blob: cd4e9619fe06276ee5d4d64eb938d3edc059489f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by James M. Laskey and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a simple two pass scheduler. The first pass attempts to push
11// backward any lengthy instructions and critical paths. The second pass packs
12// instructions into semi-optimal time slots.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "pre-RA-sched"
17#include "llvm/Type.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/CodeGen/MachineConstantPool.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/SSARegMap.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/MathExtras.h"
28using namespace llvm;
29
30/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
31/// This SUnit graph is similar to the SelectionDAG, but represents flagged
32/// together nodes with a single SUnit.
33void ScheduleDAG::BuildSchedUnits() {
34 // Reserve entries in the vector for each of the SUnits we are creating. This
35 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
36 // invalidated.
37 SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end()));
38
39 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
40
41 for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
42 E = DAG.allnodes_end(); NI != E; ++NI) {
43 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
44 continue;
45
46 // If this node has already been processed, stop now.
47 if (SUnitMap[NI]) continue;
48
49 SUnit *NodeSUnit = NewSUnit(NI);
50
51 // See if anything is flagged to this node, if so, add them to flagged
52 // nodes. Nodes can have at most one flag input and one flag output. Flags
53 // are required the be the last operand and result of a node.
54
55 // Scan up, adding flagged preds to FlaggedNodes.
56 SDNode *N = NI;
57 if (N->getNumOperands() &&
58 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
59 do {
60 N = N->getOperand(N->getNumOperands()-1).Val;
61 NodeSUnit->FlaggedNodes.push_back(N);
62 SUnitMap[N] = NodeSUnit;
63 } while (N->getNumOperands() &&
64 N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag);
65 std::reverse(NodeSUnit->FlaggedNodes.begin(),
66 NodeSUnit->FlaggedNodes.end());
67 }
68
69 // Scan down, adding this node and any flagged succs to FlaggedNodes if they
70 // have a user of the flag operand.
71 N = NI;
72 while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
73 SDOperand FlagVal(N, N->getNumValues()-1);
74
75 // There are either zero or one users of the Flag result.
76 bool HasFlagUse = false;
77 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
78 UI != E; ++UI)
79 if (FlagVal.isOperand(*UI)) {
80 HasFlagUse = true;
81 NodeSUnit->FlaggedNodes.push_back(N);
82 SUnitMap[N] = NodeSUnit;
83 N = *UI;
84 break;
85 }
86 if (!HasFlagUse) break;
87 }
88
89 // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
90 // Update the SUnit
91 NodeSUnit->Node = N;
92 SUnitMap[N] = NodeSUnit;
93
94 // Compute the latency for the node. We use the sum of the latencies for
95 // all nodes flagged together into this SUnit.
96 if (InstrItins.isEmpty()) {
97 // No latency information.
98 NodeSUnit->Latency = 1;
99 } else {
100 NodeSUnit->Latency = 0;
101 if (N->isTargetOpcode()) {
102 unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
103 InstrStage *S = InstrItins.begin(SchedClass);
104 InstrStage *E = InstrItins.end(SchedClass);
105 for (; S != E; ++S)
106 NodeSUnit->Latency += S->Cycles;
107 }
108 for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) {
109 SDNode *FNode = NodeSUnit->FlaggedNodes[i];
110 if (FNode->isTargetOpcode()) {
111 unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
112 InstrStage *S = InstrItins.begin(SchedClass);
113 InstrStage *E = InstrItins.end(SchedClass);
114 for (; S != E; ++S)
115 NodeSUnit->Latency += S->Cycles;
116 }
117 }
118 }
119 }
120
121 // Pass 2: add the preds, succs, etc.
122 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
123 SUnit *SU = &SUnits[su];
124 SDNode *MainNode = SU->Node;
125
126 if (MainNode->isTargetOpcode()) {
127 unsigned Opc = MainNode->getTargetOpcode();
128 for (unsigned i = 0, ee = TII->getNumOperands(Opc); i != ee; ++i) {
129 if (TII->getOperandConstraint(Opc, i, TOI::TIED_TO) != -1) {
130 SU->isTwoAddress = true;
131 break;
132 }
133 }
134 if (TII->isCommutableInstr(Opc))
135 SU->isCommutable = true;
136 }
137
138 // Find all predecessors and successors of the group.
139 // Temporarily add N to make code simpler.
140 SU->FlaggedNodes.push_back(MainNode);
141
142 for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
143 SDNode *N = SU->FlaggedNodes[n];
144
145 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
146 SDNode *OpN = N->getOperand(i).Val;
147 if (isPassiveNode(OpN)) continue; // Not scheduled.
148 SUnit *OpSU = SUnitMap[OpN];
149 assert(OpSU && "Node has no SUnit!");
150 if (OpSU == SU) continue; // In the same group.
151
152 MVT::ValueType OpVT = N->getOperand(i).getValueType();
153 assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
154 bool isChain = OpVT == MVT::Other;
155
156 if (SU->addPred(OpSU, isChain)) {
157 if (!isChain) {
158 SU->NumPreds++;
159 SU->NumPredsLeft++;
160 } else {
161 SU->NumChainPredsLeft++;
162 }
163 }
164 if (OpSU->addSucc(SU, isChain)) {
165 if (!isChain) {
166 OpSU->NumSuccs++;
167 OpSU->NumSuccsLeft++;
168 } else {
169 OpSU->NumChainSuccsLeft++;
170 }
171 }
172 }
173 }
174
175 // Remove MainNode from FlaggedNodes again.
176 SU->FlaggedNodes.pop_back();
177 }
178
179 return;
180}
181
182void ScheduleDAG::CalculateDepths() {
183 std::vector<std::pair<SUnit*, unsigned> > WorkList;
184 for (unsigned i = 0, e = SUnits.size(); i != e; ++i)
185 if (SUnits[i].Preds.size() == 0/* && &SUnits[i] != Entry*/)
186 WorkList.push_back(std::make_pair(&SUnits[i], 0U));
187
188 while (!WorkList.empty()) {
189 SUnit *SU = WorkList.back().first;
190 unsigned Depth = WorkList.back().second;
191 WorkList.pop_back();
192 if (SU->Depth == 0 || Depth > SU->Depth) {
193 SU->Depth = Depth;
194 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
195 I != E; ++I)
196 WorkList.push_back(std::make_pair(I->first, Depth+1));
197 }
198 }
199}
200
201void ScheduleDAG::CalculateHeights() {
202 std::vector<std::pair<SUnit*, unsigned> > WorkList;
203 SUnit *Root = SUnitMap[DAG.getRoot().Val];
204 WorkList.push_back(std::make_pair(Root, 0U));
205
206 while (!WorkList.empty()) {
207 SUnit *SU = WorkList.back().first;
208 unsigned Height = WorkList.back().second;
209 WorkList.pop_back();
210 if (SU->Height == 0 || Height > SU->Height) {
211 SU->Height = Height;
212 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
213 I != E; ++I)
214 WorkList.push_back(std::make_pair(I->first, Height+1));
215 }
216 }
217}
218
219/// CountResults - The results of target nodes have register or immediate
220/// operands first, then an optional chain, and optional flag operands (which do
221/// not go into the machine instrs.)
222unsigned ScheduleDAG::CountResults(SDNode *Node) {
223 unsigned N = Node->getNumValues();
224 while (N && Node->getValueType(N - 1) == MVT::Flag)
225 --N;
226 if (N && Node->getValueType(N - 1) == MVT::Other)
227 --N; // Skip over chain result.
228 return N;
229}
230
231/// CountOperands The inputs to target nodes have any actual inputs first,
232/// followed by an optional chain operand, then flag operands. Compute the
233/// number of actual operands that will go into the machine instr.
234unsigned ScheduleDAG::CountOperands(SDNode *Node) {
235 unsigned N = Node->getNumOperands();
236 while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
237 --N;
238 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
239 --N; // Ignore chain if it exists.
240 return N;
241}
242
243static const TargetRegisterClass *getInstrOperandRegClass(
244 const MRegisterInfo *MRI,
245 const TargetInstrInfo *TII,
246 const TargetInstrDescriptor *II,
247 unsigned Op) {
248 if (Op >= II->numOperands) {
249 assert((II->Flags & M_VARIABLE_OPS)&& "Invalid operand # of instruction");
250 return NULL;
251 }
252 const TargetOperandInfo &toi = II->OpInfo[Op];
253 return (toi.Flags & M_LOOK_UP_PTR_REG_CLASS)
254 ? TII->getPointerRegClass() : MRI->getRegClass(toi.RegClass);
255}
256
257static void CreateVirtualRegisters(SDNode *Node,
258 unsigned NumResults,
259 const MRegisterInfo *MRI,
260 MachineInstr *MI,
261 SSARegMap *RegMap,
262 const TargetInstrInfo *TII,
263 const TargetInstrDescriptor &II,
264 DenseMap<SDOperand, unsigned> &VRBaseMap) {
265 for (unsigned i = 0; i < NumResults; ++i) {
266 // If the specific node value is only used by a CopyToReg and the dest reg
267 // is a vreg, use the CopyToReg'd destination register instead of creating
268 // a new vreg.
269 unsigned VRBase = 0;
270 for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
271 UI != E; ++UI) {
272 SDNode *Use = *UI;
273 if (Use->getOpcode() == ISD::CopyToReg &&
274 Use->getOperand(2).Val == Node &&
275 Use->getOperand(2).ResNo == i) {
276 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
277 if (MRegisterInfo::isVirtualRegister(Reg)) {
278 VRBase = Reg;
279 MI->addRegOperand(Reg, true);
280 break;
281 }
282 }
283 }
284
285 if (VRBase == 0) {
286 // Create the result registers for this node and add the result regs to
287 // the machine instruction.
288 const TargetRegisterClass *RC = getInstrOperandRegClass(MRI, TII, &II, i);
289 assert(RC && "Isn't a register operand!");
290 VRBase = RegMap->createVirtualRegister(RC);
291 MI->addRegOperand(VRBase, true);
292 }
293
294 bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,i), VRBase));
295 assert(isNew && "Node emitted out of order - early");
296 }
297}
298
299/// getVR - Return the virtual register corresponding to the specified result
300/// of the specified node.
301static unsigned getVR(SDOperand Op, DenseMap<SDOperand, unsigned> &VRBaseMap) {
302 DenseMap<SDOperand, unsigned>::iterator I = VRBaseMap.find(Op);
303 assert(I != VRBaseMap.end() && "Node emitted out of order - late");
304 return I->second;
305}
306
307
308/// AddOperand - Add the specified operand to the specified machine instr. II
309/// specifies the instruction information for the node, and IIOpNum is the
310/// operand number (in the II) that we are adding. IIOpNum and II are used for
311/// assertions only.
312void ScheduleDAG::AddOperand(MachineInstr *MI, SDOperand Op,
313 unsigned IIOpNum,
314 const TargetInstrDescriptor *II,
315 DenseMap<SDOperand, unsigned> &VRBaseMap) {
316 if (Op.isTargetOpcode()) {
317 // Note that this case is redundant with the final else block, but we
318 // include it because it is the most common and it makes the logic
319 // simpler here.
320 assert(Op.getValueType() != MVT::Other &&
321 Op.getValueType() != MVT::Flag &&
322 "Chain and flag operands should occur at end of operand list!");
323
324 // Get/emit the operand.
325 unsigned VReg = getVR(Op, VRBaseMap);
326 const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
327 bool isOptDef = (IIOpNum < TID->numOperands)
328 ? (TID->OpInfo[IIOpNum].Flags & M_OPTIONAL_DEF_OPERAND) : false;
329 MI->addRegOperand(VReg, isOptDef);
330
331 // Verify that it is right.
332 assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
333 if (II) {
334 const TargetRegisterClass *RC =
335 getInstrOperandRegClass(MRI, TII, II, IIOpNum);
336 assert(RC && "Don't have operand info for this instruction!");
337 const TargetRegisterClass *VRC = RegMap->getRegClass(VReg);
338 if (VRC != RC) {
339 cerr << "Register class of operand and regclass of use don't agree!\n";
340#ifndef NDEBUG
341 cerr << "Operand = " << IIOpNum << "\n";
342 cerr << "Op->Val = "; Op.Val->dump(&DAG); cerr << "\n";
343 cerr << "MI = "; MI->print(cerr);
344 cerr << "VReg = " << VReg << "\n";
345 cerr << "VReg RegClass size = " << VRC->getSize()
346 << ", align = " << VRC->getAlignment() << "\n";
347 cerr << "Expected RegClass size = " << RC->getSize()
348 << ", align = " << RC->getAlignment() << "\n";
349#endif
350 cerr << "Fatal error, aborting.\n";
351 abort();
352 }
353 }
354 } else if (ConstantSDNode *C =
355 dyn_cast<ConstantSDNode>(Op)) {
356 MI->addImmOperand(C->getValue());
357 } else if (RegisterSDNode *R =
358 dyn_cast<RegisterSDNode>(Op)) {
359 MI->addRegOperand(R->getReg(), false);
360 } else if (GlobalAddressSDNode *TGA =
361 dyn_cast<GlobalAddressSDNode>(Op)) {
362 MI->addGlobalAddressOperand(TGA->getGlobal(), TGA->getOffset());
363 } else if (BasicBlockSDNode *BB =
364 dyn_cast<BasicBlockSDNode>(Op)) {
365 MI->addMachineBasicBlockOperand(BB->getBasicBlock());
366 } else if (FrameIndexSDNode *FI =
367 dyn_cast<FrameIndexSDNode>(Op)) {
368 MI->addFrameIndexOperand(FI->getIndex());
369 } else if (JumpTableSDNode *JT =
370 dyn_cast<JumpTableSDNode>(Op)) {
371 MI->addJumpTableIndexOperand(JT->getIndex());
372 } else if (ConstantPoolSDNode *CP =
373 dyn_cast<ConstantPoolSDNode>(Op)) {
374 int Offset = CP->getOffset();
375 unsigned Align = CP->getAlignment();
376 const Type *Type = CP->getType();
377 // MachineConstantPool wants an explicit alignment.
378 if (Align == 0) {
379 Align = TM.getTargetData()->getPreferredTypeAlignmentShift(Type);
380 if (Align == 0) {
381 // Alignment of vector types. FIXME!
382 Align = TM.getTargetData()->getTypeSize(Type);
383 Align = Log2_64(Align);
384 }
385 }
386
387 unsigned Idx;
388 if (CP->isMachineConstantPoolEntry())
389 Idx = ConstPool->getConstantPoolIndex(CP->getMachineCPVal(), Align);
390 else
391 Idx = ConstPool->getConstantPoolIndex(CP->getConstVal(), Align);
392 MI->addConstantPoolIndexOperand(Idx, Offset);
393 } else if (ExternalSymbolSDNode *ES =
394 dyn_cast<ExternalSymbolSDNode>(Op)) {
395 MI->addExternalSymbolOperand(ES->getSymbol());
396 } else {
397 assert(Op.getValueType() != MVT::Other &&
398 Op.getValueType() != MVT::Flag &&
399 "Chain and flag operands should occur at end of operand list!");
400 unsigned VReg = getVR(Op, VRBaseMap);
401 MI->addRegOperand(VReg, false);
402
403 // Verify that it is right.
404 assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
405 if (II) {
406 const TargetRegisterClass *RC =
407 getInstrOperandRegClass(MRI, TII, II, IIOpNum);
408 assert(RC && "Don't have operand info for this instruction!");
409 assert(RegMap->getRegClass(VReg) == RC &&
410 "Register class of operand and regclass of use don't agree!");
411 }
412 }
413
414}
415
416// Returns the Register Class of a physical register
417static const TargetRegisterClass *getPhysicalRegisterRegClass(
418 const MRegisterInfo *MRI,
419 MVT::ValueType VT,
420 unsigned reg) {
421 assert(MRegisterInfo::isPhysicalRegister(reg) &&
422 "reg must be a physical register");
423 // Pick the register class of the right type that contains this physreg.
424 for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
425 E = MRI->regclass_end(); I != E; ++I)
426 if ((*I)->hasType(VT) && (*I)->contains(reg))
427 return *I;
428 assert(false && "Couldn't find the register class");
429 return 0;
430}
431
Christopher Lambe95328d2007-07-26 08:12:07 +0000432// Returns the Register Class of a subregister
433static const TargetRegisterClass *getSubRegisterRegClass(
434 const TargetRegisterClass *TRC,
435 unsigned SubIdx) {
436 // Pick the register class of the subregister
437 MRegisterInfo::regclass_iterator I = TRC->subregclasses_begin() + SubIdx-1;
438 assert(I < TRC->subregclasses_end() &&
439 "Invalid subregister index for register class");
440 return *I;
441}
442
443static const TargetRegisterClass *getSuperregRegisterClass(
444 const TargetRegisterClass *TRC,
445 unsigned SubIdx,
446 MVT::ValueType VT) {
447 // Pick the register class of the superegister for this type
448 for (MRegisterInfo::regclass_iterator I = TRC->superregclasses_begin(),
449 E = TRC->superregclasses_end(); I != E; ++I)
450 if ((*I)->hasType(VT) && getSubRegisterRegClass(*I, SubIdx) == TRC)
451 return *I;
452 assert(false && "Couldn't find the register class");
453 return 0;
454}
455
456/// EmitSubregNode - Generate machine code for subreg nodes.
457///
458void ScheduleDAG::EmitSubregNode(SDNode *Node,
459 DenseMap<SDOperand, unsigned> &VRBaseMap) {
460 unsigned VRBase = 0;
461 unsigned Opc = Node->getTargetOpcode();
462 if (Opc == TargetInstrInfo::EXTRACT_SUBREG) {
463 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
464 // the CopyToReg'd destination register instead of creating a new vreg.
465 for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
466 UI != E; ++UI) {
467 SDNode *Use = *UI;
468 if (Use->getOpcode() == ISD::CopyToReg &&
469 Use->getOperand(2).Val == Node) {
470 unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
471 if (MRegisterInfo::isVirtualRegister(DestReg)) {
472 VRBase = DestReg;
473 break;
474 }
475 }
476 }
477
478 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getValue();
479
480 // TODO: If the node is a use of a CopyFromReg from a physical register
481 // fold the extract into the copy now
482
483 // TODO: Add tracking info to SSARegMap of which vregs are subregs
484 // to allow coalescing in the allocator
485
486 // Create the extract_subreg machine instruction.
487 MachineInstr *MI =
488 new MachineInstr(BB, TII->get(TargetInstrInfo::EXTRACT_SUBREG));
489
490 // Figure out the register class to create for the destreg.
491 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
492 const TargetRegisterClass *TRC = RegMap->getRegClass(VReg);
493 const TargetRegisterClass *SRC = getSubRegisterRegClass(TRC, SubIdx);
494
495 if (VRBase) {
496 // Grab the destination register
497 const TargetRegisterClass *DRC = 0;
498 DRC = RegMap->getRegClass(VRBase);
499 assert(SRC == DRC &&
500 "Source subregister and destination must have the same class");
501 } else {
502 // Create the reg
503 VRBase = RegMap->createVirtualRegister(SRC);
504 }
505
506 // Add def, source, and subreg index
507 MI->addRegOperand(VRBase, true);
508 AddOperand(MI, Node->getOperand(0), 0, 0, VRBaseMap);
509 MI->addImmOperand(SubIdx);
510
511 } else if (Opc == TargetInstrInfo::INSERT_SUBREG) {
512 assert((Node->getNumOperands() == 2 || Node->getNumOperands() == 3) &&
513 "Malformed insert_subreg node");
514 bool isUndefInput = (Node->getNumOperands() == 2);
515 unsigned SubReg = 0;
516 unsigned SubIdx = 0;
517
518 if (isUndefInput) {
519 SubReg = getVR(Node->getOperand(0), VRBaseMap);
520 SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getValue();
521 } else {
522 SubReg = getVR(Node->getOperand(1), VRBaseMap);
523 SubIdx = cast<ConstantSDNode>(Node->getOperand(2))->getValue();
524 }
525
526 // TODO: Add tracking info to SSARegMap of which vregs are subregs
527 // to allow coalescing in the allocator
528
529 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
530 // the CopyToReg'd destination register instead of creating a new vreg.
531 // If the CopyToReg'd destination register is physical, then fold the
532 // insert into the copy
533 for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
534 UI != E; ++UI) {
535 SDNode *Use = *UI;
536 if (Use->getOpcode() == ISD::CopyToReg &&
537 Use->getOperand(2).Val == Node) {
538 unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
539 if (MRegisterInfo::isVirtualRegister(DestReg)) {
540 VRBase = DestReg;
541 break;
542 }
543 }
544 }
545
546 // Create the insert_subreg machine instruction.
547 MachineInstr *MI =
548 new MachineInstr(BB, TII->get(TargetInstrInfo::INSERT_SUBREG));
549
550 // Figure out the register class to create for the destreg.
551 const TargetRegisterClass *TRC = 0;
552 if (VRBase) {
553 TRC = RegMap->getRegClass(VRBase);
554 } else {
555 TRC = getSuperregRegisterClass(RegMap->getRegClass(SubReg),
556 SubIdx,
557 Node->getValueType(0));
558 assert(TRC && "Couldn't determine register class for insert_subreg");
559 VRBase = RegMap->createVirtualRegister(TRC); // Create the reg
560 }
561
562 MI->addRegOperand(VRBase, true);
563 AddOperand(MI, Node->getOperand(0), 0, 0, VRBaseMap);
564 if (!isUndefInput)
565 AddOperand(MI, Node->getOperand(1), 0, 0, VRBaseMap);
566 MI->addImmOperand(SubIdx);
567 } else
568 assert(0 && "Node is not a subreg insert or extract");
569
570 bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,0), VRBase));
571 assert(isNew && "Node emitted out of order - early");
572}
573
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000574/// EmitNode - Generate machine code for an node and needed dependencies.
575///
576void ScheduleDAG::EmitNode(SDNode *Node,
577 DenseMap<SDOperand, unsigned> &VRBaseMap) {
578 // If machine instruction
579 if (Node->isTargetOpcode()) {
580 unsigned Opc = Node->getTargetOpcode();
Christopher Lambe95328d2007-07-26 08:12:07 +0000581
582 // Handle subreg insert/extract specially
583 if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
584 Opc == TargetInstrInfo::INSERT_SUBREG) {
585 EmitSubregNode(Node, VRBaseMap);
586 return;
587 }
588
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000589 const TargetInstrDescriptor &II = TII->get(Opc);
590
591 unsigned NumResults = CountResults(Node);
592 unsigned NodeOperands = CountOperands(Node);
593 unsigned NumMIOperands = NodeOperands + NumResults;
594#ifndef NDEBUG
595 assert((unsigned(II.numOperands) == NumMIOperands ||
596 (II.Flags & M_VARIABLE_OPS)) &&
597 "#operands for dag node doesn't match .td file!");
598#endif
599
600 // Create the new machine instruction.
601 MachineInstr *MI = new MachineInstr(II);
602
603 // Add result register values for things that are defined by this
604 // instruction.
605 if (NumResults)
606 CreateVirtualRegisters(Node, NumResults, MRI, MI, RegMap,
607 TII, II, VRBaseMap);
608
609 // Emit all of the actual operands of this instruction, adding them to the
610 // instruction as appropriate.
611 for (unsigned i = 0; i != NodeOperands; ++i)
612 AddOperand(MI, Node->getOperand(i), i+NumResults, &II, VRBaseMap);
613
614 // Commute node if it has been determined to be profitable.
615 if (CommuteSet.count(Node)) {
616 MachineInstr *NewMI = TII->commuteInstruction(MI);
617 if (NewMI == 0)
618 DOUT << "Sched: COMMUTING FAILED!\n";
619 else {
620 DOUT << "Sched: COMMUTED TO: " << *NewMI;
621 if (MI != NewMI) {
622 delete MI;
623 MI = NewMI;
624 }
625 }
626 }
627
628 // Now that we have emitted all operands, emit this instruction itself.
629 if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) {
630 BB->insert(BB->end(), MI);
631 } else {
632 // Insert this instruction into the end of the basic block, potentially
633 // taking some custom action.
634 BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB);
635 }
636 } else {
637 switch (Node->getOpcode()) {
638 default:
639#ifndef NDEBUG
640 Node->dump(&DAG);
641#endif
642 assert(0 && "This target-independent node should have been selected!");
643 case ISD::EntryToken: // fall thru
644 case ISD::TokenFactor:
645 case ISD::LABEL:
646 break;
647 case ISD::CopyToReg: {
648 unsigned InReg;
649 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(2)))
650 InReg = R->getReg();
651 else
652 InReg = getVR(Node->getOperand(2), VRBaseMap);
653 unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
654 if (InReg != DestReg) {// Coalesced away the copy?
655 const TargetRegisterClass *TRC = 0;
656 // Get the target register class
657 if (MRegisterInfo::isVirtualRegister(InReg))
658 TRC = RegMap->getRegClass(InReg);
659 else
660 TRC = getPhysicalRegisterRegClass(MRI,
661 Node->getOperand(2).getValueType(),
662 InReg);
663 MRI->copyRegToReg(*BB, BB->end(), DestReg, InReg, TRC);
664 }
665 break;
666 }
667 case ISD::CopyFromReg: {
668 unsigned VRBase = 0;
669 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
670 if (MRegisterInfo::isVirtualRegister(SrcReg)) {
671 // Just use the input register directly!
672 bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,0),SrcReg));
673 assert(isNew && "Node emitted out of order - early");
674 break;
675 }
676
677 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
678 // the CopyToReg'd destination register instead of creating a new vreg.
679 for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
680 UI != E; ++UI) {
681 SDNode *Use = *UI;
682 if (Use->getOpcode() == ISD::CopyToReg &&
683 Use->getOperand(2).Val == Node) {
684 unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
685 if (MRegisterInfo::isVirtualRegister(DestReg)) {
686 VRBase = DestReg;
687 break;
688 }
689 }
690 }
691
692 // Figure out the register class to create for the destreg.
693 const TargetRegisterClass *TRC = 0;
694 if (VRBase) {
695 TRC = RegMap->getRegClass(VRBase);
696 } else {
697 TRC = getPhysicalRegisterRegClass(MRI, Node->getValueType(0), SrcReg);
698
699 // Create the reg, emit the copy.
700 VRBase = RegMap->createVirtualRegister(TRC);
701 }
702 MRI->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
703
704 bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,0), VRBase));
705 assert(isNew && "Node emitted out of order - early");
706 break;
707 }
708 case ISD::INLINEASM: {
709 unsigned NumOps = Node->getNumOperands();
710 if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
711 --NumOps; // Ignore the flag operand.
712
713 // Create the inline asm machine instruction.
714 MachineInstr *MI =
715 new MachineInstr(BB, TII->get(TargetInstrInfo::INLINEASM));
716
717 // Add the asm string as an external symbol operand.
718 const char *AsmStr =
719 cast<ExternalSymbolSDNode>(Node->getOperand(1))->getSymbol();
720 MI->addExternalSymbolOperand(AsmStr);
721
722 // Add all of the operand registers to the instruction.
723 for (unsigned i = 2; i != NumOps;) {
724 unsigned Flags = cast<ConstantSDNode>(Node->getOperand(i))->getValue();
725 unsigned NumVals = Flags >> 3;
726
727 MI->addImmOperand(Flags);
728 ++i; // Skip the ID value.
729
730 switch (Flags & 7) {
731 default: assert(0 && "Bad flags!");
732 case 1: // Use of register.
733 for (; NumVals; --NumVals, ++i) {
734 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
735 MI->addRegOperand(Reg, false);
736 }
737 break;
738 case 2: // Def of register.
739 for (; NumVals; --NumVals, ++i) {
740 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
741 MI->addRegOperand(Reg, true);
742 }
743 break;
744 case 3: { // Immediate.
745 assert(NumVals == 1 && "Unknown immediate value!");
746 if (ConstantSDNode *CS=dyn_cast<ConstantSDNode>(Node->getOperand(i))){
747 MI->addImmOperand(CS->getValue());
748 } else {
749 GlobalAddressSDNode *GA =
750 cast<GlobalAddressSDNode>(Node->getOperand(i));
751 MI->addGlobalAddressOperand(GA->getGlobal(), GA->getOffset());
752 }
753 ++i;
754 break;
755 }
756 case 4: // Addressing mode.
757 // The addressing mode has been selected, just add all of the
758 // operands to the machine instruction.
759 for (; NumVals; --NumVals, ++i)
760 AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap);
761 break;
762 }
763 }
764 break;
765 }
766 }
767 }
768}
769
770void ScheduleDAG::EmitNoop() {
771 TII->insertNoop(*BB, BB->end());
772}
773
774/// EmitSchedule - Emit the machine code in scheduled order.
775void ScheduleDAG::EmitSchedule() {
776 // If this is the first basic block in the function, and if it has live ins
777 // that need to be copied into vregs, emit the copies into the top of the
778 // block before emitting the code for the block.
779 MachineFunction &MF = DAG.getMachineFunction();
780 if (&MF.front() == BB && MF.livein_begin() != MF.livein_end()) {
781 for (MachineFunction::livein_iterator LI = MF.livein_begin(),
782 E = MF.livein_end(); LI != E; ++LI)
783 if (LI->second)
784 MRI->copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
785 LI->first, RegMap->getRegClass(LI->second));
786 }
787
788
789 // Finally, emit the code for all of the scheduled instructions.
790 DenseMap<SDOperand, unsigned> VRBaseMap;
791 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
792 if (SUnit *SU = Sequence[i]) {
793 for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++)
794 EmitNode(SU->FlaggedNodes[j], VRBaseMap);
795 EmitNode(SU->Node, VRBaseMap);
796 } else {
797 // Null SUnit* is a noop.
798 EmitNoop();
799 }
800 }
801}
802
803/// dump - dump the schedule.
804void ScheduleDAG::dumpSchedule() const {
805 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
806 if (SUnit *SU = Sequence[i])
807 SU->dump(&DAG);
808 else
809 cerr << "**** NOOP ****\n";
810 }
811}
812
813
814/// Run - perform scheduling.
815///
816MachineBasicBlock *ScheduleDAG::Run() {
817 TII = TM.getInstrInfo();
818 MRI = TM.getRegisterInfo();
819 RegMap = BB->getParent()->getSSARegMap();
820 ConstPool = BB->getParent()->getConstantPool();
821
822 Schedule();
823 return BB;
824}
825
826/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
827/// a group of nodes flagged together.
828void SUnit::dump(const SelectionDAG *G) const {
829 cerr << "SU(" << NodeNum << "): ";
830 Node->dump(G);
831 cerr << "\n";
832 if (FlaggedNodes.size() != 0) {
833 for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
834 cerr << " ";
835 FlaggedNodes[i]->dump(G);
836 cerr << "\n";
837 }
838 }
839}
840
841void SUnit::dumpAll(const SelectionDAG *G) const {
842 dump(G);
843
844 cerr << " # preds left : " << NumPredsLeft << "\n";
845 cerr << " # succs left : " << NumSuccsLeft << "\n";
846 cerr << " # chain preds left : " << NumChainPredsLeft << "\n";
847 cerr << " # chain succs left : " << NumChainSuccsLeft << "\n";
848 cerr << " Latency : " << Latency << "\n";
849 cerr << " Depth : " << Depth << "\n";
850 cerr << " Height : " << Height << "\n";
851
852 if (Preds.size() != 0) {
853 cerr << " Predecessors:\n";
854 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
855 I != E; ++I) {
856 if (I->second)
857 cerr << " ch #";
858 else
859 cerr << " val #";
860 cerr << I->first << " - SU(" << I->first->NodeNum << ")\n";
861 }
862 }
863 if (Succs.size() != 0) {
864 cerr << " Successors:\n";
865 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
866 I != E; ++I) {
867 if (I->second)
868 cerr << " ch #";
869 else
870 cerr << " val #";
871 cerr << I->first << " - SU(" << I->first->NodeNum << ")\n";
872 }
873 }
874 cerr << "\n";
875}