blob: 206d15f0628527a6b24ef945ba444bfa8ea0cc01 [file] [log] [blame]
Owen Andersond8c87882011-02-18 21:51:29 +00001//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// It contains the tablegen backend that emits the decoder functions for
11// targets with fixed length instruction set.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "decoder-emitter"
16
17#include "FixedLenDecoderEmitter.h"
18#include "CodeGenTarget.h"
19#include "Record.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/raw_ostream.h"
23
24#include <vector>
25#include <map>
26#include <string>
27
28using namespace llvm;
29
30// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
31// for a bit value.
32//
33// BIT_UNFILTERED is used as the init value for a filter position. It is used
34// only for filter processings.
35typedef enum {
36 BIT_TRUE, // '1'
37 BIT_FALSE, // '0'
38 BIT_UNSET, // '?'
39 BIT_UNFILTERED // unfiltered
40} bit_value_t;
41
42static bool ValueSet(bit_value_t V) {
43 return (V == BIT_TRUE || V == BIT_FALSE);
44}
45static bool ValueNotSet(bit_value_t V) {
46 return (V == BIT_UNSET);
47}
48static int Value(bit_value_t V) {
49 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
50}
Eric Christopherd568b3f2011-07-11 23:06:52 +000051static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
52 if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
Owen Andersond8c87882011-02-18 21:51:29 +000053 return bit->getValue() ? BIT_TRUE : BIT_FALSE;
54
55 // The bit is uninitialized.
56 return BIT_UNSET;
57}
58// Prints the bit value for each position.
Eric Christopherd568b3f2011-07-11 23:06:52 +000059static void dumpBits(raw_ostream &o, BitsInit &bits) {
Owen Andersond8c87882011-02-18 21:51:29 +000060 unsigned index;
61
62 for (index = bits.getNumBits(); index > 0; index--) {
63 switch (bitFromBits(bits, index - 1)) {
64 case BIT_TRUE:
65 o << "1";
66 break;
67 case BIT_FALSE:
68 o << "0";
69 break;
70 case BIT_UNSET:
71 o << "_";
72 break;
73 default:
74 assert(0 && "unexpected return value from bitFromBits");
75 }
76 }
77}
78
Eric Christopherd568b3f2011-07-11 23:06:52 +000079static BitsInit &getBitsField(const Record &def, const char *str) {
80 BitsInit *bits = def.getValueAsBitsInit(str);
Owen Andersond8c87882011-02-18 21:51:29 +000081 return *bits;
82}
83
84// Forward declaration.
85class FilterChooser;
86
Owen Andersond8c87882011-02-18 21:51:29 +000087// Representation of the instruction to work on.
Owen Andersonf1a00902011-07-19 21:06:00 +000088typedef std::vector<bit_value_t> insn_t;
Owen Andersond8c87882011-02-18 21:51:29 +000089
90/// Filter - Filter works with FilterChooser to produce the decoding tree for
91/// the ISA.
92///
93/// It is useful to think of a Filter as governing the switch stmts of the
94/// decoding tree in a certain level. Each case stmt delegates to an inferior
95/// FilterChooser to decide what further decoding logic to employ, or in another
96/// words, what other remaining bits to look at. The FilterChooser eventually
97/// chooses a best Filter to do its job.
98///
99/// This recursive scheme ends when the number of Opcodes assigned to the
100/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
101/// the Filter/FilterChooser combo does not know how to distinguish among the
102/// Opcodes assigned.
103///
104/// An example of a conflict is
105///
106/// Conflict:
107/// 111101000.00........00010000....
108/// 111101000.00........0001........
109/// 1111010...00........0001........
110/// 1111010...00....................
111/// 1111010.........................
112/// 1111............................
113/// ................................
114/// VST4q8a 111101000_00________00010000____
115/// VST4q8b 111101000_00________00010000____
116///
117/// The Debug output shows the path that the decoding tree follows to reach the
118/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
119/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
120///
121/// The encoding info in the .td files does not specify this meta information,
122/// which could have been used by the decoder to resolve the conflict. The
123/// decoder could try to decode the even/odd register numbering and assign to
124/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
125/// version and return the Opcode since the two have the same Asm format string.
126class Filter {
127protected:
128 FilterChooser *Owner; // points to the FilterChooser who owns this filter
129 unsigned StartBit; // the starting bit position
130 unsigned NumBits; // number of bits to filter
131 bool Mixed; // a mixed region contains both set and unset bits
132
133 // Map of well-known segment value to the set of uid's with that value.
134 std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
135
136 // Set of uid's with non-constant segment values.
137 std::vector<unsigned> VariableInstructions;
138
139 // Map of well-known segment value to its delegate.
140 std::map<unsigned, FilterChooser*> FilterChooserMap;
141
142 // Number of instructions which fall under FilteredInstructions category.
143 unsigned NumFiltered;
144
145 // Keeps track of the last opcode in the filtered bucket.
146 unsigned LastOpcFiltered;
147
148 // Number of instructions which fall under VariableInstructions category.
149 unsigned NumVariable;
150
151public:
152 unsigned getNumFiltered() { return NumFiltered; }
153 unsigned getNumVariable() { return NumVariable; }
154 unsigned getSingletonOpc() {
155 assert(NumFiltered == 1);
156 return LastOpcFiltered;
157 }
158 // Return the filter chooser for the group of instructions without constant
159 // segment values.
160 FilterChooser &getVariableFC() {
161 assert(NumFiltered == 1);
162 assert(FilterChooserMap.size() == 1);
163 return *(FilterChooserMap.find((unsigned)-1)->second);
164 }
165
166 Filter(const Filter &f);
167 Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
168
169 ~Filter();
170
171 // Divides the decoding task into sub tasks and delegates them to the
172 // inferior FilterChooser's.
173 //
174 // A special case arises when there's only one entry in the filtered
175 // instructions. In order to unambiguously decode the singleton, we need to
176 // match the remaining undecoded encoding bits against the singleton.
177 void recurse();
178
179 // Emit code to decode instructions given a segment or segments of bits.
180 void emit(raw_ostream &o, unsigned &Indentation);
181
182 // Returns the number of fanout produced by the filter. More fanout implies
183 // the filter distinguishes more categories of instructions.
184 unsigned usefulness() const;
185}; // End of class Filter
186
187// These are states of our finite state machines used in FilterChooser's
188// filterProcessor() which produces the filter candidates to use.
189typedef enum {
190 ATTR_NONE,
191 ATTR_FILTERED,
192 ATTR_ALL_SET,
193 ATTR_ALL_UNSET,
194 ATTR_MIXED
195} bitAttr_t;
196
197/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
198/// in order to perform the decoding of instructions at the current level.
199///
200/// Decoding proceeds from the top down. Based on the well-known encoding bits
201/// of instructions available, FilterChooser builds up the possible Filters that
202/// can further the task of decoding by distinguishing among the remaining
203/// candidate instructions.
204///
205/// Once a filter has been chosen, it is called upon to divide the decoding task
206/// into sub-tasks and delegates them to its inferior FilterChoosers for further
207/// processings.
208///
209/// It is useful to think of a Filter as governing the switch stmts of the
210/// decoding tree. And each case is delegated to an inferior FilterChooser to
211/// decide what further remaining bits to look at.
212class FilterChooser {
213protected:
214 friend class Filter;
215
216 // Vector of codegen instructions to choose our filter.
217 const std::vector<const CodeGenInstruction*> &AllInstructions;
218
219 // Vector of uid's for this filter chooser to work on.
220 const std::vector<unsigned> Opcodes;
221
222 // Lookup table for the operand decoding of instructions.
223 std::map<unsigned, std::vector<OperandInfo> > &Operands;
224
225 // Vector of candidate filters.
226 std::vector<Filter> Filters;
227
228 // Array of bit values passed down from our parent.
229 // Set to all BIT_UNFILTERED's for Parent == NULL.
Owen Andersonf1a00902011-07-19 21:06:00 +0000230 std::vector<bit_value_t> FilterBitValues;
Owen Andersond8c87882011-02-18 21:51:29 +0000231
232 // Links to the FilterChooser above us in the decoding tree.
233 FilterChooser *Parent;
234
235 // Index of the best filter from Filters.
236 int BestIndex;
237
Owen Andersonf1a00902011-07-19 21:06:00 +0000238 // Width of instructions
239 unsigned BitWidth;
240
Owen Andersond8c87882011-02-18 21:51:29 +0000241public:
242 FilterChooser(const FilterChooser &FC) :
243 AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
Owen Andersonf1a00902011-07-19 21:06:00 +0000244 Operands(FC.Operands), Filters(FC.Filters),
245 FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
246 BestIndex(FC.BestIndex), BitWidth(FC.BitWidth) { }
Owen Andersond8c87882011-02-18 21:51:29 +0000247
248 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
249 const std::vector<unsigned> &IDs,
Owen Andersonf1a00902011-07-19 21:06:00 +0000250 std::map<unsigned, std::vector<OperandInfo> > &Ops,
251 unsigned BW) :
Owen Andersond8c87882011-02-18 21:51:29 +0000252 AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
Owen Andersonf1a00902011-07-19 21:06:00 +0000253 Parent(NULL), BestIndex(-1), BitWidth(BW) {
254 for (unsigned i = 0; i < BitWidth; ++i)
255 FilterBitValues.push_back(BIT_UNFILTERED);
Owen Andersond8c87882011-02-18 21:51:29 +0000256
257 doFilter();
258 }
259
260 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
261 const std::vector<unsigned> &IDs,
262 std::map<unsigned, std::vector<OperandInfo> > &Ops,
Owen Andersonf1a00902011-07-19 21:06:00 +0000263 std::vector<bit_value_t> &ParentFilterBitValues,
Owen Andersond8c87882011-02-18 21:51:29 +0000264 FilterChooser &parent) :
265 AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
Owen Andersonf1a00902011-07-19 21:06:00 +0000266 Filters(), FilterBitValues(ParentFilterBitValues),
267 Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth) {
Owen Andersond8c87882011-02-18 21:51:29 +0000268 doFilter();
269 }
270
271 // The top level filter chooser has NULL as its parent.
272 bool isTopLevel() { return Parent == NULL; }
273
274 // Emit the top level typedef and decodeInstruction() function.
Owen Andersonf1a00902011-07-19 21:06:00 +0000275 void emitTop(raw_ostream &o, unsigned Indentation, std::string Namespace);
Owen Andersond8c87882011-02-18 21:51:29 +0000276
277protected:
278 // Populates the insn given the uid.
279 void insnWithID(insn_t &Insn, unsigned Opcode) const {
Eric Christopherd568b3f2011-07-11 23:06:52 +0000280 BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
Owen Andersond8c87882011-02-18 21:51:29 +0000281
Owen Andersonf1a00902011-07-19 21:06:00 +0000282 for (unsigned i = 0; i < BitWidth; ++i)
283 Insn.push_back(bitFromBits(Bits, i));
Owen Andersond8c87882011-02-18 21:51:29 +0000284 }
285
286 // Returns the record name.
287 const std::string &nameWithID(unsigned Opcode) const {
288 return AllInstructions[Opcode]->TheDef->getName();
289 }
290
291 // Populates the field of the insn given the start position and the number of
292 // consecutive bits to scan for.
293 //
294 // Returns false if there exists any uninitialized bit value in the range.
295 // Returns true, otherwise.
296 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
297 unsigned NumBits) const;
298
299 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
300 /// filter array as a series of chars.
Owen Andersonf1a00902011-07-19 21:06:00 +0000301 void dumpFilterArray(raw_ostream &o, std::vector<bit_value_t> & filter);
Owen Andersond8c87882011-02-18 21:51:29 +0000302
303 /// dumpStack - dumpStack traverses the filter chooser chain and calls
304 /// dumpFilterArray on each filter chooser up to the top level one.
305 void dumpStack(raw_ostream &o, const char *prefix);
306
307 Filter &bestFilter() {
308 assert(BestIndex != -1 && "BestIndex not set");
309 return Filters[BestIndex];
310 }
311
312 // Called from Filter::recurse() when singleton exists. For debug purpose.
313 void SingletonExists(unsigned Opc);
314
315 bool PositionFiltered(unsigned i) {
316 return ValueSet(FilterBitValues[i]);
317 }
318
319 // Calculates the island(s) needed to decode the instruction.
320 // This returns a lit of undecoded bits of an instructions, for example,
321 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
322 // decoded bits in order to verify that the instruction matches the Opcode.
323 unsigned getIslands(std::vector<unsigned> &StartBits,
324 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
325 insn_t &Insn);
326
327 // Emits code to decode the singleton. Return true if we have matched all the
328 // well-known bits.
329 bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
330
331 // Emits code to decode the singleton, and then to decode the rest.
332 void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
333
Owen Andersond1e38df2011-07-28 21:54:31 +0000334 void emitBinaryParser(raw_ostream &o , unsigned &Indentation,
335 OperandInfo &OpInfo);
336
Owen Andersond8c87882011-02-18 21:51:29 +0000337 // Assign a single filter and run with it.
338 void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
339 bool mixed);
340
341 // reportRegion is a helper function for filterProcessor to mark a region as
342 // eligible for use as a filter region.
343 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
344 bool AllowMixed);
345
346 // FilterProcessor scans the well-known encoding bits of the instructions and
347 // builds up a list of candidate filters. It chooses the best filter and
348 // recursively descends down the decoding tree.
349 bool filterProcessor(bool AllowMixed, bool Greedy = true);
350
351 // Decides on the best configuration of filter(s) to use in order to decode
352 // the instructions. A conflict of instructions may occur, in which case we
353 // dump the conflict set to the standard error.
354 void doFilter();
355
356 // Emits code to decode our share of instructions. Returns true if the
357 // emitted code causes a return, which occurs if we know how to decode
358 // the instruction at this level or the instruction is not decodeable.
359 bool emit(raw_ostream &o, unsigned &Indentation);
360};
361
362///////////////////////////
363// //
364// Filter Implmenetation //
365// //
366///////////////////////////
367
368Filter::Filter(const Filter &f) :
369 Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
370 FilteredInstructions(f.FilteredInstructions),
371 VariableInstructions(f.VariableInstructions),
372 FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
373 LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
374}
375
376Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
377 bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
378 Mixed(mixed) {
Owen Andersonf1a00902011-07-19 21:06:00 +0000379 assert(StartBit + NumBits - 1 < Owner->BitWidth);
Owen Andersond8c87882011-02-18 21:51:29 +0000380
381 NumFiltered = 0;
382 LastOpcFiltered = 0;
383 NumVariable = 0;
384
385 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
386 insn_t Insn;
387
388 // Populates the insn given the uid.
389 Owner->insnWithID(Insn, Owner->Opcodes[i]);
390
391 uint64_t Field;
392 // Scans the segment for possibly well-specified encoding bits.
393 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
394
395 if (ok) {
396 // The encoding bits are well-known. Lets add the uid of the
397 // instruction into the bucket keyed off the constant field value.
398 LastOpcFiltered = Owner->Opcodes[i];
399 FilteredInstructions[Field].push_back(LastOpcFiltered);
400 ++NumFiltered;
401 } else {
402 // Some of the encoding bit(s) are unspecfied. This contributes to
403 // one additional member of "Variable" instructions.
404 VariableInstructions.push_back(Owner->Opcodes[i]);
405 ++NumVariable;
406 }
407 }
408
409 assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
410 && "Filter returns no instruction categories");
411}
412
413Filter::~Filter() {
414 std::map<unsigned, FilterChooser*>::iterator filterIterator;
415 for (filterIterator = FilterChooserMap.begin();
416 filterIterator != FilterChooserMap.end();
417 filterIterator++) {
418 delete filterIterator->second;
419 }
420}
421
422// Divides the decoding task into sub tasks and delegates them to the
423// inferior FilterChooser's.
424//
425// A special case arises when there's only one entry in the filtered
426// instructions. In order to unambiguously decode the singleton, we need to
427// match the remaining undecoded encoding bits against the singleton.
428void Filter::recurse() {
429 std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
430
Owen Andersond8c87882011-02-18 21:51:29 +0000431 // Starts by inheriting our parent filter chooser's filter bit values.
Owen Andersonf1a00902011-07-19 21:06:00 +0000432 std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
Owen Andersond8c87882011-02-18 21:51:29 +0000433
434 unsigned bitIndex;
435
436 if (VariableInstructions.size()) {
437 // Conservatively marks each segment position as BIT_UNSET.
438 for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
439 BitValueArray[StartBit + bitIndex] = BIT_UNSET;
440
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000441 // Delegates to an inferior filter chooser for further processing on this
Owen Andersond8c87882011-02-18 21:51:29 +0000442 // group of instructions whose segment values are variable.
443 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
444 (unsigned)-1,
445 new FilterChooser(Owner->AllInstructions,
446 VariableInstructions,
447 Owner->Operands,
448 BitValueArray,
449 *Owner)
450 ));
451 }
452
453 // No need to recurse for a singleton filtered instruction.
454 // See also Filter::emit().
455 if (getNumFiltered() == 1) {
456 //Owner->SingletonExists(LastOpcFiltered);
457 assert(FilterChooserMap.size() == 1);
458 return;
459 }
460
461 // Otherwise, create sub choosers.
462 for (mapIterator = FilteredInstructions.begin();
463 mapIterator != FilteredInstructions.end();
464 mapIterator++) {
465
466 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
467 for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
468 if (mapIterator->first & (1ULL << bitIndex))
469 BitValueArray[StartBit + bitIndex] = BIT_TRUE;
470 else
471 BitValueArray[StartBit + bitIndex] = BIT_FALSE;
472 }
473
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000474 // Delegates to an inferior filter chooser for further processing on this
Owen Andersond8c87882011-02-18 21:51:29 +0000475 // category of instructions.
476 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
477 mapIterator->first,
478 new FilterChooser(Owner->AllInstructions,
479 mapIterator->second,
480 Owner->Operands,
481 BitValueArray,
482 *Owner)
483 ));
484 }
485}
486
487// Emit code to decode instructions given a segment or segments of bits.
488void Filter::emit(raw_ostream &o, unsigned &Indentation) {
489 o.indent(Indentation) << "// Check Inst{";
490
491 if (NumBits > 1)
492 o << (StartBit + NumBits - 1) << '-';
493
494 o << StartBit << "} ...\n";
495
Owen Andersonf1a00902011-07-19 21:06:00 +0000496 o.indent(Indentation) << "switch (fieldFromInstruction" << Owner->BitWidth
497 << "(insn, " << StartBit << ", "
498 << NumBits << ")) {\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000499
500 std::map<unsigned, FilterChooser*>::iterator filterIterator;
501
502 bool DefaultCase = false;
503 for (filterIterator = FilterChooserMap.begin();
504 filterIterator != FilterChooserMap.end();
505 filterIterator++) {
506
507 // Field value -1 implies a non-empty set of variable instructions.
508 // See also recurse().
509 if (filterIterator->first == (unsigned)-1) {
510 DefaultCase = true;
511
512 o.indent(Indentation) << "default:\n";
513 o.indent(Indentation) << " break; // fallthrough\n";
514
515 // Closing curly brace for the switch statement.
516 // This is unconventional because we want the default processing to be
517 // performed for the fallthrough cases as well, i.e., when the "cases"
518 // did not prove a decoded instruction.
519 o.indent(Indentation) << "}\n";
520
521 } else
522 o.indent(Indentation) << "case " << filterIterator->first << ":\n";
523
524 // We arrive at a category of instructions with the same segment value.
525 // Now delegate to the sub filter chooser for further decodings.
526 // The case may fallthrough, which happens if the remaining well-known
527 // encoding bits do not match exactly.
528 if (!DefaultCase) { ++Indentation; ++Indentation; }
529
530 bool finished = filterIterator->second->emit(o, Indentation);
531 // For top level default case, there's no need for a break statement.
532 if (Owner->isTopLevel() && DefaultCase)
533 break;
534 if (!finished)
535 o.indent(Indentation) << "break;\n";
536
537 if (!DefaultCase) { --Indentation; --Indentation; }
538 }
539
540 // If there is no default case, we still need to supply a closing brace.
541 if (!DefaultCase) {
542 // Closing curly brace for the switch statement.
543 o.indent(Indentation) << "}\n";
544 }
545}
546
547// Returns the number of fanout produced by the filter. More fanout implies
548// the filter distinguishes more categories of instructions.
549unsigned Filter::usefulness() const {
550 if (VariableInstructions.size())
551 return FilteredInstructions.size();
552 else
553 return FilteredInstructions.size() + 1;
554}
555
556//////////////////////////////////
557// //
558// Filterchooser Implementation //
559// //
560//////////////////////////////////
561
562// Emit the top level typedef and decodeInstruction() function.
Owen Andersonf1a00902011-07-19 21:06:00 +0000563void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation,
564 std::string Namespace) {
Owen Andersond8c87882011-02-18 21:51:29 +0000565 o.indent(Indentation) <<
Owen Andersonf1a00902011-07-19 21:06:00 +0000566 "static bool decode" << Namespace << "Instruction" << BitWidth
567 << "(MCInst &MI, uint" << BitWidth << "_t insn, uint64_t Address, "
568 << "const void *Decoder) {\n";
Owen Andersond1e38df2011-07-28 21:54:31 +0000569 o.indent(Indentation) << " unsigned tmp = 0;\n(void)tmp;\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000570
571 ++Indentation; ++Indentation;
572 // Emits code to decode the instructions.
573 emit(o, Indentation);
574
575 o << '\n';
576 o.indent(Indentation) << "return false;\n";
577 --Indentation; --Indentation;
578
579 o.indent(Indentation) << "}\n";
580
581 o << '\n';
582}
583
584// Populates the field of the insn given the start position and the number of
585// consecutive bits to scan for.
586//
587// Returns false if and on the first uninitialized bit value encountered.
588// Returns true, otherwise.
589bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
590 unsigned StartBit, unsigned NumBits) const {
591 Field = 0;
592
593 for (unsigned i = 0; i < NumBits; ++i) {
594 if (Insn[StartBit + i] == BIT_UNSET)
595 return false;
596
597 if (Insn[StartBit + i] == BIT_TRUE)
598 Field = Field | (1ULL << i);
599 }
600
601 return true;
602}
603
604/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
605/// filter array as a series of chars.
606void FilterChooser::dumpFilterArray(raw_ostream &o,
Owen Andersonf1a00902011-07-19 21:06:00 +0000607 std::vector<bit_value_t> &filter) {
Owen Andersond8c87882011-02-18 21:51:29 +0000608 unsigned bitIndex;
609
Owen Andersonf1a00902011-07-19 21:06:00 +0000610 for (bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
Owen Andersond8c87882011-02-18 21:51:29 +0000611 switch (filter[bitIndex - 1]) {
612 case BIT_UNFILTERED:
613 o << ".";
614 break;
615 case BIT_UNSET:
616 o << "_";
617 break;
618 case BIT_TRUE:
619 o << "1";
620 break;
621 case BIT_FALSE:
622 o << "0";
623 break;
624 }
625 }
626}
627
628/// dumpStack - dumpStack traverses the filter chooser chain and calls
629/// dumpFilterArray on each filter chooser up to the top level one.
630void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
631 FilterChooser *current = this;
632
633 while (current) {
634 o << prefix;
635 dumpFilterArray(o, current->FilterBitValues);
636 o << '\n';
637 current = current->Parent;
638 }
639}
640
641// Called from Filter::recurse() when singleton exists. For debug purpose.
642void FilterChooser::SingletonExists(unsigned Opc) {
643 insn_t Insn0;
644 insnWithID(Insn0, Opc);
645
646 errs() << "Singleton exists: " << nameWithID(Opc)
647 << " with its decoding dominating ";
648 for (unsigned i = 0; i < Opcodes.size(); ++i) {
649 if (Opcodes[i] == Opc) continue;
650 errs() << nameWithID(Opcodes[i]) << ' ';
651 }
652 errs() << '\n';
653
654 dumpStack(errs(), "\t\t");
655 for (unsigned i = 0; i < Opcodes.size(); i++) {
656 const std::string &Name = nameWithID(Opcodes[i]);
657
658 errs() << '\t' << Name << " ";
659 dumpBits(errs(),
660 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
661 errs() << '\n';
662 }
663}
664
665// Calculates the island(s) needed to decode the instruction.
666// This returns a list of undecoded bits of an instructions, for example,
667// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
668// decoded bits in order to verify that the instruction matches the Opcode.
669unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
670 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
671 insn_t &Insn) {
672 unsigned Num, BitNo;
673 Num = BitNo = 0;
674
675 uint64_t FieldVal = 0;
676
677 // 0: Init
678 // 1: Water (the bit value does not affect decoding)
679 // 2: Island (well-known bit value needed for decoding)
680 int State = 0;
681 int Val = -1;
682
Owen Andersonf1a00902011-07-19 21:06:00 +0000683 for (unsigned i = 0; i < BitWidth; ++i) {
Owen Andersond8c87882011-02-18 21:51:29 +0000684 Val = Value(Insn[i]);
685 bool Filtered = PositionFiltered(i);
686 switch (State) {
687 default:
688 assert(0 && "Unreachable code!");
689 break;
690 case 0:
691 case 1:
692 if (Filtered || Val == -1)
693 State = 1; // Still in Water
694 else {
695 State = 2; // Into the Island
696 BitNo = 0;
697 StartBits.push_back(i);
698 FieldVal = Val;
699 }
700 break;
701 case 2:
702 if (Filtered || Val == -1) {
703 State = 1; // Into the Water
704 EndBits.push_back(i - 1);
705 FieldVals.push_back(FieldVal);
706 ++Num;
707 } else {
708 State = 2; // Still in Island
709 ++BitNo;
710 FieldVal = FieldVal | Val << BitNo;
711 }
712 break;
713 }
714 }
715 // If we are still in Island after the loop, do some housekeeping.
716 if (State == 2) {
Owen Andersonf1a00902011-07-19 21:06:00 +0000717 EndBits.push_back(BitWidth - 1);
Owen Andersond8c87882011-02-18 21:51:29 +0000718 FieldVals.push_back(FieldVal);
719 ++Num;
720 }
721
722 assert(StartBits.size() == Num && EndBits.size() == Num &&
723 FieldVals.size() == Num);
724 return Num;
725}
726
Owen Andersond1e38df2011-07-28 21:54:31 +0000727void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
728 OperandInfo &OpInfo) {
729 std::string &Decoder = OpInfo.Decoder;
730
731 if (OpInfo.numFields() == 1) {
732 OperandInfo::iterator OI = OpInfo.begin();
733 o.indent(Indentation) << " tmp = fieldFromInstruction" << BitWidth
734 << "(insn, " << OI->Base << ", " << OI->Width
735 << ");\n";
736 } else {
737 o.indent(Indentation) << " tmp = 0;\n";
738 for (OperandInfo::iterator OI = OpInfo.begin(), OE = OpInfo.end();
739 OI != OE; ++OI) {
740 o.indent(Indentation) << " tmp |= (fieldFromInstruction" << BitWidth
741 << "(insn, " << OI->Base << ", " << OI->Width
742 << ") << " << OI->Offset << ");\n";
743 }
744 }
745
746 if (Decoder != "")
747 o.indent(Indentation) << " " << Decoder
748 << "(MI, tmp, Address, Decoder);\n";
749 else
750 o.indent(Indentation) << " MI.addOperand(MCOperand::CreateImm(tmp));\n";
751
752}
753
Owen Andersond8c87882011-02-18 21:51:29 +0000754// Emits code to decode the singleton. Return true if we have matched all the
755// well-known bits.
756bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
757 unsigned Opc) {
758 std::vector<unsigned> StartBits;
759 std::vector<unsigned> EndBits;
760 std::vector<uint64_t> FieldVals;
761 insn_t Insn;
762 insnWithID(Insn, Opc);
763
764 // Look for islands of undecoded bits of the singleton.
765 getIslands(StartBits, EndBits, FieldVals, Insn);
766
767 unsigned Size = StartBits.size();
768 unsigned I, NumBits;
769
770 // If we have matched all the well-known bits, just issue a return.
771 if (Size == 0) {
772 o.indent(Indentation) << "{\n";
773 o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
774 std::vector<OperandInfo>& InsnOperands = Operands[Opc];
775 for (std::vector<OperandInfo>::iterator
776 I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
777 // If a custom instruction decoder was specified, use that.
Owen Andersond1e38df2011-07-28 21:54:31 +0000778 if (I->numFields() == 0 && I->Decoder.size()) {
Owen Anderson57557152011-04-18 18:42:26 +0000779 o.indent(Indentation) << " " << I->Decoder
780 << "(MI, insn, Address, Decoder);\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000781 break;
782 }
783
Owen Andersond1e38df2011-07-28 21:54:31 +0000784 emitBinaryParser(o, Indentation, *I);
Owen Andersond8c87882011-02-18 21:51:29 +0000785 }
786
787 o.indent(Indentation) << " return true; // " << nameWithID(Opc)
788 << '\n';
789 o.indent(Indentation) << "}\n";
790 return true;
791 }
792
793 // Otherwise, there are more decodings to be done!
794
795 // Emit code to match the island(s) for the singleton.
796 o.indent(Indentation) << "// Check ";
797
798 for (I = Size; I != 0; --I) {
799 o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
800 if (I > 1)
801 o << "&& ";
802 else
803 o << "for singleton decoding...\n";
804 }
805
806 o.indent(Indentation) << "if (";
807
808 for (I = Size; I != 0; --I) {
809 NumBits = EndBits[I-1] - StartBits[I-1] + 1;
Owen Andersonf1a00902011-07-19 21:06:00 +0000810 o << "fieldFromInstruction" << BitWidth << "(insn, "
811 << StartBits[I-1] << ", " << NumBits
Owen Andersond8c87882011-02-18 21:51:29 +0000812 << ") == " << FieldVals[I-1];
813 if (I > 1)
814 o << " && ";
815 else
816 o << ") {\n";
817 }
818 o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
819 std::vector<OperandInfo>& InsnOperands = Operands[Opc];
820 for (std::vector<OperandInfo>::iterator
821 I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
822 // If a custom instruction decoder was specified, use that.
Owen Andersond1e38df2011-07-28 21:54:31 +0000823 if (I->numFields() == 0 && I->Decoder.size()) {
Owen Anderson57557152011-04-18 18:42:26 +0000824 o.indent(Indentation) << " " << I->Decoder
825 << "(MI, insn, Address, Decoder);\n";
Owen Andersond8c87882011-02-18 21:51:29 +0000826 break;
827 }
828
Owen Andersond1e38df2011-07-28 21:54:31 +0000829 emitBinaryParser(o, Indentation, *I);
Owen Andersond8c87882011-02-18 21:51:29 +0000830 }
831 o.indent(Indentation) << " return true; // " << nameWithID(Opc)
832 << '\n';
833 o.indent(Indentation) << "}\n";
834
835 return false;
836}
837
838// Emits code to decode the singleton, and then to decode the rest.
839void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
840 Filter &Best) {
841
842 unsigned Opc = Best.getSingletonOpc();
843
844 emitSingletonDecoder(o, Indentation, Opc);
845
846 // Emit code for the rest.
847 o.indent(Indentation) << "else\n";
848
849 Indentation += 2;
850 Best.getVariableFC().emit(o, Indentation);
851 Indentation -= 2;
852}
853
854// Assign a single filter and run with it. Top level API client can initialize
855// with a single filter to start the filtering process.
856void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
857 unsigned numBit, bool mixed) {
858 Filters.clear();
859 Filter F(*this, startBit, numBit, true);
860 Filters.push_back(F);
861 BestIndex = 0; // Sole Filter instance to choose from.
862 bestFilter().recurse();
863}
864
865// reportRegion is a helper function for filterProcessor to mark a region as
866// eligible for use as a filter region.
867void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
868 unsigned BitIndex, bool AllowMixed) {
869 if (RA == ATTR_MIXED && AllowMixed)
870 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
871 else if (RA == ATTR_ALL_SET && !AllowMixed)
872 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
873}
874
875// FilterProcessor scans the well-known encoding bits of the instructions and
876// builds up a list of candidate filters. It chooses the best filter and
877// recursively descends down the decoding tree.
878bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
879 Filters.clear();
880 BestIndex = -1;
881 unsigned numInstructions = Opcodes.size();
882
883 assert(numInstructions && "Filter created with no instructions");
884
885 // No further filtering is necessary.
886 if (numInstructions == 1)
887 return true;
888
889 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
890 // instructions is 3.
891 if (AllowMixed && !Greedy) {
892 assert(numInstructions == 3);
893
894 for (unsigned i = 0; i < Opcodes.size(); ++i) {
895 std::vector<unsigned> StartBits;
896 std::vector<unsigned> EndBits;
897 std::vector<uint64_t> FieldVals;
898 insn_t Insn;
899
900 insnWithID(Insn, Opcodes[i]);
901
902 // Look for islands of undecoded bits of any instruction.
903 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
904 // Found an instruction with island(s). Now just assign a filter.
905 runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
906 true);
907 return true;
908 }
909 }
910 }
911
912 unsigned BitIndex, InsnIndex;
913
914 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
915 // The automaton consumes the corresponding bit from each
916 // instruction.
917 //
918 // Input symbols: 0, 1, and _ (unset).
919 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
920 // Initial state: NONE.
921 //
922 // (NONE) ------- [01] -> (ALL_SET)
923 // (NONE) ------- _ ----> (ALL_UNSET)
924 // (ALL_SET) ---- [01] -> (ALL_SET)
925 // (ALL_SET) ---- _ ----> (MIXED)
926 // (ALL_UNSET) -- [01] -> (MIXED)
927 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
928 // (MIXED) ------ . ----> (MIXED)
929 // (FILTERED)---- . ----> (FILTERED)
930
Owen Andersonf1a00902011-07-19 21:06:00 +0000931 std::vector<bitAttr_t> bitAttrs;
Owen Andersond8c87882011-02-18 21:51:29 +0000932
933 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
934 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
Owen Andersonf1a00902011-07-19 21:06:00 +0000935 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
Owen Andersond8c87882011-02-18 21:51:29 +0000936 if (FilterBitValues[BitIndex] == BIT_TRUE ||
937 FilterBitValues[BitIndex] == BIT_FALSE)
Owen Andersonf1a00902011-07-19 21:06:00 +0000938 bitAttrs.push_back(ATTR_FILTERED);
Owen Andersond8c87882011-02-18 21:51:29 +0000939 else
Owen Andersonf1a00902011-07-19 21:06:00 +0000940 bitAttrs.push_back(ATTR_NONE);
Owen Andersond8c87882011-02-18 21:51:29 +0000941
942 for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
943 insn_t insn;
944
945 insnWithID(insn, Opcodes[InsnIndex]);
946
Owen Andersonf1a00902011-07-19 21:06:00 +0000947 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
Owen Andersond8c87882011-02-18 21:51:29 +0000948 switch (bitAttrs[BitIndex]) {
949 case ATTR_NONE:
950 if (insn[BitIndex] == BIT_UNSET)
951 bitAttrs[BitIndex] = ATTR_ALL_UNSET;
952 else
953 bitAttrs[BitIndex] = ATTR_ALL_SET;
954 break;
955 case ATTR_ALL_SET:
956 if (insn[BitIndex] == BIT_UNSET)
957 bitAttrs[BitIndex] = ATTR_MIXED;
958 break;
959 case ATTR_ALL_UNSET:
960 if (insn[BitIndex] != BIT_UNSET)
961 bitAttrs[BitIndex] = ATTR_MIXED;
962 break;
963 case ATTR_MIXED:
964 case ATTR_FILTERED:
965 break;
966 }
967 }
968 }
969
970 // The regionAttr automaton consumes the bitAttrs automatons' state,
971 // lowest-to-highest.
972 //
973 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
974 // States: NONE, ALL_SET, MIXED
975 // Initial state: NONE
976 //
977 // (NONE) ----- F --> (NONE)
978 // (NONE) ----- S --> (ALL_SET) ; and set region start
979 // (NONE) ----- U --> (NONE)
980 // (NONE) ----- M --> (MIXED) ; and set region start
981 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
982 // (ALL_SET) -- S --> (ALL_SET)
983 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
984 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
985 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
986 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
987 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
988 // (MIXED) ---- M --> (MIXED)
989
990 bitAttr_t RA = ATTR_NONE;
991 unsigned StartBit = 0;
992
Owen Andersonf1a00902011-07-19 21:06:00 +0000993 for (BitIndex = 0; BitIndex < BitWidth; BitIndex++) {
Owen Andersond8c87882011-02-18 21:51:29 +0000994 bitAttr_t bitAttr = bitAttrs[BitIndex];
995
996 assert(bitAttr != ATTR_NONE && "Bit without attributes");
997
998 switch (RA) {
999 case ATTR_NONE:
1000 switch (bitAttr) {
1001 case ATTR_FILTERED:
1002 break;
1003 case ATTR_ALL_SET:
1004 StartBit = BitIndex;
1005 RA = ATTR_ALL_SET;
1006 break;
1007 case ATTR_ALL_UNSET:
1008 break;
1009 case ATTR_MIXED:
1010 StartBit = BitIndex;
1011 RA = ATTR_MIXED;
1012 break;
1013 default:
1014 assert(0 && "Unexpected bitAttr!");
1015 }
1016 break;
1017 case ATTR_ALL_SET:
1018 switch (bitAttr) {
1019 case ATTR_FILTERED:
1020 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1021 RA = ATTR_NONE;
1022 break;
1023 case ATTR_ALL_SET:
1024 break;
1025 case ATTR_ALL_UNSET:
1026 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1027 RA = ATTR_NONE;
1028 break;
1029 case ATTR_MIXED:
1030 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1031 StartBit = BitIndex;
1032 RA = ATTR_MIXED;
1033 break;
1034 default:
1035 assert(0 && "Unexpected bitAttr!");
1036 }
1037 break;
1038 case ATTR_MIXED:
1039 switch (bitAttr) {
1040 case ATTR_FILTERED:
1041 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1042 StartBit = BitIndex;
1043 RA = ATTR_NONE;
1044 break;
1045 case ATTR_ALL_SET:
1046 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1047 StartBit = BitIndex;
1048 RA = ATTR_ALL_SET;
1049 break;
1050 case ATTR_ALL_UNSET:
1051 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1052 RA = ATTR_NONE;
1053 break;
1054 case ATTR_MIXED:
1055 break;
1056 default:
1057 assert(0 && "Unexpected bitAttr!");
1058 }
1059 break;
1060 case ATTR_ALL_UNSET:
1061 assert(0 && "regionAttr state machine has no ATTR_UNSET state");
1062 case ATTR_FILTERED:
1063 assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
1064 }
1065 }
1066
1067 // At the end, if we're still in ALL_SET or MIXED states, report a region
1068 switch (RA) {
1069 case ATTR_NONE:
1070 break;
1071 case ATTR_FILTERED:
1072 break;
1073 case ATTR_ALL_SET:
1074 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1075 break;
1076 case ATTR_ALL_UNSET:
1077 break;
1078 case ATTR_MIXED:
1079 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1080 break;
1081 }
1082
1083 // We have finished with the filter processings. Now it's time to choose
1084 // the best performing filter.
1085 BestIndex = 0;
1086 bool AllUseless = true;
1087 unsigned BestScore = 0;
1088
1089 for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1090 unsigned Usefulness = Filters[i].usefulness();
1091
1092 if (Usefulness)
1093 AllUseless = false;
1094
1095 if (Usefulness > BestScore) {
1096 BestIndex = i;
1097 BestScore = Usefulness;
1098 }
1099 }
1100
1101 if (!AllUseless)
1102 bestFilter().recurse();
1103
1104 return !AllUseless;
1105} // end of FilterChooser::filterProcessor(bool)
1106
1107// Decides on the best configuration of filter(s) to use in order to decode
1108// the instructions. A conflict of instructions may occur, in which case we
1109// dump the conflict set to the standard error.
1110void FilterChooser::doFilter() {
1111 unsigned Num = Opcodes.size();
1112 assert(Num && "FilterChooser created with no instructions");
1113
1114 // Try regions of consecutive known bit values first.
1115 if (filterProcessor(false))
1116 return;
1117
1118 // Then regions of mixed bits (both known and unitialized bit values allowed).
1119 if (filterProcessor(true))
1120 return;
1121
1122 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1123 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1124 // well-known encoding pattern. In such case, we backtrack and scan for the
1125 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1126 if (Num == 3 && filterProcessor(true, false))
1127 return;
1128
1129 // If we come to here, the instruction decoding has failed.
1130 // Set the BestIndex to -1 to indicate so.
1131 BestIndex = -1;
1132}
1133
1134// Emits code to decode our share of instructions. Returns true if the
1135// emitted code causes a return, which occurs if we know how to decode
1136// the instruction at this level or the instruction is not decodeable.
1137bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1138 if (Opcodes.size() == 1)
1139 // There is only one instruction in the set, which is great!
1140 // Call emitSingletonDecoder() to see whether there are any remaining
1141 // encodings bits.
1142 return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1143
1144 // Choose the best filter to do the decodings!
1145 if (BestIndex != -1) {
1146 Filter &Best = bestFilter();
1147 if (Best.getNumFiltered() == 1)
1148 emitSingletonDecoder(o, Indentation, Best);
1149 else
1150 bestFilter().emit(o, Indentation);
1151 return false;
1152 }
1153
1154 // We don't know how to decode these instructions! Return 0 and dump the
1155 // conflict set!
1156 o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1157 for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1158 o << nameWithID(Opcodes[i]);
1159 if (i < (N - 1))
1160 o << ", ";
1161 else
1162 o << '\n';
1163 }
1164
1165 // Print out useful conflict information for postmortem analysis.
1166 errs() << "Decoding Conflict:\n";
1167
1168 dumpStack(errs(), "\t\t");
1169
1170 for (unsigned i = 0; i < Opcodes.size(); i++) {
1171 const std::string &Name = nameWithID(Opcodes[i]);
1172
1173 errs() << '\t' << Name << " ";
1174 dumpBits(errs(),
1175 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1176 errs() << '\n';
1177 }
1178
1179 return true;
1180}
1181
Owen Andersonf1a00902011-07-19 21:06:00 +00001182static bool populateInstruction(const CodeGenInstruction &CGI,
1183 unsigned Opc,
1184 std::map<unsigned, std::vector<OperandInfo> >& Operands){
Owen Andersond8c87882011-02-18 21:51:29 +00001185 const Record &Def = *CGI.TheDef;
1186 // If all the bit positions are not specified; do not decode this instruction.
1187 // We are bound to fail! For proper disassembly, the well-known encoding bits
1188 // of the instruction must be fully specified.
1189 //
1190 // This also removes pseudo instructions from considerations of disassembly,
1191 // which is a better design and less fragile than the name matchings.
Owen Andersond8c87882011-02-18 21:51:29 +00001192 // Ignore "asm parser only" instructions.
Owen Anderson4dd27eb2011-03-14 20:58:49 +00001193 if (Def.getValueAsBit("isAsmParserOnly") ||
1194 Def.getValueAsBit("isCodeGenOnly"))
Owen Andersond8c87882011-02-18 21:51:29 +00001195 return false;
1196
Eric Christopherd568b3f2011-07-11 23:06:52 +00001197 BitsInit &Bits = getBitsField(Def, "Inst");
Jim Grosbach806fcc02011-07-06 21:33:38 +00001198 if (Bits.allInComplete()) return false;
1199
Owen Andersond8c87882011-02-18 21:51:29 +00001200 std::vector<OperandInfo> InsnOperands;
1201
1202 // If the instruction has specified a custom decoding hook, use that instead
1203 // of trying to auto-generate the decoder.
1204 std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1205 if (InstDecoder != "") {
Owen Andersond1e38df2011-07-28 21:54:31 +00001206 InsnOperands.push_back(OperandInfo(InstDecoder));
Owen Andersond8c87882011-02-18 21:51:29 +00001207 Operands[Opc] = InsnOperands;
1208 return true;
1209 }
1210
1211 // Generate a description of the operand of the instruction that we know
1212 // how to decode automatically.
1213 // FIXME: We'll need to have a way to manually override this as needed.
1214
1215 // Gather the outputs/inputs of the instruction, so we can find their
1216 // positions in the encoding. This assumes for now that they appear in the
1217 // MCInst in the order that they're listed.
Eric Christopherd568b3f2011-07-11 23:06:52 +00001218 std::vector<std::pair<Init*, std::string> > InOutOperands;
1219 DagInit *Out = Def.getValueAsDag("OutOperandList");
1220 DagInit *In = Def.getValueAsDag("InOperandList");
Owen Andersond8c87882011-02-18 21:51:29 +00001221 for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1222 InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1223 for (unsigned i = 0; i < In->getNumArgs(); ++i)
1224 InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1225
Owen Anderson00ef6e32011-07-28 23:56:20 +00001226 // Search for tied operands, so that we can correctly instantiate
1227 // operands that are not explicitly represented in the encoding.
1228 std::map<Init*, std::string> TiedNames;
1229 for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1230 int tiedTo = CGI.Operands[i].getTiedRegister();
Owen Andersond217da12011-07-29 17:32:03 +00001231 if (tiedTo != -1)
Owen Anderson00ef6e32011-07-28 23:56:20 +00001232 TiedNames[InOutOperands[i].first] = InOutOperands[tiedTo].second;
Owen Anderson00ef6e32011-07-28 23:56:20 +00001233 }
1234
Owen Andersond8c87882011-02-18 21:51:29 +00001235 // For each operand, see if we can figure out where it is encoded.
Eric Christopherd568b3f2011-07-11 23:06:52 +00001236 for (std::vector<std::pair<Init*, std::string> >::iterator
Owen Andersond8c87882011-02-18 21:51:29 +00001237 NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
Owen Andersond8c87882011-02-18 21:51:29 +00001238 std::string Decoder = "";
1239
Owen Andersond1e38df2011-07-28 21:54:31 +00001240 // At this point, we can locate the field, but we need to know how to
1241 // interpret it. As a first step, require the target to provide callbacks
1242 // for decoding register classes.
1243 // FIXME: This need to be extended to handle instructions with custom
1244 // decoder methods, and operands with (simple) MIOperandInfo's.
1245 TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
1246 RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
1247 Record *TypeRecord = Type->getRecord();
1248 bool isReg = false;
1249 if (TypeRecord->isSubClassOf("RegisterOperand"))
1250 TypeRecord = TypeRecord->getValueAsDef("RegClass");
1251 if (TypeRecord->isSubClassOf("RegisterClass")) {
1252 Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1253 isReg = true;
1254 }
1255
1256 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1257 StringInit *String = DecoderString ?
1258 dynamic_cast<StringInit*>(DecoderString->getValue()) : 0;
1259 if (!isReg && String && String->getValue() != "")
1260 Decoder = String->getValue();
1261
1262 OperandInfo OpInfo(Decoder);
1263 unsigned Base = ~0U;
1264 unsigned Width = 0;
1265 unsigned Offset = 0;
1266
Owen Andersond8c87882011-02-18 21:51:29 +00001267 for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
Owen Andersond217da12011-07-29 17:32:03 +00001268 std::string name = NI->second;
1269 std::string altname = TiedNames[NI->first];
Eric Christopherd568b3f2011-07-11 23:06:52 +00001270 VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
Owen Andersond1e38df2011-07-28 21:54:31 +00001271 if (!BI) {
1272 if (Base != ~0U) {
1273 OpInfo.addField(Base, Width, Offset);
1274 Base = ~0U;
1275 Width = 0;
1276 Offset = 0;
1277 }
1278 continue;
1279 }
Owen Andersond8c87882011-02-18 21:51:29 +00001280
Eric Christopherd568b3f2011-07-11 23:06:52 +00001281 VarInit *Var = dynamic_cast<VarInit*>(BI->getVariable());
Owen Andersond8c87882011-02-18 21:51:29 +00001282 assert(Var);
Owen Anderson00ef6e32011-07-28 23:56:20 +00001283 if (Var->getName() != NI->second &&
1284 Var->getName() != TiedNames[NI->first]) {
Owen Andersond1e38df2011-07-28 21:54:31 +00001285 if (Base != ~0U) {
1286 OpInfo.addField(Base, Width, Offset);
1287 Base = ~0U;
1288 Width = 0;
1289 Offset = 0;
1290 }
1291 continue;
Owen Andersond8c87882011-02-18 21:51:29 +00001292 }
1293
Owen Andersond1e38df2011-07-28 21:54:31 +00001294 if (Base == ~0U) {
1295 Base = bi;
1296 Width = 1;
1297 Offset = BI->getBitNum();
1298 } else {
1299 ++Width;
Owen Andersond8c87882011-02-18 21:51:29 +00001300 }
Owen Andersond8c87882011-02-18 21:51:29 +00001301 }
1302
Owen Andersond1e38df2011-07-28 21:54:31 +00001303 if (Base != ~0U)
1304 OpInfo.addField(Base, Width, Offset);
1305
1306 if (OpInfo.numFields() > 0)
1307 InsnOperands.push_back(OpInfo);
Owen Andersond8c87882011-02-18 21:51:29 +00001308 }
1309
1310 Operands[Opc] = InsnOperands;
1311
1312
1313#if 0
1314 DEBUG({
1315 // Dumps the instruction encoding bits.
1316 dumpBits(errs(), Bits);
1317
1318 errs() << '\n';
1319
1320 // Dumps the list of operand info.
1321 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1322 const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1323 const std::string &OperandName = Info.Name;
1324 const Record &OperandDef = *Info.Rec;
1325
1326 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1327 }
1328 });
1329#endif
1330
1331 return true;
1332}
1333
Owen Andersonf1a00902011-07-19 21:06:00 +00001334static void emitHelper(llvm::raw_ostream &o, unsigned BitWidth) {
1335 unsigned Indentation = 0;
1336 std::string WidthStr = "uint" + utostr(BitWidth) + "_t";
Owen Andersond8c87882011-02-18 21:51:29 +00001337
Owen Andersonf1a00902011-07-19 21:06:00 +00001338 o << '\n';
1339
1340 o.indent(Indentation) << "static " << WidthStr <<
1341 " fieldFromInstruction" << BitWidth <<
1342 "(" << WidthStr <<" insn, unsigned startBit, unsigned numBits)\n";
1343
1344 o.indent(Indentation) << "{\n";
1345
1346 ++Indentation; ++Indentation;
1347 o.indent(Indentation) << "assert(startBit + numBits <= " << BitWidth
1348 << " && \"Instruction field out of bounds!\");\n";
1349 o << '\n';
1350 o.indent(Indentation) << WidthStr << " fieldMask;\n";
1351 o << '\n';
1352 o.indent(Indentation) << "if (numBits == " << BitWidth << ")\n";
1353
1354 ++Indentation; ++Indentation;
1355 o.indent(Indentation) << "fieldMask = (" << WidthStr << ")-1;\n";
1356 --Indentation; --Indentation;
1357
1358 o.indent(Indentation) << "else\n";
1359
1360 ++Indentation; ++Indentation;
1361 o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
1362 --Indentation; --Indentation;
1363
1364 o << '\n';
1365 o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
1366 --Indentation; --Indentation;
1367
1368 o.indent(Indentation) << "}\n";
1369
1370 o << '\n';
Owen Andersond8c87882011-02-18 21:51:29 +00001371}
1372
1373// Emits disassembler code for instruction decoding.
1374void FixedLenDecoderEmitter::run(raw_ostream &o)
1375{
1376 o << "#include \"llvm/MC/MCInst.h\"\n";
1377 o << "#include \"llvm/Support/DataTypes.h\"\n";
1378 o << "#include <assert.h>\n";
1379 o << '\n';
1380 o << "namespace llvm {\n\n";
1381
Owen Andersonf1a00902011-07-19 21:06:00 +00001382 // Parameterize the decoders based on namespace and instruction width.
Owen Andersond8c87882011-02-18 21:51:29 +00001383 NumberedInstructions = Target.getInstructionsByEnumValue();
Owen Andersonf1a00902011-07-19 21:06:00 +00001384 std::map<std::pair<std::string, unsigned>,
1385 std::vector<unsigned> > OpcMap;
1386 std::map<unsigned, std::vector<OperandInfo> > Operands;
1387
1388 for (unsigned i = 0; i < NumberedInstructions.size(); ++i) {
1389 const CodeGenInstruction *Inst = NumberedInstructions[i];
1390 Record *Def = Inst->TheDef;
1391 unsigned Size = Def->getValueAsInt("Size");
1392 if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
1393 Def->getValueAsBit("isPseudo") ||
1394 Def->getValueAsBit("isAsmParserOnly") ||
1395 Def->getValueAsBit("isCodeGenOnly"))
1396 continue;
1397
1398 std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
1399
1400 if (Size) {
1401 if (populateInstruction(*Inst, i, Operands)) {
1402 OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
1403 }
1404 }
1405 }
1406
1407 std::set<unsigned> Sizes;
1408 for (std::map<std::pair<std::string, unsigned>,
1409 std::vector<unsigned> >::iterator
1410 I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
1411 // If we haven't visited this instruction width before, emit the
1412 // helper method to extract fields.
1413 if (!Sizes.count(I->first.second)) {
1414 emitHelper(o, 8*I->first.second);
1415 Sizes.insert(I->first.second);
1416 }
1417
1418 // Emit the decoder for this namespace+width combination.
1419 FilterChooser FC(NumberedInstructions, I->second, Operands,
1420 8*I->first.second);
1421 FC.emitTop(o, 0, I->first.first);
1422 }
Owen Andersond8c87882011-02-18 21:51:29 +00001423
1424 o << "\n} // End llvm namespace \n";
1425}