Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1 | //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by James M. Laskey and is distributed under the |
| 6 | // University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements a simple two pass scheduler. The first pass attempts to push |
| 11 | // backward any lengthy instructions and critical paths. The second pass packs |
| 12 | // instructions into semi-optimal time slots. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #define DEBUG_TYPE "pre-RA-sched" |
| 17 | #include "llvm/Type.h" |
| 18 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 19 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 20 | #include "llvm/CodeGen/MachineFunction.h" |
| 21 | #include "llvm/CodeGen/SSARegMap.h" |
| 22 | #include "llvm/Target/TargetData.h" |
| 23 | #include "llvm/Target/TargetMachine.h" |
| 24 | #include "llvm/Target/TargetInstrInfo.h" |
| 25 | #include "llvm/Target/TargetLowering.h" |
| 26 | #include "llvm/Support/Debug.h" |
| 27 | #include "llvm/Support/MathExtras.h" |
| 28 | using namespace llvm; |
| 29 | |
| 30 | /// BuildSchedUnits - Build SUnits from the selection dag that we are input. |
| 31 | /// This SUnit graph is similar to the SelectionDAG, but represents flagged |
| 32 | /// together nodes with a single SUnit. |
| 33 | void ScheduleDAG::BuildSchedUnits() { |
| 34 | // Reserve entries in the vector for each of the SUnits we are creating. This |
| 35 | // ensure that reallocation of the vector won't happen, so SUnit*'s won't get |
| 36 | // invalidated. |
| 37 | SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end())); |
| 38 | |
| 39 | const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); |
| 40 | |
| 41 | for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(), |
| 42 | E = DAG.allnodes_end(); NI != E; ++NI) { |
| 43 | if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. |
| 44 | continue; |
| 45 | |
| 46 | // If this node has already been processed, stop now. |
| 47 | if (SUnitMap[NI]) continue; |
| 48 | |
| 49 | SUnit *NodeSUnit = NewSUnit(NI); |
| 50 | |
| 51 | // See if anything is flagged to this node, if so, add them to flagged |
| 52 | // nodes. Nodes can have at most one flag input and one flag output. Flags |
| 53 | // are required the be the last operand and result of a node. |
| 54 | |
| 55 | // Scan up, adding flagged preds to FlaggedNodes. |
| 56 | SDNode *N = NI; |
| 57 | if (N->getNumOperands() && |
| 58 | N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) { |
| 59 | do { |
| 60 | N = N->getOperand(N->getNumOperands()-1).Val; |
| 61 | NodeSUnit->FlaggedNodes.push_back(N); |
| 62 | SUnitMap[N] = NodeSUnit; |
| 63 | } while (N->getNumOperands() && |
| 64 | N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag); |
| 65 | std::reverse(NodeSUnit->FlaggedNodes.begin(), |
| 66 | NodeSUnit->FlaggedNodes.end()); |
| 67 | } |
| 68 | |
| 69 | // Scan down, adding this node and any flagged succs to FlaggedNodes if they |
| 70 | // have a user of the flag operand. |
| 71 | N = NI; |
| 72 | while (N->getValueType(N->getNumValues()-1) == MVT::Flag) { |
| 73 | SDOperand FlagVal(N, N->getNumValues()-1); |
| 74 | |
| 75 | // There are either zero or one users of the Flag result. |
| 76 | bool HasFlagUse = false; |
| 77 | for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); |
| 78 | UI != E; ++UI) |
| 79 | if (FlagVal.isOperand(*UI)) { |
| 80 | HasFlagUse = true; |
| 81 | NodeSUnit->FlaggedNodes.push_back(N); |
| 82 | SUnitMap[N] = NodeSUnit; |
| 83 | N = *UI; |
| 84 | break; |
| 85 | } |
| 86 | if (!HasFlagUse) break; |
| 87 | } |
| 88 | |
| 89 | // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node. |
| 90 | // Update the SUnit |
| 91 | NodeSUnit->Node = N; |
| 92 | SUnitMap[N] = NodeSUnit; |
| 93 | |
| 94 | // Compute the latency for the node. We use the sum of the latencies for |
| 95 | // all nodes flagged together into this SUnit. |
| 96 | if (InstrItins.isEmpty()) { |
| 97 | // No latency information. |
| 98 | NodeSUnit->Latency = 1; |
| 99 | } else { |
| 100 | NodeSUnit->Latency = 0; |
| 101 | if (N->isTargetOpcode()) { |
| 102 | unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode()); |
| 103 | InstrStage *S = InstrItins.begin(SchedClass); |
| 104 | InstrStage *E = InstrItins.end(SchedClass); |
| 105 | for (; S != E; ++S) |
| 106 | NodeSUnit->Latency += S->Cycles; |
| 107 | } |
| 108 | for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) { |
| 109 | SDNode *FNode = NodeSUnit->FlaggedNodes[i]; |
| 110 | if (FNode->isTargetOpcode()) { |
| 111 | unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode()); |
| 112 | InstrStage *S = InstrItins.begin(SchedClass); |
| 113 | InstrStage *E = InstrItins.end(SchedClass); |
| 114 | for (; S != E; ++S) |
| 115 | NodeSUnit->Latency += S->Cycles; |
| 116 | } |
| 117 | } |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | // Pass 2: add the preds, succs, etc. |
| 122 | for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { |
| 123 | SUnit *SU = &SUnits[su]; |
| 124 | SDNode *MainNode = SU->Node; |
| 125 | |
| 126 | if (MainNode->isTargetOpcode()) { |
| 127 | unsigned Opc = MainNode->getTargetOpcode(); |
| 128 | for (unsigned i = 0, ee = TII->getNumOperands(Opc); i != ee; ++i) { |
| 129 | if (TII->getOperandConstraint(Opc, i, TOI::TIED_TO) != -1) { |
| 130 | SU->isTwoAddress = true; |
| 131 | break; |
| 132 | } |
| 133 | } |
| 134 | if (TII->isCommutableInstr(Opc)) |
| 135 | SU->isCommutable = true; |
| 136 | } |
| 137 | |
| 138 | // Find all predecessors and successors of the group. |
| 139 | // Temporarily add N to make code simpler. |
| 140 | SU->FlaggedNodes.push_back(MainNode); |
| 141 | |
| 142 | for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) { |
| 143 | SDNode *N = SU->FlaggedNodes[n]; |
| 144 | |
| 145 | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| 146 | SDNode *OpN = N->getOperand(i).Val; |
| 147 | if (isPassiveNode(OpN)) continue; // Not scheduled. |
| 148 | SUnit *OpSU = SUnitMap[OpN]; |
| 149 | assert(OpSU && "Node has no SUnit!"); |
| 150 | if (OpSU == SU) continue; // In the same group. |
| 151 | |
| 152 | MVT::ValueType OpVT = N->getOperand(i).getValueType(); |
| 153 | assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!"); |
| 154 | bool isChain = OpVT == MVT::Other; |
| 155 | |
| 156 | if (SU->addPred(OpSU, isChain)) { |
| 157 | if (!isChain) { |
| 158 | SU->NumPreds++; |
| 159 | SU->NumPredsLeft++; |
| 160 | } else { |
| 161 | SU->NumChainPredsLeft++; |
| 162 | } |
| 163 | } |
| 164 | if (OpSU->addSucc(SU, isChain)) { |
| 165 | if (!isChain) { |
| 166 | OpSU->NumSuccs++; |
| 167 | OpSU->NumSuccsLeft++; |
| 168 | } else { |
| 169 | OpSU->NumChainSuccsLeft++; |
| 170 | } |
| 171 | } |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | // Remove MainNode from FlaggedNodes again. |
| 176 | SU->FlaggedNodes.pop_back(); |
| 177 | } |
| 178 | |
| 179 | return; |
| 180 | } |
| 181 | |
| 182 | void ScheduleDAG::CalculateDepths() { |
| 183 | std::vector<std::pair<SUnit*, unsigned> > WorkList; |
| 184 | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) |
| 185 | if (SUnits[i].Preds.size() == 0/* && &SUnits[i] != Entry*/) |
| 186 | WorkList.push_back(std::make_pair(&SUnits[i], 0U)); |
| 187 | |
| 188 | while (!WorkList.empty()) { |
| 189 | SUnit *SU = WorkList.back().first; |
| 190 | unsigned Depth = WorkList.back().second; |
| 191 | WorkList.pop_back(); |
| 192 | if (SU->Depth == 0 || Depth > SU->Depth) { |
| 193 | SU->Depth = Depth; |
| 194 | for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| 195 | I != E; ++I) |
| 196 | WorkList.push_back(std::make_pair(I->first, Depth+1)); |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | void ScheduleDAG::CalculateHeights() { |
| 202 | std::vector<std::pair<SUnit*, unsigned> > WorkList; |
| 203 | SUnit *Root = SUnitMap[DAG.getRoot().Val]; |
| 204 | WorkList.push_back(std::make_pair(Root, 0U)); |
| 205 | |
| 206 | while (!WorkList.empty()) { |
| 207 | SUnit *SU = WorkList.back().first; |
| 208 | unsigned Height = WorkList.back().second; |
| 209 | WorkList.pop_back(); |
| 210 | if (SU->Height == 0 || Height > SU->Height) { |
| 211 | SU->Height = Height; |
| 212 | for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| 213 | I != E; ++I) |
| 214 | WorkList.push_back(std::make_pair(I->first, Height+1)); |
| 215 | } |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | /// CountResults - The results of target nodes have register or immediate |
| 220 | /// operands first, then an optional chain, and optional flag operands (which do |
| 221 | /// not go into the machine instrs.) |
| 222 | unsigned ScheduleDAG::CountResults(SDNode *Node) { |
| 223 | unsigned N = Node->getNumValues(); |
| 224 | while (N && Node->getValueType(N - 1) == MVT::Flag) |
| 225 | --N; |
| 226 | if (N && Node->getValueType(N - 1) == MVT::Other) |
| 227 | --N; // Skip over chain result. |
| 228 | return N; |
| 229 | } |
| 230 | |
| 231 | /// CountOperands The inputs to target nodes have any actual inputs first, |
| 232 | /// followed by an optional chain operand, then flag operands. Compute the |
| 233 | /// number of actual operands that will go into the machine instr. |
| 234 | unsigned ScheduleDAG::CountOperands(SDNode *Node) { |
| 235 | unsigned N = Node->getNumOperands(); |
| 236 | while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) |
| 237 | --N; |
| 238 | if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) |
| 239 | --N; // Ignore chain if it exists. |
| 240 | return N; |
| 241 | } |
| 242 | |
| 243 | static const TargetRegisterClass *getInstrOperandRegClass( |
| 244 | const MRegisterInfo *MRI, |
| 245 | const TargetInstrInfo *TII, |
| 246 | const TargetInstrDescriptor *II, |
| 247 | unsigned Op) { |
| 248 | if (Op >= II->numOperands) { |
| 249 | assert((II->Flags & M_VARIABLE_OPS)&& "Invalid operand # of instruction"); |
| 250 | return NULL; |
| 251 | } |
| 252 | const TargetOperandInfo &toi = II->OpInfo[Op]; |
| 253 | return (toi.Flags & M_LOOK_UP_PTR_REG_CLASS) |
| 254 | ? TII->getPointerRegClass() : MRI->getRegClass(toi.RegClass); |
| 255 | } |
| 256 | |
| 257 | static void CreateVirtualRegisters(SDNode *Node, |
| 258 | unsigned NumResults, |
| 259 | const MRegisterInfo *MRI, |
| 260 | MachineInstr *MI, |
| 261 | SSARegMap *RegMap, |
| 262 | const TargetInstrInfo *TII, |
| 263 | const TargetInstrDescriptor &II, |
| 264 | DenseMap<SDOperand, unsigned> &VRBaseMap) { |
| 265 | for (unsigned i = 0; i < NumResults; ++i) { |
| 266 | // If the specific node value is only used by a CopyToReg and the dest reg |
| 267 | // is a vreg, use the CopyToReg'd destination register instead of creating |
| 268 | // a new vreg. |
| 269 | unsigned VRBase = 0; |
| 270 | for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); |
| 271 | UI != E; ++UI) { |
| 272 | SDNode *Use = *UI; |
| 273 | if (Use->getOpcode() == ISD::CopyToReg && |
| 274 | Use->getOperand(2).Val == Node && |
| 275 | Use->getOperand(2).ResNo == i) { |
| 276 | unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); |
| 277 | if (MRegisterInfo::isVirtualRegister(Reg)) { |
| 278 | VRBase = Reg; |
| 279 | MI->addRegOperand(Reg, true); |
| 280 | break; |
| 281 | } |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | if (VRBase == 0) { |
| 286 | // Create the result registers for this node and add the result regs to |
| 287 | // the machine instruction. |
| 288 | const TargetRegisterClass *RC = getInstrOperandRegClass(MRI, TII, &II, i); |
| 289 | assert(RC && "Isn't a register operand!"); |
| 290 | VRBase = RegMap->createVirtualRegister(RC); |
| 291 | MI->addRegOperand(VRBase, true); |
| 292 | } |
| 293 | |
| 294 | bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,i), VRBase)); |
| 295 | assert(isNew && "Node emitted out of order - early"); |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | /// getVR - Return the virtual register corresponding to the specified result |
| 300 | /// of the specified node. |
| 301 | static unsigned getVR(SDOperand Op, DenseMap<SDOperand, unsigned> &VRBaseMap) { |
| 302 | DenseMap<SDOperand, unsigned>::iterator I = VRBaseMap.find(Op); |
| 303 | assert(I != VRBaseMap.end() && "Node emitted out of order - late"); |
| 304 | return I->second; |
| 305 | } |
| 306 | |
| 307 | |
| 308 | /// AddOperand - Add the specified operand to the specified machine instr. II |
| 309 | /// specifies the instruction information for the node, and IIOpNum is the |
| 310 | /// operand number (in the II) that we are adding. IIOpNum and II are used for |
| 311 | /// assertions only. |
| 312 | void ScheduleDAG::AddOperand(MachineInstr *MI, SDOperand Op, |
| 313 | unsigned IIOpNum, |
| 314 | const TargetInstrDescriptor *II, |
| 315 | DenseMap<SDOperand, unsigned> &VRBaseMap) { |
| 316 | if (Op.isTargetOpcode()) { |
| 317 | // Note that this case is redundant with the final else block, but we |
| 318 | // include it because it is the most common and it makes the logic |
| 319 | // simpler here. |
| 320 | assert(Op.getValueType() != MVT::Other && |
| 321 | Op.getValueType() != MVT::Flag && |
| 322 | "Chain and flag operands should occur at end of operand list!"); |
| 323 | |
| 324 | // Get/emit the operand. |
| 325 | unsigned VReg = getVR(Op, VRBaseMap); |
| 326 | const TargetInstrDescriptor *TID = MI->getInstrDescriptor(); |
| 327 | bool isOptDef = (IIOpNum < TID->numOperands) |
| 328 | ? (TID->OpInfo[IIOpNum].Flags & M_OPTIONAL_DEF_OPERAND) : false; |
| 329 | MI->addRegOperand(VReg, isOptDef); |
| 330 | |
| 331 | // Verify that it is right. |
| 332 | assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); |
| 333 | if (II) { |
| 334 | const TargetRegisterClass *RC = |
| 335 | getInstrOperandRegClass(MRI, TII, II, IIOpNum); |
| 336 | assert(RC && "Don't have operand info for this instruction!"); |
| 337 | const TargetRegisterClass *VRC = RegMap->getRegClass(VReg); |
| 338 | if (VRC != RC) { |
| 339 | cerr << "Register class of operand and regclass of use don't agree!\n"; |
| 340 | #ifndef NDEBUG |
| 341 | cerr << "Operand = " << IIOpNum << "\n"; |
| 342 | cerr << "Op->Val = "; Op.Val->dump(&DAG); cerr << "\n"; |
| 343 | cerr << "MI = "; MI->print(cerr); |
| 344 | cerr << "VReg = " << VReg << "\n"; |
| 345 | cerr << "VReg RegClass size = " << VRC->getSize() |
| 346 | << ", align = " << VRC->getAlignment() << "\n"; |
| 347 | cerr << "Expected RegClass size = " << RC->getSize() |
| 348 | << ", align = " << RC->getAlignment() << "\n"; |
| 349 | #endif |
| 350 | cerr << "Fatal error, aborting.\n"; |
| 351 | abort(); |
| 352 | } |
| 353 | } |
| 354 | } else if (ConstantSDNode *C = |
| 355 | dyn_cast<ConstantSDNode>(Op)) { |
| 356 | MI->addImmOperand(C->getValue()); |
| 357 | } else if (RegisterSDNode *R = |
| 358 | dyn_cast<RegisterSDNode>(Op)) { |
| 359 | MI->addRegOperand(R->getReg(), false); |
| 360 | } else if (GlobalAddressSDNode *TGA = |
| 361 | dyn_cast<GlobalAddressSDNode>(Op)) { |
| 362 | MI->addGlobalAddressOperand(TGA->getGlobal(), TGA->getOffset()); |
| 363 | } else if (BasicBlockSDNode *BB = |
| 364 | dyn_cast<BasicBlockSDNode>(Op)) { |
| 365 | MI->addMachineBasicBlockOperand(BB->getBasicBlock()); |
| 366 | } else if (FrameIndexSDNode *FI = |
| 367 | dyn_cast<FrameIndexSDNode>(Op)) { |
| 368 | MI->addFrameIndexOperand(FI->getIndex()); |
| 369 | } else if (JumpTableSDNode *JT = |
| 370 | dyn_cast<JumpTableSDNode>(Op)) { |
| 371 | MI->addJumpTableIndexOperand(JT->getIndex()); |
| 372 | } else if (ConstantPoolSDNode *CP = |
| 373 | dyn_cast<ConstantPoolSDNode>(Op)) { |
| 374 | int Offset = CP->getOffset(); |
| 375 | unsigned Align = CP->getAlignment(); |
| 376 | const Type *Type = CP->getType(); |
| 377 | // MachineConstantPool wants an explicit alignment. |
| 378 | if (Align == 0) { |
| 379 | Align = TM.getTargetData()->getPreferredTypeAlignmentShift(Type); |
| 380 | if (Align == 0) { |
| 381 | // Alignment of vector types. FIXME! |
| 382 | Align = TM.getTargetData()->getTypeSize(Type); |
| 383 | Align = Log2_64(Align); |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | unsigned Idx; |
| 388 | if (CP->isMachineConstantPoolEntry()) |
| 389 | Idx = ConstPool->getConstantPoolIndex(CP->getMachineCPVal(), Align); |
| 390 | else |
| 391 | Idx = ConstPool->getConstantPoolIndex(CP->getConstVal(), Align); |
| 392 | MI->addConstantPoolIndexOperand(Idx, Offset); |
| 393 | } else if (ExternalSymbolSDNode *ES = |
| 394 | dyn_cast<ExternalSymbolSDNode>(Op)) { |
| 395 | MI->addExternalSymbolOperand(ES->getSymbol()); |
| 396 | } else { |
| 397 | assert(Op.getValueType() != MVT::Other && |
| 398 | Op.getValueType() != MVT::Flag && |
| 399 | "Chain and flag operands should occur at end of operand list!"); |
| 400 | unsigned VReg = getVR(Op, VRBaseMap); |
| 401 | MI->addRegOperand(VReg, false); |
| 402 | |
| 403 | // Verify that it is right. |
| 404 | assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); |
| 405 | if (II) { |
| 406 | const TargetRegisterClass *RC = |
| 407 | getInstrOperandRegClass(MRI, TII, II, IIOpNum); |
| 408 | assert(RC && "Don't have operand info for this instruction!"); |
| 409 | assert(RegMap->getRegClass(VReg) == RC && |
| 410 | "Register class of operand and regclass of use don't agree!"); |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | } |
| 415 | |
| 416 | // Returns the Register Class of a physical register |
| 417 | static const TargetRegisterClass *getPhysicalRegisterRegClass( |
| 418 | const MRegisterInfo *MRI, |
| 419 | MVT::ValueType VT, |
| 420 | unsigned reg) { |
| 421 | assert(MRegisterInfo::isPhysicalRegister(reg) && |
| 422 | "reg must be a physical register"); |
| 423 | // Pick the register class of the right type that contains this physreg. |
| 424 | for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(), |
| 425 | E = MRI->regclass_end(); I != E; ++I) |
| 426 | if ((*I)->hasType(VT) && (*I)->contains(reg)) |
| 427 | return *I; |
| 428 | assert(false && "Couldn't find the register class"); |
| 429 | return 0; |
| 430 | } |
| 431 | |
Christopher Lamb | e95328d | 2007-07-26 08:12:07 +0000 | [diff] [blame^] | 432 | // Returns the Register Class of a subregister |
| 433 | static const TargetRegisterClass *getSubRegisterRegClass( |
| 434 | const TargetRegisterClass *TRC, |
| 435 | unsigned SubIdx) { |
| 436 | // Pick the register class of the subregister |
| 437 | MRegisterInfo::regclass_iterator I = TRC->subregclasses_begin() + SubIdx-1; |
| 438 | assert(I < TRC->subregclasses_end() && |
| 439 | "Invalid subregister index for register class"); |
| 440 | return *I; |
| 441 | } |
| 442 | |
| 443 | static const TargetRegisterClass *getSuperregRegisterClass( |
| 444 | const TargetRegisterClass *TRC, |
| 445 | unsigned SubIdx, |
| 446 | MVT::ValueType VT) { |
| 447 | // Pick the register class of the superegister for this type |
| 448 | for (MRegisterInfo::regclass_iterator I = TRC->superregclasses_begin(), |
| 449 | E = TRC->superregclasses_end(); I != E; ++I) |
| 450 | if ((*I)->hasType(VT) && getSubRegisterRegClass(*I, SubIdx) == TRC) |
| 451 | return *I; |
| 452 | assert(false && "Couldn't find the register class"); |
| 453 | return 0; |
| 454 | } |
| 455 | |
| 456 | /// EmitSubregNode - Generate machine code for subreg nodes. |
| 457 | /// |
| 458 | void ScheduleDAG::EmitSubregNode(SDNode *Node, |
| 459 | DenseMap<SDOperand, unsigned> &VRBaseMap) { |
| 460 | unsigned VRBase = 0; |
| 461 | unsigned Opc = Node->getTargetOpcode(); |
| 462 | if (Opc == TargetInstrInfo::EXTRACT_SUBREG) { |
| 463 | // If the node is only used by a CopyToReg and the dest reg is a vreg, use |
| 464 | // the CopyToReg'd destination register instead of creating a new vreg. |
| 465 | for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); |
| 466 | UI != E; ++UI) { |
| 467 | SDNode *Use = *UI; |
| 468 | if (Use->getOpcode() == ISD::CopyToReg && |
| 469 | Use->getOperand(2).Val == Node) { |
| 470 | unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); |
| 471 | if (MRegisterInfo::isVirtualRegister(DestReg)) { |
| 472 | VRBase = DestReg; |
| 473 | break; |
| 474 | } |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getValue(); |
| 479 | |
| 480 | // TODO: If the node is a use of a CopyFromReg from a physical register |
| 481 | // fold the extract into the copy now |
| 482 | |
| 483 | // TODO: Add tracking info to SSARegMap of which vregs are subregs |
| 484 | // to allow coalescing in the allocator |
| 485 | |
| 486 | // Create the extract_subreg machine instruction. |
| 487 | MachineInstr *MI = |
| 488 | new MachineInstr(BB, TII->get(TargetInstrInfo::EXTRACT_SUBREG)); |
| 489 | |
| 490 | // Figure out the register class to create for the destreg. |
| 491 | unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); |
| 492 | const TargetRegisterClass *TRC = RegMap->getRegClass(VReg); |
| 493 | const TargetRegisterClass *SRC = getSubRegisterRegClass(TRC, SubIdx); |
| 494 | |
| 495 | if (VRBase) { |
| 496 | // Grab the destination register |
| 497 | const TargetRegisterClass *DRC = 0; |
| 498 | DRC = RegMap->getRegClass(VRBase); |
| 499 | assert(SRC == DRC && |
| 500 | "Source subregister and destination must have the same class"); |
| 501 | } else { |
| 502 | // Create the reg |
| 503 | VRBase = RegMap->createVirtualRegister(SRC); |
| 504 | } |
| 505 | |
| 506 | // Add def, source, and subreg index |
| 507 | MI->addRegOperand(VRBase, true); |
| 508 | AddOperand(MI, Node->getOperand(0), 0, 0, VRBaseMap); |
| 509 | MI->addImmOperand(SubIdx); |
| 510 | |
| 511 | } else if (Opc == TargetInstrInfo::INSERT_SUBREG) { |
| 512 | assert((Node->getNumOperands() == 2 || Node->getNumOperands() == 3) && |
| 513 | "Malformed insert_subreg node"); |
| 514 | bool isUndefInput = (Node->getNumOperands() == 2); |
| 515 | unsigned SubReg = 0; |
| 516 | unsigned SubIdx = 0; |
| 517 | |
| 518 | if (isUndefInput) { |
| 519 | SubReg = getVR(Node->getOperand(0), VRBaseMap); |
| 520 | SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getValue(); |
| 521 | } else { |
| 522 | SubReg = getVR(Node->getOperand(1), VRBaseMap); |
| 523 | SubIdx = cast<ConstantSDNode>(Node->getOperand(2))->getValue(); |
| 524 | } |
| 525 | |
| 526 | // TODO: Add tracking info to SSARegMap of which vregs are subregs |
| 527 | // to allow coalescing in the allocator |
| 528 | |
| 529 | // If the node is only used by a CopyToReg and the dest reg is a vreg, use |
| 530 | // the CopyToReg'd destination register instead of creating a new vreg. |
| 531 | // If the CopyToReg'd destination register is physical, then fold the |
| 532 | // insert into the copy |
| 533 | for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); |
| 534 | UI != E; ++UI) { |
| 535 | SDNode *Use = *UI; |
| 536 | if (Use->getOpcode() == ISD::CopyToReg && |
| 537 | Use->getOperand(2).Val == Node) { |
| 538 | unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); |
| 539 | if (MRegisterInfo::isVirtualRegister(DestReg)) { |
| 540 | VRBase = DestReg; |
| 541 | break; |
| 542 | } |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | // Create the insert_subreg machine instruction. |
| 547 | MachineInstr *MI = |
| 548 | new MachineInstr(BB, TII->get(TargetInstrInfo::INSERT_SUBREG)); |
| 549 | |
| 550 | // Figure out the register class to create for the destreg. |
| 551 | const TargetRegisterClass *TRC = 0; |
| 552 | if (VRBase) { |
| 553 | TRC = RegMap->getRegClass(VRBase); |
| 554 | } else { |
| 555 | TRC = getSuperregRegisterClass(RegMap->getRegClass(SubReg), |
| 556 | SubIdx, |
| 557 | Node->getValueType(0)); |
| 558 | assert(TRC && "Couldn't determine register class for insert_subreg"); |
| 559 | VRBase = RegMap->createVirtualRegister(TRC); // Create the reg |
| 560 | } |
| 561 | |
| 562 | MI->addRegOperand(VRBase, true); |
| 563 | AddOperand(MI, Node->getOperand(0), 0, 0, VRBaseMap); |
| 564 | if (!isUndefInput) |
| 565 | AddOperand(MI, Node->getOperand(1), 0, 0, VRBaseMap); |
| 566 | MI->addImmOperand(SubIdx); |
| 567 | } else |
| 568 | assert(0 && "Node is not a subreg insert or extract"); |
| 569 | |
| 570 | bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,0), VRBase)); |
| 571 | assert(isNew && "Node emitted out of order - early"); |
| 572 | } |
| 573 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 574 | /// EmitNode - Generate machine code for an node and needed dependencies. |
| 575 | /// |
| 576 | void ScheduleDAG::EmitNode(SDNode *Node, |
| 577 | DenseMap<SDOperand, unsigned> &VRBaseMap) { |
| 578 | // If machine instruction |
| 579 | if (Node->isTargetOpcode()) { |
| 580 | unsigned Opc = Node->getTargetOpcode(); |
Christopher Lamb | e95328d | 2007-07-26 08:12:07 +0000 | [diff] [blame^] | 581 | |
| 582 | // Handle subreg insert/extract specially |
| 583 | if (Opc == TargetInstrInfo::EXTRACT_SUBREG || |
| 584 | Opc == TargetInstrInfo::INSERT_SUBREG) { |
| 585 | EmitSubregNode(Node, VRBaseMap); |
| 586 | return; |
| 587 | } |
| 588 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 589 | const TargetInstrDescriptor &II = TII->get(Opc); |
| 590 | |
| 591 | unsigned NumResults = CountResults(Node); |
| 592 | unsigned NodeOperands = CountOperands(Node); |
| 593 | unsigned NumMIOperands = NodeOperands + NumResults; |
| 594 | #ifndef NDEBUG |
| 595 | assert((unsigned(II.numOperands) == NumMIOperands || |
| 596 | (II.Flags & M_VARIABLE_OPS)) && |
| 597 | "#operands for dag node doesn't match .td file!"); |
| 598 | #endif |
| 599 | |
| 600 | // Create the new machine instruction. |
| 601 | MachineInstr *MI = new MachineInstr(II); |
| 602 | |
| 603 | // Add result register values for things that are defined by this |
| 604 | // instruction. |
| 605 | if (NumResults) |
| 606 | CreateVirtualRegisters(Node, NumResults, MRI, MI, RegMap, |
| 607 | TII, II, VRBaseMap); |
| 608 | |
| 609 | // Emit all of the actual operands of this instruction, adding them to the |
| 610 | // instruction as appropriate. |
| 611 | for (unsigned i = 0; i != NodeOperands; ++i) |
| 612 | AddOperand(MI, Node->getOperand(i), i+NumResults, &II, VRBaseMap); |
| 613 | |
| 614 | // Commute node if it has been determined to be profitable. |
| 615 | if (CommuteSet.count(Node)) { |
| 616 | MachineInstr *NewMI = TII->commuteInstruction(MI); |
| 617 | if (NewMI == 0) |
| 618 | DOUT << "Sched: COMMUTING FAILED!\n"; |
| 619 | else { |
| 620 | DOUT << "Sched: COMMUTED TO: " << *NewMI; |
| 621 | if (MI != NewMI) { |
| 622 | delete MI; |
| 623 | MI = NewMI; |
| 624 | } |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | // Now that we have emitted all operands, emit this instruction itself. |
| 629 | if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) { |
| 630 | BB->insert(BB->end(), MI); |
| 631 | } else { |
| 632 | // Insert this instruction into the end of the basic block, potentially |
| 633 | // taking some custom action. |
| 634 | BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB); |
| 635 | } |
| 636 | } else { |
| 637 | switch (Node->getOpcode()) { |
| 638 | default: |
| 639 | #ifndef NDEBUG |
| 640 | Node->dump(&DAG); |
| 641 | #endif |
| 642 | assert(0 && "This target-independent node should have been selected!"); |
| 643 | case ISD::EntryToken: // fall thru |
| 644 | case ISD::TokenFactor: |
| 645 | case ISD::LABEL: |
| 646 | break; |
| 647 | case ISD::CopyToReg: { |
| 648 | unsigned InReg; |
| 649 | if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(2))) |
| 650 | InReg = R->getReg(); |
| 651 | else |
| 652 | InReg = getVR(Node->getOperand(2), VRBaseMap); |
| 653 | unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); |
| 654 | if (InReg != DestReg) {// Coalesced away the copy? |
| 655 | const TargetRegisterClass *TRC = 0; |
| 656 | // Get the target register class |
| 657 | if (MRegisterInfo::isVirtualRegister(InReg)) |
| 658 | TRC = RegMap->getRegClass(InReg); |
| 659 | else |
| 660 | TRC = getPhysicalRegisterRegClass(MRI, |
| 661 | Node->getOperand(2).getValueType(), |
| 662 | InReg); |
| 663 | MRI->copyRegToReg(*BB, BB->end(), DestReg, InReg, TRC); |
| 664 | } |
| 665 | break; |
| 666 | } |
| 667 | case ISD::CopyFromReg: { |
| 668 | unsigned VRBase = 0; |
| 669 | unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); |
| 670 | if (MRegisterInfo::isVirtualRegister(SrcReg)) { |
| 671 | // Just use the input register directly! |
| 672 | bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,0),SrcReg)); |
| 673 | assert(isNew && "Node emitted out of order - early"); |
| 674 | break; |
| 675 | } |
| 676 | |
| 677 | // If the node is only used by a CopyToReg and the dest reg is a vreg, use |
| 678 | // the CopyToReg'd destination register instead of creating a new vreg. |
| 679 | for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); |
| 680 | UI != E; ++UI) { |
| 681 | SDNode *Use = *UI; |
| 682 | if (Use->getOpcode() == ISD::CopyToReg && |
| 683 | Use->getOperand(2).Val == Node) { |
| 684 | unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); |
| 685 | if (MRegisterInfo::isVirtualRegister(DestReg)) { |
| 686 | VRBase = DestReg; |
| 687 | break; |
| 688 | } |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | // Figure out the register class to create for the destreg. |
| 693 | const TargetRegisterClass *TRC = 0; |
| 694 | if (VRBase) { |
| 695 | TRC = RegMap->getRegClass(VRBase); |
| 696 | } else { |
| 697 | TRC = getPhysicalRegisterRegClass(MRI, Node->getValueType(0), SrcReg); |
| 698 | |
| 699 | // Create the reg, emit the copy. |
| 700 | VRBase = RegMap->createVirtualRegister(TRC); |
| 701 | } |
| 702 | MRI->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC); |
| 703 | |
| 704 | bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,0), VRBase)); |
| 705 | assert(isNew && "Node emitted out of order - early"); |
| 706 | break; |
| 707 | } |
| 708 | case ISD::INLINEASM: { |
| 709 | unsigned NumOps = Node->getNumOperands(); |
| 710 | if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag) |
| 711 | --NumOps; // Ignore the flag operand. |
| 712 | |
| 713 | // Create the inline asm machine instruction. |
| 714 | MachineInstr *MI = |
| 715 | new MachineInstr(BB, TII->get(TargetInstrInfo::INLINEASM)); |
| 716 | |
| 717 | // Add the asm string as an external symbol operand. |
| 718 | const char *AsmStr = |
| 719 | cast<ExternalSymbolSDNode>(Node->getOperand(1))->getSymbol(); |
| 720 | MI->addExternalSymbolOperand(AsmStr); |
| 721 | |
| 722 | // Add all of the operand registers to the instruction. |
| 723 | for (unsigned i = 2; i != NumOps;) { |
| 724 | unsigned Flags = cast<ConstantSDNode>(Node->getOperand(i))->getValue(); |
| 725 | unsigned NumVals = Flags >> 3; |
| 726 | |
| 727 | MI->addImmOperand(Flags); |
| 728 | ++i; // Skip the ID value. |
| 729 | |
| 730 | switch (Flags & 7) { |
| 731 | default: assert(0 && "Bad flags!"); |
| 732 | case 1: // Use of register. |
| 733 | for (; NumVals; --NumVals, ++i) { |
| 734 | unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); |
| 735 | MI->addRegOperand(Reg, false); |
| 736 | } |
| 737 | break; |
| 738 | case 2: // Def of register. |
| 739 | for (; NumVals; --NumVals, ++i) { |
| 740 | unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); |
| 741 | MI->addRegOperand(Reg, true); |
| 742 | } |
| 743 | break; |
| 744 | case 3: { // Immediate. |
| 745 | assert(NumVals == 1 && "Unknown immediate value!"); |
| 746 | if (ConstantSDNode *CS=dyn_cast<ConstantSDNode>(Node->getOperand(i))){ |
| 747 | MI->addImmOperand(CS->getValue()); |
| 748 | } else { |
| 749 | GlobalAddressSDNode *GA = |
| 750 | cast<GlobalAddressSDNode>(Node->getOperand(i)); |
| 751 | MI->addGlobalAddressOperand(GA->getGlobal(), GA->getOffset()); |
| 752 | } |
| 753 | ++i; |
| 754 | break; |
| 755 | } |
| 756 | case 4: // Addressing mode. |
| 757 | // The addressing mode has been selected, just add all of the |
| 758 | // operands to the machine instruction. |
| 759 | for (; NumVals; --NumVals, ++i) |
| 760 | AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap); |
| 761 | break; |
| 762 | } |
| 763 | } |
| 764 | break; |
| 765 | } |
| 766 | } |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | void ScheduleDAG::EmitNoop() { |
| 771 | TII->insertNoop(*BB, BB->end()); |
| 772 | } |
| 773 | |
| 774 | /// EmitSchedule - Emit the machine code in scheduled order. |
| 775 | void ScheduleDAG::EmitSchedule() { |
| 776 | // If this is the first basic block in the function, and if it has live ins |
| 777 | // that need to be copied into vregs, emit the copies into the top of the |
| 778 | // block before emitting the code for the block. |
| 779 | MachineFunction &MF = DAG.getMachineFunction(); |
| 780 | if (&MF.front() == BB && MF.livein_begin() != MF.livein_end()) { |
| 781 | for (MachineFunction::livein_iterator LI = MF.livein_begin(), |
| 782 | E = MF.livein_end(); LI != E; ++LI) |
| 783 | if (LI->second) |
| 784 | MRI->copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second, |
| 785 | LI->first, RegMap->getRegClass(LI->second)); |
| 786 | } |
| 787 | |
| 788 | |
| 789 | // Finally, emit the code for all of the scheduled instructions. |
| 790 | DenseMap<SDOperand, unsigned> VRBaseMap; |
| 791 | for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| 792 | if (SUnit *SU = Sequence[i]) { |
| 793 | for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++) |
| 794 | EmitNode(SU->FlaggedNodes[j], VRBaseMap); |
| 795 | EmitNode(SU->Node, VRBaseMap); |
| 796 | } else { |
| 797 | // Null SUnit* is a noop. |
| 798 | EmitNoop(); |
| 799 | } |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | /// dump - dump the schedule. |
| 804 | void ScheduleDAG::dumpSchedule() const { |
| 805 | for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| 806 | if (SUnit *SU = Sequence[i]) |
| 807 | SU->dump(&DAG); |
| 808 | else |
| 809 | cerr << "**** NOOP ****\n"; |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | |
| 814 | /// Run - perform scheduling. |
| 815 | /// |
| 816 | MachineBasicBlock *ScheduleDAG::Run() { |
| 817 | TII = TM.getInstrInfo(); |
| 818 | MRI = TM.getRegisterInfo(); |
| 819 | RegMap = BB->getParent()->getSSARegMap(); |
| 820 | ConstPool = BB->getParent()->getConstantPool(); |
| 821 | |
| 822 | Schedule(); |
| 823 | return BB; |
| 824 | } |
| 825 | |
| 826 | /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or |
| 827 | /// a group of nodes flagged together. |
| 828 | void SUnit::dump(const SelectionDAG *G) const { |
| 829 | cerr << "SU(" << NodeNum << "): "; |
| 830 | Node->dump(G); |
| 831 | cerr << "\n"; |
| 832 | if (FlaggedNodes.size() != 0) { |
| 833 | for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) { |
| 834 | cerr << " "; |
| 835 | FlaggedNodes[i]->dump(G); |
| 836 | cerr << "\n"; |
| 837 | } |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | void SUnit::dumpAll(const SelectionDAG *G) const { |
| 842 | dump(G); |
| 843 | |
| 844 | cerr << " # preds left : " << NumPredsLeft << "\n"; |
| 845 | cerr << " # succs left : " << NumSuccsLeft << "\n"; |
| 846 | cerr << " # chain preds left : " << NumChainPredsLeft << "\n"; |
| 847 | cerr << " # chain succs left : " << NumChainSuccsLeft << "\n"; |
| 848 | cerr << " Latency : " << Latency << "\n"; |
| 849 | cerr << " Depth : " << Depth << "\n"; |
| 850 | cerr << " Height : " << Height << "\n"; |
| 851 | |
| 852 | if (Preds.size() != 0) { |
| 853 | cerr << " Predecessors:\n"; |
| 854 | for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); |
| 855 | I != E; ++I) { |
| 856 | if (I->second) |
| 857 | cerr << " ch #"; |
| 858 | else |
| 859 | cerr << " val #"; |
| 860 | cerr << I->first << " - SU(" << I->first->NodeNum << ")\n"; |
| 861 | } |
| 862 | } |
| 863 | if (Succs.size() != 0) { |
| 864 | cerr << " Successors:\n"; |
| 865 | for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); |
| 866 | I != E; ++I) { |
| 867 | if (I->second) |
| 868 | cerr << " ch #"; |
| 869 | else |
| 870 | cerr << " val #"; |
| 871 | cerr << I->first << " - SU(" << I->first->NodeNum << ")\n"; |
| 872 | } |
| 873 | } |
| 874 | cerr << "\n"; |
| 875 | } |