blob: 24a73150dac207646697b49bc841931677dd2d6e [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000151 ; Declare the string constant as a global constant.
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000153
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000154 ; External declaration of the puts function
155 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000156
157 ; Definition of main function
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000158 define i32 @main() { ; i32()*
159 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000162 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000163 call i32 @puts(i8* %cast210)
Daniel Dunbar3389dbc2013-01-17 18:57:32 +0000164 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000265 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
468A variable may be defined as a global "constant," which indicates that
469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
472initialization cannot be marked "constant" as there is a store to the
473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
504An explicit alignment may be specified for a global, which must be a
505power of 2. If not present, or if the alignment is set to zero, the
506alignment of the global is set by the target to whatever it feels
507convenient. If an explicit alignment is specified, the global is forced
508to have exactly that alignment. Targets and optimizers are not allowed
509to over-align the global if the global has an assigned section. In this
510case, the extra alignment could be observable: for example, code could
511assume that the globals are densely packed in their section and try to
512iterate over them as an array, alignment padding would break this
513iteration.
514
515For example, the following defines a global in a numbered address space
516with an initializer, section, and alignment:
517
518.. code-block:: llvm
519
520 @G = addrspace(5) constant float 1.0, section "foo", align 4
521
522The following example defines a thread-local global with the
523``initialexec`` TLS model:
524
525.. code-block:: llvm
526
527 @G = thread_local(initialexec) global i32 0, align 4
528
529.. _functionstructure:
530
531Functions
532---------
533
534LLVM function definitions consist of the "``define``" keyword, an
535optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
536style <visibility>`, an optional :ref:`calling convention <callingconv>`,
537an optional ``unnamed_addr`` attribute, a return type, an optional
538:ref:`parameter attribute <paramattrs>` for the return type, a function
539name, a (possibly empty) argument list (each with optional :ref:`parameter
540attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
541an optional section, an optional alignment, an optional :ref:`garbage
542collector name <gc>`, an opening curly brace, a list of basic blocks,
543and a closing curly brace.
544
545LLVM function declarations consist of the "``declare``" keyword, an
546optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
547style <visibility>`, an optional :ref:`calling convention <callingconv>`,
548an optional ``unnamed_addr`` attribute, a return type, an optional
549:ref:`parameter attribute <paramattrs>` for the return type, a function
550name, a possibly empty list of arguments, an optional alignment, and an
551optional :ref:`garbage collector name <gc>`.
552
553A function definition contains a list of basic blocks, forming the CFG
554(Control Flow Graph) for the function. Each basic block may optionally
555start with a label (giving the basic block a symbol table entry),
556contains a list of instructions, and ends with a
557:ref:`terminator <terminators>` instruction (such as a branch or function
558return).
559
560The first basic block in a function is special in two ways: it is
561immediately executed on entrance to the function, and it is not allowed
562to have predecessor basic blocks (i.e. there can not be any branches to
563the entry block of a function). Because the block can have no
564predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
565
566LLVM allows an explicit section to be specified for functions. If the
567target supports it, it will emit functions to the section specified.
568
569An explicit alignment may be specified for a function. If not present,
570or if the alignment is set to zero, the alignment of the function is set
571by the target to whatever it feels convenient. If an explicit alignment
572is specified, the function is forced to have at least that much
573alignment. All alignments must be a power of 2.
574
575If the ``unnamed_addr`` attribute is given, the address is know to not
576be significant and two identical functions can be merged.
577
578Syntax::
579
580 define [linkage] [visibility]
581 [cconv] [ret attrs]
582 <ResultType> @<FunctionName> ([argument list])
583 [fn Attrs] [section "name"] [align N]
584 [gc] { ... }
585
586Aliases
587-------
588
589Aliases act as "second name" for the aliasee value (which can be either
590function, global variable, another alias or bitcast of global value).
591Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
592:ref:`visibility style <visibility>`.
593
594Syntax::
595
596 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
597
598.. _namedmetadatastructure:
599
600Named Metadata
601--------------
602
603Named metadata is a collection of metadata. :ref:`Metadata
604nodes <metadata>` (but not metadata strings) are the only valid
605operands for a named metadata.
606
607Syntax::
608
609 ; Some unnamed metadata nodes, which are referenced by the named metadata.
610 !0 = metadata !{metadata !"zero"}
611 !1 = metadata !{metadata !"one"}
612 !2 = metadata !{metadata !"two"}
613 ; A named metadata.
614 !name = !{!0, !1, !2}
615
616.. _paramattrs:
617
618Parameter Attributes
619--------------------
620
621The return type and each parameter of a function type may have a set of
622*parameter attributes* associated with them. Parameter attributes are
623used to communicate additional information about the result or
624parameters of a function. Parameter attributes are considered to be part
625of the function, not of the function type, so functions with different
626parameter attributes can have the same function type.
627
628Parameter attributes are simple keywords that follow the type specified.
629If multiple parameter attributes are needed, they are space separated.
630For example:
631
632.. code-block:: llvm
633
634 declare i32 @printf(i8* noalias nocapture, ...)
635 declare i32 @atoi(i8 zeroext)
636 declare signext i8 @returns_signed_char()
637
638Note that any attributes for the function result (``nounwind``,
639``readonly``) come immediately after the argument list.
640
641Currently, only the following parameter attributes are defined:
642
643``zeroext``
644 This indicates to the code generator that the parameter or return
645 value should be zero-extended to the extent required by the target's
646 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
647 the caller (for a parameter) or the callee (for a return value).
648``signext``
649 This indicates to the code generator that the parameter or return
650 value should be sign-extended to the extent required by the target's
651 ABI (which is usually 32-bits) by the caller (for a parameter) or
652 the callee (for a return value).
653``inreg``
654 This indicates that this parameter or return value should be treated
655 in a special target-dependent fashion during while emitting code for
656 a function call or return (usually, by putting it in a register as
657 opposed to memory, though some targets use it to distinguish between
658 two different kinds of registers). Use of this attribute is
659 target-specific.
660``byval``
661 This indicates that the pointer parameter should really be passed by
662 value to the function. The attribute implies that a hidden copy of
663 the pointee is made between the caller and the callee, so the callee
664 is unable to modify the value in the caller. This attribute is only
665 valid on LLVM pointer arguments. It is generally used to pass
666 structs and arrays by value, but is also valid on pointers to
667 scalars. The copy is considered to belong to the caller not the
668 callee (for example, ``readonly`` functions should not write to
669 ``byval`` parameters). This is not a valid attribute for return
670 values.
671
672 The byval attribute also supports specifying an alignment with the
673 align attribute. It indicates the alignment of the stack slot to
674 form and the known alignment of the pointer specified to the call
675 site. If the alignment is not specified, then the code generator
676 makes a target-specific assumption.
677
678``sret``
679 This indicates that the pointer parameter specifies the address of a
680 structure that is the return value of the function in the source
681 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000682 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000683 not to trap and to be properly aligned. This may only be applied to
684 the first parameter. This is not a valid attribute for return
685 values.
686``noalias``
687 This indicates that pointer values `*based* <pointeraliasing>` on
688 the argument or return value do not alias pointer values which are
689 not *based* on it, ignoring certain "irrelevant" dependencies. For a
690 call to the parent function, dependencies between memory references
691 from before or after the call and from those during the call are
692 "irrelevant" to the ``noalias`` keyword for the arguments and return
693 value used in that call. The caller shares the responsibility with
694 the callee for ensuring that these requirements are met. For further
695 details, please see the discussion of the NoAlias response in `alias
696 analysis <AliasAnalysis.html#MustMayNo>`_.
697
698 Note that this definition of ``noalias`` is intentionally similar
699 to the definition of ``restrict`` in C99 for function arguments,
700 though it is slightly weaker.
701
702 For function return values, C99's ``restrict`` is not meaningful,
703 while LLVM's ``noalias`` is.
704``nocapture``
705 This indicates that the callee does not make any copies of the
706 pointer that outlive the callee itself. This is not a valid
707 attribute for return values.
708
709.. _nest:
710
711``nest``
712 This indicates that the pointer parameter can be excised using the
713 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
714 attribute for return values.
715
716.. _gc:
717
718Garbage Collector Names
719-----------------------
720
721Each function may specify a garbage collector name, which is simply a
722string:
723
724.. code-block:: llvm
725
726 define void @f() gc "name" { ... }
727
728The compiler declares the supported values of *name*. Specifying a
729collector which will cause the compiler to alter its output in order to
730support the named garbage collection algorithm.
731
732.. _fnattrs:
733
734Function Attributes
735-------------------
736
737Function attributes are set to communicate additional information about
738a function. Function attributes are considered to be part of the
739function, not of the function type, so functions with different function
740attributes can have the same function type.
741
742Function attributes are simple keywords that follow the type specified.
743If multiple attributes are needed, they are space separated. For
744example:
745
746.. code-block:: llvm
747
748 define void @f() noinline { ... }
749 define void @f() alwaysinline { ... }
750 define void @f() alwaysinline optsize { ... }
751 define void @f() optsize { ... }
752
753``address_safety``
754 This attribute indicates that the address safety analysis is enabled
755 for this function.
756``alignstack(<n>)``
757 This attribute indicates that, when emitting the prologue and
758 epilogue, the backend should forcibly align the stack pointer.
759 Specify the desired alignment, which must be a power of two, in
760 parentheses.
761``alwaysinline``
762 This attribute indicates that the inliner should attempt to inline
763 this function into callers whenever possible, ignoring any active
764 inlining size threshold for this caller.
765``nonlazybind``
766 This attribute suppresses lazy symbol binding for the function. This
767 may make calls to the function faster, at the cost of extra program
768 startup time if the function is not called during program startup.
769``inlinehint``
770 This attribute indicates that the source code contained a hint that
771 inlining this function is desirable (such as the "inline" keyword in
772 C/C++). It is just a hint; it imposes no requirements on the
773 inliner.
774``naked``
775 This attribute disables prologue / epilogue emission for the
776 function. This can have very system-specific consequences.
777``noimplicitfloat``
778 This attributes disables implicit floating point instructions.
779``noinline``
780 This attribute indicates that the inliner should never inline this
781 function in any situation. This attribute may not be used together
782 with the ``alwaysinline`` attribute.
783``noredzone``
784 This attribute indicates that the code generator should not use a
785 red zone, even if the target-specific ABI normally permits it.
786``noreturn``
787 This function attribute indicates that the function never returns
788 normally. This produces undefined behavior at runtime if the
789 function ever does dynamically return.
790``nounwind``
791 This function attribute indicates that the function never returns
792 with an unwind or exceptional control flow. If the function does
793 unwind, its runtime behavior is undefined.
794``optsize``
795 This attribute suggests that optimization passes and code generator
796 passes make choices that keep the code size of this function low,
797 and otherwise do optimizations specifically to reduce code size.
798``readnone``
799 This attribute indicates that the function computes its result (or
800 decides to unwind an exception) based strictly on its arguments,
801 without dereferencing any pointer arguments or otherwise accessing
802 any mutable state (e.g. memory, control registers, etc) visible to
803 caller functions. It does not write through any pointer arguments
804 (including ``byval`` arguments) and never changes any state visible
805 to callers. This means that it cannot unwind exceptions by calling
806 the ``C++`` exception throwing methods.
807``readonly``
808 This attribute indicates that the function does not write through
809 any pointer arguments (including ``byval`` arguments) or otherwise
810 modify any state (e.g. memory, control registers, etc) visible to
811 caller functions. It may dereference pointer arguments and read
812 state that may be set in the caller. A readonly function always
813 returns the same value (or unwinds an exception identically) when
814 called with the same set of arguments and global state. It cannot
815 unwind an exception by calling the ``C++`` exception throwing
816 methods.
817``returns_twice``
818 This attribute indicates that this function can return twice. The C
819 ``setjmp`` is an example of such a function. The compiler disables
820 some optimizations (like tail calls) in the caller of these
821 functions.
822``ssp``
823 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000824 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000825 placed on the stack before the local variables that's checked upon
826 return from the function to see if it has been overwritten. A
827 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000828 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000829
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000830 - Character arrays larger than ``ssp-buffer-size`` (default 8).
831 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
832 - Calls to alloca() with variable sizes or constant sizes greater than
833 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000834
835 If a function that has an ``ssp`` attribute is inlined into a
836 function that doesn't have an ``ssp`` attribute, then the resulting
837 function will have an ``ssp`` attribute.
838``sspreq``
839 This attribute indicates that the function should *always* emit a
840 stack smashing protector. This overrides the ``ssp`` function
841 attribute.
842
843 If a function that has an ``sspreq`` attribute is inlined into a
844 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000845 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
846 an ``sspreq`` attribute.
847``sspstrong``
848 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000849 protector. This attribute causes a strong heuristic to be used when
850 determining if a function needs stack protectors. The strong heuristic
851 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000852
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000853 - Arrays of any size and type
854 - Aggregates containing an array of any size and type.
855 - Calls to alloca().
856 - Local variables that have had their address taken.
857
858 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000859
860 If a function that has an ``sspstrong`` attribute is inlined into a
861 function that doesn't have an ``sspstrong`` attribute, then the
862 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000863``uwtable``
864 This attribute indicates that the ABI being targeted requires that
865 an unwind table entry be produce for this function even if we can
866 show that no exceptions passes by it. This is normally the case for
867 the ELF x86-64 abi, but it can be disabled for some compilation
868 units.
James Molloy67ae1352012-12-20 16:04:27 +0000869``noduplicate``
870 This attribute indicates that calls to the function cannot be
871 duplicated. A call to a ``noduplicate`` function may be moved
872 within its parent function, but may not be duplicated within
873 its parent function.
874
875 A function containing a ``noduplicate`` call may still
876 be an inlining candidate, provided that the call is not
877 duplicated by inlining. That implies that the function has
878 internal linkage and only has one call site, so the original
879 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000880
881.. _moduleasm:
882
883Module-Level Inline Assembly
884----------------------------
885
886Modules may contain "module-level inline asm" blocks, which corresponds
887to the GCC "file scope inline asm" blocks. These blocks are internally
888concatenated by LLVM and treated as a single unit, but may be separated
889in the ``.ll`` file if desired. The syntax is very simple:
890
891.. code-block:: llvm
892
893 module asm "inline asm code goes here"
894 module asm "more can go here"
895
896The strings can contain any character by escaping non-printable
897characters. The escape sequence used is simply "\\xx" where "xx" is the
898two digit hex code for the number.
899
900The inline asm code is simply printed to the machine code .s file when
901assembly code is generated.
902
903Data Layout
904-----------
905
906A module may specify a target specific data layout string that specifies
907how data is to be laid out in memory. The syntax for the data layout is
908simply:
909
910.. code-block:: llvm
911
912 target datalayout = "layout specification"
913
914The *layout specification* consists of a list of specifications
915separated by the minus sign character ('-'). Each specification starts
916with a letter and may include other information after the letter to
917define some aspect of the data layout. The specifications accepted are
918as follows:
919
920``E``
921 Specifies that the target lays out data in big-endian form. That is,
922 the bits with the most significance have the lowest address
923 location.
924``e``
925 Specifies that the target lays out data in little-endian form. That
926 is, the bits with the least significance have the lowest address
927 location.
928``S<size>``
929 Specifies the natural alignment of the stack in bits. Alignment
930 promotion of stack variables is limited to the natural stack
931 alignment to avoid dynamic stack realignment. The stack alignment
932 must be a multiple of 8-bits. If omitted, the natural stack
933 alignment defaults to "unspecified", which does not prevent any
934 alignment promotions.
935``p[n]:<size>:<abi>:<pref>``
936 This specifies the *size* of a pointer and its ``<abi>`` and
937 ``<pref>``\erred alignments for address space ``n``. All sizes are in
938 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
939 preceding ``:`` should be omitted too. The address space, ``n`` is
940 optional, and if not specified, denotes the default address space 0.
941 The value of ``n`` must be in the range [1,2^23).
942``i<size>:<abi>:<pref>``
943 This specifies the alignment for an integer type of a given bit
944 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
945``v<size>:<abi>:<pref>``
946 This specifies the alignment for a vector type of a given bit
947 ``<size>``.
948``f<size>:<abi>:<pref>``
949 This specifies the alignment for a floating point type of a given bit
950 ``<size>``. Only values of ``<size>`` that are supported by the target
951 will work. 32 (float) and 64 (double) are supported on all targets; 80
952 or 128 (different flavors of long double) are also supported on some
953 targets.
954``a<size>:<abi>:<pref>``
955 This specifies the alignment for an aggregate type of a given bit
956 ``<size>``.
957``s<size>:<abi>:<pref>``
958 This specifies the alignment for a stack object of a given bit
959 ``<size>``.
960``n<size1>:<size2>:<size3>...``
961 This specifies a set of native integer widths for the target CPU in
962 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
963 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
964 this set are considered to support most general arithmetic operations
965 efficiently.
966
967When constructing the data layout for a given target, LLVM starts with a
968default set of specifications which are then (possibly) overridden by
969the specifications in the ``datalayout`` keyword. The default
970specifications are given in this list:
971
972- ``E`` - big endian
973- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +0000974- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +0000975- ``i1:8:8`` - i1 is 8-bit (byte) aligned
976- ``i8:8:8`` - i8 is 8-bit (byte) aligned
977- ``i16:16:16`` - i16 is 16-bit aligned
978- ``i32:32:32`` - i32 is 32-bit aligned
979- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
980 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +0000981- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +0000982- ``f32:32:32`` - float is 32-bit aligned
983- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +0000984- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +0000985- ``v64:64:64`` - 64-bit vector is 64-bit aligned
986- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +0000987- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +0000988
989When LLVM is determining the alignment for a given type, it uses the
990following rules:
991
992#. If the type sought is an exact match for one of the specifications,
993 that specification is used.
994#. If no match is found, and the type sought is an integer type, then
995 the smallest integer type that is larger than the bitwidth of the
996 sought type is used. If none of the specifications are larger than
997 the bitwidth then the largest integer type is used. For example,
998 given the default specifications above, the i7 type will use the
999 alignment of i8 (next largest) while both i65 and i256 will use the
1000 alignment of i64 (largest specified).
1001#. If no match is found, and the type sought is a vector type, then the
1002 largest vector type that is smaller than the sought vector type will
1003 be used as a fall back. This happens because <128 x double> can be
1004 implemented in terms of 64 <2 x double>, for example.
1005
1006The function of the data layout string may not be what you expect.
1007Notably, this is not a specification from the frontend of what alignment
1008the code generator should use.
1009
1010Instead, if specified, the target data layout is required to match what
1011the ultimate *code generator* expects. This string is used by the
1012mid-level optimizers to improve code, and this only works if it matches
1013what the ultimate code generator uses. If you would like to generate IR
1014that does not embed this target-specific detail into the IR, then you
1015don't have to specify the string. This will disable some optimizations
1016that require precise layout information, but this also prevents those
1017optimizations from introducing target specificity into the IR.
1018
1019.. _pointeraliasing:
1020
1021Pointer Aliasing Rules
1022----------------------
1023
1024Any memory access must be done through a pointer value associated with
1025an address range of the memory access, otherwise the behavior is
1026undefined. Pointer values are associated with address ranges according
1027to the following rules:
1028
1029- A pointer value is associated with the addresses associated with any
1030 value it is *based* on.
1031- An address of a global variable is associated with the address range
1032 of the variable's storage.
1033- The result value of an allocation instruction is associated with the
1034 address range of the allocated storage.
1035- A null pointer in the default address-space is associated with no
1036 address.
1037- An integer constant other than zero or a pointer value returned from
1038 a function not defined within LLVM may be associated with address
1039 ranges allocated through mechanisms other than those provided by
1040 LLVM. Such ranges shall not overlap with any ranges of addresses
1041 allocated by mechanisms provided by LLVM.
1042
1043A pointer value is *based* on another pointer value according to the
1044following rules:
1045
1046- A pointer value formed from a ``getelementptr`` operation is *based*
1047 on the first operand of the ``getelementptr``.
1048- The result value of a ``bitcast`` is *based* on the operand of the
1049 ``bitcast``.
1050- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1051 values that contribute (directly or indirectly) to the computation of
1052 the pointer's value.
1053- The "*based* on" relationship is transitive.
1054
1055Note that this definition of *"based"* is intentionally similar to the
1056definition of *"based"* in C99, though it is slightly weaker.
1057
1058LLVM IR does not associate types with memory. The result type of a
1059``load`` merely indicates the size and alignment of the memory from
1060which to load, as well as the interpretation of the value. The first
1061operand type of a ``store`` similarly only indicates the size and
1062alignment of the store.
1063
1064Consequently, type-based alias analysis, aka TBAA, aka
1065``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1066:ref:`Metadata <metadata>` may be used to encode additional information
1067which specialized optimization passes may use to implement type-based
1068alias analysis.
1069
1070.. _volatile:
1071
1072Volatile Memory Accesses
1073------------------------
1074
1075Certain memory accesses, such as :ref:`load <i_load>`'s,
1076:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1077marked ``volatile``. The optimizers must not change the number of
1078volatile operations or change their order of execution relative to other
1079volatile operations. The optimizers *may* change the order of volatile
1080operations relative to non-volatile operations. This is not Java's
1081"volatile" and has no cross-thread synchronization behavior.
1082
1083.. _memmodel:
1084
1085Memory Model for Concurrent Operations
1086--------------------------------------
1087
1088The LLVM IR does not define any way to start parallel threads of
1089execution or to register signal handlers. Nonetheless, there are
1090platform-specific ways to create them, and we define LLVM IR's behavior
1091in their presence. This model is inspired by the C++0x memory model.
1092
1093For a more informal introduction to this model, see the :doc:`Atomics`.
1094
1095We define a *happens-before* partial order as the least partial order
1096that
1097
1098- Is a superset of single-thread program order, and
1099- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1100 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1101 techniques, like pthread locks, thread creation, thread joining,
1102 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1103 Constraints <ordering>`).
1104
1105Note that program order does not introduce *happens-before* edges
1106between a thread and signals executing inside that thread.
1107
1108Every (defined) read operation (load instructions, memcpy, atomic
1109loads/read-modify-writes, etc.) R reads a series of bytes written by
1110(defined) write operations (store instructions, atomic
1111stores/read-modify-writes, memcpy, etc.). For the purposes of this
1112section, initialized globals are considered to have a write of the
1113initializer which is atomic and happens before any other read or write
1114of the memory in question. For each byte of a read R, R\ :sub:`byte`
1115may see any write to the same byte, except:
1116
1117- If write\ :sub:`1` happens before write\ :sub:`2`, and
1118 write\ :sub:`2` happens before R\ :sub:`byte`, then
1119 R\ :sub:`byte` does not see write\ :sub:`1`.
1120- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1121 R\ :sub:`byte` does not see write\ :sub:`3`.
1122
1123Given that definition, R\ :sub:`byte` is defined as follows:
1124
1125- If R is volatile, the result is target-dependent. (Volatile is
1126 supposed to give guarantees which can support ``sig_atomic_t`` in
1127 C/C++, and may be used for accesses to addresses which do not behave
1128 like normal memory. It does not generally provide cross-thread
1129 synchronization.)
1130- Otherwise, if there is no write to the same byte that happens before
1131 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1132- Otherwise, if R\ :sub:`byte` may see exactly one write,
1133 R\ :sub:`byte` returns the value written by that write.
1134- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1135 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1136 Memory Ordering Constraints <ordering>` section for additional
1137 constraints on how the choice is made.
1138- Otherwise R\ :sub:`byte` returns ``undef``.
1139
1140R returns the value composed of the series of bytes it read. This
1141implies that some bytes within the value may be ``undef`` **without**
1142the entire value being ``undef``. Note that this only defines the
1143semantics of the operation; it doesn't mean that targets will emit more
1144than one instruction to read the series of bytes.
1145
1146Note that in cases where none of the atomic intrinsics are used, this
1147model places only one restriction on IR transformations on top of what
1148is required for single-threaded execution: introducing a store to a byte
1149which might not otherwise be stored is not allowed in general.
1150(Specifically, in the case where another thread might write to and read
1151from an address, introducing a store can change a load that may see
1152exactly one write into a load that may see multiple writes.)
1153
1154.. _ordering:
1155
1156Atomic Memory Ordering Constraints
1157----------------------------------
1158
1159Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1160:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1161:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1162an ordering parameter that determines which other atomic instructions on
1163the same address they *synchronize with*. These semantics are borrowed
1164from Java and C++0x, but are somewhat more colloquial. If these
1165descriptions aren't precise enough, check those specs (see spec
1166references in the :doc:`atomics guide <Atomics>`).
1167:ref:`fence <i_fence>` instructions treat these orderings somewhat
1168differently since they don't take an address. See that instruction's
1169documentation for details.
1170
1171For a simpler introduction to the ordering constraints, see the
1172:doc:`Atomics`.
1173
1174``unordered``
1175 The set of values that can be read is governed by the happens-before
1176 partial order. A value cannot be read unless some operation wrote
1177 it. This is intended to provide a guarantee strong enough to model
1178 Java's non-volatile shared variables. This ordering cannot be
1179 specified for read-modify-write operations; it is not strong enough
1180 to make them atomic in any interesting way.
1181``monotonic``
1182 In addition to the guarantees of ``unordered``, there is a single
1183 total order for modifications by ``monotonic`` operations on each
1184 address. All modification orders must be compatible with the
1185 happens-before order. There is no guarantee that the modification
1186 orders can be combined to a global total order for the whole program
1187 (and this often will not be possible). The read in an atomic
1188 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1189 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1190 order immediately before the value it writes. If one atomic read
1191 happens before another atomic read of the same address, the later
1192 read must see the same value or a later value in the address's
1193 modification order. This disallows reordering of ``monotonic`` (or
1194 stronger) operations on the same address. If an address is written
1195 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1196 read that address repeatedly, the other threads must eventually see
1197 the write. This corresponds to the C++0x/C1x
1198 ``memory_order_relaxed``.
1199``acquire``
1200 In addition to the guarantees of ``monotonic``, a
1201 *synchronizes-with* edge may be formed with a ``release`` operation.
1202 This is intended to model C++'s ``memory_order_acquire``.
1203``release``
1204 In addition to the guarantees of ``monotonic``, if this operation
1205 writes a value which is subsequently read by an ``acquire``
1206 operation, it *synchronizes-with* that operation. (This isn't a
1207 complete description; see the C++0x definition of a release
1208 sequence.) This corresponds to the C++0x/C1x
1209 ``memory_order_release``.
1210``acq_rel`` (acquire+release)
1211 Acts as both an ``acquire`` and ``release`` operation on its
1212 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1213``seq_cst`` (sequentially consistent)
1214 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1215 operation which only reads, ``release`` for an operation which only
1216 writes), there is a global total order on all
1217 sequentially-consistent operations on all addresses, which is
1218 consistent with the *happens-before* partial order and with the
1219 modification orders of all the affected addresses. Each
1220 sequentially-consistent read sees the last preceding write to the
1221 same address in this global order. This corresponds to the C++0x/C1x
1222 ``memory_order_seq_cst`` and Java volatile.
1223
1224.. _singlethread:
1225
1226If an atomic operation is marked ``singlethread``, it only *synchronizes
1227with* or participates in modification and seq\_cst total orderings with
1228other operations running in the same thread (for example, in signal
1229handlers).
1230
1231.. _fastmath:
1232
1233Fast-Math Flags
1234---------------
1235
1236LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1237:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1238:ref:`frem <i_frem>`) have the following flags that can set to enable
1239otherwise unsafe floating point operations
1240
1241``nnan``
1242 No NaNs - Allow optimizations to assume the arguments and result are not
1243 NaN. Such optimizations are required to retain defined behavior over
1244 NaNs, but the value of the result is undefined.
1245
1246``ninf``
1247 No Infs - Allow optimizations to assume the arguments and result are not
1248 +/-Inf. Such optimizations are required to retain defined behavior over
1249 +/-Inf, but the value of the result is undefined.
1250
1251``nsz``
1252 No Signed Zeros - Allow optimizations to treat the sign of a zero
1253 argument or result as insignificant.
1254
1255``arcp``
1256 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1257 argument rather than perform division.
1258
1259``fast``
1260 Fast - Allow algebraically equivalent transformations that may
1261 dramatically change results in floating point (e.g. reassociate). This
1262 flag implies all the others.
1263
1264.. _typesystem:
1265
1266Type System
1267===========
1268
1269The LLVM type system is one of the most important features of the
1270intermediate representation. Being typed enables a number of
1271optimizations to be performed on the intermediate representation
1272directly, without having to do extra analyses on the side before the
1273transformation. A strong type system makes it easier to read the
1274generated code and enables novel analyses and transformations that are
1275not feasible to perform on normal three address code representations.
1276
1277Type Classifications
1278--------------------
1279
1280The types fall into a few useful classifications:
1281
1282
1283.. list-table::
1284 :header-rows: 1
1285
1286 * - Classification
1287 - Types
1288
1289 * - :ref:`integer <t_integer>`
1290 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1291 ``i64``, ...
1292
1293 * - :ref:`floating point <t_floating>`
1294 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1295 ``ppc_fp128``
1296
1297
1298 * - first class
1299
1300 .. _t_firstclass:
1301
1302 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1303 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1304 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1305 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1306
1307 * - :ref:`primitive <t_primitive>`
1308 - :ref:`label <t_label>`,
1309 :ref:`void <t_void>`,
1310 :ref:`integer <t_integer>`,
1311 :ref:`floating point <t_floating>`,
1312 :ref:`x86mmx <t_x86mmx>`,
1313 :ref:`metadata <t_metadata>`.
1314
1315 * - :ref:`derived <t_derived>`
1316 - :ref:`array <t_array>`,
1317 :ref:`function <t_function>`,
1318 :ref:`pointer <t_pointer>`,
1319 :ref:`structure <t_struct>`,
1320 :ref:`vector <t_vector>`,
1321 :ref:`opaque <t_opaque>`.
1322
1323The :ref:`first class <t_firstclass>` types are perhaps the most important.
1324Values of these types are the only ones which can be produced by
1325instructions.
1326
1327.. _t_primitive:
1328
1329Primitive Types
1330---------------
1331
1332The primitive types are the fundamental building blocks of the LLVM
1333system.
1334
1335.. _t_integer:
1336
1337Integer Type
1338^^^^^^^^^^^^
1339
1340Overview:
1341"""""""""
1342
1343The integer type is a very simple type that simply specifies an
1344arbitrary bit width for the integer type desired. Any bit width from 1
1345bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1346
1347Syntax:
1348"""""""
1349
1350::
1351
1352 iN
1353
1354The number of bits the integer will occupy is specified by the ``N``
1355value.
1356
1357Examples:
1358"""""""""
1359
1360+----------------+------------------------------------------------+
1361| ``i1`` | a single-bit integer. |
1362+----------------+------------------------------------------------+
1363| ``i32`` | a 32-bit integer. |
1364+----------------+------------------------------------------------+
1365| ``i1942652`` | a really big integer of over 1 million bits. |
1366+----------------+------------------------------------------------+
1367
1368.. _t_floating:
1369
1370Floating Point Types
1371^^^^^^^^^^^^^^^^^^^^
1372
1373.. list-table::
1374 :header-rows: 1
1375
1376 * - Type
1377 - Description
1378
1379 * - ``half``
1380 - 16-bit floating point value
1381
1382 * - ``float``
1383 - 32-bit floating point value
1384
1385 * - ``double``
1386 - 64-bit floating point value
1387
1388 * - ``fp128``
1389 - 128-bit floating point value (112-bit mantissa)
1390
1391 * - ``x86_fp80``
1392 - 80-bit floating point value (X87)
1393
1394 * - ``ppc_fp128``
1395 - 128-bit floating point value (two 64-bits)
1396
1397.. _t_x86mmx:
1398
1399X86mmx Type
1400^^^^^^^^^^^
1401
1402Overview:
1403"""""""""
1404
1405The x86mmx type represents a value held in an MMX register on an x86
1406machine. The operations allowed on it are quite limited: parameters and
1407return values, load and store, and bitcast. User-specified MMX
1408instructions are represented as intrinsic or asm calls with arguments
1409and/or results of this type. There are no arrays, vectors or constants
1410of this type.
1411
1412Syntax:
1413"""""""
1414
1415::
1416
1417 x86mmx
1418
1419.. _t_void:
1420
1421Void Type
1422^^^^^^^^^
1423
1424Overview:
1425"""""""""
1426
1427The void type does not represent any value and has no size.
1428
1429Syntax:
1430"""""""
1431
1432::
1433
1434 void
1435
1436.. _t_label:
1437
1438Label Type
1439^^^^^^^^^^
1440
1441Overview:
1442"""""""""
1443
1444The label type represents code labels.
1445
1446Syntax:
1447"""""""
1448
1449::
1450
1451 label
1452
1453.. _t_metadata:
1454
1455Metadata Type
1456^^^^^^^^^^^^^
1457
1458Overview:
1459"""""""""
1460
1461The metadata type represents embedded metadata. No derived types may be
1462created from metadata except for :ref:`function <t_function>` arguments.
1463
1464Syntax:
1465"""""""
1466
1467::
1468
1469 metadata
1470
1471.. _t_derived:
1472
1473Derived Types
1474-------------
1475
1476The real power in LLVM comes from the derived types in the system. This
1477is what allows a programmer to represent arrays, functions, pointers,
1478and other useful types. Each of these types contain one or more element
1479types which may be a primitive type, or another derived type. For
1480example, it is possible to have a two dimensional array, using an array
1481as the element type of another array.
1482
1483.. _t_aggregate:
1484
1485Aggregate Types
1486^^^^^^^^^^^^^^^
1487
1488Aggregate Types are a subset of derived types that can contain multiple
1489member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1490aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1491aggregate types.
1492
1493.. _t_array:
1494
1495Array Type
1496^^^^^^^^^^
1497
1498Overview:
1499"""""""""
1500
1501The array type is a very simple derived type that arranges elements
1502sequentially in memory. The array type requires a size (number of
1503elements) and an underlying data type.
1504
1505Syntax:
1506"""""""
1507
1508::
1509
1510 [<# elements> x <elementtype>]
1511
1512The number of elements is a constant integer value; ``elementtype`` may
1513be any type with a size.
1514
1515Examples:
1516"""""""""
1517
1518+------------------+--------------------------------------+
1519| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1520+------------------+--------------------------------------+
1521| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1522+------------------+--------------------------------------+
1523| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1524+------------------+--------------------------------------+
1525
1526Here are some examples of multidimensional arrays:
1527
1528+-----------------------------+----------------------------------------------------------+
1529| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1530+-----------------------------+----------------------------------------------------------+
1531| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1532+-----------------------------+----------------------------------------------------------+
1533| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1534+-----------------------------+----------------------------------------------------------+
1535
1536There is no restriction on indexing beyond the end of the array implied
1537by a static type (though there are restrictions on indexing beyond the
1538bounds of an allocated object in some cases). This means that
1539single-dimension 'variable sized array' addressing can be implemented in
1540LLVM with a zero length array type. An implementation of 'pascal style
1541arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1542example.
1543
1544.. _t_function:
1545
1546Function Type
1547^^^^^^^^^^^^^
1548
1549Overview:
1550"""""""""
1551
1552The function type can be thought of as a function signature. It consists
1553of a return type and a list of formal parameter types. The return type
1554of a function type is a first class type or a void type.
1555
1556Syntax:
1557"""""""
1558
1559::
1560
1561 <returntype> (<parameter list>)
1562
1563...where '``<parameter list>``' is a comma-separated list of type
1564specifiers. Optionally, the parameter list may include a type ``...``,
1565which indicates that the function takes a variable number of arguments.
1566Variable argument functions can access their arguments with the
1567:ref:`variable argument handling intrinsic <int_varargs>` functions.
1568'``<returntype>``' is any type except :ref:`label <t_label>`.
1569
1570Examples:
1571"""""""""
1572
1573+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1574| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1575+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001576| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001577+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1578| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1579+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1580| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1581+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1582
1583.. _t_struct:
1584
1585Structure Type
1586^^^^^^^^^^^^^^
1587
1588Overview:
1589"""""""""
1590
1591The structure type is used to represent a collection of data members
1592together in memory. The elements of a structure may be any type that has
1593a size.
1594
1595Structures in memory are accessed using '``load``' and '``store``' by
1596getting a pointer to a field with the '``getelementptr``' instruction.
1597Structures in registers are accessed using the '``extractvalue``' and
1598'``insertvalue``' instructions.
1599
1600Structures may optionally be "packed" structures, which indicate that
1601the alignment of the struct is one byte, and that there is no padding
1602between the elements. In non-packed structs, padding between field types
1603is inserted as defined by the DataLayout string in the module, which is
1604required to match what the underlying code generator expects.
1605
1606Structures can either be "literal" or "identified". A literal structure
1607is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1608identified types are always defined at the top level with a name.
1609Literal types are uniqued by their contents and can never be recursive
1610or opaque since there is no way to write one. Identified types can be
1611recursive, can be opaqued, and are never uniqued.
1612
1613Syntax:
1614"""""""
1615
1616::
1617
1618 %T1 = type { <type list> } ; Identified normal struct type
1619 %T2 = type <{ <type list> }> ; Identified packed struct type
1620
1621Examples:
1622"""""""""
1623
1624+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1625| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1626+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001627| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001628+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1629| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1630+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1631
1632.. _t_opaque:
1633
1634Opaque Structure Types
1635^^^^^^^^^^^^^^^^^^^^^^
1636
1637Overview:
1638"""""""""
1639
1640Opaque structure types are used to represent named structure types that
1641do not have a body specified. This corresponds (for example) to the C
1642notion of a forward declared structure.
1643
1644Syntax:
1645"""""""
1646
1647::
1648
1649 %X = type opaque
1650 %52 = type opaque
1651
1652Examples:
1653"""""""""
1654
1655+--------------+-------------------+
1656| ``opaque`` | An opaque type. |
1657+--------------+-------------------+
1658
1659.. _t_pointer:
1660
1661Pointer Type
1662^^^^^^^^^^^^
1663
1664Overview:
1665"""""""""
1666
1667The pointer type is used to specify memory locations. Pointers are
1668commonly used to reference objects in memory.
1669
1670Pointer types may have an optional address space attribute defining the
1671numbered address space where the pointed-to object resides. The default
1672address space is number zero. The semantics of non-zero address spaces
1673are target-specific.
1674
1675Note that LLVM does not permit pointers to void (``void*``) nor does it
1676permit pointers to labels (``label*``). Use ``i8*`` instead.
1677
1678Syntax:
1679"""""""
1680
1681::
1682
1683 <type> *
1684
1685Examples:
1686"""""""""
1687
1688+-------------------------+--------------------------------------------------------------------------------------------------------------+
1689| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1690+-------------------------+--------------------------------------------------------------------------------------------------------------+
1691| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1692+-------------------------+--------------------------------------------------------------------------------------------------------------+
1693| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1694+-------------------------+--------------------------------------------------------------------------------------------------------------+
1695
1696.. _t_vector:
1697
1698Vector Type
1699^^^^^^^^^^^
1700
1701Overview:
1702"""""""""
1703
1704A vector type is a simple derived type that represents a vector of
1705elements. Vector types are used when multiple primitive data are
1706operated in parallel using a single instruction (SIMD). A vector type
1707requires a size (number of elements) and an underlying primitive data
1708type. Vector types are considered :ref:`first class <t_firstclass>`.
1709
1710Syntax:
1711"""""""
1712
1713::
1714
1715 < <# elements> x <elementtype> >
1716
1717The number of elements is a constant integer value larger than 0;
1718elementtype may be any integer or floating point type, or a pointer to
1719these types. Vectors of size zero are not allowed.
1720
1721Examples:
1722"""""""""
1723
1724+-------------------+--------------------------------------------------+
1725| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1726+-------------------+--------------------------------------------------+
1727| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1728+-------------------+--------------------------------------------------+
1729| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1730+-------------------+--------------------------------------------------+
1731| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1732+-------------------+--------------------------------------------------+
1733
1734Constants
1735=========
1736
1737LLVM has several different basic types of constants. This section
1738describes them all and their syntax.
1739
1740Simple Constants
1741----------------
1742
1743**Boolean constants**
1744 The two strings '``true``' and '``false``' are both valid constants
1745 of the ``i1`` type.
1746**Integer constants**
1747 Standard integers (such as '4') are constants of the
1748 :ref:`integer <t_integer>` type. Negative numbers may be used with
1749 integer types.
1750**Floating point constants**
1751 Floating point constants use standard decimal notation (e.g.
1752 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1753 hexadecimal notation (see below). The assembler requires the exact
1754 decimal value of a floating-point constant. For example, the
1755 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1756 decimal in binary. Floating point constants must have a :ref:`floating
1757 point <t_floating>` type.
1758**Null pointer constants**
1759 The identifier '``null``' is recognized as a null pointer constant
1760 and must be of :ref:`pointer type <t_pointer>`.
1761
1762The one non-intuitive notation for constants is the hexadecimal form of
1763floating point constants. For example, the form
1764'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1765than) '``double 4.5e+15``'. The only time hexadecimal floating point
1766constants are required (and the only time that they are generated by the
1767disassembler) is when a floating point constant must be emitted but it
1768cannot be represented as a decimal floating point number in a reasonable
1769number of digits. For example, NaN's, infinities, and other special
1770values are represented in their IEEE hexadecimal format so that assembly
1771and disassembly do not cause any bits to change in the constants.
1772
1773When using the hexadecimal form, constants of types half, float, and
1774double are represented using the 16-digit form shown above (which
1775matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001776must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001777precision, respectively. Hexadecimal format is always used for long
1778double, and there are three forms of long double. The 80-bit format used
1779by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1780128-bit format used by PowerPC (two adjacent doubles) is represented by
1781``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1782represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1783supported target uses this format. Long doubles will only work if they
1784match the long double format on your target. The IEEE 16-bit format
1785(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1786digits. All hexadecimal formats are big-endian (sign bit at the left).
1787
1788There are no constants of type x86mmx.
1789
1790Complex Constants
1791-----------------
1792
1793Complex constants are a (potentially recursive) combination of simple
1794constants and smaller complex constants.
1795
1796**Structure constants**
1797 Structure constants are represented with notation similar to
1798 structure type definitions (a comma separated list of elements,
1799 surrounded by braces (``{}``)). For example:
1800 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1801 "``@G = external global i32``". Structure constants must have
1802 :ref:`structure type <t_struct>`, and the number and types of elements
1803 must match those specified by the type.
1804**Array constants**
1805 Array constants are represented with notation similar to array type
1806 definitions (a comma separated list of elements, surrounded by
1807 square brackets (``[]``)). For example:
1808 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1809 :ref:`array type <t_array>`, and the number and types of elements must
1810 match those specified by the type.
1811**Vector constants**
1812 Vector constants are represented with notation similar to vector
1813 type definitions (a comma separated list of elements, surrounded by
1814 less-than/greater-than's (``<>``)). For example:
1815 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1816 must have :ref:`vector type <t_vector>`, and the number and types of
1817 elements must match those specified by the type.
1818**Zero initialization**
1819 The string '``zeroinitializer``' can be used to zero initialize a
1820 value to zero of *any* type, including scalar and
1821 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1822 having to print large zero initializers (e.g. for large arrays) and
1823 is always exactly equivalent to using explicit zero initializers.
1824**Metadata node**
1825 A metadata node is a structure-like constant with :ref:`metadata
1826 type <t_metadata>`. For example:
1827 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1828 constants that are meant to be interpreted as part of the
1829 instruction stream, metadata is a place to attach additional
1830 information such as debug info.
1831
1832Global Variable and Function Addresses
1833--------------------------------------
1834
1835The addresses of :ref:`global variables <globalvars>` and
1836:ref:`functions <functionstructure>` are always implicitly valid
1837(link-time) constants. These constants are explicitly referenced when
1838the :ref:`identifier for the global <identifiers>` is used and always have
1839:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1840file:
1841
1842.. code-block:: llvm
1843
1844 @X = global i32 17
1845 @Y = global i32 42
1846 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1847
1848.. _undefvalues:
1849
1850Undefined Values
1851----------------
1852
1853The string '``undef``' can be used anywhere a constant is expected, and
1854indicates that the user of the value may receive an unspecified
1855bit-pattern. Undefined values may be of any type (other than '``label``'
1856or '``void``') and be used anywhere a constant is permitted.
1857
1858Undefined values are useful because they indicate to the compiler that
1859the program is well defined no matter what value is used. This gives the
1860compiler more freedom to optimize. Here are some examples of
1861(potentially surprising) transformations that are valid (in pseudo IR):
1862
1863.. code-block:: llvm
1864
1865 %A = add %X, undef
1866 %B = sub %X, undef
1867 %C = xor %X, undef
1868 Safe:
1869 %A = undef
1870 %B = undef
1871 %C = undef
1872
1873This is safe because all of the output bits are affected by the undef
1874bits. Any output bit can have a zero or one depending on the input bits.
1875
1876.. code-block:: llvm
1877
1878 %A = or %X, undef
1879 %B = and %X, undef
1880 Safe:
1881 %A = -1
1882 %B = 0
1883 Unsafe:
1884 %A = undef
1885 %B = undef
1886
1887These logical operations have bits that are not always affected by the
1888input. For example, if ``%X`` has a zero bit, then the output of the
1889'``and``' operation will always be a zero for that bit, no matter what
1890the corresponding bit from the '``undef``' is. As such, it is unsafe to
1891optimize or assume that the result of the '``and``' is '``undef``'.
1892However, it is safe to assume that all bits of the '``undef``' could be
18930, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1894all the bits of the '``undef``' operand to the '``or``' could be set,
1895allowing the '``or``' to be folded to -1.
1896
1897.. code-block:: llvm
1898
1899 %A = select undef, %X, %Y
1900 %B = select undef, 42, %Y
1901 %C = select %X, %Y, undef
1902 Safe:
1903 %A = %X (or %Y)
1904 %B = 42 (or %Y)
1905 %C = %Y
1906 Unsafe:
1907 %A = undef
1908 %B = undef
1909 %C = undef
1910
1911This set of examples shows that undefined '``select``' (and conditional
1912branch) conditions can go *either way*, but they have to come from one
1913of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1914both known to have a clear low bit, then ``%A`` would have to have a
1915cleared low bit. However, in the ``%C`` example, the optimizer is
1916allowed to assume that the '``undef``' operand could be the same as
1917``%Y``, allowing the whole '``select``' to be eliminated.
1918
1919.. code-block:: llvm
1920
1921 %A = xor undef, undef
1922
1923 %B = undef
1924 %C = xor %B, %B
1925
1926 %D = undef
1927 %E = icmp lt %D, 4
1928 %F = icmp gte %D, 4
1929
1930 Safe:
1931 %A = undef
1932 %B = undef
1933 %C = undef
1934 %D = undef
1935 %E = undef
1936 %F = undef
1937
1938This example points out that two '``undef``' operands are not
1939necessarily the same. This can be surprising to people (and also matches
1940C semantics) where they assume that "``X^X``" is always zero, even if
1941``X`` is undefined. This isn't true for a number of reasons, but the
1942short answer is that an '``undef``' "variable" can arbitrarily change
1943its value over its "live range". This is true because the variable
1944doesn't actually *have a live range*. Instead, the value is logically
1945read from arbitrary registers that happen to be around when needed, so
1946the value is not necessarily consistent over time. In fact, ``%A`` and
1947``%C`` need to have the same semantics or the core LLVM "replace all
1948uses with" concept would not hold.
1949
1950.. code-block:: llvm
1951
1952 %A = fdiv undef, %X
1953 %B = fdiv %X, undef
1954 Safe:
1955 %A = undef
1956 b: unreachable
1957
1958These examples show the crucial difference between an *undefined value*
1959and *undefined behavior*. An undefined value (like '``undef``') is
1960allowed to have an arbitrary bit-pattern. This means that the ``%A``
1961operation can be constant folded to '``undef``', because the '``undef``'
1962could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
1963However, in the second example, we can make a more aggressive
1964assumption: because the ``undef`` is allowed to be an arbitrary value,
1965we are allowed to assume that it could be zero. Since a divide by zero
1966has *undefined behavior*, we are allowed to assume that the operation
1967does not execute at all. This allows us to delete the divide and all
1968code after it. Because the undefined operation "can't happen", the
1969optimizer can assume that it occurs in dead code.
1970
1971.. code-block:: llvm
1972
1973 a: store undef -> %X
1974 b: store %X -> undef
1975 Safe:
1976 a: <deleted>
1977 b: unreachable
1978
1979These examples reiterate the ``fdiv`` example: a store *of* an undefined
1980value can be assumed to not have any effect; we can assume that the
1981value is overwritten with bits that happen to match what was already
1982there. However, a store *to* an undefined location could clobber
1983arbitrary memory, therefore, it has undefined behavior.
1984
1985.. _poisonvalues:
1986
1987Poison Values
1988-------------
1989
1990Poison values are similar to :ref:`undef values <undefvalues>`, however
1991they also represent the fact that an instruction or constant expression
1992which cannot evoke side effects has nevertheless detected a condition
1993which results in undefined behavior.
1994
1995There is currently no way of representing a poison value in the IR; they
1996only exist when produced by operations such as :ref:`add <i_add>` with
1997the ``nsw`` flag.
1998
1999Poison value behavior is defined in terms of value *dependence*:
2000
2001- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2002- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2003 their dynamic predecessor basic block.
2004- Function arguments depend on the corresponding actual argument values
2005 in the dynamic callers of their functions.
2006- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2007 instructions that dynamically transfer control back to them.
2008- :ref:`Invoke <i_invoke>` instructions depend on the
2009 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2010 call instructions that dynamically transfer control back to them.
2011- Non-volatile loads and stores depend on the most recent stores to all
2012 of the referenced memory addresses, following the order in the IR
2013 (including loads and stores implied by intrinsics such as
2014 :ref:`@llvm.memcpy <int_memcpy>`.)
2015- An instruction with externally visible side effects depends on the
2016 most recent preceding instruction with externally visible side
2017 effects, following the order in the IR. (This includes :ref:`volatile
2018 operations <volatile>`.)
2019- An instruction *control-depends* on a :ref:`terminator
2020 instruction <terminators>` if the terminator instruction has
2021 multiple successors and the instruction is always executed when
2022 control transfers to one of the successors, and may not be executed
2023 when control is transferred to another.
2024- Additionally, an instruction also *control-depends* on a terminator
2025 instruction if the set of instructions it otherwise depends on would
2026 be different if the terminator had transferred control to a different
2027 successor.
2028- Dependence is transitive.
2029
2030Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2031with the additional affect that any instruction which has a *dependence*
2032on a poison value has undefined behavior.
2033
2034Here are some examples:
2035
2036.. code-block:: llvm
2037
2038 entry:
2039 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2040 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2041 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2042 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2043
2044 store i32 %poison, i32* @g ; Poison value stored to memory.
2045 %poison2 = load i32* @g ; Poison value loaded back from memory.
2046
2047 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2048
2049 %narrowaddr = bitcast i32* @g to i16*
2050 %wideaddr = bitcast i32* @g to i64*
2051 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2052 %poison4 = load i64* %wideaddr ; Returns a poison value.
2053
2054 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2055 br i1 %cmp, label %true, label %end ; Branch to either destination.
2056
2057 true:
2058 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2059 ; it has undefined behavior.
2060 br label %end
2061
2062 end:
2063 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2064 ; Both edges into this PHI are
2065 ; control-dependent on %cmp, so this
2066 ; always results in a poison value.
2067
2068 store volatile i32 0, i32* @g ; This would depend on the store in %true
2069 ; if %cmp is true, or the store in %entry
2070 ; otherwise, so this is undefined behavior.
2071
2072 br i1 %cmp, label %second_true, label %second_end
2073 ; The same branch again, but this time the
2074 ; true block doesn't have side effects.
2075
2076 second_true:
2077 ; No side effects!
2078 ret void
2079
2080 second_end:
2081 store volatile i32 0, i32* @g ; This time, the instruction always depends
2082 ; on the store in %end. Also, it is
2083 ; control-equivalent to %end, so this is
2084 ; well-defined (ignoring earlier undefined
2085 ; behavior in this example).
2086
2087.. _blockaddress:
2088
2089Addresses of Basic Blocks
2090-------------------------
2091
2092``blockaddress(@function, %block)``
2093
2094The '``blockaddress``' constant computes the address of the specified
2095basic block in the specified function, and always has an ``i8*`` type.
2096Taking the address of the entry block is illegal.
2097
2098This value only has defined behavior when used as an operand to the
2099':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2100against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002101undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002102no label is equal to the null pointer. This may be passed around as an
2103opaque pointer sized value as long as the bits are not inspected. This
2104allows ``ptrtoint`` and arithmetic to be performed on these values so
2105long as the original value is reconstituted before the ``indirectbr``
2106instruction.
2107
2108Finally, some targets may provide defined semantics when using the value
2109as the operand to an inline assembly, but that is target specific.
2110
2111Constant Expressions
2112--------------------
2113
2114Constant expressions are used to allow expressions involving other
2115constants to be used as constants. Constant expressions may be of any
2116:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2117that does not have side effects (e.g. load and call are not supported).
2118The following is the syntax for constant expressions:
2119
2120``trunc (CST to TYPE)``
2121 Truncate a constant to another type. The bit size of CST must be
2122 larger than the bit size of TYPE. Both types must be integers.
2123``zext (CST to TYPE)``
2124 Zero extend a constant to another type. The bit size of CST must be
2125 smaller than the bit size of TYPE. Both types must be integers.
2126``sext (CST to TYPE)``
2127 Sign extend a constant to another type. The bit size of CST must be
2128 smaller than the bit size of TYPE. Both types must be integers.
2129``fptrunc (CST to TYPE)``
2130 Truncate a floating point constant to another floating point type.
2131 The size of CST must be larger than the size of TYPE. Both types
2132 must be floating point.
2133``fpext (CST to TYPE)``
2134 Floating point extend a constant to another type. The size of CST
2135 must be smaller or equal to the size of TYPE. Both types must be
2136 floating point.
2137``fptoui (CST to TYPE)``
2138 Convert a floating point constant to the corresponding unsigned
2139 integer constant. TYPE must be a scalar or vector integer type. CST
2140 must be of scalar or vector floating point type. Both CST and TYPE
2141 must be scalars, or vectors of the same number of elements. If the
2142 value won't fit in the integer type, the results are undefined.
2143``fptosi (CST to TYPE)``
2144 Convert a floating point constant to the corresponding signed
2145 integer constant. TYPE must be a scalar or vector integer type. CST
2146 must be of scalar or vector floating point type. Both CST and TYPE
2147 must be scalars, or vectors of the same number of elements. If the
2148 value won't fit in the integer type, the results are undefined.
2149``uitofp (CST to TYPE)``
2150 Convert an unsigned integer constant to the corresponding floating
2151 point constant. TYPE must be a scalar or vector floating point type.
2152 CST must be of scalar or vector integer type. Both CST and TYPE must
2153 be scalars, or vectors of the same number of elements. If the value
2154 won't fit in the floating point type, the results are undefined.
2155``sitofp (CST to TYPE)``
2156 Convert a signed integer constant to the corresponding floating
2157 point constant. TYPE must be a scalar or vector floating point type.
2158 CST must be of scalar or vector integer type. Both CST and TYPE must
2159 be scalars, or vectors of the same number of elements. If the value
2160 won't fit in the floating point type, the results are undefined.
2161``ptrtoint (CST to TYPE)``
2162 Convert a pointer typed constant to the corresponding integer
2163 constant ``TYPE`` must be an integer type. ``CST`` must be of
2164 pointer type. The ``CST`` value is zero extended, truncated, or
2165 unchanged to make it fit in ``TYPE``.
2166``inttoptr (CST to TYPE)``
2167 Convert an integer constant to a pointer constant. TYPE must be a
2168 pointer type. CST must be of integer type. The CST value is zero
2169 extended, truncated, or unchanged to make it fit in a pointer size.
2170 This one is *really* dangerous!
2171``bitcast (CST to TYPE)``
2172 Convert a constant, CST, to another TYPE. The constraints of the
2173 operands are the same as those for the :ref:`bitcast
2174 instruction <i_bitcast>`.
2175``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2176 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2177 constants. As with the :ref:`getelementptr <i_getelementptr>`
2178 instruction, the index list may have zero or more indexes, which are
2179 required to make sense for the type of "CSTPTR".
2180``select (COND, VAL1, VAL2)``
2181 Perform the :ref:`select operation <i_select>` on constants.
2182``icmp COND (VAL1, VAL2)``
2183 Performs the :ref:`icmp operation <i_icmp>` on constants.
2184``fcmp COND (VAL1, VAL2)``
2185 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2186``extractelement (VAL, IDX)``
2187 Perform the :ref:`extractelement operation <i_extractelement>` on
2188 constants.
2189``insertelement (VAL, ELT, IDX)``
2190 Perform the :ref:`insertelement operation <i_insertelement>` on
2191 constants.
2192``shufflevector (VEC1, VEC2, IDXMASK)``
2193 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2194 constants.
2195``extractvalue (VAL, IDX0, IDX1, ...)``
2196 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2197 constants. The index list is interpreted in a similar manner as
2198 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2199 least one index value must be specified.
2200``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2201 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2202 The index list is interpreted in a similar manner as indices in a
2203 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2204 value must be specified.
2205``OPCODE (LHS, RHS)``
2206 Perform the specified operation of the LHS and RHS constants. OPCODE
2207 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2208 binary <bitwiseops>` operations. The constraints on operands are
2209 the same as those for the corresponding instruction (e.g. no bitwise
2210 operations on floating point values are allowed).
2211
2212Other Values
2213============
2214
2215Inline Assembler Expressions
2216----------------------------
2217
2218LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2219Inline Assembly <moduleasm>`) through the use of a special value. This
2220value represents the inline assembler as a string (containing the
2221instructions to emit), a list of operand constraints (stored as a
2222string), a flag that indicates whether or not the inline asm expression
2223has side effects, and a flag indicating whether the function containing
2224the asm needs to align its stack conservatively. An example inline
2225assembler expression is:
2226
2227.. code-block:: llvm
2228
2229 i32 (i32) asm "bswap $0", "=r,r"
2230
2231Inline assembler expressions may **only** be used as the callee operand
2232of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2233Thus, typically we have:
2234
2235.. code-block:: llvm
2236
2237 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2238
2239Inline asms with side effects not visible in the constraint list must be
2240marked as having side effects. This is done through the use of the
2241'``sideeffect``' keyword, like so:
2242
2243.. code-block:: llvm
2244
2245 call void asm sideeffect "eieio", ""()
2246
2247In some cases inline asms will contain code that will not work unless
2248the stack is aligned in some way, such as calls or SSE instructions on
2249x86, yet will not contain code that does that alignment within the asm.
2250The compiler should make conservative assumptions about what the asm
2251might contain and should generate its usual stack alignment code in the
2252prologue if the '``alignstack``' keyword is present:
2253
2254.. code-block:: llvm
2255
2256 call void asm alignstack "eieio", ""()
2257
2258Inline asms also support using non-standard assembly dialects. The
2259assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2260the inline asm is using the Intel dialect. Currently, ATT and Intel are
2261the only supported dialects. An example is:
2262
2263.. code-block:: llvm
2264
2265 call void asm inteldialect "eieio", ""()
2266
2267If multiple keywords appear the '``sideeffect``' keyword must come
2268first, the '``alignstack``' keyword second and the '``inteldialect``'
2269keyword last.
2270
2271Inline Asm Metadata
2272^^^^^^^^^^^^^^^^^^^
2273
2274The call instructions that wrap inline asm nodes may have a
2275"``!srcloc``" MDNode attached to it that contains a list of constant
2276integers. If present, the code generator will use the integer as the
2277location cookie value when report errors through the ``LLVMContext``
2278error reporting mechanisms. This allows a front-end to correlate backend
2279errors that occur with inline asm back to the source code that produced
2280it. For example:
2281
2282.. code-block:: llvm
2283
2284 call void asm sideeffect "something bad", ""(), !srcloc !42
2285 ...
2286 !42 = !{ i32 1234567 }
2287
2288It is up to the front-end to make sense of the magic numbers it places
2289in the IR. If the MDNode contains multiple constants, the code generator
2290will use the one that corresponds to the line of the asm that the error
2291occurs on.
2292
2293.. _metadata:
2294
2295Metadata Nodes and Metadata Strings
2296-----------------------------------
2297
2298LLVM IR allows metadata to be attached to instructions in the program
2299that can convey extra information about the code to the optimizers and
2300code generator. One example application of metadata is source-level
2301debug information. There are two metadata primitives: strings and nodes.
2302All metadata has the ``metadata`` type and is identified in syntax by a
2303preceding exclamation point ('``!``').
2304
2305A metadata string is a string surrounded by double quotes. It can
2306contain any character by escaping non-printable characters with
2307"``\xx``" where "``xx``" is the two digit hex code. For example:
2308"``!"test\00"``".
2309
2310Metadata nodes are represented with notation similar to structure
2311constants (a comma separated list of elements, surrounded by braces and
2312preceded by an exclamation point). Metadata nodes can have any values as
2313their operand. For example:
2314
2315.. code-block:: llvm
2316
2317 !{ metadata !"test\00", i32 10}
2318
2319A :ref:`named metadata <namedmetadatastructure>` is a collection of
2320metadata nodes, which can be looked up in the module symbol table. For
2321example:
2322
2323.. code-block:: llvm
2324
2325 !foo = metadata !{!4, !3}
2326
2327Metadata can be used as function arguments. Here ``llvm.dbg.value``
2328function is using two metadata arguments:
2329
2330.. code-block:: llvm
2331
2332 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2333
2334Metadata can be attached with an instruction. Here metadata ``!21`` is
2335attached to the ``add`` instruction using the ``!dbg`` identifier:
2336
2337.. code-block:: llvm
2338
2339 %indvar.next = add i64 %indvar, 1, !dbg !21
2340
2341More information about specific metadata nodes recognized by the
2342optimizers and code generator is found below.
2343
2344'``tbaa``' Metadata
2345^^^^^^^^^^^^^^^^^^^
2346
2347In LLVM IR, memory does not have types, so LLVM's own type system is not
2348suitable for doing TBAA. Instead, metadata is added to the IR to
2349describe a type system of a higher level language. This can be used to
2350implement typical C/C++ TBAA, but it can also be used to implement
2351custom alias analysis behavior for other languages.
2352
2353The current metadata format is very simple. TBAA metadata nodes have up
2354to three fields, e.g.:
2355
2356.. code-block:: llvm
2357
2358 !0 = metadata !{ metadata !"an example type tree" }
2359 !1 = metadata !{ metadata !"int", metadata !0 }
2360 !2 = metadata !{ metadata !"float", metadata !0 }
2361 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2362
2363The first field is an identity field. It can be any value, usually a
2364metadata string, which uniquely identifies the type. The most important
2365name in the tree is the name of the root node. Two trees with different
2366root node names are entirely disjoint, even if they have leaves with
2367common names.
2368
2369The second field identifies the type's parent node in the tree, or is
2370null or omitted for a root node. A type is considered to alias all of
2371its descendants and all of its ancestors in the tree. Also, a type is
2372considered to alias all types in other trees, so that bitcode produced
2373from multiple front-ends is handled conservatively.
2374
2375If the third field is present, it's an integer which if equal to 1
2376indicates that the type is "constant" (meaning
2377``pointsToConstantMemory`` should return true; see `other useful
2378AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2379
2380'``tbaa.struct``' Metadata
2381^^^^^^^^^^^^^^^^^^^^^^^^^^
2382
2383The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2384aggregate assignment operations in C and similar languages, however it
2385is defined to copy a contiguous region of memory, which is more than
2386strictly necessary for aggregate types which contain holes due to
2387padding. Also, it doesn't contain any TBAA information about the fields
2388of the aggregate.
2389
2390``!tbaa.struct`` metadata can describe which memory subregions in a
2391memcpy are padding and what the TBAA tags of the struct are.
2392
2393The current metadata format is very simple. ``!tbaa.struct`` metadata
2394nodes are a list of operands which are in conceptual groups of three.
2395For each group of three, the first operand gives the byte offset of a
2396field in bytes, the second gives its size in bytes, and the third gives
2397its tbaa tag. e.g.:
2398
2399.. code-block:: llvm
2400
2401 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2402
2403This describes a struct with two fields. The first is at offset 0 bytes
2404with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2405and has size 4 bytes and has tbaa tag !2.
2406
2407Note that the fields need not be contiguous. In this example, there is a
24084 byte gap between the two fields. This gap represents padding which
2409does not carry useful data and need not be preserved.
2410
2411'``fpmath``' Metadata
2412^^^^^^^^^^^^^^^^^^^^^
2413
2414``fpmath`` metadata may be attached to any instruction of floating point
2415type. It can be used to express the maximum acceptable error in the
2416result of that instruction, in ULPs, thus potentially allowing the
2417compiler to use a more efficient but less accurate method of computing
2418it. ULP is defined as follows:
2419
2420 If ``x`` is a real number that lies between two finite consecutive
2421 floating-point numbers ``a`` and ``b``, without being equal to one
2422 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2423 distance between the two non-equal finite floating-point numbers
2424 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2425
2426The metadata node shall consist of a single positive floating point
2427number representing the maximum relative error, for example:
2428
2429.. code-block:: llvm
2430
2431 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2432
2433'``range``' Metadata
2434^^^^^^^^^^^^^^^^^^^^
2435
2436``range`` metadata may be attached only to loads of integer types. It
2437expresses the possible ranges the loaded value is in. The ranges are
2438represented with a flattened list of integers. The loaded value is known
2439to be in the union of the ranges defined by each consecutive pair. Each
2440pair has the following properties:
2441
2442- The type must match the type loaded by the instruction.
2443- The pair ``a,b`` represents the range ``[a,b)``.
2444- Both ``a`` and ``b`` are constants.
2445- The range is allowed to wrap.
2446- The range should not represent the full or empty set. That is,
2447 ``a!=b``.
2448
2449In addition, the pairs must be in signed order of the lower bound and
2450they must be non-contiguous.
2451
2452Examples:
2453
2454.. code-block:: llvm
2455
2456 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2457 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2458 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2459 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2460 ...
2461 !0 = metadata !{ i8 0, i8 2 }
2462 !1 = metadata !{ i8 255, i8 2 }
2463 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2464 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2465
2466Module Flags Metadata
2467=====================
2468
2469Information about the module as a whole is difficult to convey to LLVM's
2470subsystems. The LLVM IR isn't sufficient to transmit this information.
2471The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002472this. These flags are in the form of key / value pairs --- much like a
2473dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002474look it up.
2475
2476The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2477Each triplet has the following form:
2478
2479- The first element is a *behavior* flag, which specifies the behavior
2480 when two (or more) modules are merged together, and it encounters two
2481 (or more) metadata with the same ID. The supported behaviors are
2482 described below.
2483- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002484 metadata. Each module may only have one flag entry for each unique ID (not
2485 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002486- The third element is the value of the flag.
2487
2488When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002489``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2490each unique metadata ID string, there will be exactly one entry in the merged
2491modules ``llvm.module.flags`` metadata table, and the value for that entry will
2492be determined by the merge behavior flag, as described below. The only exception
2493is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002494
2495The following behaviors are supported:
2496
2497.. list-table::
2498 :header-rows: 1
2499 :widths: 10 90
2500
2501 * - Value
2502 - Behavior
2503
2504 * - 1
2505 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002506 Emits an error if two values disagree, otherwise the resulting value
2507 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002508
2509 * - 2
2510 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002511 Emits a warning if two values disagree. The result value will be the
2512 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002513
2514 * - 3
2515 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002516 Adds a requirement that another module flag be present and have a
2517 specified value after linking is performed. The value must be a
2518 metadata pair, where the first element of the pair is the ID of the
2519 module flag to be restricted, and the second element of the pair is
2520 the value the module flag should be restricted to. This behavior can
2521 be used to restrict the allowable results (via triggering of an
2522 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002523
2524 * - 4
2525 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002526 Uses the specified value, regardless of the behavior or value of the
2527 other module. If both modules specify **Override**, but the values
2528 differ, an error will be emitted.
2529
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002530 * - 5
2531 - **Append**
2532 Appends the two values, which are required to be metadata nodes.
2533
2534 * - 6
2535 - **AppendUnique**
2536 Appends the two values, which are required to be metadata
2537 nodes. However, duplicate entries in the second list are dropped
2538 during the append operation.
2539
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002540It is an error for a particular unique flag ID to have multiple behaviors,
2541except in the case of **Require** (which adds restrictions on another metadata
2542value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002543
2544An example of module flags:
2545
2546.. code-block:: llvm
2547
2548 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2549 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2550 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2551 !3 = metadata !{ i32 3, metadata !"qux",
2552 metadata !{
2553 metadata !"foo", i32 1
2554 }
2555 }
2556 !llvm.module.flags = !{ !0, !1, !2, !3 }
2557
2558- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2559 if two or more ``!"foo"`` flags are seen is to emit an error if their
2560 values are not equal.
2561
2562- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2563 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002564 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002565
2566- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2567 behavior if two or more ``!"qux"`` flags are seen is to emit a
2568 warning if their values are not equal.
2569
2570- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2571
2572 ::
2573
2574 metadata !{ metadata !"foo", i32 1 }
2575
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002576 The behavior is to emit an error if the ``llvm.module.flags`` does not
2577 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2578 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002579
2580Objective-C Garbage Collection Module Flags Metadata
2581----------------------------------------------------
2582
2583On the Mach-O platform, Objective-C stores metadata about garbage
2584collection in a special section called "image info". The metadata
2585consists of a version number and a bitmask specifying what types of
2586garbage collection are supported (if any) by the file. If two or more
2587modules are linked together their garbage collection metadata needs to
2588be merged rather than appended together.
2589
2590The Objective-C garbage collection module flags metadata consists of the
2591following key-value pairs:
2592
2593.. list-table::
2594 :header-rows: 1
2595 :widths: 30 70
2596
2597 * - Key
2598 - Value
2599
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002600 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002601 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002602
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002603 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002604 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002605 always 0.
2606
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002607 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002608 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002609 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2610 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2611 Objective-C ABI version 2.
2612
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002613 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002614 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002615 not. Valid values are 0, for no garbage collection, and 2, for garbage
2616 collection supported.
2617
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002618 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002619 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002620 If present, its value must be 6. This flag requires that the
2621 ``Objective-C Garbage Collection`` flag have the value 2.
2622
2623Some important flag interactions:
2624
2625- If a module with ``Objective-C Garbage Collection`` set to 0 is
2626 merged with a module with ``Objective-C Garbage Collection`` set to
2627 2, then the resulting module has the
2628 ``Objective-C Garbage Collection`` flag set to 0.
2629- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2630 merged with a module with ``Objective-C GC Only`` set to 6.
2631
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002632Automatic Linker Flags Module Flags Metadata
2633--------------------------------------------
2634
2635Some targets support embedding flags to the linker inside individual object
2636files. Typically this is used in conjunction with language extensions which
2637allow source files to explicitly declare the libraries they depend on, and have
2638these automatically be transmitted to the linker via object files.
2639
2640These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002641using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002642to be ``AppendUnique``, and the value for the key is expected to be a metadata
2643node which should be a list of other metadata nodes, each of which should be a
2644list of metadata strings defining linker options.
2645
2646For example, the following metadata section specifies two separate sets of
2647linker options, presumably to link against ``libz`` and the ``Cocoa``
2648framework::
2649
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002650 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002651 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002652 metadata !{ metadata !"-lz" },
2653 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002654 !llvm.module.flags = !{ !0 }
2655
2656The metadata encoding as lists of lists of options, as opposed to a collapsed
2657list of options, is chosen so that the IR encoding can use multiple option
2658strings to specify e.g., a single library, while still having that specifier be
2659preserved as an atomic element that can be recognized by a target specific
2660assembly writer or object file emitter.
2661
2662Each individual option is required to be either a valid option for the target's
2663linker, or an option that is reserved by the target specific assembly writer or
2664object file emitter. No other aspect of these options is defined by the IR.
2665
Sean Silvaf722b002012-12-07 10:36:55 +00002666Intrinsic Global Variables
2667==========================
2668
2669LLVM has a number of "magic" global variables that contain data that
2670affect code generation or other IR semantics. These are documented here.
2671All globals of this sort should have a section specified as
2672"``llvm.metadata``". This section and all globals that start with
2673"``llvm.``" are reserved for use by LLVM.
2674
2675The '``llvm.used``' Global Variable
2676-----------------------------------
2677
2678The ``@llvm.used`` global is an array with i8\* element type which has
2679:ref:`appending linkage <linkage_appending>`. This array contains a list of
2680pointers to global variables and functions which may optionally have a
2681pointer cast formed of bitcast or getelementptr. For example, a legal
2682use of it is:
2683
2684.. code-block:: llvm
2685
2686 @X = global i8 4
2687 @Y = global i32 123
2688
2689 @llvm.used = appending global [2 x i8*] [
2690 i8* @X,
2691 i8* bitcast (i32* @Y to i8*)
2692 ], section "llvm.metadata"
2693
2694If a global variable appears in the ``@llvm.used`` list, then the
2695compiler, assembler, and linker are required to treat the symbol as if
2696there is a reference to the global that it cannot see. For example, if a
2697variable has internal linkage and no references other than that from the
2698``@llvm.used`` list, it cannot be deleted. This is commonly used to
2699represent references from inline asms and other things the compiler
2700cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2701
2702On some targets, the code generator must emit a directive to the
2703assembler or object file to prevent the assembler and linker from
2704molesting the symbol.
2705
2706The '``llvm.compiler.used``' Global Variable
2707--------------------------------------------
2708
2709The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2710directive, except that it only prevents the compiler from touching the
2711symbol. On targets that support it, this allows an intelligent linker to
2712optimize references to the symbol without being impeded as it would be
2713by ``@llvm.used``.
2714
2715This is a rare construct that should only be used in rare circumstances,
2716and should not be exposed to source languages.
2717
2718The '``llvm.global_ctors``' Global Variable
2719-------------------------------------------
2720
2721.. code-block:: llvm
2722
2723 %0 = type { i32, void ()* }
2724 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2725
2726The ``@llvm.global_ctors`` array contains a list of constructor
2727functions and associated priorities. The functions referenced by this
2728array will be called in ascending order of priority (i.e. lowest first)
2729when the module is loaded. The order of functions with the same priority
2730is not defined.
2731
2732The '``llvm.global_dtors``' Global Variable
2733-------------------------------------------
2734
2735.. code-block:: llvm
2736
2737 %0 = type { i32, void ()* }
2738 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2739
2740The ``@llvm.global_dtors`` array contains a list of destructor functions
2741and associated priorities. The functions referenced by this array will
2742be called in descending order of priority (i.e. highest first) when the
2743module is loaded. The order of functions with the same priority is not
2744defined.
2745
2746Instruction Reference
2747=====================
2748
2749The LLVM instruction set consists of several different classifications
2750of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2751instructions <binaryops>`, :ref:`bitwise binary
2752instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2753:ref:`other instructions <otherops>`.
2754
2755.. _terminators:
2756
2757Terminator Instructions
2758-----------------------
2759
2760As mentioned :ref:`previously <functionstructure>`, every basic block in a
2761program ends with a "Terminator" instruction, which indicates which
2762block should be executed after the current block is finished. These
2763terminator instructions typically yield a '``void``' value: they produce
2764control flow, not values (the one exception being the
2765':ref:`invoke <i_invoke>`' instruction).
2766
2767The terminator instructions are: ':ref:`ret <i_ret>`',
2768':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2769':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2770':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2771
2772.. _i_ret:
2773
2774'``ret``' Instruction
2775^^^^^^^^^^^^^^^^^^^^^
2776
2777Syntax:
2778"""""""
2779
2780::
2781
2782 ret <type> <value> ; Return a value from a non-void function
2783 ret void ; Return from void function
2784
2785Overview:
2786"""""""""
2787
2788The '``ret``' instruction is used to return control flow (and optionally
2789a value) from a function back to the caller.
2790
2791There are two forms of the '``ret``' instruction: one that returns a
2792value and then causes control flow, and one that just causes control
2793flow to occur.
2794
2795Arguments:
2796""""""""""
2797
2798The '``ret``' instruction optionally accepts a single argument, the
2799return value. The type of the return value must be a ':ref:`first
2800class <t_firstclass>`' type.
2801
2802A function is not :ref:`well formed <wellformed>` if it it has a non-void
2803return type and contains a '``ret``' instruction with no return value or
2804a return value with a type that does not match its type, or if it has a
2805void return type and contains a '``ret``' instruction with a return
2806value.
2807
2808Semantics:
2809""""""""""
2810
2811When the '``ret``' instruction is executed, control flow returns back to
2812the calling function's context. If the caller is a
2813":ref:`call <i_call>`" instruction, execution continues at the
2814instruction after the call. If the caller was an
2815":ref:`invoke <i_invoke>`" instruction, execution continues at the
2816beginning of the "normal" destination block. If the instruction returns
2817a value, that value shall set the call or invoke instruction's return
2818value.
2819
2820Example:
2821""""""""
2822
2823.. code-block:: llvm
2824
2825 ret i32 5 ; Return an integer value of 5
2826 ret void ; Return from a void function
2827 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
2828
2829.. _i_br:
2830
2831'``br``' Instruction
2832^^^^^^^^^^^^^^^^^^^^
2833
2834Syntax:
2835"""""""
2836
2837::
2838
2839 br i1 <cond>, label <iftrue>, label <iffalse>
2840 br label <dest> ; Unconditional branch
2841
2842Overview:
2843"""""""""
2844
2845The '``br``' instruction is used to cause control flow to transfer to a
2846different basic block in the current function. There are two forms of
2847this instruction, corresponding to a conditional branch and an
2848unconditional branch.
2849
2850Arguments:
2851""""""""""
2852
2853The conditional branch form of the '``br``' instruction takes a single
2854'``i1``' value and two '``label``' values. The unconditional form of the
2855'``br``' instruction takes a single '``label``' value as a target.
2856
2857Semantics:
2858""""""""""
2859
2860Upon execution of a conditional '``br``' instruction, the '``i1``'
2861argument is evaluated. If the value is ``true``, control flows to the
2862'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
2863to the '``iffalse``' ``label`` argument.
2864
2865Example:
2866""""""""
2867
2868.. code-block:: llvm
2869
2870 Test:
2871 %cond = icmp eq i32 %a, %b
2872 br i1 %cond, label %IfEqual, label %IfUnequal
2873 IfEqual:
2874 ret i32 1
2875 IfUnequal:
2876 ret i32 0
2877
2878.. _i_switch:
2879
2880'``switch``' Instruction
2881^^^^^^^^^^^^^^^^^^^^^^^^
2882
2883Syntax:
2884"""""""
2885
2886::
2887
2888 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
2889
2890Overview:
2891"""""""""
2892
2893The '``switch``' instruction is used to transfer control flow to one of
2894several different places. It is a generalization of the '``br``'
2895instruction, allowing a branch to occur to one of many possible
2896destinations.
2897
2898Arguments:
2899""""""""""
2900
2901The '``switch``' instruction uses three parameters: an integer
2902comparison value '``value``', a default '``label``' destination, and an
2903array of pairs of comparison value constants and '``label``'s. The table
2904is not allowed to contain duplicate constant entries.
2905
2906Semantics:
2907""""""""""
2908
2909The ``switch`` instruction specifies a table of values and destinations.
2910When the '``switch``' instruction is executed, this table is searched
2911for the given value. If the value is found, control flow is transferred
2912to the corresponding destination; otherwise, control flow is transferred
2913to the default destination.
2914
2915Implementation:
2916"""""""""""""""
2917
2918Depending on properties of the target machine and the particular
2919``switch`` instruction, this instruction may be code generated in
2920different ways. For example, it could be generated as a series of
2921chained conditional branches or with a lookup table.
2922
2923Example:
2924""""""""
2925
2926.. code-block:: llvm
2927
2928 ; Emulate a conditional br instruction
2929 %Val = zext i1 %value to i32
2930 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2931
2932 ; Emulate an unconditional br instruction
2933 switch i32 0, label %dest [ ]
2934
2935 ; Implement a jump table:
2936 switch i32 %val, label %otherwise [ i32 0, label %onzero
2937 i32 1, label %onone
2938 i32 2, label %ontwo ]
2939
2940.. _i_indirectbr:
2941
2942'``indirectbr``' Instruction
2943^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2944
2945Syntax:
2946"""""""
2947
2948::
2949
2950 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
2951
2952Overview:
2953"""""""""
2954
2955The '``indirectbr``' instruction implements an indirect branch to a
2956label within the current function, whose address is specified by
2957"``address``". Address must be derived from a
2958:ref:`blockaddress <blockaddress>` constant.
2959
2960Arguments:
2961""""""""""
2962
2963The '``address``' argument is the address of the label to jump to. The
2964rest of the arguments indicate the full set of possible destinations
2965that the address may point to. Blocks are allowed to occur multiple
2966times in the destination list, though this isn't particularly useful.
2967
2968This destination list is required so that dataflow analysis has an
2969accurate understanding of the CFG.
2970
2971Semantics:
2972""""""""""
2973
2974Control transfers to the block specified in the address argument. All
2975possible destination blocks must be listed in the label list, otherwise
2976this instruction has undefined behavior. This implies that jumps to
2977labels defined in other functions have undefined behavior as well.
2978
2979Implementation:
2980"""""""""""""""
2981
2982This is typically implemented with a jump through a register.
2983
2984Example:
2985""""""""
2986
2987.. code-block:: llvm
2988
2989 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
2990
2991.. _i_invoke:
2992
2993'``invoke``' Instruction
2994^^^^^^^^^^^^^^^^^^^^^^^^
2995
2996Syntax:
2997"""""""
2998
2999::
3000
3001 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3002 to label <normal label> unwind label <exception label>
3003
3004Overview:
3005"""""""""
3006
3007The '``invoke``' instruction causes control to transfer to a specified
3008function, with the possibility of control flow transfer to either the
3009'``normal``' label or the '``exception``' label. If the callee function
3010returns with the "``ret``" instruction, control flow will return to the
3011"normal" label. If the callee (or any indirect callees) returns via the
3012":ref:`resume <i_resume>`" instruction or other exception handling
3013mechanism, control is interrupted and continued at the dynamically
3014nearest "exception" label.
3015
3016The '``exception``' label is a `landing
3017pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3018'``exception``' label is required to have the
3019":ref:`landingpad <i_landingpad>`" instruction, which contains the
3020information about the behavior of the program after unwinding happens,
3021as its first non-PHI instruction. The restrictions on the
3022"``landingpad``" instruction's tightly couples it to the "``invoke``"
3023instruction, so that the important information contained within the
3024"``landingpad``" instruction can't be lost through normal code motion.
3025
3026Arguments:
3027""""""""""
3028
3029This instruction requires several arguments:
3030
3031#. The optional "cconv" marker indicates which :ref:`calling
3032 convention <callingconv>` the call should use. If none is
3033 specified, the call defaults to using C calling conventions.
3034#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3035 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3036 are valid here.
3037#. '``ptr to function ty``': shall be the signature of the pointer to
3038 function value being invoked. In most cases, this is a direct
3039 function invocation, but indirect ``invoke``'s are just as possible,
3040 branching off an arbitrary pointer to function value.
3041#. '``function ptr val``': An LLVM value containing a pointer to a
3042 function to be invoked.
3043#. '``function args``': argument list whose types match the function
3044 signature argument types and parameter attributes. All arguments must
3045 be of :ref:`first class <t_firstclass>` type. If the function signature
3046 indicates the function accepts a variable number of arguments, the
3047 extra arguments can be specified.
3048#. '``normal label``': the label reached when the called function
3049 executes a '``ret``' instruction.
3050#. '``exception label``': the label reached when a callee returns via
3051 the :ref:`resume <i_resume>` instruction or other exception handling
3052 mechanism.
3053#. The optional :ref:`function attributes <fnattrs>` list. Only
3054 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3055 attributes are valid here.
3056
3057Semantics:
3058""""""""""
3059
3060This instruction is designed to operate as a standard '``call``'
3061instruction in most regards. The primary difference is that it
3062establishes an association with a label, which is used by the runtime
3063library to unwind the stack.
3064
3065This instruction is used in languages with destructors to ensure that
3066proper cleanup is performed in the case of either a ``longjmp`` or a
3067thrown exception. Additionally, this is important for implementation of
3068'``catch``' clauses in high-level languages that support them.
3069
3070For the purposes of the SSA form, the definition of the value returned
3071by the '``invoke``' instruction is deemed to occur on the edge from the
3072current block to the "normal" label. If the callee unwinds then no
3073return value is available.
3074
3075Example:
3076""""""""
3077
3078.. code-block:: llvm
3079
3080 %retval = invoke i32 @Test(i32 15) to label %Continue
3081 unwind label %TestCleanup ; {i32}:retval set
3082 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3083 unwind label %TestCleanup ; {i32}:retval set
3084
3085.. _i_resume:
3086
3087'``resume``' Instruction
3088^^^^^^^^^^^^^^^^^^^^^^^^
3089
3090Syntax:
3091"""""""
3092
3093::
3094
3095 resume <type> <value>
3096
3097Overview:
3098"""""""""
3099
3100The '``resume``' instruction is a terminator instruction that has no
3101successors.
3102
3103Arguments:
3104""""""""""
3105
3106The '``resume``' instruction requires one argument, which must have the
3107same type as the result of any '``landingpad``' instruction in the same
3108function.
3109
3110Semantics:
3111""""""""""
3112
3113The '``resume``' instruction resumes propagation of an existing
3114(in-flight) exception whose unwinding was interrupted with a
3115:ref:`landingpad <i_landingpad>` instruction.
3116
3117Example:
3118""""""""
3119
3120.. code-block:: llvm
3121
3122 resume { i8*, i32 } %exn
3123
3124.. _i_unreachable:
3125
3126'``unreachable``' Instruction
3127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3128
3129Syntax:
3130"""""""
3131
3132::
3133
3134 unreachable
3135
3136Overview:
3137"""""""""
3138
3139The '``unreachable``' instruction has no defined semantics. This
3140instruction is used to inform the optimizer that a particular portion of
3141the code is not reachable. This can be used to indicate that the code
3142after a no-return function cannot be reached, and other facts.
3143
3144Semantics:
3145""""""""""
3146
3147The '``unreachable``' instruction has no defined semantics.
3148
3149.. _binaryops:
3150
3151Binary Operations
3152-----------------
3153
3154Binary operators are used to do most of the computation in a program.
3155They require two operands of the same type, execute an operation on
3156them, and produce a single value. The operands might represent multiple
3157data, as is the case with the :ref:`vector <t_vector>` data type. The
3158result value has the same type as its operands.
3159
3160There are several different binary operators:
3161
3162.. _i_add:
3163
3164'``add``' Instruction
3165^^^^^^^^^^^^^^^^^^^^^
3166
3167Syntax:
3168"""""""
3169
3170::
3171
3172 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3173 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3174 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3175 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3176
3177Overview:
3178"""""""""
3179
3180The '``add``' instruction returns the sum of its two operands.
3181
3182Arguments:
3183""""""""""
3184
3185The two arguments to the '``add``' instruction must be
3186:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3187arguments must have identical types.
3188
3189Semantics:
3190""""""""""
3191
3192The value produced is the integer sum of the two operands.
3193
3194If the sum has unsigned overflow, the result returned is the
3195mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3196the result.
3197
3198Because LLVM integers use a two's complement representation, this
3199instruction is appropriate for both signed and unsigned integers.
3200
3201``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3202respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3203result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3204unsigned and/or signed overflow, respectively, occurs.
3205
3206Example:
3207""""""""
3208
3209.. code-block:: llvm
3210
3211 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3212
3213.. _i_fadd:
3214
3215'``fadd``' Instruction
3216^^^^^^^^^^^^^^^^^^^^^^
3217
3218Syntax:
3219"""""""
3220
3221::
3222
3223 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3224
3225Overview:
3226"""""""""
3227
3228The '``fadd``' instruction returns the sum of its two operands.
3229
3230Arguments:
3231""""""""""
3232
3233The two arguments to the '``fadd``' instruction must be :ref:`floating
3234point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3235Both arguments must have identical types.
3236
3237Semantics:
3238""""""""""
3239
3240The value produced is the floating point sum of the two operands. This
3241instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3242which are optimization hints to enable otherwise unsafe floating point
3243optimizations:
3244
3245Example:
3246""""""""
3247
3248.. code-block:: llvm
3249
3250 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3251
3252'``sub``' Instruction
3253^^^^^^^^^^^^^^^^^^^^^
3254
3255Syntax:
3256"""""""
3257
3258::
3259
3260 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3261 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3262 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3263 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3264
3265Overview:
3266"""""""""
3267
3268The '``sub``' instruction returns the difference of its two operands.
3269
3270Note that the '``sub``' instruction is used to represent the '``neg``'
3271instruction present in most other intermediate representations.
3272
3273Arguments:
3274""""""""""
3275
3276The two arguments to the '``sub``' instruction must be
3277:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3278arguments must have identical types.
3279
3280Semantics:
3281""""""""""
3282
3283The value produced is the integer difference of the two operands.
3284
3285If the difference has unsigned overflow, the result returned is the
3286mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3287the result.
3288
3289Because LLVM integers use a two's complement representation, this
3290instruction is appropriate for both signed and unsigned integers.
3291
3292``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3293respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3294result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3295unsigned and/or signed overflow, respectively, occurs.
3296
3297Example:
3298""""""""
3299
3300.. code-block:: llvm
3301
3302 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3303 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3304
3305.. _i_fsub:
3306
3307'``fsub``' Instruction
3308^^^^^^^^^^^^^^^^^^^^^^
3309
3310Syntax:
3311"""""""
3312
3313::
3314
3315 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3316
3317Overview:
3318"""""""""
3319
3320The '``fsub``' instruction returns the difference of its two operands.
3321
3322Note that the '``fsub``' instruction is used to represent the '``fneg``'
3323instruction present in most other intermediate representations.
3324
3325Arguments:
3326""""""""""
3327
3328The two arguments to the '``fsub``' instruction must be :ref:`floating
3329point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3330Both arguments must have identical types.
3331
3332Semantics:
3333""""""""""
3334
3335The value produced is the floating point difference of the two operands.
3336This instruction can also take any number of :ref:`fast-math
3337flags <fastmath>`, which are optimization hints to enable otherwise
3338unsafe floating point optimizations:
3339
3340Example:
3341""""""""
3342
3343.. code-block:: llvm
3344
3345 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3346 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3347
3348'``mul``' Instruction
3349^^^^^^^^^^^^^^^^^^^^^
3350
3351Syntax:
3352"""""""
3353
3354::
3355
3356 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3357 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3358 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3359 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3360
3361Overview:
3362"""""""""
3363
3364The '``mul``' instruction returns the product of its two operands.
3365
3366Arguments:
3367""""""""""
3368
3369The two arguments to the '``mul``' instruction must be
3370:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3371arguments must have identical types.
3372
3373Semantics:
3374""""""""""
3375
3376The value produced is the integer product of the two operands.
3377
3378If the result of the multiplication has unsigned overflow, the result
3379returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3380bit width of the result.
3381
3382Because LLVM integers use a two's complement representation, and the
3383result is the same width as the operands, this instruction returns the
3384correct result for both signed and unsigned integers. If a full product
3385(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3386sign-extended or zero-extended as appropriate to the width of the full
3387product.
3388
3389``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3390respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3391result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3392unsigned and/or signed overflow, respectively, occurs.
3393
3394Example:
3395""""""""
3396
3397.. code-block:: llvm
3398
3399 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3400
3401.. _i_fmul:
3402
3403'``fmul``' Instruction
3404^^^^^^^^^^^^^^^^^^^^^^
3405
3406Syntax:
3407"""""""
3408
3409::
3410
3411 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3412
3413Overview:
3414"""""""""
3415
3416The '``fmul``' instruction returns the product of its two operands.
3417
3418Arguments:
3419""""""""""
3420
3421The two arguments to the '``fmul``' instruction must be :ref:`floating
3422point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3423Both arguments must have identical types.
3424
3425Semantics:
3426""""""""""
3427
3428The value produced is the floating point product of the two operands.
3429This instruction can also take any number of :ref:`fast-math
3430flags <fastmath>`, which are optimization hints to enable otherwise
3431unsafe floating point optimizations:
3432
3433Example:
3434""""""""
3435
3436.. code-block:: llvm
3437
3438 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3439
3440'``udiv``' Instruction
3441^^^^^^^^^^^^^^^^^^^^^^
3442
3443Syntax:
3444"""""""
3445
3446::
3447
3448 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3449 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3450
3451Overview:
3452"""""""""
3453
3454The '``udiv``' instruction returns the quotient of its two operands.
3455
3456Arguments:
3457""""""""""
3458
3459The two arguments to the '``udiv``' instruction must be
3460:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3461arguments must have identical types.
3462
3463Semantics:
3464""""""""""
3465
3466The value produced is the unsigned integer quotient of the two operands.
3467
3468Note that unsigned integer division and signed integer division are
3469distinct operations; for signed integer division, use '``sdiv``'.
3470
3471Division by zero leads to undefined behavior.
3472
3473If the ``exact`` keyword is present, the result value of the ``udiv`` is
3474a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3475such, "((a udiv exact b) mul b) == a").
3476
3477Example:
3478""""""""
3479
3480.. code-block:: llvm
3481
3482 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3483
3484'``sdiv``' Instruction
3485^^^^^^^^^^^^^^^^^^^^^^
3486
3487Syntax:
3488"""""""
3489
3490::
3491
3492 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3493 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3494
3495Overview:
3496"""""""""
3497
3498The '``sdiv``' instruction returns the quotient of its two operands.
3499
3500Arguments:
3501""""""""""
3502
3503The two arguments to the '``sdiv``' instruction must be
3504:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3505arguments must have identical types.
3506
3507Semantics:
3508""""""""""
3509
3510The value produced is the signed integer quotient of the two operands
3511rounded towards zero.
3512
3513Note that signed integer division and unsigned integer division are
3514distinct operations; for unsigned integer division, use '``udiv``'.
3515
3516Division by zero leads to undefined behavior. Overflow also leads to
3517undefined behavior; this is a rare case, but can occur, for example, by
3518doing a 32-bit division of -2147483648 by -1.
3519
3520If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3521a :ref:`poison value <poisonvalues>` if the result would be rounded.
3522
3523Example:
3524""""""""
3525
3526.. code-block:: llvm
3527
3528 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3529
3530.. _i_fdiv:
3531
3532'``fdiv``' Instruction
3533^^^^^^^^^^^^^^^^^^^^^^
3534
3535Syntax:
3536"""""""
3537
3538::
3539
3540 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3541
3542Overview:
3543"""""""""
3544
3545The '``fdiv``' instruction returns the quotient of its two operands.
3546
3547Arguments:
3548""""""""""
3549
3550The two arguments to the '``fdiv``' instruction must be :ref:`floating
3551point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3552Both arguments must have identical types.
3553
3554Semantics:
3555""""""""""
3556
3557The value produced is the floating point quotient of the two operands.
3558This instruction can also take any number of :ref:`fast-math
3559flags <fastmath>`, which are optimization hints to enable otherwise
3560unsafe floating point optimizations:
3561
3562Example:
3563""""""""
3564
3565.. code-block:: llvm
3566
3567 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3568
3569'``urem``' Instruction
3570^^^^^^^^^^^^^^^^^^^^^^
3571
3572Syntax:
3573"""""""
3574
3575::
3576
3577 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3578
3579Overview:
3580"""""""""
3581
3582The '``urem``' instruction returns the remainder from the unsigned
3583division of its two arguments.
3584
3585Arguments:
3586""""""""""
3587
3588The two arguments to the '``urem``' instruction must be
3589:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3590arguments must have identical types.
3591
3592Semantics:
3593""""""""""
3594
3595This instruction returns the unsigned integer *remainder* of a division.
3596This instruction always performs an unsigned division to get the
3597remainder.
3598
3599Note that unsigned integer remainder and signed integer remainder are
3600distinct operations; for signed integer remainder, use '``srem``'.
3601
3602Taking the remainder of a division by zero leads to undefined behavior.
3603
3604Example:
3605""""""""
3606
3607.. code-block:: llvm
3608
3609 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3610
3611'``srem``' Instruction
3612^^^^^^^^^^^^^^^^^^^^^^
3613
3614Syntax:
3615"""""""
3616
3617::
3618
3619 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3620
3621Overview:
3622"""""""""
3623
3624The '``srem``' instruction returns the remainder from the signed
3625division of its two operands. This instruction can also take
3626:ref:`vector <t_vector>` versions of the values in which case the elements
3627must be integers.
3628
3629Arguments:
3630""""""""""
3631
3632The two arguments to the '``srem``' instruction must be
3633:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3634arguments must have identical types.
3635
3636Semantics:
3637""""""""""
3638
3639This instruction returns the *remainder* of a division (where the result
3640is either zero or has the same sign as the dividend, ``op1``), not the
3641*modulo* operator (where the result is either zero or has the same sign
3642as the divisor, ``op2``) of a value. For more information about the
3643difference, see `The Math
3644Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3645table of how this is implemented in various languages, please see
3646`Wikipedia: modulo
3647operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3648
3649Note that signed integer remainder and unsigned integer remainder are
3650distinct operations; for unsigned integer remainder, use '``urem``'.
3651
3652Taking the remainder of a division by zero leads to undefined behavior.
3653Overflow also leads to undefined behavior; this is a rare case, but can
3654occur, for example, by taking the remainder of a 32-bit division of
3655-2147483648 by -1. (The remainder doesn't actually overflow, but this
3656rule lets srem be implemented using instructions that return both the
3657result of the division and the remainder.)
3658
3659Example:
3660""""""""
3661
3662.. code-block:: llvm
3663
3664 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3665
3666.. _i_frem:
3667
3668'``frem``' Instruction
3669^^^^^^^^^^^^^^^^^^^^^^
3670
3671Syntax:
3672"""""""
3673
3674::
3675
3676 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3677
3678Overview:
3679"""""""""
3680
3681The '``frem``' instruction returns the remainder from the division of
3682its two operands.
3683
3684Arguments:
3685""""""""""
3686
3687The two arguments to the '``frem``' instruction must be :ref:`floating
3688point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3689Both arguments must have identical types.
3690
3691Semantics:
3692""""""""""
3693
3694This instruction returns the *remainder* of a division. The remainder
3695has the same sign as the dividend. This instruction can also take any
3696number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3697to enable otherwise unsafe floating point optimizations:
3698
3699Example:
3700""""""""
3701
3702.. code-block:: llvm
3703
3704 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3705
3706.. _bitwiseops:
3707
3708Bitwise Binary Operations
3709-------------------------
3710
3711Bitwise binary operators are used to do various forms of bit-twiddling
3712in a program. They are generally very efficient instructions and can
3713commonly be strength reduced from other instructions. They require two
3714operands of the same type, execute an operation on them, and produce a
3715single value. The resulting value is the same type as its operands.
3716
3717'``shl``' Instruction
3718^^^^^^^^^^^^^^^^^^^^^
3719
3720Syntax:
3721"""""""
3722
3723::
3724
3725 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3726 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3727 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3728 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3729
3730Overview:
3731"""""""""
3732
3733The '``shl``' instruction returns the first operand shifted to the left
3734a specified number of bits.
3735
3736Arguments:
3737""""""""""
3738
3739Both arguments to the '``shl``' instruction must be the same
3740:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3741'``op2``' is treated as an unsigned value.
3742
3743Semantics:
3744""""""""""
3745
3746The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3747where ``n`` is the width of the result. If ``op2`` is (statically or
3748dynamically) negative or equal to or larger than the number of bits in
3749``op1``, the result is undefined. If the arguments are vectors, each
3750vector element of ``op1`` is shifted by the corresponding shift amount
3751in ``op2``.
3752
3753If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3754value <poisonvalues>` if it shifts out any non-zero bits. If the
3755``nsw`` keyword is present, then the shift produces a :ref:`poison
3756value <poisonvalues>` if it shifts out any bits that disagree with the
3757resultant sign bit. As such, NUW/NSW have the same semantics as they
3758would if the shift were expressed as a mul instruction with the same
3759nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3760
3761Example:
3762""""""""
3763
3764.. code-block:: llvm
3765
3766 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3767 <result> = shl i32 4, 2 ; yields {i32}: 16
3768 <result> = shl i32 1, 10 ; yields {i32}: 1024
3769 <result> = shl i32 1, 32 ; undefined
3770 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3771
3772'``lshr``' Instruction
3773^^^^^^^^^^^^^^^^^^^^^^
3774
3775Syntax:
3776"""""""
3777
3778::
3779
3780 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3781 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3782
3783Overview:
3784"""""""""
3785
3786The '``lshr``' instruction (logical shift right) returns the first
3787operand shifted to the right a specified number of bits with zero fill.
3788
3789Arguments:
3790""""""""""
3791
3792Both arguments to the '``lshr``' instruction must be the same
3793:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3794'``op2``' is treated as an unsigned value.
3795
3796Semantics:
3797""""""""""
3798
3799This instruction always performs a logical shift right operation. The
3800most significant bits of the result will be filled with zero bits after
3801the shift. If ``op2`` is (statically or dynamically) equal to or larger
3802than the number of bits in ``op1``, the result is undefined. If the
3803arguments are vectors, each vector element of ``op1`` is shifted by the
3804corresponding shift amount in ``op2``.
3805
3806If the ``exact`` keyword is present, the result value of the ``lshr`` is
3807a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3808non-zero.
3809
3810Example:
3811""""""""
3812
3813.. code-block:: llvm
3814
3815 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3816 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3817 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3818 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3819 <result> = lshr i32 1, 32 ; undefined
3820 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3821
3822'``ashr``' Instruction
3823^^^^^^^^^^^^^^^^^^^^^^
3824
3825Syntax:
3826"""""""
3827
3828::
3829
3830 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
3831 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
3832
3833Overview:
3834"""""""""
3835
3836The '``ashr``' instruction (arithmetic shift right) returns the first
3837operand shifted to the right a specified number of bits with sign
3838extension.
3839
3840Arguments:
3841""""""""""
3842
3843Both arguments to the '``ashr``' instruction must be the same
3844:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3845'``op2``' is treated as an unsigned value.
3846
3847Semantics:
3848""""""""""
3849
3850This instruction always performs an arithmetic shift right operation,
3851The most significant bits of the result will be filled with the sign bit
3852of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
3853than the number of bits in ``op1``, the result is undefined. If the
3854arguments are vectors, each vector element of ``op1`` is shifted by the
3855corresponding shift amount in ``op2``.
3856
3857If the ``exact`` keyword is present, the result value of the ``ashr`` is
3858a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3859non-zero.
3860
3861Example:
3862""""""""
3863
3864.. code-block:: llvm
3865
3866 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
3867 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
3868 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
3869 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
3870 <result> = ashr i32 1, 32 ; undefined
3871 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
3872
3873'``and``' Instruction
3874^^^^^^^^^^^^^^^^^^^^^
3875
3876Syntax:
3877"""""""
3878
3879::
3880
3881 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
3882
3883Overview:
3884"""""""""
3885
3886The '``and``' instruction returns the bitwise logical and of its two
3887operands.
3888
3889Arguments:
3890""""""""""
3891
3892The two arguments to the '``and``' instruction must be
3893:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3894arguments must have identical types.
3895
3896Semantics:
3897""""""""""
3898
3899The truth table used for the '``and``' instruction is:
3900
3901+-----+-----+-----+
3902| In0 | In1 | Out |
3903+-----+-----+-----+
3904| 0 | 0 | 0 |
3905+-----+-----+-----+
3906| 0 | 1 | 0 |
3907+-----+-----+-----+
3908| 1 | 0 | 0 |
3909+-----+-----+-----+
3910| 1 | 1 | 1 |
3911+-----+-----+-----+
3912
3913Example:
3914""""""""
3915
3916.. code-block:: llvm
3917
3918 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
3919 <result> = and i32 15, 40 ; yields {i32}:result = 8
3920 <result> = and i32 4, 8 ; yields {i32}:result = 0
3921
3922'``or``' Instruction
3923^^^^^^^^^^^^^^^^^^^^
3924
3925Syntax:
3926"""""""
3927
3928::
3929
3930 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
3931
3932Overview:
3933"""""""""
3934
3935The '``or``' instruction returns the bitwise logical inclusive or of its
3936two operands.
3937
3938Arguments:
3939""""""""""
3940
3941The two arguments to the '``or``' instruction must be
3942:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3943arguments must have identical types.
3944
3945Semantics:
3946""""""""""
3947
3948The truth table used for the '``or``' instruction is:
3949
3950+-----+-----+-----+
3951| In0 | In1 | Out |
3952+-----+-----+-----+
3953| 0 | 0 | 0 |
3954+-----+-----+-----+
3955| 0 | 1 | 1 |
3956+-----+-----+-----+
3957| 1 | 0 | 1 |
3958+-----+-----+-----+
3959| 1 | 1 | 1 |
3960+-----+-----+-----+
3961
3962Example:
3963""""""""
3964
3965::
3966
3967 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
3968 <result> = or i32 15, 40 ; yields {i32}:result = 47
3969 <result> = or i32 4, 8 ; yields {i32}:result = 12
3970
3971'``xor``' Instruction
3972^^^^^^^^^^^^^^^^^^^^^
3973
3974Syntax:
3975"""""""
3976
3977::
3978
3979 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
3980
3981Overview:
3982"""""""""
3983
3984The '``xor``' instruction returns the bitwise logical exclusive or of
3985its two operands. The ``xor`` is used to implement the "one's
3986complement" operation, which is the "~" operator in C.
3987
3988Arguments:
3989""""""""""
3990
3991The two arguments to the '``xor``' instruction must be
3992:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3993arguments must have identical types.
3994
3995Semantics:
3996""""""""""
3997
3998The truth table used for the '``xor``' instruction is:
3999
4000+-----+-----+-----+
4001| In0 | In1 | Out |
4002+-----+-----+-----+
4003| 0 | 0 | 0 |
4004+-----+-----+-----+
4005| 0 | 1 | 1 |
4006+-----+-----+-----+
4007| 1 | 0 | 1 |
4008+-----+-----+-----+
4009| 1 | 1 | 0 |
4010+-----+-----+-----+
4011
4012Example:
4013""""""""
4014
4015.. code-block:: llvm
4016
4017 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4018 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4019 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4020 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4021
4022Vector Operations
4023-----------------
4024
4025LLVM supports several instructions to represent vector operations in a
4026target-independent manner. These instructions cover the element-access
4027and vector-specific operations needed to process vectors effectively.
4028While LLVM does directly support these vector operations, many
4029sophisticated algorithms will want to use target-specific intrinsics to
4030take full advantage of a specific target.
4031
4032.. _i_extractelement:
4033
4034'``extractelement``' Instruction
4035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4036
4037Syntax:
4038"""""""
4039
4040::
4041
4042 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4043
4044Overview:
4045"""""""""
4046
4047The '``extractelement``' instruction extracts a single scalar element
4048from a vector at a specified index.
4049
4050Arguments:
4051""""""""""
4052
4053The first operand of an '``extractelement``' instruction is a value of
4054:ref:`vector <t_vector>` type. The second operand is an index indicating
4055the position from which to extract the element. The index may be a
4056variable.
4057
4058Semantics:
4059""""""""""
4060
4061The result is a scalar of the same type as the element type of ``val``.
4062Its value is the value at position ``idx`` of ``val``. If ``idx``
4063exceeds the length of ``val``, the results are undefined.
4064
4065Example:
4066""""""""
4067
4068.. code-block:: llvm
4069
4070 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4071
4072.. _i_insertelement:
4073
4074'``insertelement``' Instruction
4075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4076
4077Syntax:
4078"""""""
4079
4080::
4081
4082 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4083
4084Overview:
4085"""""""""
4086
4087The '``insertelement``' instruction inserts a scalar element into a
4088vector at a specified index.
4089
4090Arguments:
4091""""""""""
4092
4093The first operand of an '``insertelement``' instruction is a value of
4094:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4095type must equal the element type of the first operand. The third operand
4096is an index indicating the position at which to insert the value. The
4097index may be a variable.
4098
4099Semantics:
4100""""""""""
4101
4102The result is a vector of the same type as ``val``. Its element values
4103are those of ``val`` except at position ``idx``, where it gets the value
4104``elt``. If ``idx`` exceeds the length of ``val``, the results are
4105undefined.
4106
4107Example:
4108""""""""
4109
4110.. code-block:: llvm
4111
4112 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4113
4114.. _i_shufflevector:
4115
4116'``shufflevector``' Instruction
4117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4118
4119Syntax:
4120"""""""
4121
4122::
4123
4124 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4125
4126Overview:
4127"""""""""
4128
4129The '``shufflevector``' instruction constructs a permutation of elements
4130from two input vectors, returning a vector with the same element type as
4131the input and length that is the same as the shuffle mask.
4132
4133Arguments:
4134""""""""""
4135
4136The first two operands of a '``shufflevector``' instruction are vectors
4137with the same type. The third argument is a shuffle mask whose element
4138type is always 'i32'. The result of the instruction is a vector whose
4139length is the same as the shuffle mask and whose element type is the
4140same as the element type of the first two operands.
4141
4142The shuffle mask operand is required to be a constant vector with either
4143constant integer or undef values.
4144
4145Semantics:
4146""""""""""
4147
4148The elements of the two input vectors are numbered from left to right
4149across both of the vectors. The shuffle mask operand specifies, for each
4150element of the result vector, which element of the two input vectors the
4151result element gets. The element selector may be undef (meaning "don't
4152care") and the second operand may be undef if performing a shuffle from
4153only one vector.
4154
4155Example:
4156""""""""
4157
4158.. code-block:: llvm
4159
4160 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4161 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4162 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4163 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4164 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4165 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4166 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4167 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4168
4169Aggregate Operations
4170--------------------
4171
4172LLVM supports several instructions for working with
4173:ref:`aggregate <t_aggregate>` values.
4174
4175.. _i_extractvalue:
4176
4177'``extractvalue``' Instruction
4178^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4179
4180Syntax:
4181"""""""
4182
4183::
4184
4185 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4186
4187Overview:
4188"""""""""
4189
4190The '``extractvalue``' instruction extracts the value of a member field
4191from an :ref:`aggregate <t_aggregate>` value.
4192
4193Arguments:
4194""""""""""
4195
4196The first operand of an '``extractvalue``' instruction is a value of
4197:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4198constant indices to specify which value to extract in a similar manner
4199as indices in a '``getelementptr``' instruction.
4200
4201The major differences to ``getelementptr`` indexing are:
4202
4203- Since the value being indexed is not a pointer, the first index is
4204 omitted and assumed to be zero.
4205- At least one index must be specified.
4206- Not only struct indices but also array indices must be in bounds.
4207
4208Semantics:
4209""""""""""
4210
4211The result is the value at the position in the aggregate specified by
4212the index operands.
4213
4214Example:
4215""""""""
4216
4217.. code-block:: llvm
4218
4219 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4220
4221.. _i_insertvalue:
4222
4223'``insertvalue``' Instruction
4224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4225
4226Syntax:
4227"""""""
4228
4229::
4230
4231 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4232
4233Overview:
4234"""""""""
4235
4236The '``insertvalue``' instruction inserts a value into a member field in
4237an :ref:`aggregate <t_aggregate>` value.
4238
4239Arguments:
4240""""""""""
4241
4242The first operand of an '``insertvalue``' instruction is a value of
4243:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4244a first-class value to insert. The following operands are constant
4245indices indicating the position at which to insert the value in a
4246similar manner as indices in a '``extractvalue``' instruction. The value
4247to insert must have the same type as the value identified by the
4248indices.
4249
4250Semantics:
4251""""""""""
4252
4253The result is an aggregate of the same type as ``val``. Its value is
4254that of ``val`` except that the value at the position specified by the
4255indices is that of ``elt``.
4256
4257Example:
4258""""""""
4259
4260.. code-block:: llvm
4261
4262 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4263 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4264 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4265
4266.. _memoryops:
4267
4268Memory Access and Addressing Operations
4269---------------------------------------
4270
4271A key design point of an SSA-based representation is how it represents
4272memory. In LLVM, no memory locations are in SSA form, which makes things
4273very simple. This section describes how to read, write, and allocate
4274memory in LLVM.
4275
4276.. _i_alloca:
4277
4278'``alloca``' Instruction
4279^^^^^^^^^^^^^^^^^^^^^^^^
4280
4281Syntax:
4282"""""""
4283
4284::
4285
4286 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4287
4288Overview:
4289"""""""""
4290
4291The '``alloca``' instruction allocates memory on the stack frame of the
4292currently executing function, to be automatically released when this
4293function returns to its caller. The object is always allocated in the
4294generic address space (address space zero).
4295
4296Arguments:
4297""""""""""
4298
4299The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4300bytes of memory on the runtime stack, returning a pointer of the
4301appropriate type to the program. If "NumElements" is specified, it is
4302the number of elements allocated, otherwise "NumElements" is defaulted
4303to be one. If a constant alignment is specified, the value result of the
4304allocation is guaranteed to be aligned to at least that boundary. If not
4305specified, or if zero, the target can choose to align the allocation on
4306any convenient boundary compatible with the type.
4307
4308'``type``' may be any sized type.
4309
4310Semantics:
4311""""""""""
4312
4313Memory is allocated; a pointer is returned. The operation is undefined
4314if there is insufficient stack space for the allocation. '``alloca``'d
4315memory is automatically released when the function returns. The
4316'``alloca``' instruction is commonly used to represent automatic
4317variables that must have an address available. When the function returns
4318(either with the ``ret`` or ``resume`` instructions), the memory is
4319reclaimed. Allocating zero bytes is legal, but the result is undefined.
4320The order in which memory is allocated (ie., which way the stack grows)
4321is not specified.
4322
4323Example:
4324""""""""
4325
4326.. code-block:: llvm
4327
4328 %ptr = alloca i32 ; yields {i32*}:ptr
4329 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4330 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4331 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4332
4333.. _i_load:
4334
4335'``load``' Instruction
4336^^^^^^^^^^^^^^^^^^^^^^
4337
4338Syntax:
4339"""""""
4340
4341::
4342
4343 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4344 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4345 !<index> = !{ i32 1 }
4346
4347Overview:
4348"""""""""
4349
4350The '``load``' instruction is used to read from memory.
4351
4352Arguments:
4353""""""""""
4354
4355The argument to the '``load``' instruction specifies the memory address
4356from which to load. The pointer must point to a :ref:`first
4357class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4358then the optimizer is not allowed to modify the number or order of
4359execution of this ``load`` with other :ref:`volatile
4360operations <volatile>`.
4361
4362If the ``load`` is marked as ``atomic``, it takes an extra
4363:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4364``release`` and ``acq_rel`` orderings are not valid on ``load``
4365instructions. Atomic loads produce :ref:`defined <memmodel>` results
4366when they may see multiple atomic stores. The type of the pointee must
4367be an integer type whose bit width is a power of two greater than or
4368equal to eight and less than or equal to a target-specific size limit.
4369``align`` must be explicitly specified on atomic loads, and the load has
4370undefined behavior if the alignment is not set to a value which is at
4371least the size in bytes of the pointee. ``!nontemporal`` does not have
4372any defined semantics for atomic loads.
4373
4374The optional constant ``align`` argument specifies the alignment of the
4375operation (that is, the alignment of the memory address). A value of 0
4376or an omitted ``align`` argument means that the operation has the abi
4377alignment for the target. It is the responsibility of the code emitter
4378to ensure that the alignment information is correct. Overestimating the
4379alignment results in undefined behavior. Underestimating the alignment
4380may produce less efficient code. An alignment of 1 is always safe.
4381
4382The optional ``!nontemporal`` metadata must reference a single
4383metatadata name <index> corresponding to a metadata node with one
4384``i32`` entry of value 1. The existence of the ``!nontemporal``
4385metatadata on the instruction tells the optimizer and code generator
4386that this load is not expected to be reused in the cache. The code
4387generator may select special instructions to save cache bandwidth, such
4388as the ``MOVNT`` instruction on x86.
4389
4390The optional ``!invariant.load`` metadata must reference a single
4391metatadata name <index> corresponding to a metadata node with no
4392entries. The existence of the ``!invariant.load`` metatadata on the
4393instruction tells the optimizer and code generator that this load
4394address points to memory which does not change value during program
4395execution. The optimizer may then move this load around, for example, by
4396hoisting it out of loops using loop invariant code motion.
4397
4398Semantics:
4399""""""""""
4400
4401The location of memory pointed to is loaded. If the value being loaded
4402is of scalar type then the number of bytes read does not exceed the
4403minimum number of bytes needed to hold all bits of the type. For
4404example, loading an ``i24`` reads at most three bytes. When loading a
4405value of a type like ``i20`` with a size that is not an integral number
4406of bytes, the result is undefined if the value was not originally
4407written using a store of the same type.
4408
4409Examples:
4410"""""""""
4411
4412.. code-block:: llvm
4413
4414 %ptr = alloca i32 ; yields {i32*}:ptr
4415 store i32 3, i32* %ptr ; yields {void}
4416 %val = load i32* %ptr ; yields {i32}:val = i32 3
4417
4418.. _i_store:
4419
4420'``store``' Instruction
4421^^^^^^^^^^^^^^^^^^^^^^^
4422
4423Syntax:
4424"""""""
4425
4426::
4427
4428 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4429 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4430
4431Overview:
4432"""""""""
4433
4434The '``store``' instruction is used to write to memory.
4435
4436Arguments:
4437""""""""""
4438
4439There are two arguments to the '``store``' instruction: a value to store
4440and an address at which to store it. The type of the '``<pointer>``'
4441operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4442the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4443then the optimizer is not allowed to modify the number or order of
4444execution of this ``store`` with other :ref:`volatile
4445operations <volatile>`.
4446
4447If the ``store`` is marked as ``atomic``, it takes an extra
4448:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4449``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4450instructions. Atomic loads produce :ref:`defined <memmodel>` results
4451when they may see multiple atomic stores. The type of the pointee must
4452be an integer type whose bit width is a power of two greater than or
4453equal to eight and less than or equal to a target-specific size limit.
4454``align`` must be explicitly specified on atomic stores, and the store
4455has undefined behavior if the alignment is not set to a value which is
4456at least the size in bytes of the pointee. ``!nontemporal`` does not
4457have any defined semantics for atomic stores.
4458
4459The optional constant "align" argument specifies the alignment of the
4460operation (that is, the alignment of the memory address). A value of 0
4461or an omitted "align" argument means that the operation has the abi
4462alignment for the target. It is the responsibility of the code emitter
4463to ensure that the alignment information is correct. Overestimating the
4464alignment results in an undefined behavior. Underestimating the
4465alignment may produce less efficient code. An alignment of 1 is always
4466safe.
4467
4468The optional !nontemporal metadata must reference a single metatadata
4469name <index> corresponding to a metadata node with one i32 entry of
4470value 1. The existence of the !nontemporal metatadata on the instruction
4471tells the optimizer and code generator that this load is not expected to
4472be reused in the cache. The code generator may select special
4473instructions to save cache bandwidth, such as the MOVNT instruction on
4474x86.
4475
4476Semantics:
4477""""""""""
4478
4479The contents of memory are updated to contain '``<value>``' at the
4480location specified by the '``<pointer>``' operand. If '``<value>``' is
4481of scalar type then the number of bytes written does not exceed the
4482minimum number of bytes needed to hold all bits of the type. For
4483example, storing an ``i24`` writes at most three bytes. When writing a
4484value of a type like ``i20`` with a size that is not an integral number
4485of bytes, it is unspecified what happens to the extra bits that do not
4486belong to the type, but they will typically be overwritten.
4487
4488Example:
4489""""""""
4490
4491.. code-block:: llvm
4492
4493 %ptr = alloca i32 ; yields {i32*}:ptr
4494 store i32 3, i32* %ptr ; yields {void}
4495 %val = load i32* %ptr ; yields {i32}:val = i32 3
4496
4497.. _i_fence:
4498
4499'``fence``' Instruction
4500^^^^^^^^^^^^^^^^^^^^^^^
4501
4502Syntax:
4503"""""""
4504
4505::
4506
4507 fence [singlethread] <ordering> ; yields {void}
4508
4509Overview:
4510"""""""""
4511
4512The '``fence``' instruction is used to introduce happens-before edges
4513between operations.
4514
4515Arguments:
4516""""""""""
4517
4518'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4519defines what *synchronizes-with* edges they add. They can only be given
4520``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4521
4522Semantics:
4523""""""""""
4524
4525A fence A which has (at least) ``release`` ordering semantics
4526*synchronizes with* a fence B with (at least) ``acquire`` ordering
4527semantics if and only if there exist atomic operations X and Y, both
4528operating on some atomic object M, such that A is sequenced before X, X
4529modifies M (either directly or through some side effect of a sequence
4530headed by X), Y is sequenced before B, and Y observes M. This provides a
4531*happens-before* dependency between A and B. Rather than an explicit
4532``fence``, one (but not both) of the atomic operations X or Y might
4533provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4534still *synchronize-with* the explicit ``fence`` and establish the
4535*happens-before* edge.
4536
4537A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4538``acquire`` and ``release`` semantics specified above, participates in
4539the global program order of other ``seq_cst`` operations and/or fences.
4540
4541The optional ":ref:`singlethread <singlethread>`" argument specifies
4542that the fence only synchronizes with other fences in the same thread.
4543(This is useful for interacting with signal handlers.)
4544
4545Example:
4546""""""""
4547
4548.. code-block:: llvm
4549
4550 fence acquire ; yields {void}
4551 fence singlethread seq_cst ; yields {void}
4552
4553.. _i_cmpxchg:
4554
4555'``cmpxchg``' Instruction
4556^^^^^^^^^^^^^^^^^^^^^^^^^
4557
4558Syntax:
4559"""""""
4560
4561::
4562
4563 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4564
4565Overview:
4566"""""""""
4567
4568The '``cmpxchg``' instruction is used to atomically modify memory. It
4569loads a value in memory and compares it to a given value. If they are
4570equal, it stores a new value into the memory.
4571
4572Arguments:
4573""""""""""
4574
4575There are three arguments to the '``cmpxchg``' instruction: an address
4576to operate on, a value to compare to the value currently be at that
4577address, and a new value to place at that address if the compared values
4578are equal. The type of '<cmp>' must be an integer type whose bit width
4579is a power of two greater than or equal to eight and less than or equal
4580to a target-specific size limit. '<cmp>' and '<new>' must have the same
4581type, and the type of '<pointer>' must be a pointer to that type. If the
4582``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4583to modify the number or order of execution of this ``cmpxchg`` with
4584other :ref:`volatile operations <volatile>`.
4585
4586The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4587synchronizes with other atomic operations.
4588
4589The optional "``singlethread``" argument declares that the ``cmpxchg``
4590is only atomic with respect to code (usually signal handlers) running in
4591the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4592respect to all other code in the system.
4593
4594The pointer passed into cmpxchg must have alignment greater than or
4595equal to the size in memory of the operand.
4596
4597Semantics:
4598""""""""""
4599
4600The contents of memory at the location specified by the '``<pointer>``'
4601operand is read and compared to '``<cmp>``'; if the read value is the
4602equal, '``<new>``' is written. The original value at the location is
4603returned.
4604
4605A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4606of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4607atomic load with an ordering parameter determined by dropping any
4608``release`` part of the ``cmpxchg``'s ordering.
4609
4610Example:
4611""""""""
4612
4613.. code-block:: llvm
4614
4615 entry:
4616 %orig = atomic load i32* %ptr unordered ; yields {i32}
4617 br label %loop
4618
4619 loop:
4620 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4621 %squared = mul i32 %cmp, %cmp
4622 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4623 %success = icmp eq i32 %cmp, %old
4624 br i1 %success, label %done, label %loop
4625
4626 done:
4627 ...
4628
4629.. _i_atomicrmw:
4630
4631'``atomicrmw``' Instruction
4632^^^^^^^^^^^^^^^^^^^^^^^^^^^
4633
4634Syntax:
4635"""""""
4636
4637::
4638
4639 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4640
4641Overview:
4642"""""""""
4643
4644The '``atomicrmw``' instruction is used to atomically modify memory.
4645
4646Arguments:
4647""""""""""
4648
4649There are three arguments to the '``atomicrmw``' instruction: an
4650operation to apply, an address whose value to modify, an argument to the
4651operation. The operation must be one of the following keywords:
4652
4653- xchg
4654- add
4655- sub
4656- and
4657- nand
4658- or
4659- xor
4660- max
4661- min
4662- umax
4663- umin
4664
4665The type of '<value>' must be an integer type whose bit width is a power
4666of two greater than or equal to eight and less than or equal to a
4667target-specific size limit. The type of the '``<pointer>``' operand must
4668be a pointer to that type. If the ``atomicrmw`` is marked as
4669``volatile``, then the optimizer is not allowed to modify the number or
4670order of execution of this ``atomicrmw`` with other :ref:`volatile
4671operations <volatile>`.
4672
4673Semantics:
4674""""""""""
4675
4676The contents of memory at the location specified by the '``<pointer>``'
4677operand are atomically read, modified, and written back. The original
4678value at the location is returned. The modification is specified by the
4679operation argument:
4680
4681- xchg: ``*ptr = val``
4682- add: ``*ptr = *ptr + val``
4683- sub: ``*ptr = *ptr - val``
4684- and: ``*ptr = *ptr & val``
4685- nand: ``*ptr = ~(*ptr & val)``
4686- or: ``*ptr = *ptr | val``
4687- xor: ``*ptr = *ptr ^ val``
4688- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4689- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4690- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4691 comparison)
4692- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4693 comparison)
4694
4695Example:
4696""""""""
4697
4698.. code-block:: llvm
4699
4700 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4701
4702.. _i_getelementptr:
4703
4704'``getelementptr``' Instruction
4705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4706
4707Syntax:
4708"""""""
4709
4710::
4711
4712 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4713 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4714 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4715
4716Overview:
4717"""""""""
4718
4719The '``getelementptr``' instruction is used to get the address of a
4720subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4721address calculation only and does not access memory.
4722
4723Arguments:
4724""""""""""
4725
4726The first argument is always a pointer or a vector of pointers, and
4727forms the basis of the calculation. The remaining arguments are indices
4728that indicate which of the elements of the aggregate object are indexed.
4729The interpretation of each index is dependent on the type being indexed
4730into. The first index always indexes the pointer value given as the
4731first argument, the second index indexes a value of the type pointed to
4732(not necessarily the value directly pointed to, since the first index
4733can be non-zero), etc. The first type indexed into must be a pointer
4734value, subsequent types can be arrays, vectors, and structs. Note that
4735subsequent types being indexed into can never be pointers, since that
4736would require loading the pointer before continuing calculation.
4737
4738The type of each index argument depends on the type it is indexing into.
4739When indexing into a (optionally packed) structure, only ``i32`` integer
4740**constants** are allowed (when using a vector of indices they must all
4741be the **same** ``i32`` integer constant). When indexing into an array,
4742pointer or vector, integers of any width are allowed, and they are not
4743required to be constant. These integers are treated as signed values
4744where relevant.
4745
4746For example, let's consider a C code fragment and how it gets compiled
4747to LLVM:
4748
4749.. code-block:: c
4750
4751 struct RT {
4752 char A;
4753 int B[10][20];
4754 char C;
4755 };
4756 struct ST {
4757 int X;
4758 double Y;
4759 struct RT Z;
4760 };
4761
4762 int *foo(struct ST *s) {
4763 return &s[1].Z.B[5][13];
4764 }
4765
4766The LLVM code generated by Clang is:
4767
4768.. code-block:: llvm
4769
4770 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4771 %struct.ST = type { i32, double, %struct.RT }
4772
4773 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4774 entry:
4775 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4776 ret i32* %arrayidx
4777 }
4778
4779Semantics:
4780""""""""""
4781
4782In the example above, the first index is indexing into the
4783'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4784= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4785indexes into the third element of the structure, yielding a
4786'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4787structure. The third index indexes into the second element of the
4788structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4789dimensions of the array are subscripted into, yielding an '``i32``'
4790type. The '``getelementptr``' instruction returns a pointer to this
4791element, thus computing a value of '``i32*``' type.
4792
4793Note that it is perfectly legal to index partially through a structure,
4794returning a pointer to an inner element. Because of this, the LLVM code
4795for the given testcase is equivalent to:
4796
4797.. code-block:: llvm
4798
4799 define i32* @foo(%struct.ST* %s) {
4800 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4801 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4802 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4803 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4804 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4805 ret i32* %t5
4806 }
4807
4808If the ``inbounds`` keyword is present, the result value of the
4809``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4810pointer is not an *in bounds* address of an allocated object, or if any
4811of the addresses that would be formed by successive addition of the
4812offsets implied by the indices to the base address with infinitely
4813precise signed arithmetic are not an *in bounds* address of that
4814allocated object. The *in bounds* addresses for an allocated object are
4815all the addresses that point into the object, plus the address one byte
4816past the end. In cases where the base is a vector of pointers the
4817``inbounds`` keyword applies to each of the computations element-wise.
4818
4819If the ``inbounds`` keyword is not present, the offsets are added to the
4820base address with silently-wrapping two's complement arithmetic. If the
4821offsets have a different width from the pointer, they are sign-extended
4822or truncated to the width of the pointer. The result value of the
4823``getelementptr`` may be outside the object pointed to by the base
4824pointer. The result value may not necessarily be used to access memory
4825though, even if it happens to point into allocated storage. See the
4826:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
4827information.
4828
4829The getelementptr instruction is often confusing. For some more insight
4830into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
4831
4832Example:
4833""""""""
4834
4835.. code-block:: llvm
4836
4837 ; yields [12 x i8]*:aptr
4838 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4839 ; yields i8*:vptr
4840 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
4841 ; yields i8*:eptr
4842 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4843 ; yields i32*:iptr
4844 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4845
4846In cases where the pointer argument is a vector of pointers, each index
4847must be a vector with the same number of elements. For example:
4848
4849.. code-block:: llvm
4850
4851 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
4852
4853Conversion Operations
4854---------------------
4855
4856The instructions in this category are the conversion instructions
4857(casting) which all take a single operand and a type. They perform
4858various bit conversions on the operand.
4859
4860'``trunc .. to``' Instruction
4861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4862
4863Syntax:
4864"""""""
4865
4866::
4867
4868 <result> = trunc <ty> <value> to <ty2> ; yields ty2
4869
4870Overview:
4871"""""""""
4872
4873The '``trunc``' instruction truncates its operand to the type ``ty2``.
4874
4875Arguments:
4876""""""""""
4877
4878The '``trunc``' instruction takes a value to trunc, and a type to trunc
4879it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
4880of the same number of integers. The bit size of the ``value`` must be
4881larger than the bit size of the destination type, ``ty2``. Equal sized
4882types are not allowed.
4883
4884Semantics:
4885""""""""""
4886
4887The '``trunc``' instruction truncates the high order bits in ``value``
4888and converts the remaining bits to ``ty2``. Since the source size must
4889be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
4890It will always truncate bits.
4891
4892Example:
4893""""""""
4894
4895.. code-block:: llvm
4896
4897 %X = trunc i32 257 to i8 ; yields i8:1
4898 %Y = trunc i32 123 to i1 ; yields i1:true
4899 %Z = trunc i32 122 to i1 ; yields i1:false
4900 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
4901
4902'``zext .. to``' Instruction
4903^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4904
4905Syntax:
4906"""""""
4907
4908::
4909
4910 <result> = zext <ty> <value> to <ty2> ; yields ty2
4911
4912Overview:
4913"""""""""
4914
4915The '``zext``' instruction zero extends its operand to type ``ty2``.
4916
4917Arguments:
4918""""""""""
4919
4920The '``zext``' instruction takes a value to cast, and a type to cast it
4921to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4922the same number of integers. The bit size of the ``value`` must be
4923smaller than the bit size of the destination type, ``ty2``.
4924
4925Semantics:
4926""""""""""
4927
4928The ``zext`` fills the high order bits of the ``value`` with zero bits
4929until it reaches the size of the destination type, ``ty2``.
4930
4931When zero extending from i1, the result will always be either 0 or 1.
4932
4933Example:
4934""""""""
4935
4936.. code-block:: llvm
4937
4938 %X = zext i32 257 to i64 ; yields i64:257
4939 %Y = zext i1 true to i32 ; yields i32:1
4940 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4941
4942'``sext .. to``' Instruction
4943^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4944
4945Syntax:
4946"""""""
4947
4948::
4949
4950 <result> = sext <ty> <value> to <ty2> ; yields ty2
4951
4952Overview:
4953"""""""""
4954
4955The '``sext``' sign extends ``value`` to the type ``ty2``.
4956
4957Arguments:
4958""""""""""
4959
4960The '``sext``' instruction takes a value to cast, and a type to cast it
4961to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4962the same number of integers. The bit size of the ``value`` must be
4963smaller than the bit size of the destination type, ``ty2``.
4964
4965Semantics:
4966""""""""""
4967
4968The '``sext``' instruction performs a sign extension by copying the sign
4969bit (highest order bit) of the ``value`` until it reaches the bit size
4970of the type ``ty2``.
4971
4972When sign extending from i1, the extension always results in -1 or 0.
4973
4974Example:
4975""""""""
4976
4977.. code-block:: llvm
4978
4979 %X = sext i8 -1 to i16 ; yields i16 :65535
4980 %Y = sext i1 true to i32 ; yields i32:-1
4981 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4982
4983'``fptrunc .. to``' Instruction
4984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4985
4986Syntax:
4987"""""""
4988
4989::
4990
4991 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
4992
4993Overview:
4994"""""""""
4995
4996The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
4997
4998Arguments:
4999""""""""""
5000
5001The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5002value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5003The size of ``value`` must be larger than the size of ``ty2``. This
5004implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5005
5006Semantics:
5007""""""""""
5008
5009The '``fptrunc``' instruction truncates a ``value`` from a larger
5010:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5011point <t_floating>` type. If the value cannot fit within the
5012destination type, ``ty2``, then the results are undefined.
5013
5014Example:
5015""""""""
5016
5017.. code-block:: llvm
5018
5019 %X = fptrunc double 123.0 to float ; yields float:123.0
5020 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5021
5022'``fpext .. to``' Instruction
5023^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5024
5025Syntax:
5026"""""""
5027
5028::
5029
5030 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5031
5032Overview:
5033"""""""""
5034
5035The '``fpext``' extends a floating point ``value`` to a larger floating
5036point value.
5037
5038Arguments:
5039""""""""""
5040
5041The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5042``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5043to. The source type must be smaller than the destination type.
5044
5045Semantics:
5046""""""""""
5047
5048The '``fpext``' instruction extends the ``value`` from a smaller
5049:ref:`floating point <t_floating>` type to a larger :ref:`floating
5050point <t_floating>` type. The ``fpext`` cannot be used to make a
5051*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5052*no-op cast* for a floating point cast.
5053
5054Example:
5055""""""""
5056
5057.. code-block:: llvm
5058
5059 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5060 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5061
5062'``fptoui .. to``' Instruction
5063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5064
5065Syntax:
5066"""""""
5067
5068::
5069
5070 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5071
5072Overview:
5073"""""""""
5074
5075The '``fptoui``' converts a floating point ``value`` to its unsigned
5076integer equivalent of type ``ty2``.
5077
5078Arguments:
5079""""""""""
5080
5081The '``fptoui``' instruction takes a value to cast, which must be a
5082scalar or vector :ref:`floating point <t_floating>` value, and a type to
5083cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5084``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5085type with the same number of elements as ``ty``
5086
5087Semantics:
5088""""""""""
5089
5090The '``fptoui``' instruction converts its :ref:`floating
5091point <t_floating>` operand into the nearest (rounding towards zero)
5092unsigned integer value. If the value cannot fit in ``ty2``, the results
5093are undefined.
5094
5095Example:
5096""""""""
5097
5098.. code-block:: llvm
5099
5100 %X = fptoui double 123.0 to i32 ; yields i32:123
5101 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5102 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5103
5104'``fptosi .. to``' Instruction
5105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5106
5107Syntax:
5108"""""""
5109
5110::
5111
5112 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5113
5114Overview:
5115"""""""""
5116
5117The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5118``value`` to type ``ty2``.
5119
5120Arguments:
5121""""""""""
5122
5123The '``fptosi``' instruction takes a value to cast, which must be a
5124scalar or vector :ref:`floating point <t_floating>` value, and a type to
5125cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5126``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5127type with the same number of elements as ``ty``
5128
5129Semantics:
5130""""""""""
5131
5132The '``fptosi``' instruction converts its :ref:`floating
5133point <t_floating>` operand into the nearest (rounding towards zero)
5134signed integer value. If the value cannot fit in ``ty2``, the results
5135are undefined.
5136
5137Example:
5138""""""""
5139
5140.. code-block:: llvm
5141
5142 %X = fptosi double -123.0 to i32 ; yields i32:-123
5143 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5144 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5145
5146'``uitofp .. to``' Instruction
5147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5148
5149Syntax:
5150"""""""
5151
5152::
5153
5154 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5155
5156Overview:
5157"""""""""
5158
5159The '``uitofp``' instruction regards ``value`` as an unsigned integer
5160and converts that value to the ``ty2`` type.
5161
5162Arguments:
5163""""""""""
5164
5165The '``uitofp``' instruction takes a value to cast, which must be a
5166scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5167``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5168``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5169type with the same number of elements as ``ty``
5170
5171Semantics:
5172""""""""""
5173
5174The '``uitofp``' instruction interprets its operand as an unsigned
5175integer quantity and converts it to the corresponding floating point
5176value. If the value cannot fit in the floating point value, the results
5177are undefined.
5178
5179Example:
5180""""""""
5181
5182.. code-block:: llvm
5183
5184 %X = uitofp i32 257 to float ; yields float:257.0
5185 %Y = uitofp i8 -1 to double ; yields double:255.0
5186
5187'``sitofp .. to``' Instruction
5188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5189
5190Syntax:
5191"""""""
5192
5193::
5194
5195 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5196
5197Overview:
5198"""""""""
5199
5200The '``sitofp``' instruction regards ``value`` as a signed integer and
5201converts that value to the ``ty2`` type.
5202
5203Arguments:
5204""""""""""
5205
5206The '``sitofp``' instruction takes a value to cast, which must be a
5207scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5208``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5209``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5210type with the same number of elements as ``ty``
5211
5212Semantics:
5213""""""""""
5214
5215The '``sitofp``' instruction interprets its operand as a signed integer
5216quantity and converts it to the corresponding floating point value. If
5217the value cannot fit in the floating point value, the results are
5218undefined.
5219
5220Example:
5221""""""""
5222
5223.. code-block:: llvm
5224
5225 %X = sitofp i32 257 to float ; yields float:257.0
5226 %Y = sitofp i8 -1 to double ; yields double:-1.0
5227
5228.. _i_ptrtoint:
5229
5230'``ptrtoint .. to``' Instruction
5231^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5232
5233Syntax:
5234"""""""
5235
5236::
5237
5238 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5239
5240Overview:
5241"""""""""
5242
5243The '``ptrtoint``' instruction converts the pointer or a vector of
5244pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5245
5246Arguments:
5247""""""""""
5248
5249The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5250a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5251type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5252a vector of integers type.
5253
5254Semantics:
5255""""""""""
5256
5257The '``ptrtoint``' instruction converts ``value`` to integer type
5258``ty2`` by interpreting the pointer value as an integer and either
5259truncating or zero extending that value to the size of the integer type.
5260If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5261``value`` is larger than ``ty2`` then a truncation is done. If they are
5262the same size, then nothing is done (*no-op cast*) other than a type
5263change.
5264
5265Example:
5266""""""""
5267
5268.. code-block:: llvm
5269
5270 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5271 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5272 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5273
5274.. _i_inttoptr:
5275
5276'``inttoptr .. to``' Instruction
5277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5278
5279Syntax:
5280"""""""
5281
5282::
5283
5284 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5285
5286Overview:
5287"""""""""
5288
5289The '``inttoptr``' instruction converts an integer ``value`` to a
5290pointer type, ``ty2``.
5291
5292Arguments:
5293""""""""""
5294
5295The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5296cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5297type.
5298
5299Semantics:
5300""""""""""
5301
5302The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5303applying either a zero extension or a truncation depending on the size
5304of the integer ``value``. If ``value`` is larger than the size of a
5305pointer then a truncation is done. If ``value`` is smaller than the size
5306of a pointer then a zero extension is done. If they are the same size,
5307nothing is done (*no-op cast*).
5308
5309Example:
5310""""""""
5311
5312.. code-block:: llvm
5313
5314 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5315 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5316 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5317 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5318
5319.. _i_bitcast:
5320
5321'``bitcast .. to``' Instruction
5322^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5323
5324Syntax:
5325"""""""
5326
5327::
5328
5329 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5330
5331Overview:
5332"""""""""
5333
5334The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5335changing any bits.
5336
5337Arguments:
5338""""""""""
5339
5340The '``bitcast``' instruction takes a value to cast, which must be a
5341non-aggregate first class value, and a type to cast it to, which must
5342also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5343sizes of ``value`` and the destination type, ``ty2``, must be identical.
5344If the source type is a pointer, the destination type must also be a
5345pointer. This instruction supports bitwise conversion of vectors to
5346integers and to vectors of other types (as long as they have the same
5347size).
5348
5349Semantics:
5350""""""""""
5351
5352The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5353always a *no-op cast* because no bits change with this conversion. The
5354conversion is done as if the ``value`` had been stored to memory and
5355read back as type ``ty2``. Pointer (or vector of pointers) types may
5356only be converted to other pointer (or vector of pointers) types with
5357this instruction. To convert pointers to other types, use the
5358:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5359first.
5360
5361Example:
5362""""""""
5363
5364.. code-block:: llvm
5365
5366 %X = bitcast i8 255 to i8 ; yields i8 :-1
5367 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5368 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5369 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5370
5371.. _otherops:
5372
5373Other Operations
5374----------------
5375
5376The instructions in this category are the "miscellaneous" instructions,
5377which defy better classification.
5378
5379.. _i_icmp:
5380
5381'``icmp``' Instruction
5382^^^^^^^^^^^^^^^^^^^^^^
5383
5384Syntax:
5385"""""""
5386
5387::
5388
5389 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5390
5391Overview:
5392"""""""""
5393
5394The '``icmp``' instruction returns a boolean value or a vector of
5395boolean values based on comparison of its two integer, integer vector,
5396pointer, or pointer vector operands.
5397
5398Arguments:
5399""""""""""
5400
5401The '``icmp``' instruction takes three operands. The first operand is
5402the condition code indicating the kind of comparison to perform. It is
5403not a value, just a keyword. The possible condition code are:
5404
5405#. ``eq``: equal
5406#. ``ne``: not equal
5407#. ``ugt``: unsigned greater than
5408#. ``uge``: unsigned greater or equal
5409#. ``ult``: unsigned less than
5410#. ``ule``: unsigned less or equal
5411#. ``sgt``: signed greater than
5412#. ``sge``: signed greater or equal
5413#. ``slt``: signed less than
5414#. ``sle``: signed less or equal
5415
5416The remaining two arguments must be :ref:`integer <t_integer>` or
5417:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5418must also be identical types.
5419
5420Semantics:
5421""""""""""
5422
5423The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5424code given as ``cond``. The comparison performed always yields either an
5425:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5426
5427#. ``eq``: yields ``true`` if the operands are equal, ``false``
5428 otherwise. No sign interpretation is necessary or performed.
5429#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5430 otherwise. No sign interpretation is necessary or performed.
5431#. ``ugt``: interprets the operands as unsigned values and yields
5432 ``true`` if ``op1`` is greater than ``op2``.
5433#. ``uge``: interprets the operands as unsigned values and yields
5434 ``true`` if ``op1`` is greater than or equal to ``op2``.
5435#. ``ult``: interprets the operands as unsigned values and yields
5436 ``true`` if ``op1`` is less than ``op2``.
5437#. ``ule``: interprets the operands as unsigned values and yields
5438 ``true`` if ``op1`` is less than or equal to ``op2``.
5439#. ``sgt``: interprets the operands as signed values and yields ``true``
5440 if ``op1`` is greater than ``op2``.
5441#. ``sge``: interprets the operands as signed values and yields ``true``
5442 if ``op1`` is greater than or equal to ``op2``.
5443#. ``slt``: interprets the operands as signed values and yields ``true``
5444 if ``op1`` is less than ``op2``.
5445#. ``sle``: interprets the operands as signed values and yields ``true``
5446 if ``op1`` is less than or equal to ``op2``.
5447
5448If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5449are compared as if they were integers.
5450
5451If the operands are integer vectors, then they are compared element by
5452element. The result is an ``i1`` vector with the same number of elements
5453as the values being compared. Otherwise, the result is an ``i1``.
5454
5455Example:
5456""""""""
5457
5458.. code-block:: llvm
5459
5460 <result> = icmp eq i32 4, 5 ; yields: result=false
5461 <result> = icmp ne float* %X, %X ; yields: result=false
5462 <result> = icmp ult i16 4, 5 ; yields: result=true
5463 <result> = icmp sgt i16 4, 5 ; yields: result=false
5464 <result> = icmp ule i16 -4, 5 ; yields: result=false
5465 <result> = icmp sge i16 4, 5 ; yields: result=false
5466
5467Note that the code generator does not yet support vector types with the
5468``icmp`` instruction.
5469
5470.. _i_fcmp:
5471
5472'``fcmp``' Instruction
5473^^^^^^^^^^^^^^^^^^^^^^
5474
5475Syntax:
5476"""""""
5477
5478::
5479
5480 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5481
5482Overview:
5483"""""""""
5484
5485The '``fcmp``' instruction returns a boolean value or vector of boolean
5486values based on comparison of its operands.
5487
5488If the operands are floating point scalars, then the result type is a
5489boolean (:ref:`i1 <t_integer>`).
5490
5491If the operands are floating point vectors, then the result type is a
5492vector of boolean with the same number of elements as the operands being
5493compared.
5494
5495Arguments:
5496""""""""""
5497
5498The '``fcmp``' instruction takes three operands. The first operand is
5499the condition code indicating the kind of comparison to perform. It is
5500not a value, just a keyword. The possible condition code are:
5501
5502#. ``false``: no comparison, always returns false
5503#. ``oeq``: ordered and equal
5504#. ``ogt``: ordered and greater than
5505#. ``oge``: ordered and greater than or equal
5506#. ``olt``: ordered and less than
5507#. ``ole``: ordered and less than or equal
5508#. ``one``: ordered and not equal
5509#. ``ord``: ordered (no nans)
5510#. ``ueq``: unordered or equal
5511#. ``ugt``: unordered or greater than
5512#. ``uge``: unordered or greater than or equal
5513#. ``ult``: unordered or less than
5514#. ``ule``: unordered or less than or equal
5515#. ``une``: unordered or not equal
5516#. ``uno``: unordered (either nans)
5517#. ``true``: no comparison, always returns true
5518
5519*Ordered* means that neither operand is a QNAN while *unordered* means
5520that either operand may be a QNAN.
5521
5522Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5523point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5524type. They must have identical types.
5525
5526Semantics:
5527""""""""""
5528
5529The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5530condition code given as ``cond``. If the operands are vectors, then the
5531vectors are compared element by element. Each comparison performed
5532always yields an :ref:`i1 <t_integer>` result, as follows:
5533
5534#. ``false``: always yields ``false``, regardless of operands.
5535#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5536 is equal to ``op2``.
5537#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5538 is greater than ``op2``.
5539#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5540 is greater than or equal to ``op2``.
5541#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5542 is less than ``op2``.
5543#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5544 is less than or equal to ``op2``.
5545#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5546 is not equal to ``op2``.
5547#. ``ord``: yields ``true`` if both operands are not a QNAN.
5548#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5549 equal to ``op2``.
5550#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5551 greater than ``op2``.
5552#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5553 greater than or equal to ``op2``.
5554#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5555 less than ``op2``.
5556#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5557 less than or equal to ``op2``.
5558#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5559 not equal to ``op2``.
5560#. ``uno``: yields ``true`` if either operand is a QNAN.
5561#. ``true``: always yields ``true``, regardless of operands.
5562
5563Example:
5564""""""""
5565
5566.. code-block:: llvm
5567
5568 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5569 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5570 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5571 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5572
5573Note that the code generator does not yet support vector types with the
5574``fcmp`` instruction.
5575
5576.. _i_phi:
5577
5578'``phi``' Instruction
5579^^^^^^^^^^^^^^^^^^^^^
5580
5581Syntax:
5582"""""""
5583
5584::
5585
5586 <result> = phi <ty> [ <val0>, <label0>], ...
5587
5588Overview:
5589"""""""""
5590
5591The '``phi``' instruction is used to implement the φ node in the SSA
5592graph representing the function.
5593
5594Arguments:
5595""""""""""
5596
5597The type of the incoming values is specified with the first type field.
5598After this, the '``phi``' instruction takes a list of pairs as
5599arguments, with one pair for each predecessor basic block of the current
5600block. Only values of :ref:`first class <t_firstclass>` type may be used as
5601the value arguments to the PHI node. Only labels may be used as the
5602label arguments.
5603
5604There must be no non-phi instructions between the start of a basic block
5605and the PHI instructions: i.e. PHI instructions must be first in a basic
5606block.
5607
5608For the purposes of the SSA form, the use of each incoming value is
5609deemed to occur on the edge from the corresponding predecessor block to
5610the current block (but after any definition of an '``invoke``'
5611instruction's return value on the same edge).
5612
5613Semantics:
5614""""""""""
5615
5616At runtime, the '``phi``' instruction logically takes on the value
5617specified by the pair corresponding to the predecessor basic block that
5618executed just prior to the current block.
5619
5620Example:
5621""""""""
5622
5623.. code-block:: llvm
5624
5625 Loop: ; Infinite loop that counts from 0 on up...
5626 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5627 %nextindvar = add i32 %indvar, 1
5628 br label %Loop
5629
5630.. _i_select:
5631
5632'``select``' Instruction
5633^^^^^^^^^^^^^^^^^^^^^^^^
5634
5635Syntax:
5636"""""""
5637
5638::
5639
5640 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5641
5642 selty is either i1 or {<N x i1>}
5643
5644Overview:
5645"""""""""
5646
5647The '``select``' instruction is used to choose one value based on a
5648condition, without branching.
5649
5650Arguments:
5651""""""""""
5652
5653The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5654values indicating the condition, and two values of the same :ref:`first
5655class <t_firstclass>` type. If the val1/val2 are vectors and the
5656condition is a scalar, then entire vectors are selected, not individual
5657elements.
5658
5659Semantics:
5660""""""""""
5661
5662If the condition is an i1 and it evaluates to 1, the instruction returns
5663the first value argument; otherwise, it returns the second value
5664argument.
5665
5666If the condition is a vector of i1, then the value arguments must be
5667vectors of the same size, and the selection is done element by element.
5668
5669Example:
5670""""""""
5671
5672.. code-block:: llvm
5673
5674 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5675
5676.. _i_call:
5677
5678'``call``' Instruction
5679^^^^^^^^^^^^^^^^^^^^^^
5680
5681Syntax:
5682"""""""
5683
5684::
5685
5686 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5687
5688Overview:
5689"""""""""
5690
5691The '``call``' instruction represents a simple function call.
5692
5693Arguments:
5694""""""""""
5695
5696This instruction requires several arguments:
5697
5698#. The optional "tail" marker indicates that the callee function does
5699 not access any allocas or varargs in the caller. Note that calls may
5700 be marked "tail" even if they do not occur before a
5701 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5702 function call is eligible for tail call optimization, but `might not
5703 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5704 The code generator may optimize calls marked "tail" with either 1)
5705 automatic `sibling call
5706 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5707 callee have matching signatures, or 2) forced tail call optimization
5708 when the following extra requirements are met:
5709
5710 - Caller and callee both have the calling convention ``fastcc``.
5711 - The call is in tail position (ret immediately follows call and ret
5712 uses value of call or is void).
5713 - Option ``-tailcallopt`` is enabled, or
5714 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5715 - `Platform specific constraints are
5716 met. <CodeGenerator.html#tailcallopt>`_
5717
5718#. The optional "cconv" marker indicates which :ref:`calling
5719 convention <callingconv>` the call should use. If none is
5720 specified, the call defaults to using C calling conventions. The
5721 calling convention of the call must match the calling convention of
5722 the target function, or else the behavior is undefined.
5723#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5724 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5725 are valid here.
5726#. '``ty``': the type of the call instruction itself which is also the
5727 type of the return value. Functions that return no value are marked
5728 ``void``.
5729#. '``fnty``': shall be the signature of the pointer to function value
5730 being invoked. The argument types must match the types implied by
5731 this signature. This type can be omitted if the function is not
5732 varargs and if the function type does not return a pointer to a
5733 function.
5734#. '``fnptrval``': An LLVM value containing a pointer to a function to
5735 be invoked. In most cases, this is a direct function invocation, but
5736 indirect ``call``'s are just as possible, calling an arbitrary pointer
5737 to function value.
5738#. '``function args``': argument list whose types match the function
5739 signature argument types and parameter attributes. All arguments must
5740 be of :ref:`first class <t_firstclass>` type. If the function signature
5741 indicates the function accepts a variable number of arguments, the
5742 extra arguments can be specified.
5743#. The optional :ref:`function attributes <fnattrs>` list. Only
5744 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5745 attributes are valid here.
5746
5747Semantics:
5748""""""""""
5749
5750The '``call``' instruction is used to cause control flow to transfer to
5751a specified function, with its incoming arguments bound to the specified
5752values. Upon a '``ret``' instruction in the called function, control
5753flow continues with the instruction after the function call, and the
5754return value of the function is bound to the result argument.
5755
5756Example:
5757""""""""
5758
5759.. code-block:: llvm
5760
5761 %retval = call i32 @test(i32 %argc)
5762 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5763 %X = tail call i32 @foo() ; yields i32
5764 %Y = tail call fastcc i32 @foo() ; yields i32
5765 call void %foo(i8 97 signext)
5766
5767 %struct.A = type { i32, i8 }
5768 %r = call %struct.A @foo() ; yields { 32, i8 }
5769 %gr = extractvalue %struct.A %r, 0 ; yields i32
5770 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5771 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5772 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5773
5774llvm treats calls to some functions with names and arguments that match
5775the standard C99 library as being the C99 library functions, and may
5776perform optimizations or generate code for them under that assumption.
5777This is something we'd like to change in the future to provide better
5778support for freestanding environments and non-C-based languages.
5779
5780.. _i_va_arg:
5781
5782'``va_arg``' Instruction
5783^^^^^^^^^^^^^^^^^^^^^^^^
5784
5785Syntax:
5786"""""""
5787
5788::
5789
5790 <resultval> = va_arg <va_list*> <arglist>, <argty>
5791
5792Overview:
5793"""""""""
5794
5795The '``va_arg``' instruction is used to access arguments passed through
5796the "variable argument" area of a function call. It is used to implement
5797the ``va_arg`` macro in C.
5798
5799Arguments:
5800""""""""""
5801
5802This instruction takes a ``va_list*`` value and the type of the
5803argument. It returns a value of the specified argument type and
5804increments the ``va_list`` to point to the next argument. The actual
5805type of ``va_list`` is target specific.
5806
5807Semantics:
5808""""""""""
5809
5810The '``va_arg``' instruction loads an argument of the specified type
5811from the specified ``va_list`` and causes the ``va_list`` to point to
5812the next argument. For more information, see the variable argument
5813handling :ref:`Intrinsic Functions <int_varargs>`.
5814
5815It is legal for this instruction to be called in a function which does
5816not take a variable number of arguments, for example, the ``vfprintf``
5817function.
5818
5819``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5820function <intrinsics>` because it takes a type as an argument.
5821
5822Example:
5823""""""""
5824
5825See the :ref:`variable argument processing <int_varargs>` section.
5826
5827Note that the code generator does not yet fully support va\_arg on many
5828targets. Also, it does not currently support va\_arg with aggregate
5829types on any target.
5830
5831.. _i_landingpad:
5832
5833'``landingpad``' Instruction
5834^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5835
5836Syntax:
5837"""""""
5838
5839::
5840
5841 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
5842 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
5843
5844 <clause> := catch <type> <value>
5845 <clause> := filter <array constant type> <array constant>
5846
5847Overview:
5848"""""""""
5849
5850The '``landingpad``' instruction is used by `LLVM's exception handling
5851system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00005852is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00005853code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
5854defines values supplied by the personality function (``pers_fn``) upon
5855re-entry to the function. The ``resultval`` has the type ``resultty``.
5856
5857Arguments:
5858""""""""""
5859
5860This instruction takes a ``pers_fn`` value. This is the personality
5861function associated with the unwinding mechanism. The optional
5862``cleanup`` flag indicates that the landing pad block is a cleanup.
5863
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00005864A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00005865contains the global variable representing the "type" that may be caught
5866or filtered respectively. Unlike the ``catch`` clause, the ``filter``
5867clause takes an array constant as its argument. Use
5868"``[0 x i8**] undef``" for a filter which cannot throw. The
5869'``landingpad``' instruction must contain *at least* one ``clause`` or
5870the ``cleanup`` flag.
5871
5872Semantics:
5873""""""""""
5874
5875The '``landingpad``' instruction defines the values which are set by the
5876personality function (``pers_fn``) upon re-entry to the function, and
5877therefore the "result type" of the ``landingpad`` instruction. As with
5878calling conventions, how the personality function results are
5879represented in LLVM IR is target specific.
5880
5881The clauses are applied in order from top to bottom. If two
5882``landingpad`` instructions are merged together through inlining, the
5883clauses from the calling function are appended to the list of clauses.
5884When the call stack is being unwound due to an exception being thrown,
5885the exception is compared against each ``clause`` in turn. If it doesn't
5886match any of the clauses, and the ``cleanup`` flag is not set, then
5887unwinding continues further up the call stack.
5888
5889The ``landingpad`` instruction has several restrictions:
5890
5891- A landing pad block is a basic block which is the unwind destination
5892 of an '``invoke``' instruction.
5893- A landing pad block must have a '``landingpad``' instruction as its
5894 first non-PHI instruction.
5895- There can be only one '``landingpad``' instruction within the landing
5896 pad block.
5897- A basic block that is not a landing pad block may not include a
5898 '``landingpad``' instruction.
5899- All '``landingpad``' instructions in a function must have the same
5900 personality function.
5901
5902Example:
5903""""""""
5904
5905.. code-block:: llvm
5906
5907 ;; A landing pad which can catch an integer.
5908 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5909 catch i8** @_ZTIi
5910 ;; A landing pad that is a cleanup.
5911 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5912 cleanup
5913 ;; A landing pad which can catch an integer and can only throw a double.
5914 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5915 catch i8** @_ZTIi
5916 filter [1 x i8**] [@_ZTId]
5917
5918.. _intrinsics:
5919
5920Intrinsic Functions
5921===================
5922
5923LLVM supports the notion of an "intrinsic function". These functions
5924have well known names and semantics and are required to follow certain
5925restrictions. Overall, these intrinsics represent an extension mechanism
5926for the LLVM language that does not require changing all of the
5927transformations in LLVM when adding to the language (or the bitcode
5928reader/writer, the parser, etc...).
5929
5930Intrinsic function names must all start with an "``llvm.``" prefix. This
5931prefix is reserved in LLVM for intrinsic names; thus, function names may
5932not begin with this prefix. Intrinsic functions must always be external
5933functions: you cannot define the body of intrinsic functions. Intrinsic
5934functions may only be used in call or invoke instructions: it is illegal
5935to take the address of an intrinsic function. Additionally, because
5936intrinsic functions are part of the LLVM language, it is required if any
5937are added that they be documented here.
5938
5939Some intrinsic functions can be overloaded, i.e., the intrinsic
5940represents a family of functions that perform the same operation but on
5941different data types. Because LLVM can represent over 8 million
5942different integer types, overloading is used commonly to allow an
5943intrinsic function to operate on any integer type. One or more of the
5944argument types or the result type can be overloaded to accept any
5945integer type. Argument types may also be defined as exactly matching a
5946previous argument's type or the result type. This allows an intrinsic
5947function which accepts multiple arguments, but needs all of them to be
5948of the same type, to only be overloaded with respect to a single
5949argument or the result.
5950
5951Overloaded intrinsics will have the names of its overloaded argument
5952types encoded into its function name, each preceded by a period. Only
5953those types which are overloaded result in a name suffix. Arguments
5954whose type is matched against another type do not. For example, the
5955``llvm.ctpop`` function can take an integer of any width and returns an
5956integer of exactly the same integer width. This leads to a family of
5957functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
5958``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
5959overloaded, and only one type suffix is required. Because the argument's
5960type is matched against the return type, it does not require its own
5961name suffix.
5962
5963To learn how to add an intrinsic function, please see the `Extending
5964LLVM Guide <ExtendingLLVM.html>`_.
5965
5966.. _int_varargs:
5967
5968Variable Argument Handling Intrinsics
5969-------------------------------------
5970
5971Variable argument support is defined in LLVM with the
5972:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
5973functions. These functions are related to the similarly named macros
5974defined in the ``<stdarg.h>`` header file.
5975
5976All of these functions operate on arguments that use a target-specific
5977value type "``va_list``". The LLVM assembly language reference manual
5978does not define what this type is, so all transformations should be
5979prepared to handle these functions regardless of the type used.
5980
5981This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
5982variable argument handling intrinsic functions are used.
5983
5984.. code-block:: llvm
5985
5986 define i32 @test(i32 %X, ...) {
5987 ; Initialize variable argument processing
5988 %ap = alloca i8*
5989 %ap2 = bitcast i8** %ap to i8*
5990 call void @llvm.va_start(i8* %ap2)
5991
5992 ; Read a single integer argument
5993 %tmp = va_arg i8** %ap, i32
5994
5995 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5996 %aq = alloca i8*
5997 %aq2 = bitcast i8** %aq to i8*
5998 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5999 call void @llvm.va_end(i8* %aq2)
6000
6001 ; Stop processing of arguments.
6002 call void @llvm.va_end(i8* %ap2)
6003 ret i32 %tmp
6004 }
6005
6006 declare void @llvm.va_start(i8*)
6007 declare void @llvm.va_copy(i8*, i8*)
6008 declare void @llvm.va_end(i8*)
6009
6010.. _int_va_start:
6011
6012'``llvm.va_start``' Intrinsic
6013^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6014
6015Syntax:
6016"""""""
6017
6018::
6019
6020 declare void %llvm.va_start(i8* <arglist>)
6021
6022Overview:
6023"""""""""
6024
6025The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6026subsequent use by ``va_arg``.
6027
6028Arguments:
6029""""""""""
6030
6031The argument is a pointer to a ``va_list`` element to initialize.
6032
6033Semantics:
6034""""""""""
6035
6036The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6037available in C. In a target-dependent way, it initializes the
6038``va_list`` element to which the argument points, so that the next call
6039to ``va_arg`` will produce the first variable argument passed to the
6040function. Unlike the C ``va_start`` macro, this intrinsic does not need
6041to know the last argument of the function as the compiler can figure
6042that out.
6043
6044'``llvm.va_end``' Intrinsic
6045^^^^^^^^^^^^^^^^^^^^^^^^^^^
6046
6047Syntax:
6048"""""""
6049
6050::
6051
6052 declare void @llvm.va_end(i8* <arglist>)
6053
6054Overview:
6055"""""""""
6056
6057The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6058initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6059
6060Arguments:
6061""""""""""
6062
6063The argument is a pointer to a ``va_list`` to destroy.
6064
6065Semantics:
6066""""""""""
6067
6068The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6069available in C. In a target-dependent way, it destroys the ``va_list``
6070element to which the argument points. Calls to
6071:ref:`llvm.va_start <int_va_start>` and
6072:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6073``llvm.va_end``.
6074
6075.. _int_va_copy:
6076
6077'``llvm.va_copy``' Intrinsic
6078^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6079
6080Syntax:
6081"""""""
6082
6083::
6084
6085 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6086
6087Overview:
6088"""""""""
6089
6090The '``llvm.va_copy``' intrinsic copies the current argument position
6091from the source argument list to the destination argument list.
6092
6093Arguments:
6094""""""""""
6095
6096The first argument is a pointer to a ``va_list`` element to initialize.
6097The second argument is a pointer to a ``va_list`` element to copy from.
6098
6099Semantics:
6100""""""""""
6101
6102The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6103available in C. In a target-dependent way, it copies the source
6104``va_list`` element into the destination ``va_list`` element. This
6105intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6106arbitrarily complex and require, for example, memory allocation.
6107
6108Accurate Garbage Collection Intrinsics
6109--------------------------------------
6110
6111LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6112(GC) requires the implementation and generation of these intrinsics.
6113These intrinsics allow identification of :ref:`GC roots on the
6114stack <int_gcroot>`, as well as garbage collector implementations that
6115require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6116Front-ends for type-safe garbage collected languages should generate
6117these intrinsics to make use of the LLVM garbage collectors. For more
6118details, see `Accurate Garbage Collection with
6119LLVM <GarbageCollection.html>`_.
6120
6121The garbage collection intrinsics only operate on objects in the generic
6122address space (address space zero).
6123
6124.. _int_gcroot:
6125
6126'``llvm.gcroot``' Intrinsic
6127^^^^^^^^^^^^^^^^^^^^^^^^^^^
6128
6129Syntax:
6130"""""""
6131
6132::
6133
6134 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6135
6136Overview:
6137"""""""""
6138
6139The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6140the code generator, and allows some metadata to be associated with it.
6141
6142Arguments:
6143""""""""""
6144
6145The first argument specifies the address of a stack object that contains
6146the root pointer. The second pointer (which must be either a constant or
6147a global value address) contains the meta-data to be associated with the
6148root.
6149
6150Semantics:
6151""""""""""
6152
6153At runtime, a call to this intrinsic stores a null pointer into the
6154"ptrloc" location. At compile-time, the code generator generates
6155information to allow the runtime to find the pointer at GC safe points.
6156The '``llvm.gcroot``' intrinsic may only be used in a function which
6157:ref:`specifies a GC algorithm <gc>`.
6158
6159.. _int_gcread:
6160
6161'``llvm.gcread``' Intrinsic
6162^^^^^^^^^^^^^^^^^^^^^^^^^^^
6163
6164Syntax:
6165"""""""
6166
6167::
6168
6169 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6170
6171Overview:
6172"""""""""
6173
6174The '``llvm.gcread``' intrinsic identifies reads of references from heap
6175locations, allowing garbage collector implementations that require read
6176barriers.
6177
6178Arguments:
6179""""""""""
6180
6181The second argument is the address to read from, which should be an
6182address allocated from the garbage collector. The first object is a
6183pointer to the start of the referenced object, if needed by the language
6184runtime (otherwise null).
6185
6186Semantics:
6187""""""""""
6188
6189The '``llvm.gcread``' intrinsic has the same semantics as a load
6190instruction, but may be replaced with substantially more complex code by
6191the garbage collector runtime, as needed. The '``llvm.gcread``'
6192intrinsic may only be used in a function which :ref:`specifies a GC
6193algorithm <gc>`.
6194
6195.. _int_gcwrite:
6196
6197'``llvm.gcwrite``' Intrinsic
6198^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6199
6200Syntax:
6201"""""""
6202
6203::
6204
6205 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6206
6207Overview:
6208"""""""""
6209
6210The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6211locations, allowing garbage collector implementations that require write
6212barriers (such as generational or reference counting collectors).
6213
6214Arguments:
6215""""""""""
6216
6217The first argument is the reference to store, the second is the start of
6218the object to store it to, and the third is the address of the field of
6219Obj to store to. If the runtime does not require a pointer to the
6220object, Obj may be null.
6221
6222Semantics:
6223""""""""""
6224
6225The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6226instruction, but may be replaced with substantially more complex code by
6227the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6228intrinsic may only be used in a function which :ref:`specifies a GC
6229algorithm <gc>`.
6230
6231Code Generator Intrinsics
6232-------------------------
6233
6234These intrinsics are provided by LLVM to expose special features that
6235may only be implemented with code generator support.
6236
6237'``llvm.returnaddress``' Intrinsic
6238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6239
6240Syntax:
6241"""""""
6242
6243::
6244
6245 declare i8 *@llvm.returnaddress(i32 <level>)
6246
6247Overview:
6248"""""""""
6249
6250The '``llvm.returnaddress``' intrinsic attempts to compute a
6251target-specific value indicating the return address of the current
6252function or one of its callers.
6253
6254Arguments:
6255""""""""""
6256
6257The argument to this intrinsic indicates which function to return the
6258address for. Zero indicates the calling function, one indicates its
6259caller, etc. The argument is **required** to be a constant integer
6260value.
6261
6262Semantics:
6263""""""""""
6264
6265The '``llvm.returnaddress``' intrinsic either returns a pointer
6266indicating the return address of the specified call frame, or zero if it
6267cannot be identified. The value returned by this intrinsic is likely to
6268be incorrect or 0 for arguments other than zero, so it should only be
6269used for debugging purposes.
6270
6271Note that calling this intrinsic does not prevent function inlining or
6272other aggressive transformations, so the value returned may not be that
6273of the obvious source-language caller.
6274
6275'``llvm.frameaddress``' Intrinsic
6276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6277
6278Syntax:
6279"""""""
6280
6281::
6282
6283 declare i8* @llvm.frameaddress(i32 <level>)
6284
6285Overview:
6286"""""""""
6287
6288The '``llvm.frameaddress``' intrinsic attempts to return the
6289target-specific frame pointer value for the specified stack frame.
6290
6291Arguments:
6292""""""""""
6293
6294The argument to this intrinsic indicates which function to return the
6295frame pointer for. Zero indicates the calling function, one indicates
6296its caller, etc. The argument is **required** to be a constant integer
6297value.
6298
6299Semantics:
6300""""""""""
6301
6302The '``llvm.frameaddress``' intrinsic either returns a pointer
6303indicating the frame address of the specified call frame, or zero if it
6304cannot be identified. The value returned by this intrinsic is likely to
6305be incorrect or 0 for arguments other than zero, so it should only be
6306used for debugging purposes.
6307
6308Note that calling this intrinsic does not prevent function inlining or
6309other aggressive transformations, so the value returned may not be that
6310of the obvious source-language caller.
6311
6312.. _int_stacksave:
6313
6314'``llvm.stacksave``' Intrinsic
6315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6316
6317Syntax:
6318"""""""
6319
6320::
6321
6322 declare i8* @llvm.stacksave()
6323
6324Overview:
6325"""""""""
6326
6327The '``llvm.stacksave``' intrinsic is used to remember the current state
6328of the function stack, for use with
6329:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6330implementing language features like scoped automatic variable sized
6331arrays in C99.
6332
6333Semantics:
6334""""""""""
6335
6336This intrinsic returns a opaque pointer value that can be passed to
6337:ref:`llvm.stackrestore <int_stackrestore>`. When an
6338``llvm.stackrestore`` intrinsic is executed with a value saved from
6339``llvm.stacksave``, it effectively restores the state of the stack to
6340the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6341practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6342were allocated after the ``llvm.stacksave`` was executed.
6343
6344.. _int_stackrestore:
6345
6346'``llvm.stackrestore``' Intrinsic
6347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6348
6349Syntax:
6350"""""""
6351
6352::
6353
6354 declare void @llvm.stackrestore(i8* %ptr)
6355
6356Overview:
6357"""""""""
6358
6359The '``llvm.stackrestore``' intrinsic is used to restore the state of
6360the function stack to the state it was in when the corresponding
6361:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6362useful for implementing language features like scoped automatic variable
6363sized arrays in C99.
6364
6365Semantics:
6366""""""""""
6367
6368See the description for :ref:`llvm.stacksave <int_stacksave>`.
6369
6370'``llvm.prefetch``' Intrinsic
6371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6372
6373Syntax:
6374"""""""
6375
6376::
6377
6378 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6379
6380Overview:
6381"""""""""
6382
6383The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6384insert a prefetch instruction if supported; otherwise, it is a noop.
6385Prefetches have no effect on the behavior of the program but can change
6386its performance characteristics.
6387
6388Arguments:
6389""""""""""
6390
6391``address`` is the address to be prefetched, ``rw`` is the specifier
6392determining if the fetch should be for a read (0) or write (1), and
6393``locality`` is a temporal locality specifier ranging from (0) - no
6394locality, to (3) - extremely local keep in cache. The ``cache type``
6395specifies whether the prefetch is performed on the data (1) or
6396instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6397arguments must be constant integers.
6398
6399Semantics:
6400""""""""""
6401
6402This intrinsic does not modify the behavior of the program. In
6403particular, prefetches cannot trap and do not produce a value. On
6404targets that support this intrinsic, the prefetch can provide hints to
6405the processor cache for better performance.
6406
6407'``llvm.pcmarker``' Intrinsic
6408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6409
6410Syntax:
6411"""""""
6412
6413::
6414
6415 declare void @llvm.pcmarker(i32 <id>)
6416
6417Overview:
6418"""""""""
6419
6420The '``llvm.pcmarker``' intrinsic is a method to export a Program
6421Counter (PC) in a region of code to simulators and other tools. The
6422method is target specific, but it is expected that the marker will use
6423exported symbols to transmit the PC of the marker. The marker makes no
6424guarantees that it will remain with any specific instruction after
6425optimizations. It is possible that the presence of a marker will inhibit
6426optimizations. The intended use is to be inserted after optimizations to
6427allow correlations of simulation runs.
6428
6429Arguments:
6430""""""""""
6431
6432``id`` is a numerical id identifying the marker.
6433
6434Semantics:
6435""""""""""
6436
6437This intrinsic does not modify the behavior of the program. Backends
6438that do not support this intrinsic may ignore it.
6439
6440'``llvm.readcyclecounter``' Intrinsic
6441^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6442
6443Syntax:
6444"""""""
6445
6446::
6447
6448 declare i64 @llvm.readcyclecounter()
6449
6450Overview:
6451"""""""""
6452
6453The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6454counter register (or similar low latency, high accuracy clocks) on those
6455targets that support it. On X86, it should map to RDTSC. On Alpha, it
6456should map to RPCC. As the backing counters overflow quickly (on the
6457order of 9 seconds on alpha), this should only be used for small
6458timings.
6459
6460Semantics:
6461""""""""""
6462
6463When directly supported, reading the cycle counter should not modify any
6464memory. Implementations are allowed to either return a application
6465specific value or a system wide value. On backends without support, this
6466is lowered to a constant 0.
6467
6468Standard C Library Intrinsics
6469-----------------------------
6470
6471LLVM provides intrinsics for a few important standard C library
6472functions. These intrinsics allow source-language front-ends to pass
6473information about the alignment of the pointer arguments to the code
6474generator, providing opportunity for more efficient code generation.
6475
6476.. _int_memcpy:
6477
6478'``llvm.memcpy``' Intrinsic
6479^^^^^^^^^^^^^^^^^^^^^^^^^^^
6480
6481Syntax:
6482"""""""
6483
6484This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6485integer bit width and for different address spaces. Not all targets
6486support all bit widths however.
6487
6488::
6489
6490 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6491 i32 <len>, i32 <align>, i1 <isvolatile>)
6492 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6493 i64 <len>, i32 <align>, i1 <isvolatile>)
6494
6495Overview:
6496"""""""""
6497
6498The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6499source location to the destination location.
6500
6501Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6502intrinsics do not return a value, takes extra alignment/isvolatile
6503arguments and the pointers can be in specified address spaces.
6504
6505Arguments:
6506""""""""""
6507
6508The first argument is a pointer to the destination, the second is a
6509pointer to the source. The third argument is an integer argument
6510specifying the number of bytes to copy, the fourth argument is the
6511alignment of the source and destination locations, and the fifth is a
6512boolean indicating a volatile access.
6513
6514If the call to this intrinsic has an alignment value that is not 0 or 1,
6515then the caller guarantees that both the source and destination pointers
6516are aligned to that boundary.
6517
6518If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6519a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6520very cleanly specified and it is unwise to depend on it.
6521
6522Semantics:
6523""""""""""
6524
6525The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6526source location to the destination location, which are not allowed to
6527overlap. It copies "len" bytes of memory over. If the argument is known
6528to be aligned to some boundary, this can be specified as the fourth
6529argument, otherwise it should be set to 0 or 1.
6530
6531'``llvm.memmove``' Intrinsic
6532^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6533
6534Syntax:
6535"""""""
6536
6537This is an overloaded intrinsic. You can use llvm.memmove on any integer
6538bit width and for different address space. Not all targets support all
6539bit widths however.
6540
6541::
6542
6543 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6544 i32 <len>, i32 <align>, i1 <isvolatile>)
6545 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6546 i64 <len>, i32 <align>, i1 <isvolatile>)
6547
6548Overview:
6549"""""""""
6550
6551The '``llvm.memmove.*``' intrinsics move a block of memory from the
6552source location to the destination location. It is similar to the
6553'``llvm.memcpy``' intrinsic but allows the two memory locations to
6554overlap.
6555
6556Note that, unlike the standard libc function, the ``llvm.memmove.*``
6557intrinsics do not return a value, takes extra alignment/isvolatile
6558arguments and the pointers can be in specified address spaces.
6559
6560Arguments:
6561""""""""""
6562
6563The first argument is a pointer to the destination, the second is a
6564pointer to the source. The third argument is an integer argument
6565specifying the number of bytes to copy, the fourth argument is the
6566alignment of the source and destination locations, and the fifth is a
6567boolean indicating a volatile access.
6568
6569If the call to this intrinsic has an alignment value that is not 0 or 1,
6570then the caller guarantees that the source and destination pointers are
6571aligned to that boundary.
6572
6573If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6574is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6575not very cleanly specified and it is unwise to depend on it.
6576
6577Semantics:
6578""""""""""
6579
6580The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6581source location to the destination location, which may overlap. It
6582copies "len" bytes of memory over. If the argument is known to be
6583aligned to some boundary, this can be specified as the fourth argument,
6584otherwise it should be set to 0 or 1.
6585
6586'``llvm.memset.*``' Intrinsics
6587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6588
6589Syntax:
6590"""""""
6591
6592This is an overloaded intrinsic. You can use llvm.memset on any integer
6593bit width and for different address spaces. However, not all targets
6594support all bit widths.
6595
6596::
6597
6598 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6599 i32 <len>, i32 <align>, i1 <isvolatile>)
6600 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6601 i64 <len>, i32 <align>, i1 <isvolatile>)
6602
6603Overview:
6604"""""""""
6605
6606The '``llvm.memset.*``' intrinsics fill a block of memory with a
6607particular byte value.
6608
6609Note that, unlike the standard libc function, the ``llvm.memset``
6610intrinsic does not return a value and takes extra alignment/volatile
6611arguments. Also, the destination can be in an arbitrary address space.
6612
6613Arguments:
6614""""""""""
6615
6616The first argument is a pointer to the destination to fill, the second
6617is the byte value with which to fill it, the third argument is an
6618integer argument specifying the number of bytes to fill, and the fourth
6619argument is the known alignment of the destination location.
6620
6621If the call to this intrinsic has an alignment value that is not 0 or 1,
6622then the caller guarantees that the destination pointer is aligned to
6623that boundary.
6624
6625If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6626a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6627very cleanly specified and it is unwise to depend on it.
6628
6629Semantics:
6630""""""""""
6631
6632The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6633at the destination location. If the argument is known to be aligned to
6634some boundary, this can be specified as the fourth argument, otherwise
6635it should be set to 0 or 1.
6636
6637'``llvm.sqrt.*``' Intrinsic
6638^^^^^^^^^^^^^^^^^^^^^^^^^^^
6639
6640Syntax:
6641"""""""
6642
6643This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6644floating point or vector of floating point type. Not all targets support
6645all types however.
6646
6647::
6648
6649 declare float @llvm.sqrt.f32(float %Val)
6650 declare double @llvm.sqrt.f64(double %Val)
6651 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6652 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6653 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6654
6655Overview:
6656"""""""""
6657
6658The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6659returning the same value as the libm '``sqrt``' functions would. Unlike
6660``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6661negative numbers other than -0.0 (which allows for better optimization,
6662because there is no need to worry about errno being set).
6663``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6664
6665Arguments:
6666""""""""""
6667
6668The argument and return value are floating point numbers of the same
6669type.
6670
6671Semantics:
6672""""""""""
6673
6674This function returns the sqrt of the specified operand if it is a
6675nonnegative floating point number.
6676
6677'``llvm.powi.*``' Intrinsic
6678^^^^^^^^^^^^^^^^^^^^^^^^^^^
6679
6680Syntax:
6681"""""""
6682
6683This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6684floating point or vector of floating point type. Not all targets support
6685all types however.
6686
6687::
6688
6689 declare float @llvm.powi.f32(float %Val, i32 %power)
6690 declare double @llvm.powi.f64(double %Val, i32 %power)
6691 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6692 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6693 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6694
6695Overview:
6696"""""""""
6697
6698The '``llvm.powi.*``' intrinsics return the first operand raised to the
6699specified (positive or negative) power. The order of evaluation of
6700multiplications is not defined. When a vector of floating point type is
6701used, the second argument remains a scalar integer value.
6702
6703Arguments:
6704""""""""""
6705
6706The second argument is an integer power, and the first is a value to
6707raise to that power.
6708
6709Semantics:
6710""""""""""
6711
6712This function returns the first value raised to the second power with an
6713unspecified sequence of rounding operations.
6714
6715'``llvm.sin.*``' Intrinsic
6716^^^^^^^^^^^^^^^^^^^^^^^^^^
6717
6718Syntax:
6719"""""""
6720
6721This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6722floating point or vector of floating point type. Not all targets support
6723all types however.
6724
6725::
6726
6727 declare float @llvm.sin.f32(float %Val)
6728 declare double @llvm.sin.f64(double %Val)
6729 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6730 declare fp128 @llvm.sin.f128(fp128 %Val)
6731 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6732
6733Overview:
6734"""""""""
6735
6736The '``llvm.sin.*``' intrinsics return the sine of the operand.
6737
6738Arguments:
6739""""""""""
6740
6741The argument and return value are floating point numbers of the same
6742type.
6743
6744Semantics:
6745""""""""""
6746
6747This function returns the sine of the specified operand, returning the
6748same values as the libm ``sin`` functions would, and handles error
6749conditions in the same way.
6750
6751'``llvm.cos.*``' Intrinsic
6752^^^^^^^^^^^^^^^^^^^^^^^^^^
6753
6754Syntax:
6755"""""""
6756
6757This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6758floating point or vector of floating point type. Not all targets support
6759all types however.
6760
6761::
6762
6763 declare float @llvm.cos.f32(float %Val)
6764 declare double @llvm.cos.f64(double %Val)
6765 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6766 declare fp128 @llvm.cos.f128(fp128 %Val)
6767 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6768
6769Overview:
6770"""""""""
6771
6772The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6773
6774Arguments:
6775""""""""""
6776
6777The argument and return value are floating point numbers of the same
6778type.
6779
6780Semantics:
6781""""""""""
6782
6783This function returns the cosine of the specified operand, returning the
6784same values as the libm ``cos`` functions would, and handles error
6785conditions in the same way.
6786
6787'``llvm.pow.*``' Intrinsic
6788^^^^^^^^^^^^^^^^^^^^^^^^^^
6789
6790Syntax:
6791"""""""
6792
6793This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6794floating point or vector of floating point type. Not all targets support
6795all types however.
6796
6797::
6798
6799 declare float @llvm.pow.f32(float %Val, float %Power)
6800 declare double @llvm.pow.f64(double %Val, double %Power)
6801 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6802 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6803 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6804
6805Overview:
6806"""""""""
6807
6808The '``llvm.pow.*``' intrinsics return the first operand raised to the
6809specified (positive or negative) power.
6810
6811Arguments:
6812""""""""""
6813
6814The second argument is a floating point power, and the first is a value
6815to raise to that power.
6816
6817Semantics:
6818""""""""""
6819
6820This function returns the first value raised to the second power,
6821returning the same values as the libm ``pow`` functions would, and
6822handles error conditions in the same way.
6823
6824'``llvm.exp.*``' Intrinsic
6825^^^^^^^^^^^^^^^^^^^^^^^^^^
6826
6827Syntax:
6828"""""""
6829
6830This is an overloaded intrinsic. You can use ``llvm.exp`` on any
6831floating point or vector of floating point type. Not all targets support
6832all types however.
6833
6834::
6835
6836 declare float @llvm.exp.f32(float %Val)
6837 declare double @llvm.exp.f64(double %Val)
6838 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
6839 declare fp128 @llvm.exp.f128(fp128 %Val)
6840 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
6841
6842Overview:
6843"""""""""
6844
6845The '``llvm.exp.*``' intrinsics perform the exp function.
6846
6847Arguments:
6848""""""""""
6849
6850The argument and return value are floating point numbers of the same
6851type.
6852
6853Semantics:
6854""""""""""
6855
6856This function returns the same values as the libm ``exp`` functions
6857would, and handles error conditions in the same way.
6858
6859'``llvm.exp2.*``' Intrinsic
6860^^^^^^^^^^^^^^^^^^^^^^^^^^^
6861
6862Syntax:
6863"""""""
6864
6865This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
6866floating point or vector of floating point type. Not all targets support
6867all types however.
6868
6869::
6870
6871 declare float @llvm.exp2.f32(float %Val)
6872 declare double @llvm.exp2.f64(double %Val)
6873 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
6874 declare fp128 @llvm.exp2.f128(fp128 %Val)
6875 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
6876
6877Overview:
6878"""""""""
6879
6880The '``llvm.exp2.*``' intrinsics perform the exp2 function.
6881
6882Arguments:
6883""""""""""
6884
6885The argument and return value are floating point numbers of the same
6886type.
6887
6888Semantics:
6889""""""""""
6890
6891This function returns the same values as the libm ``exp2`` functions
6892would, and handles error conditions in the same way.
6893
6894'``llvm.log.*``' Intrinsic
6895^^^^^^^^^^^^^^^^^^^^^^^^^^
6896
6897Syntax:
6898"""""""
6899
6900This is an overloaded intrinsic. You can use ``llvm.log`` on any
6901floating point or vector of floating point type. Not all targets support
6902all types however.
6903
6904::
6905
6906 declare float @llvm.log.f32(float %Val)
6907 declare double @llvm.log.f64(double %Val)
6908 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
6909 declare fp128 @llvm.log.f128(fp128 %Val)
6910 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
6911
6912Overview:
6913"""""""""
6914
6915The '``llvm.log.*``' intrinsics perform the log function.
6916
6917Arguments:
6918""""""""""
6919
6920The argument and return value are floating point numbers of the same
6921type.
6922
6923Semantics:
6924""""""""""
6925
6926This function returns the same values as the libm ``log`` functions
6927would, and handles error conditions in the same way.
6928
6929'``llvm.log10.*``' Intrinsic
6930^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6931
6932Syntax:
6933"""""""
6934
6935This is an overloaded intrinsic. You can use ``llvm.log10`` on any
6936floating point or vector of floating point type. Not all targets support
6937all types however.
6938
6939::
6940
6941 declare float @llvm.log10.f32(float %Val)
6942 declare double @llvm.log10.f64(double %Val)
6943 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
6944 declare fp128 @llvm.log10.f128(fp128 %Val)
6945 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
6946
6947Overview:
6948"""""""""
6949
6950The '``llvm.log10.*``' intrinsics perform the log10 function.
6951
6952Arguments:
6953""""""""""
6954
6955The argument and return value are floating point numbers of the same
6956type.
6957
6958Semantics:
6959""""""""""
6960
6961This function returns the same values as the libm ``log10`` functions
6962would, and handles error conditions in the same way.
6963
6964'``llvm.log2.*``' Intrinsic
6965^^^^^^^^^^^^^^^^^^^^^^^^^^^
6966
6967Syntax:
6968"""""""
6969
6970This is an overloaded intrinsic. You can use ``llvm.log2`` on any
6971floating point or vector of floating point type. Not all targets support
6972all types however.
6973
6974::
6975
6976 declare float @llvm.log2.f32(float %Val)
6977 declare double @llvm.log2.f64(double %Val)
6978 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
6979 declare fp128 @llvm.log2.f128(fp128 %Val)
6980 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
6981
6982Overview:
6983"""""""""
6984
6985The '``llvm.log2.*``' intrinsics perform the log2 function.
6986
6987Arguments:
6988""""""""""
6989
6990The argument and return value are floating point numbers of the same
6991type.
6992
6993Semantics:
6994""""""""""
6995
6996This function returns the same values as the libm ``log2`` functions
6997would, and handles error conditions in the same way.
6998
6999'``llvm.fma.*``' Intrinsic
7000^^^^^^^^^^^^^^^^^^^^^^^^^^
7001
7002Syntax:
7003"""""""
7004
7005This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7006floating point or vector of floating point type. Not all targets support
7007all types however.
7008
7009::
7010
7011 declare float @llvm.fma.f32(float %a, float %b, float %c)
7012 declare double @llvm.fma.f64(double %a, double %b, double %c)
7013 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7014 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7015 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7016
7017Overview:
7018"""""""""
7019
7020The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7021operation.
7022
7023Arguments:
7024""""""""""
7025
7026The argument and return value are floating point numbers of the same
7027type.
7028
7029Semantics:
7030""""""""""
7031
7032This function returns the same values as the libm ``fma`` functions
7033would.
7034
7035'``llvm.fabs.*``' Intrinsic
7036^^^^^^^^^^^^^^^^^^^^^^^^^^^
7037
7038Syntax:
7039"""""""
7040
7041This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7042floating point or vector of floating point type. Not all targets support
7043all types however.
7044
7045::
7046
7047 declare float @llvm.fabs.f32(float %Val)
7048 declare double @llvm.fabs.f64(double %Val)
7049 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7050 declare fp128 @llvm.fabs.f128(fp128 %Val)
7051 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7052
7053Overview:
7054"""""""""
7055
7056The '``llvm.fabs.*``' intrinsics return the absolute value of the
7057operand.
7058
7059Arguments:
7060""""""""""
7061
7062The argument and return value are floating point numbers of the same
7063type.
7064
7065Semantics:
7066""""""""""
7067
7068This function returns the same values as the libm ``fabs`` functions
7069would, and handles error conditions in the same way.
7070
7071'``llvm.floor.*``' Intrinsic
7072^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7073
7074Syntax:
7075"""""""
7076
7077This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7078floating point or vector of floating point type. Not all targets support
7079all types however.
7080
7081::
7082
7083 declare float @llvm.floor.f32(float %Val)
7084 declare double @llvm.floor.f64(double %Val)
7085 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7086 declare fp128 @llvm.floor.f128(fp128 %Val)
7087 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7088
7089Overview:
7090"""""""""
7091
7092The '``llvm.floor.*``' intrinsics return the floor of the operand.
7093
7094Arguments:
7095""""""""""
7096
7097The argument and return value are floating point numbers of the same
7098type.
7099
7100Semantics:
7101""""""""""
7102
7103This function returns the same values as the libm ``floor`` functions
7104would, and handles error conditions in the same way.
7105
7106'``llvm.ceil.*``' Intrinsic
7107^^^^^^^^^^^^^^^^^^^^^^^^^^^
7108
7109Syntax:
7110"""""""
7111
7112This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7113floating point or vector of floating point type. Not all targets support
7114all types however.
7115
7116::
7117
7118 declare float @llvm.ceil.f32(float %Val)
7119 declare double @llvm.ceil.f64(double %Val)
7120 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7121 declare fp128 @llvm.ceil.f128(fp128 %Val)
7122 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7123
7124Overview:
7125"""""""""
7126
7127The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7128
7129Arguments:
7130""""""""""
7131
7132The argument and return value are floating point numbers of the same
7133type.
7134
7135Semantics:
7136""""""""""
7137
7138This function returns the same values as the libm ``ceil`` functions
7139would, and handles error conditions in the same way.
7140
7141'``llvm.trunc.*``' Intrinsic
7142^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7143
7144Syntax:
7145"""""""
7146
7147This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7148floating point or vector of floating point type. Not all targets support
7149all types however.
7150
7151::
7152
7153 declare float @llvm.trunc.f32(float %Val)
7154 declare double @llvm.trunc.f64(double %Val)
7155 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7156 declare fp128 @llvm.trunc.f128(fp128 %Val)
7157 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7158
7159Overview:
7160"""""""""
7161
7162The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7163nearest integer not larger in magnitude than the operand.
7164
7165Arguments:
7166""""""""""
7167
7168The argument and return value are floating point numbers of the same
7169type.
7170
7171Semantics:
7172""""""""""
7173
7174This function returns the same values as the libm ``trunc`` functions
7175would, and handles error conditions in the same way.
7176
7177'``llvm.rint.*``' Intrinsic
7178^^^^^^^^^^^^^^^^^^^^^^^^^^^
7179
7180Syntax:
7181"""""""
7182
7183This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7184floating point or vector of floating point type. Not all targets support
7185all types however.
7186
7187::
7188
7189 declare float @llvm.rint.f32(float %Val)
7190 declare double @llvm.rint.f64(double %Val)
7191 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7192 declare fp128 @llvm.rint.f128(fp128 %Val)
7193 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7194
7195Overview:
7196"""""""""
7197
7198The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7199nearest integer. It may raise an inexact floating-point exception if the
7200operand isn't an integer.
7201
7202Arguments:
7203""""""""""
7204
7205The argument and return value are floating point numbers of the same
7206type.
7207
7208Semantics:
7209""""""""""
7210
7211This function returns the same values as the libm ``rint`` functions
7212would, and handles error conditions in the same way.
7213
7214'``llvm.nearbyint.*``' Intrinsic
7215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7216
7217Syntax:
7218"""""""
7219
7220This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7221floating point or vector of floating point type. Not all targets support
7222all types however.
7223
7224::
7225
7226 declare float @llvm.nearbyint.f32(float %Val)
7227 declare double @llvm.nearbyint.f64(double %Val)
7228 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7229 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7230 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7231
7232Overview:
7233"""""""""
7234
7235The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7236nearest integer.
7237
7238Arguments:
7239""""""""""
7240
7241The argument and return value are floating point numbers of the same
7242type.
7243
7244Semantics:
7245""""""""""
7246
7247This function returns the same values as the libm ``nearbyint``
7248functions would, and handles error conditions in the same way.
7249
7250Bit Manipulation Intrinsics
7251---------------------------
7252
7253LLVM provides intrinsics for a few important bit manipulation
7254operations. These allow efficient code generation for some algorithms.
7255
7256'``llvm.bswap.*``' Intrinsics
7257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7258
7259Syntax:
7260"""""""
7261
7262This is an overloaded intrinsic function. You can use bswap on any
7263integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7264
7265::
7266
7267 declare i16 @llvm.bswap.i16(i16 <id>)
7268 declare i32 @llvm.bswap.i32(i32 <id>)
7269 declare i64 @llvm.bswap.i64(i64 <id>)
7270
7271Overview:
7272"""""""""
7273
7274The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7275values with an even number of bytes (positive multiple of 16 bits).
7276These are useful for performing operations on data that is not in the
7277target's native byte order.
7278
7279Semantics:
7280""""""""""
7281
7282The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7283and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7284intrinsic returns an i32 value that has the four bytes of the input i32
7285swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7286returned i32 will have its bytes in 3, 2, 1, 0 order. The
7287``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7288concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7289respectively).
7290
7291'``llvm.ctpop.*``' Intrinsic
7292^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7293
7294Syntax:
7295"""""""
7296
7297This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7298bit width, or on any vector with integer elements. Not all targets
7299support all bit widths or vector types, however.
7300
7301::
7302
7303 declare i8 @llvm.ctpop.i8(i8 <src>)
7304 declare i16 @llvm.ctpop.i16(i16 <src>)
7305 declare i32 @llvm.ctpop.i32(i32 <src>)
7306 declare i64 @llvm.ctpop.i64(i64 <src>)
7307 declare i256 @llvm.ctpop.i256(i256 <src>)
7308 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7309
7310Overview:
7311"""""""""
7312
7313The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7314in a value.
7315
7316Arguments:
7317""""""""""
7318
7319The only argument is the value to be counted. The argument may be of any
7320integer type, or a vector with integer elements. The return type must
7321match the argument type.
7322
7323Semantics:
7324""""""""""
7325
7326The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7327each element of a vector.
7328
7329'``llvm.ctlz.*``' Intrinsic
7330^^^^^^^^^^^^^^^^^^^^^^^^^^^
7331
7332Syntax:
7333"""""""
7334
7335This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7336integer bit width, or any vector whose elements are integers. Not all
7337targets support all bit widths or vector types, however.
7338
7339::
7340
7341 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7342 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7343 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7344 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7345 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7346 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7347
7348Overview:
7349"""""""""
7350
7351The '``llvm.ctlz``' family of intrinsic functions counts the number of
7352leading zeros in a variable.
7353
7354Arguments:
7355""""""""""
7356
7357The first argument is the value to be counted. This argument may be of
7358any integer type, or a vectory with integer element type. The return
7359type must match the first argument type.
7360
7361The second argument must be a constant and is a flag to indicate whether
7362the intrinsic should ensure that a zero as the first argument produces a
7363defined result. Historically some architectures did not provide a
7364defined result for zero values as efficiently, and many algorithms are
7365now predicated on avoiding zero-value inputs.
7366
7367Semantics:
7368""""""""""
7369
7370The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7371zeros in a variable, or within each element of the vector. If
7372``src == 0`` then the result is the size in bits of the type of ``src``
7373if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7374``llvm.ctlz(i32 2) = 30``.
7375
7376'``llvm.cttz.*``' Intrinsic
7377^^^^^^^^^^^^^^^^^^^^^^^^^^^
7378
7379Syntax:
7380"""""""
7381
7382This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7383integer bit width, or any vector of integer elements. Not all targets
7384support all bit widths or vector types, however.
7385
7386::
7387
7388 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7389 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7390 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7391 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7392 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7393 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7394
7395Overview:
7396"""""""""
7397
7398The '``llvm.cttz``' family of intrinsic functions counts the number of
7399trailing zeros.
7400
7401Arguments:
7402""""""""""
7403
7404The first argument is the value to be counted. This argument may be of
7405any integer type, or a vectory with integer element type. The return
7406type must match the first argument type.
7407
7408The second argument must be a constant and is a flag to indicate whether
7409the intrinsic should ensure that a zero as the first argument produces a
7410defined result. Historically some architectures did not provide a
7411defined result for zero values as efficiently, and many algorithms are
7412now predicated on avoiding zero-value inputs.
7413
7414Semantics:
7415""""""""""
7416
7417The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7418zeros in a variable, or within each element of a vector. If ``src == 0``
7419then the result is the size in bits of the type of ``src`` if
7420``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7421``llvm.cttz(2) = 1``.
7422
7423Arithmetic with Overflow Intrinsics
7424-----------------------------------
7425
7426LLVM provides intrinsics for some arithmetic with overflow operations.
7427
7428'``llvm.sadd.with.overflow.*``' Intrinsics
7429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7430
7431Syntax:
7432"""""""
7433
7434This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7435on any integer bit width.
7436
7437::
7438
7439 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7440 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7441 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7442
7443Overview:
7444"""""""""
7445
7446The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7447a signed addition of the two arguments, and indicate whether an overflow
7448occurred during the signed summation.
7449
7450Arguments:
7451""""""""""
7452
7453The arguments (%a and %b) and the first element of the result structure
7454may be of integer types of any bit width, but they must have the same
7455bit width. The second element of the result structure must be of type
7456``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7457addition.
7458
7459Semantics:
7460""""""""""
7461
7462The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007463a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007464first element of which is the signed summation, and the second element
7465of which is a bit specifying if the signed summation resulted in an
7466overflow.
7467
7468Examples:
7469"""""""""
7470
7471.. code-block:: llvm
7472
7473 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7474 %sum = extractvalue {i32, i1} %res, 0
7475 %obit = extractvalue {i32, i1} %res, 1
7476 br i1 %obit, label %overflow, label %normal
7477
7478'``llvm.uadd.with.overflow.*``' Intrinsics
7479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7480
7481Syntax:
7482"""""""
7483
7484This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7485on any integer bit width.
7486
7487::
7488
7489 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7490 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7491 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7492
7493Overview:
7494"""""""""
7495
7496The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7497an unsigned addition of the two arguments, and indicate whether a carry
7498occurred during the unsigned summation.
7499
7500Arguments:
7501""""""""""
7502
7503The arguments (%a and %b) and the first element of the result structure
7504may be of integer types of any bit width, but they must have the same
7505bit width. The second element of the result structure must be of type
7506``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7507addition.
7508
7509Semantics:
7510""""""""""
7511
7512The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007513an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007514first element of which is the sum, and the second element of which is a
7515bit specifying if the unsigned summation resulted in a carry.
7516
7517Examples:
7518"""""""""
7519
7520.. code-block:: llvm
7521
7522 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7523 %sum = extractvalue {i32, i1} %res, 0
7524 %obit = extractvalue {i32, i1} %res, 1
7525 br i1 %obit, label %carry, label %normal
7526
7527'``llvm.ssub.with.overflow.*``' Intrinsics
7528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7529
7530Syntax:
7531"""""""
7532
7533This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7534on any integer bit width.
7535
7536::
7537
7538 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7539 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7540 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7541
7542Overview:
7543"""""""""
7544
7545The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7546a signed subtraction of the two arguments, and indicate whether an
7547overflow occurred during the signed subtraction.
7548
7549Arguments:
7550""""""""""
7551
7552The arguments (%a and %b) and the first element of the result structure
7553may be of integer types of any bit width, but they must have the same
7554bit width. The second element of the result structure must be of type
7555``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7556subtraction.
7557
7558Semantics:
7559""""""""""
7560
7561The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007562a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007563first element of which is the subtraction, and the second element of
7564which is a bit specifying if the signed subtraction resulted in an
7565overflow.
7566
7567Examples:
7568"""""""""
7569
7570.. code-block:: llvm
7571
7572 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7573 %sum = extractvalue {i32, i1} %res, 0
7574 %obit = extractvalue {i32, i1} %res, 1
7575 br i1 %obit, label %overflow, label %normal
7576
7577'``llvm.usub.with.overflow.*``' Intrinsics
7578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7579
7580Syntax:
7581"""""""
7582
7583This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7584on any integer bit width.
7585
7586::
7587
7588 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7589 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7590 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7591
7592Overview:
7593"""""""""
7594
7595The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7596an unsigned subtraction of the two arguments, and indicate whether an
7597overflow occurred during the unsigned subtraction.
7598
7599Arguments:
7600""""""""""
7601
7602The arguments (%a and %b) and the first element of the result structure
7603may be of integer types of any bit width, but they must have the same
7604bit width. The second element of the result structure must be of type
7605``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7606subtraction.
7607
7608Semantics:
7609""""""""""
7610
7611The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007612an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007613the first element of which is the subtraction, and the second element of
7614which is a bit specifying if the unsigned subtraction resulted in an
7615overflow.
7616
7617Examples:
7618"""""""""
7619
7620.. code-block:: llvm
7621
7622 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7623 %sum = extractvalue {i32, i1} %res, 0
7624 %obit = extractvalue {i32, i1} %res, 1
7625 br i1 %obit, label %overflow, label %normal
7626
7627'``llvm.smul.with.overflow.*``' Intrinsics
7628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7629
7630Syntax:
7631"""""""
7632
7633This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7634on any integer bit width.
7635
7636::
7637
7638 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7639 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7640 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7641
7642Overview:
7643"""""""""
7644
7645The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7646a signed multiplication of the two arguments, and indicate whether an
7647overflow occurred during the signed multiplication.
7648
7649Arguments:
7650""""""""""
7651
7652The arguments (%a and %b) and the first element of the result structure
7653may be of integer types of any bit width, but they must have the same
7654bit width. The second element of the result structure must be of type
7655``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7656multiplication.
7657
7658Semantics:
7659""""""""""
7660
7661The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007662a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007663the first element of which is the multiplication, and the second element
7664of which is a bit specifying if the signed multiplication resulted in an
7665overflow.
7666
7667Examples:
7668"""""""""
7669
7670.. code-block:: llvm
7671
7672 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7673 %sum = extractvalue {i32, i1} %res, 0
7674 %obit = extractvalue {i32, i1} %res, 1
7675 br i1 %obit, label %overflow, label %normal
7676
7677'``llvm.umul.with.overflow.*``' Intrinsics
7678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7679
7680Syntax:
7681"""""""
7682
7683This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7684on any integer bit width.
7685
7686::
7687
7688 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7689 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7690 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7691
7692Overview:
7693"""""""""
7694
7695The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7696a unsigned multiplication of the two arguments, and indicate whether an
7697overflow occurred during the unsigned multiplication.
7698
7699Arguments:
7700""""""""""
7701
7702The arguments (%a and %b) and the first element of the result structure
7703may be of integer types of any bit width, but they must have the same
7704bit width. The second element of the result structure must be of type
7705``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7706multiplication.
7707
7708Semantics:
7709""""""""""
7710
7711The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007712an unsigned multiplication of the two arguments. They return a structure ---
7713the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007714element of which is a bit specifying if the unsigned multiplication
7715resulted in an overflow.
7716
7717Examples:
7718"""""""""
7719
7720.. code-block:: llvm
7721
7722 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7723 %sum = extractvalue {i32, i1} %res, 0
7724 %obit = extractvalue {i32, i1} %res, 1
7725 br i1 %obit, label %overflow, label %normal
7726
7727Specialised Arithmetic Intrinsics
7728---------------------------------
7729
7730'``llvm.fmuladd.*``' Intrinsic
7731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7732
7733Syntax:
7734"""""""
7735
7736::
7737
7738 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7739 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7740
7741Overview:
7742"""""""""
7743
7744The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00007745expressions that can be fused if the code generator determines that (a) the
7746target instruction set has support for a fused operation, and (b) that the
7747fused operation is more efficient than the equivalent, separate pair of mul
7748and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00007749
7750Arguments:
7751""""""""""
7752
7753The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7754multiplicands, a and b, and an addend c.
7755
7756Semantics:
7757""""""""""
7758
7759The expression:
7760
7761::
7762
7763 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7764
7765is equivalent to the expression a \* b + c, except that rounding will
7766not be performed between the multiplication and addition steps if the
7767code generator fuses the operations. Fusion is not guaranteed, even if
7768the target platform supports it. If a fused multiply-add is required the
7769corresponding llvm.fma.\* intrinsic function should be used instead.
7770
7771Examples:
7772"""""""""
7773
7774.. code-block:: llvm
7775
7776 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7777
7778Half Precision Floating Point Intrinsics
7779----------------------------------------
7780
7781For most target platforms, half precision floating point is a
7782storage-only format. This means that it is a dense encoding (in memory)
7783but does not support computation in the format.
7784
7785This means that code must first load the half-precision floating point
7786value as an i16, then convert it to float with
7787:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7788then be performed on the float value (including extending to double
7789etc). To store the value back to memory, it is first converted to float
7790if needed, then converted to i16 with
7791:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7792i16 value.
7793
7794.. _int_convert_to_fp16:
7795
7796'``llvm.convert.to.fp16``' Intrinsic
7797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7798
7799Syntax:
7800"""""""
7801
7802::
7803
7804 declare i16 @llvm.convert.to.fp16(f32 %a)
7805
7806Overview:
7807"""""""""
7808
7809The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7810from single precision floating point format to half precision floating
7811point format.
7812
7813Arguments:
7814""""""""""
7815
7816The intrinsic function contains single argument - the value to be
7817converted.
7818
7819Semantics:
7820""""""""""
7821
7822The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7823from single precision floating point format to half precision floating
7824point format. The return value is an ``i16`` which contains the
7825converted number.
7826
7827Examples:
7828"""""""""
7829
7830.. code-block:: llvm
7831
7832 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7833 store i16 %res, i16* @x, align 2
7834
7835.. _int_convert_from_fp16:
7836
7837'``llvm.convert.from.fp16``' Intrinsic
7838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7839
7840Syntax:
7841"""""""
7842
7843::
7844
7845 declare f32 @llvm.convert.from.fp16(i16 %a)
7846
7847Overview:
7848"""""""""
7849
7850The '``llvm.convert.from.fp16``' intrinsic function performs a
7851conversion from half precision floating point format to single precision
7852floating point format.
7853
7854Arguments:
7855""""""""""
7856
7857The intrinsic function contains single argument - the value to be
7858converted.
7859
7860Semantics:
7861""""""""""
7862
7863The '``llvm.convert.from.fp16``' intrinsic function performs a
7864conversion from half single precision floating point format to single
7865precision floating point format. The input half-float value is
7866represented by an ``i16`` value.
7867
7868Examples:
7869"""""""""
7870
7871.. code-block:: llvm
7872
7873 %a = load i16* @x, align 2
7874 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7875
7876Debugger Intrinsics
7877-------------------
7878
7879The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
7880prefix), are described in the `LLVM Source Level
7881Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
7882document.
7883
7884Exception Handling Intrinsics
7885-----------------------------
7886
7887The LLVM exception handling intrinsics (which all start with
7888``llvm.eh.`` prefix), are described in the `LLVM Exception
7889Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
7890
7891.. _int_trampoline:
7892
7893Trampoline Intrinsics
7894---------------------
7895
7896These intrinsics make it possible to excise one parameter, marked with
7897the :ref:`nest <nest>` attribute, from a function. The result is a
7898callable function pointer lacking the nest parameter - the caller does
7899not need to provide a value for it. Instead, the value to use is stored
7900in advance in a "trampoline", a block of memory usually allocated on the
7901stack, which also contains code to splice the nest value into the
7902argument list. This is used to implement the GCC nested function address
7903extension.
7904
7905For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
7906then the resulting function pointer has signature ``i32 (i32, i32)*``.
7907It can be created as follows:
7908
7909.. code-block:: llvm
7910
7911 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7912 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7913 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7914 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
7915 %fp = bitcast i8* %p to i32 (i32, i32)*
7916
7917The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
7918``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
7919
7920.. _int_it:
7921
7922'``llvm.init.trampoline``' Intrinsic
7923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7924
7925Syntax:
7926"""""""
7927
7928::
7929
7930 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
7931
7932Overview:
7933"""""""""
7934
7935This fills the memory pointed to by ``tramp`` with executable code,
7936turning it into a trampoline.
7937
7938Arguments:
7939""""""""""
7940
7941The ``llvm.init.trampoline`` intrinsic takes three arguments, all
7942pointers. The ``tramp`` argument must point to a sufficiently large and
7943sufficiently aligned block of memory; this memory is written to by the
7944intrinsic. Note that the size and the alignment are target-specific -
7945LLVM currently provides no portable way of determining them, so a
7946front-end that generates this intrinsic needs to have some
7947target-specific knowledge. The ``func`` argument must hold a function
7948bitcast to an ``i8*``.
7949
7950Semantics:
7951""""""""""
7952
7953The block of memory pointed to by ``tramp`` is filled with target
7954dependent code, turning it into a function. Then ``tramp`` needs to be
7955passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
7956be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
7957function's signature is the same as that of ``func`` with any arguments
7958marked with the ``nest`` attribute removed. At most one such ``nest``
7959argument is allowed, and it must be of pointer type. Calling the new
7960function is equivalent to calling ``func`` with the same argument list,
7961but with ``nval`` used for the missing ``nest`` argument. If, after
7962calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
7963modified, then the effect of any later call to the returned function
7964pointer is undefined.
7965
7966.. _int_at:
7967
7968'``llvm.adjust.trampoline``' Intrinsic
7969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7970
7971Syntax:
7972"""""""
7973
7974::
7975
7976 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
7977
7978Overview:
7979"""""""""
7980
7981This performs any required machine-specific adjustment to the address of
7982a trampoline (passed as ``tramp``).
7983
7984Arguments:
7985""""""""""
7986
7987``tramp`` must point to a block of memory which already has trampoline
7988code filled in by a previous call to
7989:ref:`llvm.init.trampoline <int_it>`.
7990
7991Semantics:
7992""""""""""
7993
7994On some architectures the address of the code to be executed needs to be
7995different to the address where the trampoline is actually stored. This
7996intrinsic returns the executable address corresponding to ``tramp``
7997after performing the required machine specific adjustments. The pointer
7998returned can then be :ref:`bitcast and executed <int_trampoline>`.
7999
8000Memory Use Markers
8001------------------
8002
8003This class of intrinsics exists to information about the lifetime of
8004memory objects and ranges where variables are immutable.
8005
8006'``llvm.lifetime.start``' Intrinsic
8007^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8008
8009Syntax:
8010"""""""
8011
8012::
8013
8014 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8015
8016Overview:
8017"""""""""
8018
8019The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8020object's lifetime.
8021
8022Arguments:
8023""""""""""
8024
8025The first argument is a constant integer representing the size of the
8026object, or -1 if it is variable sized. The second argument is a pointer
8027to the object.
8028
8029Semantics:
8030""""""""""
8031
8032This intrinsic indicates that before this point in the code, the value
8033of the memory pointed to by ``ptr`` is dead. This means that it is known
8034to never be used and has an undefined value. A load from the pointer
8035that precedes this intrinsic can be replaced with ``'undef'``.
8036
8037'``llvm.lifetime.end``' Intrinsic
8038^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8039
8040Syntax:
8041"""""""
8042
8043::
8044
8045 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8046
8047Overview:
8048"""""""""
8049
8050The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8051object's lifetime.
8052
8053Arguments:
8054""""""""""
8055
8056The first argument is a constant integer representing the size of the
8057object, or -1 if it is variable sized. The second argument is a pointer
8058to the object.
8059
8060Semantics:
8061""""""""""
8062
8063This intrinsic indicates that after this point in the code, the value of
8064the memory pointed to by ``ptr`` is dead. This means that it is known to
8065never be used and has an undefined value. Any stores into the memory
8066object following this intrinsic may be removed as dead.
8067
8068'``llvm.invariant.start``' Intrinsic
8069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8070
8071Syntax:
8072"""""""
8073
8074::
8075
8076 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8077
8078Overview:
8079"""""""""
8080
8081The '``llvm.invariant.start``' intrinsic specifies that the contents of
8082a memory object will not change.
8083
8084Arguments:
8085""""""""""
8086
8087The first argument is a constant integer representing the size of the
8088object, or -1 if it is variable sized. The second argument is a pointer
8089to the object.
8090
8091Semantics:
8092""""""""""
8093
8094This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8095the return value, the referenced memory location is constant and
8096unchanging.
8097
8098'``llvm.invariant.end``' Intrinsic
8099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8100
8101Syntax:
8102"""""""
8103
8104::
8105
8106 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8107
8108Overview:
8109"""""""""
8110
8111The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8112memory object are mutable.
8113
8114Arguments:
8115""""""""""
8116
8117The first argument is the matching ``llvm.invariant.start`` intrinsic.
8118The second argument is a constant integer representing the size of the
8119object, or -1 if it is variable sized and the third argument is a
8120pointer to the object.
8121
8122Semantics:
8123""""""""""
8124
8125This intrinsic indicates that the memory is mutable again.
8126
8127General Intrinsics
8128------------------
8129
8130This class of intrinsics is designed to be generic and has no specific
8131purpose.
8132
8133'``llvm.var.annotation``' Intrinsic
8134^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8135
8136Syntax:
8137"""""""
8138
8139::
8140
8141 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8142
8143Overview:
8144"""""""""
8145
8146The '``llvm.var.annotation``' intrinsic.
8147
8148Arguments:
8149""""""""""
8150
8151The first argument is a pointer to a value, the second is a pointer to a
8152global string, the third is a pointer to a global string which is the
8153source file name, and the last argument is the line number.
8154
8155Semantics:
8156""""""""""
8157
8158This intrinsic allows annotation of local variables with arbitrary
8159strings. This can be useful for special purpose optimizations that want
8160to look for these annotations. These have no other defined use; they are
8161ignored by code generation and optimization.
8162
8163'``llvm.annotation.*``' Intrinsic
8164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8165
8166Syntax:
8167"""""""
8168
8169This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8170any integer bit width.
8171
8172::
8173
8174 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8175 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8176 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8177 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8178 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8179
8180Overview:
8181"""""""""
8182
8183The '``llvm.annotation``' intrinsic.
8184
8185Arguments:
8186""""""""""
8187
8188The first argument is an integer value (result of some expression), the
8189second is a pointer to a global string, the third is a pointer to a
8190global string which is the source file name, and the last argument is
8191the line number. It returns the value of the first argument.
8192
8193Semantics:
8194""""""""""
8195
8196This intrinsic allows annotations to be put on arbitrary expressions
8197with arbitrary strings. This can be useful for special purpose
8198optimizations that want to look for these annotations. These have no
8199other defined use; they are ignored by code generation and optimization.
8200
8201'``llvm.trap``' Intrinsic
8202^^^^^^^^^^^^^^^^^^^^^^^^^
8203
8204Syntax:
8205"""""""
8206
8207::
8208
8209 declare void @llvm.trap() noreturn nounwind
8210
8211Overview:
8212"""""""""
8213
8214The '``llvm.trap``' intrinsic.
8215
8216Arguments:
8217""""""""""
8218
8219None.
8220
8221Semantics:
8222""""""""""
8223
8224This intrinsic is lowered to the target dependent trap instruction. If
8225the target does not have a trap instruction, this intrinsic will be
8226lowered to a call of the ``abort()`` function.
8227
8228'``llvm.debugtrap``' Intrinsic
8229^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8230
8231Syntax:
8232"""""""
8233
8234::
8235
8236 declare void @llvm.debugtrap() nounwind
8237
8238Overview:
8239"""""""""
8240
8241The '``llvm.debugtrap``' intrinsic.
8242
8243Arguments:
8244""""""""""
8245
8246None.
8247
8248Semantics:
8249""""""""""
8250
8251This intrinsic is lowered to code which is intended to cause an
8252execution trap with the intention of requesting the attention of a
8253debugger.
8254
8255'``llvm.stackprotector``' Intrinsic
8256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8257
8258Syntax:
8259"""""""
8260
8261::
8262
8263 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8264
8265Overview:
8266"""""""""
8267
8268The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8269onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8270is placed on the stack before local variables.
8271
8272Arguments:
8273""""""""""
8274
8275The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8276The first argument is the value loaded from the stack guard
8277``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8278enough space to hold the value of the guard.
8279
8280Semantics:
8281""""""""""
8282
8283This intrinsic causes the prologue/epilogue inserter to force the
8284position of the ``AllocaInst`` stack slot to be before local variables
8285on the stack. This is to ensure that if a local variable on the stack is
8286overwritten, it will destroy the value of the guard. When the function
8287exits, the guard on the stack is checked against the original guard. If
8288they are different, then the program aborts by calling the
8289``__stack_chk_fail()`` function.
8290
8291'``llvm.objectsize``' Intrinsic
8292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8293
8294Syntax:
8295"""""""
8296
8297::
8298
8299 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8300 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8301
8302Overview:
8303"""""""""
8304
8305The ``llvm.objectsize`` intrinsic is designed to provide information to
8306the optimizers to determine at compile time whether a) an operation
8307(like memcpy) will overflow a buffer that corresponds to an object, or
8308b) that a runtime check for overflow isn't necessary. An object in this
8309context means an allocation of a specific class, structure, array, or
8310other object.
8311
8312Arguments:
8313""""""""""
8314
8315The ``llvm.objectsize`` intrinsic takes two arguments. The first
8316argument is a pointer to or into the ``object``. The second argument is
8317a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8318or -1 (if false) when the object size is unknown. The second argument
8319only accepts constants.
8320
8321Semantics:
8322""""""""""
8323
8324The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8325the size of the object concerned. If the size cannot be determined at
8326compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8327on the ``min`` argument).
8328
8329'``llvm.expect``' Intrinsic
8330^^^^^^^^^^^^^^^^^^^^^^^^^^^
8331
8332Syntax:
8333"""""""
8334
8335::
8336
8337 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8338 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8339
8340Overview:
8341"""""""""
8342
8343The ``llvm.expect`` intrinsic provides information about expected (the
8344most probable) value of ``val``, which can be used by optimizers.
8345
8346Arguments:
8347""""""""""
8348
8349The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8350a value. The second argument is an expected value, this needs to be a
8351constant value, variables are not allowed.
8352
8353Semantics:
8354""""""""""
8355
8356This intrinsic is lowered to the ``val``.
8357
8358'``llvm.donothing``' Intrinsic
8359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8360
8361Syntax:
8362"""""""
8363
8364::
8365
8366 declare void @llvm.donothing() nounwind readnone
8367
8368Overview:
8369"""""""""
8370
8371The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8372only intrinsic that can be called with an invoke instruction.
8373
8374Arguments:
8375""""""""""
8376
8377None.
8378
8379Semantics:
8380""""""""""
8381
8382This intrinsic does nothing, and it's removed by optimizers and ignored
8383by codegen.