3718a family of functions that perform the same operation but on different data
3719types. This is most frequent with the integer types. Since LLVM can represent
3720over 8 million different integer types, there is a way to declare an intrinsic
3721that can be overloaded based on its arguments. Such an intrinsic will have the
3722names of its argument types encoded into its function name, each
3723preceded by a period. For example, the <tt>llvm.ctpop</tt> function can take an
3724integer of any width. This leads to a family of functions such as
3725<tt>i32 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i32 @llvm.ctpop.i29(i29 %val)</tt>.
3726</p>
3727
3728
3729<p>To learn how to add an intrinsic function, please see the
3730<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3731</p>
3732
3733</div>
3734
3735<!-- ======================================================================= -->
3736<div class="doc_subsection">
3737 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3738</div>
3739
3740<div class="doc_text">
3741
3742<p>Variable argument support is defined in LLVM with the <a
3743 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3744intrinsic functions. These functions are related to the similarly
3745named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3746
3747<p>All of these functions operate on arguments that use a
3748target-specific value type "<tt>va_list</tt>". The LLVM assembly
3749language reference manual does not define what this type is, so all
3750transformations should be prepared to handle these functions regardless of
3751the type used.</p>
3752
3753<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3754instruction and the variable argument handling intrinsic functions are
3755used.</p>
3756
3757<div class="doc_code">
3758<pre>
3759define i32 @test(i32 %X, ...) {
3760 ; Initialize variable argument processing
3761 %ap = alloca i8*
3762 %ap2 = bitcast i8** %ap to i8*
3763 call void @llvm.va_start(i8* %ap2)
3764
3765 ; Read a single integer argument
3766 %tmp = va_arg i8** %ap, i32
3767
3768 ; Demonstrate usage of llvm.va_copy and llvm.va_end
3769 %aq = alloca i8*
3770 %aq2 = bitcast i8** %aq to i8*
3771 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3772 call void @llvm.va_end(i8* %aq2)
3773
3774 ; Stop processing of arguments.
3775 call void @llvm.va_end(i8* %ap2)
3776 ret i32 %tmp
3777}
3778
3779declare void @llvm.va_start(i8*)
3780declare void @llvm.va_copy(i8*, i8*)
3781declare void @llvm.va_end(i8*)
3782</pre>
3783</div>
3784
3785</div>
3786
3787<!-- _______________________________________________________________________ -->
3788<div class="doc_subsubsection">
3789 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3790</div>
3791
3792
3793<div class="doc_text">
3794<h5>Syntax:</h5>
3795<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3796<h5>Overview:</h5>
3797<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3798<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3799href="#i_va_arg">va_arg</a></tt>.</p>
3800
3801<h5>Arguments:</h5>
3802
3803<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3804
3805<h5>Semantics:</h5>
3806
3807<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3808macro available in C. In a target-dependent way, it initializes the
3809<tt>va_list</tt> element to which the argument points, so that the next call to
3810<tt>va_arg</tt> will produce the first variable argument passed to the function.
3811Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3812last argument of the function as the compiler can figure that out.</p>
3813
3814</div>
3815
3816<!-- _______________________________________________________________________ -->
3817<div class="doc_subsubsection">
3818 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3819</div>
3820
3821<div class="doc_text">
3822<h5>Syntax:</h5>
3823<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3824<h5>Overview:</h5>
3825
3826<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3827which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3828or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3829
3830<h5>Arguments:</h5>
3831
3832<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3833
3834<h5>Semantics:</h5>
3835
3836<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3837macro available in C. In a target-dependent way, it destroys the
3838<tt>va_list</tt> element to which the argument points. Calls to <a
3839href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3840<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3841<tt>llvm.va_end</tt>.</p>
3842
3843</div>
3844
3845<!-- _______________________________________________________________________ -->
3846<div class="doc_subsubsection">
3847 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3848</div>
3849
3850<div class="doc_text">
3851
3852<h5>Syntax:</h5>
3853
3854<pre>
3855 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
3856</pre>
3857
3858<h5>Overview:</h5>
3859
3860<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3861from the source argument list to the destination argument list.</p>
3862
3863<h5>Arguments:</h5>
3864
3865<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
3866The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
3867
3868
3869<h5>Semantics:</h5>
3870
3871<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3872macro available in C. In a target-dependent way, it copies the source
3873<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3874intrinsic is necessary because the <tt><a href="#int_va_start">
3875llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3876example, memory allocation.</p>
3877
3878</div>
3879
3880<!-- ======================================================================= -->
3881<div class="doc_subsection">
3882 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3883</div>
3884
3885<div class="doc_text">
3886
3887<p>
3888LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3889Collection</a> requires the implementation and generation of these intrinsics.
3890These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
3891stack</a>, as well as garbage collector implementations that require <a
3892href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
3893Front-ends for type-safe garbage collected languages should generate these
3894intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3895href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3896</p>
3897</div>
3898
3899<!-- _______________________________________________________________________ -->
3900<div class="doc_subsubsection">
3901 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3902</div>
3903
3904<div class="doc_text">
3905
3906<h5>Syntax:</h5>
3907
3908<pre>
3909 declare void @llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
3910</pre>
3911
3912<h5>Overview:</h5>
3913
3914<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
3915the code generator, and allows some metadata to be associated with it.</p>
3916
3917<h5>Arguments:</h5>
3918
3919<p>The first argument specifies the address of a stack object that contains the
3920root pointer. The second pointer (which must be either a constant or a global
3921value address) contains the meta-data to be associated with the root.</p>
3922
3923<h5>Semantics:</h5>
3924
3925<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3926location. At compile-time, the code generator generates information to allow
3927the runtime to find the pointer at GC safe points.
3928</p>
3929
3930</div>
3931
3932
3933<!-- _______________________________________________________________________ -->
3934<div class="doc_subsubsection">
3935 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3936</div>
3937
3938<div class="doc_text">
3939
3940<h5>Syntax:</h5>
3941
3942<pre>
3943 declare i8 * @llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
3944</pre>
3945
3946<h5>Overview:</h5>
3947
3948<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3949locations, allowing garbage collector implementations that require read
3950barriers.</p>
3951
3952<h5>Arguments:</h5>
3953
3954<p>The second argument is the address to read from, which should be an address
3955allocated from the garbage collector. The first object is a pointer to the
3956start of the referenced object, if needed by the language runtime (otherwise
3957null).</p>
3958
3959<h5>Semantics:</h5>
3960
3961<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3962instruction, but may be replaced with substantially more complex code by the
3963garbage collector runtime, as needed.</p>
3964
3965</div>
3966
3967
3968<!-- _______________________________________________________________________ -->
3969<div class="doc_subsubsection">
3970 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3971</div>
3972
3973<div class="doc_text">
3974
3975<h5>Syntax:</h5>
3976
3977<pre>
3978 declare void @llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
3979</pre>
3980
3981<h5>Overview:</h5>
3982
3983<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3984locations, allowing garbage collector implementations that require write
3985barriers (such as generational or reference counting collectors).</p>
3986
3987<h5>Arguments:</h5>
3988
3989<p>The first argument is the reference to store, the second is the start of the
3990object to store it to, and the third is the address of the field of Obj to
3991store to. If the runtime does not require a pointer to the object, Obj may be
3992null.</p>
3993
3994<h5>Semantics:</h5>
3995
3996<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
3997instruction, but may be replaced with substantially more complex code by the
3998garbage collector runtime, as needed.</p>
3999
4000</div>
4001
4002
4003
4004<!-- ======================================================================= -->
4005<div class="doc_subsection">
4006 <a name="int_codegen">Code Generator Intrinsics</a>
4007</div>
4008
4009<div class="doc_text">
4010<p>
4011These intrinsics are provided by LLVM to expose special features that may only
4012be implemented with code generator support.
4013</p>
4014
4015</div>
4016
4017<!-- _______________________________________________________________________ -->
4018<div class="doc_subsubsection">
4019 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4020</div>
4021
4022<div class="doc_text">
4023
4024<h5>Syntax:</h5>
4025<pre>
4026 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4027</pre>
4028
4029<h5>Overview:</h5>
4030
4031<p>
4032The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4033target-specific value indicating the return address of the current function
4034or one of its callers.
4035</p>
4036
4037<h5>Arguments:</h5>
4038
4039<p>
4040The argument to this intrinsic indicates which function to return the address
4041for. Zero indicates the calling function, one indicates its caller, etc. The
4042argument is <b>required</b> to be a constant integer value.
4043</p>
4044
4045<h5>Semantics:</h5>
4046
4047<p>
4048The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4049the return address of the specified call frame, or zero if it cannot be
4050identified. The value returned by this intrinsic is likely to be incorrect or 0
4051for arguments other than zero, so it should only be used for debugging purposes.
4052</p>
4053
4054<p>
4055Note that calling this intrinsic does not prevent function inlining or other
4056aggressive transformations, so the value returned may not be that of the obvious
4057source-language caller.
4058</p>
4059</div>
4060
4061
4062<!-- _______________________________________________________________________ -->
4063<div class="doc_subsubsection">
4064 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4065</div>
4066
4067<div class="doc_text">
4068
4069<h5>Syntax:</h5>
4070<pre>
4071 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
4072</pre>
4073
4074<h5>Overview:</h5>
4075
4076<p>
4077The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4078target-specific frame pointer value for the specified stack frame.
4079</p>
4080
4081<h5>Arguments:</h5>
4082
4083<p>
4084The argument to this intrinsic indicates which function to return the frame
4085pointer for. Zero indicates the calling function, one indicates its caller,
4086etc. The argument is <b>required</b> to be a constant integer value.
4087</p>
4088
4089<h5>Semantics:</h5>
4090
4091<p>
4092The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4093the frame address of the specified call frame, or zero if it cannot be
4094identified. The value returned by this intrinsic is likely to be incorrect or 0
4095for arguments other than zero, so it should only be used for debugging purposes.
4096</p>
4097
4098<p>
4099Note that calling this intrinsic does not prevent function inlining or other
4100aggressive transformations, so the value returned may not be that of the obvious
4101source-language caller.
4102</p>
4103</div>
4104
4105<!-- _______________________________________________________________________ -->
4106<div class="doc_subsubsection">
4107 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4108</div>
4109
4110<div class="doc_text">
4111
4112<h5>Syntax:</h5>
4113<pre>
4114 declare i8 *@llvm.stacksave()
4115</pre>
4116
4117<h5>Overview:</h5>
4118
4119<p>
4120The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4121the function stack, for use with <a href="#int_stackrestore">
4122<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4123features like scoped automatic variable sized arrays in C99.
4124</p>
4125
4126<h5>Semantics:</h5>
4127
4128<p>
4129This intrinsic returns a opaque pointer value that can be passed to <a
4130href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4131<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4132<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4133state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4134practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4135that were allocated after the <tt>llvm.stacksave</tt> was executed.
4136</p>
4137
4138</div>
4139
4140<!-- _______________________________________________________________________ -->
4141<div class="doc_subsubsection">
4142 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4143</div>
4144
4145<div class="doc_text">
4146
4147<h5>Syntax:</h5>
4148<pre>
4149 declare void @llvm.stackrestore(i8 * %ptr)
4150</pre>
4151
4152<h5>Overview:</h5>
4153
4154<p>
4155The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4156the function stack to the state it was in when the corresponding <a
4157href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4158useful for implementing language features like scoped automatic variable sized
4159arrays in C99.
4160</p>
4161
4162<h5>Semantics:</h5>
4163
4164<p>
4165See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4166</p>
4167
4168</div>
4169
4170
4171<!-- _______________________________________________________________________ -->
4172<div class="doc_subsubsection">
4173 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4174</div>
4175
4176<div class="doc_text">
4177
4178<h5>Syntax:</h5>
4179<pre>
4180 declare void @llvm.prefetch(i8 * &lt;address&gt;,
4181 i32 &lt;rw&gt;, i32 &lt;locality&gt;)
4182</pre>
4183
4184<h5>Overview:</h5>
4185
4186
4187<p>
4188The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4189a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4190no
4191effect on the behavior of the program but can change its performance
4192characteristics.
4193</p>
4194
4195<h5>Arguments:</h5>
4196
4197<p>
4198<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4199determining if the fetch should be for a read (0) or write (1), and
4200<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4201locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4202<tt>locality</tt> arguments must be constant integers.
4203</p>
4204
4205<h5>Semantics:</h5>
4206
4207<p>
4208This intrinsic does not modify the behavior of the program. In particular,
4209prefetches cannot trap and do not produce a value. On targets that support this
4210intrinsic, the prefetch can provide hints to the processor cache for better
4211performance.
4212</p>
4213
4214</div>
4215
4216<!-- _______________________________________________________________________ -->
4217<div class="doc_subsubsection">
4218 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4219</div>
4220
4221<div class="doc_text">
4222
4223<h5>Syntax:</h5>
4224<pre>
4225 declare void @llvm.pcmarker( i32 &lt;id&gt; )
4226</pre>
4227
4228<h5>Overview:</h5>
4229
4230
4231<p>
4232The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4233(PC) in a region of
4234code to simulators and other tools. The method is target specific, but it is
4235expected that the marker will use exported symbols to transmit the PC of the marker.
4236The marker makes no guarantees that it will remain with any specific instruction
4237after optimizations. It is possible that the presence of a marker will inhibit
4238optimizations. The intended use is to be inserted after optimizations to allow
4239correlations of simulation runs.
4240</p>
4241
4242<h5>Arguments:</h5>
4243
4244<p>
4245<tt>id</tt> is a numerical id identifying the marker.
4246</p>
4247
4248<h5>Semantics:</h5>
4249
4250<p>
4251This intrinsic does not modify the behavior of the program. Backends that do not
4252support this intrinisic may ignore it.
4253</p>
4254
4255</div>
4256
4257<!-- _______________________________________________________________________ -->
4258<div class="doc_subsubsection">
4259 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4260</div>
4261
4262<div class="doc_text">
4263
4264<h5>Syntax:</h5>
4265<pre>
4266 declare i64 @llvm.readcyclecounter( )
4267</pre>
4268
4269<h5>Overview:</h5>
4270
4271
4272<p>
4273The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4274counter register (or similar low latency, high accuracy clocks) on those targets
4275that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4276As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4277should only be used for small timings.
4278</p>
4279
4280<h5>Semantics:</h5>
4281
4282<p>
4283When directly supported, reading the cycle counter should not modify any memory.
4284Implementations are allowed to either return a application specific value or a
4285system wide value. On backends without support, this is lowered to a constant 0.
4286</p>
4287
4288</div>
4289
4290<!-- ======================================================================= -->
4291<div class="doc_subsection">
4292 <a name="int_libc">Standard C Library Intrinsics</a>
4293</div>
4294
4295<div class="doc_text">
4296<p>
4297LLVM provides intrinsics for a few important standard C library functions.
4298These intrinsics allow source-language front-ends to pass information about the
4299alignment of the pointer arguments to the code generator, providing opportunity
4300for more efficient code generation.
4301</p>
4302
4303</div>
4304
4305<!-- _______________________________________________________________________ -->
4306<div class="doc_subsubsection">
4307 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4308</div>
4309
4310<div class="doc_text">
4311
4312<h5>Syntax:</h5>
4313<pre>
4314 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4315 i32 &lt;len&gt;, i32 &lt;align&gt;)
4316 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4317 i64 &lt;len&gt;, i32 &lt;align&gt;)
4318</pre>
4319
4320<h5>Overview:</h5>
4321
4322<p>
4323The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4324location to the destination location.
4325</p>
4326
4327<p>
4328Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4329intrinsics do not return a value, and takes an extra alignment argument.
4330</p>
4331
4332<h5>Arguments:</h5>
4333
4334<p>
4335The first argument is a pointer to the destination, the second is a pointer to
4336the source. The third argument is an integer argument
4337specifying the number of bytes to copy, and the fourth argument is the alignment
4338of the source and destination locations.
4339</p>
4340
4341<p>
4342If the call to this intrinisic has an alignment value that is not 0 or 1, then
4343the caller guarantees that both the source and destination pointers are aligned
4344to that boundary.
4345</p>
4346
4347<h5>Semantics:</h5>
4348
4349<p>
4350The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4351location to the destination location, which are not allowed to overlap. It
4352copies "len" bytes of memory over. If the argument is known to be aligned to
4353some boundary, this can be specified as the fourth argument, otherwise it should
4354be set to 0 or 1.
4355</p>
4356</div>
4357
4358
4359<!-- _______________________________________________________________________ -->
4360<div class="doc_subsubsection">
4361 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4362</div>
4363
4364<div class="doc_text">
4365
4366<h5>Syntax:</h5>
4367<pre>
4368 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4369 i32 &lt;len&gt;, i32 &lt;align&gt;)
4370 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4371 i64 &lt;len&gt;, i32 &lt;align&gt;)
4372</pre>
4373
4374<h5>Overview:</h5>
4375
4376<p>
4377The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4378location to the destination location. It is similar to the
4379'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
4380</p>
4381
4382<p>
4383Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4384intrinsics do not return a value, and takes an extra alignment argument.
4385</p>
4386
4387<h5>Arguments:</h5>
4388
4389<p>
4390The first argument is a pointer to the destination, the second is a pointer to
4391the source. The third argument is an integer argument
4392specifying the number of bytes to copy, and the fourth argument is the alignment
4393of the source and destination locations.
4394</p>
4395
4396<p>
4397If the call to this intrinisic has an alignment value that is not 0 or 1, then
4398the caller guarantees that the source and destination pointers are aligned to
4399that boundary.
4400</p>
4401
4402<h5>Semantics:</h5>
4403
4404<p>
4405The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4406location to the destination location, which may overlap. It
4407copies "len" bytes of memory over. If the argument is known to be aligned to
4408some boundary, this can be specified as the fourth argument, otherwise it should
4409be set to 0 or 1.
4410</p>
4411</div>
4412
4413
4414<!-- _______________________________________________________________________ -->
4415<div class="doc_subsubsection">
4416 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4417</div>
4418
4419<div class="doc_text">
4420
4421<h5>Syntax:</h5>
4422<pre>
4423 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4424 i32 &lt;len&gt;, i32 &lt;align&gt;)
4425 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4426 i64 &lt;len&gt;, i32 &lt;align&gt;)
4427</pre>
4428
4429<h5>Overview:</h5>
4430
4431<p>
4432The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4433byte value.
4434</p>
4435
4436<p>
4437Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4438does not return a value, and takes an extra alignment argument.
4439</p>
4440
4441<h5>Arguments:</h5>
4442
4443<p>
4444The first argument is a pointer to the destination to fill, the second is the
4445byte value to fill it with, the third argument is an integer
4446argument specifying the number of bytes to fill, and the fourth argument is the
4447known alignment of destination location.
4448</p>
4449
4450<p>
4451If the call to this intrinisic has an alignment value that is not 0 or 1, then
4452the caller guarantees that the destination pointer is aligned to that boundary.
4453</p>
4454
4455<h5>Semantics:</h5>
4456
4457<p>
4458The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4459the
4460destination location. If the argument is known to be aligned to some boundary,
4461this can be specified as the fourth argument, otherwise it should be set to 0 or
44621.
4463</p>
4464</div>
4465
4466
4467<!-- _______________________________________________________________________ -->
4468<div class="doc_subsubsection">
4469 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4470</div>
4471
4472<div class="doc_text">
4473
4474<h5>Syntax:</h5>
4475<pre>
4476 declare float @llvm.sqrt.f32(float %Val)
4477 declare double @llvm.sqrt.f64(double %Val)
4478</pre>
4479
4480<h5>Overview:</h5>
4481
4482<p>
4483The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
4484returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4485<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4486negative numbers (which allows for better optimization).
4487</p>
4488
4489<h5>Arguments:</h5>
4490
4491<p>
4492The argument and return value are floating point numbers of the same type.
4493</p>
4494
4495<h5>Semantics:</h5>
4496
4497<p>
4498This function returns the sqrt of the specified operand if it is a nonnegative
4499floating point number.
4500</p>
4501</div>
4502
4503<!-- _______________________________________________________________________ -->
4504<div class="doc_subsubsection">
4505 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4506</div>
4507
4508<div class="doc_text">
4509
4510<h5>Syntax:</h5>
4511<pre>
4512 declare float @llvm.powi.f32(float %Val, i32 %power)
4513 declare double @llvm.powi.f64(double %Val, i32 %power)
4514</pre>
4515
4516<h5>Overview:</h5>
4517
4518<p>
4519The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4520specified (positive or negative) power. The order of evaluation of
4521multiplications is not defined.
4522</p>
4523
4524<h5>Arguments:</h5>
4525
4526<p>
4527The second argument is an integer power, and the first is a value to raise to
4528that power.
4529</p>
4530
4531<h5>Semantics:</h5>
4532
4533<p>
4534This function returns the first value raised to the second power with an
4535unspecified sequence of rounding operations.</p>
4536</div>
4537
4538
4539<!-- ======================================================================= -->
4540<div class="doc_subsection">
4541 <a name="int_manip">Bit Manipulation Intrinsics</a>
4542</div>
4543
4544<div class="doc_text">
4545<p>
4546LLVM provides intrinsics for a few important bit manipulation operations.
4547These allow efficient code generation for some algorithms.
4548</p>
4549
4550</div>
4551
4552<!-- _______________________________________________________________________ -->
4553<div class="doc_subsubsection">
4554 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4555</div>
4556
4557<div class="doc_text">
4558
4559<h5>Syntax:</h5>
4560<p>This is an overloaded intrinsic function. You can use bswap on any integer
4561type that is an even number of bytes (i.e. BitWidth % 16 == 0). Note the suffix
4562that includes the type for the result and the operand.
4563<pre>
4564 declare i16 @llvm.bswap.i16.i16(i16 &lt;id&gt;)
4565 declare i32 @llvm.bswap.i32.i32(i32 &lt;id&gt;)
4566 declare i64 @llvm.bswap.i64.i64(i64 &lt;id&gt;)
4567</pre>
4568
4569<h5>Overview:</h5>
4570
4571<p>
4572The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
4573values with an even number of bytes (positive multiple of 16 bits). These are
4574useful for performing operations on data that is not in the target's native
4575byte order.
4576</p>
4577
4578<h5>Semantics:</h5>
4579
4580<p>
4581The <tt>llvm.bswap.16.i16</tt> intrinsic returns an i16 value that has the high
4582and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4583intrinsic returns an i32 value that has the four bytes of the input i32
4584swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
4585i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48.i48</tt>,
4586<tt>llvm.bswap.i64.i64</tt> and other intrinsics extend this concept to
4587additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4588</p>
4589
4590</div>
4591
4592<!-- _______________________________________________________________________ -->
4593<div class="doc_subsubsection">
4594 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4595</div>
4596
4597<div class="doc_text">
4598
4599<h5>Syntax:</h5>
4600<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4601width. Not all targets support all bit widths however.
4602<pre>
4603 declare i32 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4604 declare i32 @llvm.ctpop.i16(i16 &lt;src&gt;)
4605 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
4606 declare i32 @llvm.ctpop.i64(i64 &lt;src&gt;)
4607 declare i32 @llvm.ctpop.i256(i256 &lt;src&gt;)
4608</pre>
4609
4610<h5>Overview:</h5>
4611
4612<p>
4613The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4614value.
4615</p>
4616
4617<h5>Arguments:</h5>
4618
4619<p>
4620The only argument is the value to be counted. The argument may be of any
4621integer type. The return type must match the argument type.
4622</p>
4623
4624<h5>Semantics:</h5>
4625
4626<p>
4627The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4628</p>
4629</div>
4630
4631<!-- _______________________________________________________________________ -->
4632<div class="doc_subsubsection">
4633 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4634</div>
4635
4636<div class="doc_text">
4637
4638<h5>Syntax:</h5>
4639<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4640integer bit width. Not all targets support all bit widths however.
4641<pre>
4642 declare i32 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4643 declare i32 @llvm.ctlz.i16(i16 &lt;src&gt;)
4644 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
4645 declare i32 @llvm.ctlz.i64(i64 &lt;src&gt;)
4646 declare i32 @llvm.ctlz.i256(i256 &lt;src&gt;)
4647</pre>
4648
4649<h5>Overview:</h5>
4650
4651<p>
4652The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4653leading zeros in a variable.
4654</p>
4655
4656<h5>Arguments:</h5>
4657
4658<p>
4659The only argument is the value to be counted. The argument may be of any
4660integer type. The return type must match the argument type.
4661</p>
4662
4663<h5>Semantics:</h5>
4664
4665<p>
4666The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4667in a variable. If the src == 0 then the result is the size in bits of the type
4668of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4669</p>
4670</div>
4671
4672
4673
4674<!-- _______________________________________________________________________ -->
4675<div class="doc_subsubsection">
4676 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4677</div>
4678
4679<div class="doc_text">
4680
4681<h5>Syntax:</h5>
4682<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4683integer bit width. Not all targets support all bit widths however.
4684<pre>
4685 declare i32 @llvm.cttz.i8 (i8 &lt;src&gt;)
4686 declare i32 @llvm.cttz.i16(i16 &lt;src&gt;)
4687 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
4688 declare i32 @llvm.cttz.i64(i64 &lt;src&gt;)
4689 declare i32 @llvm.cttz.i256(i256 &lt;src&gt;)
4690</pre>
4691
4692<h5>Overview:</h5>
4693
4694<p>
4695The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4696trailing zeros.
4697</p>
4698
4699<h5>Arguments:</h5>
4700
4701<p>
4702The only argument is the value to be counted. The argument may be of any
4703integer type. The return type must match the argument type.
4704</p>
4705
4706<h5>Semantics:</h5>
4707
4708<p>
4709The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4710in a variable. If the src == 0 then the result is the size in bits of the type
4711of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4712</p>
4713</div>
4714
4715<!-- _______________________________________________________________________ -->
4716<div class="doc_subsubsection">
4717 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
4718</div>
4719
4720<div class="doc_text">
4721
4722<h5>Syntax:</h5>
4723<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
4724on any integer bit width.
4725<pre>
4726 declare i17 @llvm.part.select.i17.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4727 declare i29 @llvm.part.select.i29.i29 (i29 %val, i32 %loBit, i32 %hiBit)
4728</pre>
4729
4730<h5>Overview:</h5>
4731<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
4732range of bits from an integer value and returns them in the same bit width as
4733the original value.</p>
4734
4735<h5>Arguments:</h5>
4736<p>The first argument, <tt>%val</tt> and the result may be integer types of
4737any bit width but they must have the same bit width. The second and third
4738arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
4739
4740<h5>Semantics:</h5>
4741<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
4742of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4743<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4744operates in forward mode.</p>
4745<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4746right by <tt>%loBit</tt> bits and then ANDing it with a mask with
4747only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4748<ol>
4749 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4750 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4751 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4752 to determine the number of bits to retain.</li>
4753 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4754 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4755</ol>
4756<p>In reverse mode, a similar computation is made except that the bits are
4757returned in the reverse order. So, for example, if <tt>X</tt> has the value
4758<tt>i16 0x0ACF (101011001111)</tt> and we apply
4759<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4760<tt>i16 0x0026 (000000100110)</tt>.</p>
4761</div>
4762
4763<div class="doc_subsubsection">
4764 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4765</div>
4766
4767<div class="doc_text">
4768
4769<h5>Syntax:</h5>
4770<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4771on any integer bit width.
4772<pre>
4773 declare i17 @llvm.part.set.i17.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4774 declare i29 @llvm.part.set.i29.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
4775</pre>
4776
4777<h5>Overview:</h5>
4778<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4779of bits in an integer value with another integer value. It returns the integer
4780with the replaced bits.</p>
4781
4782<h5>Arguments:</h5>
4783<p>The first argument, <tt>%val</tt> and the result may be integer types of
4784any bit width but they must have the same bit width. <tt>%val</tt> is the value
4785whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4786integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4787type since they specify only a bit index.</p>
4788
4789<h5>Semantics:</h5>
4790<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4791of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4792<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4793operates in forward mode.</p>
4794<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4795truncating it down to the size of the replacement area or zero extending it
4796up to that size.</p>
4797<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4798are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4799in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4800to the <tt>%hi</tt>th bit.
4801<p>In reverse mode, a similar computation is made except that the bits are
4802reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4803<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
4804<h5>Examples:</h5>
4805<pre>
4806 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
4807 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4808 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4809 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
4810 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
4811</pre>
4812</div>
4813
4814<!-- ======================================================================= -->
4815<div class="doc_subsection">
4816 <a name="int_debugger">Debugger Intrinsics</a>
4817</div>
4818
4819<div class="doc_text">
4820<p>
4821The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4822are described in the <a
4823href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4824Debugging</a> document.
4825</p>
4826</div>
4827
4828
4829<!-- ======================================================================= -->
4830<div class="doc_subsection">
4831 <a name="int_eh">Exception Handling Intrinsics</a>
4832</div>
4833
4834<div class="doc_text">
4835<p> The LLVM exception handling intrinsics (which all start with
4836<tt>llvm.eh.</tt> prefix), are described in the <a
4837href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4838Handling</a> document. </p>
4839</div>
4840
4841<!-- ======================================================================= -->
4842<div class="doc_subsection">
Chandler Carruthc0470a82007-07-20 19:34:37 +00004843 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
4844</div>
4845
4846<div class="doc_text">
4847<p>
4848 These intrinsic functions expand the "universal IR" of LLVM to represent
4849 hardware constructs for atomic operations and memory synchronization. This
4850 provides an interface to the hardware, not an interface to the programmer. It
4851 is aimed at a low enough level to allow any programming models or APIs which
4852 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004853 hardware behavior. Just as hardware provides a "universal IR" for source
Chandler Carruthc0470a82007-07-20 19:34:37 +00004854 languages, it also provides a starting point for developing a "universal"
4855 atomic operation and synchronization IR.
4856</p>
4857<p>
4858 These do <em>not</em> form an API such as high-level threading libraries,
4859 software transaction memory systems, atomic primitives, and intrinsic
Reid Spencerb043f672007-07-20 19:59:11 +00004860 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
Chandler Carruthc0470a82007-07-20 19:34:37 +00004861 application libraries. The hardware interface provided by LLVM should allow
4862 a clean implementation of all of these APIs and parallel programming models.
4863 No one model or paradigm should be selected above others unless the hardware
4864 itself ubiquitously does so.
4865</p>
4866</div>
4867
4868<!-- _______________________________________________________________________ -->
4869<div class="doc_subsubsection">
4870 <a name="int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
4871</div>
4872<div class="doc_text">
4873<h5>Syntax:</h5>
4874<p>
4875 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004876 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004877<pre>
4878declare i8 @llvm.atomic.lcs.i8.i8p.i8.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
4879declare i16 @llvm.atomic.lcs.i16.i16p.i16.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
4880declare i32 @llvm.atomic.lcs.i32.i32p.i32.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
4881declare i64 @llvm.atomic.lcs.i64.i64p.i64.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
4882</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004883<h5>Overview:</h5>
4884<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004885 This loads a value in memory and compares it to a given value. If they are
4886 equal, it stores a new value into the memory.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004887</p>
4888<h5>Arguments:</h5>
4889<p>
4890 The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as
4891 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
4892 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
4893 this integer type. While any bit width integer may be used, targets may only
4894 lower representations they support in hardware.
4895</p>
4896<h5>Semantics:</h5>
4897<p>
4898 This entire intrinsic must be executed atomically. It first loads the value
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004899 in memory pointed to by <tt>ptr</tt> and compares it with the value
4900 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
4901 loaded value is yielded in all cases. This provides the equivalent of an
4902 atomic compare-and-swap operation within the SSA framework.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004903</p>
4904<h5>Examples:</h5>
4905<pre>
4906%ptr = malloc i32
4907 store i32 4, %ptr
4908
4909%val1 = add i32 4, 4
4910%result1 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 4, %val1 )
4911 <i>; yields {i32}:result1 = 4</i>
4912%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4913%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4914
4915%val2 = add i32 1, 1
4916%result2 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 5, %val2 )
4917 <i>; yields {i32}:result2 = 8</i>
4918%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
4919%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
4920</pre>
4921</div>
4922
4923<!-- _______________________________________________________________________ -->
4924<div class="doc_subsubsection">
4925 <a name="int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a>
4926</div>
4927<div class="doc_text">
4928<h5>Syntax:</h5>
4929<p>
4930 This is an overloaded intrinsic. You can use <tt>llvm.atomic.ls</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004931 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004932<pre>
4933declare i8 @llvm.atomic.ls.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
4934declare i16 @llvm.atomic.ls.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
4935declare i32 @llvm.atomic.ls.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
4936declare i64 @llvm.atomic.ls.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
4937</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004938<h5>Overview:</h5>
4939<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004940 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
4941 the value from memory. It then stores the value in <tt>val</tt> in the memory
4942 at <tt>ptr</tt>.
Chandler Carruthc0470a82007-07-20 19:34:37 +00004943</p>
4944<h5>Arguments:</h5>
4945<p>
4946 The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the
4947 <tt>val</tt> argument and the result must be integers of the same bit width.
4948 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
4949 integer type. The targets may only lower integer representations they
4950 support.
4951</p>
4952<h5>Semantics:</h5>
4953<p>
4954 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
4955 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
4956 equivalent of an atomic swap operation within the SSA framework.
4957</p>
4958<h5>Examples:</h5>
4959<pre>
4960%ptr = malloc i32
4961 store i32 4, %ptr
4962
4963%val1 = add i32 4, 4
4964%result1 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val1 )
4965 <i>; yields {i32}:result1 = 4</i>
4966%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4967%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4968
4969%val2 = add i32 1, 1
4970%result2 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val2 )
4971 <i>; yields {i32}:result2 = 8</i>
4972%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
4973%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
4974</pre>
4975 </div>
4976
4977<!-- _______________________________________________________________________ -->
4978<div class="doc_subsubsection">
4979 <a name="int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
4980</div>
4981<div class="doc_text">
4982<h5>Syntax:</h5>
4983<p>
4984 This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00004985 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004986<pre>
4987declare i8 @llvm.atomic.las.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
4988declare i16 @llvm.atomic.las.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
4989declare i32 @llvm.atomic.las.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
4990declare i64 @llvm.atomic.las.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
4991</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00004992<h5>Overview:</h5>
4993<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00004994 This intrinsic adds <tt>delta</tt> to the value stored in memory at
Chandler Carruthc0470a82007-07-20 19:34:37 +00004995 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
4996</p>
4997<h5>Arguments:</h5>
4998<p>
4999 The intrinsic takes two arguments, the first a pointer to an integer value
5000 and the second an integer value. The result is also an integer value. These
5001 integer types can have any bit width, but they must all have the same bit
5002 width. The targets may only lower integer representations they support.
5003</p>
5004<h5>Semantics:</h5>
5005<p>
5006 This intrinsic does a series of operations atomically. It first loads the
5007 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5008 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5009</p>
5010<h5>Examples:</h5>
5011<pre>
5012%ptr = malloc i32
5013 store i32 4, %ptr
5014%result1 = call i32 @llvm.atomic.las( i32* %ptr, i32 4 )
5015 <i>; yields {i32}:result1 = 4</i>
5016%result2 = call i32 @llvm.atomic.las( i32* %ptr, i32 2 )
5017 <i>; yields {i32}:result2 = 8</i>
5018%result3 = call i32 @llvm.atomic.las( i32* %ptr, i32 5 )
5019 <i>; yields {i32}:result3 = 10</i>
5020%memval = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
5021</pre>
5022</div>
5023
5024<!-- _______________________________________________________________________ -->
5025<div class="doc_subsubsection">
5026 <a name="int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a>
5027</div>
5028<div class="doc_text">
5029<h5>Syntax:</h5>
5030<p>
5031 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lss</tt> on any
Reid Spencerb043f672007-07-20 19:59:11 +00005032 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005033<pre>
5034declare i8 @llvm.atomic.lss.i8.i8.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5035declare i16 @llvm.atomic.lss.i16.i16.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5036declare i32 @llvm.atomic.lss.i32.i32.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5037declare i64 @llvm.atomic.lss.i64.i64.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5038</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005039<h5>Overview:</h5>
5040<p>
Chandler Carruth3060d9a2007-07-20 20:14:52 +00005041 This intrinsic subtracts <tt>delta</tt> from the value stored in memory at
5042 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
Chandler Carruthc0470a82007-07-20 19:34:37 +00005043</p>
5044<h5>Arguments:</h5>
5045<p>
5046 The intrinsic takes two arguments, the first a pointer to an integer value
5047 and the second an integer value. The result is also an integer value. These
5048 integer types can have any bit width, but they must all have the same bit
5049 width. The targets may only lower integer representations they support.
5050</p>
5051<h5>Semantics:</h5>
5052<p>
5053 This intrinsic does a series of operations atomically. It first loads the
5054 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>,
5055 stores the result to <tt>ptr</tt>. It yields the original value stored
5056 at <tt>ptr</tt>.
5057</p>
5058<h5>Examples:</h5>
5059<pre>
5060%ptr = malloc i32
5061 store i32 32, %ptr
5062%result1 = call i32 @llvm.atomic.lss( i32* %ptr, i32 4 )
5063 <i>; yields {i32}:result1 = 32</i>
5064%result2 = call i32 @llvm.atomic.lss( i32* %ptr, i32 2 )
5065 <i>; yields {i32}:result2 = 28</i>
5066%result3 = call i32 @llvm.atomic.lss( i32* %ptr, i32 5 )
5067 <i>; yields {i32}:result3 = 26</i>
5068%memval = load i32* %ptr <i>; yields {i32}:memval1 = 21</i>
5069</pre>
5070</div>
5071
5072<!-- _______________________________________________________________________ -->
5073<div class="doc_subsubsection">
5074 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5075</div>
5076<div class="doc_text">
5077<h5>Syntax:</h5>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005078<pre>
5079declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt; )
5080</pre>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005081<h5>Overview:</h5>
5082<p>
5083 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5084 specific pairs of memory access types.
5085</p>
5086<h5>Arguments:</h5>
5087<p>
5088 The <tt>llvm.memory.barrier</tt> intrinsic requires four boolean arguments.
5089 Each argument enables a specific barrier as listed below.
Reid Spencerc64165c2007-07-20 20:03:33 +00005090</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005091 <ul>
5092 <li><tt>ll</tt>: load-load barrier</li>
5093 <li><tt>ls</tt>: load-store barrier</li>
5094 <li><tt>sl</tt>: store-load barrier</li>
5095 <li><tt>ss</tt>: store-store barrier</li>
5096 </ul>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005097<h5>Semantics:</h5>
5098<p>
5099 This intrinsic causes the system to enforce some ordering constraints upon
5100 the loads and stores of the program. This barrier does not indicate
5101 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5102 which they occur. For any of the specified pairs of load and store operations
5103 (f.ex. load-load, or store-load), all of the first operations preceding the
5104 barrier will complete before any of the second operations succeeding the
5105 barrier begin. Specifically the semantics for each pairing is as follows:
Reid Spencerc64165c2007-07-20 20:03:33 +00005106</p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005107 <ul>
5108 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5109 after the barrier begins.</li>
5110 <li><tt>ls</tt>: All loads before the barrier must complete before any
5111 store after the barrier begins.</li>
5112 <li><tt>ss</tt>: All stores before the barrier must complete before any
5113 store after the barrier begins.</li>
5114 <li><tt>sl</tt>: All stores before the barrier must complete before any
5115 load after the barrier begins.</li>
5116 </ul>
Reid Spencerc64165c2007-07-20 20:03:33 +00005117<p>
Chandler Carruthc0470a82007-07-20 19:34:37 +00005118 These semantics are applied with a logical "and" behavior when more than one
5119 is enabled in a single memory barrier intrinsic.
5120</p>
5121<h5>Example:</h5>
5122<pre>
5123%ptr = malloc i32
5124 store i32 4, %ptr
5125
5126%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5127 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5128 <i>; guarantee the above finishes</i>
5129 store i32 8, %ptr <i>; before this begins</i>
5130</pre>
5131</div>
5132
5133<!-- ======================================================================= -->
5134<div class="doc_subsection">
Duncan Sands38947cd2007-07-27 12:58:54 +00005135 <a name="int_trampoline">Trampoline Intrinsics</a>
5136</div>
5137
5138<div class="doc_text">
5139<p>
5140 These intrinsics make it possible to excise one parameter, marked with
5141 the <tt>nest</tt> attribute, from a function. The result is a callable
5142 function pointer lacking the nest parameter - the caller does not need
5143 to provide a value for it. Instead, the value to use is stored in
5144 advance in a "trampoline", a block of memory usually allocated
5145 on the stack, which also contains code to splice the nest value into the
5146 argument list. This is used to implement the GCC nested function address
5147 extension.
5148</p>
5149<p>
5150 For example, if the function is
5151 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
5152 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:
5153<pre>
5154 %tramp1 = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5155 %tramp = getelementptr [10 x i8]* %tramp1, i32 0, i32 0
5156 call void @llvm.init.trampoline( i8* %tramp, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5157 %adj = call i8* @llvm.adjust.trampoline( i8* %tramp )
5158 %fp = bitcast i8* %adj to i32 (i32, i32)*
5159</pre>
5160 The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent to
5161 <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.
5162</p>
5163<p>
5164 Trampolines are currently only supported on the X86 architecture.
5165</p>
5166</div>
5167
5168<!-- _______________________________________________________________________ -->
5169<div class="doc_subsubsection">
5170 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5171</div>
5172<div class="doc_text">
5173<h5>Syntax:</h5>
5174<pre>
5175declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
5176</pre>
5177<h5>Overview:</h5>
5178<p>
5179 This initializes the memory pointed to by <tt>tramp</tt> as a trampoline.
5180</p>
5181<h5>Arguments:</h5>
5182<p>
5183 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5184 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5185 and sufficiently aligned block of memory; this memory is written to by the
5186 intrinsic. Currently LLVM provides no help in determining just how big and
5187 aligned the memory needs to be. The <tt>func</tt> argument must hold a
5188 function bitcast to an <tt>i8*</tt>.
5189</p>
5190<h5>Semantics:</h5>
5191<p>
5192 The block of memory pointed to by <tt>tramp</tt> is filled with target
5193 dependent code, turning it into a function.
5194 The new function's signature is the same as that of <tt>func</tt> with
5195 any arguments marked with the <tt>nest</tt> attribute removed. At most
5196 one such <tt>nest</tt> argument is allowed, and it must be of pointer
5197 type. Calling the new function is equivalent to calling <tt>func</tt>
5198 with the same argument list, but with <tt>nval</tt> used for the missing
5199 <tt>nest</tt> argument.
5200</p>
5201</div>
5202
5203<!-- _______________________________________________________________________ -->
5204<div class="doc_subsubsection">
5205 <a name="int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a>
5206</div>
5207<div class="doc_text">
5208<h5>Syntax:</h5>
5209<pre>
5210declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
5211</pre>
5212<h5>Overview:</h5>
5213<p>
5214 This intrinsic returns a function pointer suitable for executing
5215 the trampoline code pointed to by <tt>tramp</tt>.
5216</p>
5217<h5>Arguments:</h5>
5218<p>
5219 The <tt>llvm.adjust.trampoline</tt> takes one argument, a pointer to a
5220 trampoline initialized by the
5221 <a href="#int_it">'<tt>llvm.init.trampoline</tt>' intrinsic</a>.
5222</p>
5223<h5>Semantics:</h5>
5224<p>
5225 A function pointer that can be used to execute the trampoline code in
5226 <tt>tramp</tt> is returned. The returned value should be bitcast to an
5227 <a href="#int_trampoline">appropriate function pointer type</a>
5228 before being called.
5229</p>
5230</div>
5231
5232<!-- ======================================================================= -->
5233<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005234 <a name="int_general">General Intrinsics</a>
5235</div>
5236
5237<div class="doc_text">
5238<p> This class of intrinsics is designed to be generic and has
5239no specific purpose. </p>
5240</div>
5241
5242<!-- _______________________________________________________________________ -->
5243<div class="doc_subsubsection">
5244 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5245</div>
5246
5247<div class="doc_text">
5248
5249<h5>Syntax:</h5>
5250<pre>
5251 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5252</pre>
5253
5254<h5>Overview:</h5>
5255
5256<p>
5257The '<tt>llvm.var.annotation</tt>' intrinsic
5258</p>
5259
5260<h5>Arguments:</h5>
5261
5262<p>
5263The first argument is a pointer to a value, the second is a pointer to a
5264global string, the third is a pointer to a global string which is the source
5265file name, and the last argument is the line number.
5266</p>
5267
5268<h5>Semantics:</h5>
5269
5270<p>
5271This intrinsic allows annotation of local variables with arbitrary strings.
5272This can be useful for special purpose optimizations that want to look for these
5273 annotations. These have no other defined use, they are ignored by code
5274 generation and optimization.
5275</div>
5276
5277
5278<!-- *********************************************************************** -->
5279<hr>
5280<address>
5281 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5282 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5283 <a href="http://validator.w3.org/check/referer"><img
5284 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
5285
5286 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
5287 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
5288 Last modified: $Date$
5289</address>
5290</body>
5291</html>