blob: 05a7a954d7fa4cf78b39e1550b0fd9d3d0e80a1c [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53 cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56 cl::desc("Pop up a window to show sched dags as they are processed"));
Dan Gohman134c5b62007-08-28 20:32:58 +000057static cl::opt<bool>
58ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
59 cl::desc("Pop up a window to show SUnit dags after they are processed"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060#else
Dan Gohman134c5b62007-08-28 20:32:58 +000061static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000062#endif
63
64//===---------------------------------------------------------------------===//
65///
66/// RegisterScheduler class - Track the registration of instruction schedulers.
67///
68//===---------------------------------------------------------------------===//
69MachinePassRegistry RegisterScheduler::Registry;
70
71//===---------------------------------------------------------------------===//
72///
73/// ISHeuristic command line option for instruction schedulers.
74///
75//===---------------------------------------------------------------------===//
76namespace {
77 cl::opt<RegisterScheduler::FunctionPassCtor, false,
78 RegisterPassParser<RegisterScheduler> >
79 ISHeuristic("pre-RA-sched",
80 cl::init(&createDefaultScheduler),
81 cl::desc("Instruction schedulers available (before register allocation):"));
82
83 static RegisterScheduler
84 defaultListDAGScheduler("default", " Best scheduler for the target",
85 createDefaultScheduler);
86} // namespace
87
88namespace { struct AsmOperandInfo; }
89
90namespace {
91 /// RegsForValue - This struct represents the physical registers that a
92 /// particular value is assigned and the type information about the value.
93 /// This is needed because values can be promoted into larger registers and
94 /// expanded into multiple smaller registers than the value.
95 struct VISIBILITY_HIDDEN RegsForValue {
96 /// Regs - This list holds the register (for legal and promoted values)
97 /// or register set (for expanded values) that the value should be assigned
98 /// to.
99 std::vector<unsigned> Regs;
100
101 /// RegVT - The value type of each register.
102 ///
103 MVT::ValueType RegVT;
104
105 /// ValueVT - The value type of the LLVM value, which may be promoted from
106 /// RegVT or made from merging the two expanded parts.
107 MVT::ValueType ValueVT;
108
109 RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
110
111 RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
112 : RegVT(regvt), ValueVT(valuevt) {
113 Regs.push_back(Reg);
114 }
115 RegsForValue(const std::vector<unsigned> &regs,
116 MVT::ValueType regvt, MVT::ValueType valuevt)
117 : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
118 }
119
120 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
121 /// this value and returns the result as a ValueVT value. This uses
122 /// Chain/Flag as the input and updates them for the output Chain/Flag.
123 /// If the Flag pointer is NULL, no flag is used.
124 SDOperand getCopyFromRegs(SelectionDAG &DAG,
125 SDOperand &Chain, SDOperand *Flag) const;
126
127 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
128 /// specified value into the registers specified by this object. This uses
129 /// Chain/Flag as the input and updates them for the output Chain/Flag.
130 /// If the Flag pointer is NULL, no flag is used.
131 void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
132 SDOperand &Chain, SDOperand *Flag) const;
133
134 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
135 /// operand list. This adds the code marker and includes the number of
136 /// values added into it.
137 void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
138 std::vector<SDOperand> &Ops) const;
139 };
140}
141
142namespace llvm {
143 //===--------------------------------------------------------------------===//
144 /// createDefaultScheduler - This creates an instruction scheduler appropriate
145 /// for the target.
146 ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
147 SelectionDAG *DAG,
148 MachineBasicBlock *BB) {
149 TargetLowering &TLI = IS->getTargetLowering();
150
151 if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
152 return createTDListDAGScheduler(IS, DAG, BB);
153 } else {
154 assert(TLI.getSchedulingPreference() ==
155 TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
156 return createBURRListDAGScheduler(IS, DAG, BB);
157 }
158 }
159
160
161 //===--------------------------------------------------------------------===//
162 /// FunctionLoweringInfo - This contains information that is global to a
163 /// function that is used when lowering a region of the function.
164 class FunctionLoweringInfo {
165 public:
166 TargetLowering &TLI;
167 Function &Fn;
168 MachineFunction &MF;
169 SSARegMap *RegMap;
170
171 FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
172
173 /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
174 std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
175
176 /// ValueMap - Since we emit code for the function a basic block at a time,
177 /// we must remember which virtual registers hold the values for
178 /// cross-basic-block values.
179 DenseMap<const Value*, unsigned> ValueMap;
180
181 /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
182 /// the entry block. This allows the allocas to be efficiently referenced
183 /// anywhere in the function.
184 std::map<const AllocaInst*, int> StaticAllocaMap;
185
186#ifndef NDEBUG
187 SmallSet<Instruction*, 8> CatchInfoLost;
188 SmallSet<Instruction*, 8> CatchInfoFound;
189#endif
190
191 unsigned MakeReg(MVT::ValueType VT) {
192 return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
193 }
194
195 /// isExportedInst - Return true if the specified value is an instruction
196 /// exported from its block.
197 bool isExportedInst(const Value *V) {
198 return ValueMap.count(V);
199 }
200
201 unsigned CreateRegForValue(const Value *V);
202
203 unsigned InitializeRegForValue(const Value *V) {
204 unsigned &R = ValueMap[V];
205 assert(R == 0 && "Already initialized this value register!");
206 return R = CreateRegForValue(V);
207 }
208 };
209}
210
211/// isSelector - Return true if this instruction is a call to the
212/// eh.selector intrinsic.
213static bool isSelector(Instruction *I) {
214 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
Anton Korobeynikov94c46a02007-09-07 11:39:35 +0000215 return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
216 II->getIntrinsicID() == Intrinsic::eh_selector_i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 return false;
218}
219
220/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
221/// PHI nodes or outside of the basic block that defines it, or used by a
222/// switch instruction, which may expand to multiple basic blocks.
223static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
224 if (isa<PHINode>(I)) return true;
225 BasicBlock *BB = I->getParent();
226 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
227 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
228 // FIXME: Remove switchinst special case.
229 isa<SwitchInst>(*UI))
230 return true;
231 return false;
232}
233
234/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
235/// entry block, return true. This includes arguments used by switches, since
236/// the switch may expand into multiple basic blocks.
237static bool isOnlyUsedInEntryBlock(Argument *A) {
238 BasicBlock *Entry = A->getParent()->begin();
239 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
240 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
241 return false; // Use not in entry block.
242 return true;
243}
244
245FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
246 Function &fn, MachineFunction &mf)
247 : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
248
249 // Create a vreg for each argument register that is not dead and is used
250 // outside of the entry block for the function.
251 for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
252 AI != E; ++AI)
253 if (!isOnlyUsedInEntryBlock(AI))
254 InitializeRegForValue(AI);
255
256 // Initialize the mapping of values to registers. This is only set up for
257 // instruction values that are used outside of the block that defines
258 // them.
259 Function::iterator BB = Fn.begin(), EB = Fn.end();
260 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
261 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
262 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
263 const Type *Ty = AI->getAllocatedType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000264 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000265 unsigned Align =
266 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
267 AI->getAlignment());
268
269 TySize *= CUI->getZExtValue(); // Get total allocated size.
270 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
271 StaticAllocaMap[AI] =
272 MF.getFrameInfo()->CreateStackObject(TySize, Align);
273 }
274
275 for (; BB != EB; ++BB)
276 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
277 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
278 if (!isa<AllocaInst>(I) ||
279 !StaticAllocaMap.count(cast<AllocaInst>(I)))
280 InitializeRegForValue(I);
281
282 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
283 // also creates the initial PHI MachineInstrs, though none of the input
284 // operands are populated.
285 for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
286 MachineBasicBlock *MBB = new MachineBasicBlock(BB);
287 MBBMap[BB] = MBB;
288 MF.getBasicBlockList().push_back(MBB);
289
290 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
291 // appropriate.
292 PHINode *PN;
293 for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
294 if (PN->use_empty()) continue;
295
296 MVT::ValueType VT = TLI.getValueType(PN->getType());
297 unsigned NumRegisters = TLI.getNumRegisters(VT);
298 unsigned PHIReg = ValueMap[PN];
299 assert(PHIReg && "PHI node does not have an assigned virtual register!");
300 const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
301 for (unsigned i = 0; i != NumRegisters; ++i)
302 BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
303 }
304 }
305}
306
307/// CreateRegForValue - Allocate the appropriate number of virtual registers of
308/// the correctly promoted or expanded types. Assign these registers
309/// consecutive vreg numbers and return the first assigned number.
310unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
311 MVT::ValueType VT = TLI.getValueType(V->getType());
312
313 unsigned NumRegisters = TLI.getNumRegisters(VT);
314 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
315
316 unsigned R = MakeReg(RegisterVT);
317 for (unsigned i = 1; i != NumRegisters; ++i)
318 MakeReg(RegisterVT);
319
320 return R;
321}
322
323//===----------------------------------------------------------------------===//
324/// SelectionDAGLowering - This is the common target-independent lowering
325/// implementation that is parameterized by a TargetLowering object.
326/// Also, targets can overload any lowering method.
327///
328namespace llvm {
329class SelectionDAGLowering {
330 MachineBasicBlock *CurMBB;
331
332 DenseMap<const Value*, SDOperand> NodeMap;
333
334 /// PendingLoads - Loads are not emitted to the program immediately. We bunch
335 /// them up and then emit token factor nodes when possible. This allows us to
336 /// get simple disambiguation between loads without worrying about alias
337 /// analysis.
338 std::vector<SDOperand> PendingLoads;
339
340 /// Case - A struct to record the Value for a switch case, and the
341 /// case's target basic block.
342 struct Case {
343 Constant* Low;
344 Constant* High;
345 MachineBasicBlock* BB;
346
347 Case() : Low(0), High(0), BB(0) { }
348 Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
349 Low(low), High(high), BB(bb) { }
350 uint64_t size() const {
351 uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
352 uint64_t rLow = cast<ConstantInt>(Low)->getSExtValue();
353 return (rHigh - rLow + 1ULL);
354 }
355 };
356
357 struct CaseBits {
358 uint64_t Mask;
359 MachineBasicBlock* BB;
360 unsigned Bits;
361
362 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
363 Mask(mask), BB(bb), Bits(bits) { }
364 };
365
366 typedef std::vector<Case> CaseVector;
367 typedef std::vector<CaseBits> CaseBitsVector;
368 typedef CaseVector::iterator CaseItr;
369 typedef std::pair<CaseItr, CaseItr> CaseRange;
370
371 /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372 /// of conditional branches.
373 struct CaseRec {
374 CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375 CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377 /// CaseBB - The MBB in which to emit the compare and branch
378 MachineBasicBlock *CaseBB;
379 /// LT, GE - If nonzero, we know the current case value must be less-than or
380 /// greater-than-or-equal-to these Constants.
381 Constant *LT;
382 Constant *GE;
383 /// Range - A pair of iterators representing the range of case values to be
384 /// processed at this point in the binary search tree.
385 CaseRange Range;
386 };
387
388 typedef std::vector<CaseRec> CaseRecVector;
389
390 /// The comparison function for sorting the switch case values in the vector.
391 /// WARNING: Case ranges should be disjoint!
392 struct CaseCmp {
393 bool operator () (const Case& C1, const Case& C2) {
394 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
395 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
396 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
397 return CI1->getValue().slt(CI2->getValue());
398 }
399 };
400
401 struct CaseBitsCmp {
402 bool operator () (const CaseBits& C1, const CaseBits& C2) {
403 return C1.Bits > C2.Bits;
404 }
405 };
406
407 unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
408
409public:
410 // TLI - This is information that describes the available target features we
411 // need for lowering. This indicates when operations are unavailable,
412 // implemented with a libcall, etc.
413 TargetLowering &TLI;
414 SelectionDAG &DAG;
415 const TargetData *TD;
Dan Gohmancc863aa2007-08-27 16:26:13 +0000416 AliasAnalysis &AA;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417
418 /// SwitchCases - Vector of CaseBlock structures used to communicate
419 /// SwitchInst code generation information.
420 std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
421 /// JTCases - Vector of JumpTable structures used to communicate
422 /// SwitchInst code generation information.
423 std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
424 std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
425
426 /// FuncInfo - Information about the function as a whole.
427 ///
428 FunctionLoweringInfo &FuncInfo;
429
430 SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
Dan Gohmancc863aa2007-08-27 16:26:13 +0000431 AliasAnalysis &aa,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 FunctionLoweringInfo &funcinfo)
Dan Gohmancc863aa2007-08-27 16:26:13 +0000433 : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434 FuncInfo(funcinfo) {
435 }
436
437 /// getRoot - Return the current virtual root of the Selection DAG.
438 ///
439 SDOperand getRoot() {
440 if (PendingLoads.empty())
441 return DAG.getRoot();
442
443 if (PendingLoads.size() == 1) {
444 SDOperand Root = PendingLoads[0];
445 DAG.setRoot(Root);
446 PendingLoads.clear();
447 return Root;
448 }
449
450 // Otherwise, we have to make a token factor node.
451 SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
452 &PendingLoads[0], PendingLoads.size());
453 PendingLoads.clear();
454 DAG.setRoot(Root);
455 return Root;
456 }
457
458 SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
459
460 void visit(Instruction &I) { visit(I.getOpcode(), I); }
461
462 void visit(unsigned Opcode, User &I) {
463 // Note: this doesn't use InstVisitor, because it has to work with
464 // ConstantExpr's in addition to instructions.
465 switch (Opcode) {
466 default: assert(0 && "Unknown instruction type encountered!");
467 abort();
468 // Build the switch statement using the Instruction.def file.
469#define HANDLE_INST(NUM, OPCODE, CLASS) \
470 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
471#include "llvm/Instruction.def"
472 }
473 }
474
475 void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
476
477 SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
478 const Value *SV, SDOperand Root,
479 bool isVolatile, unsigned Alignment);
480
481 SDOperand getIntPtrConstant(uint64_t Val) {
482 return DAG.getConstant(Val, TLI.getPointerTy());
483 }
484
485 SDOperand getValue(const Value *V);
486
487 void setValue(const Value *V, SDOperand NewN) {
488 SDOperand &N = NodeMap[V];
489 assert(N.Val == 0 && "Already set a value for this node!");
490 N = NewN;
491 }
492
493 void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
494 std::set<unsigned> &OutputRegs,
495 std::set<unsigned> &InputRegs);
496
497 void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
498 MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
499 unsigned Opc);
500 bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
501 void ExportFromCurrentBlock(Value *V);
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000502 void LowerCallTo(Instruction &I, const Type *CalledValueTy,
503 const ParamAttrsList *PAL, unsigned CallingConv,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 bool IsTailCall, SDOperand Callee, unsigned OpIdx,
505 MachineBasicBlock *LandingPad = NULL);
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000506
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000507 // Terminator instructions.
508 void visitRet(ReturnInst &I);
509 void visitBr(BranchInst &I);
510 void visitSwitch(SwitchInst &I);
511 void visitUnreachable(UnreachableInst &I) { /* noop */ }
512
513 // Helpers for visitSwitch
514 bool handleSmallSwitchRange(CaseRec& CR,
515 CaseRecVector& WorkList,
516 Value* SV,
517 MachineBasicBlock* Default);
518 bool handleJTSwitchCase(CaseRec& CR,
519 CaseRecVector& WorkList,
520 Value* SV,
521 MachineBasicBlock* Default);
522 bool handleBTSplitSwitchCase(CaseRec& CR,
523 CaseRecVector& WorkList,
524 Value* SV,
525 MachineBasicBlock* Default);
526 bool handleBitTestsSwitchCase(CaseRec& CR,
527 CaseRecVector& WorkList,
528 Value* SV,
529 MachineBasicBlock* Default);
530 void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
531 void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
532 void visitBitTestCase(MachineBasicBlock* NextMBB,
533 unsigned Reg,
534 SelectionDAGISel::BitTestCase &B);
535 void visitJumpTable(SelectionDAGISel::JumpTable &JT);
536 void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
537 SelectionDAGISel::JumpTableHeader &JTH);
538
539 // These all get lowered before this pass.
540 void visitInvoke(InvokeInst &I);
541 void visitUnwind(UnwindInst &I);
542
543 void visitBinary(User &I, unsigned OpCode);
544 void visitShift(User &I, unsigned Opcode);
545 void visitAdd(User &I) {
546 if (I.getType()->isFPOrFPVector())
547 visitBinary(I, ISD::FADD);
548 else
549 visitBinary(I, ISD::ADD);
550 }
551 void visitSub(User &I);
552 void visitMul(User &I) {
553 if (I.getType()->isFPOrFPVector())
554 visitBinary(I, ISD::FMUL);
555 else
556 visitBinary(I, ISD::MUL);
557 }
558 void visitURem(User &I) { visitBinary(I, ISD::UREM); }
559 void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
560 void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
561 void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
562 void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
563 void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
564 void visitAnd (User &I) { visitBinary(I, ISD::AND); }
565 void visitOr (User &I) { visitBinary(I, ISD::OR); }
566 void visitXor (User &I) { visitBinary(I, ISD::XOR); }
567 void visitShl (User &I) { visitShift(I, ISD::SHL); }
568 void visitLShr(User &I) { visitShift(I, ISD::SRL); }
569 void visitAShr(User &I) { visitShift(I, ISD::SRA); }
570 void visitICmp(User &I);
571 void visitFCmp(User &I);
572 // Visit the conversion instructions
573 void visitTrunc(User &I);
574 void visitZExt(User &I);
575 void visitSExt(User &I);
576 void visitFPTrunc(User &I);
577 void visitFPExt(User &I);
578 void visitFPToUI(User &I);
579 void visitFPToSI(User &I);
580 void visitUIToFP(User &I);
581 void visitSIToFP(User &I);
582 void visitPtrToInt(User &I);
583 void visitIntToPtr(User &I);
584 void visitBitCast(User &I);
585
586 void visitExtractElement(User &I);
587 void visitInsertElement(User &I);
588 void visitShuffleVector(User &I);
589
590 void visitGetElementPtr(User &I);
591 void visitSelect(User &I);
592
593 void visitMalloc(MallocInst &I);
594 void visitFree(FreeInst &I);
595 void visitAlloca(AllocaInst &I);
596 void visitLoad(LoadInst &I);
597 void visitStore(StoreInst &I);
598 void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
599 void visitCall(CallInst &I);
Duncan Sands1c5526c2007-12-17 18:08:19 +0000600 void visitInlineAsm(CallSite CS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000601 const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
602 void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
603
604 void visitVAStart(CallInst &I);
605 void visitVAArg(VAArgInst &I);
606 void visitVAEnd(CallInst &I);
607 void visitVACopy(CallInst &I);
608
609 void visitMemIntrinsic(CallInst &I, unsigned Op);
610
611 void visitUserOp1(Instruction &I) {
612 assert(0 && "UserOp1 should not exist at instruction selection time!");
613 abort();
614 }
615 void visitUserOp2(Instruction &I) {
616 assert(0 && "UserOp2 should not exist at instruction selection time!");
617 abort();
618 }
619};
620} // end namespace llvm
621
622
623/// getCopyFromParts - Create a value that contains the
624/// specified legal parts combined into the value they represent.
625static SDOperand getCopyFromParts(SelectionDAG &DAG,
626 const SDOperand *Parts,
627 unsigned NumParts,
628 MVT::ValueType PartVT,
629 MVT::ValueType ValueVT,
630 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
631 if (!MVT::isVector(ValueVT) || NumParts == 1) {
632 SDOperand Val = Parts[0];
633
634 // If the value was expanded, copy from the top part.
635 if (NumParts > 1) {
636 assert(NumParts == 2 &&
637 "Cannot expand to more than 2 elts yet!");
638 SDOperand Hi = Parts[1];
639 if (!DAG.getTargetLoweringInfo().isLittleEndian())
640 std::swap(Val, Hi);
641 return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
642 }
643
644 // Otherwise, if the value was promoted or extended, truncate it to the
645 // appropriate type.
646 if (PartVT == ValueVT)
647 return Val;
648
649 if (MVT::isVector(PartVT)) {
650 assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
Dan Gohmanc68a8de2007-10-12 14:33:11 +0000651 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
652 }
653
654 if (MVT::isVector(ValueVT)) {
655 assert(NumParts == 1 &&
656 MVT::getVectorElementType(ValueVT) == PartVT &&
657 MVT::getVectorNumElements(ValueVT) == 1 &&
658 "Only trivial scalar-to-vector conversions should get here!");
659 return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000660 }
661
662 if (MVT::isInteger(PartVT) &&
663 MVT::isInteger(ValueVT)) {
664 if (ValueVT < PartVT) {
665 // For a truncate, see if we have any information to
666 // indicate whether the truncated bits will always be
667 // zero or sign-extension.
668 if (AssertOp != ISD::DELETED_NODE)
669 Val = DAG.getNode(AssertOp, PartVT, Val,
670 DAG.getValueType(ValueVT));
671 return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
672 } else {
673 return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
674 }
675 }
676
677 if (MVT::isFloatingPoint(PartVT) &&
678 MVT::isFloatingPoint(ValueVT))
679 return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
680
681 if (MVT::getSizeInBits(PartVT) ==
682 MVT::getSizeInBits(ValueVT))
683 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
684
685 assert(0 && "Unknown mismatch!");
686 }
687
688 // Handle a multi-element vector.
689 MVT::ValueType IntermediateVT, RegisterVT;
690 unsigned NumIntermediates;
691 unsigned NumRegs =
692 DAG.getTargetLoweringInfo()
693 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
694 RegisterVT);
695
696 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
697 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
698 assert(RegisterVT == Parts[0].getValueType() &&
699 "Part type doesn't match part!");
700
701 // Assemble the parts into intermediate operands.
702 SmallVector<SDOperand, 8> Ops(NumIntermediates);
703 if (NumIntermediates == NumParts) {
704 // If the register was not expanded, truncate or copy the value,
705 // as appropriate.
706 for (unsigned i = 0; i != NumParts; ++i)
707 Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
708 PartVT, IntermediateVT);
709 } else if (NumParts > 0) {
710 // If the intermediate type was expanded, build the intermediate operands
711 // from the parts.
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000712 assert(NumParts % NumIntermediates == 0 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000713 "Must expand into a divisible number of parts!");
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000714 unsigned Factor = NumParts / NumIntermediates;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715 for (unsigned i = 0; i != NumIntermediates; ++i)
716 Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
717 PartVT, IntermediateVT);
718 }
719
720 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
721 // operands.
722 return DAG.getNode(MVT::isVector(IntermediateVT) ?
723 ISD::CONCAT_VECTORS :
724 ISD::BUILD_VECTOR,
Dan Gohman90cfc9d2007-07-30 19:09:17 +0000725 ValueVT, &Ops[0], NumIntermediates);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000726}
727
728/// getCopyToParts - Create a series of nodes that contain the
729/// specified value split into legal parts.
730static void getCopyToParts(SelectionDAG &DAG,
731 SDOperand Val,
732 SDOperand *Parts,
733 unsigned NumParts,
734 MVT::ValueType PartVT) {
Dan Gohmanf7b05132007-08-10 14:59:38 +0000735 TargetLowering &TLI = DAG.getTargetLoweringInfo();
736 MVT::ValueType PtrVT = TLI.getPointerTy();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737 MVT::ValueType ValueVT = Val.getValueType();
738
739 if (!MVT::isVector(ValueVT) || NumParts == 1) {
740 // If the value was expanded, copy from the parts.
741 if (NumParts > 1) {
742 for (unsigned i = 0; i != NumParts; ++i)
743 Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000744 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 if (!DAG.getTargetLoweringInfo().isLittleEndian())
746 std::reverse(Parts, Parts + NumParts);
747 return;
748 }
749
750 // If there is a single part and the types differ, this must be
751 // a promotion.
752 if (PartVT != ValueVT) {
753 if (MVT::isVector(PartVT)) {
754 assert(MVT::isVector(ValueVT) &&
755 "Not a vector-vector cast?");
756 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
Dan Gohmanc68a8de2007-10-12 14:33:11 +0000757 } else if (MVT::isVector(ValueVT)) {
758 assert(NumParts == 1 &&
759 MVT::getVectorElementType(ValueVT) == PartVT &&
760 MVT::getVectorNumElements(ValueVT) == 1 &&
761 "Only trivial vector-to-scalar conversions should get here!");
762 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
763 DAG.getConstant(0, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764 } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
765 if (PartVT < ValueVT)
766 Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
767 else
768 Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
769 } else if (MVT::isFloatingPoint(PartVT) &&
770 MVT::isFloatingPoint(ValueVT)) {
771 Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
772 } else if (MVT::getSizeInBits(PartVT) ==
773 MVT::getSizeInBits(ValueVT)) {
774 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
775 } else {
776 assert(0 && "Unknown mismatch!");
777 }
778 }
779 Parts[0] = Val;
780 return;
781 }
782
783 // Handle a multi-element vector.
784 MVT::ValueType IntermediateVT, RegisterVT;
785 unsigned NumIntermediates;
786 unsigned NumRegs =
787 DAG.getTargetLoweringInfo()
788 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
789 RegisterVT);
790 unsigned NumElements = MVT::getVectorNumElements(ValueVT);
791
792 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
793 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
794
795 // Split the vector into intermediate operands.
796 SmallVector<SDOperand, 8> Ops(NumIntermediates);
797 for (unsigned i = 0; i != NumIntermediates; ++i)
798 if (MVT::isVector(IntermediateVT))
799 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
800 IntermediateVT, Val,
801 DAG.getConstant(i * (NumElements / NumIntermediates),
Dan Gohmanf7b05132007-08-10 14:59:38 +0000802 PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000803 else
804 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
805 IntermediateVT, Val,
Dan Gohmanf7b05132007-08-10 14:59:38 +0000806 DAG.getConstant(i, PtrVT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000807
808 // Split the intermediate operands into legal parts.
809 if (NumParts == NumIntermediates) {
810 // If the register was not expanded, promote or copy the value,
811 // as appropriate.
812 for (unsigned i = 0; i != NumParts; ++i)
813 getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
814 } else if (NumParts > 0) {
815 // If the intermediate type was expanded, split each the value into
816 // legal parts.
817 assert(NumParts % NumIntermediates == 0 &&
818 "Must expand into a divisible number of parts!");
819 unsigned Factor = NumParts / NumIntermediates;
820 for (unsigned i = 0; i != NumIntermediates; ++i)
821 getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
822 }
823}
824
825
826SDOperand SelectionDAGLowering::getValue(const Value *V) {
827 SDOperand &N = NodeMap[V];
828 if (N.Val) return N;
829
830 const Type *VTy = V->getType();
831 MVT::ValueType VT = TLI.getValueType(VTy);
832 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
833 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
834 visit(CE->getOpcode(), *CE);
835 SDOperand N1 = NodeMap[V];
836 assert(N1.Val && "visit didn't populate the ValueMap!");
837 return N1;
838 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
839 return N = DAG.getGlobalAddress(GV, VT);
840 } else if (isa<ConstantPointerNull>(C)) {
841 return N = DAG.getConstant(0, TLI.getPointerTy());
842 } else if (isa<UndefValue>(C)) {
843 if (!isa<VectorType>(VTy))
844 return N = DAG.getNode(ISD::UNDEF, VT);
845
846 // Create a BUILD_VECTOR of undef nodes.
847 const VectorType *PTy = cast<VectorType>(VTy);
848 unsigned NumElements = PTy->getNumElements();
849 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
850
851 SmallVector<SDOperand, 8> Ops;
852 Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
853
854 // Create a VConstant node with generic Vector type.
855 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
856 return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
857 &Ops[0], Ops.size());
858 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000859 return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
861 unsigned NumElements = PTy->getNumElements();
862 MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
863
864 // Now that we know the number and type of the elements, push a
865 // Constant or ConstantFP node onto the ops list for each element of
866 // the vector constant.
867 SmallVector<SDOperand, 8> Ops;
868 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
869 for (unsigned i = 0; i != NumElements; ++i)
870 Ops.push_back(getValue(CP->getOperand(i)));
871 } else {
872 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
873 SDOperand Op;
874 if (MVT::isFloatingPoint(PVT))
875 Op = DAG.getConstantFP(0, PVT);
876 else
877 Op = DAG.getConstant(0, PVT);
878 Ops.assign(NumElements, Op);
879 }
880
881 // Create a BUILD_VECTOR node.
882 MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
883 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
884 Ops.size());
885 } else {
886 // Canonicalize all constant ints to be unsigned.
887 return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
888 }
889 }
890
891 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
892 std::map<const AllocaInst*, int>::iterator SI =
893 FuncInfo.StaticAllocaMap.find(AI);
894 if (SI != FuncInfo.StaticAllocaMap.end())
895 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
896 }
897
898 unsigned InReg = FuncInfo.ValueMap[V];
899 assert(InReg && "Value not in map!");
900
901 MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
902 unsigned NumRegs = TLI.getNumRegisters(VT);
903
904 std::vector<unsigned> Regs(NumRegs);
905 for (unsigned i = 0; i != NumRegs; ++i)
906 Regs[i] = InReg + i;
907
908 RegsForValue RFV(Regs, RegisterVT, VT);
909 SDOperand Chain = DAG.getEntryNode();
910
911 return RFV.getCopyFromRegs(DAG, Chain, NULL);
912}
913
914
915void SelectionDAGLowering::visitRet(ReturnInst &I) {
916 if (I.getNumOperands() == 0) {
917 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
918 return;
919 }
920 SmallVector<SDOperand, 8> NewValues;
921 NewValues.push_back(getRoot());
922 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
923 SDOperand RetOp = getValue(I.getOperand(i));
924
925 // If this is an integer return value, we need to promote it ourselves to
926 // the full width of a register, since getCopyToParts and Legalize will use
927 // ANY_EXTEND rather than sign/zero.
928 // FIXME: C calling convention requires the return type to be promoted to
929 // at least 32-bit. But this is not necessary for non-C calling conventions.
930 if (MVT::isInteger(RetOp.getValueType()) &&
931 RetOp.getValueType() < MVT::i64) {
932 MVT::ValueType TmpVT;
933 if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
934 TmpVT = TLI.getTypeToTransformTo(MVT::i32);
935 else
936 TmpVT = MVT::i32;
Duncan Sands637ec552007-11-28 17:07:01 +0000937 const Function *F = I.getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000938 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
Duncan Sands637ec552007-11-28 17:07:01 +0000939 if (F->paramHasAttr(0, ParamAttr::SExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000940 ExtendKind = ISD::SIGN_EXTEND;
Duncan Sands637ec552007-11-28 17:07:01 +0000941 if (F->paramHasAttr(0, ParamAttr::ZExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000942 ExtendKind = ISD::ZERO_EXTEND;
943 RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
944 NewValues.push_back(RetOp);
945 NewValues.push_back(DAG.getConstant(false, MVT::i32));
946 } else {
947 MVT::ValueType VT = RetOp.getValueType();
948 unsigned NumParts = TLI.getNumRegisters(VT);
949 MVT::ValueType PartVT = TLI.getRegisterType(VT);
950 SmallVector<SDOperand, 4> Parts(NumParts);
951 getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
952 for (unsigned i = 0; i < NumParts; ++i) {
953 NewValues.push_back(Parts[i]);
954 NewValues.push_back(DAG.getConstant(false, MVT::i32));
955 }
956 }
957 }
958 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
959 &NewValues[0], NewValues.size()));
960}
961
962/// ExportFromCurrentBlock - If this condition isn't known to be exported from
963/// the current basic block, add it to ValueMap now so that we'll get a
964/// CopyTo/FromReg.
965void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
966 // No need to export constants.
967 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
968
969 // Already exported?
970 if (FuncInfo.isExportedInst(V)) return;
971
972 unsigned Reg = FuncInfo.InitializeRegForValue(V);
973 PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
974}
975
976bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
977 const BasicBlock *FromBB) {
978 // The operands of the setcc have to be in this block. We don't know
979 // how to export them from some other block.
980 if (Instruction *VI = dyn_cast<Instruction>(V)) {
981 // Can export from current BB.
982 if (VI->getParent() == FromBB)
983 return true;
984
985 // Is already exported, noop.
986 return FuncInfo.isExportedInst(V);
987 }
988
989 // If this is an argument, we can export it if the BB is the entry block or
990 // if it is already exported.
991 if (isa<Argument>(V)) {
992 if (FromBB == &FromBB->getParent()->getEntryBlock())
993 return true;
994
995 // Otherwise, can only export this if it is already exported.
996 return FuncInfo.isExportedInst(V);
997 }
998
999 // Otherwise, constants can always be exported.
1000 return true;
1001}
1002
1003static bool InBlock(const Value *V, const BasicBlock *BB) {
1004 if (const Instruction *I = dyn_cast<Instruction>(V))
1005 return I->getParent() == BB;
1006 return true;
1007}
1008
1009/// FindMergedConditions - If Cond is an expression like
1010void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1011 MachineBasicBlock *TBB,
1012 MachineBasicBlock *FBB,
1013 MachineBasicBlock *CurBB,
1014 unsigned Opc) {
1015 // If this node is not part of the or/and tree, emit it as a branch.
1016 Instruction *BOp = dyn_cast<Instruction>(Cond);
1017
1018 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1019 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1020 BOp->getParent() != CurBB->getBasicBlock() ||
1021 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1022 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1023 const BasicBlock *BB = CurBB->getBasicBlock();
1024
1025 // If the leaf of the tree is a comparison, merge the condition into
1026 // the caseblock.
1027 if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1028 // The operands of the cmp have to be in this block. We don't know
1029 // how to export them from some other block. If this is the first block
1030 // of the sequence, no exporting is needed.
1031 (CurBB == CurMBB ||
1032 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1033 isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1034 BOp = cast<Instruction>(Cond);
1035 ISD::CondCode Condition;
1036 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1037 switch (IC->getPredicate()) {
1038 default: assert(0 && "Unknown icmp predicate opcode!");
1039 case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break;
1040 case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break;
1041 case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break;
1042 case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1043 case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break;
1044 case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1045 case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break;
1046 case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1047 case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break;
1048 case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1049 }
1050 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1051 ISD::CondCode FPC, FOC;
1052 switch (FC->getPredicate()) {
1053 default: assert(0 && "Unknown fcmp predicate opcode!");
1054 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1055 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1056 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1057 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1058 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1059 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1060 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1061 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
1062 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
1063 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1064 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1065 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1066 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1067 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1068 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1069 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
1070 }
1071 if (FiniteOnlyFPMath())
1072 Condition = FOC;
1073 else
1074 Condition = FPC;
1075 } else {
1076 Condition = ISD::SETEQ; // silence warning.
1077 assert(0 && "Unknown compare instruction");
1078 }
1079
1080 SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1081 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1082 SwitchCases.push_back(CB);
1083 return;
1084 }
1085
1086 // Create a CaseBlock record representing this branch.
1087 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1088 NULL, TBB, FBB, CurBB);
1089 SwitchCases.push_back(CB);
1090 return;
1091 }
1092
1093
1094 // Create TmpBB after CurBB.
1095 MachineFunction::iterator BBI = CurBB;
1096 MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1097 CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1098
1099 if (Opc == Instruction::Or) {
1100 // Codegen X | Y as:
1101 // jmp_if_X TBB
1102 // jmp TmpBB
1103 // TmpBB:
1104 // jmp_if_Y TBB
1105 // jmp FBB
1106 //
1107
1108 // Emit the LHS condition.
1109 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1110
1111 // Emit the RHS condition into TmpBB.
1112 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1113 } else {
1114 assert(Opc == Instruction::And && "Unknown merge op!");
1115 // Codegen X & Y as:
1116 // jmp_if_X TmpBB
1117 // jmp FBB
1118 // TmpBB:
1119 // jmp_if_Y TBB
1120 // jmp FBB
1121 //
1122 // This requires creation of TmpBB after CurBB.
1123
1124 // Emit the LHS condition.
1125 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1126
1127 // Emit the RHS condition into TmpBB.
1128 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1129 }
1130}
1131
1132/// If the set of cases should be emitted as a series of branches, return true.
1133/// If we should emit this as a bunch of and/or'd together conditions, return
1134/// false.
1135static bool
1136ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1137 if (Cases.size() != 2) return true;
1138
1139 // If this is two comparisons of the same values or'd or and'd together, they
1140 // will get folded into a single comparison, so don't emit two blocks.
1141 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1142 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1143 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1144 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1145 return false;
1146 }
1147
1148 return true;
1149}
1150
1151void SelectionDAGLowering::visitBr(BranchInst &I) {
1152 // Update machine-CFG edges.
1153 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1154
1155 // Figure out which block is immediately after the current one.
1156 MachineBasicBlock *NextBlock = 0;
1157 MachineFunction::iterator BBI = CurMBB;
1158 if (++BBI != CurMBB->getParent()->end())
1159 NextBlock = BBI;
1160
1161 if (I.isUnconditional()) {
1162 // If this is not a fall-through branch, emit the branch.
1163 if (Succ0MBB != NextBlock)
1164 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1165 DAG.getBasicBlock(Succ0MBB)));
1166
1167 // Update machine-CFG edges.
1168 CurMBB->addSuccessor(Succ0MBB);
1169
1170 return;
1171 }
1172
1173 // If this condition is one of the special cases we handle, do special stuff
1174 // now.
1175 Value *CondVal = I.getCondition();
1176 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1177
1178 // If this is a series of conditions that are or'd or and'd together, emit
1179 // this as a sequence of branches instead of setcc's with and/or operations.
1180 // For example, instead of something like:
1181 // cmp A, B
1182 // C = seteq
1183 // cmp D, E
1184 // F = setle
1185 // or C, F
1186 // jnz foo
1187 // Emit:
1188 // cmp A, B
1189 // je foo
1190 // cmp D, E
1191 // jle foo
1192 //
1193 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1194 if (BOp->hasOneUse() &&
1195 (BOp->getOpcode() == Instruction::And ||
1196 BOp->getOpcode() == Instruction::Or)) {
1197 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1198 // If the compares in later blocks need to use values not currently
1199 // exported from this block, export them now. This block should always
1200 // be the first entry.
1201 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1202
1203 // Allow some cases to be rejected.
1204 if (ShouldEmitAsBranches(SwitchCases)) {
1205 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1206 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1207 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1208 }
1209
1210 // Emit the branch for this block.
1211 visitSwitchCase(SwitchCases[0]);
1212 SwitchCases.erase(SwitchCases.begin());
1213 return;
1214 }
1215
1216 // Okay, we decided not to do this, remove any inserted MBB's and clear
1217 // SwitchCases.
1218 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1219 CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1220
1221 SwitchCases.clear();
1222 }
1223 }
1224
1225 // Create a CaseBlock record representing this branch.
1226 SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1227 NULL, Succ0MBB, Succ1MBB, CurMBB);
1228 // Use visitSwitchCase to actually insert the fast branch sequence for this
1229 // cond branch.
1230 visitSwitchCase(CB);
1231}
1232
1233/// visitSwitchCase - Emits the necessary code to represent a single node in
1234/// the binary search tree resulting from lowering a switch instruction.
1235void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1236 SDOperand Cond;
1237 SDOperand CondLHS = getValue(CB.CmpLHS);
1238
1239 // Build the setcc now.
1240 if (CB.CmpMHS == NULL) {
1241 // Fold "(X == true)" to X and "(X == false)" to !X to
1242 // handle common cases produced by branch lowering.
1243 if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1244 Cond = CondLHS;
1245 else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1246 SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1247 Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1248 } else
1249 Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1250 } else {
1251 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1252
1253 uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1254 uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1255
1256 SDOperand CmpOp = getValue(CB.CmpMHS);
1257 MVT::ValueType VT = CmpOp.getValueType();
1258
1259 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1260 Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1261 } else {
1262 SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1263 Cond = DAG.getSetCC(MVT::i1, SUB,
1264 DAG.getConstant(High-Low, VT), ISD::SETULE);
1265 }
1266
1267 }
1268
1269 // Set NextBlock to be the MBB immediately after the current one, if any.
1270 // This is used to avoid emitting unnecessary branches to the next block.
1271 MachineBasicBlock *NextBlock = 0;
1272 MachineFunction::iterator BBI = CurMBB;
1273 if (++BBI != CurMBB->getParent()->end())
1274 NextBlock = BBI;
1275
1276 // If the lhs block is the next block, invert the condition so that we can
1277 // fall through to the lhs instead of the rhs block.
1278 if (CB.TrueBB == NextBlock) {
1279 std::swap(CB.TrueBB, CB.FalseBB);
1280 SDOperand True = DAG.getConstant(1, Cond.getValueType());
1281 Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1282 }
1283 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1284 DAG.getBasicBlock(CB.TrueBB));
1285 if (CB.FalseBB == NextBlock)
1286 DAG.setRoot(BrCond);
1287 else
1288 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1289 DAG.getBasicBlock(CB.FalseBB)));
1290 // Update successor info
1291 CurMBB->addSuccessor(CB.TrueBB);
1292 CurMBB->addSuccessor(CB.FalseBB);
1293}
1294
1295/// visitJumpTable - Emit JumpTable node in the current MBB
1296void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1297 // Emit the code for the jump table
1298 assert(JT.Reg != -1U && "Should lower JT Header first!");
1299 MVT::ValueType PTy = TLI.getPointerTy();
1300 SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1301 SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1302 DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1303 Table, Index));
1304 return;
1305}
1306
1307/// visitJumpTableHeader - This function emits necessary code to produce index
1308/// in the JumpTable from switch case.
1309void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1310 SelectionDAGISel::JumpTableHeader &JTH) {
1311 // Subtract the lowest switch case value from the value being switched on
1312 // and conditional branch to default mbb if the result is greater than the
1313 // difference between smallest and largest cases.
1314 SDOperand SwitchOp = getValue(JTH.SValue);
1315 MVT::ValueType VT = SwitchOp.getValueType();
1316 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1317 DAG.getConstant(JTH.First, VT));
1318
1319 // The SDNode we just created, which holds the value being switched on
1320 // minus the the smallest case value, needs to be copied to a virtual
1321 // register so it can be used as an index into the jump table in a
1322 // subsequent basic block. This value may be smaller or larger than the
1323 // target's pointer type, and therefore require extension or truncating.
1324 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1325 SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1326 else
1327 SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1328
1329 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1330 SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1331 JT.Reg = JumpTableReg;
1332
1333 // Emit the range check for the jump table, and branch to the default
1334 // block for the switch statement if the value being switched on exceeds
1335 // the largest case in the switch.
1336 SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1337 DAG.getConstant(JTH.Last-JTH.First,VT),
1338 ISD::SETUGT);
1339
1340 // Set NextBlock to be the MBB immediately after the current one, if any.
1341 // This is used to avoid emitting unnecessary branches to the next block.
1342 MachineBasicBlock *NextBlock = 0;
1343 MachineFunction::iterator BBI = CurMBB;
1344 if (++BBI != CurMBB->getParent()->end())
1345 NextBlock = BBI;
1346
1347 SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1348 DAG.getBasicBlock(JT.Default));
1349
1350 if (JT.MBB == NextBlock)
1351 DAG.setRoot(BrCond);
1352 else
1353 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1354 DAG.getBasicBlock(JT.MBB)));
1355
1356 return;
1357}
1358
1359/// visitBitTestHeader - This function emits necessary code to produce value
1360/// suitable for "bit tests"
1361void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1362 // Subtract the minimum value
1363 SDOperand SwitchOp = getValue(B.SValue);
1364 MVT::ValueType VT = SwitchOp.getValueType();
1365 SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1366 DAG.getConstant(B.First, VT));
1367
1368 // Check range
1369 SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1370 DAG.getConstant(B.Range, VT),
1371 ISD::SETUGT);
1372
1373 SDOperand ShiftOp;
1374 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1375 ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1376 else
1377 ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1378
1379 // Make desired shift
1380 SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1381 DAG.getConstant(1, TLI.getPointerTy()),
1382 ShiftOp);
1383
1384 unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1385 SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1386 B.Reg = SwitchReg;
1387
1388 SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1389 DAG.getBasicBlock(B.Default));
1390
1391 // Set NextBlock to be the MBB immediately after the current one, if any.
1392 // This is used to avoid emitting unnecessary branches to the next block.
1393 MachineBasicBlock *NextBlock = 0;
1394 MachineFunction::iterator BBI = CurMBB;
1395 if (++BBI != CurMBB->getParent()->end())
1396 NextBlock = BBI;
1397
1398 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1399 if (MBB == NextBlock)
1400 DAG.setRoot(BrRange);
1401 else
1402 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1403 DAG.getBasicBlock(MBB)));
1404
1405 CurMBB->addSuccessor(B.Default);
1406 CurMBB->addSuccessor(MBB);
1407
1408 return;
1409}
1410
1411/// visitBitTestCase - this function produces one "bit test"
1412void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1413 unsigned Reg,
1414 SelectionDAGISel::BitTestCase &B) {
1415 // Emit bit tests and jumps
1416 SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1417
1418 SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1419 SwitchVal,
1420 DAG.getConstant(B.Mask,
1421 TLI.getPointerTy()));
1422 SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1423 DAG.getConstant(0, TLI.getPointerTy()),
1424 ISD::SETNE);
1425 SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1426 AndCmp, DAG.getBasicBlock(B.TargetBB));
1427
1428 // Set NextBlock to be the MBB immediately after the current one, if any.
1429 // This is used to avoid emitting unnecessary branches to the next block.
1430 MachineBasicBlock *NextBlock = 0;
1431 MachineFunction::iterator BBI = CurMBB;
1432 if (++BBI != CurMBB->getParent()->end())
1433 NextBlock = BBI;
1434
1435 if (NextMBB == NextBlock)
1436 DAG.setRoot(BrAnd);
1437 else
1438 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1439 DAG.getBasicBlock(NextMBB)));
1440
1441 CurMBB->addSuccessor(B.TargetBB);
1442 CurMBB->addSuccessor(NextMBB);
1443
1444 return;
1445}
1446
1447void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1448 // Retrieve successors.
1449 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1450 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1451
Duncan Sands1c5526c2007-12-17 18:08:19 +00001452 if (isa<InlineAsm>(I.getCalledValue()))
1453 visitInlineAsm(&I);
1454 else
1455 LowerCallTo(I, I.getCalledValue()->getType(), I.getParamAttrs(),
1456 I.getCallingConv(),
1457 false,
1458 getValue(I.getOperand(0)),
1459 3, LandingPad);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001460
1461 // If the value of the invoke is used outside of its defining block, make it
1462 // available as a virtual register.
1463 if (!I.use_empty()) {
1464 DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1465 if (VMI != FuncInfo.ValueMap.end())
1466 DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1467 }
1468
1469 // Drop into normal successor.
1470 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1471 DAG.getBasicBlock(Return)));
1472
1473 // Update successor info
1474 CurMBB->addSuccessor(Return);
1475 CurMBB->addSuccessor(LandingPad);
1476}
1477
1478void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1479}
1480
1481/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1482/// small case ranges).
1483bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1484 CaseRecVector& WorkList,
1485 Value* SV,
1486 MachineBasicBlock* Default) {
1487 Case& BackCase = *(CR.Range.second-1);
1488
1489 // Size is the number of Cases represented by this range.
1490 unsigned Size = CR.Range.second - CR.Range.first;
1491 if (Size > 3)
1492 return false;
1493
1494 // Get the MachineFunction which holds the current MBB. This is used when
1495 // inserting any additional MBBs necessary to represent the switch.
1496 MachineFunction *CurMF = CurMBB->getParent();
1497
1498 // Figure out which block is immediately after the current one.
1499 MachineBasicBlock *NextBlock = 0;
1500 MachineFunction::iterator BBI = CR.CaseBB;
1501
1502 if (++BBI != CurMBB->getParent()->end())
1503 NextBlock = BBI;
1504
1505 // TODO: If any two of the cases has the same destination, and if one value
1506 // is the same as the other, but has one bit unset that the other has set,
1507 // use bit manipulation to do two compares at once. For example:
1508 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1509
1510 // Rearrange the case blocks so that the last one falls through if possible.
1511 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1512 // The last case block won't fall through into 'NextBlock' if we emit the
1513 // branches in this order. See if rearranging a case value would help.
1514 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1515 if (I->BB == NextBlock) {
1516 std::swap(*I, BackCase);
1517 break;
1518 }
1519 }
1520 }
1521
1522 // Create a CaseBlock record representing a conditional branch to
1523 // the Case's target mbb if the value being switched on SV is equal
1524 // to C.
1525 MachineBasicBlock *CurBlock = CR.CaseBB;
1526 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1527 MachineBasicBlock *FallThrough;
1528 if (I != E-1) {
1529 FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1530 CurMF->getBasicBlockList().insert(BBI, FallThrough);
1531 } else {
1532 // If the last case doesn't match, go to the default block.
1533 FallThrough = Default;
1534 }
1535
1536 Value *RHS, *LHS, *MHS;
1537 ISD::CondCode CC;
1538 if (I->High == I->Low) {
1539 // This is just small small case range :) containing exactly 1 case
1540 CC = ISD::SETEQ;
1541 LHS = SV; RHS = I->High; MHS = NULL;
1542 } else {
1543 CC = ISD::SETLE;
1544 LHS = I->Low; MHS = SV; RHS = I->High;
1545 }
1546 SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1547 I->BB, FallThrough, CurBlock);
1548
1549 // If emitting the first comparison, just call visitSwitchCase to emit the
1550 // code into the current block. Otherwise, push the CaseBlock onto the
1551 // vector to be later processed by SDISel, and insert the node's MBB
1552 // before the next MBB.
1553 if (CurBlock == CurMBB)
1554 visitSwitchCase(CB);
1555 else
1556 SwitchCases.push_back(CB);
1557
1558 CurBlock = FallThrough;
1559 }
1560
1561 return true;
1562}
1563
1564static inline bool areJTsAllowed(const TargetLowering &TLI) {
1565 return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1566 TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1567}
1568
1569/// handleJTSwitchCase - Emit jumptable for current switch case range
1570bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1571 CaseRecVector& WorkList,
1572 Value* SV,
1573 MachineBasicBlock* Default) {
1574 Case& FrontCase = *CR.Range.first;
1575 Case& BackCase = *(CR.Range.second-1);
1576
1577 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1578 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1579
1580 uint64_t TSize = 0;
1581 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1582 I!=E; ++I)
1583 TSize += I->size();
1584
1585 if (!areJTsAllowed(TLI) || TSize <= 3)
1586 return false;
1587
1588 double Density = (double)TSize / (double)((Last - First) + 1ULL);
1589 if (Density < 0.4)
1590 return false;
1591
1592 DOUT << "Lowering jump table\n"
1593 << "First entry: " << First << ". Last entry: " << Last << "\n"
1594 << "Size: " << TSize << ". Density: " << Density << "\n\n";
1595
1596 // Get the MachineFunction which holds the current MBB. This is used when
1597 // inserting any additional MBBs necessary to represent the switch.
1598 MachineFunction *CurMF = CurMBB->getParent();
1599
1600 // Figure out which block is immediately after the current one.
1601 MachineBasicBlock *NextBlock = 0;
1602 MachineFunction::iterator BBI = CR.CaseBB;
1603
1604 if (++BBI != CurMBB->getParent()->end())
1605 NextBlock = BBI;
1606
1607 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1608
1609 // Create a new basic block to hold the code for loading the address
1610 // of the jump table, and jumping to it. Update successor information;
1611 // we will either branch to the default case for the switch, or the jump
1612 // table.
1613 MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1614 CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1615 CR.CaseBB->addSuccessor(Default);
1616 CR.CaseBB->addSuccessor(JumpTableBB);
1617
1618 // Build a vector of destination BBs, corresponding to each target
1619 // of the jump table. If the value of the jump table slot corresponds to
1620 // a case statement, push the case's BB onto the vector, otherwise, push
1621 // the default BB.
1622 std::vector<MachineBasicBlock*> DestBBs;
1623 int64_t TEI = First;
1624 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1625 int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1626 int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1627
1628 if ((Low <= TEI) && (TEI <= High)) {
1629 DestBBs.push_back(I->BB);
1630 if (TEI==High)
1631 ++I;
1632 } else {
1633 DestBBs.push_back(Default);
1634 }
1635 }
1636
1637 // Update successor info. Add one edge to each unique successor.
1638 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1639 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1640 E = DestBBs.end(); I != E; ++I) {
1641 if (!SuccsHandled[(*I)->getNumber()]) {
1642 SuccsHandled[(*I)->getNumber()] = true;
1643 JumpTableBB->addSuccessor(*I);
1644 }
1645 }
1646
1647 // Create a jump table index for this jump table, or return an existing
1648 // one.
1649 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1650
1651 // Set the jump table information so that we can codegen it as a second
1652 // MachineBasicBlock
1653 SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1654 SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1655 (CR.CaseBB == CurMBB));
1656 if (CR.CaseBB == CurMBB)
1657 visitJumpTableHeader(JT, JTH);
1658
1659 JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1660
1661 return true;
1662}
1663
1664/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1665/// 2 subtrees.
1666bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1667 CaseRecVector& WorkList,
1668 Value* SV,
1669 MachineBasicBlock* Default) {
1670 // Get the MachineFunction which holds the current MBB. This is used when
1671 // inserting any additional MBBs necessary to represent the switch.
1672 MachineFunction *CurMF = CurMBB->getParent();
1673
1674 // Figure out which block is immediately after the current one.
1675 MachineBasicBlock *NextBlock = 0;
1676 MachineFunction::iterator BBI = CR.CaseBB;
1677
1678 if (++BBI != CurMBB->getParent()->end())
1679 NextBlock = BBI;
1680
1681 Case& FrontCase = *CR.Range.first;
1682 Case& BackCase = *(CR.Range.second-1);
1683 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1684
1685 // Size is the number of Cases represented by this range.
1686 unsigned Size = CR.Range.second - CR.Range.first;
1687
1688 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1689 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1690 double FMetric = 0;
1691 CaseItr Pivot = CR.Range.first + Size/2;
1692
1693 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1694 // (heuristically) allow us to emit JumpTable's later.
1695 uint64_t TSize = 0;
1696 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1697 I!=E; ++I)
1698 TSize += I->size();
1699
1700 uint64_t LSize = FrontCase.size();
1701 uint64_t RSize = TSize-LSize;
1702 DOUT << "Selecting best pivot: \n"
1703 << "First: " << First << ", Last: " << Last <<"\n"
1704 << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1705 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1706 J!=E; ++I, ++J) {
1707 int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1708 int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1709 assert((RBegin-LEnd>=1) && "Invalid case distance");
1710 double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1711 double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1712 double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1713 // Should always split in some non-trivial place
1714 DOUT <<"=>Step\n"
1715 << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1716 << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1717 << "Metric: " << Metric << "\n";
1718 if (FMetric < Metric) {
1719 Pivot = J;
1720 FMetric = Metric;
1721 DOUT << "Current metric set to: " << FMetric << "\n";
1722 }
1723
1724 LSize += J->size();
1725 RSize -= J->size();
1726 }
1727 if (areJTsAllowed(TLI)) {
1728 // If our case is dense we *really* should handle it earlier!
1729 assert((FMetric > 0) && "Should handle dense range earlier!");
1730 } else {
1731 Pivot = CR.Range.first + Size/2;
1732 }
1733
1734 CaseRange LHSR(CR.Range.first, Pivot);
1735 CaseRange RHSR(Pivot, CR.Range.second);
1736 Constant *C = Pivot->Low;
1737 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1738
1739 // We know that we branch to the LHS if the Value being switched on is
1740 // less than the Pivot value, C. We use this to optimize our binary
1741 // tree a bit, by recognizing that if SV is greater than or equal to the
1742 // LHS's Case Value, and that Case Value is exactly one less than the
1743 // Pivot's Value, then we can branch directly to the LHS's Target,
1744 // rather than creating a leaf node for it.
1745 if ((LHSR.second - LHSR.first) == 1 &&
1746 LHSR.first->High == CR.GE &&
1747 cast<ConstantInt>(C)->getSExtValue() ==
1748 (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1749 TrueBB = LHSR.first->BB;
1750 } else {
1751 TrueBB = new MachineBasicBlock(LLVMBB);
1752 CurMF->getBasicBlockList().insert(BBI, TrueBB);
1753 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1754 }
1755
1756 // Similar to the optimization above, if the Value being switched on is
1757 // known to be less than the Constant CR.LT, and the current Case Value
1758 // is CR.LT - 1, then we can branch directly to the target block for
1759 // the current Case Value, rather than emitting a RHS leaf node for it.
1760 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1761 cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1762 (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1763 FalseBB = RHSR.first->BB;
1764 } else {
1765 FalseBB = new MachineBasicBlock(LLVMBB);
1766 CurMF->getBasicBlockList().insert(BBI, FalseBB);
1767 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1768 }
1769
1770 // Create a CaseBlock record representing a conditional branch to
1771 // the LHS node if the value being switched on SV is less than C.
1772 // Otherwise, branch to LHS.
1773 SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1774 TrueBB, FalseBB, CR.CaseBB);
1775
1776 if (CR.CaseBB == CurMBB)
1777 visitSwitchCase(CB);
1778 else
1779 SwitchCases.push_back(CB);
1780
1781 return true;
1782}
1783
1784/// handleBitTestsSwitchCase - if current case range has few destination and
1785/// range span less, than machine word bitwidth, encode case range into series
1786/// of masks and emit bit tests with these masks.
1787bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1788 CaseRecVector& WorkList,
1789 Value* SV,
1790 MachineBasicBlock* Default){
1791 unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1792
1793 Case& FrontCase = *CR.Range.first;
1794 Case& BackCase = *(CR.Range.second-1);
1795
1796 // Get the MachineFunction which holds the current MBB. This is used when
1797 // inserting any additional MBBs necessary to represent the switch.
1798 MachineFunction *CurMF = CurMBB->getParent();
1799
1800 unsigned numCmps = 0;
1801 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1802 I!=E; ++I) {
1803 // Single case counts one, case range - two.
1804 if (I->Low == I->High)
1805 numCmps +=1;
1806 else
1807 numCmps +=2;
1808 }
1809
1810 // Count unique destinations
1811 SmallSet<MachineBasicBlock*, 4> Dests;
1812 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1813 Dests.insert(I->BB);
1814 if (Dests.size() > 3)
1815 // Don't bother the code below, if there are too much unique destinations
1816 return false;
1817 }
1818 DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1819 << "Total number of comparisons: " << numCmps << "\n";
1820
1821 // Compute span of values.
1822 Constant* minValue = FrontCase.Low;
1823 Constant* maxValue = BackCase.High;
1824 uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1825 cast<ConstantInt>(minValue)->getSExtValue();
1826 DOUT << "Compare range: " << range << "\n"
1827 << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1828 << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1829
1830 if (range>=IntPtrBits ||
1831 (!(Dests.size() == 1 && numCmps >= 3) &&
1832 !(Dests.size() == 2 && numCmps >= 5) &&
1833 !(Dests.size() >= 3 && numCmps >= 6)))
1834 return false;
1835
1836 DOUT << "Emitting bit tests\n";
1837 int64_t lowBound = 0;
1838
1839 // Optimize the case where all the case values fit in a
1840 // word without having to subtract minValue. In this case,
1841 // we can optimize away the subtraction.
1842 if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1843 cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) {
1844 range = cast<ConstantInt>(maxValue)->getSExtValue();
1845 } else {
1846 lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1847 }
1848
1849 CaseBitsVector CasesBits;
1850 unsigned i, count = 0;
1851
1852 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1853 MachineBasicBlock* Dest = I->BB;
1854 for (i = 0; i < count; ++i)
1855 if (Dest == CasesBits[i].BB)
1856 break;
1857
1858 if (i == count) {
1859 assert((count < 3) && "Too much destinations to test!");
1860 CasesBits.push_back(CaseBits(0, Dest, 0));
1861 count++;
1862 }
1863
1864 uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1865 uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1866
1867 for (uint64_t j = lo; j <= hi; j++) {
1868 CasesBits[i].Mask |= 1ULL << j;
1869 CasesBits[i].Bits++;
1870 }
1871
1872 }
1873 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1874
1875 SelectionDAGISel::BitTestInfo BTC;
1876
1877 // Figure out which block is immediately after the current one.
1878 MachineFunction::iterator BBI = CR.CaseBB;
1879 ++BBI;
1880
1881 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1882
1883 DOUT << "Cases:\n";
1884 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1885 DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1886 << ", BB: " << CasesBits[i].BB << "\n";
1887
1888 MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1889 CurMF->getBasicBlockList().insert(BBI, CaseBB);
1890 BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1891 CaseBB,
1892 CasesBits[i].BB));
1893 }
1894
1895 SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1896 -1U, (CR.CaseBB == CurMBB),
1897 CR.CaseBB, Default, BTC);
1898
1899 if (CR.CaseBB == CurMBB)
1900 visitBitTestHeader(BTB);
1901
1902 BitTestCases.push_back(BTB);
1903
1904 return true;
1905}
1906
1907
1908// Clusterify - Transform simple list of Cases into list of CaseRange's
1909unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1910 const SwitchInst& SI) {
1911 unsigned numCmps = 0;
1912
1913 // Start with "simple" cases
1914 for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1915 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1916 Cases.push_back(Case(SI.getSuccessorValue(i),
1917 SI.getSuccessorValue(i),
1918 SMBB));
1919 }
Chris Lattner5624ae42007-11-27 06:14:32 +00001920 std::sort(Cases.begin(), Cases.end(), CaseCmp());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001921
1922 // Merge case into clusters
1923 if (Cases.size()>=2)
1924 // Must recompute end() each iteration because it may be
1925 // invalidated by erase if we hold on to it
Chris Lattnerdfb947d2007-11-24 07:07:01 +00001926 for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001927 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1928 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1929 MachineBasicBlock* nextBB = J->BB;
1930 MachineBasicBlock* currentBB = I->BB;
1931
1932 // If the two neighboring cases go to the same destination, merge them
1933 // into a single case.
1934 if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1935 I->High = J->High;
1936 J = Cases.erase(J);
1937 } else {
1938 I = J++;
1939 }
1940 }
1941
1942 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1943 if (I->Low != I->High)
1944 // A range counts double, since it requires two compares.
1945 ++numCmps;
1946 }
1947
1948 return numCmps;
1949}
1950
1951void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1952 // Figure out which block is immediately after the current one.
1953 MachineBasicBlock *NextBlock = 0;
1954 MachineFunction::iterator BBI = CurMBB;
1955
1956 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1957
1958 // If there is only the default destination, branch to it if it is not the
1959 // next basic block. Otherwise, just fall through.
1960 if (SI.getNumOperands() == 2) {
1961 // Update machine-CFG edges.
1962
1963 // If this is not a fall-through branch, emit the branch.
1964 if (Default != NextBlock)
1965 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1966 DAG.getBasicBlock(Default)));
1967
1968 CurMBB->addSuccessor(Default);
1969 return;
1970 }
1971
1972 // If there are any non-default case statements, create a vector of Cases
1973 // representing each one, and sort the vector so that we can efficiently
1974 // create a binary search tree from them.
1975 CaseVector Cases;
1976 unsigned numCmps = Clusterify(Cases, SI);
1977 DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1978 << ". Total compares: " << numCmps << "\n";
1979
1980 // Get the Value to be switched on and default basic blocks, which will be
1981 // inserted into CaseBlock records, representing basic blocks in the binary
1982 // search tree.
1983 Value *SV = SI.getOperand(0);
1984
1985 // Push the initial CaseRec onto the worklist
1986 CaseRecVector WorkList;
1987 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1988
1989 while (!WorkList.empty()) {
1990 // Grab a record representing a case range to process off the worklist
1991 CaseRec CR = WorkList.back();
1992 WorkList.pop_back();
1993
1994 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1995 continue;
1996
1997 // If the range has few cases (two or less) emit a series of specific
1998 // tests.
1999 if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2000 continue;
2001
2002 // If the switch has more than 5 blocks, and at least 40% dense, and the
2003 // target supports indirect branches, then emit a jump table rather than
2004 // lowering the switch to a binary tree of conditional branches.
2005 if (handleJTSwitchCase(CR, WorkList, SV, Default))
2006 continue;
2007
2008 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2009 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2010 handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2011 }
2012}
2013
2014
2015void SelectionDAGLowering::visitSub(User &I) {
2016 // -0.0 - X --> fneg
2017 const Type *Ty = I.getType();
2018 if (isa<VectorType>(Ty)) {
2019 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2020 const VectorType *DestTy = cast<VectorType>(I.getType());
2021 const Type *ElTy = DestTy->getElementType();
2022 if (ElTy->isFloatingPoint()) {
2023 unsigned VL = DestTy->getNumElements();
Dale Johannesen2fc20782007-09-14 22:26:36 +00002024 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002025 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2026 if (CV == CNZ) {
2027 SDOperand Op2 = getValue(I.getOperand(1));
2028 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2029 return;
2030 }
2031 }
2032 }
2033 }
2034 if (Ty->isFloatingPoint()) {
2035 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
Dale Johannesen2fc20782007-09-14 22:26:36 +00002036 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002037 SDOperand Op2 = getValue(I.getOperand(1));
2038 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2039 return;
2040 }
2041 }
2042
2043 visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2044}
2045
2046void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2047 SDOperand Op1 = getValue(I.getOperand(0));
2048 SDOperand Op2 = getValue(I.getOperand(1));
2049
2050 setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2051}
2052
2053void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2054 SDOperand Op1 = getValue(I.getOperand(0));
2055 SDOperand Op2 = getValue(I.getOperand(1));
2056
2057 if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2058 MVT::getSizeInBits(Op2.getValueType()))
2059 Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2060 else if (TLI.getShiftAmountTy() > Op2.getValueType())
2061 Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2062
2063 setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2064}
2065
2066void SelectionDAGLowering::visitICmp(User &I) {
2067 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2068 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2069 predicate = IC->getPredicate();
2070 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2071 predicate = ICmpInst::Predicate(IC->getPredicate());
2072 SDOperand Op1 = getValue(I.getOperand(0));
2073 SDOperand Op2 = getValue(I.getOperand(1));
2074 ISD::CondCode Opcode;
2075 switch (predicate) {
2076 case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
2077 case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
2078 case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2079 case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2080 case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2081 case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2082 case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2083 case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2084 case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2085 case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2086 default:
2087 assert(!"Invalid ICmp predicate value");
2088 Opcode = ISD::SETEQ;
2089 break;
2090 }
2091 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2092}
2093
2094void SelectionDAGLowering::visitFCmp(User &I) {
2095 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2096 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2097 predicate = FC->getPredicate();
2098 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2099 predicate = FCmpInst::Predicate(FC->getPredicate());
2100 SDOperand Op1 = getValue(I.getOperand(0));
2101 SDOperand Op2 = getValue(I.getOperand(1));
2102 ISD::CondCode Condition, FOC, FPC;
2103 switch (predicate) {
2104 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2105 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2106 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2107 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2108 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2109 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2110 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2111 case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
2112 case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
2113 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2114 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2115 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2116 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2117 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2118 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2119 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
2120 default:
2121 assert(!"Invalid FCmp predicate value");
2122 FOC = FPC = ISD::SETFALSE;
2123 break;
2124 }
2125 if (FiniteOnlyFPMath())
2126 Condition = FOC;
2127 else
2128 Condition = FPC;
2129 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2130}
2131
2132void SelectionDAGLowering::visitSelect(User &I) {
2133 SDOperand Cond = getValue(I.getOperand(0));
2134 SDOperand TrueVal = getValue(I.getOperand(1));
2135 SDOperand FalseVal = getValue(I.getOperand(2));
2136 setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2137 TrueVal, FalseVal));
2138}
2139
2140
2141void SelectionDAGLowering::visitTrunc(User &I) {
2142 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2143 SDOperand N = getValue(I.getOperand(0));
2144 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2145 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2146}
2147
2148void SelectionDAGLowering::visitZExt(User &I) {
2149 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2150 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2151 SDOperand N = getValue(I.getOperand(0));
2152 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2153 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2154}
2155
2156void SelectionDAGLowering::visitSExt(User &I) {
2157 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2158 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2159 SDOperand N = getValue(I.getOperand(0));
2160 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2161 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2162}
2163
2164void SelectionDAGLowering::visitFPTrunc(User &I) {
2165 // FPTrunc is never a no-op cast, no need to check
2166 SDOperand N = getValue(I.getOperand(0));
2167 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2168 setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2169}
2170
2171void SelectionDAGLowering::visitFPExt(User &I){
2172 // FPTrunc is never a no-op cast, no need to check
2173 SDOperand N = getValue(I.getOperand(0));
2174 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2175 setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2176}
2177
2178void SelectionDAGLowering::visitFPToUI(User &I) {
2179 // FPToUI is never a no-op cast, no need to check
2180 SDOperand N = getValue(I.getOperand(0));
2181 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2182 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2183}
2184
2185void SelectionDAGLowering::visitFPToSI(User &I) {
2186 // FPToSI is never a no-op cast, no need to check
2187 SDOperand N = getValue(I.getOperand(0));
2188 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2189 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2190}
2191
2192void SelectionDAGLowering::visitUIToFP(User &I) {
2193 // UIToFP is never a no-op cast, no need to check
2194 SDOperand N = getValue(I.getOperand(0));
2195 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2196 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2197}
2198
2199void SelectionDAGLowering::visitSIToFP(User &I){
2200 // UIToFP is never a no-op cast, no need to check
2201 SDOperand N = getValue(I.getOperand(0));
2202 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2203 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2204}
2205
2206void SelectionDAGLowering::visitPtrToInt(User &I) {
2207 // What to do depends on the size of the integer and the size of the pointer.
2208 // We can either truncate, zero extend, or no-op, accordingly.
2209 SDOperand N = getValue(I.getOperand(0));
2210 MVT::ValueType SrcVT = N.getValueType();
2211 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2212 SDOperand Result;
2213 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2214 Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2215 else
2216 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2217 Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2218 setValue(&I, Result);
2219}
2220
2221void SelectionDAGLowering::visitIntToPtr(User &I) {
2222 // What to do depends on the size of the integer and the size of the pointer.
2223 // We can either truncate, zero extend, or no-op, accordingly.
2224 SDOperand N = getValue(I.getOperand(0));
2225 MVT::ValueType SrcVT = N.getValueType();
2226 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2227 if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2228 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2229 else
2230 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2231 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2232}
2233
2234void SelectionDAGLowering::visitBitCast(User &I) {
2235 SDOperand N = getValue(I.getOperand(0));
2236 MVT::ValueType DestVT = TLI.getValueType(I.getType());
2237
2238 // BitCast assures us that source and destination are the same size so this
2239 // is either a BIT_CONVERT or a no-op.
2240 if (DestVT != N.getValueType())
2241 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2242 else
2243 setValue(&I, N); // noop cast.
2244}
2245
2246void SelectionDAGLowering::visitInsertElement(User &I) {
2247 SDOperand InVec = getValue(I.getOperand(0));
2248 SDOperand InVal = getValue(I.getOperand(1));
2249 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2250 getValue(I.getOperand(2)));
2251
2252 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2253 TLI.getValueType(I.getType()),
2254 InVec, InVal, InIdx));
2255}
2256
2257void SelectionDAGLowering::visitExtractElement(User &I) {
2258 SDOperand InVec = getValue(I.getOperand(0));
2259 SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2260 getValue(I.getOperand(1)));
2261 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2262 TLI.getValueType(I.getType()), InVec, InIdx));
2263}
2264
2265void SelectionDAGLowering::visitShuffleVector(User &I) {
2266 SDOperand V1 = getValue(I.getOperand(0));
2267 SDOperand V2 = getValue(I.getOperand(1));
2268 SDOperand Mask = getValue(I.getOperand(2));
2269
2270 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2271 TLI.getValueType(I.getType()),
2272 V1, V2, Mask));
2273}
2274
2275
2276void SelectionDAGLowering::visitGetElementPtr(User &I) {
2277 SDOperand N = getValue(I.getOperand(0));
2278 const Type *Ty = I.getOperand(0)->getType();
2279
2280 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2281 OI != E; ++OI) {
2282 Value *Idx = *OI;
2283 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2284 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2285 if (Field) {
2286 // N = N + Offset
2287 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2288 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2289 getIntPtrConstant(Offset));
2290 }
2291 Ty = StTy->getElementType(Field);
2292 } else {
2293 Ty = cast<SequentialType>(Ty)->getElementType();
2294
2295 // If this is a constant subscript, handle it quickly.
2296 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2297 if (CI->getZExtValue() == 0) continue;
2298 uint64_t Offs =
Dale Johannesen5ec2e732007-10-01 23:08:35 +00002299 TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002300 N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2301 continue;
2302 }
2303
2304 // N = N + Idx * ElementSize;
Dale Johannesen5ec2e732007-10-01 23:08:35 +00002305 uint64_t ElementSize = TD->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002306 SDOperand IdxN = getValue(Idx);
2307
2308 // If the index is smaller or larger than intptr_t, truncate or extend
2309 // it.
2310 if (IdxN.getValueType() < N.getValueType()) {
2311 IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2312 } else if (IdxN.getValueType() > N.getValueType())
2313 IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2314
2315 // If this is a multiply by a power of two, turn it into a shl
2316 // immediately. This is a very common case.
2317 if (isPowerOf2_64(ElementSize)) {
2318 unsigned Amt = Log2_64(ElementSize);
2319 IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2320 DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2321 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2322 continue;
2323 }
2324
2325 SDOperand Scale = getIntPtrConstant(ElementSize);
2326 IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2327 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2328 }
2329 }
2330 setValue(&I, N);
2331}
2332
2333void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2334 // If this is a fixed sized alloca in the entry block of the function,
2335 // allocate it statically on the stack.
2336 if (FuncInfo.StaticAllocaMap.count(&I))
2337 return; // getValue will auto-populate this.
2338
2339 const Type *Ty = I.getAllocatedType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +00002340 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002341 unsigned Align =
2342 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2343 I.getAlignment());
2344
2345 SDOperand AllocSize = getValue(I.getArraySize());
2346 MVT::ValueType IntPtr = TLI.getPointerTy();
2347 if (IntPtr < AllocSize.getValueType())
2348 AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2349 else if (IntPtr > AllocSize.getValueType())
2350 AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2351
2352 AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2353 getIntPtrConstant(TySize));
2354
Evan Chenga31dc752007-08-16 23:46:29 +00002355 // Handle alignment. If the requested alignment is less than or equal to
2356 // the stack alignment, ignore it. If the size is greater than or equal to
2357 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002358 unsigned StackAlign =
2359 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
Evan Chenga31dc752007-08-16 23:46:29 +00002360 if (Align <= StackAlign)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002361 Align = 0;
Evan Chenga31dc752007-08-16 23:46:29 +00002362
2363 // Round the size of the allocation up to the stack alignment size
2364 // by add SA-1 to the size.
2365 AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2366 getIntPtrConstant(StackAlign-1));
2367 // Mask out the low bits for alignment purposes.
2368 AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2369 getIntPtrConstant(~(uint64_t)(StackAlign-1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002370
2371 SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2372 const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2373 MVT::Other);
2374 SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2375 setValue(&I, DSA);
2376 DAG.setRoot(DSA.getValue(1));
2377
2378 // Inform the Frame Information that we have just allocated a variable-sized
2379 // object.
2380 CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2381}
2382
2383void SelectionDAGLowering::visitLoad(LoadInst &I) {
2384 SDOperand Ptr = getValue(I.getOperand(0));
2385
2386 SDOperand Root;
2387 if (I.isVolatile())
2388 Root = getRoot();
2389 else {
2390 // Do not serialize non-volatile loads against each other.
2391 Root = DAG.getRoot();
2392 }
2393
2394 setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2395 Root, I.isVolatile(), I.getAlignment()));
2396}
2397
2398SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2399 const Value *SV, SDOperand Root,
2400 bool isVolatile,
2401 unsigned Alignment) {
2402 SDOperand L =
2403 DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2404 isVolatile, Alignment);
2405
2406 if (isVolatile)
2407 DAG.setRoot(L.getValue(1));
2408 else
2409 PendingLoads.push_back(L.getValue(1));
2410
2411 return L;
2412}
2413
2414
2415void SelectionDAGLowering::visitStore(StoreInst &I) {
2416 Value *SrcV = I.getOperand(0);
2417 SDOperand Src = getValue(SrcV);
2418 SDOperand Ptr = getValue(I.getOperand(1));
2419 DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2420 I.isVolatile(), I.getAlignment()));
2421}
2422
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002423/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2424/// node.
2425void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2426 unsigned Intrinsic) {
Duncan Sands79d28872007-12-03 20:06:50 +00002427 bool HasChain = !I.doesNotAccessMemory();
2428 bool OnlyLoad = HasChain && I.onlyReadsMemory();
2429
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002430 // Build the operand list.
2431 SmallVector<SDOperand, 8> Ops;
2432 if (HasChain) { // If this intrinsic has side-effects, chainify it.
2433 if (OnlyLoad) {
2434 // We don't need to serialize loads against other loads.
2435 Ops.push_back(DAG.getRoot());
2436 } else {
2437 Ops.push_back(getRoot());
2438 }
2439 }
2440
2441 // Add the intrinsic ID as an integer operand.
2442 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2443
2444 // Add all operands of the call to the operand list.
2445 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2446 SDOperand Op = getValue(I.getOperand(i));
2447 assert(TLI.isTypeLegal(Op.getValueType()) &&
2448 "Intrinsic uses a non-legal type?");
2449 Ops.push_back(Op);
2450 }
2451
2452 std::vector<MVT::ValueType> VTs;
2453 if (I.getType() != Type::VoidTy) {
2454 MVT::ValueType VT = TLI.getValueType(I.getType());
2455 if (MVT::isVector(VT)) {
2456 const VectorType *DestTy = cast<VectorType>(I.getType());
2457 MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2458
2459 VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2460 assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2461 }
2462
2463 assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2464 VTs.push_back(VT);
2465 }
2466 if (HasChain)
2467 VTs.push_back(MVT::Other);
2468
2469 const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2470
2471 // Create the node.
2472 SDOperand Result;
2473 if (!HasChain)
2474 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2475 &Ops[0], Ops.size());
2476 else if (I.getType() != Type::VoidTy)
2477 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2478 &Ops[0], Ops.size());
2479 else
2480 Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2481 &Ops[0], Ops.size());
2482
2483 if (HasChain) {
2484 SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2485 if (OnlyLoad)
2486 PendingLoads.push_back(Chain);
2487 else
2488 DAG.setRoot(Chain);
2489 }
2490 if (I.getType() != Type::VoidTy) {
2491 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2492 MVT::ValueType VT = TLI.getValueType(PTy);
2493 Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2494 }
2495 setValue(&I, Result);
2496 }
2497}
2498
2499/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2500static GlobalVariable *ExtractTypeInfo (Value *V) {
2501 V = IntrinsicInst::StripPointerCasts(V);
2502 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2503 assert (GV || isa<ConstantPointerNull>(V) &&
2504 "TypeInfo must be a global variable or NULL");
2505 return GV;
2506}
2507
2508/// addCatchInfo - Extract the personality and type infos from an eh.selector
2509/// call, and add them to the specified machine basic block.
2510static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2511 MachineBasicBlock *MBB) {
2512 // Inform the MachineModuleInfo of the personality for this landing pad.
2513 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2514 assert(CE->getOpcode() == Instruction::BitCast &&
2515 isa<Function>(CE->getOperand(0)) &&
2516 "Personality should be a function");
2517 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2518
2519 // Gather all the type infos for this landing pad and pass them along to
2520 // MachineModuleInfo.
2521 std::vector<GlobalVariable *> TyInfo;
2522 unsigned N = I.getNumOperands();
2523
2524 for (unsigned i = N - 1; i > 2; --i) {
2525 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2526 unsigned FilterLength = CI->getZExtValue();
Duncan Sands923fdb12007-08-27 15:47:50 +00002527 unsigned FirstCatch = i + FilterLength + !FilterLength;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002528 assert (FirstCatch <= N && "Invalid filter length");
2529
2530 if (FirstCatch < N) {
2531 TyInfo.reserve(N - FirstCatch);
2532 for (unsigned j = FirstCatch; j < N; ++j)
2533 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2534 MMI->addCatchTypeInfo(MBB, TyInfo);
2535 TyInfo.clear();
2536 }
2537
Duncan Sands923fdb12007-08-27 15:47:50 +00002538 if (!FilterLength) {
2539 // Cleanup.
2540 MMI->addCleanup(MBB);
2541 } else {
2542 // Filter.
2543 TyInfo.reserve(FilterLength - 1);
2544 for (unsigned j = i + 1; j < FirstCatch; ++j)
2545 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2546 MMI->addFilterTypeInfo(MBB, TyInfo);
2547 TyInfo.clear();
2548 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002549
2550 N = i;
2551 }
2552 }
2553
2554 if (N > 3) {
2555 TyInfo.reserve(N - 3);
2556 for (unsigned j = 3; j < N; ++j)
2557 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2558 MMI->addCatchTypeInfo(MBB, TyInfo);
2559 }
2560}
2561
2562/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
2563/// we want to emit this as a call to a named external function, return the name
2564/// otherwise lower it and return null.
2565const char *
2566SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2567 switch (Intrinsic) {
2568 default:
2569 // By default, turn this into a target intrinsic node.
2570 visitTargetIntrinsic(I, Intrinsic);
2571 return 0;
2572 case Intrinsic::vastart: visitVAStart(I); return 0;
2573 case Intrinsic::vaend: visitVAEnd(I); return 0;
2574 case Intrinsic::vacopy: visitVACopy(I); return 0;
2575 case Intrinsic::returnaddress:
2576 setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2577 getValue(I.getOperand(1))));
2578 return 0;
2579 case Intrinsic::frameaddress:
2580 setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2581 getValue(I.getOperand(1))));
2582 return 0;
2583 case Intrinsic::setjmp:
2584 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2585 break;
2586 case Intrinsic::longjmp:
2587 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2588 break;
2589 case Intrinsic::memcpy_i32:
2590 case Intrinsic::memcpy_i64:
2591 visitMemIntrinsic(I, ISD::MEMCPY);
2592 return 0;
2593 case Intrinsic::memset_i32:
2594 case Intrinsic::memset_i64:
2595 visitMemIntrinsic(I, ISD::MEMSET);
2596 return 0;
2597 case Intrinsic::memmove_i32:
2598 case Intrinsic::memmove_i64:
2599 visitMemIntrinsic(I, ISD::MEMMOVE);
2600 return 0;
2601
2602 case Intrinsic::dbg_stoppoint: {
2603 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2604 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2605 if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2606 SDOperand Ops[5];
2607
2608 Ops[0] = getRoot();
2609 Ops[1] = getValue(SPI.getLineValue());
2610 Ops[2] = getValue(SPI.getColumnValue());
2611
2612 DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2613 assert(DD && "Not a debug information descriptor");
2614 CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2615
2616 Ops[3] = DAG.getString(CompileUnit->getFileName());
2617 Ops[4] = DAG.getString(CompileUnit->getDirectory());
2618
2619 DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2620 }
2621
2622 return 0;
2623 }
2624 case Intrinsic::dbg_region_start: {
2625 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2626 DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2627 if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2628 unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2629 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2630 DAG.getConstant(LabelID, MVT::i32)));
2631 }
2632
2633 return 0;
2634 }
2635 case Intrinsic::dbg_region_end: {
2636 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2637 DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2638 if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2639 unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2640 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2641 getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2642 }
2643
2644 return 0;
2645 }
2646 case Intrinsic::dbg_func_start: {
2647 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2648 DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2649 if (MMI && FSI.getSubprogram() &&
2650 MMI->Verify(FSI.getSubprogram())) {
2651 unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2652 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2653 getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2654 }
2655
2656 return 0;
2657 }
2658 case Intrinsic::dbg_declare: {
2659 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2660 DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2661 if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2662 SDOperand AddressOp = getValue(DI.getAddress());
2663 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2664 MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2665 }
2666
2667 return 0;
2668 }
2669
2670 case Intrinsic::eh_exception: {
2671 if (ExceptionHandling) {
2672 if (!CurMBB->isLandingPad()) {
2673 // FIXME: Mark exception register as live in. Hack for PR1508.
2674 unsigned Reg = TLI.getExceptionAddressRegister();
2675 if (Reg) CurMBB->addLiveIn(Reg);
2676 }
2677 // Insert the EXCEPTIONADDR instruction.
2678 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2679 SDOperand Ops[1];
2680 Ops[0] = DAG.getRoot();
2681 SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2682 setValue(&I, Op);
2683 DAG.setRoot(Op.getValue(1));
2684 } else {
2685 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2686 }
2687 return 0;
2688 }
2689
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002690 case Intrinsic::eh_selector_i32:
2691 case Intrinsic::eh_selector_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002692 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002693 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2694 MVT::i32 : MVT::i64);
2695
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002696 if (ExceptionHandling && MMI) {
2697 if (CurMBB->isLandingPad())
2698 addCatchInfo(I, MMI, CurMBB);
2699 else {
2700#ifndef NDEBUG
2701 FuncInfo.CatchInfoLost.insert(&I);
2702#endif
2703 // FIXME: Mark exception selector register as live in. Hack for PR1508.
2704 unsigned Reg = TLI.getExceptionSelectorRegister();
2705 if (Reg) CurMBB->addLiveIn(Reg);
2706 }
2707
2708 // Insert the EHSELECTION instruction.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002709 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002710 SDOperand Ops[2];
2711 Ops[0] = getValue(I.getOperand(1));
2712 Ops[1] = getRoot();
2713 SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2714 setValue(&I, Op);
2715 DAG.setRoot(Op.getValue(1));
2716 } else {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002717 setValue(&I, DAG.getConstant(0, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002718 }
2719
2720 return 0;
2721 }
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002722
2723 case Intrinsic::eh_typeid_for_i32:
2724 case Intrinsic::eh_typeid_for_i64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002725 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002726 MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2727 MVT::i32 : MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002728
2729 if (MMI) {
2730 // Find the type id for the given typeinfo.
2731 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2732
2733 unsigned TypeID = MMI->getTypeIDFor(GV);
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002734 setValue(&I, DAG.getConstant(TypeID, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002735 } else {
2736 // Return something different to eh_selector.
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00002737 setValue(&I, DAG.getConstant(1, VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002738 }
2739
2740 return 0;
2741 }
2742
2743 case Intrinsic::eh_return: {
2744 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2745
2746 if (MMI && ExceptionHandling) {
2747 MMI->setCallsEHReturn(true);
2748 DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2749 MVT::Other,
2750 getRoot(),
2751 getValue(I.getOperand(1)),
2752 getValue(I.getOperand(2))));
2753 } else {
2754 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2755 }
2756
2757 return 0;
2758 }
2759
2760 case Intrinsic::eh_unwind_init: {
2761 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2762 MMI->setCallsUnwindInit(true);
2763 }
2764
2765 return 0;
2766 }
2767
2768 case Intrinsic::eh_dwarf_cfa: {
2769 if (ExceptionHandling) {
2770 MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
Anton Korobeynikovb5641a02007-08-23 07:21:06 +00002771 SDOperand CfaArg;
2772 if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2773 CfaArg = DAG.getNode(ISD::TRUNCATE,
2774 TLI.getPointerTy(), getValue(I.getOperand(1)));
2775 else
2776 CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2777 TLI.getPointerTy(), getValue(I.getOperand(1)));
2778
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002779 SDOperand Offset = DAG.getNode(ISD::ADD,
2780 TLI.getPointerTy(),
2781 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
Anton Korobeynikovb5641a02007-08-23 07:21:06 +00002782 TLI.getPointerTy()),
2783 CfaArg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002784 setValue(&I, DAG.getNode(ISD::ADD,
2785 TLI.getPointerTy(),
2786 DAG.getNode(ISD::FRAMEADDR,
2787 TLI.getPointerTy(),
2788 DAG.getConstant(0,
2789 TLI.getPointerTy())),
2790 Offset));
2791 } else {
2792 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2793 }
2794
2795 return 0;
2796 }
2797
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002798 case Intrinsic::sqrt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002799 setValue(&I, DAG.getNode(ISD::FSQRT,
2800 getValue(I.getOperand(1)).getValueType(),
2801 getValue(I.getOperand(1))));
2802 return 0;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002803 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002804 setValue(&I, DAG.getNode(ISD::FPOWI,
2805 getValue(I.getOperand(1)).getValueType(),
2806 getValue(I.getOperand(1)),
2807 getValue(I.getOperand(2))));
2808 return 0;
Dan Gohmane1bb8c12007-10-12 00:01:22 +00002809 case Intrinsic::sin:
2810 setValue(&I, DAG.getNode(ISD::FSIN,
2811 getValue(I.getOperand(1)).getValueType(),
2812 getValue(I.getOperand(1))));
2813 return 0;
2814 case Intrinsic::cos:
2815 setValue(&I, DAG.getNode(ISD::FCOS,
2816 getValue(I.getOperand(1)).getValueType(),
2817 getValue(I.getOperand(1))));
2818 return 0;
2819 case Intrinsic::pow:
2820 setValue(&I, DAG.getNode(ISD::FPOW,
2821 getValue(I.getOperand(1)).getValueType(),
2822 getValue(I.getOperand(1)),
2823 getValue(I.getOperand(2))));
2824 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002825 case Intrinsic::pcmarker: {
2826 SDOperand Tmp = getValue(I.getOperand(1));
2827 DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2828 return 0;
2829 }
2830 case Intrinsic::readcyclecounter: {
2831 SDOperand Op = getRoot();
2832 SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2833 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2834 &Op, 1);
2835 setValue(&I, Tmp);
2836 DAG.setRoot(Tmp.getValue(1));
2837 return 0;
2838 }
2839 case Intrinsic::part_select: {
2840 // Currently not implemented: just abort
2841 assert(0 && "part_select intrinsic not implemented");
2842 abort();
2843 }
2844 case Intrinsic::part_set: {
2845 // Currently not implemented: just abort
2846 assert(0 && "part_set intrinsic not implemented");
2847 abort();
2848 }
2849 case Intrinsic::bswap:
2850 setValue(&I, DAG.getNode(ISD::BSWAP,
2851 getValue(I.getOperand(1)).getValueType(),
2852 getValue(I.getOperand(1))));
2853 return 0;
2854 case Intrinsic::cttz: {
2855 SDOperand Arg = getValue(I.getOperand(1));
2856 MVT::ValueType Ty = Arg.getValueType();
2857 SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002858 setValue(&I, result);
2859 return 0;
2860 }
2861 case Intrinsic::ctlz: {
2862 SDOperand Arg = getValue(I.getOperand(1));
2863 MVT::ValueType Ty = Arg.getValueType();
2864 SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002865 setValue(&I, result);
2866 return 0;
2867 }
2868 case Intrinsic::ctpop: {
2869 SDOperand Arg = getValue(I.getOperand(1));
2870 MVT::ValueType Ty = Arg.getValueType();
2871 SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002872 setValue(&I, result);
2873 return 0;
2874 }
2875 case Intrinsic::stacksave: {
2876 SDOperand Op = getRoot();
2877 SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2878 DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2879 setValue(&I, Tmp);
2880 DAG.setRoot(Tmp.getValue(1));
2881 return 0;
2882 }
2883 case Intrinsic::stackrestore: {
2884 SDOperand Tmp = getValue(I.getOperand(1));
2885 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2886 return 0;
2887 }
2888 case Intrinsic::prefetch:
2889 // FIXME: Currently discarding prefetches.
2890 return 0;
2891
2892 case Intrinsic::var_annotation:
2893 // Discard annotate attributes
2894 return 0;
Duncan Sands38947cd2007-07-27 12:58:54 +00002895
Duncan Sands38947cd2007-07-27 12:58:54 +00002896 case Intrinsic::init_trampoline: {
2897 const Function *F =
2898 cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2899
2900 SDOperand Ops[6];
2901 Ops[0] = getRoot();
2902 Ops[1] = getValue(I.getOperand(1));
2903 Ops[2] = getValue(I.getOperand(2));
2904 Ops[3] = getValue(I.getOperand(3));
2905 Ops[4] = DAG.getSrcValue(I.getOperand(1));
2906 Ops[5] = DAG.getSrcValue(F);
2907
Duncan Sands7407a9f2007-09-11 14:10:23 +00002908 SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
2909 DAG.getNodeValueTypes(TLI.getPointerTy(),
2910 MVT::Other), 2,
2911 Ops, 6);
2912
2913 setValue(&I, Tmp);
2914 DAG.setRoot(Tmp.getValue(1));
Duncan Sands38947cd2007-07-27 12:58:54 +00002915 return 0;
2916 }
Anton Korobeynikovc915e272007-11-15 23:25:33 +00002917 case Intrinsic::flt_rounds: {
2918 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS, MVT::i32));
2919 return 0;
2920 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002921 }
2922}
2923
2924
2925void SelectionDAGLowering::LowerCallTo(Instruction &I,
2926 const Type *CalledValueTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002927 const ParamAttrsList *Attrs,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002928 unsigned CallingConv,
2929 bool IsTailCall,
2930 SDOperand Callee, unsigned OpIdx,
2931 MachineBasicBlock *LandingPad) {
2932 const PointerType *PT = cast<PointerType>(CalledValueTy);
2933 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002934 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2935 unsigned BeginLabel = 0, EndLabel = 0;
2936
2937 TargetLowering::ArgListTy Args;
2938 TargetLowering::ArgListEntry Entry;
2939 Args.reserve(I.getNumOperands());
2940 for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2941 Value *Arg = I.getOperand(i);
2942 SDOperand ArgNode = getValue(Arg);
2943 Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2944
2945 unsigned attrInd = i - OpIdx + 1;
2946 Entry.isSExt = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2947 Entry.isZExt = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2948 Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2949 Entry.isSRet = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
Duncan Sands38947cd2007-07-27 12:58:54 +00002950 Entry.isNest = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::Nest);
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00002951 Entry.isByVal = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ByVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002952 Args.push_back(Entry);
2953 }
2954
Duncan Sands4ff179f2007-12-19 07:36:31 +00002955 bool MarkTryRange = LandingPad ||
2956 // C++ requires special handling of 'nounwind' calls.
2957 (Attrs && Attrs->paramHasAttr(0, ParamAttr::NoUnwind));
2958
2959 if (MarkTryRange && ExceptionHandling && MMI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002960 // Insert a label before the invoke call to mark the try range. This can be
2961 // used to detect deletion of the invoke via the MachineModuleInfo.
2962 BeginLabel = MMI->NextLabelID();
2963 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2964 DAG.getConstant(BeginLabel, MVT::i32)));
2965 }
2966
2967 std::pair<SDOperand,SDOperand> Result =
2968 TLI.LowerCallTo(getRoot(), I.getType(),
2969 Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2970 FTy->isVarArg(), CallingConv, IsTailCall,
2971 Callee, Args, DAG);
2972 if (I.getType() != Type::VoidTy)
2973 setValue(&I, Result.first);
2974 DAG.setRoot(Result.second);
2975
Duncan Sands4ff179f2007-12-19 07:36:31 +00002976 if (MarkTryRange && ExceptionHandling && MMI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002977 // Insert a label at the end of the invoke call to mark the try range. This
2978 // can be used to detect deletion of the invoke via the MachineModuleInfo.
2979 EndLabel = MMI->NextLabelID();
2980 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2981 DAG.getConstant(EndLabel, MVT::i32)));
2982
2983 // Inform MachineModuleInfo of range.
2984 MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2985 }
2986}
2987
2988
2989void SelectionDAGLowering::visitCall(CallInst &I) {
2990 const char *RenameFn = 0;
2991 if (Function *F = I.getCalledFunction()) {
Chris Lattner3687e342007-09-10 21:15:22 +00002992 if (F->isDeclaration()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002993 if (unsigned IID = F->getIntrinsicID()) {
2994 RenameFn = visitIntrinsicCall(I, IID);
2995 if (!RenameFn)
2996 return;
Chris Lattner3687e342007-09-10 21:15:22 +00002997 }
2998 }
2999
3000 // Check for well-known libc/libm calls. If the function is internal, it
3001 // can't be a library call.
3002 unsigned NameLen = F->getNameLen();
3003 if (!F->hasInternalLinkage() && NameLen) {
3004 const char *NameStr = F->getNameStart();
3005 if (NameStr[0] == 'c' &&
3006 ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3007 (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3008 if (I.getNumOperands() == 3 && // Basic sanity checks.
3009 I.getOperand(1)->getType()->isFloatingPoint() &&
3010 I.getType() == I.getOperand(1)->getType() &&
3011 I.getType() == I.getOperand(2)->getType()) {
3012 SDOperand LHS = getValue(I.getOperand(1));
3013 SDOperand RHS = getValue(I.getOperand(2));
3014 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3015 LHS, RHS));
3016 return;
3017 }
3018 } else if (NameStr[0] == 'f' &&
3019 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003020 (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3021 (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003022 if (I.getNumOperands() == 2 && // Basic sanity checks.
3023 I.getOperand(1)->getType()->isFloatingPoint() &&
3024 I.getType() == I.getOperand(1)->getType()) {
3025 SDOperand Tmp = getValue(I.getOperand(1));
3026 setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3027 return;
3028 }
3029 } else if (NameStr[0] == 's' &&
3030 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003031 (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3032 (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003033 if (I.getNumOperands() == 2 && // Basic sanity checks.
3034 I.getOperand(1)->getType()->isFloatingPoint() &&
3035 I.getType() == I.getOperand(1)->getType()) {
3036 SDOperand Tmp = getValue(I.getOperand(1));
3037 setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3038 return;
3039 }
3040 } else if (NameStr[0] == 'c' &&
3041 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
Dale Johannesen7f1076b2007-09-26 21:10:55 +00003042 (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3043 (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
Chris Lattner3687e342007-09-10 21:15:22 +00003044 if (I.getNumOperands() == 2 && // Basic sanity checks.
3045 I.getOperand(1)->getType()->isFloatingPoint() &&
3046 I.getType() == I.getOperand(1)->getType()) {
3047 SDOperand Tmp = getValue(I.getOperand(1));
3048 setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3049 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003050 }
3051 }
Chris Lattner3687e342007-09-10 21:15:22 +00003052 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003053 } else if (isa<InlineAsm>(I.getOperand(0))) {
Duncan Sands1c5526c2007-12-17 18:08:19 +00003054 visitInlineAsm(&I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003055 return;
3056 }
3057
3058 SDOperand Callee;
3059 if (!RenameFn)
3060 Callee = getValue(I.getOperand(0));
3061 else
3062 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3063
Duncan Sandsf5588dc2007-11-27 13:23:08 +00003064 LowerCallTo(I, I.getCalledValue()->getType(), I.getParamAttrs(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003065 I.getCallingConv(),
3066 I.isTailCall(),
3067 Callee,
3068 1);
3069}
3070
3071
3072/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3073/// this value and returns the result as a ValueVT value. This uses
3074/// Chain/Flag as the input and updates them for the output Chain/Flag.
3075/// If the Flag pointer is NULL, no flag is used.
3076SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3077 SDOperand &Chain, SDOperand *Flag)const{
3078 // Copy the legal parts from the registers.
3079 unsigned NumParts = Regs.size();
3080 SmallVector<SDOperand, 8> Parts(NumParts);
3081 for (unsigned i = 0; i != NumParts; ++i) {
3082 SDOperand Part = Flag ?
3083 DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3084 DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3085 Chain = Part.getValue(1);
3086 if (Flag)
3087 *Flag = Part.getValue(2);
3088 Parts[i] = Part;
3089 }
3090
3091 // Assemble the legal parts into the final value.
3092 return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3093}
3094
3095/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3096/// specified value into the registers specified by this object. This uses
3097/// Chain/Flag as the input and updates them for the output Chain/Flag.
3098/// If the Flag pointer is NULL, no flag is used.
3099void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3100 SDOperand &Chain, SDOperand *Flag) const {
3101 // Get the list of the values's legal parts.
3102 unsigned NumParts = Regs.size();
3103 SmallVector<SDOperand, 8> Parts(NumParts);
3104 getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3105
3106 // Copy the parts into the registers.
3107 for (unsigned i = 0; i != NumParts; ++i) {
3108 SDOperand Part = Flag ?
3109 DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3110 DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3111 Chain = Part.getValue(0);
3112 if (Flag)
3113 *Flag = Part.getValue(1);
3114 }
3115}
3116
3117/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3118/// operand list. This adds the code marker and includes the number of
3119/// values added into it.
3120void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3121 std::vector<SDOperand> &Ops) const {
3122 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3123 Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3124 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3125 Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3126}
3127
3128/// isAllocatableRegister - If the specified register is safe to allocate,
3129/// i.e. it isn't a stack pointer or some other special register, return the
3130/// register class for the register. Otherwise, return null.
3131static const TargetRegisterClass *
3132isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3133 const TargetLowering &TLI, const MRegisterInfo *MRI) {
3134 MVT::ValueType FoundVT = MVT::Other;
3135 const TargetRegisterClass *FoundRC = 0;
3136 for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3137 E = MRI->regclass_end(); RCI != E; ++RCI) {
3138 MVT::ValueType ThisVT = MVT::Other;
3139
3140 const TargetRegisterClass *RC = *RCI;
3141 // If none of the the value types for this register class are valid, we
3142 // can't use it. For example, 64-bit reg classes on 32-bit targets.
3143 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3144 I != E; ++I) {
3145 if (TLI.isTypeLegal(*I)) {
3146 // If we have already found this register in a different register class,
3147 // choose the one with the largest VT specified. For example, on
3148 // PowerPC, we favor f64 register classes over f32.
3149 if (FoundVT == MVT::Other ||
3150 MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3151 ThisVT = *I;
3152 break;
3153 }
3154 }
3155 }
3156
3157 if (ThisVT == MVT::Other) continue;
3158
3159 // NOTE: This isn't ideal. In particular, this might allocate the
3160 // frame pointer in functions that need it (due to them not being taken
3161 // out of allocation, because a variable sized allocation hasn't been seen
3162 // yet). This is a slight code pessimization, but should still work.
3163 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3164 E = RC->allocation_order_end(MF); I != E; ++I)
3165 if (*I == Reg) {
3166 // We found a matching register class. Keep looking at others in case
3167 // we find one with larger registers that this physreg is also in.
3168 FoundRC = RC;
3169 FoundVT = ThisVT;
3170 break;
3171 }
3172 }
3173 return FoundRC;
3174}
3175
3176
3177namespace {
3178/// AsmOperandInfo - This contains information for each constraint that we are
3179/// lowering.
3180struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3181 /// ConstraintCode - This contains the actual string for the code, like "m".
3182 std::string ConstraintCode;
3183
3184 /// ConstraintType - Information about the constraint code, e.g. Register,
3185 /// RegisterClass, Memory, Other, Unknown.
3186 TargetLowering::ConstraintType ConstraintType;
3187
3188 /// CallOperand/CallOperandval - If this is the result output operand or a
3189 /// clobber, this is null, otherwise it is the incoming operand to the
3190 /// CallInst. This gets modified as the asm is processed.
3191 SDOperand CallOperand;
3192 Value *CallOperandVal;
3193
3194 /// ConstraintVT - The ValueType for the operand value.
3195 MVT::ValueType ConstraintVT;
3196
3197 /// AssignedRegs - If this is a register or register class operand, this
3198 /// contains the set of register corresponding to the operand.
3199 RegsForValue AssignedRegs;
3200
3201 AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3202 : InlineAsm::ConstraintInfo(info),
3203 ConstraintType(TargetLowering::C_Unknown),
3204 CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3205 }
3206
3207 void ComputeConstraintToUse(const TargetLowering &TLI);
3208
3209 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3210 /// busy in OutputRegs/InputRegs.
3211 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3212 std::set<unsigned> &OutputRegs,
3213 std::set<unsigned> &InputRegs) const {
3214 if (isOutReg)
3215 OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3216 if (isInReg)
3217 InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3218 }
3219};
3220} // end anon namespace.
3221
3222/// getConstraintGenerality - Return an integer indicating how general CT is.
3223static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3224 switch (CT) {
3225 default: assert(0 && "Unknown constraint type!");
3226 case TargetLowering::C_Other:
3227 case TargetLowering::C_Unknown:
3228 return 0;
3229 case TargetLowering::C_Register:
3230 return 1;
3231 case TargetLowering::C_RegisterClass:
3232 return 2;
3233 case TargetLowering::C_Memory:
3234 return 3;
3235 }
3236}
3237
3238void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3239 assert(!Codes.empty() && "Must have at least one constraint");
3240
3241 std::string *Current = &Codes[0];
3242 TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3243 if (Codes.size() == 1) { // Single-letter constraints ('r') are very common.
3244 ConstraintCode = *Current;
3245 ConstraintType = CurType;
3246 return;
3247 }
3248
3249 unsigned CurGenerality = getConstraintGenerality(CurType);
3250
3251 // If we have multiple constraints, try to pick the most general one ahead
3252 // of time. This isn't a wonderful solution, but handles common cases.
3253 for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3254 TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3255 unsigned ThisGenerality = getConstraintGenerality(ThisType);
3256 if (ThisGenerality > CurGenerality) {
3257 // This constraint letter is more general than the previous one,
3258 // use it.
3259 CurType = ThisType;
3260 Current = &Codes[j];
3261 CurGenerality = ThisGenerality;
3262 }
3263 }
3264
3265 ConstraintCode = *Current;
3266 ConstraintType = CurType;
3267}
3268
3269
3270void SelectionDAGLowering::
3271GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3272 std::set<unsigned> &OutputRegs,
3273 std::set<unsigned> &InputRegs) {
3274 // Compute whether this value requires an input register, an output register,
3275 // or both.
3276 bool isOutReg = false;
3277 bool isInReg = false;
3278 switch (OpInfo.Type) {
3279 case InlineAsm::isOutput:
3280 isOutReg = true;
3281
3282 // If this is an early-clobber output, or if there is an input
3283 // constraint that matches this, we need to reserve the input register
3284 // so no other inputs allocate to it.
3285 isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3286 break;
3287 case InlineAsm::isInput:
3288 isInReg = true;
3289 isOutReg = false;
3290 break;
3291 case InlineAsm::isClobber:
3292 isOutReg = true;
3293 isInReg = true;
3294 break;
3295 }
3296
3297
3298 MachineFunction &MF = DAG.getMachineFunction();
3299 std::vector<unsigned> Regs;
3300
3301 // If this is a constraint for a single physreg, or a constraint for a
3302 // register class, find it.
3303 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3304 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3305 OpInfo.ConstraintVT);
3306
3307 unsigned NumRegs = 1;
3308 if (OpInfo.ConstraintVT != MVT::Other)
3309 NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3310 MVT::ValueType RegVT;
3311 MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3312
3313
3314 // If this is a constraint for a specific physical register, like {r17},
3315 // assign it now.
3316 if (PhysReg.first) {
3317 if (OpInfo.ConstraintVT == MVT::Other)
3318 ValueVT = *PhysReg.second->vt_begin();
3319
3320 // Get the actual register value type. This is important, because the user
3321 // may have asked for (e.g.) the AX register in i32 type. We need to
3322 // remember that AX is actually i16 to get the right extension.
3323 RegVT = *PhysReg.second->vt_begin();
3324
3325 // This is a explicit reference to a physical register.
3326 Regs.push_back(PhysReg.first);
3327
3328 // If this is an expanded reference, add the rest of the regs to Regs.
3329 if (NumRegs != 1) {
3330 TargetRegisterClass::iterator I = PhysReg.second->begin();
3331 TargetRegisterClass::iterator E = PhysReg.second->end();
3332 for (; *I != PhysReg.first; ++I)
3333 assert(I != E && "Didn't find reg!");
3334
3335 // Already added the first reg.
3336 --NumRegs; ++I;
3337 for (; NumRegs; --NumRegs, ++I) {
3338 assert(I != E && "Ran out of registers to allocate!");
3339 Regs.push_back(*I);
3340 }
3341 }
3342 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3343 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3344 return;
3345 }
3346
3347 // Otherwise, if this was a reference to an LLVM register class, create vregs
3348 // for this reference.
3349 std::vector<unsigned> RegClassRegs;
3350 const TargetRegisterClass *RC = PhysReg.second;
3351 if (RC) {
3352 // If this is an early clobber or tied register, our regalloc doesn't know
3353 // how to maintain the constraint. If it isn't, go ahead and create vreg
3354 // and let the regalloc do the right thing.
3355 if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3356 // If there is some other early clobber and this is an input register,
3357 // then we are forced to pre-allocate the input reg so it doesn't
3358 // conflict with the earlyclobber.
3359 !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3360 RegVT = *PhysReg.second->vt_begin();
3361
3362 if (OpInfo.ConstraintVT == MVT::Other)
3363 ValueVT = RegVT;
3364
3365 // Create the appropriate number of virtual registers.
3366 SSARegMap *RegMap = MF.getSSARegMap();
3367 for (; NumRegs; --NumRegs)
3368 Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3369
3370 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3371 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3372 return;
3373 }
3374
3375 // Otherwise, we can't allocate it. Let the code below figure out how to
3376 // maintain these constraints.
3377 RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3378
3379 } else {
3380 // This is a reference to a register class that doesn't directly correspond
3381 // to an LLVM register class. Allocate NumRegs consecutive, available,
3382 // registers from the class.
3383 RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3384 OpInfo.ConstraintVT);
3385 }
3386
3387 const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3388 unsigned NumAllocated = 0;
3389 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3390 unsigned Reg = RegClassRegs[i];
3391 // See if this register is available.
3392 if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
3393 (isInReg && InputRegs.count(Reg))) { // Already used.
3394 // Make sure we find consecutive registers.
3395 NumAllocated = 0;
3396 continue;
3397 }
3398
3399 // Check to see if this register is allocatable (i.e. don't give out the
3400 // stack pointer).
3401 if (RC == 0) {
3402 RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3403 if (!RC) { // Couldn't allocate this register.
3404 // Reset NumAllocated to make sure we return consecutive registers.
3405 NumAllocated = 0;
3406 continue;
3407 }
3408 }
3409
3410 // Okay, this register is good, we can use it.
3411 ++NumAllocated;
3412
3413 // If we allocated enough consecutive registers, succeed.
3414 if (NumAllocated == NumRegs) {
3415 unsigned RegStart = (i-NumAllocated)+1;
3416 unsigned RegEnd = i+1;
3417 // Mark all of the allocated registers used.
3418 for (unsigned i = RegStart; i != RegEnd; ++i)
3419 Regs.push_back(RegClassRegs[i]);
3420
3421 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3422 OpInfo.ConstraintVT);
3423 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3424 return;
3425 }
3426 }
3427
3428 // Otherwise, we couldn't allocate enough registers for this.
3429 return;
3430}
3431
3432
3433/// visitInlineAsm - Handle a call to an InlineAsm object.
3434///
Duncan Sands1c5526c2007-12-17 18:08:19 +00003435void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3436 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003437
3438 /// ConstraintOperands - Information about all of the constraints.
3439 std::vector<AsmOperandInfo> ConstraintOperands;
3440
3441 SDOperand Chain = getRoot();
3442 SDOperand Flag;
3443
3444 std::set<unsigned> OutputRegs, InputRegs;
3445
3446 // Do a prepass over the constraints, canonicalizing them, and building up the
3447 // ConstraintOperands list.
3448 std::vector<InlineAsm::ConstraintInfo>
3449 ConstraintInfos = IA->ParseConstraints();
3450
3451 // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3452 // constraint. If so, we can't let the register allocator allocate any input
3453 // registers, because it will not know to avoid the earlyclobbered output reg.
3454 bool SawEarlyClobber = false;
3455
Duncan Sands1c5526c2007-12-17 18:08:19 +00003456 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003457 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3458 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3459 AsmOperandInfo &OpInfo = ConstraintOperands.back();
3460
3461 MVT::ValueType OpVT = MVT::Other;
3462
3463 // Compute the value type for each operand.
3464 switch (OpInfo.Type) {
3465 case InlineAsm::isOutput:
3466 if (!OpInfo.isIndirect) {
3467 // The return value of the call is this value. As such, there is no
3468 // corresponding argument.
Duncan Sands1c5526c2007-12-17 18:08:19 +00003469 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3470 OpVT = TLI.getValueType(CS.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003471 } else {
Duncan Sands1c5526c2007-12-17 18:08:19 +00003472 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003473 }
3474 break;
3475 case InlineAsm::isInput:
Duncan Sands1c5526c2007-12-17 18:08:19 +00003476 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003477 break;
3478 case InlineAsm::isClobber:
3479 // Nothing to do.
3480 break;
3481 }
3482
3483 // If this is an input or an indirect output, process the call argument.
Dale Johannesencfb19e62007-11-05 21:20:28 +00003484 // BasicBlocks are labels, currently appearing only in asm's.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003485 if (OpInfo.CallOperandVal) {
Dale Johannesencfb19e62007-11-05 21:20:28 +00003486 if (isa<BasicBlock>(OpInfo.CallOperandVal))
3487 OpInfo.CallOperand =
3488 DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(OpInfo.CallOperandVal)]);
3489 else {
3490 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3491 const Type *OpTy = OpInfo.CallOperandVal->getType();
3492 // If this is an indirect operand, the operand is a pointer to the
3493 // accessed type.
3494 if (OpInfo.isIndirect)
3495 OpTy = cast<PointerType>(OpTy)->getElementType();
3496
3497 // If OpTy is not a first-class value, it may be a struct/union that we
3498 // can tile with integers.
3499 if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3500 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3501 switch (BitSize) {
3502 default: break;
3503 case 1:
3504 case 8:
3505 case 16:
3506 case 32:
3507 case 64:
3508 OpTy = IntegerType::get(BitSize);
3509 break;
3510 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003511 }
Dale Johannesencfb19e62007-11-05 21:20:28 +00003512
3513 OpVT = TLI.getValueType(OpTy, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003514 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003515 }
3516
3517 OpInfo.ConstraintVT = OpVT;
3518
3519 // Compute the constraint code and ConstraintType to use.
3520 OpInfo.ComputeConstraintToUse(TLI);
3521
3522 // Keep track of whether we see an earlyclobber.
3523 SawEarlyClobber |= OpInfo.isEarlyClobber;
3524
3525 // If this is a memory input, and if the operand is not indirect, do what we
3526 // need to to provide an address for the memory input.
3527 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3528 !OpInfo.isIndirect) {
3529 assert(OpInfo.Type == InlineAsm::isInput &&
3530 "Can only indirectify direct input operands!");
3531
3532 // Memory operands really want the address of the value. If we don't have
3533 // an indirect input, put it in the constpool if we can, otherwise spill
3534 // it to a stack slot.
3535
3536 // If the operand is a float, integer, or vector constant, spill to a
3537 // constant pool entry to get its address.
3538 Value *OpVal = OpInfo.CallOperandVal;
3539 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3540 isa<ConstantVector>(OpVal)) {
3541 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3542 TLI.getPointerTy());
3543 } else {
3544 // Otherwise, create a stack slot and emit a store to it before the
3545 // asm.
3546 const Type *Ty = OpVal->getType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +00003547 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003548 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3549 MachineFunction &MF = DAG.getMachineFunction();
3550 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3551 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3552 Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3553 OpInfo.CallOperand = StackSlot;
3554 }
3555
3556 // There is no longer a Value* corresponding to this operand.
3557 OpInfo.CallOperandVal = 0;
3558 // It is now an indirect operand.
3559 OpInfo.isIndirect = true;
3560 }
3561
3562 // If this constraint is for a specific register, allocate it before
3563 // anything else.
3564 if (OpInfo.ConstraintType == TargetLowering::C_Register)
3565 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3566 }
3567 ConstraintInfos.clear();
3568
3569
3570 // Second pass - Loop over all of the operands, assigning virtual or physregs
3571 // to registerclass operands.
3572 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3573 AsmOperandInfo &OpInfo = ConstraintOperands[i];
3574
3575 // C_Register operands have already been allocated, Other/Memory don't need
3576 // to be.
3577 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3578 GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3579 }
3580
3581 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3582 std::vector<SDOperand> AsmNodeOperands;
3583 AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain
3584 AsmNodeOperands.push_back(
3585 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3586
3587
3588 // Loop over all of the inputs, copying the operand values into the
3589 // appropriate registers and processing the output regs.
3590 RegsForValue RetValRegs;
3591
3592 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3593 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3594
3595 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3596 AsmOperandInfo &OpInfo = ConstraintOperands[i];
3597
3598 switch (OpInfo.Type) {
3599 case InlineAsm::isOutput: {
3600 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3601 OpInfo.ConstraintType != TargetLowering::C_Register) {
3602 // Memory output, or 'other' output (e.g. 'X' constraint).
3603 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3604
3605 // Add information to the INLINEASM node to know about this output.
3606 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3607 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3608 TLI.getPointerTy()));
3609 AsmNodeOperands.push_back(OpInfo.CallOperand);
3610 break;
3611 }
3612
3613 // Otherwise, this is a register or register class output.
3614
3615 // Copy the output from the appropriate register. Find a register that
3616 // we can use.
3617 if (OpInfo.AssignedRegs.Regs.empty()) {
3618 cerr << "Couldn't allocate output reg for contraint '"
3619 << OpInfo.ConstraintCode << "'!\n";
3620 exit(1);
3621 }
3622
3623 if (!OpInfo.isIndirect) {
3624 // This is the result value of the call.
3625 assert(RetValRegs.Regs.empty() &&
3626 "Cannot have multiple output constraints yet!");
Duncan Sands1c5526c2007-12-17 18:08:19 +00003627 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003628 RetValRegs = OpInfo.AssignedRegs;
3629 } else {
3630 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3631 OpInfo.CallOperandVal));
3632 }
3633
3634 // Add information to the INLINEASM node to know that this register is
3635 // set.
3636 OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3637 AsmNodeOperands);
3638 break;
3639 }
3640 case InlineAsm::isInput: {
3641 SDOperand InOperandVal = OpInfo.CallOperand;
3642
3643 if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint?
3644 // If this is required to match an output register we have already set,
3645 // just use its register.
3646 unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3647
3648 // Scan until we find the definition we already emitted of this operand.
3649 // When we find it, create a RegsForValue operand.
3650 unsigned CurOp = 2; // The first operand.
3651 for (; OperandNo; --OperandNo) {
3652 // Advance to the next operand.
3653 unsigned NumOps =
3654 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3655 assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3656 (NumOps & 7) == 4 /*MEM*/) &&
3657 "Skipped past definitions?");
3658 CurOp += (NumOps>>3)+1;
3659 }
3660
3661 unsigned NumOps =
3662 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3663 if ((NumOps & 7) == 2 /*REGDEF*/) {
3664 // Add NumOps>>3 registers to MatchedRegs.
3665 RegsForValue MatchedRegs;
3666 MatchedRegs.ValueVT = InOperandVal.getValueType();
3667 MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType();
3668 for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3669 unsigned Reg =
3670 cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3671 MatchedRegs.Regs.push_back(Reg);
3672 }
3673
3674 // Use the produced MatchedRegs object to
3675 MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3676 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3677 break;
3678 } else {
3679 assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3680 assert(0 && "matching constraints for memory operands unimp");
3681 }
3682 }
3683
3684 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3685 assert(!OpInfo.isIndirect &&
3686 "Don't know how to handle indirect other inputs yet!");
3687
Chris Lattnera531abc2007-08-25 00:47:38 +00003688 std::vector<SDOperand> Ops;
3689 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3690 Ops, DAG);
3691 if (Ops.empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003692 cerr << "Invalid operand for inline asm constraint '"
3693 << OpInfo.ConstraintCode << "'!\n";
3694 exit(1);
3695 }
3696
3697 // Add information to the INLINEASM node to know about this input.
Chris Lattnera531abc2007-08-25 00:47:38 +00003698 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003699 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3700 TLI.getPointerTy()));
Chris Lattnera531abc2007-08-25 00:47:38 +00003701 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003702 break;
3703 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3704 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3705 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3706 "Memory operands expect pointer values");
3707
3708 // Add information to the INLINEASM node to know about this input.
3709 unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3710 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3711 TLI.getPointerTy()));
3712 AsmNodeOperands.push_back(InOperandVal);
3713 break;
3714 }
3715
3716 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3717 OpInfo.ConstraintType == TargetLowering::C_Register) &&
3718 "Unknown constraint type!");
3719 assert(!OpInfo.isIndirect &&
3720 "Don't know how to handle indirect register inputs yet!");
3721
3722 // Copy the input into the appropriate registers.
3723 assert(!OpInfo.AssignedRegs.Regs.empty() &&
3724 "Couldn't allocate input reg!");
3725
3726 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3727
3728 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3729 AsmNodeOperands);
3730 break;
3731 }
3732 case InlineAsm::isClobber: {
3733 // Add the clobbered value to the operand list, so that the register
3734 // allocator is aware that the physreg got clobbered.
3735 if (!OpInfo.AssignedRegs.Regs.empty())
3736 OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3737 AsmNodeOperands);
3738 break;
3739 }
3740 }
3741 }
3742
3743 // Finish up input operands.
3744 AsmNodeOperands[0] = Chain;
3745 if (Flag.Val) AsmNodeOperands.push_back(Flag);
3746
3747 Chain = DAG.getNode(ISD::INLINEASM,
3748 DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3749 &AsmNodeOperands[0], AsmNodeOperands.size());
3750 Flag = Chain.getValue(1);
3751
3752 // If this asm returns a register value, copy the result from that register
3753 // and set it as the value of the call.
3754 if (!RetValRegs.Regs.empty()) {
3755 SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3756
3757 // If the result of the inline asm is a vector, it may have the wrong
3758 // width/num elts. Make sure to convert it to the right type with
3759 // bit_convert.
3760 if (MVT::isVector(Val.getValueType())) {
Duncan Sands1c5526c2007-12-17 18:08:19 +00003761 const VectorType *VTy = cast<VectorType>(CS.getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003762 MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3763
3764 Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3765 }
3766
Duncan Sands1c5526c2007-12-17 18:08:19 +00003767 setValue(CS.getInstruction(), Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003768 }
3769
3770 std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3771
3772 // Process indirect outputs, first output all of the flagged copies out of
3773 // physregs.
3774 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3775 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3776 Value *Ptr = IndirectStoresToEmit[i].second;
3777 SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3778 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3779 }
3780
3781 // Emit the non-flagged stores from the physregs.
3782 SmallVector<SDOperand, 8> OutChains;
3783 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3784 OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3785 getValue(StoresToEmit[i].second),
3786 StoresToEmit[i].second, 0));
3787 if (!OutChains.empty())
3788 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3789 &OutChains[0], OutChains.size());
3790 DAG.setRoot(Chain);
3791}
3792
3793
3794void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3795 SDOperand Src = getValue(I.getOperand(0));
3796
3797 MVT::ValueType IntPtr = TLI.getPointerTy();
3798
3799 if (IntPtr < Src.getValueType())
3800 Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3801 else if (IntPtr > Src.getValueType())
3802 Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3803
3804 // Scale the source by the type size.
Duncan Sandsf99fdc62007-11-01 20:53:16 +00003805 uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003806 Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3807 Src, getIntPtrConstant(ElementSize));
3808
3809 TargetLowering::ArgListTy Args;
3810 TargetLowering::ArgListEntry Entry;
3811 Entry.Node = Src;
3812 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3813 Args.push_back(Entry);
3814
3815 std::pair<SDOperand,SDOperand> Result =
3816 TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3817 DAG.getExternalSymbol("malloc", IntPtr),
3818 Args, DAG);
3819 setValue(&I, Result.first); // Pointers always fit in registers
3820 DAG.setRoot(Result.second);
3821}
3822
3823void SelectionDAGLowering::visitFree(FreeInst &I) {
3824 TargetLowering::ArgListTy Args;
3825 TargetLowering::ArgListEntry Entry;
3826 Entry.Node = getValue(I.getOperand(0));
3827 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3828 Args.push_back(Entry);
3829 MVT::ValueType IntPtr = TLI.getPointerTy();
3830 std::pair<SDOperand,SDOperand> Result =
3831 TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3832 DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3833 DAG.setRoot(Result.second);
3834}
3835
3836// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3837// mark instructions with the 'usesCustomDAGSchedInserter' flag. These
3838// instructions are special in various ways, which require special support to
3839// insert. The specified MachineInstr is created but not inserted into any
3840// basic blocks, and the scheduler passes ownership of it to this method.
3841MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3842 MachineBasicBlock *MBB) {
3843 cerr << "If a target marks an instruction with "
3844 << "'usesCustomDAGSchedInserter', it must implement "
3845 << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3846 abort();
3847 return 0;
3848}
3849
3850void SelectionDAGLowering::visitVAStart(CallInst &I) {
3851 DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3852 getValue(I.getOperand(1)),
3853 DAG.getSrcValue(I.getOperand(1))));
3854}
3855
3856void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3857 SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3858 getValue(I.getOperand(0)),
3859 DAG.getSrcValue(I.getOperand(0)));
3860 setValue(&I, V);
3861 DAG.setRoot(V.getValue(1));
3862}
3863
3864void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3865 DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3866 getValue(I.getOperand(1)),
3867 DAG.getSrcValue(I.getOperand(1))));
3868}
3869
3870void SelectionDAGLowering::visitVACopy(CallInst &I) {
3871 DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3872 getValue(I.getOperand(1)),
3873 getValue(I.getOperand(2)),
3874 DAG.getSrcValue(I.getOperand(1)),
3875 DAG.getSrcValue(I.getOperand(2))));
3876}
3877
3878/// TargetLowering::LowerArguments - This is the default LowerArguments
3879/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
3880/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3881/// integrated into SDISel.
3882std::vector<SDOperand>
3883TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003884 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3885 std::vector<SDOperand> Ops;
3886 Ops.push_back(DAG.getRoot());
3887 Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3888 Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3889
3890 // Add one result value for each formal argument.
3891 std::vector<MVT::ValueType> RetVals;
3892 unsigned j = 1;
3893 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3894 I != E; ++I, ++j) {
3895 MVT::ValueType VT = getValueType(I->getType());
3896 unsigned Flags = ISD::ParamFlags::NoFlagSet;
3897 unsigned OriginalAlignment =
3898 getTargetData()->getABITypeAlignment(I->getType());
3899
3900 // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3901 // that is zero extended!
Duncan Sands637ec552007-11-28 17:07:01 +00003902 if (F.paramHasAttr(j, ParamAttr::ZExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003903 Flags &= ~(ISD::ParamFlags::SExt);
Duncan Sands637ec552007-11-28 17:07:01 +00003904 if (F.paramHasAttr(j, ParamAttr::SExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003905 Flags |= ISD::ParamFlags::SExt;
Duncan Sands637ec552007-11-28 17:07:01 +00003906 if (F.paramHasAttr(j, ParamAttr::InReg))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003907 Flags |= ISD::ParamFlags::InReg;
Duncan Sands637ec552007-11-28 17:07:01 +00003908 if (F.paramHasAttr(j, ParamAttr::StructRet))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003909 Flags |= ISD::ParamFlags::StructReturn;
Duncan Sands637ec552007-11-28 17:07:01 +00003910 if (F.paramHasAttr(j, ParamAttr::ByVal)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003911 Flags |= ISD::ParamFlags::ByVal;
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003912 const PointerType *Ty = cast<PointerType>(I->getType());
3913 const StructType *STy = cast<StructType>(Ty->getElementType());
Rafael Espindolab5c5df42007-09-07 14:52:14 +00003914 unsigned StructAlign =
3915 Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
Duncan Sandsf99fdc62007-11-01 20:53:16 +00003916 unsigned StructSize = getTargetData()->getABITypeSize(STy);
Rafael Espindolae4e4d3e2007-08-10 14:44:42 +00003917 Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3918 Flags |= (StructSize << ISD::ParamFlags::ByValSizeOffs);
3919 }
Duncan Sands637ec552007-11-28 17:07:01 +00003920 if (F.paramHasAttr(j, ParamAttr::Nest))
Duncan Sands38947cd2007-07-27 12:58:54 +00003921 Flags |= ISD::ParamFlags::Nest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003922 Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3923
3924 switch (getTypeAction(VT)) {
3925 default: assert(0 && "Unknown type action!");
3926 case Legal:
3927 RetVals.push_back(VT);
3928 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3929 break;
3930 case Promote:
3931 RetVals.push_back(getTypeToTransformTo(VT));
3932 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3933 break;
3934 case Expand: {
3935 // If this is an illegal type, it needs to be broken up to fit into
3936 // registers.
3937 MVT::ValueType RegisterVT = getRegisterType(VT);
3938 unsigned NumRegs = getNumRegisters(VT);
3939 for (unsigned i = 0; i != NumRegs; ++i) {
3940 RetVals.push_back(RegisterVT);
3941 // if it isn't first piece, alignment must be 1
3942 if (i > 0)
3943 Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3944 (1 << ISD::ParamFlags::OrigAlignmentOffs);
3945 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3946 }
3947 break;
3948 }
3949 }
3950 }
3951
3952 RetVals.push_back(MVT::Other);
3953
3954 // Create the node.
3955 SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3956 DAG.getNodeValueTypes(RetVals), RetVals.size(),
3957 &Ops[0], Ops.size()).Val;
3958 unsigned NumArgRegs = Result->getNumValues() - 1;
3959 DAG.setRoot(SDOperand(Result, NumArgRegs));
3960
3961 // Set up the return result vector.
3962 Ops.clear();
3963 unsigned i = 0;
3964 unsigned Idx = 1;
3965 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3966 ++I, ++Idx) {
3967 MVT::ValueType VT = getValueType(I->getType());
3968
3969 switch (getTypeAction(VT)) {
3970 default: assert(0 && "Unknown type action!");
3971 case Legal:
3972 Ops.push_back(SDOperand(Result, i++));
3973 break;
3974 case Promote: {
3975 SDOperand Op(Result, i++);
3976 if (MVT::isInteger(VT)) {
Duncan Sands637ec552007-11-28 17:07:01 +00003977 if (F.paramHasAttr(Idx, ParamAttr::SExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003978 Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3979 DAG.getValueType(VT));
Duncan Sands637ec552007-11-28 17:07:01 +00003980 else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003981 Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3982 DAG.getValueType(VT));
3983 Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3984 } else {
3985 assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3986 Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3987 }
3988 Ops.push_back(Op);
3989 break;
3990 }
3991 case Expand: {
3992 MVT::ValueType PartVT = getRegisterType(VT);
3993 unsigned NumParts = getNumRegisters(VT);
3994 SmallVector<SDOperand, 4> Parts(NumParts);
3995 for (unsigned j = 0; j != NumParts; ++j)
3996 Parts[j] = SDOperand(Result, i++);
3997 Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3998 break;
3999 }
4000 }
4001 }
4002 assert(i == NumArgRegs && "Argument register count mismatch!");
4003 return Ops;
4004}
4005
4006
4007/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4008/// implementation, which just inserts an ISD::CALL node, which is later custom
4009/// lowered by the target to something concrete. FIXME: When all targets are
4010/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4011std::pair<SDOperand, SDOperand>
4012TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4013 bool RetTyIsSigned, bool isVarArg,
4014 unsigned CallingConv, bool isTailCall,
4015 SDOperand Callee,
4016 ArgListTy &Args, SelectionDAG &DAG) {
4017 SmallVector<SDOperand, 32> Ops;
4018 Ops.push_back(Chain); // Op#0 - Chain
4019 Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4020 Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg
4021 Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail
4022 Ops.push_back(Callee);
4023
4024 // Handle all of the outgoing arguments.
4025 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4026 MVT::ValueType VT = getValueType(Args[i].Ty);
4027 SDOperand Op = Args[i].Node;
4028 unsigned Flags = ISD::ParamFlags::NoFlagSet;
4029 unsigned OriginalAlignment =
4030 getTargetData()->getABITypeAlignment(Args[i].Ty);
4031
4032 if (Args[i].isSExt)
4033 Flags |= ISD::ParamFlags::SExt;
4034 if (Args[i].isZExt)
4035 Flags |= ISD::ParamFlags::ZExt;
4036 if (Args[i].isInReg)
4037 Flags |= ISD::ParamFlags::InReg;
4038 if (Args[i].isSRet)
4039 Flags |= ISD::ParamFlags::StructReturn;
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004040 if (Args[i].isByVal) {
4041 Flags |= ISD::ParamFlags::ByVal;
4042 const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4043 const StructType *STy = cast<StructType>(Ty->getElementType());
Rafael Espindolab5c5df42007-09-07 14:52:14 +00004044 unsigned StructAlign =
4045 Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
Duncan Sandsf99fdc62007-11-01 20:53:16 +00004046 unsigned StructSize = getTargetData()->getABITypeSize(STy);
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00004047 Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
4048 Flags |= (StructSize << ISD::ParamFlags::ByValSizeOffs);
4049 }
Duncan Sands38947cd2007-07-27 12:58:54 +00004050 if (Args[i].isNest)
4051 Flags |= ISD::ParamFlags::Nest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004052 Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4053
4054 switch (getTypeAction(VT)) {
4055 default: assert(0 && "Unknown type action!");
4056 case Legal:
4057 Ops.push_back(Op);
4058 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4059 break;
4060 case Promote:
4061 if (MVT::isInteger(VT)) {
4062 unsigned ExtOp;
4063 if (Args[i].isSExt)
4064 ExtOp = ISD::SIGN_EXTEND;
4065 else if (Args[i].isZExt)
4066 ExtOp = ISD::ZERO_EXTEND;
4067 else
4068 ExtOp = ISD::ANY_EXTEND;
4069 Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4070 } else {
4071 assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4072 Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4073 }
4074 Ops.push_back(Op);
4075 Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4076 break;
4077 case Expand: {
4078 MVT::ValueType PartVT = getRegisterType(VT);
4079 unsigned NumParts = getNumRegisters(VT);
4080 SmallVector<SDOperand, 4> Parts(NumParts);
4081 getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4082 for (unsigned i = 0; i != NumParts; ++i) {
4083 // if it isn't first piece, alignment must be 1
4084 unsigned MyFlags = Flags;
4085 if (i != 0)
4086 MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4087 (1 << ISD::ParamFlags::OrigAlignmentOffs);
4088
4089 Ops.push_back(Parts[i]);
4090 Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4091 }
4092 break;
4093 }
4094 }
4095 }
4096
4097 // Figure out the result value types.
4098 MVT::ValueType VT = getValueType(RetTy);
4099 MVT::ValueType RegisterVT = getRegisterType(VT);
4100 unsigned NumRegs = getNumRegisters(VT);
4101 SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4102 for (unsigned i = 0; i != NumRegs; ++i)
4103 RetTys[i] = RegisterVT;
4104
4105 RetTys.push_back(MVT::Other); // Always has a chain.
4106
4107 // Create the CALL node.
4108 SDOperand Res = DAG.getNode(ISD::CALL,
4109 DAG.getVTList(&RetTys[0], NumRegs + 1),
4110 &Ops[0], Ops.size());
Chris Lattnerbc1200c2007-08-02 18:08:16 +00004111 Chain = Res.getValue(NumRegs);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004112
4113 // Gather up the call result into a single value.
4114 if (RetTy != Type::VoidTy) {
4115 ISD::NodeType AssertOp = ISD::AssertSext;
4116 if (!RetTyIsSigned)
4117 AssertOp = ISD::AssertZext;
4118 SmallVector<SDOperand, 4> Results(NumRegs);
4119 for (unsigned i = 0; i != NumRegs; ++i)
4120 Results[i] = Res.getValue(i);
4121 Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4122 }
4123
4124 return std::make_pair(Res, Chain);
4125}
4126
4127SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4128 assert(0 && "LowerOperation not implemented for this target!");
4129 abort();
4130 return SDOperand();
4131}
4132
4133SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4134 SelectionDAG &DAG) {
4135 assert(0 && "CustomPromoteOperation not implemented for this target!");
4136 abort();
4137 return SDOperand();
4138}
4139
4140/// getMemsetValue - Vectorized representation of the memset value
4141/// operand.
4142static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4143 SelectionDAG &DAG) {
4144 MVT::ValueType CurVT = VT;
4145 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4146 uint64_t Val = C->getValue() & 255;
4147 unsigned Shift = 8;
4148 while (CurVT != MVT::i8) {
4149 Val = (Val << Shift) | Val;
4150 Shift <<= 1;
4151 CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4152 }
4153 return DAG.getConstant(Val, VT);
4154 } else {
4155 Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4156 unsigned Shift = 8;
4157 while (CurVT != MVT::i8) {
4158 Value =
4159 DAG.getNode(ISD::OR, VT,
4160 DAG.getNode(ISD::SHL, VT, Value,
4161 DAG.getConstant(Shift, MVT::i8)), Value);
4162 Shift <<= 1;
4163 CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4164 }
4165
4166 return Value;
4167 }
4168}
4169
4170/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4171/// used when a memcpy is turned into a memset when the source is a constant
4172/// string ptr.
4173static SDOperand getMemsetStringVal(MVT::ValueType VT,
4174 SelectionDAG &DAG, TargetLowering &TLI,
4175 std::string &Str, unsigned Offset) {
4176 uint64_t Val = 0;
4177 unsigned MSB = MVT::getSizeInBits(VT) / 8;
4178 if (TLI.isLittleEndian())
4179 Offset = Offset + MSB - 1;
4180 for (unsigned i = 0; i != MSB; ++i) {
4181 Val = (Val << 8) | (unsigned char)Str[Offset];
4182 Offset += TLI.isLittleEndian() ? -1 : 1;
4183 }
4184 return DAG.getConstant(Val, VT);
4185}
4186
4187/// getMemBasePlusOffset - Returns base and offset node for the
4188static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4189 SelectionDAG &DAG, TargetLowering &TLI) {
4190 MVT::ValueType VT = Base.getValueType();
4191 return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4192}
4193
4194/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4195/// to replace the memset / memcpy is below the threshold. It also returns the
4196/// types of the sequence of memory ops to perform memset / memcpy.
4197static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4198 unsigned Limit, uint64_t Size,
4199 unsigned Align, TargetLowering &TLI) {
4200 MVT::ValueType VT;
4201
4202 if (TLI.allowsUnalignedMemoryAccesses()) {
4203 VT = MVT::i64;
4204 } else {
4205 switch (Align & 7) {
4206 case 0:
4207 VT = MVT::i64;
4208 break;
4209 case 4:
4210 VT = MVT::i32;
4211 break;
4212 case 2:
4213 VT = MVT::i16;
4214 break;
4215 default:
4216 VT = MVT::i8;
4217 break;
4218 }
4219 }
4220
4221 MVT::ValueType LVT = MVT::i64;
4222 while (!TLI.isTypeLegal(LVT))
4223 LVT = (MVT::ValueType)((unsigned)LVT - 1);
4224 assert(MVT::isInteger(LVT));
4225
4226 if (VT > LVT)
4227 VT = LVT;
4228
4229 unsigned NumMemOps = 0;
4230 while (Size != 0) {
4231 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4232 while (VTSize > Size) {
4233 VT = (MVT::ValueType)((unsigned)VT - 1);
4234 VTSize >>= 1;
4235 }
4236 assert(MVT::isInteger(VT));
4237
4238 if (++NumMemOps > Limit)
4239 return false;
4240 MemOps.push_back(VT);
4241 Size -= VTSize;
4242 }
4243
4244 return true;
4245}
4246
4247void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4248 SDOperand Op1 = getValue(I.getOperand(1));
4249 SDOperand Op2 = getValue(I.getOperand(2));
4250 SDOperand Op3 = getValue(I.getOperand(3));
4251 SDOperand Op4 = getValue(I.getOperand(4));
4252 unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4253 if (Align == 0) Align = 1;
4254
Dan Gohmancc863aa2007-08-27 16:26:13 +00004255 // If the source and destination are known to not be aliases, we can
4256 // lower memmove as memcpy.
4257 if (Op == ISD::MEMMOVE) {
Anton Korobeynikov94c46a02007-09-07 11:39:35 +00004258 uint64_t Size = -1ULL;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004259 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4260 Size = C->getValue();
4261 if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4262 AliasAnalysis::NoAlias)
4263 Op = ISD::MEMCPY;
4264 }
4265
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004266 if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4267 std::vector<MVT::ValueType> MemOps;
4268
4269 // Expand memset / memcpy to a series of load / store ops
4270 // if the size operand falls below a certain threshold.
4271 SmallVector<SDOperand, 8> OutChains;
4272 switch (Op) {
4273 default: break; // Do nothing for now.
4274 case ISD::MEMSET: {
4275 if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4276 Size->getValue(), Align, TLI)) {
4277 unsigned NumMemOps = MemOps.size();
4278 unsigned Offset = 0;
4279 for (unsigned i = 0; i < NumMemOps; i++) {
4280 MVT::ValueType VT = MemOps[i];
4281 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4282 SDOperand Value = getMemsetValue(Op2, VT, DAG);
4283 SDOperand Store = DAG.getStore(getRoot(), Value,
4284 getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4285 I.getOperand(1), Offset);
4286 OutChains.push_back(Store);
4287 Offset += VTSize;
4288 }
4289 }
4290 break;
4291 }
4292 case ISD::MEMCPY: {
4293 if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4294 Size->getValue(), Align, TLI)) {
4295 unsigned NumMemOps = MemOps.size();
4296 unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4297 GlobalAddressSDNode *G = NULL;
4298 std::string Str;
4299 bool CopyFromStr = false;
4300
4301 if (Op2.getOpcode() == ISD::GlobalAddress)
4302 G = cast<GlobalAddressSDNode>(Op2);
4303 else if (Op2.getOpcode() == ISD::ADD &&
4304 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4305 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4306 G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4307 SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4308 }
4309 if (G) {
4310 GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4311 if (GV && GV->isConstant()) {
4312 Str = GV->getStringValue(false);
4313 if (!Str.empty()) {
4314 CopyFromStr = true;
4315 SrcOff += SrcDelta;
4316 }
4317 }
4318 }
4319
4320 for (unsigned i = 0; i < NumMemOps; i++) {
4321 MVT::ValueType VT = MemOps[i];
4322 unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4323 SDOperand Value, Chain, Store;
4324
4325 if (CopyFromStr) {
4326 Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4327 Chain = getRoot();
4328 Store =
4329 DAG.getStore(Chain, Value,
4330 getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4331 I.getOperand(1), DstOff);
4332 } else {
4333 Value = DAG.getLoad(VT, getRoot(),
Bill Wendling84ebece2007-10-26 20:24:42 +00004334 getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4335 I.getOperand(2), SrcOff, false, Align);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004336 Chain = Value.getValue(1);
4337 Store =
4338 DAG.getStore(Chain, Value,
4339 getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
Bill Wendling84ebece2007-10-26 20:24:42 +00004340 I.getOperand(1), DstOff, false, Align);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004341 }
4342 OutChains.push_back(Store);
4343 SrcOff += VTSize;
4344 DstOff += VTSize;
4345 }
4346 }
4347 break;
4348 }
4349 }
4350
4351 if (!OutChains.empty()) {
4352 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4353 &OutChains[0], OutChains.size()));
4354 return;
4355 }
4356 }
4357
Rafael Espindola80825902007-10-19 10:41:11 +00004358 SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
4359 SDOperand Node;
4360 switch(Op) {
4361 default:
4362 assert(0 && "Unknown Op");
4363 case ISD::MEMCPY:
4364 Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4365 break;
4366 case ISD::MEMMOVE:
4367 Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4368 break;
4369 case ISD::MEMSET:
4370 Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4371 break;
4372 }
4373 DAG.setRoot(Node);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004374}
4375
4376//===----------------------------------------------------------------------===//
4377// SelectionDAGISel code
4378//===----------------------------------------------------------------------===//
4379
4380unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4381 return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4382}
4383
4384void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4385 AU.addRequired<AliasAnalysis>();
4386 AU.setPreservesAll();
4387}
4388
4389
4390
4391bool SelectionDAGISel::runOnFunction(Function &Fn) {
Dan Gohmancc863aa2007-08-27 16:26:13 +00004392 // Get alias analysis for load/store combining.
4393 AA = &getAnalysis<AliasAnalysis>();
4394
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004395 MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4396 RegMap = MF.getSSARegMap();
4397 DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4398
4399 FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4400
4401 if (ExceptionHandling)
4402 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4403 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4404 // Mark landing pad.
4405 FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4406
4407 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4408 SelectBasicBlock(I, MF, FuncInfo);
4409
4410 // Add function live-ins to entry block live-in set.
4411 BasicBlock *EntryBB = &Fn.getEntryBlock();
4412 BB = FuncInfo.MBBMap[EntryBB];
4413 if (!MF.livein_empty())
4414 for (MachineFunction::livein_iterator I = MF.livein_begin(),
4415 E = MF.livein_end(); I != E; ++I)
4416 BB->addLiveIn(I->first);
4417
4418#ifndef NDEBUG
4419 assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4420 "Not all catch info was assigned to a landing pad!");
4421#endif
4422
4423 return true;
4424}
4425
4426SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4427 unsigned Reg) {
4428 SDOperand Op = getValue(V);
4429 assert((Op.getOpcode() != ISD::CopyFromReg ||
4430 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4431 "Copy from a reg to the same reg!");
4432
4433 MVT::ValueType SrcVT = Op.getValueType();
4434 MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4435 unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4436 SmallVector<SDOperand, 8> Regs(NumRegs);
4437 SmallVector<SDOperand, 8> Chains(NumRegs);
4438
4439 // Copy the value by legal parts into sequential virtual registers.
4440 getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4441 for (unsigned i = 0; i != NumRegs; ++i)
4442 Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4443 return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4444}
4445
4446void SelectionDAGISel::
4447LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4448 std::vector<SDOperand> &UnorderedChains) {
4449 // If this is the entry block, emit arguments.
4450 Function &F = *LLVMBB->getParent();
4451 FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4452 SDOperand OldRoot = SDL.DAG.getRoot();
4453 std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4454
4455 unsigned a = 0;
4456 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4457 AI != E; ++AI, ++a)
4458 if (!AI->use_empty()) {
4459 SDL.setValue(AI, Args[a]);
4460
4461 // If this argument is live outside of the entry block, insert a copy from
4462 // whereever we got it to the vreg that other BB's will reference it as.
4463 DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4464 if (VMI != FuncInfo.ValueMap.end()) {
4465 SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4466 UnorderedChains.push_back(Copy);
4467 }
4468 }
4469
4470 // Finally, if the target has anything special to do, allow it to do so.
4471 // FIXME: this should insert code into the DAG!
4472 EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4473}
4474
4475static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4476 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004477 for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4478 if (isSelector(I)) {
4479 // Apply the catch info to DestBB.
4480 addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4481#ifndef NDEBUG
Duncan Sands9b7e1482007-11-15 09:54:37 +00004482 if (!FLI.MBBMap[SrcBB]->isLandingPad())
4483 FLI.CatchInfoFound.insert(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004484#endif
4485 }
4486}
4487
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004488/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00004489/// DAG and fixes their tailcall attribute operand.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004490static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4491 TargetLowering& TLI) {
4492 SDNode * Ret = NULL;
4493 SDOperand Terminator = DAG.getRoot();
4494
4495 // Find RET node.
4496 if (Terminator.getOpcode() == ISD::RET) {
4497 Ret = Terminator.Val;
4498 }
4499
4500 // Fix tail call attribute of CALL nodes.
4501 for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4502 BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4503 if (BI->getOpcode() == ISD::CALL) {
4504 SDOperand OpRet(Ret, 0);
4505 SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4506 bool isMarkedTailCall =
4507 cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4508 // If CALL node has tail call attribute set to true and the call is not
4509 // eligible (no RET or the target rejects) the attribute is fixed to
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00004510 // false. The TargetLowering::IsEligibleForTailCallOptimization function
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004511 // must correctly identify tail call optimizable calls.
4512 if (isMarkedTailCall &&
4513 (Ret==NULL ||
4514 !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4515 SmallVector<SDOperand, 32> Ops;
4516 unsigned idx=0;
4517 for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4518 E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4519 if (idx!=3)
4520 Ops.push_back(*I);
4521 else
4522 Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4523 }
4524 DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4525 }
4526 }
4527 }
4528}
4529
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004530void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4531 std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4532 FunctionLoweringInfo &FuncInfo) {
Dan Gohmancc863aa2007-08-27 16:26:13 +00004533 SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004534
4535 std::vector<SDOperand> UnorderedChains;
4536
4537 // Lower any arguments needed in this block if this is the entry block.
4538 if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4539 LowerArguments(LLVMBB, SDL, UnorderedChains);
4540
4541 BB = FuncInfo.MBBMap[LLVMBB];
4542 SDL.setCurrentBasicBlock(BB);
4543
4544 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4545
4546 if (ExceptionHandling && MMI && BB->isLandingPad()) {
4547 // Add a label to mark the beginning of the landing pad. Deletion of the
4548 // landing pad can thus be detected via the MachineModuleInfo.
4549 unsigned LabelID = MMI->addLandingPad(BB);
4550 DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4551 DAG.getConstant(LabelID, MVT::i32)));
4552
4553 // Mark exception register as live in.
4554 unsigned Reg = TLI.getExceptionAddressRegister();
4555 if (Reg) BB->addLiveIn(Reg);
4556
4557 // Mark exception selector register as live in.
4558 Reg = TLI.getExceptionSelectorRegister();
4559 if (Reg) BB->addLiveIn(Reg);
4560
4561 // FIXME: Hack around an exception handling flaw (PR1508): the personality
4562 // function and list of typeids logically belong to the invoke (or, if you
4563 // like, the basic block containing the invoke), and need to be associated
4564 // with it in the dwarf exception handling tables. Currently however the
4565 // information is provided by an intrinsic (eh.selector) that can be moved
4566 // to unexpected places by the optimizers: if the unwind edge is critical,
4567 // then breaking it can result in the intrinsics being in the successor of
4568 // the landing pad, not the landing pad itself. This results in exceptions
4569 // not being caught because no typeids are associated with the invoke.
4570 // This may not be the only way things can go wrong, but it is the only way
4571 // we try to work around for the moment.
4572 BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4573
4574 if (Br && Br->isUnconditional()) { // Critical edge?
4575 BasicBlock::iterator I, E;
4576 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4577 if (isSelector(I))
4578 break;
4579
4580 if (I == E)
4581 // No catch info found - try to extract some from the successor.
4582 copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4583 }
4584 }
4585
4586 // Lower all of the non-terminator instructions.
4587 for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4588 I != E; ++I)
4589 SDL.visit(*I);
4590
4591 // Ensure that all instructions which are used outside of their defining
4592 // blocks are available as virtual registers. Invoke is handled elsewhere.
4593 for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4594 if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4595 DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4596 if (VMI != FuncInfo.ValueMap.end())
4597 UnorderedChains.push_back(
4598 SDL.CopyValueToVirtualRegister(I, VMI->second));
4599 }
4600
4601 // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
4602 // ensure constants are generated when needed. Remember the virtual registers
4603 // that need to be added to the Machine PHI nodes as input. We cannot just
4604 // directly add them, because expansion might result in multiple MBB's for one
4605 // BB. As such, the start of the BB might correspond to a different MBB than
4606 // the end.
4607 //
4608 TerminatorInst *TI = LLVMBB->getTerminator();
4609
4610 // Emit constants only once even if used by multiple PHI nodes.
4611 std::map<Constant*, unsigned> ConstantsOut;
4612
4613 // Vector bool would be better, but vector<bool> is really slow.
4614 std::vector<unsigned char> SuccsHandled;
4615 if (TI->getNumSuccessors())
4616 SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4617
4618 // Check successor nodes' PHI nodes that expect a constant to be available
4619 // from this block.
4620 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4621 BasicBlock *SuccBB = TI->getSuccessor(succ);
4622 if (!isa<PHINode>(SuccBB->begin())) continue;
4623 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4624
4625 // If this terminator has multiple identical successors (common for
4626 // switches), only handle each succ once.
4627 unsigned SuccMBBNo = SuccMBB->getNumber();
4628 if (SuccsHandled[SuccMBBNo]) continue;
4629 SuccsHandled[SuccMBBNo] = true;
4630
4631 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4632 PHINode *PN;
4633
4634 // At this point we know that there is a 1-1 correspondence between LLVM PHI
4635 // nodes and Machine PHI nodes, but the incoming operands have not been
4636 // emitted yet.
4637 for (BasicBlock::iterator I = SuccBB->begin();
4638 (PN = dyn_cast<PHINode>(I)); ++I) {
4639 // Ignore dead phi's.
4640 if (PN->use_empty()) continue;
4641
4642 unsigned Reg;
4643 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4644
4645 if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4646 unsigned &RegOut = ConstantsOut[C];
4647 if (RegOut == 0) {
4648 RegOut = FuncInfo.CreateRegForValue(C);
4649 UnorderedChains.push_back(
4650 SDL.CopyValueToVirtualRegister(C, RegOut));
4651 }
4652 Reg = RegOut;
4653 } else {
4654 Reg = FuncInfo.ValueMap[PHIOp];
4655 if (Reg == 0) {
4656 assert(isa<AllocaInst>(PHIOp) &&
4657 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4658 "Didn't codegen value into a register!??");
4659 Reg = FuncInfo.CreateRegForValue(PHIOp);
4660 UnorderedChains.push_back(
4661 SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4662 }
4663 }
4664
4665 // Remember that this register needs to added to the machine PHI node as
4666 // the input for this MBB.
4667 MVT::ValueType VT = TLI.getValueType(PN->getType());
4668 unsigned NumRegisters = TLI.getNumRegisters(VT);
4669 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4670 PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4671 }
4672 }
4673 ConstantsOut.clear();
4674
4675 // Turn all of the unordered chains into one factored node.
4676 if (!UnorderedChains.empty()) {
4677 SDOperand Root = SDL.getRoot();
4678 if (Root.getOpcode() != ISD::EntryToken) {
4679 unsigned i = 0, e = UnorderedChains.size();
4680 for (; i != e; ++i) {
4681 assert(UnorderedChains[i].Val->getNumOperands() > 1);
4682 if (UnorderedChains[i].Val->getOperand(0) == Root)
4683 break; // Don't add the root if we already indirectly depend on it.
4684 }
4685
4686 if (i == e)
4687 UnorderedChains.push_back(Root);
4688 }
4689 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4690 &UnorderedChains[0], UnorderedChains.size()));
4691 }
4692
4693 // Lower the terminator after the copies are emitted.
4694 SDL.visit(*LLVMBB->getTerminator());
4695
4696 // Copy over any CaseBlock records that may now exist due to SwitchInst
4697 // lowering, as well as any jump table information.
4698 SwitchCases.clear();
4699 SwitchCases = SDL.SwitchCases;
4700 JTCases.clear();
4701 JTCases = SDL.JTCases;
4702 BitTestCases.clear();
4703 BitTestCases = SDL.BitTestCases;
4704
4705 // Make sure the root of the DAG is up-to-date.
4706 DAG.setRoot(SDL.getRoot());
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004707
4708 // Check whether calls in this block are real tail calls. Fix up CALL nodes
4709 // with correct tailcall attribute so that the target can rely on the tailcall
4710 // attribute indicating whether the call is really eligible for tail call
4711 // optimization.
4712 CheckDAGForTailCallsAndFixThem(DAG, TLI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004713}
4714
4715void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004716 DOUT << "Lowered selection DAG:\n";
4717 DEBUG(DAG.dump());
4718
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004719 // Run the DAG combiner in pre-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004720 DAG.Combine(false, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004721
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004722 DOUT << "Optimized lowered selection DAG:\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004723 DEBUG(DAG.dump());
4724
4725 // Second step, hack on the DAG until it only uses operations and types that
4726 // the target supports.
Chris Lattner8a258202007-10-15 06:10:22 +00004727#if 0 // Enable this some day.
4728 DAG.LegalizeTypes();
4729 // Someday even later, enable a dag combine pass here.
4730#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004731 DAG.Legalize();
4732
4733 DOUT << "Legalized selection DAG:\n";
4734 DEBUG(DAG.dump());
4735
4736 // Run the DAG combiner in post-legalize mode.
Dan Gohmancc863aa2007-08-27 16:26:13 +00004737 DAG.Combine(true, *AA);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004738
Dan Gohmaneebf44e2007-10-08 15:12:17 +00004739 DOUT << "Optimized legalized selection DAG:\n";
4740 DEBUG(DAG.dump());
4741
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004742 if (ViewISelDAGs) DAG.viewGraph();
4743
4744 // Third, instruction select all of the operations to machine code, adding the
4745 // code to the MachineBasicBlock.
4746 InstructionSelectBasicBlock(DAG);
4747
4748 DOUT << "Selected machine code:\n";
4749 DEBUG(BB->dump());
4750}
4751
4752void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4753 FunctionLoweringInfo &FuncInfo) {
4754 std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4755 {
4756 SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4757 CurDAG = &DAG;
4758
4759 // First step, lower LLVM code to some DAG. This DAG may use operations and
4760 // types that are not supported by the target.
4761 BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4762
4763 // Second step, emit the lowered DAG as machine code.
4764 CodeGenAndEmitDAG(DAG);
4765 }
4766
4767 DOUT << "Total amount of phi nodes to update: "
4768 << PHINodesToUpdate.size() << "\n";
4769 DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4770 DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4771 << ", " << PHINodesToUpdate[i].second << ")\n";);
4772
4773 // Next, now that we know what the last MBB the LLVM BB expanded is, update
4774 // PHI nodes in successors.
4775 if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4776 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4777 MachineInstr *PHI = PHINodesToUpdate[i].first;
4778 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4779 "This is not a machine PHI node that we are updating!");
4780 PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4781 PHI->addMachineBasicBlockOperand(BB);
4782 }
4783 return;
4784 }
4785
4786 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4787 // Lower header first, if it wasn't already lowered
4788 if (!BitTestCases[i].Emitted) {
4789 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4790 CurDAG = &HSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004791 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004792 // Set the current basic block to the mbb we wish to insert the code into
4793 BB = BitTestCases[i].Parent;
4794 HSDL.setCurrentBasicBlock(BB);
4795 // Emit the code
4796 HSDL.visitBitTestHeader(BitTestCases[i]);
4797 HSDAG.setRoot(HSDL.getRoot());
4798 CodeGenAndEmitDAG(HSDAG);
4799 }
4800
4801 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4802 SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4803 CurDAG = &BSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004804 SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004805 // Set the current basic block to the mbb we wish to insert the code into
4806 BB = BitTestCases[i].Cases[j].ThisBB;
4807 BSDL.setCurrentBasicBlock(BB);
4808 // Emit the code
4809 if (j+1 != ej)
4810 BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4811 BitTestCases[i].Reg,
4812 BitTestCases[i].Cases[j]);
4813 else
4814 BSDL.visitBitTestCase(BitTestCases[i].Default,
4815 BitTestCases[i].Reg,
4816 BitTestCases[i].Cases[j]);
4817
4818
4819 BSDAG.setRoot(BSDL.getRoot());
4820 CodeGenAndEmitDAG(BSDAG);
4821 }
4822
4823 // Update PHI Nodes
4824 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4825 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4826 MachineBasicBlock *PHIBB = PHI->getParent();
4827 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4828 "This is not a machine PHI node that we are updating!");
4829 // This is "default" BB. We have two jumps to it. From "header" BB and
4830 // from last "case" BB.
4831 if (PHIBB == BitTestCases[i].Default) {
4832 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4833 PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4834 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4835 PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4836 }
4837 // One of "cases" BB.
4838 for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4839 MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4840 if (cBB->succ_end() !=
4841 std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4842 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4843 PHI->addMachineBasicBlockOperand(cBB);
4844 }
4845 }
4846 }
4847 }
4848
4849 // If the JumpTable record is filled in, then we need to emit a jump table.
4850 // Updating the PHI nodes is tricky in this case, since we need to determine
4851 // whether the PHI is a successor of the range check MBB or the jump table MBB
4852 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4853 // Lower header first, if it wasn't already lowered
4854 if (!JTCases[i].first.Emitted) {
4855 SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4856 CurDAG = &HSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004857 SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004858 // Set the current basic block to the mbb we wish to insert the code into
4859 BB = JTCases[i].first.HeaderBB;
4860 HSDL.setCurrentBasicBlock(BB);
4861 // Emit the code
4862 HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4863 HSDAG.setRoot(HSDL.getRoot());
4864 CodeGenAndEmitDAG(HSDAG);
4865 }
4866
4867 SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4868 CurDAG = &JSDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004869 SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004870 // Set the current basic block to the mbb we wish to insert the code into
4871 BB = JTCases[i].second.MBB;
4872 JSDL.setCurrentBasicBlock(BB);
4873 // Emit the code
4874 JSDL.visitJumpTable(JTCases[i].second);
4875 JSDAG.setRoot(JSDL.getRoot());
4876 CodeGenAndEmitDAG(JSDAG);
4877
4878 // Update PHI Nodes
4879 for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4880 MachineInstr *PHI = PHINodesToUpdate[pi].first;
4881 MachineBasicBlock *PHIBB = PHI->getParent();
4882 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4883 "This is not a machine PHI node that we are updating!");
4884 // "default" BB. We can go there only from header BB.
4885 if (PHIBB == JTCases[i].second.Default) {
4886 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4887 PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4888 }
4889 // JT BB. Just iterate over successors here
4890 if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4891 PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4892 PHI->addMachineBasicBlockOperand(BB);
4893 }
4894 }
4895 }
4896
4897 // If the switch block involved a branch to one of the actual successors, we
4898 // need to update PHI nodes in that block.
4899 for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4900 MachineInstr *PHI = PHINodesToUpdate[i].first;
4901 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4902 "This is not a machine PHI node that we are updating!");
4903 if (BB->isSuccessor(PHI->getParent())) {
4904 PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4905 PHI->addMachineBasicBlockOperand(BB);
4906 }
4907 }
4908
4909 // If we generated any switch lowering information, build and codegen any
4910 // additional DAGs necessary.
4911 for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4912 SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4913 CurDAG = &SDAG;
Dan Gohmancc863aa2007-08-27 16:26:13 +00004914 SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004915
4916 // Set the current basic block to the mbb we wish to insert the code into
4917 BB = SwitchCases[i].ThisBB;
4918 SDL.setCurrentBasicBlock(BB);
4919
4920 // Emit the code
4921 SDL.visitSwitchCase(SwitchCases[i]);
4922 SDAG.setRoot(SDL.getRoot());
4923 CodeGenAndEmitDAG(SDAG);
4924
4925 // Handle any PHI nodes in successors of this chunk, as if we were coming
4926 // from the original BB before switch expansion. Note that PHI nodes can
4927 // occur multiple times in PHINodesToUpdate. We have to be very careful to
4928 // handle them the right number of times.
4929 while ((BB = SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
4930 for (MachineBasicBlock::iterator Phi = BB->begin();
4931 Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4932 // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4933 for (unsigned pn = 0; ; ++pn) {
4934 assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4935 if (PHINodesToUpdate[pn].first == Phi) {
4936 Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4937 Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4938 break;
4939 }
4940 }
4941 }
4942
4943 // Don't process RHS if same block as LHS.
4944 if (BB == SwitchCases[i].FalseBB)
4945 SwitchCases[i].FalseBB = 0;
4946
4947 // If we haven't handled the RHS, do so now. Otherwise, we're done.
4948 SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4949 SwitchCases[i].FalseBB = 0;
4950 }
4951 assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4952 }
4953}
4954
4955
4956//===----------------------------------------------------------------------===//
4957/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4958/// target node in the graph.
4959void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4960 if (ViewSchedDAGs) DAG.viewGraph();
4961
4962 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4963
4964 if (!Ctor) {
4965 Ctor = ISHeuristic;
4966 RegisterScheduler::setDefault(Ctor);
4967 }
4968
4969 ScheduleDAG *SL = Ctor(this, &DAG, BB);
4970 BB = SL->Run();
Dan Gohman134c5b62007-08-28 20:32:58 +00004971
4972 if (ViewSUnitDAGs) SL->viewGraph();
4973
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004974 delete SL;
4975}
4976
4977
4978HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4979 return new HazardRecognizer();
4980}
4981
4982//===----------------------------------------------------------------------===//
4983// Helper functions used by the generated instruction selector.
4984//===----------------------------------------------------------------------===//
4985// Calls to these methods are generated by tblgen.
4986
4987/// CheckAndMask - The isel is trying to match something like (and X, 255). If
4988/// the dag combiner simplified the 255, we still want to match. RHS is the
4989/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4990/// specified in the .td file (e.g. 255).
4991bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00004992 int64_t DesiredMaskS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004993 uint64_t ActualMask = RHS->getValue();
4994 uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4995
4996 // If the actual mask exactly matches, success!
4997 if (ActualMask == DesiredMask)
4998 return true;
4999
5000 // If the actual AND mask is allowing unallowed bits, this doesn't match.
5001 if (ActualMask & ~DesiredMask)
5002 return false;
5003
5004 // Otherwise, the DAG Combiner may have proven that the value coming in is
5005 // either already zero or is not demanded. Check for known zero input bits.
5006 uint64_t NeededMask = DesiredMask & ~ActualMask;
5007 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5008 return true;
5009
5010 // TODO: check to see if missing bits are just not demanded.
5011
5012 // Otherwise, this pattern doesn't match.
5013 return false;
5014}
5015
5016/// CheckOrMask - The isel is trying to match something like (or X, 255). If
5017/// the dag combiner simplified the 255, we still want to match. RHS is the
5018/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5019/// specified in the .td file (e.g. 255).
5020bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
Dan Gohmand6098272007-07-24 23:00:27 +00005021 int64_t DesiredMaskS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005022 uint64_t ActualMask = RHS->getValue();
5023 uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5024
5025 // If the actual mask exactly matches, success!
5026 if (ActualMask == DesiredMask)
5027 return true;
5028
5029 // If the actual AND mask is allowing unallowed bits, this doesn't match.
5030 if (ActualMask & ~DesiredMask)
5031 return false;
5032
5033 // Otherwise, the DAG Combiner may have proven that the value coming in is
5034 // either already zero or is not demanded. Check for known zero input bits.
5035 uint64_t NeededMask = DesiredMask & ~ActualMask;
5036
5037 uint64_t KnownZero, KnownOne;
5038 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5039
5040 // If all the missing bits in the or are already known to be set, match!
5041 if ((NeededMask & KnownOne) == NeededMask)
5042 return true;
5043
5044 // TODO: check to see if missing bits are just not demanded.
5045
5046 // Otherwise, this pattern doesn't match.
5047 return false;
5048}
5049
5050
5051/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5052/// by tblgen. Others should not call it.
5053void SelectionDAGISel::
5054SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5055 std::vector<SDOperand> InOps;
5056 std::swap(InOps, Ops);
5057
5058 Ops.push_back(InOps[0]); // input chain.
5059 Ops.push_back(InOps[1]); // input asm string.
5060
5061 unsigned i = 2, e = InOps.size();
5062 if (InOps[e-1].getValueType() == MVT::Flag)
5063 --e; // Don't process a flag operand if it is here.
5064
5065 while (i != e) {
5066 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5067 if ((Flags & 7) != 4 /*MEM*/) {
5068 // Just skip over this operand, copying the operands verbatim.
5069 Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5070 i += (Flags >> 3) + 1;
5071 } else {
5072 assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5073 // Otherwise, this is a memory operand. Ask the target to select it.
5074 std::vector<SDOperand> SelOps;
5075 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5076 cerr << "Could not match memory address. Inline asm failure!\n";
5077 exit(1);
5078 }
5079
5080 // Add this to the output node.
5081 MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5082 Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5083 IntPtrTy));
5084 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5085 i += 2;
5086 }
5087 }
5088
5089 // Add the flag input back if present.
5090 if (e != InOps.size())
5091 Ops.push_back(InOps.back());
5092}
5093
5094char SelectionDAGISel::ID = 0;