blob: 6c2f3837b23da1fd9eefca49f53e6922b76cfc73 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/VectorExtras.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Constants.h"
28#include "llvm/Function.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Support/CommandLine.h"
33using namespace llvm;
34
35static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
36cl::desc("enable preincrement load/store generation on PPC (experimental)"),
37 cl::Hidden);
38
39PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
40 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
41
42 setPow2DivIsCheap();
43
44 // Use _setjmp/_longjmp instead of setjmp/longjmp.
45 setUseUnderscoreSetJmp(true);
46 setUseUnderscoreLongJmp(true);
47
48 // Set up the register classes.
49 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
50 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
51 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
52
53 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
54 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
55 setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
56
57 // PowerPC does not have truncstore for i1.
58 setStoreXAction(MVT::i1, Promote);
59
60 // PowerPC has pre-inc load and store's.
61 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
62 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
63 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
64 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
65 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
66 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
67 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
68 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
69 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
70 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
71
72 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
73 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
74
75 // PowerPC has no intrinsics for these particular operations
76 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
77 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
78 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
79
80 // PowerPC has no SREM/UREM instructions
81 setOperationAction(ISD::SREM, MVT::i32, Expand);
82 setOperationAction(ISD::UREM, MVT::i32, Expand);
83 setOperationAction(ISD::SREM, MVT::i64, Expand);
84 setOperationAction(ISD::UREM, MVT::i64, Expand);
85
86 // We don't support sin/cos/sqrt/fmod
87 setOperationAction(ISD::FSIN , MVT::f64, Expand);
88 setOperationAction(ISD::FCOS , MVT::f64, Expand);
89 setOperationAction(ISD::FREM , MVT::f64, Expand);
90 setOperationAction(ISD::FSIN , MVT::f32, Expand);
91 setOperationAction(ISD::FCOS , MVT::f32, Expand);
92 setOperationAction(ISD::FREM , MVT::f32, Expand);
93
94 // If we're enabling GP optimizations, use hardware square root
95 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
96 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
97 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
98 }
99
100 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
101 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
102
103 // PowerPC does not have BSWAP, CTPOP or CTTZ
104 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
105 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
106 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
107 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
108 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
109 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
110
111 // PowerPC does not have ROTR
112 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
113
114 // PowerPC does not have Select
115 setOperationAction(ISD::SELECT, MVT::i32, Expand);
116 setOperationAction(ISD::SELECT, MVT::i64, Expand);
117 setOperationAction(ISD::SELECT, MVT::f32, Expand);
118 setOperationAction(ISD::SELECT, MVT::f64, Expand);
119
120 // PowerPC wants to turn select_cc of FP into fsel when possible.
121 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
122 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
123
124 // PowerPC wants to optimize integer setcc a bit
125 setOperationAction(ISD::SETCC, MVT::i32, Custom);
126
127 // PowerPC does not have BRCOND which requires SetCC
128 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
129
130 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
131
132 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
133 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
134
135 // PowerPC does not have [U|S]INT_TO_FP
136 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
137 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
138
139 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
140 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
141 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
142 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
143
144 // We cannot sextinreg(i1). Expand to shifts.
145 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
146
147 // Support label based line numbers.
148 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
149 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
150 if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
151 setOperationAction(ISD::LABEL, MVT::Other, Expand);
152 } else {
153 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
154 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
155 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
156 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
157 }
158
159 // We want to legalize GlobalAddress and ConstantPool nodes into the
160 // appropriate instructions to materialize the address.
161 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
162 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
163 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
164 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
165 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
166 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
167 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
168 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
169
170 // RET must be custom lowered, to meet ABI requirements
171 setOperationAction(ISD::RET , MVT::Other, Custom);
172
173 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
174 setOperationAction(ISD::VASTART , MVT::Other, Custom);
175
176 // VAARG is custom lowered with ELF 32 ABI
177 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
178 setOperationAction(ISD::VAARG, MVT::Other, Custom);
179 else
180 setOperationAction(ISD::VAARG, MVT::Other, Expand);
181
182 // Use the default implementation.
183 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
184 setOperationAction(ISD::VAEND , MVT::Other, Expand);
185 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
186 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
187 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
188 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
189
190 // We want to custom lower some of our intrinsics.
191 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
192
193 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
194 // They also have instructions for converting between i64 and fp.
195 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
196 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
197 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
198 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
199 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
200
201 // FIXME: disable this lowered code. This generates 64-bit register values,
202 // and we don't model the fact that the top part is clobbered by calls. We
203 // need to flag these together so that the value isn't live across a call.
204 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
205
206 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
207 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
208 } else {
209 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
210 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
211 }
212
213 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
214 // 64 bit PowerPC implementations can support i64 types directly
215 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
216 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
217 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
218 } else {
219 // 32 bit PowerPC wants to expand i64 shifts itself.
220 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
221 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
222 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
223 }
224
225 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
226 // First set operation action for all vector types to expand. Then we
227 // will selectively turn on ones that can be effectively codegen'd.
228 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
229 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
230 // add/sub are legal for all supported vector VT's.
231 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
232 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
233
234 // We promote all shuffles to v16i8.
235 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
236 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
237
238 // We promote all non-typed operations to v4i32.
239 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
240 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
241 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
242 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
243 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
244 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
245 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
246 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
247 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
248 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
249 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
250 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
251
252 // No other operations are legal.
253 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
254 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
255 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
256 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
257 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
258 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
259 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
260 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
261 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
262
263 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
264 }
265
266 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
267 // with merges, splats, etc.
268 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
269
270 setOperationAction(ISD::AND , MVT::v4i32, Legal);
271 setOperationAction(ISD::OR , MVT::v4i32, Legal);
272 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
273 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
274 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
275 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
276
277 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
278 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
279 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
280 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
281
282 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
283 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
284 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
285 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
286
287 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
288 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
289
290 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
291 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
292 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
293 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
294 }
295
296 setSetCCResultType(MVT::i32);
297 setShiftAmountType(MVT::i32);
298 setSetCCResultContents(ZeroOrOneSetCCResult);
299
300 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
301 setStackPointerRegisterToSaveRestore(PPC::X1);
302 setExceptionPointerRegister(PPC::X3);
303 setExceptionSelectorRegister(PPC::X4);
304 } else {
305 setStackPointerRegisterToSaveRestore(PPC::R1);
306 setExceptionPointerRegister(PPC::R3);
307 setExceptionSelectorRegister(PPC::R4);
308 }
309
310 // We have target-specific dag combine patterns for the following nodes:
311 setTargetDAGCombine(ISD::SINT_TO_FP);
312 setTargetDAGCombine(ISD::STORE);
313 setTargetDAGCombine(ISD::BR_CC);
314 setTargetDAGCombine(ISD::BSWAP);
315
316 computeRegisterProperties();
317}
318
319const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
320 switch (Opcode) {
321 default: return 0;
322 case PPCISD::FSEL: return "PPCISD::FSEL";
323 case PPCISD::FCFID: return "PPCISD::FCFID";
324 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
325 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
326 case PPCISD::STFIWX: return "PPCISD::STFIWX";
327 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
328 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
329 case PPCISD::VPERM: return "PPCISD::VPERM";
330 case PPCISD::Hi: return "PPCISD::Hi";
331 case PPCISD::Lo: return "PPCISD::Lo";
332 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
333 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
334 case PPCISD::SRL: return "PPCISD::SRL";
335 case PPCISD::SRA: return "PPCISD::SRA";
336 case PPCISD::SHL: return "PPCISD::SHL";
337 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
338 case PPCISD::STD_32: return "PPCISD::STD_32";
339 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
340 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
341 case PPCISD::MTCTR: return "PPCISD::MTCTR";
342 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
343 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
344 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
345 case PPCISD::MFCR: return "PPCISD::MFCR";
346 case PPCISD::VCMP: return "PPCISD::VCMP";
347 case PPCISD::VCMPo: return "PPCISD::VCMPo";
348 case PPCISD::LBRX: return "PPCISD::LBRX";
349 case PPCISD::STBRX: return "PPCISD::STBRX";
350 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
351 }
352}
353
354//===----------------------------------------------------------------------===//
355// Node matching predicates, for use by the tblgen matching code.
356//===----------------------------------------------------------------------===//
357
358/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
359static bool isFloatingPointZero(SDOperand Op) {
360 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
361 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
362 else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
363 // Maybe this has already been legalized into the constant pool?
364 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
365 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
366 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
367 }
368 return false;
369}
370
371/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
372/// true if Op is undef or if it matches the specified value.
373static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
374 return Op.getOpcode() == ISD::UNDEF ||
375 cast<ConstantSDNode>(Op)->getValue() == Val;
376}
377
378/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
379/// VPKUHUM instruction.
380bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
381 if (!isUnary) {
382 for (unsigned i = 0; i != 16; ++i)
383 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
384 return false;
385 } else {
386 for (unsigned i = 0; i != 8; ++i)
387 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
388 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
389 return false;
390 }
391 return true;
392}
393
394/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
395/// VPKUWUM instruction.
396bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
397 if (!isUnary) {
398 for (unsigned i = 0; i != 16; i += 2)
399 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
400 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
401 return false;
402 } else {
403 for (unsigned i = 0; i != 8; i += 2)
404 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
405 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
406 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
407 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
408 return false;
409 }
410 return true;
411}
412
413/// isVMerge - Common function, used to match vmrg* shuffles.
414///
415static bool isVMerge(SDNode *N, unsigned UnitSize,
416 unsigned LHSStart, unsigned RHSStart) {
417 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
418 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
419 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
420 "Unsupported merge size!");
421
422 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
423 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
424 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
425 LHSStart+j+i*UnitSize) ||
426 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
427 RHSStart+j+i*UnitSize))
428 return false;
429 }
430 return true;
431}
432
433/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
434/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
435bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
436 if (!isUnary)
437 return isVMerge(N, UnitSize, 8, 24);
438 return isVMerge(N, UnitSize, 8, 8);
439}
440
441/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
442/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
443bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
444 if (!isUnary)
445 return isVMerge(N, UnitSize, 0, 16);
446 return isVMerge(N, UnitSize, 0, 0);
447}
448
449
450/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
451/// amount, otherwise return -1.
452int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
453 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
454 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
455 // Find the first non-undef value in the shuffle mask.
456 unsigned i;
457 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
458 /*search*/;
459
460 if (i == 16) return -1; // all undef.
461
462 // Otherwise, check to see if the rest of the elements are consequtively
463 // numbered from this value.
464 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
465 if (ShiftAmt < i) return -1;
466 ShiftAmt -= i;
467
468 if (!isUnary) {
469 // Check the rest of the elements to see if they are consequtive.
470 for (++i; i != 16; ++i)
471 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
472 return -1;
473 } else {
474 // Check the rest of the elements to see if they are consequtive.
475 for (++i; i != 16; ++i)
476 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
477 return -1;
478 }
479
480 return ShiftAmt;
481}
482
483/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
484/// specifies a splat of a single element that is suitable for input to
485/// VSPLTB/VSPLTH/VSPLTW.
486bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
487 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
488 N->getNumOperands() == 16 &&
489 (EltSize == 1 || EltSize == 2 || EltSize == 4));
490
491 // This is a splat operation if each element of the permute is the same, and
492 // if the value doesn't reference the second vector.
493 unsigned ElementBase = 0;
494 SDOperand Elt = N->getOperand(0);
495 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
496 ElementBase = EltV->getValue();
497 else
498 return false; // FIXME: Handle UNDEF elements too!
499
500 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
501 return false;
502
503 // Check that they are consequtive.
504 for (unsigned i = 1; i != EltSize; ++i) {
505 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
506 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
507 return false;
508 }
509
510 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
511 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
512 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
513 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
514 "Invalid VECTOR_SHUFFLE mask!");
515 for (unsigned j = 0; j != EltSize; ++j)
516 if (N->getOperand(i+j) != N->getOperand(j))
517 return false;
518 }
519
520 return true;
521}
522
523/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
524/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
525unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
526 assert(isSplatShuffleMask(N, EltSize));
527 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
528}
529
530/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
531/// by using a vspltis[bhw] instruction of the specified element size, return
532/// the constant being splatted. The ByteSize field indicates the number of
533/// bytes of each element [124] -> [bhw].
534SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
535 SDOperand OpVal(0, 0);
536
537 // If ByteSize of the splat is bigger than the element size of the
538 // build_vector, then we have a case where we are checking for a splat where
539 // multiple elements of the buildvector are folded together into a single
540 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
541 unsigned EltSize = 16/N->getNumOperands();
542 if (EltSize < ByteSize) {
543 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
544 SDOperand UniquedVals[4];
545 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
546
547 // See if all of the elements in the buildvector agree across.
548 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
549 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
550 // If the element isn't a constant, bail fully out.
551 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
552
553
554 if (UniquedVals[i&(Multiple-1)].Val == 0)
555 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
556 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
557 return SDOperand(); // no match.
558 }
559
560 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
561 // either constant or undef values that are identical for each chunk. See
562 // if these chunks can form into a larger vspltis*.
563
564 // Check to see if all of the leading entries are either 0 or -1. If
565 // neither, then this won't fit into the immediate field.
566 bool LeadingZero = true;
567 bool LeadingOnes = true;
568 for (unsigned i = 0; i != Multiple-1; ++i) {
569 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
570
571 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
572 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
573 }
574 // Finally, check the least significant entry.
575 if (LeadingZero) {
576 if (UniquedVals[Multiple-1].Val == 0)
577 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
578 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
579 if (Val < 16)
580 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
581 }
582 if (LeadingOnes) {
583 if (UniquedVals[Multiple-1].Val == 0)
584 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
585 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
586 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
587 return DAG.getTargetConstant(Val, MVT::i32);
588 }
589
590 return SDOperand();
591 }
592
593 // Check to see if this buildvec has a single non-undef value in its elements.
594 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
595 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
596 if (OpVal.Val == 0)
597 OpVal = N->getOperand(i);
598 else if (OpVal != N->getOperand(i))
599 return SDOperand();
600 }
601
602 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
603
604 unsigned ValSizeInBytes = 0;
605 uint64_t Value = 0;
606 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
607 Value = CN->getValue();
608 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
609 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
610 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
611 Value = FloatToBits(CN->getValue());
612 ValSizeInBytes = 4;
613 }
614
615 // If the splat value is larger than the element value, then we can never do
616 // this splat. The only case that we could fit the replicated bits into our
617 // immediate field for would be zero, and we prefer to use vxor for it.
618 if (ValSizeInBytes < ByteSize) return SDOperand();
619
620 // If the element value is larger than the splat value, cut it in half and
621 // check to see if the two halves are equal. Continue doing this until we
622 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
623 while (ValSizeInBytes > ByteSize) {
624 ValSizeInBytes >>= 1;
625
626 // If the top half equals the bottom half, we're still ok.
627 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
628 (Value & ((1 << (8*ValSizeInBytes))-1)))
629 return SDOperand();
630 }
631
632 // Properly sign extend the value.
633 int ShAmt = (4-ByteSize)*8;
634 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
635
636 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
637 if (MaskVal == 0) return SDOperand();
638
639 // Finally, if this value fits in a 5 bit sext field, return it
640 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
641 return DAG.getTargetConstant(MaskVal, MVT::i32);
642 return SDOperand();
643}
644
645//===----------------------------------------------------------------------===//
646// Addressing Mode Selection
647//===----------------------------------------------------------------------===//
648
649/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
650/// or 64-bit immediate, and if the value can be accurately represented as a
651/// sign extension from a 16-bit value. If so, this returns true and the
652/// immediate.
653static bool isIntS16Immediate(SDNode *N, short &Imm) {
654 if (N->getOpcode() != ISD::Constant)
655 return false;
656
657 Imm = (short)cast<ConstantSDNode>(N)->getValue();
658 if (N->getValueType(0) == MVT::i32)
659 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
660 else
661 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
662}
663static bool isIntS16Immediate(SDOperand Op, short &Imm) {
664 return isIntS16Immediate(Op.Val, Imm);
665}
666
667
668/// SelectAddressRegReg - Given the specified addressed, check to see if it
669/// can be represented as an indexed [r+r] operation. Returns false if it
670/// can be more efficiently represented with [r+imm].
671bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
672 SDOperand &Index,
673 SelectionDAG &DAG) {
674 short imm = 0;
675 if (N.getOpcode() == ISD::ADD) {
676 if (isIntS16Immediate(N.getOperand(1), imm))
677 return false; // r+i
678 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
679 return false; // r+i
680
681 Base = N.getOperand(0);
682 Index = N.getOperand(1);
683 return true;
684 } else if (N.getOpcode() == ISD::OR) {
685 if (isIntS16Immediate(N.getOperand(1), imm))
686 return false; // r+i can fold it if we can.
687
688 // If this is an or of disjoint bitfields, we can codegen this as an add
689 // (for better address arithmetic) if the LHS and RHS of the OR are provably
690 // disjoint.
691 uint64_t LHSKnownZero, LHSKnownOne;
692 uint64_t RHSKnownZero, RHSKnownOne;
693 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
694
695 if (LHSKnownZero) {
696 DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
697 // If all of the bits are known zero on the LHS or RHS, the add won't
698 // carry.
699 if ((LHSKnownZero | RHSKnownZero) == ~0U) {
700 Base = N.getOperand(0);
701 Index = N.getOperand(1);
702 return true;
703 }
704 }
705 }
706
707 return false;
708}
709
710/// Returns true if the address N can be represented by a base register plus
711/// a signed 16-bit displacement [r+imm], and if it is not better
712/// represented as reg+reg.
713bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
714 SDOperand &Base, SelectionDAG &DAG){
715 // If this can be more profitably realized as r+r, fail.
716 if (SelectAddressRegReg(N, Disp, Base, DAG))
717 return false;
718
719 if (N.getOpcode() == ISD::ADD) {
720 short imm = 0;
721 if (isIntS16Immediate(N.getOperand(1), imm)) {
722 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
723 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
724 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
725 } else {
726 Base = N.getOperand(0);
727 }
728 return true; // [r+i]
729 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
730 // Match LOAD (ADD (X, Lo(G))).
731 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
732 && "Cannot handle constant offsets yet!");
733 Disp = N.getOperand(1).getOperand(0); // The global address.
734 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
735 Disp.getOpcode() == ISD::TargetConstantPool ||
736 Disp.getOpcode() == ISD::TargetJumpTable);
737 Base = N.getOperand(0);
738 return true; // [&g+r]
739 }
740 } else if (N.getOpcode() == ISD::OR) {
741 short imm = 0;
742 if (isIntS16Immediate(N.getOperand(1), imm)) {
743 // If this is an or of disjoint bitfields, we can codegen this as an add
744 // (for better address arithmetic) if the LHS and RHS of the OR are
745 // provably disjoint.
746 uint64_t LHSKnownZero, LHSKnownOne;
747 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
748 if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
749 // If all of the bits are known zero on the LHS or RHS, the add won't
750 // carry.
751 Base = N.getOperand(0);
752 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
753 return true;
754 }
755 }
756 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
757 // Loading from a constant address.
758
759 // If this address fits entirely in a 16-bit sext immediate field, codegen
760 // this as "d, 0"
761 short Imm;
762 if (isIntS16Immediate(CN, Imm)) {
763 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
764 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
765 return true;
766 }
767
768 // Handle 32-bit sext immediates with LIS + addr mode.
769 if (CN->getValueType(0) == MVT::i32 ||
770 (int64_t)CN->getValue() == (int)CN->getValue()) {
771 int Addr = (int)CN->getValue();
772
773 // Otherwise, break this down into an LIS + disp.
774 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
775
776 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
777 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
778 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
779 return true;
780 }
781 }
782
783 Disp = DAG.getTargetConstant(0, getPointerTy());
784 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
785 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
786 else
787 Base = N;
788 return true; // [r+0]
789}
790
791/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
792/// represented as an indexed [r+r] operation.
793bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
794 SDOperand &Index,
795 SelectionDAG &DAG) {
796 // Check to see if we can easily represent this as an [r+r] address. This
797 // will fail if it thinks that the address is more profitably represented as
798 // reg+imm, e.g. where imm = 0.
799 if (SelectAddressRegReg(N, Base, Index, DAG))
800 return true;
801
802 // If the operand is an addition, always emit this as [r+r], since this is
803 // better (for code size, and execution, as the memop does the add for free)
804 // than emitting an explicit add.
805 if (N.getOpcode() == ISD::ADD) {
806 Base = N.getOperand(0);
807 Index = N.getOperand(1);
808 return true;
809 }
810
811 // Otherwise, do it the hard way, using R0 as the base register.
812 Base = DAG.getRegister(PPC::R0, N.getValueType());
813 Index = N;
814 return true;
815}
816
817/// SelectAddressRegImmShift - Returns true if the address N can be
818/// represented by a base register plus a signed 14-bit displacement
819/// [r+imm*4]. Suitable for use by STD and friends.
820bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
821 SDOperand &Base,
822 SelectionDAG &DAG) {
823 // If this can be more profitably realized as r+r, fail.
824 if (SelectAddressRegReg(N, Disp, Base, DAG))
825 return false;
826
827 if (N.getOpcode() == ISD::ADD) {
828 short imm = 0;
829 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
830 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
831 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
832 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
833 } else {
834 Base = N.getOperand(0);
835 }
836 return true; // [r+i]
837 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
838 // Match LOAD (ADD (X, Lo(G))).
839 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
840 && "Cannot handle constant offsets yet!");
841 Disp = N.getOperand(1).getOperand(0); // The global address.
842 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
843 Disp.getOpcode() == ISD::TargetConstantPool ||
844 Disp.getOpcode() == ISD::TargetJumpTable);
845 Base = N.getOperand(0);
846 return true; // [&g+r]
847 }
848 } else if (N.getOpcode() == ISD::OR) {
849 short imm = 0;
850 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
851 // If this is an or of disjoint bitfields, we can codegen this as an add
852 // (for better address arithmetic) if the LHS and RHS of the OR are
853 // provably disjoint.
854 uint64_t LHSKnownZero, LHSKnownOne;
855 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
856 if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
857 // If all of the bits are known zero on the LHS or RHS, the add won't
858 // carry.
859 Base = N.getOperand(0);
860 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
861 return true;
862 }
863 }
864 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
865 // Loading from a constant address. Verify low two bits are clear.
866 if ((CN->getValue() & 3) == 0) {
867 // If this address fits entirely in a 14-bit sext immediate field, codegen
868 // this as "d, 0"
869 short Imm;
870 if (isIntS16Immediate(CN, Imm)) {
871 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
872 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
873 return true;
874 }
875
876 // Fold the low-part of 32-bit absolute addresses into addr mode.
877 if (CN->getValueType(0) == MVT::i32 ||
878 (int64_t)CN->getValue() == (int)CN->getValue()) {
879 int Addr = (int)CN->getValue();
880
881 // Otherwise, break this down into an LIS + disp.
882 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
883
884 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
885 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
886 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
887 return true;
888 }
889 }
890 }
891
892 Disp = DAG.getTargetConstant(0, getPointerTy());
893 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
894 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
895 else
896 Base = N;
897 return true; // [r+0]
898}
899
900
901/// getPreIndexedAddressParts - returns true by value, base pointer and
902/// offset pointer and addressing mode by reference if the node's address
903/// can be legally represented as pre-indexed load / store address.
904bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
905 SDOperand &Offset,
906 ISD::MemIndexedMode &AM,
907 SelectionDAG &DAG) {
908 // Disabled by default for now.
909 if (!EnablePPCPreinc) return false;
910
911 SDOperand Ptr;
912 MVT::ValueType VT;
913 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
914 Ptr = LD->getBasePtr();
915 VT = LD->getLoadedVT();
916
917 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
918 ST = ST;
919 Ptr = ST->getBasePtr();
920 VT = ST->getStoredVT();
921 } else
922 return false;
923
924 // PowerPC doesn't have preinc load/store instructions for vectors.
925 if (MVT::isVector(VT))
926 return false;
927
928 // TODO: Check reg+reg first.
929
930 // LDU/STU use reg+imm*4, others use reg+imm.
931 if (VT != MVT::i64) {
932 // reg + imm
933 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
934 return false;
935 } else {
936 // reg + imm * 4.
937 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
938 return false;
939 }
940
941 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
942 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
943 // sext i32 to i64 when addr mode is r+i.
944 if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
945 LD->getExtensionType() == ISD::SEXTLOAD &&
946 isa<ConstantSDNode>(Offset))
947 return false;
948 }
949
950 AM = ISD::PRE_INC;
951 return true;
952}
953
954//===----------------------------------------------------------------------===//
955// LowerOperation implementation
956//===----------------------------------------------------------------------===//
957
958static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
959 MVT::ValueType PtrVT = Op.getValueType();
960 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
961 Constant *C = CP->getConstVal();
962 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
963 SDOperand Zero = DAG.getConstant(0, PtrVT);
964
965 const TargetMachine &TM = DAG.getTarget();
966
967 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
968 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
969
970 // If this is a non-darwin platform, we don't support non-static relo models
971 // yet.
972 if (TM.getRelocationModel() == Reloc::Static ||
973 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
974 // Generate non-pic code that has direct accesses to the constant pool.
975 // The address of the global is just (hi(&g)+lo(&g)).
976 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
977 }
978
979 if (TM.getRelocationModel() == Reloc::PIC_) {
980 // With PIC, the first instruction is actually "GR+hi(&G)".
981 Hi = DAG.getNode(ISD::ADD, PtrVT,
982 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
983 }
984
985 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
986 return Lo;
987}
988
989static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
990 MVT::ValueType PtrVT = Op.getValueType();
991 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
992 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
993 SDOperand Zero = DAG.getConstant(0, PtrVT);
994
995 const TargetMachine &TM = DAG.getTarget();
996
997 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
998 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
999
1000 // If this is a non-darwin platform, we don't support non-static relo models
1001 // yet.
1002 if (TM.getRelocationModel() == Reloc::Static ||
1003 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1004 // Generate non-pic code that has direct accesses to the constant pool.
1005 // The address of the global is just (hi(&g)+lo(&g)).
1006 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1007 }
1008
1009 if (TM.getRelocationModel() == Reloc::PIC_) {
1010 // With PIC, the first instruction is actually "GR+hi(&G)".
1011 Hi = DAG.getNode(ISD::ADD, PtrVT,
1012 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1013 }
1014
1015 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1016 return Lo;
1017}
1018
1019static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1020 assert(0 && "TLS not implemented for PPC.");
1021}
1022
1023static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1024 MVT::ValueType PtrVT = Op.getValueType();
1025 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1026 GlobalValue *GV = GSDN->getGlobal();
1027 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1028 SDOperand Zero = DAG.getConstant(0, PtrVT);
1029
1030 const TargetMachine &TM = DAG.getTarget();
1031
1032 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1033 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1034
1035 // If this is a non-darwin platform, we don't support non-static relo models
1036 // yet.
1037 if (TM.getRelocationModel() == Reloc::Static ||
1038 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1039 // Generate non-pic code that has direct accesses to globals.
1040 // The address of the global is just (hi(&g)+lo(&g)).
1041 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1042 }
1043
1044 if (TM.getRelocationModel() == Reloc::PIC_) {
1045 // With PIC, the first instruction is actually "GR+hi(&G)".
1046 Hi = DAG.getNode(ISD::ADD, PtrVT,
1047 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1048 }
1049
1050 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1051
1052 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1053 return Lo;
1054
1055 // If the global is weak or external, we have to go through the lazy
1056 // resolution stub.
1057 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1058}
1059
1060static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1061 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1062
1063 // If we're comparing for equality to zero, expose the fact that this is
1064 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1065 // fold the new nodes.
1066 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1067 if (C->isNullValue() && CC == ISD::SETEQ) {
1068 MVT::ValueType VT = Op.getOperand(0).getValueType();
1069 SDOperand Zext = Op.getOperand(0);
1070 if (VT < MVT::i32) {
1071 VT = MVT::i32;
1072 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1073 }
1074 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1075 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1076 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1077 DAG.getConstant(Log2b, MVT::i32));
1078 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1079 }
1080 // Leave comparisons against 0 and -1 alone for now, since they're usually
1081 // optimized. FIXME: revisit this when we can custom lower all setcc
1082 // optimizations.
1083 if (C->isAllOnesValue() || C->isNullValue())
1084 return SDOperand();
1085 }
1086
1087 // If we have an integer seteq/setne, turn it into a compare against zero
1088 // by xor'ing the rhs with the lhs, which is faster than setting a
1089 // condition register, reading it back out, and masking the correct bit. The
1090 // normal approach here uses sub to do this instead of xor. Using xor exposes
1091 // the result to other bit-twiddling opportunities.
1092 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1093 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1094 MVT::ValueType VT = Op.getValueType();
1095 SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1096 Op.getOperand(1));
1097 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1098 }
1099 return SDOperand();
1100}
1101
1102static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1103 int VarArgsFrameIndex,
1104 int VarArgsStackOffset,
1105 unsigned VarArgsNumGPR,
1106 unsigned VarArgsNumFPR,
1107 const PPCSubtarget &Subtarget) {
1108
1109 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1110}
1111
1112static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1113 int VarArgsFrameIndex,
1114 int VarArgsStackOffset,
1115 unsigned VarArgsNumGPR,
1116 unsigned VarArgsNumFPR,
1117 const PPCSubtarget &Subtarget) {
1118
1119 if (Subtarget.isMachoABI()) {
1120 // vastart just stores the address of the VarArgsFrameIndex slot into the
1121 // memory location argument.
1122 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1123 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1124 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1125 return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1126 SV->getOffset());
1127 }
1128
1129 // For ELF 32 ABI we follow the layout of the va_list struct.
1130 // We suppose the given va_list is already allocated.
1131 //
1132 // typedef struct {
1133 // char gpr; /* index into the array of 8 GPRs
1134 // * stored in the register save area
1135 // * gpr=0 corresponds to r3,
1136 // * gpr=1 to r4, etc.
1137 // */
1138 // char fpr; /* index into the array of 8 FPRs
1139 // * stored in the register save area
1140 // * fpr=0 corresponds to f1,
1141 // * fpr=1 to f2, etc.
1142 // */
1143 // char *overflow_arg_area;
1144 // /* location on stack that holds
1145 // * the next overflow argument
1146 // */
1147 // char *reg_save_area;
1148 // /* where r3:r10 and f1:f8 (if saved)
1149 // * are stored
1150 // */
1151 // } va_list[1];
1152
1153
1154 SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1155 SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1156
1157
1158 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1159
1160 SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1161 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1162
1163 SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1164 PtrVT);
1165 SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1166 PtrVT);
1167 SDOperand ConstFPROffset = DAG.getConstant(1, PtrVT);
1168
1169 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1170
1171 // Store first byte : number of int regs
1172 SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1173 Op.getOperand(1), SV->getValue(),
1174 SV->getOffset());
1175 SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1176 ConstFPROffset);
1177
1178 // Store second byte : number of float regs
1179 SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1180 SV->getValue(), SV->getOffset());
1181 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1182
1183 // Store second word : arguments given on stack
1184 SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1185 SV->getValue(), SV->getOffset());
1186 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1187
1188 // Store third word : arguments given in registers
1189 return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1190 SV->getOffset());
1191
1192}
1193
1194#include "PPCGenCallingConv.inc"
1195
1196/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1197/// depending on which subtarget is selected.
1198static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1199 if (Subtarget.isMachoABI()) {
1200 static const unsigned FPR[] = {
1201 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1202 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1203 };
1204 return FPR;
1205 }
1206
1207
1208 static const unsigned FPR[] = {
1209 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1210 PPC::F8
1211 };
1212 return FPR;
1213}
1214
1215static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1216 int &VarArgsFrameIndex,
1217 int &VarArgsStackOffset,
1218 unsigned &VarArgsNumGPR,
1219 unsigned &VarArgsNumFPR,
1220 const PPCSubtarget &Subtarget) {
1221 // TODO: add description of PPC stack frame format, or at least some docs.
1222 //
1223 MachineFunction &MF = DAG.getMachineFunction();
1224 MachineFrameInfo *MFI = MF.getFrameInfo();
1225 SSARegMap *RegMap = MF.getSSARegMap();
1226 SmallVector<SDOperand, 8> ArgValues;
1227 SDOperand Root = Op.getOperand(0);
1228
1229 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1230 bool isPPC64 = PtrVT == MVT::i64;
1231 bool isMachoABI = Subtarget.isMachoABI();
1232 bool isELF32_ABI = Subtarget.isELF32_ABI();
1233 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1234
1235 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1236
1237 static const unsigned GPR_32[] = { // 32-bit registers.
1238 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1239 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1240 };
1241 static const unsigned GPR_64[] = { // 64-bit registers.
1242 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1243 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1244 };
1245
1246 static const unsigned *FPR = GetFPR(Subtarget);
1247
1248 static const unsigned VR[] = {
1249 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1250 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1251 };
1252
1253 const unsigned Num_GPR_Regs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1254 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1255 const unsigned Num_VR_Regs = sizeof( VR)/sizeof( VR[0]);
1256
1257 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1258
1259 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1260
1261 // Add DAG nodes to load the arguments or copy them out of registers. On
1262 // entry to a function on PPC, the arguments start after the linkage area,
1263 // although the first ones are often in registers.
1264 //
1265 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1266 // represented with two words (long long or double) must be copied to an
1267 // even GPR_idx value or to an even ArgOffset value.
1268
1269 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1270 SDOperand ArgVal;
1271 bool needsLoad = false;
1272 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1273 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1274 unsigned ArgSize = ObjSize;
1275 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1276 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1277 // See if next argument requires stack alignment in ELF
1278 bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1279 (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1280 (!(Flags & AlignFlag)));
1281
1282 unsigned CurArgOffset = ArgOffset;
1283 switch (ObjectVT) {
1284 default: assert(0 && "Unhandled argument type!");
1285 case MVT::i32:
1286 // Double word align in ELF
1287 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1288 if (GPR_idx != Num_GPR_Regs) {
1289 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1290 MF.addLiveIn(GPR[GPR_idx], VReg);
1291 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1292 ++GPR_idx;
1293 } else {
1294 needsLoad = true;
1295 ArgSize = PtrByteSize;
1296 }
1297 // Stack align in ELF
1298 if (needsLoad && Expand && isELF32_ABI)
1299 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1300 // All int arguments reserve stack space in Macho ABI.
1301 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1302 break;
1303
1304 case MVT::i64: // PPC64
1305 if (GPR_idx != Num_GPR_Regs) {
1306 unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1307 MF.addLiveIn(GPR[GPR_idx], VReg);
1308 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1309 ++GPR_idx;
1310 } else {
1311 needsLoad = true;
1312 }
1313 // All int arguments reserve stack space in Macho ABI.
1314 if (isMachoABI || needsLoad) ArgOffset += 8;
1315 break;
1316
1317 case MVT::f32:
1318 case MVT::f64:
1319 // Every 4 bytes of argument space consumes one of the GPRs available for
1320 // argument passing.
1321 if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1322 ++GPR_idx;
1323 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1324 ++GPR_idx;
1325 }
1326 if (FPR_idx != Num_FPR_Regs) {
1327 unsigned VReg;
1328 if (ObjectVT == MVT::f32)
1329 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1330 else
1331 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1332 MF.addLiveIn(FPR[FPR_idx], VReg);
1333 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1334 ++FPR_idx;
1335 } else {
1336 needsLoad = true;
1337 }
1338
1339 // Stack align in ELF
1340 if (needsLoad && Expand && isELF32_ABI)
1341 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1342 // All FP arguments reserve stack space in Macho ABI.
1343 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1344 break;
1345 case MVT::v4f32:
1346 case MVT::v4i32:
1347 case MVT::v8i16:
1348 case MVT::v16i8:
1349 // Note that vector arguments in registers don't reserve stack space.
1350 if (VR_idx != Num_VR_Regs) {
1351 unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1352 MF.addLiveIn(VR[VR_idx], VReg);
1353 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1354 ++VR_idx;
1355 } else {
1356 // This should be simple, but requires getting 16-byte aligned stack
1357 // values.
1358 assert(0 && "Loading VR argument not implemented yet!");
1359 needsLoad = true;
1360 }
1361 break;
1362 }
1363
1364 // We need to load the argument to a virtual register if we determined above
1365 // that we ran out of physical registers of the appropriate type
1366 if (needsLoad) {
1367 // If the argument is actually used, emit a load from the right stack
1368 // slot.
1369 if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1370 int FI = MFI->CreateFixedObject(ObjSize,
1371 CurArgOffset + (ArgSize - ObjSize));
1372 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1373 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1374 } else {
1375 // Don't emit a dead load.
1376 ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1377 }
1378 }
1379
1380 ArgValues.push_back(ArgVal);
1381 }
1382
1383 // If the function takes variable number of arguments, make a frame index for
1384 // the start of the first vararg value... for expansion of llvm.va_start.
1385 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1386 if (isVarArg) {
1387
1388 int depth;
1389 if (isELF32_ABI) {
1390 VarArgsNumGPR = GPR_idx;
1391 VarArgsNumFPR = FPR_idx;
1392
1393 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1394 // pointer.
1395 depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1396 Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1397 MVT::getSizeInBits(PtrVT)/8);
1398
1399 VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1400 ArgOffset);
1401
1402 }
1403 else
1404 depth = ArgOffset;
1405
1406 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1407 depth);
1408 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1409
1410 SmallVector<SDOperand, 8> MemOps;
1411
1412 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1413 // stored to the VarArgsFrameIndex on the stack.
1414 if (isELF32_ABI) {
1415 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1416 SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1417 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1418 MemOps.push_back(Store);
1419 // Increment the address by four for the next argument to store
1420 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1421 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1422 }
1423 }
1424
1425 // If this function is vararg, store any remaining integer argument regs
1426 // to their spots on the stack so that they may be loaded by deferencing the
1427 // result of va_next.
1428 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1429 unsigned VReg;
1430 if (isPPC64)
1431 VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1432 else
1433 VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1434
1435 MF.addLiveIn(GPR[GPR_idx], VReg);
1436 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1437 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1438 MemOps.push_back(Store);
1439 // Increment the address by four for the next argument to store
1440 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1441 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1442 }
1443
1444 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1445 // on the stack.
1446 if (isELF32_ABI) {
1447 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1448 SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1449 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1450 MemOps.push_back(Store);
1451 // Increment the address by eight for the next argument to store
1452 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1453 PtrVT);
1454 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1455 }
1456
1457 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1458 unsigned VReg;
1459 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1460
1461 MF.addLiveIn(FPR[FPR_idx], VReg);
1462 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1463 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1464 MemOps.push_back(Store);
1465 // Increment the address by eight for the next argument to store
1466 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1467 PtrVT);
1468 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1469 }
1470 }
1471
1472 if (!MemOps.empty())
1473 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1474 }
1475
1476 ArgValues.push_back(Root);
1477
1478 // Return the new list of results.
1479 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1480 Op.Val->value_end());
1481 return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1482}
1483
1484/// isCallCompatibleAddress - Return the immediate to use if the specified
1485/// 32-bit value is representable in the immediate field of a BxA instruction.
1486static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1487 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1488 if (!C) return 0;
1489
1490 int Addr = C->getValue();
1491 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
1492 (Addr << 6 >> 6) != Addr)
1493 return 0; // Top 6 bits have to be sext of immediate.
1494
1495 return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1496}
1497
1498
1499static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1500 const PPCSubtarget &Subtarget) {
1501 SDOperand Chain = Op.getOperand(0);
1502 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1503 SDOperand Callee = Op.getOperand(4);
1504 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1505
1506 bool isMachoABI = Subtarget.isMachoABI();
1507 bool isELF32_ABI = Subtarget.isELF32_ABI();
1508
1509 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1510 bool isPPC64 = PtrVT == MVT::i64;
1511 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1512
1513 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1514 // SelectExpr to use to put the arguments in the appropriate registers.
1515 std::vector<SDOperand> args_to_use;
1516
1517 // Count how many bytes are to be pushed on the stack, including the linkage
1518 // area, and parameter passing area. We start with 24/48 bytes, which is
1519 // prereserved space for [SP][CR][LR][3 x unused].
1520 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1521
1522 // Add up all the space actually used.
1523 for (unsigned i = 0; i != NumOps; ++i) {
1524 unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1525 ArgSize = std::max(ArgSize, PtrByteSize);
1526 NumBytes += ArgSize;
1527 }
1528
1529 // The prolog code of the callee may store up to 8 GPR argument registers to
1530 // the stack, allowing va_start to index over them in memory if its varargs.
1531 // Because we cannot tell if this is needed on the caller side, we have to
1532 // conservatively assume that it is needed. As such, make sure we have at
1533 // least enough stack space for the caller to store the 8 GPRs.
1534 NumBytes = std::max(NumBytes,
1535 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1536
1537 // Adjust the stack pointer for the new arguments...
1538 // These operations are automatically eliminated by the prolog/epilog pass
1539 Chain = DAG.getCALLSEQ_START(Chain,
1540 DAG.getConstant(NumBytes, PtrVT));
1541
1542 // Set up a copy of the stack pointer for use loading and storing any
1543 // arguments that may not fit in the registers available for argument
1544 // passing.
1545 SDOperand StackPtr;
1546 if (isPPC64)
1547 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1548 else
1549 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1550
1551 // Figure out which arguments are going to go in registers, and which in
1552 // memory. Also, if this is a vararg function, floating point operations
1553 // must be stored to our stack, and loaded into integer regs as well, if
1554 // any integer regs are available for argument passing.
1555 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1556 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1557
1558 static const unsigned GPR_32[] = { // 32-bit registers.
1559 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1560 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1561 };
1562 static const unsigned GPR_64[] = { // 64-bit registers.
1563 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1564 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1565 };
1566 static const unsigned *FPR = GetFPR(Subtarget);
1567
1568 static const unsigned VR[] = {
1569 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1570 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1571 };
1572 const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1573 const unsigned NumFPRs = isMachoABI ? 13 : 8;
1574 const unsigned NumVRs = sizeof( VR)/sizeof( VR[0]);
1575
1576 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1577
1578 std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1579 SmallVector<SDOperand, 8> MemOpChains;
1580 for (unsigned i = 0; i != NumOps; ++i) {
1581 bool inMem = false;
1582 SDOperand Arg = Op.getOperand(5+2*i);
1583 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1584 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1585 // See if next argument requires stack alignment in ELF
1586 unsigned next = 5+2*(i+1)+1;
1587 bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1588 (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1589 (!(Flags & AlignFlag)));
1590
1591 // PtrOff will be used to store the current argument to the stack if a
1592 // register cannot be found for it.
1593 SDOperand PtrOff;
1594
1595 // Stack align in ELF 32
1596 if (isELF32_ABI && Expand)
1597 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1598 StackPtr.getValueType());
1599 else
1600 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1601
1602 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1603
1604 // On PPC64, promote integers to 64-bit values.
1605 if (isPPC64 && Arg.getValueType() == MVT::i32) {
1606 unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1607
1608 Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1609 }
1610
1611 switch (Arg.getValueType()) {
1612 default: assert(0 && "Unexpected ValueType for argument!");
1613 case MVT::i32:
1614 case MVT::i64:
1615 // Double word align in ELF
1616 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1617 if (GPR_idx != NumGPRs) {
1618 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1619 } else {
1620 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1621 inMem = true;
1622 }
1623 if (inMem || isMachoABI) {
1624 // Stack align in ELF
1625 if (isELF32_ABI && Expand)
1626 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1627
1628 ArgOffset += PtrByteSize;
1629 }
1630 break;
1631 case MVT::f32:
1632 case MVT::f64:
1633 if (isVarArg) {
1634 // Float varargs need to be promoted to double.
1635 if (Arg.getValueType() == MVT::f32)
1636 Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1637 }
1638
1639 if (FPR_idx != NumFPRs) {
1640 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1641
1642 if (isVarArg) {
1643 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1644 MemOpChains.push_back(Store);
1645
1646 // Float varargs are always shadowed in available integer registers
1647 if (GPR_idx != NumGPRs) {
1648 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1649 MemOpChains.push_back(Load.getValue(1));
1650 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1651 Load));
1652 }
1653 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1654 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1655 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1656 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1657 MemOpChains.push_back(Load.getValue(1));
1658 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1659 Load));
1660 }
1661 } else {
1662 // If we have any FPRs remaining, we may also have GPRs remaining.
1663 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1664 // GPRs.
1665 if (isMachoABI) {
1666 if (GPR_idx != NumGPRs)
1667 ++GPR_idx;
1668 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1669 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
1670 ++GPR_idx;
1671 }
1672 }
1673 } else {
1674 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1675 inMem = true;
1676 }
1677 if (inMem || isMachoABI) {
1678 // Stack align in ELF
1679 if (isELF32_ABI && Expand)
1680 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1681 if (isPPC64)
1682 ArgOffset += 8;
1683 else
1684 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1685 }
1686 break;
1687 case MVT::v4f32:
1688 case MVT::v4i32:
1689 case MVT::v8i16:
1690 case MVT::v16i8:
1691 assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1692 assert(VR_idx != NumVRs &&
1693 "Don't support passing more than 12 vector args yet!");
1694 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1695 break;
1696 }
1697 }
1698 if (!MemOpChains.empty())
1699 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1700 &MemOpChains[0], MemOpChains.size());
1701
1702 // Build a sequence of copy-to-reg nodes chained together with token chain
1703 // and flag operands which copy the outgoing args into the appropriate regs.
1704 SDOperand InFlag;
1705 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1706 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1707 InFlag);
1708 InFlag = Chain.getValue(1);
1709 }
1710
1711 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1712 if (isVarArg && isELF32_ABI) {
1713 SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1714 Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1715 InFlag = Chain.getValue(1);
1716 }
1717
1718 std::vector<MVT::ValueType> NodeTys;
1719 NodeTys.push_back(MVT::Other); // Returns a chain
1720 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
1721
1722 SmallVector<SDOperand, 8> Ops;
1723 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1724
1725 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1726 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1727 // node so that legalize doesn't hack it.
1728 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1729 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1730 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1731 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1732 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1733 // If this is an absolute destination address, use the munged value.
1734 Callee = SDOperand(Dest, 0);
1735 else {
1736 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
1737 // to do the call, we can't use PPCISD::CALL.
1738 SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1739 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1740 InFlag = Chain.getValue(1);
1741
1742 // Copy the callee address into R12 on darwin.
1743 if (isMachoABI) {
1744 Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1745 InFlag = Chain.getValue(1);
1746 }
1747
1748 NodeTys.clear();
1749 NodeTys.push_back(MVT::Other);
1750 NodeTys.push_back(MVT::Flag);
1751 Ops.push_back(Chain);
1752 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1753 Callee.Val = 0;
1754 }
1755
1756 // If this is a direct call, pass the chain and the callee.
1757 if (Callee.Val) {
1758 Ops.push_back(Chain);
1759 Ops.push_back(Callee);
1760 }
1761
1762 // Add argument registers to the end of the list so that they are known live
1763 // into the call.
1764 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1765 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1766 RegsToPass[i].second.getValueType()));
1767
1768 if (InFlag.Val)
1769 Ops.push_back(InFlag);
1770 Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1771 InFlag = Chain.getValue(1);
1772
1773 SDOperand ResultVals[3];
1774 unsigned NumResults = 0;
1775 NodeTys.clear();
1776
1777 // If the call has results, copy the values out of the ret val registers.
1778 switch (Op.Val->getValueType(0)) {
1779 default: assert(0 && "Unexpected ret value!");
1780 case MVT::Other: break;
1781 case MVT::i32:
1782 if (Op.Val->getValueType(1) == MVT::i32) {
1783 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1784 ResultVals[0] = Chain.getValue(0);
1785 Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1786 Chain.getValue(2)).getValue(1);
1787 ResultVals[1] = Chain.getValue(0);
1788 NumResults = 2;
1789 NodeTys.push_back(MVT::i32);
1790 } else {
1791 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1792 ResultVals[0] = Chain.getValue(0);
1793 NumResults = 1;
1794 }
1795 NodeTys.push_back(MVT::i32);
1796 break;
1797 case MVT::i64:
1798 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1799 ResultVals[0] = Chain.getValue(0);
1800 NumResults = 1;
1801 NodeTys.push_back(MVT::i64);
1802 break;
1803 case MVT::f32:
1804 case MVT::f64:
1805 Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1806 InFlag).getValue(1);
1807 ResultVals[0] = Chain.getValue(0);
1808 NumResults = 1;
1809 NodeTys.push_back(Op.Val->getValueType(0));
1810 break;
1811 case MVT::v4f32:
1812 case MVT::v4i32:
1813 case MVT::v8i16:
1814 case MVT::v16i8:
1815 Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1816 InFlag).getValue(1);
1817 ResultVals[0] = Chain.getValue(0);
1818 NumResults = 1;
1819 NodeTys.push_back(Op.Val->getValueType(0));
1820 break;
1821 }
1822
1823 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1824 DAG.getConstant(NumBytes, PtrVT));
1825 NodeTys.push_back(MVT::Other);
1826
1827 // If the function returns void, just return the chain.
1828 if (NumResults == 0)
1829 return Chain;
1830
1831 // Otherwise, merge everything together with a MERGE_VALUES node.
1832 ResultVals[NumResults++] = Chain;
1833 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1834 ResultVals, NumResults);
1835 return Res.getValue(Op.ResNo);
1836}
1837
1838static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1839 SmallVector<CCValAssign, 16> RVLocs;
1840 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1841 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1842 CCState CCInfo(CC, isVarArg, TM, RVLocs);
1843 CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1844
1845 // If this is the first return lowered for this function, add the regs to the
1846 // liveout set for the function.
1847 if (DAG.getMachineFunction().liveout_empty()) {
1848 for (unsigned i = 0; i != RVLocs.size(); ++i)
1849 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
1850 }
1851
1852 SDOperand Chain = Op.getOperand(0);
1853 SDOperand Flag;
1854
1855 // Copy the result values into the output registers.
1856 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1857 CCValAssign &VA = RVLocs[i];
1858 assert(VA.isRegLoc() && "Can only return in registers!");
1859 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1860 Flag = Chain.getValue(1);
1861 }
1862
1863 if (Flag.Val)
1864 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1865 else
1866 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1867}
1868
1869static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1870 const PPCSubtarget &Subtarget) {
1871 // When we pop the dynamic allocation we need to restore the SP link.
1872
1873 // Get the corect type for pointers.
1874 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1875
1876 // Construct the stack pointer operand.
1877 bool IsPPC64 = Subtarget.isPPC64();
1878 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1879 SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1880
1881 // Get the operands for the STACKRESTORE.
1882 SDOperand Chain = Op.getOperand(0);
1883 SDOperand SaveSP = Op.getOperand(1);
1884
1885 // Load the old link SP.
1886 SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1887
1888 // Restore the stack pointer.
1889 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1890
1891 // Store the old link SP.
1892 return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1893}
1894
1895static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1896 const PPCSubtarget &Subtarget) {
1897 MachineFunction &MF = DAG.getMachineFunction();
1898 bool IsPPC64 = Subtarget.isPPC64();
1899 bool isMachoABI = Subtarget.isMachoABI();
1900
1901 // Get current frame pointer save index. The users of this index will be
1902 // primarily DYNALLOC instructions.
1903 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1904 int FPSI = FI->getFramePointerSaveIndex();
1905
1906 // If the frame pointer save index hasn't been defined yet.
1907 if (!FPSI) {
1908 // Find out what the fix offset of the frame pointer save area.
1909 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1910
1911 // Allocate the frame index for frame pointer save area.
1912 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1913 // Save the result.
1914 FI->setFramePointerSaveIndex(FPSI);
1915 }
1916
1917 // Get the inputs.
1918 SDOperand Chain = Op.getOperand(0);
1919 SDOperand Size = Op.getOperand(1);
1920
1921 // Get the corect type for pointers.
1922 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1923 // Negate the size.
1924 SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1925 DAG.getConstant(0, PtrVT), Size);
1926 // Construct a node for the frame pointer save index.
1927 SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1928 // Build a DYNALLOC node.
1929 SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1930 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1931 return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1932}
1933
1934
1935/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1936/// possible.
1937static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1938 // Not FP? Not a fsel.
1939 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1940 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1941 return SDOperand();
1942
1943 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1944
1945 // Cannot handle SETEQ/SETNE.
1946 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1947
1948 MVT::ValueType ResVT = Op.getValueType();
1949 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1950 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1951 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
1952
1953 // If the RHS of the comparison is a 0.0, we don't need to do the
1954 // subtraction at all.
1955 if (isFloatingPointZero(RHS))
1956 switch (CC) {
1957 default: break; // SETUO etc aren't handled by fsel.
1958 case ISD::SETULT:
1959 case ISD::SETOLT:
1960 case ISD::SETLT:
1961 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
1962 case ISD::SETUGE:
1963 case ISD::SETOGE:
1964 case ISD::SETGE:
1965 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
1966 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1967 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1968 case ISD::SETUGT:
1969 case ISD::SETOGT:
1970 case ISD::SETGT:
1971 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
1972 case ISD::SETULE:
1973 case ISD::SETOLE:
1974 case ISD::SETLE:
1975 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
1976 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1977 return DAG.getNode(PPCISD::FSEL, ResVT,
1978 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1979 }
1980
1981 SDOperand Cmp;
1982 switch (CC) {
1983 default: break; // SETUO etc aren't handled by fsel.
1984 case ISD::SETULT:
1985 case ISD::SETOLT:
1986 case ISD::SETLT:
1987 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1988 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
1989 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1990 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1991 case ISD::SETUGE:
1992 case ISD::SETOGE:
1993 case ISD::SETGE:
1994 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1995 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
1996 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1997 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1998 case ISD::SETUGT:
1999 case ISD::SETOGT:
2000 case ISD::SETGT:
2001 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2002 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2003 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2004 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2005 case ISD::SETULE:
2006 case ISD::SETOLE:
2007 case ISD::SETLE:
2008 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2009 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2010 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2011 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2012 }
2013 return SDOperand();
2014}
2015
2016static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2017 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2018 SDOperand Src = Op.getOperand(0);
2019 if (Src.getValueType() == MVT::f32)
2020 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2021
2022 SDOperand Tmp;
2023 switch (Op.getValueType()) {
2024 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2025 case MVT::i32:
2026 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2027 break;
2028 case MVT::i64:
2029 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2030 break;
2031 }
2032
2033 // Convert the FP value to an int value through memory.
2034 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
2035 if (Op.getValueType() == MVT::i32)
2036 Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
2037 return Bits;
2038}
2039
2040static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2041 if (Op.getOperand(0).getValueType() == MVT::i64) {
2042 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2043 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2044 if (Op.getValueType() == MVT::f32)
2045 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2046 return FP;
2047 }
2048
2049 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2050 "Unhandled SINT_TO_FP type in custom expander!");
2051 // Since we only generate this in 64-bit mode, we can take advantage of
2052 // 64-bit registers. In particular, sign extend the input value into the
2053 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2054 // then lfd it and fcfid it.
2055 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2056 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2057 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2058 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2059
2060 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2061 Op.getOperand(0));
2062
2063 // STD the extended value into the stack slot.
2064 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2065 DAG.getEntryNode(), Ext64, FIdx,
2066 DAG.getSrcValue(NULL));
2067 // Load the value as a double.
2068 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2069
2070 // FCFID it and return it.
2071 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2072 if (Op.getValueType() == MVT::f32)
2073 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2074 return FP;
2075}
2076
2077static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2078 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2079 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2080
2081 // Expand into a bunch of logical ops. Note that these ops
2082 // depend on the PPC behavior for oversized shift amounts.
2083 SDOperand Lo = Op.getOperand(0);
2084 SDOperand Hi = Op.getOperand(1);
2085 SDOperand Amt = Op.getOperand(2);
2086
2087 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2088 DAG.getConstant(32, MVT::i32), Amt);
2089 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2090 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2091 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2092 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2093 DAG.getConstant(-32U, MVT::i32));
2094 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2095 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2096 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2097 SDOperand OutOps[] = { OutLo, OutHi };
2098 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2099 OutOps, 2);
2100}
2101
2102static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2103 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2104 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2105
2106 // Otherwise, expand into a bunch of logical ops. Note that these ops
2107 // depend on the PPC behavior for oversized shift amounts.
2108 SDOperand Lo = Op.getOperand(0);
2109 SDOperand Hi = Op.getOperand(1);
2110 SDOperand Amt = Op.getOperand(2);
2111
2112 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2113 DAG.getConstant(32, MVT::i32), Amt);
2114 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2115 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2116 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2117 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2118 DAG.getConstant(-32U, MVT::i32));
2119 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2120 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2121 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2122 SDOperand OutOps[] = { OutLo, OutHi };
2123 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2124 OutOps, 2);
2125}
2126
2127static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2128 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2129 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2130
2131 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2132 SDOperand Lo = Op.getOperand(0);
2133 SDOperand Hi = Op.getOperand(1);
2134 SDOperand Amt = Op.getOperand(2);
2135
2136 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2137 DAG.getConstant(32, MVT::i32), Amt);
2138 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2139 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2140 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2141 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2142 DAG.getConstant(-32U, MVT::i32));
2143 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2144 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2145 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2146 Tmp4, Tmp6, ISD::SETLE);
2147 SDOperand OutOps[] = { OutLo, OutHi };
2148 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2149 OutOps, 2);
2150}
2151
2152//===----------------------------------------------------------------------===//
2153// Vector related lowering.
2154//
2155
2156// If this is a vector of constants or undefs, get the bits. A bit in
2157// UndefBits is set if the corresponding element of the vector is an
2158// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2159// zero. Return true if this is not an array of constants, false if it is.
2160//
2161static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2162 uint64_t UndefBits[2]) {
2163 // Start with zero'd results.
2164 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2165
2166 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2167 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2168 SDOperand OpVal = BV->getOperand(i);
2169
2170 unsigned PartNo = i >= e/2; // In the upper 128 bits?
2171 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
2172
2173 uint64_t EltBits = 0;
2174 if (OpVal.getOpcode() == ISD::UNDEF) {
2175 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2176 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2177 continue;
2178 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2179 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2180 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2181 assert(CN->getValueType(0) == MVT::f32 &&
2182 "Only one legal FP vector type!");
2183 EltBits = FloatToBits(CN->getValue());
2184 } else {
2185 // Nonconstant element.
2186 return true;
2187 }
2188
2189 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2190 }
2191
2192 //printf("%llx %llx %llx %llx\n",
2193 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2194 return false;
2195}
2196
2197// If this is a splat (repetition) of a value across the whole vector, return
2198// the smallest size that splats it. For example, "0x01010101010101..." is a
2199// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2200// SplatSize = 1 byte.
2201static bool isConstantSplat(const uint64_t Bits128[2],
2202 const uint64_t Undef128[2],
2203 unsigned &SplatBits, unsigned &SplatUndef,
2204 unsigned &SplatSize) {
2205
2206 // Don't let undefs prevent splats from matching. See if the top 64-bits are
2207 // the same as the lower 64-bits, ignoring undefs.
2208 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2209 return false; // Can't be a splat if two pieces don't match.
2210
2211 uint64_t Bits64 = Bits128[0] | Bits128[1];
2212 uint64_t Undef64 = Undef128[0] & Undef128[1];
2213
2214 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2215 // undefs.
2216 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2217 return false; // Can't be a splat if two pieces don't match.
2218
2219 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2220 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2221
2222 // If the top 16-bits are different than the lower 16-bits, ignoring
2223 // undefs, we have an i32 splat.
2224 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2225 SplatBits = Bits32;
2226 SplatUndef = Undef32;
2227 SplatSize = 4;
2228 return true;
2229 }
2230
2231 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
2232 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2233
2234 // If the top 8-bits are different than the lower 8-bits, ignoring
2235 // undefs, we have an i16 splat.
2236 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2237 SplatBits = Bits16;
2238 SplatUndef = Undef16;
2239 SplatSize = 2;
2240 return true;
2241 }
2242
2243 // Otherwise, we have an 8-bit splat.
2244 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
2245 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2246 SplatSize = 1;
2247 return true;
2248}
2249
2250/// BuildSplatI - Build a canonical splati of Val with an element size of
2251/// SplatSize. Cast the result to VT.
2252static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2253 SelectionDAG &DAG) {
2254 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2255
2256 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2257 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2258 };
2259
2260 MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2261
2262 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2263 if (Val == -1)
2264 SplatSize = 1;
2265
2266 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2267
2268 // Build a canonical splat for this value.
2269 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2270 SmallVector<SDOperand, 8> Ops;
2271 Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2272 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2273 &Ops[0], Ops.size());
2274 return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2275}
2276
2277/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2278/// specified intrinsic ID.
2279static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2280 SelectionDAG &DAG,
2281 MVT::ValueType DestVT = MVT::Other) {
2282 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2283 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2284 DAG.getConstant(IID, MVT::i32), LHS, RHS);
2285}
2286
2287/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2288/// specified intrinsic ID.
2289static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2290 SDOperand Op2, SelectionDAG &DAG,
2291 MVT::ValueType DestVT = MVT::Other) {
2292 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2293 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2294 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2295}
2296
2297
2298/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2299/// amount. The result has the specified value type.
2300static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2301 MVT::ValueType VT, SelectionDAG &DAG) {
2302 // Force LHS/RHS to be the right type.
2303 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2304 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2305
2306 SDOperand Ops[16];
2307 for (unsigned i = 0; i != 16; ++i)
2308 Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2309 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2310 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2311 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2312}
2313
2314// If this is a case we can't handle, return null and let the default
2315// expansion code take care of it. If we CAN select this case, and if it
2316// selects to a single instruction, return Op. Otherwise, if we can codegen
2317// this case more efficiently than a constant pool load, lower it to the
2318// sequence of ops that should be used.
2319static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2320 // If this is a vector of constants or undefs, get the bits. A bit in
2321 // UndefBits is set if the corresponding element of the vector is an
2322 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2323 // zero.
2324 uint64_t VectorBits[2];
2325 uint64_t UndefBits[2];
2326 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2327 return SDOperand(); // Not a constant vector.
2328
2329 // If this is a splat (repetition) of a value across the whole vector, return
2330 // the smallest size that splats it. For example, "0x01010101010101..." is a
2331 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2332 // SplatSize = 1 byte.
2333 unsigned SplatBits, SplatUndef, SplatSize;
2334 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2335 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2336
2337 // First, handle single instruction cases.
2338
2339 // All zeros?
2340 if (SplatBits == 0) {
2341 // Canonicalize all zero vectors to be v4i32.
2342 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2343 SDOperand Z = DAG.getConstant(0, MVT::i32);
2344 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2345 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2346 }
2347 return Op;
2348 }
2349
2350 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2351 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2352 if (SextVal >= -16 && SextVal <= 15)
2353 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2354
2355
2356 // Two instruction sequences.
2357
2358 // If this value is in the range [-32,30] and is even, use:
2359 // tmp = VSPLTI[bhw], result = add tmp, tmp
2360 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2361 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2362 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2363 }
2364
2365 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
2366 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
2367 // for fneg/fabs.
2368 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2369 // Make -1 and vspltisw -1:
2370 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2371
2372 // Make the VSLW intrinsic, computing 0x8000_0000.
2373 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2374 OnesV, DAG);
2375
2376 // xor by OnesV to invert it.
2377 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2378 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2379 }
2380
2381 // Check to see if this is a wide variety of vsplti*, binop self cases.
2382 unsigned SplatBitSize = SplatSize*8;
2383 static const signed char SplatCsts[] = {
2384 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2385 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2386 };
2387
2388 for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
2389 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2390 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
2391 int i = SplatCsts[idx];
2392
2393 // Figure out what shift amount will be used by altivec if shifted by i in
2394 // this splat size.
2395 unsigned TypeShiftAmt = i & (SplatBitSize-1);
2396
2397 // vsplti + shl self.
2398 if (SextVal == (i << (int)TypeShiftAmt)) {
2399 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2400 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2401 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2402 Intrinsic::ppc_altivec_vslw
2403 };
2404 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2405 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2406 }
2407
2408 // vsplti + srl self.
2409 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2410 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2411 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2412 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2413 Intrinsic::ppc_altivec_vsrw
2414 };
2415 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2416 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2417 }
2418
2419 // vsplti + sra self.
2420 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2421 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2422 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2423 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2424 Intrinsic::ppc_altivec_vsraw
2425 };
2426 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2427 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2428 }
2429
2430 // vsplti + rol self.
2431 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2432 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2433 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2434 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2435 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2436 Intrinsic::ppc_altivec_vrlw
2437 };
2438 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2439 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2440 }
2441
2442 // t = vsplti c, result = vsldoi t, t, 1
2443 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2444 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2445 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2446 }
2447 // t = vsplti c, result = vsldoi t, t, 2
2448 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2449 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2450 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2451 }
2452 // t = vsplti c, result = vsldoi t, t, 3
2453 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2454 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2455 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2456 }
2457 }
2458
2459 // Three instruction sequences.
2460
2461 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
2462 if (SextVal >= 0 && SextVal <= 31) {
2463 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2464 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2465 LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2466 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2467 }
2468 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
2469 if (SextVal >= -31 && SextVal <= 0) {
2470 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2471 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2472 LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2473 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2474 }
2475 }
2476
2477 return SDOperand();
2478}
2479
2480/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2481/// the specified operations to build the shuffle.
2482static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2483 SDOperand RHS, SelectionDAG &DAG) {
2484 unsigned OpNum = (PFEntry >> 26) & 0x0F;
2485 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2486 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
2487
2488 enum {
2489 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2490 OP_VMRGHW,
2491 OP_VMRGLW,
2492 OP_VSPLTISW0,
2493 OP_VSPLTISW1,
2494 OP_VSPLTISW2,
2495 OP_VSPLTISW3,
2496 OP_VSLDOI4,
2497 OP_VSLDOI8,
2498 OP_VSLDOI12
2499 };
2500
2501 if (OpNum == OP_COPY) {
2502 if (LHSID == (1*9+2)*9+3) return LHS;
2503 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2504 return RHS;
2505 }
2506
2507 SDOperand OpLHS, OpRHS;
2508 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2509 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2510
2511 unsigned ShufIdxs[16];
2512 switch (OpNum) {
2513 default: assert(0 && "Unknown i32 permute!");
2514 case OP_VMRGHW:
2515 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
2516 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2517 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
2518 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2519 break;
2520 case OP_VMRGLW:
2521 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2522 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2523 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2524 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2525 break;
2526 case OP_VSPLTISW0:
2527 for (unsigned i = 0; i != 16; ++i)
2528 ShufIdxs[i] = (i&3)+0;
2529 break;
2530 case OP_VSPLTISW1:
2531 for (unsigned i = 0; i != 16; ++i)
2532 ShufIdxs[i] = (i&3)+4;
2533 break;
2534 case OP_VSPLTISW2:
2535 for (unsigned i = 0; i != 16; ++i)
2536 ShufIdxs[i] = (i&3)+8;
2537 break;
2538 case OP_VSPLTISW3:
2539 for (unsigned i = 0; i != 16; ++i)
2540 ShufIdxs[i] = (i&3)+12;
2541 break;
2542 case OP_VSLDOI4:
2543 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2544 case OP_VSLDOI8:
2545 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2546 case OP_VSLDOI12:
2547 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2548 }
2549 SDOperand Ops[16];
2550 for (unsigned i = 0; i != 16; ++i)
2551 Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2552
2553 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2554 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2555}
2556
2557/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
2558/// is a shuffle we can handle in a single instruction, return it. Otherwise,
2559/// return the code it can be lowered into. Worst case, it can always be
2560/// lowered into a vperm.
2561static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2562 SDOperand V1 = Op.getOperand(0);
2563 SDOperand V2 = Op.getOperand(1);
2564 SDOperand PermMask = Op.getOperand(2);
2565
2566 // Cases that are handled by instructions that take permute immediates
2567 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2568 // selected by the instruction selector.
2569 if (V2.getOpcode() == ISD::UNDEF) {
2570 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2571 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2572 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2573 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2574 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2575 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2576 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2577 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2578 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2579 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2580 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2581 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2582 return Op;
2583 }
2584 }
2585
2586 // Altivec has a variety of "shuffle immediates" that take two vector inputs
2587 // and produce a fixed permutation. If any of these match, do not lower to
2588 // VPERM.
2589 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2590 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2591 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2592 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2593 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2594 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2595 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2596 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2597 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2598 return Op;
2599
2600 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
2601 // perfect shuffle table to emit an optimal matching sequence.
2602 unsigned PFIndexes[4];
2603 bool isFourElementShuffle = true;
2604 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2605 unsigned EltNo = 8; // Start out undef.
2606 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
2607 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2608 continue; // Undef, ignore it.
2609
2610 unsigned ByteSource =
2611 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2612 if ((ByteSource & 3) != j) {
2613 isFourElementShuffle = false;
2614 break;
2615 }
2616
2617 if (EltNo == 8) {
2618 EltNo = ByteSource/4;
2619 } else if (EltNo != ByteSource/4) {
2620 isFourElementShuffle = false;
2621 break;
2622 }
2623 }
2624 PFIndexes[i] = EltNo;
2625 }
2626
2627 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2628 // perfect shuffle vector to determine if it is cost effective to do this as
2629 // discrete instructions, or whether we should use a vperm.
2630 if (isFourElementShuffle) {
2631 // Compute the index in the perfect shuffle table.
2632 unsigned PFTableIndex =
2633 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2634
2635 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2636 unsigned Cost = (PFEntry >> 30);
2637
2638 // Determining when to avoid vperm is tricky. Many things affect the cost
2639 // of vperm, particularly how many times the perm mask needs to be computed.
2640 // For example, if the perm mask can be hoisted out of a loop or is already
2641 // used (perhaps because there are multiple permutes with the same shuffle
2642 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
2643 // the loop requires an extra register.
2644 //
2645 // As a compromise, we only emit discrete instructions if the shuffle can be
2646 // generated in 3 or fewer operations. When we have loop information
2647 // available, if this block is within a loop, we should avoid using vperm
2648 // for 3-operation perms and use a constant pool load instead.
2649 if (Cost < 3)
2650 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2651 }
2652
2653 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2654 // vector that will get spilled to the constant pool.
2655 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2656
2657 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2658 // that it is in input element units, not in bytes. Convert now.
2659 MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2660 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2661
2662 SmallVector<SDOperand, 16> ResultMask;
2663 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2664 unsigned SrcElt;
2665 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2666 SrcElt = 0;
2667 else
2668 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2669
2670 for (unsigned j = 0; j != BytesPerElement; ++j)
2671 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2672 MVT::i8));
2673 }
2674
2675 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2676 &ResultMask[0], ResultMask.size());
2677 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2678}
2679
2680/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2681/// altivec comparison. If it is, return true and fill in Opc/isDot with
2682/// information about the intrinsic.
2683static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2684 bool &isDot) {
2685 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2686 CompareOpc = -1;
2687 isDot = false;
2688 switch (IntrinsicID) {
2689 default: return false;
2690 // Comparison predicates.
2691 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
2692 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2693 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
2694 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
2695 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2696 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2697 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2698 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2699 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2700 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2701 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2702 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2703 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2704
2705 // Normal Comparisons.
2706 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
2707 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
2708 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
2709 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
2710 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
2711 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
2712 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
2713 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
2714 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
2715 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
2716 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
2717 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
2718 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
2719 }
2720 return true;
2721}
2722
2723/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2724/// lower, do it, otherwise return null.
2725static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2726 // If this is a lowered altivec predicate compare, CompareOpc is set to the
2727 // opcode number of the comparison.
2728 int CompareOpc;
2729 bool isDot;
2730 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2731 return SDOperand(); // Don't custom lower most intrinsics.
2732
2733 // If this is a non-dot comparison, make the VCMP node and we are done.
2734 if (!isDot) {
2735 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2736 Op.getOperand(1), Op.getOperand(2),
2737 DAG.getConstant(CompareOpc, MVT::i32));
2738 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2739 }
2740
2741 // Create the PPCISD altivec 'dot' comparison node.
2742 SDOperand Ops[] = {
2743 Op.getOperand(2), // LHS
2744 Op.getOperand(3), // RHS
2745 DAG.getConstant(CompareOpc, MVT::i32)
2746 };
2747 std::vector<MVT::ValueType> VTs;
2748 VTs.push_back(Op.getOperand(2).getValueType());
2749 VTs.push_back(MVT::Flag);
2750 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2751
2752 // Now that we have the comparison, emit a copy from the CR to a GPR.
2753 // This is flagged to the above dot comparison.
2754 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2755 DAG.getRegister(PPC::CR6, MVT::i32),
2756 CompNode.getValue(1));
2757
2758 // Unpack the result based on how the target uses it.
2759 unsigned BitNo; // Bit # of CR6.
2760 bool InvertBit; // Invert result?
2761 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2762 default: // Can't happen, don't crash on invalid number though.
2763 case 0: // Return the value of the EQ bit of CR6.
2764 BitNo = 0; InvertBit = false;
2765 break;
2766 case 1: // Return the inverted value of the EQ bit of CR6.
2767 BitNo = 0; InvertBit = true;
2768 break;
2769 case 2: // Return the value of the LT bit of CR6.
2770 BitNo = 2; InvertBit = false;
2771 break;
2772 case 3: // Return the inverted value of the LT bit of CR6.
2773 BitNo = 2; InvertBit = true;
2774 break;
2775 }
2776
2777 // Shift the bit into the low position.
2778 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2779 DAG.getConstant(8-(3-BitNo), MVT::i32));
2780 // Isolate the bit.
2781 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2782 DAG.getConstant(1, MVT::i32));
2783
2784 // If we are supposed to, toggle the bit.
2785 if (InvertBit)
2786 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2787 DAG.getConstant(1, MVT::i32));
2788 return Flags;
2789}
2790
2791static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2792 // Create a stack slot that is 16-byte aligned.
2793 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2794 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2795 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2796 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2797
2798 // Store the input value into Value#0 of the stack slot.
2799 SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2800 Op.getOperand(0), FIdx, NULL, 0);
2801 // Load it out.
2802 return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2803}
2804
2805static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2806 if (Op.getValueType() == MVT::v4i32) {
2807 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2808
2809 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
2810 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2811
2812 SDOperand RHSSwap = // = vrlw RHS, 16
2813 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2814
2815 // Shrinkify inputs to v8i16.
2816 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2817 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2818 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2819
2820 // Low parts multiplied together, generating 32-bit results (we ignore the
2821 // top parts).
2822 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2823 LHS, RHS, DAG, MVT::v4i32);
2824
2825 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2826 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2827 // Shift the high parts up 16 bits.
2828 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2829 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2830 } else if (Op.getValueType() == MVT::v8i16) {
2831 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2832
2833 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2834
2835 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2836 LHS, RHS, Zero, DAG);
2837 } else if (Op.getValueType() == MVT::v16i8) {
2838 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2839
2840 // Multiply the even 8-bit parts, producing 16-bit sums.
2841 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2842 LHS, RHS, DAG, MVT::v8i16);
2843 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2844
2845 // Multiply the odd 8-bit parts, producing 16-bit sums.
2846 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2847 LHS, RHS, DAG, MVT::v8i16);
2848 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2849
2850 // Merge the results together.
2851 SDOperand Ops[16];
2852 for (unsigned i = 0; i != 8; ++i) {
2853 Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
2854 Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2855 }
2856 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2857 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2858 } else {
2859 assert(0 && "Unknown mul to lower!");
2860 abort();
2861 }
2862}
2863
2864/// LowerOperation - Provide custom lowering hooks for some operations.
2865///
2866SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2867 switch (Op.getOpcode()) {
2868 default: assert(0 && "Wasn't expecting to be able to lower this!");
2869 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2870 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
2871 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2872 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2873 case ISD::SETCC: return LowerSETCC(Op, DAG);
2874 case ISD::VASTART:
2875 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2876 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2877
2878 case ISD::VAARG:
2879 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2880 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2881
2882 case ISD::FORMAL_ARGUMENTS:
2883 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
2884 VarArgsStackOffset, VarArgsNumGPR,
2885 VarArgsNumFPR, PPCSubTarget);
2886
2887 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget);
2888 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
2889 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
2890 case ISD::DYNAMIC_STACKALLOC:
2891 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
2892
2893 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2894 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
2895 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
2896
2897 // Lower 64-bit shifts.
2898 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
2899 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
2900 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
2901
2902 // Vector-related lowering.
2903 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
2904 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2905 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2906 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
2907 case ISD::MUL: return LowerMUL(Op, DAG);
2908
2909 // Frame & Return address. Currently unimplemented
2910 case ISD::RETURNADDR: break;
2911 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
2912 }
2913 return SDOperand();
2914}
2915
2916//===----------------------------------------------------------------------===//
2917// Other Lowering Code
2918//===----------------------------------------------------------------------===//
2919
2920MachineBasicBlock *
2921PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2922 MachineBasicBlock *BB) {
2923 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2924 assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2925 MI->getOpcode() == PPC::SELECT_CC_I8 ||
2926 MI->getOpcode() == PPC::SELECT_CC_F4 ||
2927 MI->getOpcode() == PPC::SELECT_CC_F8 ||
2928 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2929 "Unexpected instr type to insert");
2930
2931 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2932 // control-flow pattern. The incoming instruction knows the destination vreg
2933 // to set, the condition code register to branch on, the true/false values to
2934 // select between, and a branch opcode to use.
2935 const BasicBlock *LLVM_BB = BB->getBasicBlock();
2936 ilist<MachineBasicBlock>::iterator It = BB;
2937 ++It;
2938
2939 // thisMBB:
2940 // ...
2941 // TrueVal = ...
2942 // cmpTY ccX, r1, r2
2943 // bCC copy1MBB
2944 // fallthrough --> copy0MBB
2945 MachineBasicBlock *thisMBB = BB;
2946 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2947 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2948 unsigned SelectPred = MI->getOperand(4).getImm();
2949 BuildMI(BB, TII->get(PPC::BCC))
2950 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2951 MachineFunction *F = BB->getParent();
2952 F->getBasicBlockList().insert(It, copy0MBB);
2953 F->getBasicBlockList().insert(It, sinkMBB);
2954 // Update machine-CFG edges by first adding all successors of the current
2955 // block to the new block which will contain the Phi node for the select.
2956 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2957 e = BB->succ_end(); i != e; ++i)
2958 sinkMBB->addSuccessor(*i);
2959 // Next, remove all successors of the current block, and add the true
2960 // and fallthrough blocks as its successors.
2961 while(!BB->succ_empty())
2962 BB->removeSuccessor(BB->succ_begin());
2963 BB->addSuccessor(copy0MBB);
2964 BB->addSuccessor(sinkMBB);
2965
2966 // copy0MBB:
2967 // %FalseValue = ...
2968 // # fallthrough to sinkMBB
2969 BB = copy0MBB;
2970
2971 // Update machine-CFG edges
2972 BB->addSuccessor(sinkMBB);
2973
2974 // sinkMBB:
2975 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2976 // ...
2977 BB = sinkMBB;
2978 BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
2979 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2980 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2981
2982 delete MI; // The pseudo instruction is gone now.
2983 return BB;
2984}
2985
2986//===----------------------------------------------------------------------===//
2987// Target Optimization Hooks
2988//===----------------------------------------------------------------------===//
2989
2990SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2991 DAGCombinerInfo &DCI) const {
2992 TargetMachine &TM = getTargetMachine();
2993 SelectionDAG &DAG = DCI.DAG;
2994 switch (N->getOpcode()) {
2995 default: break;
2996 case PPCISD::SHL:
2997 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2998 if (C->getValue() == 0) // 0 << V -> 0.
2999 return N->getOperand(0);
3000 }
3001 break;
3002 case PPCISD::SRL:
3003 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3004 if (C->getValue() == 0) // 0 >>u V -> 0.
3005 return N->getOperand(0);
3006 }
3007 break;
3008 case PPCISD::SRA:
3009 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3010 if (C->getValue() == 0 || // 0 >>s V -> 0.
3011 C->isAllOnesValue()) // -1 >>s V -> -1.
3012 return N->getOperand(0);
3013 }
3014 break;
3015
3016 case ISD::SINT_TO_FP:
3017 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3018 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3019 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3020 // We allow the src/dst to be either f32/f64, but the intermediate
3021 // type must be i64.
3022 if (N->getOperand(0).getValueType() == MVT::i64) {
3023 SDOperand Val = N->getOperand(0).getOperand(0);
3024 if (Val.getValueType() == MVT::f32) {
3025 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3026 DCI.AddToWorklist(Val.Val);
3027 }
3028
3029 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3030 DCI.AddToWorklist(Val.Val);
3031 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3032 DCI.AddToWorklist(Val.Val);
3033 if (N->getValueType(0) == MVT::f32) {
3034 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
3035 DCI.AddToWorklist(Val.Val);
3036 }
3037 return Val;
3038 } else if (N->getOperand(0).getValueType() == MVT::i32) {
3039 // If the intermediate type is i32, we can avoid the load/store here
3040 // too.
3041 }
3042 }
3043 }
3044 break;
3045 case ISD::STORE:
3046 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3047 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3048 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3049 N->getOperand(1).getValueType() == MVT::i32) {
3050 SDOperand Val = N->getOperand(1).getOperand(0);
3051 if (Val.getValueType() == MVT::f32) {
3052 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3053 DCI.AddToWorklist(Val.Val);
3054 }
3055 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3056 DCI.AddToWorklist(Val.Val);
3057
3058 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3059 N->getOperand(2), N->getOperand(3));
3060 DCI.AddToWorklist(Val.Val);
3061 return Val;
3062 }
3063
3064 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3065 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3066 N->getOperand(1).Val->hasOneUse() &&
3067 (N->getOperand(1).getValueType() == MVT::i32 ||
3068 N->getOperand(1).getValueType() == MVT::i16)) {
3069 SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3070 // Do an any-extend to 32-bits if this is a half-word input.
3071 if (BSwapOp.getValueType() == MVT::i16)
3072 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3073
3074 return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3075 N->getOperand(2), N->getOperand(3),
3076 DAG.getValueType(N->getOperand(1).getValueType()));
3077 }
3078 break;
3079 case ISD::BSWAP:
3080 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3081 if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3082 N->getOperand(0).hasOneUse() &&
3083 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3084 SDOperand Load = N->getOperand(0);
3085 LoadSDNode *LD = cast<LoadSDNode>(Load);
3086 // Create the byte-swapping load.
3087 std::vector<MVT::ValueType> VTs;
3088 VTs.push_back(MVT::i32);
3089 VTs.push_back(MVT::Other);
3090 SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3091 SDOperand Ops[] = {
3092 LD->getChain(), // Chain
3093 LD->getBasePtr(), // Ptr
3094 SV, // SrcValue
3095 DAG.getValueType(N->getValueType(0)) // VT
3096 };
3097 SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3098
3099 // If this is an i16 load, insert the truncate.
3100 SDOperand ResVal = BSLoad;
3101 if (N->getValueType(0) == MVT::i16)
3102 ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3103
3104 // First, combine the bswap away. This makes the value produced by the
3105 // load dead.
3106 DCI.CombineTo(N, ResVal);
3107
3108 // Next, combine the load away, we give it a bogus result value but a real
3109 // chain result. The result value is dead because the bswap is dead.
3110 DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3111
3112 // Return N so it doesn't get rechecked!
3113 return SDOperand(N, 0);
3114 }
3115
3116 break;
3117 case PPCISD::VCMP: {
3118 // If a VCMPo node already exists with exactly the same operands as this
3119 // node, use its result instead of this node (VCMPo computes both a CR6 and
3120 // a normal output).
3121 //
3122 if (!N->getOperand(0).hasOneUse() &&
3123 !N->getOperand(1).hasOneUse() &&
3124 !N->getOperand(2).hasOneUse()) {
3125
3126 // Scan all of the users of the LHS, looking for VCMPo's that match.
3127 SDNode *VCMPoNode = 0;
3128
3129 SDNode *LHSN = N->getOperand(0).Val;
3130 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3131 UI != E; ++UI)
3132 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3133 (*UI)->getOperand(1) == N->getOperand(1) &&
3134 (*UI)->getOperand(2) == N->getOperand(2) &&
3135 (*UI)->getOperand(0) == N->getOperand(0)) {
3136 VCMPoNode = *UI;
3137 break;
3138 }
3139
3140 // If there is no VCMPo node, or if the flag value has a single use, don't
3141 // transform this.
3142 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3143 break;
3144
3145 // Look at the (necessarily single) use of the flag value. If it has a
3146 // chain, this transformation is more complex. Note that multiple things
3147 // could use the value result, which we should ignore.
3148 SDNode *FlagUser = 0;
3149 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3150 FlagUser == 0; ++UI) {
3151 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3152 SDNode *User = *UI;
3153 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3154 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3155 FlagUser = User;
3156 break;
3157 }
3158 }
3159 }
3160
3161 // If the user is a MFCR instruction, we know this is safe. Otherwise we
3162 // give up for right now.
3163 if (FlagUser->getOpcode() == PPCISD::MFCR)
3164 return SDOperand(VCMPoNode, 0);
3165 }
3166 break;
3167 }
3168 case ISD::BR_CC: {
3169 // If this is a branch on an altivec predicate comparison, lower this so
3170 // that we don't have to do a MFCR: instead, branch directly on CR6. This
3171 // lowering is done pre-legalize, because the legalizer lowers the predicate
3172 // compare down to code that is difficult to reassemble.
3173 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3174 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3175 int CompareOpc;
3176 bool isDot;
3177
3178 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3179 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3180 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3181 assert(isDot && "Can't compare against a vector result!");
3182
3183 // If this is a comparison against something other than 0/1, then we know
3184 // that the condition is never/always true.
3185 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3186 if (Val != 0 && Val != 1) {
3187 if (CC == ISD::SETEQ) // Cond never true, remove branch.
3188 return N->getOperand(0);
3189 // Always !=, turn it into an unconditional branch.
3190 return DAG.getNode(ISD::BR, MVT::Other,
3191 N->getOperand(0), N->getOperand(4));
3192 }
3193
3194 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3195
3196 // Create the PPCISD altivec 'dot' comparison node.
3197 std::vector<MVT::ValueType> VTs;
3198 SDOperand Ops[] = {
3199 LHS.getOperand(2), // LHS of compare
3200 LHS.getOperand(3), // RHS of compare
3201 DAG.getConstant(CompareOpc, MVT::i32)
3202 };
3203 VTs.push_back(LHS.getOperand(2).getValueType());
3204 VTs.push_back(MVT::Flag);
3205 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3206
3207 // Unpack the result based on how the target uses it.
3208 PPC::Predicate CompOpc;
3209 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3210 default: // Can't happen, don't crash on invalid number though.
3211 case 0: // Branch on the value of the EQ bit of CR6.
3212 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3213 break;
3214 case 1: // Branch on the inverted value of the EQ bit of CR6.
3215 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3216 break;
3217 case 2: // Branch on the value of the LT bit of CR6.
3218 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3219 break;
3220 case 3: // Branch on the inverted value of the LT bit of CR6.
3221 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3222 break;
3223 }
3224
3225 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3226 DAG.getConstant(CompOpc, MVT::i32),
3227 DAG.getRegister(PPC::CR6, MVT::i32),
3228 N->getOperand(4), CompNode.getValue(1));
3229 }
3230 break;
3231 }
3232 }
3233
3234 return SDOperand();
3235}
3236
3237//===----------------------------------------------------------------------===//
3238// Inline Assembly Support
3239//===----------------------------------------------------------------------===//
3240
3241void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3242 uint64_t Mask,
3243 uint64_t &KnownZero,
3244 uint64_t &KnownOne,
3245 const SelectionDAG &DAG,
3246 unsigned Depth) const {
3247 KnownZero = 0;
3248 KnownOne = 0;
3249 switch (Op.getOpcode()) {
3250 default: break;
3251 case PPCISD::LBRX: {
3252 // lhbrx is known to have the top bits cleared out.
3253 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3254 KnownZero = 0xFFFF0000;
3255 break;
3256 }
3257 case ISD::INTRINSIC_WO_CHAIN: {
3258 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3259 default: break;
3260 case Intrinsic::ppc_altivec_vcmpbfp_p:
3261 case Intrinsic::ppc_altivec_vcmpeqfp_p:
3262 case Intrinsic::ppc_altivec_vcmpequb_p:
3263 case Intrinsic::ppc_altivec_vcmpequh_p:
3264 case Intrinsic::ppc_altivec_vcmpequw_p:
3265 case Intrinsic::ppc_altivec_vcmpgefp_p:
3266 case Intrinsic::ppc_altivec_vcmpgtfp_p:
3267 case Intrinsic::ppc_altivec_vcmpgtsb_p:
3268 case Intrinsic::ppc_altivec_vcmpgtsh_p:
3269 case Intrinsic::ppc_altivec_vcmpgtsw_p:
3270 case Intrinsic::ppc_altivec_vcmpgtub_p:
3271 case Intrinsic::ppc_altivec_vcmpgtuh_p:
3272 case Intrinsic::ppc_altivec_vcmpgtuw_p:
3273 KnownZero = ~1U; // All bits but the low one are known to be zero.
3274 break;
3275 }
3276 }
3277 }
3278}
3279
3280
3281/// getConstraintType - Given a constraint, return the type of
3282/// constraint it is for this target.
3283PPCTargetLowering::ConstraintType
3284PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3285 if (Constraint.size() == 1) {
3286 switch (Constraint[0]) {
3287 default: break;
3288 case 'b':
3289 case 'r':
3290 case 'f':
3291 case 'v':
3292 case 'y':
3293 return C_RegisterClass;
3294 }
3295 }
3296 return TargetLowering::getConstraintType(Constraint);
3297}
3298
3299std::pair<unsigned, const TargetRegisterClass*>
3300PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3301 MVT::ValueType VT) const {
3302 if (Constraint.size() == 1) {
3303 // GCC RS6000 Constraint Letters
3304 switch (Constraint[0]) {
3305 case 'b': // R1-R31
3306 case 'r': // R0-R31
3307 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3308 return std::make_pair(0U, PPC::G8RCRegisterClass);
3309 return std::make_pair(0U, PPC::GPRCRegisterClass);
3310 case 'f':
3311 if (VT == MVT::f32)
3312 return std::make_pair(0U, PPC::F4RCRegisterClass);
3313 else if (VT == MVT::f64)
3314 return std::make_pair(0U, PPC::F8RCRegisterClass);
3315 break;
3316 case 'v':
3317 return std::make_pair(0U, PPC::VRRCRegisterClass);
3318 case 'y': // crrc
3319 return std::make_pair(0U, PPC::CRRCRegisterClass);
3320 }
3321 }
3322
3323 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3324}
3325
3326
3327// isOperandValidForConstraint
3328SDOperand PPCTargetLowering::
3329isOperandValidForConstraint(SDOperand Op, char Letter, SelectionDAG &DAG) {
3330 switch (Letter) {
3331 default: break;
3332 case 'I':
3333 case 'J':
3334 case 'K':
3335 case 'L':
3336 case 'M':
3337 case 'N':
3338 case 'O':
3339 case 'P': {
3340 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3341 if (!CST) return SDOperand(0, 0); // Must be an immediate to match.
3342 unsigned Value = CST->getValue();
3343 switch (Letter) {
3344 default: assert(0 && "Unknown constraint letter!");
3345 case 'I': // "I" is a signed 16-bit constant.
3346 if ((short)Value == (int)Value)
3347 return DAG.getTargetConstant(Value, Op.getValueType());
3348 break;
3349 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
3350 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
3351 if ((short)Value == 0)
3352 return DAG.getTargetConstant(Value, Op.getValueType());
3353 break;
3354 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
3355 if ((Value >> 16) == 0)
3356 return DAG.getTargetConstant(Value, Op.getValueType());
3357 break;
3358 case 'M': // "M" is a constant that is greater than 31.
3359 if (Value > 31)
3360 return DAG.getTargetConstant(Value, Op.getValueType());
3361 break;
3362 case 'N': // "N" is a positive constant that is an exact power of two.
3363 if ((int)Value > 0 && isPowerOf2_32(Value))
3364 return DAG.getTargetConstant(Value, Op.getValueType());
3365 break;
3366 case 'O': // "O" is the constant zero.
3367 if (Value == 0)
3368 return DAG.getTargetConstant(Value, Op.getValueType());
3369 break;
3370 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
3371 if ((short)-Value == (int)-Value)
3372 return DAG.getTargetConstant(Value, Op.getValueType());
3373 break;
3374 }
3375 break;
3376 }
3377 }
3378
3379 // Handle standard constraint letters.
3380 return TargetLowering::isOperandValidForConstraint(Op, Letter, DAG);
3381}
3382
3383// isLegalAddressingMode - Return true if the addressing mode represented
3384// by AM is legal for this target, for a load/store of the specified type.
3385bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3386 const Type *Ty) const {
3387 // FIXME: PPC does not allow r+i addressing modes for vectors!
3388
3389 // PPC allows a sign-extended 16-bit immediate field.
3390 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3391 return false;
3392
3393 // No global is ever allowed as a base.
3394 if (AM.BaseGV)
3395 return false;
3396
3397 // PPC only support r+r,
3398 switch (AM.Scale) {
3399 case 0: // "r+i" or just "i", depending on HasBaseReg.
3400 break;
3401 case 1:
3402 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3403 return false;
3404 // Otherwise we have r+r or r+i.
3405 break;
3406 case 2:
3407 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3408 return false;
3409 // Allow 2*r as r+r.
3410 break;
3411 default:
3412 // No other scales are supported.
3413 return false;
3414 }
3415
3416 return true;
3417}
3418
3419/// isLegalAddressImmediate - Return true if the integer value can be used
3420/// as the offset of the target addressing mode for load / store of the
3421/// given type.
3422bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3423 // PPC allows a sign-extended 16-bit immediate field.
3424 return (V > -(1 << 16) && V < (1 << 16)-1);
3425}
3426
3427bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3428 return false;
3429}
3430
3431SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG)
3432{
3433 // Depths > 0 not supported yet!
3434 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3435 return SDOperand();
3436
3437 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3438 bool isPPC64 = PtrVT == MVT::i64;
3439
3440 MachineFunction &MF = DAG.getMachineFunction();
3441 MachineFrameInfo *MFI = MF.getFrameInfo();
3442 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3443 && MFI->getStackSize();
3444
3445 if (isPPC64)
3446 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
3447 MVT::i32);
3448 else
3449 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3450 MVT::i32);
3451}