blob: 0936af3a4d047156e98bd60e51b095304d17ff9f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the bison parser for LLVM assembly languages files.
11//
12//===----------------------------------------------------------------------===//
13
14%{
15#include "ParserInternals.h"
16#include "llvm/CallingConv.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Instructions.h"
19#include "llvm/Module.h"
20#include "llvm/ValueSymbolTable.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/Streams.h"
27#include <algorithm>
28#include <list>
29#include <map>
30#include <utility>
31#ifndef NDEBUG
32#define YYDEBUG 1
33#endif
34
35// The following is a gross hack. In order to rid the libAsmParser library of
36// exceptions, we have to have a way of getting the yyparse function to go into
37// an error situation. So, whenever we want an error to occur, the GenerateError
38// function (see bottom of file) sets TriggerError. Then, at the end of each
39// production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR
40// (a goto) to put YACC in error state. Furthermore, several calls to
41// GenerateError are made from inside productions and they must simulate the
42// previous exception behavior by exiting the production immediately. We have
43// replaced these with the GEN_ERROR macro which calls GeneratError and then
44// immediately invokes YYERROR. This would be so much cleaner if it was a
45// recursive descent parser.
46static bool TriggerError = false;
47#define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } }
48#define GEN_ERROR(msg) { GenerateError(msg); YYERROR; }
49
50int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
51int yylex(); // declaration" of xxx warnings.
52int yyparse();
53
54namespace llvm {
55 std::string CurFilename;
56#if YYDEBUG
57static cl::opt<bool>
58Debug("debug-yacc", cl::desc("Print yacc debug state changes"),
59 cl::Hidden, cl::init(false));
60#endif
61}
62using namespace llvm;
63
64static Module *ParserResult;
65
66// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
67// relating to upreferences in the input stream.
68//
69//#define DEBUG_UPREFS 1
70#ifdef DEBUG_UPREFS
71#define UR_OUT(X) cerr << X
72#else
73#define UR_OUT(X)
74#endif
75
76#define YYERROR_VERBOSE 1
77
78static GlobalVariable *CurGV;
79
80
81// This contains info used when building the body of a function. It is
82// destroyed when the function is completed.
83//
84typedef std::vector<Value *> ValueList; // Numbered defs
85
86static void
87ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers=0);
88
89static struct PerModuleInfo {
90 Module *CurrentModule;
91 ValueList Values; // Module level numbered definitions
92 ValueList LateResolveValues;
93 std::vector<PATypeHolder> Types;
94 std::map<ValID, PATypeHolder> LateResolveTypes;
95
96 /// PlaceHolderInfo - When temporary placeholder objects are created, remember
97 /// how they were referenced and on which line of the input they came from so
98 /// that we can resolve them later and print error messages as appropriate.
99 std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
100
101 // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
102 // references to global values. Global values may be referenced before they
103 // are defined, and if so, the temporary object that they represent is held
104 // here. This is used for forward references of GlobalValues.
105 //
106 typedef std::map<std::pair<const PointerType *,
107 ValID>, GlobalValue*> GlobalRefsType;
108 GlobalRefsType GlobalRefs;
109
110 void ModuleDone() {
111 // If we could not resolve some functions at function compilation time
112 // (calls to functions before they are defined), resolve them now... Types
113 // are resolved when the constant pool has been completely parsed.
114 //
115 ResolveDefinitions(LateResolveValues);
116 if (TriggerError)
117 return;
118
119 // Check to make sure that all global value forward references have been
120 // resolved!
121 //
122 if (!GlobalRefs.empty()) {
123 std::string UndefinedReferences = "Unresolved global references exist:\n";
124
125 for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
126 I != E; ++I) {
127 UndefinedReferences += " " + I->first.first->getDescription() + " " +
128 I->first.second.getName() + "\n";
129 }
130 GenerateError(UndefinedReferences);
131 return;
132 }
133
134 Values.clear(); // Clear out function local definitions
135 Types.clear();
136 CurrentModule = 0;
137 }
138
139 // GetForwardRefForGlobal - Check to see if there is a forward reference
140 // for this global. If so, remove it from the GlobalRefs map and return it.
141 // If not, just return null.
142 GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
143 // Check to see if there is a forward reference to this global variable...
144 // if there is, eliminate it and patch the reference to use the new def'n.
145 GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
146 GlobalValue *Ret = 0;
147 if (I != GlobalRefs.end()) {
148 Ret = I->second;
149 GlobalRefs.erase(I);
150 }
151 return Ret;
152 }
153
154 bool TypeIsUnresolved(PATypeHolder* PATy) {
155 // If it isn't abstract, its resolved
156 const Type* Ty = PATy->get();
157 if (!Ty->isAbstract())
158 return false;
159 // Traverse the type looking for abstract types. If it isn't abstract then
160 // we don't need to traverse that leg of the type.
161 std::vector<const Type*> WorkList, SeenList;
162 WorkList.push_back(Ty);
163 while (!WorkList.empty()) {
164 const Type* Ty = WorkList.back();
165 SeenList.push_back(Ty);
166 WorkList.pop_back();
167 if (const OpaqueType* OpTy = dyn_cast<OpaqueType>(Ty)) {
168 // Check to see if this is an unresolved type
169 std::map<ValID, PATypeHolder>::iterator I = LateResolveTypes.begin();
170 std::map<ValID, PATypeHolder>::iterator E = LateResolveTypes.end();
171 for ( ; I != E; ++I) {
172 if (I->second.get() == OpTy)
173 return true;
174 }
175 } else if (const SequentialType* SeqTy = dyn_cast<SequentialType>(Ty)) {
176 const Type* TheTy = SeqTy->getElementType();
177 if (TheTy->isAbstract() && TheTy != Ty) {
178 std::vector<const Type*>::iterator I = SeenList.begin(),
179 E = SeenList.end();
180 for ( ; I != E; ++I)
181 if (*I == TheTy)
182 break;
183 if (I == E)
184 WorkList.push_back(TheTy);
185 }
186 } else if (const StructType* StrTy = dyn_cast<StructType>(Ty)) {
187 for (unsigned i = 0; i < StrTy->getNumElements(); ++i) {
188 const Type* TheTy = StrTy->getElementType(i);
189 if (TheTy->isAbstract() && TheTy != Ty) {
190 std::vector<const Type*>::iterator I = SeenList.begin(),
191 E = SeenList.end();
192 for ( ; I != E; ++I)
193 if (*I == TheTy)
194 break;
195 if (I == E)
196 WorkList.push_back(TheTy);
197 }
198 }
199 }
200 }
201 return false;
202 }
203} CurModule;
204
205static struct PerFunctionInfo {
206 Function *CurrentFunction; // Pointer to current function being created
207
208 ValueList Values; // Keep track of #'d definitions
209 unsigned NextValNum;
210 ValueList LateResolveValues;
211 bool isDeclare; // Is this function a forward declararation?
212 GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration.
213 GlobalValue::VisibilityTypes Visibility;
214
215 /// BBForwardRefs - When we see forward references to basic blocks, keep
216 /// track of them here.
217 std::map<ValID, BasicBlock*> BBForwardRefs;
218
219 inline PerFunctionInfo() {
220 CurrentFunction = 0;
221 isDeclare = false;
222 Linkage = GlobalValue::ExternalLinkage;
223 Visibility = GlobalValue::DefaultVisibility;
224 }
225
226 inline void FunctionStart(Function *M) {
227 CurrentFunction = M;
228 NextValNum = 0;
229 }
230
231 void FunctionDone() {
232 // Any forward referenced blocks left?
233 if (!BBForwardRefs.empty()) {
234 GenerateError("Undefined reference to label " +
235 BBForwardRefs.begin()->second->getName());
236 return;
237 }
238
239 // Resolve all forward references now.
240 ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
241
242 Values.clear(); // Clear out function local definitions
243 BBForwardRefs.clear();
244 CurrentFunction = 0;
245 isDeclare = false;
246 Linkage = GlobalValue::ExternalLinkage;
247 Visibility = GlobalValue::DefaultVisibility;
248 }
249} CurFun; // Info for the current function...
250
251static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
252
253
254//===----------------------------------------------------------------------===//
255// Code to handle definitions of all the types
256//===----------------------------------------------------------------------===//
257
258static void InsertValue(Value *V, ValueList &ValueTab = CurFun.Values) {
259 // Things that have names or are void typed don't get slot numbers
260 if (V->hasName() || (V->getType() == Type::VoidTy))
261 return;
262
263 // In the case of function values, we have to allow for the forward reference
264 // of basic blocks, which are included in the numbering. Consequently, we keep
265 // track of the next insertion location with NextValNum. When a BB gets
266 // inserted, it could change the size of the CurFun.Values vector.
267 if (&ValueTab == &CurFun.Values) {
268 if (ValueTab.size() <= CurFun.NextValNum)
269 ValueTab.resize(CurFun.NextValNum+1);
270 ValueTab[CurFun.NextValNum++] = V;
271 return;
272 }
273 // For all other lists, its okay to just tack it on the back of the vector.
274 ValueTab.push_back(V);
275}
276
277static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
278 switch (D.Type) {
279 case ValID::LocalID: // Is it a numbered definition?
280 // Module constants occupy the lowest numbered slots...
281 if (D.Num < CurModule.Types.size())
282 return CurModule.Types[D.Num];
283 break;
284 case ValID::LocalName: // Is it a named definition?
285 if (const Type *N = CurModule.CurrentModule->getTypeByName(D.getName())) {
286 D.destroy(); // Free old strdup'd memory...
287 return N;
288 }
289 break;
290 default:
291 GenerateError("Internal parser error: Invalid symbol type reference");
292 return 0;
293 }
294
295 // If we reached here, we referenced either a symbol that we don't know about
296 // or an id number that hasn't been read yet. We may be referencing something
297 // forward, so just create an entry to be resolved later and get to it...
298 //
299 if (DoNotImprovise) return 0; // Do we just want a null to be returned?
300
301
302 if (inFunctionScope()) {
303 if (D.Type == ValID::LocalName) {
304 GenerateError("Reference to an undefined type: '" + D.getName() + "'");
305 return 0;
306 } else {
307 GenerateError("Reference to an undefined type: #" + utostr(D.Num));
308 return 0;
309 }
310 }
311
312 std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
313 if (I != CurModule.LateResolveTypes.end())
314 return I->second;
315
316 Type *Typ = OpaqueType::get();
317 CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
318 return Typ;
319 }
320
321// getExistingVal - Look up the value specified by the provided type and
322// the provided ValID. If the value exists and has already been defined, return
323// it. Otherwise return null.
324//
325static Value *getExistingVal(const Type *Ty, const ValID &D) {
326 if (isa<FunctionType>(Ty)) {
327 GenerateError("Functions are not values and "
328 "must be referenced as pointers");
329 return 0;
330 }
331
332 switch (D.Type) {
333 case ValID::LocalID: { // Is it a numbered definition?
334 // Check that the number is within bounds.
335 if (D.Num >= CurFun.Values.size())
336 return 0;
337 Value *Result = CurFun.Values[D.Num];
338 if (Ty != Result->getType()) {
339 GenerateError("Numbered value (%" + utostr(D.Num) + ") of type '" +
340 Result->getType()->getDescription() + "' does not match "
341 "expected type, '" + Ty->getDescription() + "'");
342 return 0;
343 }
344 return Result;
345 }
346 case ValID::GlobalID: { // Is it a numbered definition?
347 if (D.Num >= CurModule.Values.size())
348 return 0;
349 Value *Result = CurModule.Values[D.Num];
350 if (Ty != Result->getType()) {
351 GenerateError("Numbered value (@" + utostr(D.Num) + ") of type '" +
352 Result->getType()->getDescription() + "' does not match "
353 "expected type, '" + Ty->getDescription() + "'");
354 return 0;
355 }
356 return Result;
357 }
358
359 case ValID::LocalName: { // Is it a named definition?
360 if (!inFunctionScope())
361 return 0;
362 ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
363 Value *N = SymTab.lookup(D.getName());
364 if (N == 0)
365 return 0;
366 if (N->getType() != Ty)
367 return 0;
368
369 D.destroy(); // Free old strdup'd memory...
370 return N;
371 }
372 case ValID::GlobalName: { // Is it a named definition?
373 ValueSymbolTable &SymTab = CurModule.CurrentModule->getValueSymbolTable();
374 Value *N = SymTab.lookup(D.getName());
375 if (N == 0)
376 return 0;
377 if (N->getType() != Ty)
378 return 0;
379
380 D.destroy(); // Free old strdup'd memory...
381 return N;
382 }
383
384 // Check to make sure that "Ty" is an integral type, and that our
385 // value will fit into the specified type...
386 case ValID::ConstSIntVal: // Is it a constant pool reference??
387 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
388 GenerateError("Signed integral constant '" +
389 itostr(D.ConstPool64) + "' is invalid for type '" +
390 Ty->getDescription() + "'");
391 return 0;
392 }
393 return ConstantInt::get(Ty, D.ConstPool64, true);
394
395 case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
396 if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
397 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
398 GenerateError("Integral constant '" + utostr(D.UConstPool64) +
399 "' is invalid or out of range");
400 return 0;
401 } else { // This is really a signed reference. Transmogrify.
402 return ConstantInt::get(Ty, D.ConstPool64, true);
403 }
404 } else {
405 return ConstantInt::get(Ty, D.UConstPool64);
406 }
407
408 case ValID::ConstFPVal: // Is it a floating point const pool reference?
409 if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) {
410 GenerateError("FP constant invalid for type");
411 return 0;
412 }
413 return ConstantFP::get(Ty, D.ConstPoolFP);
414
415 case ValID::ConstNullVal: // Is it a null value?
416 if (!isa<PointerType>(Ty)) {
417 GenerateError("Cannot create a a non pointer null");
418 return 0;
419 }
420 return ConstantPointerNull::get(cast<PointerType>(Ty));
421
422 case ValID::ConstUndefVal: // Is it an undef value?
423 return UndefValue::get(Ty);
424
425 case ValID::ConstZeroVal: // Is it a zero value?
426 return Constant::getNullValue(Ty);
427
428 case ValID::ConstantVal: // Fully resolved constant?
429 if (D.ConstantValue->getType() != Ty) {
430 GenerateError("Constant expression type different from required type");
431 return 0;
432 }
433 return D.ConstantValue;
434
435 case ValID::InlineAsmVal: { // Inline asm expression
436 const PointerType *PTy = dyn_cast<PointerType>(Ty);
437 const FunctionType *FTy =
438 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
439 if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) {
440 GenerateError("Invalid type for asm constraint string");
441 return 0;
442 }
443 InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
444 D.IAD->HasSideEffects);
445 D.destroy(); // Free InlineAsmDescriptor.
446 return IA;
447 }
448 default:
449 assert(0 && "Unhandled case!");
450 return 0;
451 } // End of switch
452
453 assert(0 && "Unhandled case!");
454 return 0;
455}
456
457// getVal - This function is identical to getExistingVal, except that if a
458// value is not already defined, it "improvises" by creating a placeholder var
459// that looks and acts just like the requested variable. When the value is
460// defined later, all uses of the placeholder variable are replaced with the
461// real thing.
462//
463static Value *getVal(const Type *Ty, const ValID &ID) {
464 if (Ty == Type::LabelTy) {
465 GenerateError("Cannot use a basic block here");
466 return 0;
467 }
468
469 // See if the value has already been defined.
470 Value *V = getExistingVal(Ty, ID);
471 if (V) return V;
472 if (TriggerError) return 0;
473
474 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) {
475 GenerateError("Invalid use of a composite type");
476 return 0;
477 }
478
479 // If we reached here, we referenced either a symbol that we don't know about
480 // or an id number that hasn't been read yet. We may be referencing something
481 // forward, so just create an entry to be resolved later and get to it...
482 //
483 switch (ID.Type) {
484 case ValID::GlobalName:
485 case ValID::GlobalID: {
486 const PointerType *PTy = dyn_cast<PointerType>(Ty);
487 if (!PTy) {
488 GenerateError("Invalid type for reference to global" );
489 return 0;
490 }
491 const Type* ElTy = PTy->getElementType();
492 if (const FunctionType *FTy = dyn_cast<FunctionType>(ElTy))
493 V = new Function(FTy, GlobalValue::ExternalLinkage);
494 else
495 V = new GlobalVariable(ElTy, false, GlobalValue::ExternalLinkage);
496 break;
497 }
498 default:
499 V = new Argument(Ty);
500 }
501
502 // Remember where this forward reference came from. FIXME, shouldn't we try
503 // to recycle these things??
504 CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
505 llvmAsmlineno)));
506
507 if (inFunctionScope())
508 InsertValue(V, CurFun.LateResolveValues);
509 else
510 InsertValue(V, CurModule.LateResolveValues);
511 return V;
512}
513
514/// defineBBVal - This is a definition of a new basic block with the specified
515/// identifier which must be the same as CurFun.NextValNum, if its numeric.
516static BasicBlock *defineBBVal(const ValID &ID) {
517 assert(inFunctionScope() && "Can't get basic block at global scope!");
518
519 BasicBlock *BB = 0;
520
521 // First, see if this was forward referenced
522
523 std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
524 if (BBI != CurFun.BBForwardRefs.end()) {
525 BB = BBI->second;
526 // The forward declaration could have been inserted anywhere in the
527 // function: insert it into the correct place now.
528 CurFun.CurrentFunction->getBasicBlockList().remove(BB);
529 CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
530
531 // We're about to erase the entry, save the key so we can clean it up.
532 ValID Tmp = BBI->first;
533
534 // Erase the forward ref from the map as its no longer "forward"
535 CurFun.BBForwardRefs.erase(ID);
536
537 // The key has been removed from the map but so we don't want to leave
538 // strdup'd memory around so destroy it too.
539 Tmp.destroy();
540
541 // If its a numbered definition, bump the number and set the BB value.
542 if (ID.Type == ValID::LocalID) {
543 assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
544 InsertValue(BB);
545 }
546
547 ID.destroy();
548 return BB;
549 }
550
551 // We haven't seen this BB before and its first mention is a definition.
552 // Just create it and return it.
553 std::string Name (ID.Type == ValID::LocalName ? ID.getName() : "");
554 BB = new BasicBlock(Name, CurFun.CurrentFunction);
555 if (ID.Type == ValID::LocalID) {
556 assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
557 InsertValue(BB);
558 }
559
560 ID.destroy(); // Free strdup'd memory
561 return BB;
562}
563
564/// getBBVal - get an existing BB value or create a forward reference for it.
565///
566static BasicBlock *getBBVal(const ValID &ID) {
567 assert(inFunctionScope() && "Can't get basic block at global scope!");
568
569 BasicBlock *BB = 0;
570
571 std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
572 if (BBI != CurFun.BBForwardRefs.end()) {
573 BB = BBI->second;
574 } if (ID.Type == ValID::LocalName) {
575 std::string Name = ID.getName();
576 Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name);
577 if (N)
578 if (N->getType()->getTypeID() == Type::LabelTyID)
579 BB = cast<BasicBlock>(N);
580 else
581 GenerateError("Reference to label '" + Name + "' is actually of type '"+
582 N->getType()->getDescription() + "'");
583 } else if (ID.Type == ValID::LocalID) {
584 if (ID.Num < CurFun.NextValNum && ID.Num < CurFun.Values.size()) {
585 if (CurFun.Values[ID.Num]->getType()->getTypeID() == Type::LabelTyID)
586 BB = cast<BasicBlock>(CurFun.Values[ID.Num]);
587 else
588 GenerateError("Reference to label '%" + utostr(ID.Num) +
589 "' is actually of type '"+
590 CurFun.Values[ID.Num]->getType()->getDescription() + "'");
591 }
592 } else {
593 GenerateError("Illegal label reference " + ID.getName());
594 return 0;
595 }
596
597 // If its already been defined, return it now.
598 if (BB) {
599 ID.destroy(); // Free strdup'd memory.
600 return BB;
601 }
602
603 // Otherwise, this block has not been seen before, create it.
604 std::string Name;
605 if (ID.Type == ValID::LocalName)
606 Name = ID.getName();
607 BB = new BasicBlock(Name, CurFun.CurrentFunction);
608
609 // Insert it in the forward refs map.
610 CurFun.BBForwardRefs[ID] = BB;
611
612 return BB;
613}
614
615
616//===----------------------------------------------------------------------===//
617// Code to handle forward references in instructions
618//===----------------------------------------------------------------------===//
619//
620// This code handles the late binding needed with statements that reference
621// values not defined yet... for example, a forward branch, or the PHI node for
622// a loop body.
623//
624// This keeps a table (CurFun.LateResolveValues) of all such forward references
625// and back patchs after we are done.
626//
627
628// ResolveDefinitions - If we could not resolve some defs at parsing
629// time (forward branches, phi functions for loops, etc...) resolve the
630// defs now...
631//
632static void
633ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers) {
634 // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
635 while (!LateResolvers.empty()) {
636 Value *V = LateResolvers.back();
637 LateResolvers.pop_back();
638
639 std::map<Value*, std::pair<ValID, int> >::iterator PHI =
640 CurModule.PlaceHolderInfo.find(V);
641 assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
642
643 ValID &DID = PHI->second.first;
644
645 Value *TheRealValue = getExistingVal(V->getType(), DID);
646 if (TriggerError)
647 return;
648 if (TheRealValue) {
649 V->replaceAllUsesWith(TheRealValue);
650 delete V;
651 CurModule.PlaceHolderInfo.erase(PHI);
652 } else if (FutureLateResolvers) {
653 // Functions have their unresolved items forwarded to the module late
654 // resolver table
655 InsertValue(V, *FutureLateResolvers);
656 } else {
657 if (DID.Type == ValID::LocalName || DID.Type == ValID::GlobalName) {
658 GenerateError("Reference to an invalid definition: '" +DID.getName()+
659 "' of type '" + V->getType()->getDescription() + "'",
660 PHI->second.second);
661 return;
662 } else {
663 GenerateError("Reference to an invalid definition: #" +
664 itostr(DID.Num) + " of type '" +
665 V->getType()->getDescription() + "'",
666 PHI->second.second);
667 return;
668 }
669 }
670 }
671 LateResolvers.clear();
672}
673
674// ResolveTypeTo - A brand new type was just declared. This means that (if
675// name is not null) things referencing Name can be resolved. Otherwise, things
676// refering to the number can be resolved. Do this now.
677//
678static void ResolveTypeTo(std::string *Name, const Type *ToTy) {
679 ValID D;
680 if (Name)
681 D = ValID::createLocalName(*Name);
682 else
683 D = ValID::createLocalID(CurModule.Types.size());
684
685 std::map<ValID, PATypeHolder>::iterator I =
686 CurModule.LateResolveTypes.find(D);
687 if (I != CurModule.LateResolveTypes.end()) {
688 ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
689 CurModule.LateResolveTypes.erase(I);
690 }
691}
692
693// setValueName - Set the specified value to the name given. The name may be
694// null potentially, in which case this is a noop. The string passed in is
695// assumed to be a malloc'd string buffer, and is free'd by this function.
696//
697static void setValueName(Value *V, std::string *NameStr) {
698 if (!NameStr) return;
699 std::string Name(*NameStr); // Copy string
700 delete NameStr; // Free old string
701
702 if (V->getType() == Type::VoidTy) {
703 GenerateError("Can't assign name '" + Name+"' to value with void type");
704 return;
705 }
706
707 assert(inFunctionScope() && "Must be in function scope!");
708 ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
709 if (ST.lookup(Name)) {
710 GenerateError("Redefinition of value '" + Name + "' of type '" +
711 V->getType()->getDescription() + "'");
712 return;
713 }
714
715 // Set the name.
716 V->setName(Name);
717}
718
719/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
720/// this is a declaration, otherwise it is a definition.
721static GlobalVariable *
722ParseGlobalVariable(std::string *NameStr,
723 GlobalValue::LinkageTypes Linkage,
724 GlobalValue::VisibilityTypes Visibility,
725 bool isConstantGlobal, const Type *Ty,
726 Constant *Initializer, bool IsThreadLocal) {
727 if (isa<FunctionType>(Ty)) {
728 GenerateError("Cannot declare global vars of function type");
729 return 0;
730 }
731
732 const PointerType *PTy = PointerType::get(Ty);
733
734 std::string Name;
735 if (NameStr) {
736 Name = *NameStr; // Copy string
737 delete NameStr; // Free old string
738 }
739
740 // See if this global value was forward referenced. If so, recycle the
741 // object.
742 ValID ID;
743 if (!Name.empty()) {
744 ID = ValID::createGlobalName(Name);
745 } else {
746 ID = ValID::createGlobalID(CurModule.Values.size());
747 }
748
749 if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
750 // Move the global to the end of the list, from whereever it was
751 // previously inserted.
752 GlobalVariable *GV = cast<GlobalVariable>(FWGV);
753 CurModule.CurrentModule->getGlobalList().remove(GV);
754 CurModule.CurrentModule->getGlobalList().push_back(GV);
755 GV->setInitializer(Initializer);
756 GV->setLinkage(Linkage);
757 GV->setVisibility(Visibility);
758 GV->setConstant(isConstantGlobal);
759 GV->setThreadLocal(IsThreadLocal);
760 InsertValue(GV, CurModule.Values);
761 return GV;
762 }
763
764 // If this global has a name
765 if (!Name.empty()) {
766 // if the global we're parsing has an initializer (is a definition) and
767 // has external linkage.
768 if (Initializer && Linkage != GlobalValue::InternalLinkage)
769 // If there is already a global with external linkage with this name
770 if (CurModule.CurrentModule->getGlobalVariable(Name, false)) {
771 // If we allow this GVar to get created, it will be renamed in the
772 // symbol table because it conflicts with an existing GVar. We can't
773 // allow redefinition of GVars whose linking indicates that their name
774 // must stay the same. Issue the error.
775 GenerateError("Redefinition of global variable named '" + Name +
776 "' of type '" + Ty->getDescription() + "'");
777 return 0;
778 }
779 }
780
781 // Otherwise there is no existing GV to use, create one now.
782 GlobalVariable *GV =
783 new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
784 CurModule.CurrentModule, IsThreadLocal);
785 GV->setVisibility(Visibility);
786 InsertValue(GV, CurModule.Values);
787 return GV;
788}
789
790// setTypeName - Set the specified type to the name given. The name may be
791// null potentially, in which case this is a noop. The string passed in is
792// assumed to be a malloc'd string buffer, and is freed by this function.
793//
794// This function returns true if the type has already been defined, but is
795// allowed to be redefined in the specified context. If the name is a new name
796// for the type plane, it is inserted and false is returned.
797static bool setTypeName(const Type *T, std::string *NameStr) {
798 assert(!inFunctionScope() && "Can't give types function-local names!");
799 if (NameStr == 0) return false;
800
801 std::string Name(*NameStr); // Copy string
802 delete NameStr; // Free old string
803
804 // We don't allow assigning names to void type
805 if (T == Type::VoidTy) {
806 GenerateError("Can't assign name '" + Name + "' to the void type");
807 return false;
808 }
809
810 // Set the type name, checking for conflicts as we do so.
811 bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
812
813 if (AlreadyExists) { // Inserting a name that is already defined???
814 const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
815 assert(Existing && "Conflict but no matching type?!");
816
817 // There is only one case where this is allowed: when we are refining an
818 // opaque type. In this case, Existing will be an opaque type.
819 if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
820 // We ARE replacing an opaque type!
821 const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
822 return true;
823 }
824
825 // Otherwise, this is an attempt to redefine a type. That's okay if
826 // the redefinition is identical to the original. This will be so if
827 // Existing and T point to the same Type object. In this one case we
828 // allow the equivalent redefinition.
829 if (Existing == T) return true; // Yes, it's equal.
830
831 // Any other kind of (non-equivalent) redefinition is an error.
832 GenerateError("Redefinition of type named '" + Name + "' of type '" +
833 T->getDescription() + "'");
834 }
835
836 return false;
837}
838
839//===----------------------------------------------------------------------===//
840// Code for handling upreferences in type names...
841//
842
843// TypeContains - Returns true if Ty directly contains E in it.
844//
845static bool TypeContains(const Type *Ty, const Type *E) {
846 return std::find(Ty->subtype_begin(), Ty->subtype_end(),
847 E) != Ty->subtype_end();
848}
849
850namespace {
851 struct UpRefRecord {
852 // NestingLevel - The number of nesting levels that need to be popped before
853 // this type is resolved.
854 unsigned NestingLevel;
855
856 // LastContainedTy - This is the type at the current binding level for the
857 // type. Every time we reduce the nesting level, this gets updated.
858 const Type *LastContainedTy;
859
860 // UpRefTy - This is the actual opaque type that the upreference is
861 // represented with.
862 OpaqueType *UpRefTy;
863
864 UpRefRecord(unsigned NL, OpaqueType *URTy)
865 : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
866 };
867}
868
869// UpRefs - A list of the outstanding upreferences that need to be resolved.
870static std::vector<UpRefRecord> UpRefs;
871
872/// HandleUpRefs - Every time we finish a new layer of types, this function is
873/// called. It loops through the UpRefs vector, which is a list of the
874/// currently active types. For each type, if the up reference is contained in
875/// the newly completed type, we decrement the level count. When the level
876/// count reaches zero, the upreferenced type is the type that is passed in:
877/// thus we can complete the cycle.
878///
879static PATypeHolder HandleUpRefs(const Type *ty) {
880 // If Ty isn't abstract, or if there are no up-references in it, then there is
881 // nothing to resolve here.
882 if (!ty->isAbstract() || UpRefs.empty()) return ty;
883
884 PATypeHolder Ty(ty);
885 UR_OUT("Type '" << Ty->getDescription() <<
886 "' newly formed. Resolving upreferences.\n" <<
887 UpRefs.size() << " upreferences active!\n");
888
889 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
890 // to zero), we resolve them all together before we resolve them to Ty. At
891 // the end of the loop, if there is anything to resolve to Ty, it will be in
892 // this variable.
893 OpaqueType *TypeToResolve = 0;
894
895 for (unsigned i = 0; i != UpRefs.size(); ++i) {
896 UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
897 << UpRefs[i].second->getDescription() << ") = "
898 << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
899 if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
900 // Decrement level of upreference
901 unsigned Level = --UpRefs[i].NestingLevel;
902 UpRefs[i].LastContainedTy = Ty;
903 UR_OUT(" Uplevel Ref Level = " << Level << "\n");
904 if (Level == 0) { // Upreference should be resolved!
905 if (!TypeToResolve) {
906 TypeToResolve = UpRefs[i].UpRefTy;
907 } else {
908 UR_OUT(" * Resolving upreference for "
909 << UpRefs[i].second->getDescription() << "\n";
910 std::string OldName = UpRefs[i].UpRefTy->getDescription());
911 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
912 UR_OUT(" * Type '" << OldName << "' refined upreference to: "
913 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
914 }
915 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
916 --i; // Do not skip the next element...
917 }
918 }
919 }
920
921 if (TypeToResolve) {
922 UR_OUT(" * Resolving upreference for "
923 << UpRefs[i].second->getDescription() << "\n";
924 std::string OldName = TypeToResolve->getDescription());
925 TypeToResolve->refineAbstractTypeTo(Ty);
926 }
927
928 return Ty;
929}
930
931//===----------------------------------------------------------------------===//
932// RunVMAsmParser - Define an interface to this parser
933//===----------------------------------------------------------------------===//
934//
935static Module* RunParser(Module * M);
936
937Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
938 set_scan_file(F);
939
940 CurFilename = Filename;
941 return RunParser(new Module(CurFilename));
942}
943
944Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
945 set_scan_string(AsmString);
946
947 CurFilename = "from_memory";
948 if (M == NULL) {
949 return RunParser(new Module (CurFilename));
950 } else {
951 return RunParser(M);
952 }
953}
954
955%}
956
957%union {
958 llvm::Module *ModuleVal;
959 llvm::Function *FunctionVal;
960 llvm::BasicBlock *BasicBlockVal;
961 llvm::TerminatorInst *TermInstVal;
962 llvm::Instruction *InstVal;
963 llvm::Constant *ConstVal;
964
965 const llvm::Type *PrimType;
966 std::list<llvm::PATypeHolder> *TypeList;
967 llvm::PATypeHolder *TypeVal;
968 llvm::Value *ValueVal;
969 std::vector<llvm::Value*> *ValueList;
970 llvm::ArgListType *ArgList;
971 llvm::TypeWithAttrs TypeWithAttrs;
972 llvm::TypeWithAttrsList *TypeWithAttrsList;
973 llvm::ValueRefList *ValueRefList;
974
975 // Represent the RHS of PHI node
976 std::list<std::pair<llvm::Value*,
977 llvm::BasicBlock*> > *PHIList;
978 std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
979 std::vector<llvm::Constant*> *ConstVector;
980
981 llvm::GlobalValue::LinkageTypes Linkage;
982 llvm::GlobalValue::VisibilityTypes Visibility;
983 uint16_t ParamAttrs;
984 llvm::APInt *APIntVal;
985 int64_t SInt64Val;
986 uint64_t UInt64Val;
987 int SIntVal;
988 unsigned UIntVal;
989 double FPVal;
990 bool BoolVal;
991
992 std::string *StrVal; // This memory must be deleted
993 llvm::ValID ValIDVal;
994
995 llvm::Instruction::BinaryOps BinaryOpVal;
996 llvm::Instruction::TermOps TermOpVal;
997 llvm::Instruction::MemoryOps MemOpVal;
998 llvm::Instruction::CastOps CastOpVal;
999 llvm::Instruction::OtherOps OtherOpVal;
1000 llvm::ICmpInst::Predicate IPredicate;
1001 llvm::FCmpInst::Predicate FPredicate;
1002}
1003
1004%type <ModuleVal> Module
1005%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
1006%type <BasicBlockVal> BasicBlock InstructionList
1007%type <TermInstVal> BBTerminatorInst
1008%type <InstVal> Inst InstVal MemoryInst
1009%type <ConstVal> ConstVal ConstExpr AliaseeRef
1010%type <ConstVector> ConstVector
1011%type <ArgList> ArgList ArgListH
1012%type <PHIList> PHIList
1013%type <ValueRefList> ValueRefList // For call param lists & GEP indices
1014%type <ValueList> IndexList // For GEP indices
1015%type <TypeList> TypeListI
1016%type <TypeWithAttrsList> ArgTypeList ArgTypeListI
1017%type <TypeWithAttrs> ArgType
1018%type <JumpTable> JumpTable
1019%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
1020%type <BoolVal> ThreadLocal // 'thread_local' or not
1021%type <BoolVal> OptVolatile // 'volatile' or not
1022%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
1023%type <BoolVal> OptSideEffect // 'sideeffect' or not.
1024%type <Linkage> GVInternalLinkage GVExternalLinkage
1025%type <Linkage> FunctionDefineLinkage FunctionDeclareLinkage
1026%type <Linkage> AliasLinkage
1027%type <Visibility> GVVisibilityStyle
1028
1029// ValueRef - Unresolved reference to a definition or BB
1030%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
1031%type <ValueVal> ResolvedVal // <type> <valref> pair
1032// Tokens and types for handling constant integer values
1033//
1034// ESINT64VAL - A negative number within long long range
1035%token <SInt64Val> ESINT64VAL
1036
1037// EUINT64VAL - A positive number within uns. long long range
1038%token <UInt64Val> EUINT64VAL
1039
1040// ESAPINTVAL - A negative number with arbitrary precision
1041%token <APIntVal> ESAPINTVAL
1042
1043// EUAPINTVAL - A positive number with arbitrary precision
1044%token <APIntVal> EUAPINTVAL
1045
1046%token <UIntVal> LOCALVAL_ID GLOBALVAL_ID // %123 @123
1047%token <FPVal> FPVAL // Float or Double constant
1048
1049// Built in types...
1050%type <TypeVal> Types ResultTypes
1051%type <PrimType> IntType FPType PrimType // Classifications
1052%token <PrimType> VOID INTTYPE
1053%token <PrimType> FLOAT DOUBLE LABEL
1054%token TYPE
1055
1056
1057%token<StrVal> LOCALVAR GLOBALVAR LABELSTR
1058%token<StrVal> STRINGCONSTANT ATSTRINGCONSTANT PCTSTRINGCONSTANT
1059%type <StrVal> LocalName OptLocalName OptLocalAssign
1060%type <StrVal> GlobalName OptGlobalAssign GlobalAssign
1061%type <StrVal> OptSection SectionString
1062
1063%type <UIntVal> OptAlign OptCAlign
1064
1065%token ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
1066%token DECLARE DEFINE GLOBAL CONSTANT SECTION ALIAS VOLATILE THREAD_LOCAL
1067%token TO DOTDOTDOT NULL_TOK UNDEF INTERNAL LINKONCE WEAK APPENDING
1068%token DLLIMPORT DLLEXPORT EXTERN_WEAK
1069%token OPAQUE EXTERNAL TARGET TRIPLE ALIGN
1070%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
1071%token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
1072%token DATALAYOUT
1073%type <UIntVal> OptCallingConv
1074%type <ParamAttrs> OptParamAttrs ParamAttr
1075%type <ParamAttrs> OptFuncAttrs FuncAttr
1076
1077// Basic Block Terminating Operators
1078%token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
1079
1080// Binary Operators
1081%type <BinaryOpVal> ArithmeticOps LogicalOps // Binops Subcatagories
1082%token <BinaryOpVal> ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR
1083%token <BinaryOpVal> SHL LSHR ASHR
1084
1085%token <OtherOpVal> ICMP FCMP
1086%type <IPredicate> IPredicates
1087%type <FPredicate> FPredicates
1088%token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
1089%token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
1090
1091// Memory Instructions
1092%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
1093
1094// Cast Operators
1095%type <CastOpVal> CastOps
1096%token <CastOpVal> TRUNC ZEXT SEXT FPTRUNC FPEXT BITCAST
1097%token <CastOpVal> UITOFP SITOFP FPTOUI FPTOSI INTTOPTR PTRTOINT
1098
1099// Other Operators
1100%token <OtherOpVal> PHI_TOK SELECT VAARG
1101%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
1102
1103// Function Attributes
Reid Spencerf234bed2007-07-19 23:13:04 +00001104%token SIGNEXT ZEROEXT NORETURN INREG SRET NOUNWIND NOALIAS BYVAL
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001105
1106// Visibility Styles
1107%token DEFAULT HIDDEN PROTECTED
1108
1109%start Module
1110%%
1111
1112
1113// Operations that are notably excluded from this list include:
1114// RET, BR, & SWITCH because they end basic blocks and are treated specially.
1115//
1116ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM;
1117LogicalOps : SHL | LSHR | ASHR | AND | OR | XOR;
1118CastOps : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | BITCAST |
1119 UITOFP | SITOFP | FPTOUI | FPTOSI | INTTOPTR | PTRTOINT;
1120
1121IPredicates
1122 : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
1123 | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
1124 | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
1125 | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
1126 | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
1127 ;
1128
1129FPredicates
1130 : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
1131 | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
1132 | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
1133 | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
1134 | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
1135 | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
1136 | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
1137 | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
1138 | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
1139 ;
1140
1141// These are some types that allow classification if we only want a particular
1142// thing... for example, only a signed, unsigned, or integral type.
1143IntType : INTTYPE;
1144FPType : FLOAT | DOUBLE;
1145
1146LocalName : LOCALVAR | STRINGCONSTANT | PCTSTRINGCONSTANT ;
1147OptLocalName : LocalName | /*empty*/ { $$ = 0; };
1148
1149/// OptLocalAssign - Value producing statements have an optional assignment
1150/// component.
1151OptLocalAssign : LocalName '=' {
1152 $$ = $1;
1153 CHECK_FOR_ERROR
1154 }
1155 | /*empty*/ {
1156 $$ = 0;
1157 CHECK_FOR_ERROR
1158 };
1159
1160GlobalName : GLOBALVAR | ATSTRINGCONSTANT ;
1161
1162OptGlobalAssign : GlobalAssign
1163 | /*empty*/ {
1164 $$ = 0;
1165 CHECK_FOR_ERROR
1166 };
1167
1168GlobalAssign : GlobalName '=' {
1169 $$ = $1;
1170 CHECK_FOR_ERROR
1171 };
1172
1173GVInternalLinkage
1174 : INTERNAL { $$ = GlobalValue::InternalLinkage; }
1175 | WEAK { $$ = GlobalValue::WeakLinkage; }
1176 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1177 | APPENDING { $$ = GlobalValue::AppendingLinkage; }
1178 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1179 ;
1180
1181GVExternalLinkage
1182 : DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1183 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1184 | EXTERNAL { $$ = GlobalValue::ExternalLinkage; }
1185 ;
1186
1187GVVisibilityStyle
1188 : /*empty*/ { $$ = GlobalValue::DefaultVisibility; }
1189 | DEFAULT { $$ = GlobalValue::DefaultVisibility; }
1190 | HIDDEN { $$ = GlobalValue::HiddenVisibility; }
1191 | PROTECTED { $$ = GlobalValue::ProtectedVisibility; }
1192 ;
1193
1194FunctionDeclareLinkage
1195 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1196 | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1197 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1198 ;
1199
1200FunctionDefineLinkage
1201 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1202 | INTERNAL { $$ = GlobalValue::InternalLinkage; }
1203 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1204 | WEAK { $$ = GlobalValue::WeakLinkage; }
1205 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1206 ;
1207
1208AliasLinkage
1209 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1210 | WEAK { $$ = GlobalValue::WeakLinkage; }
1211 | INTERNAL { $$ = GlobalValue::InternalLinkage; }
1212 ;
1213
1214OptCallingConv : /*empty*/ { $$ = CallingConv::C; } |
1215 CCC_TOK { $$ = CallingConv::C; } |
1216 FASTCC_TOK { $$ = CallingConv::Fast; } |
1217 COLDCC_TOK { $$ = CallingConv::Cold; } |
1218 X86_STDCALLCC_TOK { $$ = CallingConv::X86_StdCall; } |
1219 X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } |
1220 CC_TOK EUINT64VAL {
1221 if ((unsigned)$2 != $2)
1222 GEN_ERROR("Calling conv too large");
1223 $$ = $2;
1224 CHECK_FOR_ERROR
1225 };
1226
Reid Spencerf234bed2007-07-19 23:13:04 +00001227ParamAttr : ZEROEXT { $$ = ParamAttr::ZExt; }
1228 | SIGNEXT { $$ = ParamAttr::SExt; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001229 | INREG { $$ = ParamAttr::InReg; }
1230 | SRET { $$ = ParamAttr::StructRet; }
1231 | NOALIAS { $$ = ParamAttr::NoAlias; }
1232 | BYVAL { $$ = ParamAttr::ByVal; }
1233 ;
1234
1235OptParamAttrs : /* empty */ { $$ = ParamAttr::None; }
1236 | OptParamAttrs ParamAttr {
1237 $$ = $1 | $2;
1238 }
1239 ;
1240
1241FuncAttr : NORETURN { $$ = ParamAttr::NoReturn; }
1242 | NOUNWIND { $$ = ParamAttr::NoUnwind; }
Reid Spencerf234bed2007-07-19 23:13:04 +00001243 | ZEROEXT { $$ = ParamAttr::ZExt; }
1244 | SIGNEXT { $$ = ParamAttr::SExt; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001245 ;
1246
1247OptFuncAttrs : /* empty */ { $$ = ParamAttr::None; }
1248 | OptFuncAttrs FuncAttr {
1249 $$ = $1 | $2;
1250 }
1251 ;
1252
1253// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
1254// a comma before it.
1255OptAlign : /*empty*/ { $$ = 0; } |
1256 ALIGN EUINT64VAL {
1257 $$ = $2;
1258 if ($$ != 0 && !isPowerOf2_32($$))
1259 GEN_ERROR("Alignment must be a power of two");
1260 CHECK_FOR_ERROR
1261};
1262OptCAlign : /*empty*/ { $$ = 0; } |
1263 ',' ALIGN EUINT64VAL {
1264 $$ = $3;
1265 if ($$ != 0 && !isPowerOf2_32($$))
1266 GEN_ERROR("Alignment must be a power of two");
1267 CHECK_FOR_ERROR
1268};
1269
1270
1271SectionString : SECTION STRINGCONSTANT {
1272 for (unsigned i = 0, e = $2->length(); i != e; ++i)
1273 if ((*$2)[i] == '"' || (*$2)[i] == '\\')
1274 GEN_ERROR("Invalid character in section name");
1275 $$ = $2;
1276 CHECK_FOR_ERROR
1277};
1278
1279OptSection : /*empty*/ { $$ = 0; } |
1280 SectionString { $$ = $1; };
1281
1282// GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
1283// is set to be the global we are processing.
1284//
1285GlobalVarAttributes : /* empty */ {} |
1286 ',' GlobalVarAttribute GlobalVarAttributes {};
1287GlobalVarAttribute : SectionString {
1288 CurGV->setSection(*$1);
1289 delete $1;
1290 CHECK_FOR_ERROR
1291 }
1292 | ALIGN EUINT64VAL {
1293 if ($2 != 0 && !isPowerOf2_32($2))
1294 GEN_ERROR("Alignment must be a power of two");
1295 CurGV->setAlignment($2);
1296 CHECK_FOR_ERROR
1297 };
1298
1299//===----------------------------------------------------------------------===//
1300// Types includes all predefined types... except void, because it can only be
1301// used in specific contexts (function returning void for example).
1302
1303// Derived types are added later...
1304//
1305PrimType : INTTYPE | FLOAT | DOUBLE | LABEL ;
1306
1307Types
1308 : OPAQUE {
1309 $$ = new PATypeHolder(OpaqueType::get());
1310 CHECK_FOR_ERROR
1311 }
1312 | PrimType {
1313 $$ = new PATypeHolder($1);
1314 CHECK_FOR_ERROR
1315 }
1316 | Types '*' { // Pointer type?
1317 if (*$1 == Type::LabelTy)
1318 GEN_ERROR("Cannot form a pointer to a basic block");
1319 $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
1320 delete $1;
1321 CHECK_FOR_ERROR
1322 }
1323 | SymbolicValueRef { // Named types are also simple types...
1324 const Type* tmp = getTypeVal($1);
1325 CHECK_FOR_ERROR
1326 $$ = new PATypeHolder(tmp);
1327 }
1328 | '\\' EUINT64VAL { // Type UpReference
1329 if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range");
1330 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
1331 UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
1332 $$ = new PATypeHolder(OT);
1333 UR_OUT("New Upreference!\n");
1334 CHECK_FOR_ERROR
1335 }
1336 | Types '(' ArgTypeListI ')' OptFuncAttrs {
1337 std::vector<const Type*> Params;
1338 ParamAttrsVector Attrs;
1339 if ($5 != ParamAttr::None) {
1340 ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
1341 Attrs.push_back(X);
1342 }
1343 unsigned index = 1;
1344 TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
1345 for (; I != E; ++I, ++index) {
1346 const Type *Ty = I->Ty->get();
1347 Params.push_back(Ty);
1348 if (Ty != Type::VoidTy)
1349 if (I->Attrs != ParamAttr::None) {
1350 ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
1351 Attrs.push_back(X);
1352 }
1353 }
1354 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1355 if (isVarArg) Params.pop_back();
1356
1357 ParamAttrsList *ActualAttrs = 0;
1358 if (!Attrs.empty())
1359 ActualAttrs = ParamAttrsList::get(Attrs);
1360 FunctionType *FT = FunctionType::get(*$1, Params, isVarArg, ActualAttrs);
1361 delete $3; // Delete the argument list
1362 delete $1; // Delete the return type handle
1363 $$ = new PATypeHolder(HandleUpRefs(FT));
1364 CHECK_FOR_ERROR
1365 }
1366 | VOID '(' ArgTypeListI ')' OptFuncAttrs {
1367 std::vector<const Type*> Params;
1368 ParamAttrsVector Attrs;
1369 if ($5 != ParamAttr::None) {
1370 ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
1371 Attrs.push_back(X);
1372 }
1373 TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
1374 unsigned index = 1;
1375 for ( ; I != E; ++I, ++index) {
1376 const Type* Ty = I->Ty->get();
1377 Params.push_back(Ty);
1378 if (Ty != Type::VoidTy)
1379 if (I->Attrs != ParamAttr::None) {
1380 ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
1381 Attrs.push_back(X);
1382 }
1383 }
1384 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1385 if (isVarArg) Params.pop_back();
1386
1387 ParamAttrsList *ActualAttrs = 0;
1388 if (!Attrs.empty())
1389 ActualAttrs = ParamAttrsList::get(Attrs);
1390
1391 FunctionType *FT = FunctionType::get($1, Params, isVarArg, ActualAttrs);
1392 delete $3; // Delete the argument list
1393 $$ = new PATypeHolder(HandleUpRefs(FT));
1394 CHECK_FOR_ERROR
1395 }
1396
1397 | '[' EUINT64VAL 'x' Types ']' { // Sized array type?
1398 $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
1399 delete $4;
1400 CHECK_FOR_ERROR
1401 }
1402 | '<' EUINT64VAL 'x' Types '>' { // Vector type?
1403 const llvm::Type* ElemTy = $4->get();
1404 if ((unsigned)$2 != $2)
1405 GEN_ERROR("Unsigned result not equal to signed result");
1406 if (!ElemTy->isFloatingPoint() && !ElemTy->isInteger())
1407 GEN_ERROR("Element type of a VectorType must be primitive");
1408 if (!isPowerOf2_32($2))
1409 GEN_ERROR("Vector length should be a power of 2");
1410 $$ = new PATypeHolder(HandleUpRefs(VectorType::get(*$4, (unsigned)$2)));
1411 delete $4;
1412 CHECK_FOR_ERROR
1413 }
1414 | '{' TypeListI '}' { // Structure type?
1415 std::vector<const Type*> Elements;
1416 for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
1417 E = $2->end(); I != E; ++I)
1418 Elements.push_back(*I);
1419
1420 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
1421 delete $2;
1422 CHECK_FOR_ERROR
1423 }
1424 | '{' '}' { // Empty structure type?
1425 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
1426 CHECK_FOR_ERROR
1427 }
1428 | '<' '{' TypeListI '}' '>' {
1429 std::vector<const Type*> Elements;
1430 for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
1431 E = $3->end(); I != E; ++I)
1432 Elements.push_back(*I);
1433
1434 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true)));
1435 delete $3;
1436 CHECK_FOR_ERROR
1437 }
1438 | '<' '{' '}' '>' { // Empty structure type?
1439 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>(), true));
1440 CHECK_FOR_ERROR
1441 }
1442 ;
1443
1444ArgType
1445 : Types OptParamAttrs {
1446 $$.Ty = $1;
1447 $$.Attrs = $2;
1448 }
1449 ;
1450
1451ResultTypes
1452 : Types {
1453 if (!UpRefs.empty())
1454 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1455 if (!(*$1)->isFirstClassType())
1456 GEN_ERROR("LLVM functions cannot return aggregate types");
1457 $$ = $1;
1458 }
1459 | VOID {
1460 $$ = new PATypeHolder(Type::VoidTy);
1461 }
1462 ;
1463
1464ArgTypeList : ArgType {
1465 $$ = new TypeWithAttrsList();
1466 $$->push_back($1);
1467 CHECK_FOR_ERROR
1468 }
1469 | ArgTypeList ',' ArgType {
1470 ($$=$1)->push_back($3);
1471 CHECK_FOR_ERROR
1472 }
1473 ;
1474
1475ArgTypeListI
1476 : ArgTypeList
1477 | ArgTypeList ',' DOTDOTDOT {
1478 $$=$1;
1479 TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
1480 TWA.Ty = new PATypeHolder(Type::VoidTy);
1481 $$->push_back(TWA);
1482 CHECK_FOR_ERROR
1483 }
1484 | DOTDOTDOT {
1485 $$ = new TypeWithAttrsList;
1486 TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
1487 TWA.Ty = new PATypeHolder(Type::VoidTy);
1488 $$->push_back(TWA);
1489 CHECK_FOR_ERROR
1490 }
1491 | /*empty*/ {
1492 $$ = new TypeWithAttrsList();
1493 CHECK_FOR_ERROR
1494 };
1495
1496// TypeList - Used for struct declarations and as a basis for function type
1497// declaration type lists
1498//
1499TypeListI : Types {
1500 $$ = new std::list<PATypeHolder>();
1501 $$->push_back(*$1);
1502 delete $1;
1503 CHECK_FOR_ERROR
1504 }
1505 | TypeListI ',' Types {
1506 ($$=$1)->push_back(*$3);
1507 delete $3;
1508 CHECK_FOR_ERROR
1509 };
1510
1511// ConstVal - The various declarations that go into the constant pool. This
1512// production is used ONLY to represent constants that show up AFTER a 'const',
1513// 'constant' or 'global' token at global scope. Constants that can be inlined
1514// into other expressions (such as integers and constexprs) are handled by the
1515// ResolvedVal, ValueRef and ConstValueRef productions.
1516//
1517ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
1518 if (!UpRefs.empty())
1519 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1520 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1521 if (ATy == 0)
1522 GEN_ERROR("Cannot make array constant with type: '" +
1523 (*$1)->getDescription() + "'");
1524 const Type *ETy = ATy->getElementType();
1525 int NumElements = ATy->getNumElements();
1526
1527 // Verify that we have the correct size...
1528 if (NumElements != -1 && NumElements != (int)$3->size())
1529 GEN_ERROR("Type mismatch: constant sized array initialized with " +
1530 utostr($3->size()) + " arguments, but has size of " +
1531 itostr(NumElements) + "");
1532
1533 // Verify all elements are correct type!
1534 for (unsigned i = 0; i < $3->size(); i++) {
1535 if (ETy != (*$3)[i]->getType())
1536 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
1537 ETy->getDescription() +"' as required!\nIt is of type '"+
1538 (*$3)[i]->getType()->getDescription() + "'.");
1539 }
1540
1541 $$ = ConstantArray::get(ATy, *$3);
1542 delete $1; delete $3;
1543 CHECK_FOR_ERROR
1544 }
1545 | Types '[' ']' {
1546 if (!UpRefs.empty())
1547 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1548 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1549 if (ATy == 0)
1550 GEN_ERROR("Cannot make array constant with type: '" +
1551 (*$1)->getDescription() + "'");
1552
1553 int NumElements = ATy->getNumElements();
1554 if (NumElements != -1 && NumElements != 0)
1555 GEN_ERROR("Type mismatch: constant sized array initialized with 0"
1556 " arguments, but has size of " + itostr(NumElements) +"");
1557 $$ = ConstantArray::get(ATy, std::vector<Constant*>());
1558 delete $1;
1559 CHECK_FOR_ERROR
1560 }
1561 | Types 'c' STRINGCONSTANT {
1562 if (!UpRefs.empty())
1563 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1564 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1565 if (ATy == 0)
1566 GEN_ERROR("Cannot make array constant with type: '" +
1567 (*$1)->getDescription() + "'");
1568
1569 int NumElements = ATy->getNumElements();
1570 const Type *ETy = ATy->getElementType();
1571 if (NumElements != -1 && NumElements != int($3->length()))
1572 GEN_ERROR("Can't build string constant of size " +
1573 itostr((int)($3->length())) +
1574 " when array has size " + itostr(NumElements) + "");
1575 std::vector<Constant*> Vals;
1576 if (ETy == Type::Int8Ty) {
1577 for (unsigned i = 0; i < $3->length(); ++i)
1578 Vals.push_back(ConstantInt::get(ETy, (*$3)[i]));
1579 } else {
1580 delete $3;
1581 GEN_ERROR("Cannot build string arrays of non byte sized elements");
1582 }
1583 delete $3;
1584 $$ = ConstantArray::get(ATy, Vals);
1585 delete $1;
1586 CHECK_FOR_ERROR
1587 }
1588 | Types '<' ConstVector '>' { // Nonempty unsized arr
1589 if (!UpRefs.empty())
1590 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1591 const VectorType *PTy = dyn_cast<VectorType>($1->get());
1592 if (PTy == 0)
1593 GEN_ERROR("Cannot make packed constant with type: '" +
1594 (*$1)->getDescription() + "'");
1595 const Type *ETy = PTy->getElementType();
1596 int NumElements = PTy->getNumElements();
1597
1598 // Verify that we have the correct size...
1599 if (NumElements != -1 && NumElements != (int)$3->size())
1600 GEN_ERROR("Type mismatch: constant sized packed initialized with " +
1601 utostr($3->size()) + " arguments, but has size of " +
1602 itostr(NumElements) + "");
1603
1604 // Verify all elements are correct type!
1605 for (unsigned i = 0; i < $3->size(); i++) {
1606 if (ETy != (*$3)[i]->getType())
1607 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
1608 ETy->getDescription() +"' as required!\nIt is of type '"+
1609 (*$3)[i]->getType()->getDescription() + "'.");
1610 }
1611
1612 $$ = ConstantVector::get(PTy, *$3);
1613 delete $1; delete $3;
1614 CHECK_FOR_ERROR
1615 }
1616 | Types '{' ConstVector '}' {
1617 const StructType *STy = dyn_cast<StructType>($1->get());
1618 if (STy == 0)
1619 GEN_ERROR("Cannot make struct constant with type: '" +
1620 (*$1)->getDescription() + "'");
1621
1622 if ($3->size() != STy->getNumContainedTypes())
1623 GEN_ERROR("Illegal number of initializers for structure type");
1624
1625 // Check to ensure that constants are compatible with the type initializer!
1626 for (unsigned i = 0, e = $3->size(); i != e; ++i)
1627 if ((*$3)[i]->getType() != STy->getElementType(i))
1628 GEN_ERROR("Expected type '" +
1629 STy->getElementType(i)->getDescription() +
1630 "' for element #" + utostr(i) +
1631 " of structure initializer");
1632
1633 // Check to ensure that Type is not packed
1634 if (STy->isPacked())
1635 GEN_ERROR("Unpacked Initializer to vector type '" +
1636 STy->getDescription() + "'");
1637
1638 $$ = ConstantStruct::get(STy, *$3);
1639 delete $1; delete $3;
1640 CHECK_FOR_ERROR
1641 }
1642 | Types '{' '}' {
1643 if (!UpRefs.empty())
1644 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1645 const StructType *STy = dyn_cast<StructType>($1->get());
1646 if (STy == 0)
1647 GEN_ERROR("Cannot make struct constant with type: '" +
1648 (*$1)->getDescription() + "'");
1649
1650 if (STy->getNumContainedTypes() != 0)
1651 GEN_ERROR("Illegal number of initializers for structure type");
1652
1653 // Check to ensure that Type is not packed
1654 if (STy->isPacked())
1655 GEN_ERROR("Unpacked Initializer to vector type '" +
1656 STy->getDescription() + "'");
1657
1658 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1659 delete $1;
1660 CHECK_FOR_ERROR
1661 }
1662 | Types '<' '{' ConstVector '}' '>' {
1663 const StructType *STy = dyn_cast<StructType>($1->get());
1664 if (STy == 0)
1665 GEN_ERROR("Cannot make struct constant with type: '" +
1666 (*$1)->getDescription() + "'");
1667
1668 if ($4->size() != STy->getNumContainedTypes())
1669 GEN_ERROR("Illegal number of initializers for structure type");
1670
1671 // Check to ensure that constants are compatible with the type initializer!
1672 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1673 if ((*$4)[i]->getType() != STy->getElementType(i))
1674 GEN_ERROR("Expected type '" +
1675 STy->getElementType(i)->getDescription() +
1676 "' for element #" + utostr(i) +
1677 " of structure initializer");
1678
1679 // Check to ensure that Type is packed
1680 if (!STy->isPacked())
1681 GEN_ERROR("Vector initializer to non-vector type '" +
1682 STy->getDescription() + "'");
1683
1684 $$ = ConstantStruct::get(STy, *$4);
1685 delete $1; delete $4;
1686 CHECK_FOR_ERROR
1687 }
1688 | Types '<' '{' '}' '>' {
1689 if (!UpRefs.empty())
1690 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1691 const StructType *STy = dyn_cast<StructType>($1->get());
1692 if (STy == 0)
1693 GEN_ERROR("Cannot make struct constant with type: '" +
1694 (*$1)->getDescription() + "'");
1695
1696 if (STy->getNumContainedTypes() != 0)
1697 GEN_ERROR("Illegal number of initializers for structure type");
1698
1699 // Check to ensure that Type is packed
1700 if (!STy->isPacked())
1701 GEN_ERROR("Vector initializer to non-vector type '" +
1702 STy->getDescription() + "'");
1703
1704 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1705 delete $1;
1706 CHECK_FOR_ERROR
1707 }
1708 | Types NULL_TOK {
1709 if (!UpRefs.empty())
1710 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1711 const PointerType *PTy = dyn_cast<PointerType>($1->get());
1712 if (PTy == 0)
1713 GEN_ERROR("Cannot make null pointer constant with type: '" +
1714 (*$1)->getDescription() + "'");
1715
1716 $$ = ConstantPointerNull::get(PTy);
1717 delete $1;
1718 CHECK_FOR_ERROR
1719 }
1720 | Types UNDEF {
1721 if (!UpRefs.empty())
1722 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1723 $$ = UndefValue::get($1->get());
1724 delete $1;
1725 CHECK_FOR_ERROR
1726 }
1727 | Types SymbolicValueRef {
1728 if (!UpRefs.empty())
1729 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1730 const PointerType *Ty = dyn_cast<PointerType>($1->get());
1731 if (Ty == 0)
1732 GEN_ERROR("Global const reference must be a pointer type");
1733
1734 // ConstExprs can exist in the body of a function, thus creating
1735 // GlobalValues whenever they refer to a variable. Because we are in
1736 // the context of a function, getExistingVal will search the functions
1737 // symbol table instead of the module symbol table for the global symbol,
1738 // which throws things all off. To get around this, we just tell
1739 // getExistingVal that we are at global scope here.
1740 //
1741 Function *SavedCurFn = CurFun.CurrentFunction;
1742 CurFun.CurrentFunction = 0;
1743
1744 Value *V = getExistingVal(Ty, $2);
1745 CHECK_FOR_ERROR
1746
1747 CurFun.CurrentFunction = SavedCurFn;
1748
1749 // If this is an initializer for a constant pointer, which is referencing a
1750 // (currently) undefined variable, create a stub now that shall be replaced
1751 // in the future with the right type of variable.
1752 //
1753 if (V == 0) {
1754 assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
1755 const PointerType *PT = cast<PointerType>(Ty);
1756
1757 // First check to see if the forward references value is already created!
1758 PerModuleInfo::GlobalRefsType::iterator I =
1759 CurModule.GlobalRefs.find(std::make_pair(PT, $2));
1760
1761 if (I != CurModule.GlobalRefs.end()) {
1762 V = I->second; // Placeholder already exists, use it...
1763 $2.destroy();
1764 } else {
1765 std::string Name;
1766 if ($2.Type == ValID::GlobalName)
1767 Name = $2.getName();
1768 else if ($2.Type != ValID::GlobalID)
1769 GEN_ERROR("Invalid reference to global");
1770
1771 // Create the forward referenced global.
1772 GlobalValue *GV;
1773 if (const FunctionType *FTy =
1774 dyn_cast<FunctionType>(PT->getElementType())) {
1775 GV = new Function(FTy, GlobalValue::ExternalWeakLinkage, Name,
1776 CurModule.CurrentModule);
1777 } else {
1778 GV = new GlobalVariable(PT->getElementType(), false,
1779 GlobalValue::ExternalWeakLinkage, 0,
1780 Name, CurModule.CurrentModule);
1781 }
1782
1783 // Keep track of the fact that we have a forward ref to recycle it
1784 CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
1785 V = GV;
1786 }
1787 }
1788
1789 $$ = cast<GlobalValue>(V);
1790 delete $1; // Free the type handle
1791 CHECK_FOR_ERROR
1792 }
1793 | Types ConstExpr {
1794 if (!UpRefs.empty())
1795 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1796 if ($1->get() != $2->getType())
1797 GEN_ERROR("Mismatched types for constant expression: " +
1798 (*$1)->getDescription() + " and " + $2->getType()->getDescription());
1799 $$ = $2;
1800 delete $1;
1801 CHECK_FOR_ERROR
1802 }
1803 | Types ZEROINITIALIZER {
1804 if (!UpRefs.empty())
1805 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1806 const Type *Ty = $1->get();
1807 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
1808 GEN_ERROR("Cannot create a null initialized value of this type");
1809 $$ = Constant::getNullValue(Ty);
1810 delete $1;
1811 CHECK_FOR_ERROR
1812 }
1813 | IntType ESINT64VAL { // integral constants
1814 if (!ConstantInt::isValueValidForType($1, $2))
1815 GEN_ERROR("Constant value doesn't fit in type");
1816 $$ = ConstantInt::get($1, $2, true);
1817 CHECK_FOR_ERROR
1818 }
1819 | IntType ESAPINTVAL { // arbitrary precision integer constants
1820 uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
1821 if ($2->getBitWidth() > BitWidth) {
1822 GEN_ERROR("Constant value does not fit in type");
1823 }
1824 $2->sextOrTrunc(BitWidth);
1825 $$ = ConstantInt::get(*$2);
1826 delete $2;
1827 CHECK_FOR_ERROR
1828 }
1829 | IntType EUINT64VAL { // integral constants
1830 if (!ConstantInt::isValueValidForType($1, $2))
1831 GEN_ERROR("Constant value doesn't fit in type");
1832 $$ = ConstantInt::get($1, $2, false);
1833 CHECK_FOR_ERROR
1834 }
1835 | IntType EUAPINTVAL { // arbitrary precision integer constants
1836 uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
1837 if ($2->getBitWidth() > BitWidth) {
1838 GEN_ERROR("Constant value does not fit in type");
1839 }
1840 $2->zextOrTrunc(BitWidth);
1841 $$ = ConstantInt::get(*$2);
1842 delete $2;
1843 CHECK_FOR_ERROR
1844 }
1845 | INTTYPE TRUETOK { // Boolean constants
1846 assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
1847 $$ = ConstantInt::getTrue();
1848 CHECK_FOR_ERROR
1849 }
1850 | INTTYPE FALSETOK { // Boolean constants
1851 assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
1852 $$ = ConstantInt::getFalse();
1853 CHECK_FOR_ERROR
1854 }
1855 | FPType FPVAL { // Float & Double constants
1856 if (!ConstantFP::isValueValidForType($1, $2))
1857 GEN_ERROR("Floating point constant invalid for type");
1858 $$ = ConstantFP::get($1, $2);
1859 CHECK_FOR_ERROR
1860 };
1861
1862
1863ConstExpr: CastOps '(' ConstVal TO Types ')' {
1864 if (!UpRefs.empty())
1865 GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
1866 Constant *Val = $3;
1867 const Type *DestTy = $5->get();
1868 if (!CastInst::castIsValid($1, $3, DestTy))
1869 GEN_ERROR("invalid cast opcode for cast from '" +
1870 Val->getType()->getDescription() + "' to '" +
1871 DestTy->getDescription() + "'");
1872 $$ = ConstantExpr::getCast($1, $3, DestTy);
1873 delete $5;
1874 }
1875 | GETELEMENTPTR '(' ConstVal IndexList ')' {
1876 if (!isa<PointerType>($3->getType()))
1877 GEN_ERROR("GetElementPtr requires a pointer operand");
1878
1879 const Type *IdxTy =
1880 GetElementPtrInst::getIndexedType($3->getType(), &(*$4)[0], $4->size(),
1881 true);
1882 if (!IdxTy)
1883 GEN_ERROR("Index list invalid for constant getelementptr");
1884
1885 SmallVector<Constant*, 8> IdxVec;
1886 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1887 if (Constant *C = dyn_cast<Constant>((*$4)[i]))
1888 IdxVec.push_back(C);
1889 else
1890 GEN_ERROR("Indices to constant getelementptr must be constants");
1891
1892 delete $4;
1893
1894 $$ = ConstantExpr::getGetElementPtr($3, &IdxVec[0], IdxVec.size());
1895 CHECK_FOR_ERROR
1896 }
1897 | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1898 if ($3->getType() != Type::Int1Ty)
1899 GEN_ERROR("Select condition must be of boolean type");
1900 if ($5->getType() != $7->getType())
1901 GEN_ERROR("Select operand types must match");
1902 $$ = ConstantExpr::getSelect($3, $5, $7);
1903 CHECK_FOR_ERROR
1904 }
1905 | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
1906 if ($3->getType() != $5->getType())
1907 GEN_ERROR("Binary operator types must match");
1908 CHECK_FOR_ERROR;
1909 $$ = ConstantExpr::get($1, $3, $5);
1910 }
1911 | LogicalOps '(' ConstVal ',' ConstVal ')' {
1912 if ($3->getType() != $5->getType())
1913 GEN_ERROR("Logical operator types must match");
1914 if (!$3->getType()->isInteger()) {
1915 if (Instruction::isShift($1) || !isa<VectorType>($3->getType()) ||
1916 !cast<VectorType>($3->getType())->getElementType()->isInteger())
1917 GEN_ERROR("Logical operator requires integral operands");
1918 }
1919 $$ = ConstantExpr::get($1, $3, $5);
1920 CHECK_FOR_ERROR
1921 }
1922 | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
1923 if ($4->getType() != $6->getType())
1924 GEN_ERROR("icmp operand types must match");
1925 $$ = ConstantExpr::getICmp($2, $4, $6);
1926 }
1927 | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
1928 if ($4->getType() != $6->getType())
1929 GEN_ERROR("fcmp operand types must match");
1930 $$ = ConstantExpr::getFCmp($2, $4, $6);
1931 }
1932 | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
1933 if (!ExtractElementInst::isValidOperands($3, $5))
1934 GEN_ERROR("Invalid extractelement operands");
1935 $$ = ConstantExpr::getExtractElement($3, $5);
1936 CHECK_FOR_ERROR
1937 }
1938 | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1939 if (!InsertElementInst::isValidOperands($3, $5, $7))
1940 GEN_ERROR("Invalid insertelement operands");
1941 $$ = ConstantExpr::getInsertElement($3, $5, $7);
1942 CHECK_FOR_ERROR
1943 }
1944 | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1945 if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
1946 GEN_ERROR("Invalid shufflevector operands");
1947 $$ = ConstantExpr::getShuffleVector($3, $5, $7);
1948 CHECK_FOR_ERROR
1949 };
1950
1951
1952// ConstVector - A list of comma separated constants.
1953ConstVector : ConstVector ',' ConstVal {
1954 ($$ = $1)->push_back($3);
1955 CHECK_FOR_ERROR
1956 }
1957 | ConstVal {
1958 $$ = new std::vector<Constant*>();
1959 $$->push_back($1);
1960 CHECK_FOR_ERROR
1961 };
1962
1963
1964// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
1965GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
1966
1967// ThreadLocal
1968ThreadLocal : THREAD_LOCAL { $$ = true; } | { $$ = false; };
1969
1970// AliaseeRef - Match either GlobalValue or bitcast to GlobalValue.
1971AliaseeRef : ResultTypes SymbolicValueRef {
1972 const Type* VTy = $1->get();
1973 Value *V = getVal(VTy, $2);
1974 GlobalValue* Aliasee = dyn_cast<GlobalValue>(V);
1975 if (!Aliasee)
1976 GEN_ERROR("Aliases can be created only to global values");
1977
1978 $$ = Aliasee;
1979 CHECK_FOR_ERROR
1980 delete $1;
1981 }
1982 | BITCAST '(' AliaseeRef TO Types ')' {
1983 Constant *Val = $3;
1984 const Type *DestTy = $5->get();
1985 if (!CastInst::castIsValid($1, $3, DestTy))
1986 GEN_ERROR("invalid cast opcode for cast from '" +
1987 Val->getType()->getDescription() + "' to '" +
1988 DestTy->getDescription() + "'");
1989
1990 $$ = ConstantExpr::getCast($1, $3, DestTy);
1991 CHECK_FOR_ERROR
1992 delete $5;
1993 };
1994
1995//===----------------------------------------------------------------------===//
1996// Rules to match Modules
1997//===----------------------------------------------------------------------===//
1998
1999// Module rule: Capture the result of parsing the whole file into a result
2000// variable...
2001//
2002Module
2003 : DefinitionList {
2004 $$ = ParserResult = CurModule.CurrentModule;
2005 CurModule.ModuleDone();
2006 CHECK_FOR_ERROR;
2007 }
2008 | /*empty*/ {
2009 $$ = ParserResult = CurModule.CurrentModule;
2010 CurModule.ModuleDone();
2011 CHECK_FOR_ERROR;
2012 }
2013 ;
2014
2015DefinitionList
2016 : Definition
2017 | DefinitionList Definition
2018 ;
2019
2020Definition
2021 : DEFINE { CurFun.isDeclare = false; } Function {
2022 CurFun.FunctionDone();
2023 CHECK_FOR_ERROR
2024 }
2025 | DECLARE { CurFun.isDeclare = true; } FunctionProto {
2026 CHECK_FOR_ERROR
2027 }
2028 | MODULE ASM_TOK AsmBlock {
2029 CHECK_FOR_ERROR
2030 }
2031 | OptLocalAssign TYPE Types {
2032 if (!UpRefs.empty())
2033 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2034 // Eagerly resolve types. This is not an optimization, this is a
2035 // requirement that is due to the fact that we could have this:
2036 //
2037 // %list = type { %list * }
2038 // %list = type { %list * } ; repeated type decl
2039 //
2040 // If types are not resolved eagerly, then the two types will not be
2041 // determined to be the same type!
2042 //
2043 ResolveTypeTo($1, *$3);
2044
2045 if (!setTypeName(*$3, $1) && !$1) {
2046 CHECK_FOR_ERROR
2047 // If this is a named type that is not a redefinition, add it to the slot
2048 // table.
2049 CurModule.Types.push_back(*$3);
2050 }
2051
2052 delete $3;
2053 CHECK_FOR_ERROR
2054 }
2055 | OptLocalAssign TYPE VOID {
2056 ResolveTypeTo($1, $3);
2057
2058 if (!setTypeName($3, $1) && !$1) {
2059 CHECK_FOR_ERROR
2060 // If this is a named type that is not a redefinition, add it to the slot
2061 // table.
2062 CurModule.Types.push_back($3);
2063 }
2064 CHECK_FOR_ERROR
2065 }
2066 | OptGlobalAssign GVVisibilityStyle ThreadLocal GlobalType ConstVal {
2067 /* "Externally Visible" Linkage */
2068 if ($5 == 0)
2069 GEN_ERROR("Global value initializer is not a constant");
2070 CurGV = ParseGlobalVariable($1, GlobalValue::ExternalLinkage,
2071 $2, $4, $5->getType(), $5, $3);
2072 CHECK_FOR_ERROR
2073 } GlobalVarAttributes {
2074 CurGV = 0;
2075 }
2076 | OptGlobalAssign GVInternalLinkage GVVisibilityStyle ThreadLocal GlobalType
2077 ConstVal {
2078 if ($6 == 0)
2079 GEN_ERROR("Global value initializer is not a constant");
2080 CurGV = ParseGlobalVariable($1, $2, $3, $5, $6->getType(), $6, $4);
2081 CHECK_FOR_ERROR
2082 } GlobalVarAttributes {
2083 CurGV = 0;
2084 }
2085 | OptGlobalAssign GVExternalLinkage GVVisibilityStyle ThreadLocal GlobalType
2086 Types {
2087 if (!UpRefs.empty())
2088 GEN_ERROR("Invalid upreference in type: " + (*$6)->getDescription());
2089 CurGV = ParseGlobalVariable($1, $2, $3, $5, *$6, 0, $4);
2090 CHECK_FOR_ERROR
2091 delete $6;
2092 } GlobalVarAttributes {
2093 CurGV = 0;
2094 CHECK_FOR_ERROR
2095 }
2096 | OptGlobalAssign GVVisibilityStyle ALIAS AliasLinkage AliaseeRef {
2097 std::string Name;
2098 if ($1) {
2099 Name = *$1;
2100 delete $1;
2101 }
2102 if (Name.empty())
2103 GEN_ERROR("Alias name cannot be empty");
2104
2105 Constant* Aliasee = $5;
2106 if (Aliasee == 0)
2107 GEN_ERROR(std::string("Invalid aliasee for alias: ") + Name);
2108
2109 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), $4, Name, Aliasee,
2110 CurModule.CurrentModule);
2111 GA->setVisibility($2);
2112 InsertValue(GA, CurModule.Values);
2113 CHECK_FOR_ERROR
2114 }
2115 | TARGET TargetDefinition {
2116 CHECK_FOR_ERROR
2117 }
2118 | DEPLIBS '=' LibrariesDefinition {
2119 CHECK_FOR_ERROR
2120 }
2121 ;
2122
2123
2124AsmBlock : STRINGCONSTANT {
2125 const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
2126 if (AsmSoFar.empty())
2127 CurModule.CurrentModule->setModuleInlineAsm(*$1);
2128 else
2129 CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+*$1);
2130 delete $1;
2131 CHECK_FOR_ERROR
2132};
2133
2134TargetDefinition : TRIPLE '=' STRINGCONSTANT {
2135 CurModule.CurrentModule->setTargetTriple(*$3);
2136 delete $3;
2137 }
2138 | DATALAYOUT '=' STRINGCONSTANT {
2139 CurModule.CurrentModule->setDataLayout(*$3);
2140 delete $3;
2141 };
2142
2143LibrariesDefinition : '[' LibList ']';
2144
2145LibList : LibList ',' STRINGCONSTANT {
2146 CurModule.CurrentModule->addLibrary(*$3);
2147 delete $3;
2148 CHECK_FOR_ERROR
2149 }
2150 | STRINGCONSTANT {
2151 CurModule.CurrentModule->addLibrary(*$1);
2152 delete $1;
2153 CHECK_FOR_ERROR
2154 }
2155 | /* empty: end of list */ {
2156 CHECK_FOR_ERROR
2157 }
2158 ;
2159
2160//===----------------------------------------------------------------------===//
2161// Rules to match Function Headers
2162//===----------------------------------------------------------------------===//
2163
2164ArgListH : ArgListH ',' Types OptParamAttrs OptLocalName {
2165 if (!UpRefs.empty())
2166 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2167 if (*$3 == Type::VoidTy)
2168 GEN_ERROR("void typed arguments are invalid");
2169 ArgListEntry E; E.Attrs = $4; E.Ty = $3; E.Name = $5;
2170 $$ = $1;
2171 $1->push_back(E);
2172 CHECK_FOR_ERROR
2173 }
2174 | Types OptParamAttrs OptLocalName {
2175 if (!UpRefs.empty())
2176 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2177 if (*$1 == Type::VoidTy)
2178 GEN_ERROR("void typed arguments are invalid");
2179 ArgListEntry E; E.Attrs = $2; E.Ty = $1; E.Name = $3;
2180 $$ = new ArgListType;
2181 $$->push_back(E);
2182 CHECK_FOR_ERROR
2183 };
2184
2185ArgList : ArgListH {
2186 $$ = $1;
2187 CHECK_FOR_ERROR
2188 }
2189 | ArgListH ',' DOTDOTDOT {
2190 $$ = $1;
2191 struct ArgListEntry E;
2192 E.Ty = new PATypeHolder(Type::VoidTy);
2193 E.Name = 0;
2194 E.Attrs = ParamAttr::None;
2195 $$->push_back(E);
2196 CHECK_FOR_ERROR
2197 }
2198 | DOTDOTDOT {
2199 $$ = new ArgListType;
2200 struct ArgListEntry E;
2201 E.Ty = new PATypeHolder(Type::VoidTy);
2202 E.Name = 0;
2203 E.Attrs = ParamAttr::None;
2204 $$->push_back(E);
2205 CHECK_FOR_ERROR
2206 }
2207 | /* empty */ {
2208 $$ = 0;
2209 CHECK_FOR_ERROR
2210 };
2211
2212FunctionHeaderH : OptCallingConv ResultTypes GlobalName '(' ArgList ')'
2213 OptFuncAttrs OptSection OptAlign {
2214 std::string FunctionName(*$3);
2215 delete $3; // Free strdup'd memory!
2216
2217 // Check the function result for abstractness if this is a define. We should
2218 // have no abstract types at this point
2219 if (!CurFun.isDeclare && CurModule.TypeIsUnresolved($2))
2220 GEN_ERROR("Reference to abstract result: "+ $2->get()->getDescription());
2221
2222 std::vector<const Type*> ParamTypeList;
2223 ParamAttrsVector Attrs;
2224 if ($7 != ParamAttr::None) {
2225 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $7;
2226 Attrs.push_back(PAWI);
2227 }
2228 if ($5) { // If there are arguments...
2229 unsigned index = 1;
2230 for (ArgListType::iterator I = $5->begin(); I != $5->end(); ++I, ++index) {
2231 const Type* Ty = I->Ty->get();
2232 if (!CurFun.isDeclare && CurModule.TypeIsUnresolved(I->Ty))
2233 GEN_ERROR("Reference to abstract argument: " + Ty->getDescription());
2234 ParamTypeList.push_back(Ty);
2235 if (Ty != Type::VoidTy)
2236 if (I->Attrs != ParamAttr::None) {
2237 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2238 Attrs.push_back(PAWI);
2239 }
2240 }
2241 }
2242
2243 bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
2244 if (isVarArg) ParamTypeList.pop_back();
2245
2246 ParamAttrsList *PAL = 0;
2247 if (!Attrs.empty())
2248 PAL = ParamAttrsList::get(Attrs);
2249
2250 FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg, PAL);
2251 const PointerType *PFT = PointerType::get(FT);
2252 delete $2;
2253
2254 ValID ID;
2255 if (!FunctionName.empty()) {
2256 ID = ValID::createGlobalName((char*)FunctionName.c_str());
2257 } else {
2258 ID = ValID::createGlobalID(CurModule.Values.size());
2259 }
2260
2261 Function *Fn = 0;
2262 // See if this function was forward referenced. If so, recycle the object.
2263 if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
2264 // Move the function to the end of the list, from whereever it was
2265 // previously inserted.
2266 Fn = cast<Function>(FWRef);
2267 CurModule.CurrentModule->getFunctionList().remove(Fn);
2268 CurModule.CurrentModule->getFunctionList().push_back(Fn);
2269 } else if (!FunctionName.empty() && // Merge with an earlier prototype?
2270 (Fn = CurModule.CurrentModule->getFunction(FunctionName))) {
2271 if (Fn->getFunctionType() != FT) {
2272 // The existing function doesn't have the same type. This is an overload
2273 // error.
2274 GEN_ERROR("Overload of function '" + FunctionName + "' not permitted.");
2275 } else if (!CurFun.isDeclare && !Fn->isDeclaration()) {
2276 // Neither the existing or the current function is a declaration and they
2277 // have the same name and same type. Clearly this is a redefinition.
2278 GEN_ERROR("Redefinition of function '" + FunctionName + "'");
2279 } if (Fn->isDeclaration()) {
2280 // Make sure to strip off any argument names so we can't get conflicts.
2281 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2282 AI != AE; ++AI)
2283 AI->setName("");
2284 }
2285 } else { // Not already defined?
2286 Fn = new Function(FT, GlobalValue::ExternalWeakLinkage, FunctionName,
2287 CurModule.CurrentModule);
2288
2289 InsertValue(Fn, CurModule.Values);
2290 }
2291
2292 CurFun.FunctionStart(Fn);
2293
2294 if (CurFun.isDeclare) {
2295 // If we have declaration, always overwrite linkage. This will allow us to
2296 // correctly handle cases, when pointer to function is passed as argument to
2297 // another function.
2298 Fn->setLinkage(CurFun.Linkage);
2299 Fn->setVisibility(CurFun.Visibility);
2300 }
2301 Fn->setCallingConv($1);
2302 Fn->setAlignment($9);
2303 if ($8) {
2304 Fn->setSection(*$8);
2305 delete $8;
2306 }
2307
2308 // Add all of the arguments we parsed to the function...
2309 if ($5) { // Is null if empty...
2310 if (isVarArg) { // Nuke the last entry
2311 assert($5->back().Ty->get() == Type::VoidTy && $5->back().Name == 0 &&
2312 "Not a varargs marker!");
2313 delete $5->back().Ty;
2314 $5->pop_back(); // Delete the last entry
2315 }
2316 Function::arg_iterator ArgIt = Fn->arg_begin();
2317 Function::arg_iterator ArgEnd = Fn->arg_end();
2318 unsigned Idx = 1;
2319 for (ArgListType::iterator I = $5->begin();
2320 I != $5->end() && ArgIt != ArgEnd; ++I, ++ArgIt) {
2321 delete I->Ty; // Delete the typeholder...
2322 setValueName(ArgIt, I->Name); // Insert arg into symtab...
2323 CHECK_FOR_ERROR
2324 InsertValue(ArgIt);
2325 Idx++;
2326 }
2327
2328 delete $5; // We're now done with the argument list
2329 }
2330 CHECK_FOR_ERROR
2331};
2332
2333BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
2334
2335FunctionHeader : FunctionDefineLinkage GVVisibilityStyle FunctionHeaderH BEGIN {
2336 $$ = CurFun.CurrentFunction;
2337
2338 // Make sure that we keep track of the linkage type even if there was a
2339 // previous "declare".
2340 $$->setLinkage($1);
2341 $$->setVisibility($2);
2342};
2343
2344END : ENDTOK | '}'; // Allow end of '}' to end a function
2345
2346Function : BasicBlockList END {
2347 $$ = $1;
2348 CHECK_FOR_ERROR
2349};
2350
2351FunctionProto : FunctionDeclareLinkage GVVisibilityStyle FunctionHeaderH {
2352 CurFun.CurrentFunction->setLinkage($1);
2353 CurFun.CurrentFunction->setVisibility($2);
2354 $$ = CurFun.CurrentFunction;
2355 CurFun.FunctionDone();
2356 CHECK_FOR_ERROR
2357 };
2358
2359//===----------------------------------------------------------------------===//
2360// Rules to match Basic Blocks
2361//===----------------------------------------------------------------------===//
2362
2363OptSideEffect : /* empty */ {
2364 $$ = false;
2365 CHECK_FOR_ERROR
2366 }
2367 | SIDEEFFECT {
2368 $$ = true;
2369 CHECK_FOR_ERROR
2370 };
2371
2372ConstValueRef : ESINT64VAL { // A reference to a direct constant
2373 $$ = ValID::create($1);
2374 CHECK_FOR_ERROR
2375 }
2376 | EUINT64VAL {
2377 $$ = ValID::create($1);
2378 CHECK_FOR_ERROR
2379 }
2380 | FPVAL { // Perhaps it's an FP constant?
2381 $$ = ValID::create($1);
2382 CHECK_FOR_ERROR
2383 }
2384 | TRUETOK {
2385 $$ = ValID::create(ConstantInt::getTrue());
2386 CHECK_FOR_ERROR
2387 }
2388 | FALSETOK {
2389 $$ = ValID::create(ConstantInt::getFalse());
2390 CHECK_FOR_ERROR
2391 }
2392 | NULL_TOK {
2393 $$ = ValID::createNull();
2394 CHECK_FOR_ERROR
2395 }
2396 | UNDEF {
2397 $$ = ValID::createUndef();
2398 CHECK_FOR_ERROR
2399 }
2400 | ZEROINITIALIZER { // A vector zero constant.
2401 $$ = ValID::createZeroInit();
2402 CHECK_FOR_ERROR
2403 }
2404 | '<' ConstVector '>' { // Nonempty unsized packed vector
2405 const Type *ETy = (*$2)[0]->getType();
2406 int NumElements = $2->size();
2407
2408 VectorType* pt = VectorType::get(ETy, NumElements);
2409 PATypeHolder* PTy = new PATypeHolder(
2410 HandleUpRefs(
2411 VectorType::get(
2412 ETy,
2413 NumElements)
2414 )
2415 );
2416
2417 // Verify all elements are correct type!
2418 for (unsigned i = 0; i < $2->size(); i++) {
2419 if (ETy != (*$2)[i]->getType())
2420 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
2421 ETy->getDescription() +"' as required!\nIt is of type '" +
2422 (*$2)[i]->getType()->getDescription() + "'.");
2423 }
2424
2425 $$ = ValID::create(ConstantVector::get(pt, *$2));
2426 delete PTy; delete $2;
2427 CHECK_FOR_ERROR
2428 }
2429 | ConstExpr {
2430 $$ = ValID::create($1);
2431 CHECK_FOR_ERROR
2432 }
2433 | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
2434 $$ = ValID::createInlineAsm(*$3, *$5, $2);
2435 delete $3;
2436 delete $5;
2437 CHECK_FOR_ERROR
2438 };
2439
2440// SymbolicValueRef - Reference to one of two ways of symbolically refering to
2441// another value.
2442//
2443SymbolicValueRef : LOCALVAL_ID { // Is it an integer reference...?
2444 $$ = ValID::createLocalID($1);
2445 CHECK_FOR_ERROR
2446 }
2447 | GLOBALVAL_ID {
2448 $$ = ValID::createGlobalID($1);
2449 CHECK_FOR_ERROR
2450 }
2451 | LocalName { // Is it a named reference...?
2452 $$ = ValID::createLocalName(*$1);
2453 delete $1;
2454 CHECK_FOR_ERROR
2455 }
2456 | GlobalName { // Is it a named reference...?
2457 $$ = ValID::createGlobalName(*$1);
2458 delete $1;
2459 CHECK_FOR_ERROR
2460 };
2461
2462// ValueRef - A reference to a definition... either constant or symbolic
2463ValueRef : SymbolicValueRef | ConstValueRef;
2464
2465
2466// ResolvedVal - a <type> <value> pair. This is used only in cases where the
2467// type immediately preceeds the value reference, and allows complex constant
2468// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
2469ResolvedVal : Types ValueRef {
2470 if (!UpRefs.empty())
2471 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2472 $$ = getVal(*$1, $2);
2473 delete $1;
2474 CHECK_FOR_ERROR
2475 }
2476 ;
2477
2478BasicBlockList : BasicBlockList BasicBlock {
2479 $$ = $1;
2480 CHECK_FOR_ERROR
2481 }
2482 | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
2483 $$ = $1;
2484 CHECK_FOR_ERROR
2485 };
2486
2487
2488// Basic blocks are terminated by branching instructions:
2489// br, br/cc, switch, ret
2490//
2491BasicBlock : InstructionList OptLocalAssign BBTerminatorInst {
2492 setValueName($3, $2);
2493 CHECK_FOR_ERROR
2494 InsertValue($3);
2495 $1->getInstList().push_back($3);
2496 $$ = $1;
2497 CHECK_FOR_ERROR
2498 };
2499
2500InstructionList : InstructionList Inst {
2501 if (CastInst *CI1 = dyn_cast<CastInst>($2))
2502 if (CastInst *CI2 = dyn_cast<CastInst>(CI1->getOperand(0)))
2503 if (CI2->getParent() == 0)
2504 $1->getInstList().push_back(CI2);
2505 $1->getInstList().push_back($2);
2506 $$ = $1;
2507 CHECK_FOR_ERROR
2508 }
2509 | /* empty */ { // Empty space between instruction lists
2510 $$ = defineBBVal(ValID::createLocalID(CurFun.NextValNum));
2511 CHECK_FOR_ERROR
2512 }
2513 | LABELSTR { // Labelled (named) basic block
2514 $$ = defineBBVal(ValID::createLocalName(*$1));
2515 delete $1;
2516 CHECK_FOR_ERROR
2517
2518 };
2519
2520BBTerminatorInst : RET ResolvedVal { // Return with a result...
2521 $$ = new ReturnInst($2);
2522 CHECK_FOR_ERROR
2523 }
2524 | RET VOID { // Return with no result...
2525 $$ = new ReturnInst();
2526 CHECK_FOR_ERROR
2527 }
2528 | BR LABEL ValueRef { // Unconditional Branch...
2529 BasicBlock* tmpBB = getBBVal($3);
2530 CHECK_FOR_ERROR
2531 $$ = new BranchInst(tmpBB);
2532 } // Conditional Branch...
2533 | BR INTTYPE ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
2534 assert(cast<IntegerType>($2)->getBitWidth() == 1 && "Not Bool?");
2535 BasicBlock* tmpBBA = getBBVal($6);
2536 CHECK_FOR_ERROR
2537 BasicBlock* tmpBBB = getBBVal($9);
2538 CHECK_FOR_ERROR
2539 Value* tmpVal = getVal(Type::Int1Ty, $3);
2540 CHECK_FOR_ERROR
2541 $$ = new BranchInst(tmpBBA, tmpBBB, tmpVal);
2542 }
2543 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
2544 Value* tmpVal = getVal($2, $3);
2545 CHECK_FOR_ERROR
2546 BasicBlock* tmpBB = getBBVal($6);
2547 CHECK_FOR_ERROR
2548 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
2549 $$ = S;
2550
2551 std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
2552 E = $8->end();
2553 for (; I != E; ++I) {
2554 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
2555 S->addCase(CI, I->second);
2556 else
2557 GEN_ERROR("Switch case is constant, but not a simple integer");
2558 }
2559 delete $8;
2560 CHECK_FOR_ERROR
2561 }
2562 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
2563 Value* tmpVal = getVal($2, $3);
2564 CHECK_FOR_ERROR
2565 BasicBlock* tmpBB = getBBVal($6);
2566 CHECK_FOR_ERROR
2567 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
2568 $$ = S;
2569 CHECK_FOR_ERROR
2570 }
2571 | INVOKE OptCallingConv ResultTypes ValueRef '(' ValueRefList ')' OptFuncAttrs
2572 TO LABEL ValueRef UNWIND LABEL ValueRef {
2573
2574 // Handle the short syntax
2575 const PointerType *PFTy = 0;
2576 const FunctionType *Ty = 0;
2577 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2578 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2579 // Pull out the types of all of the arguments...
2580 std::vector<const Type*> ParamTypes;
2581 ParamAttrsVector Attrs;
2582 if ($8 != ParamAttr::None) {
2583 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
2584 Attrs.push_back(PAWI);
2585 }
2586 ValueRefList::iterator I = $6->begin(), E = $6->end();
2587 unsigned index = 1;
2588 for (; I != E; ++I, ++index) {
2589 const Type *Ty = I->Val->getType();
2590 if (Ty == Type::VoidTy)
2591 GEN_ERROR("Short call syntax cannot be used with varargs");
2592 ParamTypes.push_back(Ty);
2593 if (I->Attrs != ParamAttr::None) {
2594 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2595 Attrs.push_back(PAWI);
2596 }
2597 }
2598
2599 ParamAttrsList *PAL = 0;
2600 if (!Attrs.empty())
2601 PAL = ParamAttrsList::get(Attrs);
2602 Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
2603 PFTy = PointerType::get(Ty);
2604 }
2605
2606 delete $3;
2607
2608 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2609 CHECK_FOR_ERROR
2610 BasicBlock *Normal = getBBVal($11);
2611 CHECK_FOR_ERROR
2612 BasicBlock *Except = getBBVal($14);
2613 CHECK_FOR_ERROR
2614
2615 // Check the arguments
2616 ValueList Args;
2617 if ($6->empty()) { // Has no arguments?
2618 // Make sure no arguments is a good thing!
2619 if (Ty->getNumParams() != 0)
2620 GEN_ERROR("No arguments passed to a function that "
2621 "expects arguments");
2622 } else { // Has arguments?
2623 // Loop through FunctionType's arguments and ensure they are specified
2624 // correctly!
2625 FunctionType::param_iterator I = Ty->param_begin();
2626 FunctionType::param_iterator E = Ty->param_end();
2627 ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
2628
2629 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
2630 if (ArgI->Val->getType() != *I)
2631 GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
2632 (*I)->getDescription() + "'");
2633 Args.push_back(ArgI->Val);
2634 }
2635
2636 if (Ty->isVarArg()) {
2637 if (I == E)
2638 for (; ArgI != ArgE; ++ArgI)
2639 Args.push_back(ArgI->Val); // push the remaining varargs
2640 } else if (I != E || ArgI != ArgE)
2641 GEN_ERROR("Invalid number of parameters detected");
2642 }
2643
2644 // Create the InvokeInst
2645 InvokeInst *II = new InvokeInst(V, Normal, Except, &Args[0], Args.size());
2646 II->setCallingConv($2);
2647 $$ = II;
2648 delete $6;
2649 CHECK_FOR_ERROR
2650 }
2651 | UNWIND {
2652 $$ = new UnwindInst();
2653 CHECK_FOR_ERROR
2654 }
2655 | UNREACHABLE {
2656 $$ = new UnreachableInst();
2657 CHECK_FOR_ERROR
2658 };
2659
2660
2661
2662JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
2663 $$ = $1;
2664 Constant *V = cast<Constant>(getExistingVal($2, $3));
2665 CHECK_FOR_ERROR
2666 if (V == 0)
2667 GEN_ERROR("May only switch on a constant pool value");
2668
2669 BasicBlock* tmpBB = getBBVal($6);
2670 CHECK_FOR_ERROR
2671 $$->push_back(std::make_pair(V, tmpBB));
2672 }
2673 | IntType ConstValueRef ',' LABEL ValueRef {
2674 $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
2675 Constant *V = cast<Constant>(getExistingVal($1, $2));
2676 CHECK_FOR_ERROR
2677
2678 if (V == 0)
2679 GEN_ERROR("May only switch on a constant pool value");
2680
2681 BasicBlock* tmpBB = getBBVal($5);
2682 CHECK_FOR_ERROR
2683 $$->push_back(std::make_pair(V, tmpBB));
2684 };
2685
2686Inst : OptLocalAssign InstVal {
2687 // Is this definition named?? if so, assign the name...
2688 setValueName($2, $1);
2689 CHECK_FOR_ERROR
2690 InsertValue($2);
2691 $$ = $2;
2692 CHECK_FOR_ERROR
2693 };
2694
2695
2696PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
2697 if (!UpRefs.empty())
2698 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2699 $$ = new std::list<std::pair<Value*, BasicBlock*> >();
2700 Value* tmpVal = getVal(*$1, $3);
2701 CHECK_FOR_ERROR
2702 BasicBlock* tmpBB = getBBVal($5);
2703 CHECK_FOR_ERROR
2704 $$->push_back(std::make_pair(tmpVal, tmpBB));
2705 delete $1;
2706 }
2707 | PHIList ',' '[' ValueRef ',' ValueRef ']' {
2708 $$ = $1;
2709 Value* tmpVal = getVal($1->front().first->getType(), $4);
2710 CHECK_FOR_ERROR
2711 BasicBlock* tmpBB = getBBVal($6);
2712 CHECK_FOR_ERROR
2713 $1->push_back(std::make_pair(tmpVal, tmpBB));
2714 };
2715
2716
2717ValueRefList : Types ValueRef OptParamAttrs {
2718 if (!UpRefs.empty())
2719 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2720 // Used for call and invoke instructions
2721 $$ = new ValueRefList();
2722 ValueRefListEntry E; E.Attrs = $3; E.Val = getVal($1->get(), $2);
2723 $$->push_back(E);
2724 delete $1;
2725 }
2726 | ValueRefList ',' Types ValueRef OptParamAttrs {
2727 if (!UpRefs.empty())
2728 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2729 $$ = $1;
2730 ValueRefListEntry E; E.Attrs = $5; E.Val = getVal($3->get(), $4);
2731 $$->push_back(E);
2732 delete $3;
2733 CHECK_FOR_ERROR
2734 }
2735 | /*empty*/ { $$ = new ValueRefList(); };
2736
2737IndexList // Used for gep instructions and constant expressions
2738 : /*empty*/ { $$ = new std::vector<Value*>(); }
2739 | IndexList ',' ResolvedVal {
2740 $$ = $1;
2741 $$->push_back($3);
2742 CHECK_FOR_ERROR
2743 }
2744 ;
2745
2746OptTailCall : TAIL CALL {
2747 $$ = true;
2748 CHECK_FOR_ERROR
2749 }
2750 | CALL {
2751 $$ = false;
2752 CHECK_FOR_ERROR
2753 };
2754
2755InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
2756 if (!UpRefs.empty())
2757 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2758 if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() &&
2759 !isa<VectorType>((*$2).get()))
2760 GEN_ERROR(
2761 "Arithmetic operator requires integer, FP, or packed operands");
2762 if (isa<VectorType>((*$2).get()) &&
2763 ($1 == Instruction::URem ||
2764 $1 == Instruction::SRem ||
2765 $1 == Instruction::FRem))
2766 GEN_ERROR("Remainder not supported on vector types");
2767 Value* val1 = getVal(*$2, $3);
2768 CHECK_FOR_ERROR
2769 Value* val2 = getVal(*$2, $5);
2770 CHECK_FOR_ERROR
2771 $$ = BinaryOperator::create($1, val1, val2);
2772 if ($$ == 0)
2773 GEN_ERROR("binary operator returned null");
2774 delete $2;
2775 }
2776 | LogicalOps Types ValueRef ',' ValueRef {
2777 if (!UpRefs.empty())
2778 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2779 if (!(*$2)->isInteger()) {
2780 if (Instruction::isShift($1) || !isa<VectorType>($2->get()) ||
2781 !cast<VectorType>($2->get())->getElementType()->isInteger())
2782 GEN_ERROR("Logical operator requires integral operands");
2783 }
2784 Value* tmpVal1 = getVal(*$2, $3);
2785 CHECK_FOR_ERROR
2786 Value* tmpVal2 = getVal(*$2, $5);
2787 CHECK_FOR_ERROR
2788 $$ = BinaryOperator::create($1, tmpVal1, tmpVal2);
2789 if ($$ == 0)
2790 GEN_ERROR("binary operator returned null");
2791 delete $2;
2792 }
2793 | ICMP IPredicates Types ValueRef ',' ValueRef {
2794 if (!UpRefs.empty())
2795 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2796 if (isa<VectorType>((*$3).get()))
2797 GEN_ERROR("Vector types not supported by icmp instruction");
2798 Value* tmpVal1 = getVal(*$3, $4);
2799 CHECK_FOR_ERROR
2800 Value* tmpVal2 = getVal(*$3, $6);
2801 CHECK_FOR_ERROR
2802 $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
2803 if ($$ == 0)
2804 GEN_ERROR("icmp operator returned null");
2805 delete $3;
2806 }
2807 | FCMP FPredicates Types ValueRef ',' ValueRef {
2808 if (!UpRefs.empty())
2809 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2810 if (isa<VectorType>((*$3).get()))
2811 GEN_ERROR("Vector types not supported by fcmp instruction");
2812 Value* tmpVal1 = getVal(*$3, $4);
2813 CHECK_FOR_ERROR
2814 Value* tmpVal2 = getVal(*$3, $6);
2815 CHECK_FOR_ERROR
2816 $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
2817 if ($$ == 0)
2818 GEN_ERROR("fcmp operator returned null");
2819 delete $3;
2820 }
2821 | CastOps ResolvedVal TO Types {
2822 if (!UpRefs.empty())
2823 GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
2824 Value* Val = $2;
2825 const Type* DestTy = $4->get();
2826 if (!CastInst::castIsValid($1, Val, DestTy))
2827 GEN_ERROR("invalid cast opcode for cast from '" +
2828 Val->getType()->getDescription() + "' to '" +
2829 DestTy->getDescription() + "'");
2830 $$ = CastInst::create($1, Val, DestTy);
2831 delete $4;
2832 }
2833 | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2834 if ($2->getType() != Type::Int1Ty)
2835 GEN_ERROR("select condition must be boolean");
2836 if ($4->getType() != $6->getType())
2837 GEN_ERROR("select value types should match");
2838 $$ = new SelectInst($2, $4, $6);
2839 CHECK_FOR_ERROR
2840 }
2841 | VAARG ResolvedVal ',' Types {
2842 if (!UpRefs.empty())
2843 GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
2844 $$ = new VAArgInst($2, *$4);
2845 delete $4;
2846 CHECK_FOR_ERROR
2847 }
2848 | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
2849 if (!ExtractElementInst::isValidOperands($2, $4))
2850 GEN_ERROR("Invalid extractelement operands");
2851 $$ = new ExtractElementInst($2, $4);
2852 CHECK_FOR_ERROR
2853 }
2854 | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2855 if (!InsertElementInst::isValidOperands($2, $4, $6))
2856 GEN_ERROR("Invalid insertelement operands");
2857 $$ = new InsertElementInst($2, $4, $6);
2858 CHECK_FOR_ERROR
2859 }
2860 | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2861 if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
2862 GEN_ERROR("Invalid shufflevector operands");
2863 $$ = new ShuffleVectorInst($2, $4, $6);
2864 CHECK_FOR_ERROR
2865 }
2866 | PHI_TOK PHIList {
2867 const Type *Ty = $2->front().first->getType();
2868 if (!Ty->isFirstClassType())
2869 GEN_ERROR("PHI node operands must be of first class type");
2870 $$ = new PHINode(Ty);
2871 ((PHINode*)$$)->reserveOperandSpace($2->size());
2872 while ($2->begin() != $2->end()) {
2873 if ($2->front().first->getType() != Ty)
2874 GEN_ERROR("All elements of a PHI node must be of the same type");
2875 cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
2876 $2->pop_front();
2877 }
2878 delete $2; // Free the list...
2879 CHECK_FOR_ERROR
2880 }
2881 | OptTailCall OptCallingConv ResultTypes ValueRef '(' ValueRefList ')'
2882 OptFuncAttrs {
2883
2884 // Handle the short syntax
2885 const PointerType *PFTy = 0;
2886 const FunctionType *Ty = 0;
2887 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2888 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2889 // Pull out the types of all of the arguments...
2890 std::vector<const Type*> ParamTypes;
2891 ParamAttrsVector Attrs;
2892 if ($8 != ParamAttr::None) {
2893 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
2894 Attrs.push_back(PAWI);
2895 }
2896 unsigned index = 1;
2897 ValueRefList::iterator I = $6->begin(), E = $6->end();
2898 for (; I != E; ++I, ++index) {
2899 const Type *Ty = I->Val->getType();
2900 if (Ty == Type::VoidTy)
2901 GEN_ERROR("Short call syntax cannot be used with varargs");
2902 ParamTypes.push_back(Ty);
2903 if (I->Attrs != ParamAttr::None) {
2904 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2905 Attrs.push_back(PAWI);
2906 }
2907 }
2908
2909 ParamAttrsList *PAL = 0;
2910 if (!Attrs.empty())
2911 PAL = ParamAttrsList::get(Attrs);
2912
2913 Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
2914 PFTy = PointerType::get(Ty);
2915 }
2916
2917 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2918 CHECK_FOR_ERROR
2919
2920 // Check for call to invalid intrinsic to avoid crashing later.
2921 if (Function *theF = dyn_cast<Function>(V)) {
2922 if (theF->hasName() && (theF->getValueName()->getKeyLength() >= 5) &&
2923 (0 == strncmp(theF->getValueName()->getKeyData(), "llvm.", 5)) &&
2924 !theF->getIntrinsicID(true))
2925 GEN_ERROR("Call to invalid LLVM intrinsic function '" +
2926 theF->getName() + "'");
2927 }
2928
2929 // Check the arguments
2930 ValueList Args;
2931 if ($6->empty()) { // Has no arguments?
2932 // Make sure no arguments is a good thing!
2933 if (Ty->getNumParams() != 0)
2934 GEN_ERROR("No arguments passed to a function that "
2935 "expects arguments");
2936 } else { // Has arguments?
2937 // Loop through FunctionType's arguments and ensure they are specified
2938 // correctly!
2939 //
2940 FunctionType::param_iterator I = Ty->param_begin();
2941 FunctionType::param_iterator E = Ty->param_end();
2942 ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
2943
2944 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
2945 if (ArgI->Val->getType() != *I)
2946 GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
2947 (*I)->getDescription() + "'");
2948 Args.push_back(ArgI->Val);
2949 }
2950 if (Ty->isVarArg()) {
2951 if (I == E)
2952 for (; ArgI != ArgE; ++ArgI)
2953 Args.push_back(ArgI->Val); // push the remaining varargs
2954 } else if (I != E || ArgI != ArgE)
2955 GEN_ERROR("Invalid number of parameters detected");
2956 }
2957 // Create the call node
2958 CallInst *CI = new CallInst(V, &Args[0], Args.size());
2959 CI->setTailCall($1);
2960 CI->setCallingConv($2);
2961 $$ = CI;
2962 delete $6;
2963 delete $3;
2964 CHECK_FOR_ERROR
2965 }
2966 | MemoryInst {
2967 $$ = $1;
2968 CHECK_FOR_ERROR
2969 };
2970
2971OptVolatile : VOLATILE {
2972 $$ = true;
2973 CHECK_FOR_ERROR
2974 }
2975 | /* empty */ {
2976 $$ = false;
2977 CHECK_FOR_ERROR
2978 };
2979
2980
2981
2982MemoryInst : MALLOC Types OptCAlign {
2983 if (!UpRefs.empty())
2984 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2985 $$ = new MallocInst(*$2, 0, $3);
2986 delete $2;
2987 CHECK_FOR_ERROR
2988 }
2989 | MALLOC Types ',' INTTYPE ValueRef OptCAlign {
2990 if (!UpRefs.empty())
2991 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2992 Value* tmpVal = getVal($4, $5);
2993 CHECK_FOR_ERROR
2994 $$ = new MallocInst(*$2, tmpVal, $6);
2995 delete $2;
2996 }
2997 | ALLOCA Types OptCAlign {
2998 if (!UpRefs.empty())
2999 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3000 $$ = new AllocaInst(*$2, 0, $3);
3001 delete $2;
3002 CHECK_FOR_ERROR
3003 }
3004 | ALLOCA Types ',' INTTYPE ValueRef OptCAlign {
3005 if (!UpRefs.empty())
3006 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3007 Value* tmpVal = getVal($4, $5);
3008 CHECK_FOR_ERROR
3009 $$ = new AllocaInst(*$2, tmpVal, $6);
3010 delete $2;
3011 }
3012 | FREE ResolvedVal {
3013 if (!isa<PointerType>($2->getType()))
3014 GEN_ERROR("Trying to free nonpointer type " +
3015 $2->getType()->getDescription() + "");
3016 $$ = new FreeInst($2);
3017 CHECK_FOR_ERROR
3018 }
3019
3020 | OptVolatile LOAD Types ValueRef OptCAlign {
3021 if (!UpRefs.empty())
3022 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
3023 if (!isa<PointerType>($3->get()))
3024 GEN_ERROR("Can't load from nonpointer type: " +
3025 (*$3)->getDescription());
3026 if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
3027 GEN_ERROR("Can't load from pointer of non-first-class type: " +
3028 (*$3)->getDescription());
3029 Value* tmpVal = getVal(*$3, $4);
3030 CHECK_FOR_ERROR
3031 $$ = new LoadInst(tmpVal, "", $1, $5);
3032 delete $3;
3033 }
3034 | OptVolatile STORE ResolvedVal ',' Types ValueRef OptCAlign {
3035 if (!UpRefs.empty())
3036 GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
3037 const PointerType *PT = dyn_cast<PointerType>($5->get());
3038 if (!PT)
3039 GEN_ERROR("Can't store to a nonpointer type: " +
3040 (*$5)->getDescription());
3041 const Type *ElTy = PT->getElementType();
3042 if (ElTy != $3->getType())
3043 GEN_ERROR("Can't store '" + $3->getType()->getDescription() +
3044 "' into space of type '" + ElTy->getDescription() + "'");
3045
3046 Value* tmpVal = getVal(*$5, $6);
3047 CHECK_FOR_ERROR
3048 $$ = new StoreInst($3, tmpVal, $1, $7);
3049 delete $5;
3050 }
3051 | GETELEMENTPTR Types ValueRef IndexList {
3052 if (!UpRefs.empty())
3053 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3054 if (!isa<PointerType>($2->get()))
3055 GEN_ERROR("getelementptr insn requires pointer operand");
3056
3057 if (!GetElementPtrInst::getIndexedType(*$2, &(*$4)[0], $4->size(), true))
3058 GEN_ERROR("Invalid getelementptr indices for type '" +
3059 (*$2)->getDescription()+ "'");
3060 Value* tmpVal = getVal(*$2, $3);
3061 CHECK_FOR_ERROR
3062 $$ = new GetElementPtrInst(tmpVal, &(*$4)[0], $4->size());
3063 delete $2;
3064 delete $4;
3065 };
3066
3067
3068%%
3069
3070// common code from the two 'RunVMAsmParser' functions
3071static Module* RunParser(Module * M) {
3072
3073 llvmAsmlineno = 1; // Reset the current line number...
3074 CurModule.CurrentModule = M;
3075#if YYDEBUG
3076 yydebug = Debug;
3077#endif
3078
3079 // Check to make sure the parser succeeded
3080 if (yyparse()) {
3081 if (ParserResult)
3082 delete ParserResult;
3083 return 0;
3084 }
3085
3086 // Emit an error if there are any unresolved types left.
3087 if (!CurModule.LateResolveTypes.empty()) {
3088 const ValID &DID = CurModule.LateResolveTypes.begin()->first;
3089 if (DID.Type == ValID::LocalName) {
3090 GenerateError("Undefined type remains at eof: '"+DID.getName() + "'");
3091 } else {
3092 GenerateError("Undefined type remains at eof: #" + itostr(DID.Num));
3093 }
3094 if (ParserResult)
3095 delete ParserResult;
3096 return 0;
3097 }
3098
3099 // Emit an error if there are any unresolved values left.
3100 if (!CurModule.LateResolveValues.empty()) {
3101 Value *V = CurModule.LateResolveValues.back();
3102 std::map<Value*, std::pair<ValID, int> >::iterator I =
3103 CurModule.PlaceHolderInfo.find(V);
3104
3105 if (I != CurModule.PlaceHolderInfo.end()) {
3106 ValID &DID = I->second.first;
3107 if (DID.Type == ValID::LocalName) {
3108 GenerateError("Undefined value remains at eof: "+DID.getName() + "'");
3109 } else {
3110 GenerateError("Undefined value remains at eof: #" + itostr(DID.Num));
3111 }
3112 if (ParserResult)
3113 delete ParserResult;
3114 return 0;
3115 }
3116 }
3117
3118 // Check to make sure that parsing produced a result
3119 if (!ParserResult)
3120 return 0;
3121
3122 // Reset ParserResult variable while saving its value for the result.
3123 Module *Result = ParserResult;
3124 ParserResult = 0;
3125
3126 return Result;
3127}
3128
3129void llvm::GenerateError(const std::string &message, int LineNo) {
3130 if (LineNo == -1) LineNo = llvmAsmlineno;
3131 // TODO: column number in exception
3132 if (TheParseError)
3133 TheParseError->setError(CurFilename, message, LineNo);
3134 TriggerError = 1;
3135}
3136
3137int yyerror(const char *ErrorMsg) {
3138 std::string where
3139 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
3140 + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
3141 std::string errMsg = where + "error: " + std::string(ErrorMsg);
3142 if (yychar != YYEMPTY && yychar != 0)
3143 errMsg += " while reading token: '" + std::string(llvmAsmtext, llvmAsmleng)+
3144 "'";
3145 GenerateError(errMsg);
3146 return 0;
3147}