Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1 | //===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by Chris Lattner and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This tablegen backend emits a DAG instruction selector. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "DAGISelEmitter.h" |
| 15 | #include "Record.h" |
| 16 | #include "llvm/ADT/StringExtras.h" |
| 17 | #include "llvm/Support/Debug.h" |
| 18 | #include "llvm/Support/MathExtras.h" |
| 19 | #include "llvm/Support/Streams.h" |
| 20 | #include <algorithm> |
| 21 | #include <set> |
| 22 | using namespace llvm; |
| 23 | |
| 24 | //===----------------------------------------------------------------------===// |
| 25 | // Helpers for working with extended types. |
| 26 | |
| 27 | /// FilterVTs - Filter a list of VT's according to a predicate. |
| 28 | /// |
| 29 | template<typename T> |
| 30 | static std::vector<MVT::ValueType> |
| 31 | FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) { |
| 32 | std::vector<MVT::ValueType> Result; |
| 33 | for (unsigned i = 0, e = InVTs.size(); i != e; ++i) |
| 34 | if (Filter(InVTs[i])) |
| 35 | Result.push_back(InVTs[i]); |
| 36 | return Result; |
| 37 | } |
| 38 | |
| 39 | template<typename T> |
| 40 | static std::vector<unsigned char> |
| 41 | FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) { |
| 42 | std::vector<unsigned char> Result; |
| 43 | for (unsigned i = 0, e = InVTs.size(); i != e; ++i) |
| 44 | if (Filter((MVT::ValueType)InVTs[i])) |
| 45 | Result.push_back(InVTs[i]); |
| 46 | return Result; |
| 47 | } |
| 48 | |
| 49 | static std::vector<unsigned char> |
| 50 | ConvertVTs(const std::vector<MVT::ValueType> &InVTs) { |
| 51 | std::vector<unsigned char> Result; |
| 52 | for (unsigned i = 0, e = InVTs.size(); i != e; ++i) |
| 53 | Result.push_back(InVTs[i]); |
| 54 | return Result; |
| 55 | } |
| 56 | |
| 57 | static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS, |
| 58 | const std::vector<unsigned char> &RHS) { |
| 59 | if (LHS.size() > RHS.size()) return false; |
| 60 | for (unsigned i = 0, e = LHS.size(); i != e; ++i) |
| 61 | if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end()) |
| 62 | return false; |
| 63 | return true; |
| 64 | } |
| 65 | |
| 66 | /// isExtIntegerVT - Return true if the specified extended value type vector |
| 67 | /// contains isInt or an integer value type. |
| 68 | static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) { |
| 69 | assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); |
| 70 | return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty()); |
| 71 | } |
| 72 | |
| 73 | /// isExtFloatingPointVT - Return true if the specified extended value type |
| 74 | /// vector contains isFP or a FP value type. |
| 75 | static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) { |
| 76 | assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); |
| 77 | return EVTs[0] == MVT::isFP || |
| 78 | !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty()); |
| 79 | } |
| 80 | |
| 81 | //===----------------------------------------------------------------------===// |
| 82 | // SDTypeConstraint implementation |
| 83 | // |
| 84 | |
| 85 | SDTypeConstraint::SDTypeConstraint(Record *R) { |
| 86 | OperandNo = R->getValueAsInt("OperandNum"); |
| 87 | |
| 88 | if (R->isSubClassOf("SDTCisVT")) { |
| 89 | ConstraintType = SDTCisVT; |
| 90 | x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); |
| 91 | } else if (R->isSubClassOf("SDTCisPtrTy")) { |
| 92 | ConstraintType = SDTCisPtrTy; |
| 93 | } else if (R->isSubClassOf("SDTCisInt")) { |
| 94 | ConstraintType = SDTCisInt; |
| 95 | } else if (R->isSubClassOf("SDTCisFP")) { |
| 96 | ConstraintType = SDTCisFP; |
| 97 | } else if (R->isSubClassOf("SDTCisSameAs")) { |
| 98 | ConstraintType = SDTCisSameAs; |
| 99 | x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); |
| 100 | } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { |
| 101 | ConstraintType = SDTCisVTSmallerThanOp; |
| 102 | x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = |
| 103 | R->getValueAsInt("OtherOperandNum"); |
| 104 | } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { |
| 105 | ConstraintType = SDTCisOpSmallerThanOp; |
| 106 | x.SDTCisOpSmallerThanOp_Info.BigOperandNum = |
| 107 | R->getValueAsInt("BigOperandNum"); |
| 108 | } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) { |
| 109 | ConstraintType = SDTCisIntVectorOfSameSize; |
| 110 | x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum = |
| 111 | R->getValueAsInt("OtherOpNum"); |
| 112 | } else { |
| 113 | cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; |
| 114 | exit(1); |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | /// getOperandNum - Return the node corresponding to operand #OpNo in tree |
| 119 | /// N, which has NumResults results. |
| 120 | TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, |
| 121 | TreePatternNode *N, |
| 122 | unsigned NumResults) const { |
| 123 | assert(NumResults <= 1 && |
| 124 | "We only work with nodes with zero or one result so far!"); |
| 125 | |
| 126 | if (OpNo >= (NumResults + N->getNumChildren())) { |
| 127 | cerr << "Invalid operand number " << OpNo << " "; |
| 128 | N->dump(); |
| 129 | cerr << '\n'; |
| 130 | exit(1); |
| 131 | } |
| 132 | |
| 133 | if (OpNo < NumResults) |
| 134 | return N; // FIXME: need value # |
| 135 | else |
| 136 | return N->getChild(OpNo-NumResults); |
| 137 | } |
| 138 | |
| 139 | /// ApplyTypeConstraint - Given a node in a pattern, apply this type |
| 140 | /// constraint to the nodes operands. This returns true if it makes a |
| 141 | /// change, false otherwise. If a type contradiction is found, throw an |
| 142 | /// exception. |
| 143 | bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, |
| 144 | const SDNodeInfo &NodeInfo, |
| 145 | TreePattern &TP) const { |
| 146 | unsigned NumResults = NodeInfo.getNumResults(); |
| 147 | assert(NumResults <= 1 && |
| 148 | "We only work with nodes with zero or one result so far!"); |
| 149 | |
| 150 | // Check that the number of operands is sane. Negative operands -> varargs. |
| 151 | if (NodeInfo.getNumOperands() >= 0) { |
| 152 | if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) |
| 153 | TP.error(N->getOperator()->getName() + " node requires exactly " + |
| 154 | itostr(NodeInfo.getNumOperands()) + " operands!"); |
| 155 | } |
| 156 | |
| 157 | const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo(); |
| 158 | |
| 159 | TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); |
| 160 | |
| 161 | switch (ConstraintType) { |
| 162 | default: assert(0 && "Unknown constraint type!"); |
| 163 | case SDTCisVT: |
| 164 | // Operand must be a particular type. |
| 165 | return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); |
| 166 | case SDTCisPtrTy: { |
| 167 | // Operand must be same as target pointer type. |
| 168 | return NodeToApply->UpdateNodeType(MVT::iPTR, TP); |
| 169 | } |
| 170 | case SDTCisInt: { |
| 171 | // If there is only one integer type supported, this must be it. |
| 172 | std::vector<MVT::ValueType> IntVTs = |
| 173 | FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger); |
| 174 | |
| 175 | // If we found exactly one supported integer type, apply it. |
| 176 | if (IntVTs.size() == 1) |
| 177 | return NodeToApply->UpdateNodeType(IntVTs[0], TP); |
| 178 | return NodeToApply->UpdateNodeType(MVT::isInt, TP); |
| 179 | } |
| 180 | case SDTCisFP: { |
| 181 | // If there is only one FP type supported, this must be it. |
| 182 | std::vector<MVT::ValueType> FPVTs = |
| 183 | FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint); |
| 184 | |
| 185 | // If we found exactly one supported FP type, apply it. |
| 186 | if (FPVTs.size() == 1) |
| 187 | return NodeToApply->UpdateNodeType(FPVTs[0], TP); |
| 188 | return NodeToApply->UpdateNodeType(MVT::isFP, TP); |
| 189 | } |
| 190 | case SDTCisSameAs: { |
| 191 | TreePatternNode *OtherNode = |
| 192 | getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); |
| 193 | return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) | |
| 194 | OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP); |
| 195 | } |
| 196 | case SDTCisVTSmallerThanOp: { |
| 197 | // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must |
| 198 | // have an integer type that is smaller than the VT. |
| 199 | if (!NodeToApply->isLeaf() || |
| 200 | !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || |
| 201 | !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() |
| 202 | ->isSubClassOf("ValueType")) |
| 203 | TP.error(N->getOperator()->getName() + " expects a VT operand!"); |
| 204 | MVT::ValueType VT = |
| 205 | getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); |
| 206 | if (!MVT::isInteger(VT)) |
| 207 | TP.error(N->getOperator()->getName() + " VT operand must be integer!"); |
| 208 | |
| 209 | TreePatternNode *OtherNode = |
| 210 | getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); |
| 211 | |
| 212 | // It must be integer. |
| 213 | bool MadeChange = false; |
| 214 | MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP); |
| 215 | |
| 216 | // This code only handles nodes that have one type set. Assert here so |
| 217 | // that we can change this if we ever need to deal with multiple value |
| 218 | // types at this point. |
| 219 | assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!"); |
| 220 | if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT) |
| 221 | OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. |
| 222 | return false; |
| 223 | } |
| 224 | case SDTCisOpSmallerThanOp: { |
| 225 | TreePatternNode *BigOperand = |
| 226 | getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); |
| 227 | |
| 228 | // Both operands must be integer or FP, but we don't care which. |
| 229 | bool MadeChange = false; |
| 230 | |
| 231 | // This code does not currently handle nodes which have multiple types, |
| 232 | // where some types are integer, and some are fp. Assert that this is not |
| 233 | // the case. |
| 234 | assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) && |
| 235 | isExtFloatingPointInVTs(NodeToApply->getExtTypes())) && |
| 236 | !(isExtIntegerInVTs(BigOperand->getExtTypes()) && |
| 237 | isExtFloatingPointInVTs(BigOperand->getExtTypes())) && |
| 238 | "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); |
| 239 | if (isExtIntegerInVTs(NodeToApply->getExtTypes())) |
| 240 | MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP); |
| 241 | else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) |
| 242 | MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP); |
| 243 | if (isExtIntegerInVTs(BigOperand->getExtTypes())) |
| 244 | MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP); |
| 245 | else if (isExtFloatingPointInVTs(BigOperand->getExtTypes())) |
| 246 | MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP); |
| 247 | |
| 248 | std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes(); |
| 249 | |
| 250 | if (isExtIntegerInVTs(NodeToApply->getExtTypes())) { |
| 251 | VTs = FilterVTs(VTs, MVT::isInteger); |
| 252 | } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) { |
| 253 | VTs = FilterVTs(VTs, MVT::isFloatingPoint); |
| 254 | } else { |
| 255 | VTs.clear(); |
| 256 | } |
| 257 | |
| 258 | switch (VTs.size()) { |
| 259 | default: // Too many VT's to pick from. |
| 260 | case 0: break; // No info yet. |
| 261 | case 1: |
| 262 | // Only one VT of this flavor. Cannot ever satisify the constraints. |
| 263 | return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw |
| 264 | case 2: |
| 265 | // If we have exactly two possible types, the little operand must be the |
| 266 | // small one, the big operand should be the big one. Common with |
| 267 | // float/double for example. |
| 268 | assert(VTs[0] < VTs[1] && "Should be sorted!"); |
| 269 | MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); |
| 270 | MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); |
| 271 | break; |
| 272 | } |
| 273 | return MadeChange; |
| 274 | } |
| 275 | case SDTCisIntVectorOfSameSize: { |
| 276 | TreePatternNode *OtherOperand = |
| 277 | getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum, |
| 278 | N, NumResults); |
| 279 | if (OtherOperand->hasTypeSet()) { |
| 280 | if (!MVT::isVector(OtherOperand->getTypeNum(0))) |
| 281 | TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); |
| 282 | MVT::ValueType IVT = OtherOperand->getTypeNum(0); |
| 283 | IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT)); |
| 284 | return NodeToApply->UpdateNodeType(IVT, TP); |
| 285 | } |
| 286 | return false; |
| 287 | } |
| 288 | } |
| 289 | return false; |
| 290 | } |
| 291 | |
| 292 | |
| 293 | //===----------------------------------------------------------------------===// |
| 294 | // SDNodeInfo implementation |
| 295 | // |
| 296 | SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { |
| 297 | EnumName = R->getValueAsString("Opcode"); |
| 298 | SDClassName = R->getValueAsString("SDClass"); |
| 299 | Record *TypeProfile = R->getValueAsDef("TypeProfile"); |
| 300 | NumResults = TypeProfile->getValueAsInt("NumResults"); |
| 301 | NumOperands = TypeProfile->getValueAsInt("NumOperands"); |
| 302 | |
| 303 | // Parse the properties. |
| 304 | Properties = 0; |
| 305 | std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); |
| 306 | for (unsigned i = 0, e = PropList.size(); i != e; ++i) { |
| 307 | if (PropList[i]->getName() == "SDNPCommutative") { |
| 308 | Properties |= 1 << SDNPCommutative; |
| 309 | } else if (PropList[i]->getName() == "SDNPAssociative") { |
| 310 | Properties |= 1 << SDNPAssociative; |
| 311 | } else if (PropList[i]->getName() == "SDNPHasChain") { |
| 312 | Properties |= 1 << SDNPHasChain; |
| 313 | } else if (PropList[i]->getName() == "SDNPOutFlag") { |
| 314 | Properties |= 1 << SDNPOutFlag; |
| 315 | } else if (PropList[i]->getName() == "SDNPInFlag") { |
| 316 | Properties |= 1 << SDNPInFlag; |
| 317 | } else if (PropList[i]->getName() == "SDNPOptInFlag") { |
| 318 | Properties |= 1 << SDNPOptInFlag; |
| 319 | } else { |
| 320 | cerr << "Unknown SD Node property '" << PropList[i]->getName() |
| 321 | << "' on node '" << R->getName() << "'!\n"; |
| 322 | exit(1); |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | |
| 327 | // Parse the type constraints. |
| 328 | std::vector<Record*> ConstraintList = |
| 329 | TypeProfile->getValueAsListOfDefs("Constraints"); |
| 330 | TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); |
| 331 | } |
| 332 | |
| 333 | //===----------------------------------------------------------------------===// |
| 334 | // TreePatternNode implementation |
| 335 | // |
| 336 | |
| 337 | TreePatternNode::~TreePatternNode() { |
| 338 | #if 0 // FIXME: implement refcounted tree nodes! |
| 339 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| 340 | delete getChild(i); |
| 341 | #endif |
| 342 | } |
| 343 | |
| 344 | /// UpdateNodeType - Set the node type of N to VT if VT contains |
| 345 | /// information. If N already contains a conflicting type, then throw an |
| 346 | /// exception. This returns true if any information was updated. |
| 347 | /// |
| 348 | bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs, |
| 349 | TreePattern &TP) { |
| 350 | assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!"); |
| 351 | |
| 352 | if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) |
| 353 | return false; |
| 354 | if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) { |
| 355 | setTypes(ExtVTs); |
| 356 | return true; |
| 357 | } |
| 358 | |
| 359 | if (getExtTypeNum(0) == MVT::iPTR) { |
| 360 | if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt) |
| 361 | return false; |
| 362 | if (isExtIntegerInVTs(ExtVTs)) { |
| 363 | std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger); |
| 364 | if (FVTs.size()) { |
| 365 | setTypes(ExtVTs); |
| 366 | return true; |
| 367 | } |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) { |
| 372 | assert(hasTypeSet() && "should be handled above!"); |
| 373 | std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); |
| 374 | if (getExtTypes() == FVTs) |
| 375 | return false; |
| 376 | setTypes(FVTs); |
| 377 | return true; |
| 378 | } |
| 379 | if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) { |
| 380 | //assert(hasTypeSet() && "should be handled above!"); |
| 381 | std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); |
| 382 | if (getExtTypes() == FVTs) |
| 383 | return false; |
| 384 | if (FVTs.size()) { |
| 385 | setTypes(FVTs); |
| 386 | return true; |
| 387 | } |
| 388 | } |
| 389 | if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) { |
| 390 | assert(hasTypeSet() && "should be handled above!"); |
| 391 | std::vector<unsigned char> FVTs = |
| 392 | FilterEVTs(getExtTypes(), MVT::isFloatingPoint); |
| 393 | if (getExtTypes() == FVTs) |
| 394 | return false; |
| 395 | setTypes(FVTs); |
| 396 | return true; |
| 397 | } |
| 398 | |
| 399 | // If we know this is an int or fp type, and we are told it is a specific one, |
| 400 | // take the advice. |
| 401 | // |
| 402 | // Similarly, we should probably set the type here to the intersection of |
| 403 | // {isInt|isFP} and ExtVTs |
| 404 | if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) || |
| 405 | (getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) { |
| 406 | setTypes(ExtVTs); |
| 407 | return true; |
| 408 | } |
| 409 | if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) { |
| 410 | setTypes(ExtVTs); |
| 411 | return true; |
| 412 | } |
| 413 | |
| 414 | if (isLeaf()) { |
| 415 | dump(); |
| 416 | cerr << " "; |
| 417 | TP.error("Type inference contradiction found in node!"); |
| 418 | } else { |
| 419 | TP.error("Type inference contradiction found in node " + |
| 420 | getOperator()->getName() + "!"); |
| 421 | } |
| 422 | return true; // unreachable |
| 423 | } |
| 424 | |
| 425 | |
| 426 | void TreePatternNode::print(std::ostream &OS) const { |
| 427 | if (isLeaf()) { |
| 428 | OS << *getLeafValue(); |
| 429 | } else { |
| 430 | OS << "(" << getOperator()->getName(); |
| 431 | } |
| 432 | |
| 433 | // FIXME: At some point we should handle printing all the value types for |
| 434 | // nodes that are multiply typed. |
| 435 | switch (getExtTypeNum(0)) { |
| 436 | case MVT::Other: OS << ":Other"; break; |
| 437 | case MVT::isInt: OS << ":isInt"; break; |
| 438 | case MVT::isFP : OS << ":isFP"; break; |
| 439 | case MVT::isUnknown: ; /*OS << ":?";*/ break; |
| 440 | case MVT::iPTR: OS << ":iPTR"; break; |
| 441 | default: { |
| 442 | std::string VTName = llvm::getName(getTypeNum(0)); |
| 443 | // Strip off MVT:: prefix if present. |
| 444 | if (VTName.substr(0,5) == "MVT::") |
| 445 | VTName = VTName.substr(5); |
| 446 | OS << ":" << VTName; |
| 447 | break; |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | if (!isLeaf()) { |
| 452 | if (getNumChildren() != 0) { |
| 453 | OS << " "; |
| 454 | getChild(0)->print(OS); |
| 455 | for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { |
| 456 | OS << ", "; |
| 457 | getChild(i)->print(OS); |
| 458 | } |
| 459 | } |
| 460 | OS << ")"; |
| 461 | } |
| 462 | |
| 463 | if (!PredicateFn.empty()) |
| 464 | OS << "<<P:" << PredicateFn << ">>"; |
| 465 | if (TransformFn) |
| 466 | OS << "<<X:" << TransformFn->getName() << ">>"; |
| 467 | if (!getName().empty()) |
| 468 | OS << ":$" << getName(); |
| 469 | |
| 470 | } |
| 471 | void TreePatternNode::dump() const { |
| 472 | print(*cerr.stream()); |
| 473 | } |
| 474 | |
| 475 | /// isIsomorphicTo - Return true if this node is recursively isomorphic to |
| 476 | /// the specified node. For this comparison, all of the state of the node |
| 477 | /// is considered, except for the assigned name. Nodes with differing names |
| 478 | /// that are otherwise identical are considered isomorphic. |
| 479 | bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const { |
| 480 | if (N == this) return true; |
| 481 | if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || |
| 482 | getPredicateFn() != N->getPredicateFn() || |
| 483 | getTransformFn() != N->getTransformFn()) |
| 484 | return false; |
| 485 | |
| 486 | if (isLeaf()) { |
| 487 | if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) |
| 488 | if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) |
| 489 | return DI->getDef() == NDI->getDef(); |
| 490 | return getLeafValue() == N->getLeafValue(); |
| 491 | } |
| 492 | |
| 493 | if (N->getOperator() != getOperator() || |
| 494 | N->getNumChildren() != getNumChildren()) return false; |
| 495 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| 496 | if (!getChild(i)->isIsomorphicTo(N->getChild(i))) |
| 497 | return false; |
| 498 | return true; |
| 499 | } |
| 500 | |
| 501 | /// clone - Make a copy of this tree and all of its children. |
| 502 | /// |
| 503 | TreePatternNode *TreePatternNode::clone() const { |
| 504 | TreePatternNode *New; |
| 505 | if (isLeaf()) { |
| 506 | New = new TreePatternNode(getLeafValue()); |
| 507 | } else { |
| 508 | std::vector<TreePatternNode*> CChildren; |
| 509 | CChildren.reserve(Children.size()); |
| 510 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| 511 | CChildren.push_back(getChild(i)->clone()); |
| 512 | New = new TreePatternNode(getOperator(), CChildren); |
| 513 | } |
| 514 | New->setName(getName()); |
| 515 | New->setTypes(getExtTypes()); |
| 516 | New->setPredicateFn(getPredicateFn()); |
| 517 | New->setTransformFn(getTransformFn()); |
| 518 | return New; |
| 519 | } |
| 520 | |
| 521 | /// SubstituteFormalArguments - Replace the formal arguments in this tree |
| 522 | /// with actual values specified by ArgMap. |
| 523 | void TreePatternNode:: |
| 524 | SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { |
| 525 | if (isLeaf()) return; |
| 526 | |
| 527 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
| 528 | TreePatternNode *Child = getChild(i); |
| 529 | if (Child->isLeaf()) { |
| 530 | Init *Val = Child->getLeafValue(); |
| 531 | if (dynamic_cast<DefInit*>(Val) && |
| 532 | static_cast<DefInit*>(Val)->getDef()->getName() == "node") { |
| 533 | // We found a use of a formal argument, replace it with its value. |
| 534 | Child = ArgMap[Child->getName()]; |
| 535 | assert(Child && "Couldn't find formal argument!"); |
| 536 | setChild(i, Child); |
| 537 | } |
| 538 | } else { |
| 539 | getChild(i)->SubstituteFormalArguments(ArgMap); |
| 540 | } |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | |
| 545 | /// InlinePatternFragments - If this pattern refers to any pattern |
| 546 | /// fragments, inline them into place, giving us a pattern without any |
| 547 | /// PatFrag references. |
| 548 | TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { |
| 549 | if (isLeaf()) return this; // nothing to do. |
| 550 | Record *Op = getOperator(); |
| 551 | |
| 552 | if (!Op->isSubClassOf("PatFrag")) { |
| 553 | // Just recursively inline children nodes. |
| 554 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| 555 | setChild(i, getChild(i)->InlinePatternFragments(TP)); |
| 556 | return this; |
| 557 | } |
| 558 | |
| 559 | // Otherwise, we found a reference to a fragment. First, look up its |
| 560 | // TreePattern record. |
| 561 | TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op); |
| 562 | |
| 563 | // Verify that we are passing the right number of operands. |
| 564 | if (Frag->getNumArgs() != Children.size()) |
| 565 | TP.error("'" + Op->getName() + "' fragment requires " + |
| 566 | utostr(Frag->getNumArgs()) + " operands!"); |
| 567 | |
| 568 | TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); |
| 569 | |
| 570 | // Resolve formal arguments to their actual value. |
| 571 | if (Frag->getNumArgs()) { |
| 572 | // Compute the map of formal to actual arguments. |
| 573 | std::map<std::string, TreePatternNode*> ArgMap; |
| 574 | for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) |
| 575 | ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); |
| 576 | |
| 577 | FragTree->SubstituteFormalArguments(ArgMap); |
| 578 | } |
| 579 | |
| 580 | FragTree->setName(getName()); |
| 581 | FragTree->UpdateNodeType(getExtTypes(), TP); |
| 582 | |
| 583 | // Get a new copy of this fragment to stitch into here. |
| 584 | //delete this; // FIXME: implement refcounting! |
| 585 | return FragTree; |
| 586 | } |
| 587 | |
| 588 | /// getImplicitType - Check to see if the specified record has an implicit |
| 589 | /// type which should be applied to it. This infer the type of register |
| 590 | /// references from the register file information, for example. |
| 591 | /// |
| 592 | static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters, |
| 593 | TreePattern &TP) { |
| 594 | // Some common return values |
| 595 | std::vector<unsigned char> Unknown(1, MVT::isUnknown); |
| 596 | std::vector<unsigned char> Other(1, MVT::Other); |
| 597 | |
| 598 | // Check to see if this is a register or a register class... |
| 599 | if (R->isSubClassOf("RegisterClass")) { |
| 600 | if (NotRegisters) |
| 601 | return Unknown; |
| 602 | const CodeGenRegisterClass &RC = |
| 603 | TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R); |
| 604 | return ConvertVTs(RC.getValueTypes()); |
| 605 | } else if (R->isSubClassOf("PatFrag")) { |
| 606 | // Pattern fragment types will be resolved when they are inlined. |
| 607 | return Unknown; |
| 608 | } else if (R->isSubClassOf("Register")) { |
| 609 | if (NotRegisters) |
| 610 | return Unknown; |
| 611 | const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo(); |
| 612 | return T.getRegisterVTs(R); |
| 613 | } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { |
| 614 | // Using a VTSDNode or CondCodeSDNode. |
| 615 | return Other; |
| 616 | } else if (R->isSubClassOf("ComplexPattern")) { |
| 617 | if (NotRegisters) |
| 618 | return Unknown; |
| 619 | std::vector<unsigned char> |
| 620 | ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType()); |
| 621 | return ComplexPat; |
| 622 | } else if (R->getName() == "ptr_rc") { |
| 623 | Other[0] = MVT::iPTR; |
| 624 | return Other; |
| 625 | } else if (R->getName() == "node" || R->getName() == "srcvalue" || |
| 626 | R->getName() == "zero_reg") { |
| 627 | // Placeholder. |
| 628 | return Unknown; |
| 629 | } |
| 630 | |
| 631 | TP.error("Unknown node flavor used in pattern: " + R->getName()); |
| 632 | return Other; |
| 633 | } |
| 634 | |
| 635 | /// ApplyTypeConstraints - Apply all of the type constraints relevent to |
| 636 | /// this node and its children in the tree. This returns true if it makes a |
| 637 | /// change, false otherwise. If a type contradiction is found, throw an |
| 638 | /// exception. |
| 639 | bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { |
| 640 | DAGISelEmitter &ISE = TP.getDAGISelEmitter(); |
| 641 | if (isLeaf()) { |
| 642 | if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { |
| 643 | // If it's a regclass or something else known, include the type. |
| 644 | return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP); |
| 645 | } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { |
| 646 | // Int inits are always integers. :) |
| 647 | bool MadeChange = UpdateNodeType(MVT::isInt, TP); |
| 648 | |
| 649 | if (hasTypeSet()) { |
| 650 | // At some point, it may make sense for this tree pattern to have |
| 651 | // multiple types. Assert here that it does not, so we revisit this |
| 652 | // code when appropriate. |
| 653 | assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!"); |
| 654 | MVT::ValueType VT = getTypeNum(0); |
| 655 | for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i) |
| 656 | assert(getTypeNum(i) == VT && "TreePattern has too many types!"); |
| 657 | |
| 658 | VT = getTypeNum(0); |
| 659 | if (VT != MVT::iPTR) { |
| 660 | unsigned Size = MVT::getSizeInBits(VT); |
| 661 | // Make sure that the value is representable for this type. |
| 662 | if (Size < 32) { |
| 663 | int Val = (II->getValue() << (32-Size)) >> (32-Size); |
| 664 | if (Val != II->getValue()) |
| 665 | TP.error("Sign-extended integer value '" + itostr(II->getValue())+ |
| 666 | "' is out of range for type '" + |
| 667 | getEnumName(getTypeNum(0)) + "'!"); |
| 668 | } |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | return MadeChange; |
| 673 | } |
| 674 | return false; |
| 675 | } |
| 676 | |
| 677 | // special handling for set, which isn't really an SDNode. |
| 678 | if (getOperator()->getName() == "set") { |
Evan Cheng | f37df84 | 2007-09-11 19:52:18 +0000 | [diff] [blame^] | 679 | assert (getNumChildren() >= 2 && "Missing RHS of a set?"); |
| 680 | unsigned NC = getNumChildren(); |
| 681 | bool MadeChange = false; |
| 682 | for (unsigned i = 0; i < NC-1; ++i) { |
| 683 | MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| 684 | MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 685 | |
Evan Cheng | f37df84 | 2007-09-11 19:52:18 +0000 | [diff] [blame^] | 686 | // Types of operands must match. |
| 687 | MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(), |
| 688 | TP); |
| 689 | MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(), |
| 690 | TP); |
| 691 | MadeChange |= UpdateNodeType(MVT::isVoid, TP); |
| 692 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 693 | return MadeChange; |
| 694 | } else if (getOperator() == ISE.get_intrinsic_void_sdnode() || |
| 695 | getOperator() == ISE.get_intrinsic_w_chain_sdnode() || |
| 696 | getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) { |
| 697 | unsigned IID = |
| 698 | dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); |
| 699 | const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID); |
| 700 | bool MadeChange = false; |
| 701 | |
| 702 | // Apply the result type to the node. |
| 703 | MadeChange = UpdateNodeType(Int.ArgVTs[0], TP); |
| 704 | |
| 705 | if (getNumChildren() != Int.ArgVTs.size()) |
| 706 | TP.error("Intrinsic '" + Int.Name + "' expects " + |
| 707 | utostr(Int.ArgVTs.size()-1) + " operands, not " + |
| 708 | utostr(getNumChildren()-1) + " operands!"); |
| 709 | |
| 710 | // Apply type info to the intrinsic ID. |
| 711 | MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP); |
| 712 | |
| 713 | for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { |
| 714 | MVT::ValueType OpVT = Int.ArgVTs[i]; |
| 715 | MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP); |
| 716 | MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| 717 | } |
| 718 | return MadeChange; |
| 719 | } else if (getOperator()->isSubClassOf("SDNode")) { |
| 720 | const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator()); |
| 721 | |
| 722 | bool MadeChange = NI.ApplyTypeConstraints(this, TP); |
| 723 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| 724 | MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| 725 | // Branch, etc. do not produce results and top-level forms in instr pattern |
| 726 | // must have void types. |
| 727 | if (NI.getNumResults() == 0) |
| 728 | MadeChange |= UpdateNodeType(MVT::isVoid, TP); |
| 729 | |
| 730 | // If this is a vector_shuffle operation, apply types to the build_vector |
| 731 | // operation. The types of the integers don't matter, but this ensures they |
| 732 | // won't get checked. |
| 733 | if (getOperator()->getName() == "vector_shuffle" && |
| 734 | getChild(2)->getOperator()->getName() == "build_vector") { |
| 735 | TreePatternNode *BV = getChild(2); |
| 736 | const std::vector<MVT::ValueType> &LegalVTs |
| 737 | = ISE.getTargetInfo().getLegalValueTypes(); |
| 738 | MVT::ValueType LegalIntVT = MVT::Other; |
| 739 | for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i) |
| 740 | if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) { |
| 741 | LegalIntVT = LegalVTs[i]; |
| 742 | break; |
| 743 | } |
| 744 | assert(LegalIntVT != MVT::Other && "No legal integer VT?"); |
| 745 | |
| 746 | for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i) |
| 747 | MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP); |
| 748 | } |
| 749 | return MadeChange; |
| 750 | } else if (getOperator()->isSubClassOf("Instruction")) { |
| 751 | const DAGInstruction &Inst = ISE.getInstruction(getOperator()); |
| 752 | bool MadeChange = false; |
| 753 | unsigned NumResults = Inst.getNumResults(); |
| 754 | |
| 755 | assert(NumResults <= 1 && |
| 756 | "Only supports zero or one result instrs!"); |
| 757 | |
| 758 | CodeGenInstruction &InstInfo = |
| 759 | ISE.getTargetInfo().getInstruction(getOperator()->getName()); |
| 760 | // Apply the result type to the node |
Evan Cheng | fc61b59 | 2007-07-20 00:21:23 +0000 | [diff] [blame] | 761 | if (NumResults == 0 || InstInfo.NumDefs == 0) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 762 | MadeChange = UpdateNodeType(MVT::isVoid, TP); |
| 763 | } else { |
| 764 | Record *ResultNode = Inst.getResult(0); |
| 765 | |
| 766 | if (ResultNode->getName() == "ptr_rc") { |
| 767 | std::vector<unsigned char> VT; |
| 768 | VT.push_back(MVT::iPTR); |
| 769 | MadeChange = UpdateNodeType(VT, TP); |
| 770 | } else { |
| 771 | assert(ResultNode->isSubClassOf("RegisterClass") && |
| 772 | "Operands should be register classes!"); |
| 773 | |
| 774 | const CodeGenRegisterClass &RC = |
| 775 | ISE.getTargetInfo().getRegisterClass(ResultNode); |
| 776 | MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | unsigned ChildNo = 0; |
| 781 | for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { |
| 782 | Record *OperandNode = Inst.getOperand(i); |
| 783 | |
| 784 | // If the instruction expects a predicate or optional def operand, we |
| 785 | // codegen this by setting the operand to it's default value if it has a |
| 786 | // non-empty DefaultOps field. |
| 787 | if ((OperandNode->isSubClassOf("PredicateOperand") || |
| 788 | OperandNode->isSubClassOf("OptionalDefOperand")) && |
| 789 | !ISE.getDefaultOperand(OperandNode).DefaultOps.empty()) |
| 790 | continue; |
| 791 | |
| 792 | // Verify that we didn't run out of provided operands. |
| 793 | if (ChildNo >= getNumChildren()) |
| 794 | TP.error("Instruction '" + getOperator()->getName() + |
| 795 | "' expects more operands than were provided."); |
| 796 | |
| 797 | MVT::ValueType VT; |
| 798 | TreePatternNode *Child = getChild(ChildNo++); |
| 799 | if (OperandNode->isSubClassOf("RegisterClass")) { |
| 800 | const CodeGenRegisterClass &RC = |
| 801 | ISE.getTargetInfo().getRegisterClass(OperandNode); |
| 802 | MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); |
| 803 | } else if (OperandNode->isSubClassOf("Operand")) { |
| 804 | VT = getValueType(OperandNode->getValueAsDef("Type")); |
| 805 | MadeChange |= Child->UpdateNodeType(VT, TP); |
| 806 | } else if (OperandNode->getName() == "ptr_rc") { |
| 807 | MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP); |
| 808 | } else { |
| 809 | assert(0 && "Unknown operand type!"); |
| 810 | abort(); |
| 811 | } |
| 812 | MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); |
| 813 | } |
| 814 | |
| 815 | if (ChildNo != getNumChildren()) |
| 816 | TP.error("Instruction '" + getOperator()->getName() + |
| 817 | "' was provided too many operands!"); |
| 818 | |
| 819 | return MadeChange; |
| 820 | } else { |
| 821 | assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); |
| 822 | |
| 823 | // Node transforms always take one operand. |
| 824 | if (getNumChildren() != 1) |
| 825 | TP.error("Node transform '" + getOperator()->getName() + |
| 826 | "' requires one operand!"); |
| 827 | |
| 828 | // If either the output or input of the xform does not have exact |
| 829 | // type info. We assume they must be the same. Otherwise, it is perfectly |
| 830 | // legal to transform from one type to a completely different type. |
| 831 | if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { |
| 832 | bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP); |
| 833 | MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP); |
| 834 | return MadeChange; |
| 835 | } |
| 836 | return false; |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the |
| 841 | /// RHS of a commutative operation, not the on LHS. |
| 842 | static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { |
| 843 | if (!N->isLeaf() && N->getOperator()->getName() == "imm") |
| 844 | return true; |
| 845 | if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) |
| 846 | return true; |
| 847 | return false; |
| 848 | } |
| 849 | |
| 850 | |
| 851 | /// canPatternMatch - If it is impossible for this pattern to match on this |
| 852 | /// target, fill in Reason and return false. Otherwise, return true. This is |
| 853 | /// used as a santity check for .td files (to prevent people from writing stuff |
| 854 | /// that can never possibly work), and to prevent the pattern permuter from |
| 855 | /// generating stuff that is useless. |
| 856 | bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){ |
| 857 | if (isLeaf()) return true; |
| 858 | |
| 859 | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| 860 | if (!getChild(i)->canPatternMatch(Reason, ISE)) |
| 861 | return false; |
| 862 | |
| 863 | // If this is an intrinsic, handle cases that would make it not match. For |
| 864 | // example, if an operand is required to be an immediate. |
| 865 | if (getOperator()->isSubClassOf("Intrinsic")) { |
| 866 | // TODO: |
| 867 | return true; |
| 868 | } |
| 869 | |
| 870 | // If this node is a commutative operator, check that the LHS isn't an |
| 871 | // immediate. |
| 872 | const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator()); |
| 873 | if (NodeInfo.hasProperty(SDNPCommutative)) { |
| 874 | // Scan all of the operands of the node and make sure that only the last one |
| 875 | // is a constant node, unless the RHS also is. |
| 876 | if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { |
| 877 | for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) |
| 878 | if (OnlyOnRHSOfCommutative(getChild(i))) { |
| 879 | Reason="Immediate value must be on the RHS of commutative operators!"; |
| 880 | return false; |
| 881 | } |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | return true; |
| 886 | } |
| 887 | |
| 888 | //===----------------------------------------------------------------------===// |
| 889 | // TreePattern implementation |
| 890 | // |
| 891 | |
| 892 | TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, |
| 893 | DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { |
| 894 | isInputPattern = isInput; |
| 895 | for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) |
| 896 | Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); |
| 897 | } |
| 898 | |
| 899 | TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, |
| 900 | DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { |
| 901 | isInputPattern = isInput; |
| 902 | Trees.push_back(ParseTreePattern(Pat)); |
| 903 | } |
| 904 | |
| 905 | TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, |
| 906 | DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { |
| 907 | isInputPattern = isInput; |
| 908 | Trees.push_back(Pat); |
| 909 | } |
| 910 | |
| 911 | |
| 912 | |
| 913 | void TreePattern::error(const std::string &Msg) const { |
| 914 | dump(); |
| 915 | throw "In " + TheRecord->getName() + ": " + Msg; |
| 916 | } |
| 917 | |
| 918 | TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { |
| 919 | DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); |
| 920 | if (!OpDef) error("Pattern has unexpected operator type!"); |
| 921 | Record *Operator = OpDef->getDef(); |
| 922 | |
| 923 | if (Operator->isSubClassOf("ValueType")) { |
| 924 | // If the operator is a ValueType, then this must be "type cast" of a leaf |
| 925 | // node. |
| 926 | if (Dag->getNumArgs() != 1) |
| 927 | error("Type cast only takes one operand!"); |
| 928 | |
| 929 | Init *Arg = Dag->getArg(0); |
| 930 | TreePatternNode *New; |
| 931 | if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { |
| 932 | Record *R = DI->getDef(); |
| 933 | if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { |
| 934 | Dag->setArg(0, new DagInit(DI, |
| 935 | std::vector<std::pair<Init*, std::string> >())); |
| 936 | return ParseTreePattern(Dag); |
| 937 | } |
| 938 | New = new TreePatternNode(DI); |
| 939 | } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { |
| 940 | New = ParseTreePattern(DI); |
| 941 | } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { |
| 942 | New = new TreePatternNode(II); |
| 943 | if (!Dag->getArgName(0).empty()) |
| 944 | error("Constant int argument should not have a name!"); |
| 945 | } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { |
| 946 | // Turn this into an IntInit. |
| 947 | Init *II = BI->convertInitializerTo(new IntRecTy()); |
| 948 | if (II == 0 || !dynamic_cast<IntInit*>(II)) |
| 949 | error("Bits value must be constants!"); |
| 950 | |
| 951 | New = new TreePatternNode(dynamic_cast<IntInit*>(II)); |
| 952 | if (!Dag->getArgName(0).empty()) |
| 953 | error("Constant int argument should not have a name!"); |
| 954 | } else { |
| 955 | Arg->dump(); |
| 956 | error("Unknown leaf value for tree pattern!"); |
| 957 | return 0; |
| 958 | } |
| 959 | |
| 960 | // Apply the type cast. |
| 961 | New->UpdateNodeType(getValueType(Operator), *this); |
| 962 | New->setName(Dag->getArgName(0)); |
| 963 | return New; |
| 964 | } |
| 965 | |
| 966 | // Verify that this is something that makes sense for an operator. |
| 967 | if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && |
| 968 | !Operator->isSubClassOf("Instruction") && |
| 969 | !Operator->isSubClassOf("SDNodeXForm") && |
| 970 | !Operator->isSubClassOf("Intrinsic") && |
| 971 | Operator->getName() != "set") |
| 972 | error("Unrecognized node '" + Operator->getName() + "'!"); |
| 973 | |
| 974 | // Check to see if this is something that is illegal in an input pattern. |
| 975 | if (isInputPattern && (Operator->isSubClassOf("Instruction") || |
| 976 | Operator->isSubClassOf("SDNodeXForm"))) |
| 977 | error("Cannot use '" + Operator->getName() + "' in an input pattern!"); |
| 978 | |
| 979 | std::vector<TreePatternNode*> Children; |
| 980 | |
| 981 | for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { |
| 982 | Init *Arg = Dag->getArg(i); |
| 983 | if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { |
| 984 | Children.push_back(ParseTreePattern(DI)); |
| 985 | if (Children.back()->getName().empty()) |
| 986 | Children.back()->setName(Dag->getArgName(i)); |
| 987 | } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) { |
| 988 | Record *R = DefI->getDef(); |
| 989 | // Direct reference to a leaf DagNode or PatFrag? Turn it into a |
| 990 | // TreePatternNode if its own. |
| 991 | if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { |
| 992 | Dag->setArg(i, new DagInit(DefI, |
| 993 | std::vector<std::pair<Init*, std::string> >())); |
| 994 | --i; // Revisit this node... |
| 995 | } else { |
| 996 | TreePatternNode *Node = new TreePatternNode(DefI); |
| 997 | Node->setName(Dag->getArgName(i)); |
| 998 | Children.push_back(Node); |
| 999 | |
| 1000 | // Input argument? |
| 1001 | if (R->getName() == "node") { |
| 1002 | if (Dag->getArgName(i).empty()) |
| 1003 | error("'node' argument requires a name to match with operand list"); |
| 1004 | Args.push_back(Dag->getArgName(i)); |
| 1005 | } |
| 1006 | } |
| 1007 | } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { |
| 1008 | TreePatternNode *Node = new TreePatternNode(II); |
| 1009 | if (!Dag->getArgName(i).empty()) |
| 1010 | error("Constant int argument should not have a name!"); |
| 1011 | Children.push_back(Node); |
| 1012 | } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { |
| 1013 | // Turn this into an IntInit. |
| 1014 | Init *II = BI->convertInitializerTo(new IntRecTy()); |
| 1015 | if (II == 0 || !dynamic_cast<IntInit*>(II)) |
| 1016 | error("Bits value must be constants!"); |
| 1017 | |
| 1018 | TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II)); |
| 1019 | if (!Dag->getArgName(i).empty()) |
| 1020 | error("Constant int argument should not have a name!"); |
| 1021 | Children.push_back(Node); |
| 1022 | } else { |
| 1023 | cerr << '"'; |
| 1024 | Arg->dump(); |
| 1025 | cerr << "\": "; |
| 1026 | error("Unknown leaf value for tree pattern!"); |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | // If the operator is an intrinsic, then this is just syntactic sugar for for |
| 1031 | // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and |
| 1032 | // convert the intrinsic name to a number. |
| 1033 | if (Operator->isSubClassOf("Intrinsic")) { |
| 1034 | const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator); |
| 1035 | unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1; |
| 1036 | |
| 1037 | // If this intrinsic returns void, it must have side-effects and thus a |
| 1038 | // chain. |
| 1039 | if (Int.ArgVTs[0] == MVT::isVoid) { |
| 1040 | Operator = getDAGISelEmitter().get_intrinsic_void_sdnode(); |
| 1041 | } else if (Int.ModRef != CodeGenIntrinsic::NoMem) { |
| 1042 | // Has side-effects, requires chain. |
| 1043 | Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode(); |
| 1044 | } else { |
| 1045 | // Otherwise, no chain. |
| 1046 | Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode(); |
| 1047 | } |
| 1048 | |
| 1049 | TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID)); |
| 1050 | Children.insert(Children.begin(), IIDNode); |
| 1051 | } |
| 1052 | |
| 1053 | return new TreePatternNode(Operator, Children); |
| 1054 | } |
| 1055 | |
| 1056 | /// InferAllTypes - Infer/propagate as many types throughout the expression |
| 1057 | /// patterns as possible. Return true if all types are infered, false |
| 1058 | /// otherwise. Throw an exception if a type contradiction is found. |
| 1059 | bool TreePattern::InferAllTypes() { |
| 1060 | bool MadeChange = true; |
| 1061 | while (MadeChange) { |
| 1062 | MadeChange = false; |
| 1063 | for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| 1064 | MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); |
| 1065 | } |
| 1066 | |
| 1067 | bool HasUnresolvedTypes = false; |
| 1068 | for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| 1069 | HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); |
| 1070 | return !HasUnresolvedTypes; |
| 1071 | } |
| 1072 | |
| 1073 | void TreePattern::print(std::ostream &OS) const { |
| 1074 | OS << getRecord()->getName(); |
| 1075 | if (!Args.empty()) { |
| 1076 | OS << "(" << Args[0]; |
| 1077 | for (unsigned i = 1, e = Args.size(); i != e; ++i) |
| 1078 | OS << ", " << Args[i]; |
| 1079 | OS << ")"; |
| 1080 | } |
| 1081 | OS << ": "; |
| 1082 | |
| 1083 | if (Trees.size() > 1) |
| 1084 | OS << "[\n"; |
| 1085 | for (unsigned i = 0, e = Trees.size(); i != e; ++i) { |
| 1086 | OS << "\t"; |
| 1087 | Trees[i]->print(OS); |
| 1088 | OS << "\n"; |
| 1089 | } |
| 1090 | |
| 1091 | if (Trees.size() > 1) |
| 1092 | OS << "]\n"; |
| 1093 | } |
| 1094 | |
| 1095 | void TreePattern::dump() const { print(*cerr.stream()); } |
| 1096 | |
| 1097 | |
| 1098 | |
| 1099 | //===----------------------------------------------------------------------===// |
| 1100 | // DAGISelEmitter implementation |
| 1101 | // |
| 1102 | |
| 1103 | // Parse all of the SDNode definitions for the target, populating SDNodes. |
| 1104 | void DAGISelEmitter::ParseNodeInfo() { |
| 1105 | std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); |
| 1106 | while (!Nodes.empty()) { |
| 1107 | SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); |
| 1108 | Nodes.pop_back(); |
| 1109 | } |
| 1110 | |
| 1111 | // Get the buildin intrinsic nodes. |
| 1112 | intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); |
| 1113 | intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); |
| 1114 | intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); |
| 1115 | } |
| 1116 | |
| 1117 | /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms |
| 1118 | /// map, and emit them to the file as functions. |
| 1119 | void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) { |
| 1120 | OS << "\n// Node transformations.\n"; |
| 1121 | std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); |
| 1122 | while (!Xforms.empty()) { |
| 1123 | Record *XFormNode = Xforms.back(); |
| 1124 | Record *SDNode = XFormNode->getValueAsDef("Opcode"); |
| 1125 | std::string Code = XFormNode->getValueAsCode("XFormFunction"); |
| 1126 | SDNodeXForms.insert(std::make_pair(XFormNode, |
| 1127 | std::make_pair(SDNode, Code))); |
| 1128 | |
| 1129 | if (!Code.empty()) { |
| 1130 | std::string ClassName = getSDNodeInfo(SDNode).getSDClassName(); |
| 1131 | const char *C2 = ClassName == "SDNode" ? "N" : "inN"; |
| 1132 | |
| 1133 | OS << "inline SDOperand Transform_" << XFormNode->getName() |
| 1134 | << "(SDNode *" << C2 << ") {\n"; |
| 1135 | if (ClassName != "SDNode") |
| 1136 | OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; |
| 1137 | OS << Code << "\n}\n"; |
| 1138 | } |
| 1139 | |
| 1140 | Xforms.pop_back(); |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | void DAGISelEmitter::ParseComplexPatterns() { |
| 1145 | std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); |
| 1146 | while (!AMs.empty()) { |
| 1147 | ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); |
| 1148 | AMs.pop_back(); |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | |
| 1153 | /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td |
| 1154 | /// file, building up the PatternFragments map. After we've collected them all, |
| 1155 | /// inline fragments together as necessary, so that there are no references left |
| 1156 | /// inside a pattern fragment to a pattern fragment. |
| 1157 | /// |
| 1158 | /// This also emits all of the predicate functions to the output file. |
| 1159 | /// |
| 1160 | void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) { |
| 1161 | std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); |
| 1162 | |
| 1163 | // First step, parse all of the fragments and emit predicate functions. |
| 1164 | OS << "\n// Predicate functions.\n"; |
| 1165 | for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { |
| 1166 | DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); |
| 1167 | TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); |
| 1168 | PatternFragments[Fragments[i]] = P; |
| 1169 | |
| 1170 | // Validate the argument list, converting it to map, to discard duplicates. |
| 1171 | std::vector<std::string> &Args = P->getArgList(); |
| 1172 | std::set<std::string> OperandsMap(Args.begin(), Args.end()); |
| 1173 | |
| 1174 | if (OperandsMap.count("")) |
| 1175 | P->error("Cannot have unnamed 'node' values in pattern fragment!"); |
| 1176 | |
| 1177 | // Parse the operands list. |
| 1178 | DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); |
| 1179 | DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); |
Evan Cheng | b783fa3 | 2007-07-19 01:14:50 +0000 | [diff] [blame] | 1180 | // Special cases: ops == outs == ins. Different names are used to |
| 1181 | // improve readibility. |
| 1182 | if (!OpsOp || |
| 1183 | (OpsOp->getDef()->getName() != "ops" && |
| 1184 | OpsOp->getDef()->getName() != "outs" && |
| 1185 | OpsOp->getDef()->getName() != "ins")) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1186 | P->error("Operands list should start with '(ops ... '!"); |
| 1187 | |
| 1188 | // Copy over the arguments. |
| 1189 | Args.clear(); |
| 1190 | for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { |
| 1191 | if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || |
| 1192 | static_cast<DefInit*>(OpsList->getArg(j))-> |
| 1193 | getDef()->getName() != "node") |
| 1194 | P->error("Operands list should all be 'node' values."); |
| 1195 | if (OpsList->getArgName(j).empty()) |
| 1196 | P->error("Operands list should have names for each operand!"); |
| 1197 | if (!OperandsMap.count(OpsList->getArgName(j))) |
| 1198 | P->error("'" + OpsList->getArgName(j) + |
| 1199 | "' does not occur in pattern or was multiply specified!"); |
| 1200 | OperandsMap.erase(OpsList->getArgName(j)); |
| 1201 | Args.push_back(OpsList->getArgName(j)); |
| 1202 | } |
| 1203 | |
| 1204 | if (!OperandsMap.empty()) |
| 1205 | P->error("Operands list does not contain an entry for operand '" + |
| 1206 | *OperandsMap.begin() + "'!"); |
| 1207 | |
| 1208 | // If there is a code init for this fragment, emit the predicate code and |
| 1209 | // keep track of the fact that this fragment uses it. |
| 1210 | std::string Code = Fragments[i]->getValueAsCode("Predicate"); |
| 1211 | if (!Code.empty()) { |
| 1212 | if (P->getOnlyTree()->isLeaf()) |
| 1213 | OS << "inline bool Predicate_" << Fragments[i]->getName() |
| 1214 | << "(SDNode *N) {\n"; |
| 1215 | else { |
| 1216 | std::string ClassName = |
| 1217 | getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); |
| 1218 | const char *C2 = ClassName == "SDNode" ? "N" : "inN"; |
| 1219 | |
| 1220 | OS << "inline bool Predicate_" << Fragments[i]->getName() |
| 1221 | << "(SDNode *" << C2 << ") {\n"; |
| 1222 | if (ClassName != "SDNode") |
| 1223 | OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; |
| 1224 | } |
| 1225 | OS << Code << "\n}\n"; |
| 1226 | P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName()); |
| 1227 | } |
| 1228 | |
| 1229 | // If there is a node transformation corresponding to this, keep track of |
| 1230 | // it. |
| 1231 | Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); |
| 1232 | if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? |
| 1233 | P->getOnlyTree()->setTransformFn(Transform); |
| 1234 | } |
| 1235 | |
| 1236 | OS << "\n\n"; |
| 1237 | |
| 1238 | // Now that we've parsed all of the tree fragments, do a closure on them so |
| 1239 | // that there are not references to PatFrags left inside of them. |
| 1240 | for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), |
| 1241 | E = PatternFragments.end(); I != E; ++I) { |
| 1242 | TreePattern *ThePat = I->second; |
| 1243 | ThePat->InlinePatternFragments(); |
| 1244 | |
| 1245 | // Infer as many types as possible. Don't worry about it if we don't infer |
| 1246 | // all of them, some may depend on the inputs of the pattern. |
| 1247 | try { |
| 1248 | ThePat->InferAllTypes(); |
| 1249 | } catch (...) { |
| 1250 | // If this pattern fragment is not supported by this target (no types can |
| 1251 | // satisfy its constraints), just ignore it. If the bogus pattern is |
| 1252 | // actually used by instructions, the type consistency error will be |
| 1253 | // reported there. |
| 1254 | } |
| 1255 | |
| 1256 | // If debugging, print out the pattern fragment result. |
| 1257 | DEBUG(ThePat->dump()); |
| 1258 | } |
| 1259 | } |
| 1260 | |
| 1261 | void DAGISelEmitter::ParseDefaultOperands() { |
| 1262 | std::vector<Record*> DefaultOps[2]; |
| 1263 | DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); |
| 1264 | DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); |
| 1265 | |
| 1266 | // Find some SDNode. |
| 1267 | assert(!SDNodes.empty() && "No SDNodes parsed?"); |
| 1268 | Init *SomeSDNode = new DefInit(SDNodes.begin()->first); |
| 1269 | |
| 1270 | for (unsigned iter = 0; iter != 2; ++iter) { |
| 1271 | for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { |
| 1272 | DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); |
| 1273 | |
| 1274 | // Clone the DefaultInfo dag node, changing the operator from 'ops' to |
| 1275 | // SomeSDnode so that we can parse this. |
| 1276 | std::vector<std::pair<Init*, std::string> > Ops; |
| 1277 | for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) |
| 1278 | Ops.push_back(std::make_pair(DefaultInfo->getArg(op), |
| 1279 | DefaultInfo->getArgName(op))); |
| 1280 | DagInit *DI = new DagInit(SomeSDNode, Ops); |
| 1281 | |
| 1282 | // Create a TreePattern to parse this. |
| 1283 | TreePattern P(DefaultOps[iter][i], DI, false, *this); |
| 1284 | assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); |
| 1285 | |
| 1286 | // Copy the operands over into a DAGDefaultOperand. |
| 1287 | DAGDefaultOperand DefaultOpInfo; |
| 1288 | |
| 1289 | TreePatternNode *T = P.getTree(0); |
| 1290 | for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { |
| 1291 | TreePatternNode *TPN = T->getChild(op); |
| 1292 | while (TPN->ApplyTypeConstraints(P, false)) |
| 1293 | /* Resolve all types */; |
| 1294 | |
| 1295 | if (TPN->ContainsUnresolvedType()) |
| 1296 | if (iter == 0) |
| 1297 | throw "Value #" + utostr(i) + " of PredicateOperand '" + |
| 1298 | DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; |
| 1299 | else |
| 1300 | throw "Value #" + utostr(i) + " of OptionalDefOperand '" + |
| 1301 | DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; |
| 1302 | |
| 1303 | DefaultOpInfo.DefaultOps.push_back(TPN); |
| 1304 | } |
| 1305 | |
| 1306 | // Insert it into the DefaultOperands map so we can find it later. |
| 1307 | DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; |
| 1308 | } |
| 1309 | } |
| 1310 | } |
| 1311 | |
| 1312 | /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an |
| 1313 | /// instruction input. Return true if this is a real use. |
| 1314 | static bool HandleUse(TreePattern *I, TreePatternNode *Pat, |
| 1315 | std::map<std::string, TreePatternNode*> &InstInputs, |
| 1316 | std::vector<Record*> &InstImpInputs) { |
| 1317 | // No name -> not interesting. |
| 1318 | if (Pat->getName().empty()) { |
| 1319 | if (Pat->isLeaf()) { |
| 1320 | DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); |
| 1321 | if (DI && DI->getDef()->isSubClassOf("RegisterClass")) |
| 1322 | I->error("Input " + DI->getDef()->getName() + " must be named!"); |
| 1323 | else if (DI && DI->getDef()->isSubClassOf("Register")) |
| 1324 | InstImpInputs.push_back(DI->getDef()); |
Evan Cheng | f37df84 | 2007-09-11 19:52:18 +0000 | [diff] [blame^] | 1325 | ; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1326 | } |
| 1327 | return false; |
| 1328 | } |
| 1329 | |
| 1330 | Record *Rec; |
| 1331 | if (Pat->isLeaf()) { |
| 1332 | DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); |
| 1333 | if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); |
| 1334 | Rec = DI->getDef(); |
| 1335 | } else { |
| 1336 | assert(Pat->getNumChildren() == 0 && "can't be a use with children!"); |
| 1337 | Rec = Pat->getOperator(); |
| 1338 | } |
| 1339 | |
| 1340 | // SRCVALUE nodes are ignored. |
| 1341 | if (Rec->getName() == "srcvalue") |
| 1342 | return false; |
| 1343 | |
| 1344 | TreePatternNode *&Slot = InstInputs[Pat->getName()]; |
| 1345 | if (!Slot) { |
| 1346 | Slot = Pat; |
| 1347 | } else { |
| 1348 | Record *SlotRec; |
| 1349 | if (Slot->isLeaf()) { |
| 1350 | SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); |
| 1351 | } else { |
| 1352 | assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); |
| 1353 | SlotRec = Slot->getOperator(); |
| 1354 | } |
| 1355 | |
| 1356 | // Ensure that the inputs agree if we've already seen this input. |
| 1357 | if (Rec != SlotRec) |
| 1358 | I->error("All $" + Pat->getName() + " inputs must agree with each other"); |
| 1359 | if (Slot->getExtTypes() != Pat->getExtTypes()) |
| 1360 | I->error("All $" + Pat->getName() + " inputs must agree with each other"); |
| 1361 | } |
| 1362 | return true; |
| 1363 | } |
| 1364 | |
| 1365 | /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is |
| 1366 | /// part of "I", the instruction), computing the set of inputs and outputs of |
| 1367 | /// the pattern. Report errors if we see anything naughty. |
| 1368 | void DAGISelEmitter:: |
| 1369 | FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, |
| 1370 | std::map<std::string, TreePatternNode*> &InstInputs, |
| 1371 | std::map<std::string, TreePatternNode*>&InstResults, |
| 1372 | std::vector<Record*> &InstImpInputs, |
| 1373 | std::vector<Record*> &InstImpResults) { |
| 1374 | if (Pat->isLeaf()) { |
| 1375 | bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); |
| 1376 | if (!isUse && Pat->getTransformFn()) |
| 1377 | I->error("Cannot specify a transform function for a non-input value!"); |
| 1378 | return; |
| 1379 | } else if (Pat->getOperator()->getName() != "set") { |
| 1380 | // If this is not a set, verify that the children nodes are not void typed, |
| 1381 | // and recurse. |
| 1382 | for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { |
| 1383 | if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid) |
| 1384 | I->error("Cannot have void nodes inside of patterns!"); |
| 1385 | FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, |
| 1386 | InstImpInputs, InstImpResults); |
| 1387 | } |
| 1388 | |
| 1389 | // If this is a non-leaf node with no children, treat it basically as if |
| 1390 | // it were a leaf. This handles nodes like (imm). |
| 1391 | bool isUse = false; |
| 1392 | if (Pat->getNumChildren() == 0) |
| 1393 | isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); |
| 1394 | |
| 1395 | if (!isUse && Pat->getTransformFn()) |
| 1396 | I->error("Cannot specify a transform function for a non-input value!"); |
| 1397 | return; |
| 1398 | } |
| 1399 | |
| 1400 | // Otherwise, this is a set, validate and collect instruction results. |
| 1401 | if (Pat->getNumChildren() == 0) |
| 1402 | I->error("set requires operands!"); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1403 | |
| 1404 | if (Pat->getTransformFn()) |
| 1405 | I->error("Cannot specify a transform function on a set node!"); |
| 1406 | |
| 1407 | // Check the set destinations. |
Evan Cheng | f37df84 | 2007-09-11 19:52:18 +0000 | [diff] [blame^] | 1408 | unsigned NumDests = Pat->getNumChildren()-1; |
| 1409 | for (unsigned i = 0; i != NumDests; ++i) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1410 | TreePatternNode *Dest = Pat->getChild(i); |
| 1411 | if (!Dest->isLeaf()) |
| 1412 | I->error("set destination should be a register!"); |
| 1413 | |
| 1414 | DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); |
| 1415 | if (!Val) |
| 1416 | I->error("set destination should be a register!"); |
| 1417 | |
| 1418 | if (Val->getDef()->isSubClassOf("RegisterClass") || |
| 1419 | Val->getDef()->getName() == "ptr_rc") { |
| 1420 | if (Dest->getName().empty()) |
| 1421 | I->error("set destination must have a name!"); |
| 1422 | if (InstResults.count(Dest->getName())) |
| 1423 | I->error("cannot set '" + Dest->getName() +"' multiple times"); |
| 1424 | InstResults[Dest->getName()] = Dest; |
| 1425 | } else if (Val->getDef()->isSubClassOf("Register")) { |
| 1426 | InstImpResults.push_back(Val->getDef()); |
Evan Cheng | f37df84 | 2007-09-11 19:52:18 +0000 | [diff] [blame^] | 1427 | ; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1428 | } else { |
| 1429 | I->error("set destination should be a register!"); |
| 1430 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1431 | } |
Evan Cheng | f37df84 | 2007-09-11 19:52:18 +0000 | [diff] [blame^] | 1432 | |
| 1433 | // Verify and collect info from the computation. |
| 1434 | FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), |
| 1435 | InstInputs, InstResults, |
| 1436 | InstImpInputs, InstImpResults); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1437 | } |
| 1438 | |
| 1439 | /// ParseInstructions - Parse all of the instructions, inlining and resolving |
| 1440 | /// any fragments involved. This populates the Instructions list with fully |
| 1441 | /// resolved instructions. |
| 1442 | void DAGISelEmitter::ParseInstructions() { |
| 1443 | std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); |
| 1444 | |
| 1445 | for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { |
| 1446 | ListInit *LI = 0; |
| 1447 | |
| 1448 | if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) |
| 1449 | LI = Instrs[i]->getValueAsListInit("Pattern"); |
| 1450 | |
| 1451 | // If there is no pattern, only collect minimal information about the |
| 1452 | // instruction for its operand list. We have to assume that there is one |
| 1453 | // result, as we have no detailed info. |
| 1454 | if (!LI || LI->getSize() == 0) { |
| 1455 | std::vector<Record*> Results; |
| 1456 | std::vector<Record*> Operands; |
| 1457 | |
| 1458 | CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); |
| 1459 | |
| 1460 | if (InstInfo.OperandList.size() != 0) { |
Evan Cheng | fc61b59 | 2007-07-20 00:21:23 +0000 | [diff] [blame] | 1461 | if (InstInfo.NumDefs == 0) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1462 | // These produce no results |
| 1463 | for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) |
| 1464 | Operands.push_back(InstInfo.OperandList[j].Rec); |
| 1465 | } else { |
| 1466 | // Assume the first operand is the result. |
| 1467 | Results.push_back(InstInfo.OperandList[0].Rec); |
| 1468 | |
| 1469 | // The rest are inputs. |
| 1470 | for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) |
| 1471 | Operands.push_back(InstInfo.OperandList[j].Rec); |
| 1472 | } |
| 1473 | } |
| 1474 | |
| 1475 | // Create and insert the instruction. |
| 1476 | std::vector<Record*> ImpResults; |
| 1477 | std::vector<Record*> ImpOperands; |
| 1478 | Instructions.insert(std::make_pair(Instrs[i], |
| 1479 | DAGInstruction(0, Results, Operands, ImpResults, |
| 1480 | ImpOperands))); |
| 1481 | continue; // no pattern. |
| 1482 | } |
| 1483 | |
| 1484 | // Parse the instruction. |
| 1485 | TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); |
| 1486 | // Inline pattern fragments into it. |
| 1487 | I->InlinePatternFragments(); |
| 1488 | |
| 1489 | // Infer as many types as possible. If we cannot infer all of them, we can |
| 1490 | // never do anything with this instruction pattern: report it to the user. |
| 1491 | if (!I->InferAllTypes()) |
| 1492 | I->error("Could not infer all types in pattern!"); |
| 1493 | |
| 1494 | // InstInputs - Keep track of all of the inputs of the instruction, along |
| 1495 | // with the record they are declared as. |
| 1496 | std::map<std::string, TreePatternNode*> InstInputs; |
| 1497 | |
| 1498 | // InstResults - Keep track of all the virtual registers that are 'set' |
| 1499 | // in the instruction, including what reg class they are. |
| 1500 | std::map<std::string, TreePatternNode*> InstResults; |
| 1501 | |
| 1502 | std::vector<Record*> InstImpInputs; |
| 1503 | std::vector<Record*> InstImpResults; |
| 1504 | |
| 1505 | // Verify that the top-level forms in the instruction are of void type, and |
| 1506 | // fill in the InstResults map. |
| 1507 | for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { |
| 1508 | TreePatternNode *Pat = I->getTree(j); |
| 1509 | if (Pat->getExtTypeNum(0) != MVT::isVoid) |
| 1510 | I->error("Top-level forms in instruction pattern should have" |
| 1511 | " void types"); |
| 1512 | |
| 1513 | // Find inputs and outputs, and verify the structure of the uses/defs. |
| 1514 | FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, |
| 1515 | InstImpInputs, InstImpResults); |
| 1516 | } |
| 1517 | |
| 1518 | // Now that we have inputs and outputs of the pattern, inspect the operands |
| 1519 | // list for the instruction. This determines the order that operands are |
| 1520 | // added to the machine instruction the node corresponds to. |
| 1521 | unsigned NumResults = InstResults.size(); |
| 1522 | |
| 1523 | // Parse the operands list from the (ops) list, validating it. |
| 1524 | assert(I->getArgList().empty() && "Args list should still be empty here!"); |
| 1525 | CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); |
| 1526 | |
| 1527 | // Check that all of the results occur first in the list. |
| 1528 | std::vector<Record*> Results; |
| 1529 | TreePatternNode *Res0Node = NULL; |
| 1530 | for (unsigned i = 0; i != NumResults; ++i) { |
| 1531 | if (i == CGI.OperandList.size()) |
| 1532 | I->error("'" + InstResults.begin()->first + |
| 1533 | "' set but does not appear in operand list!"); |
| 1534 | const std::string &OpName = CGI.OperandList[i].Name; |
| 1535 | |
| 1536 | // Check that it exists in InstResults. |
| 1537 | TreePatternNode *RNode = InstResults[OpName]; |
| 1538 | if (RNode == 0) |
| 1539 | I->error("Operand $" + OpName + " does not exist in operand list!"); |
| 1540 | |
| 1541 | if (i == 0) |
| 1542 | Res0Node = RNode; |
| 1543 | Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); |
| 1544 | if (R == 0) |
| 1545 | I->error("Operand $" + OpName + " should be a set destination: all " |
| 1546 | "outputs must occur before inputs in operand list!"); |
| 1547 | |
| 1548 | if (CGI.OperandList[i].Rec != R) |
| 1549 | I->error("Operand $" + OpName + " class mismatch!"); |
| 1550 | |
| 1551 | // Remember the return type. |
| 1552 | Results.push_back(CGI.OperandList[i].Rec); |
| 1553 | |
| 1554 | // Okay, this one checks out. |
| 1555 | InstResults.erase(OpName); |
| 1556 | } |
| 1557 | |
| 1558 | // Loop over the inputs next. Make a copy of InstInputs so we can destroy |
| 1559 | // the copy while we're checking the inputs. |
| 1560 | std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); |
| 1561 | |
| 1562 | std::vector<TreePatternNode*> ResultNodeOperands; |
| 1563 | std::vector<Record*> Operands; |
| 1564 | for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { |
| 1565 | CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; |
| 1566 | const std::string &OpName = Op.Name; |
| 1567 | if (OpName.empty()) |
| 1568 | I->error("Operand #" + utostr(i) + " in operands list has no name!"); |
| 1569 | |
| 1570 | if (!InstInputsCheck.count(OpName)) { |
| 1571 | // If this is an predicate operand or optional def operand with an |
| 1572 | // DefaultOps set filled in, we can ignore this. When we codegen it, |
| 1573 | // we will do so as always executed. |
| 1574 | if (Op.Rec->isSubClassOf("PredicateOperand") || |
| 1575 | Op.Rec->isSubClassOf("OptionalDefOperand")) { |
| 1576 | // Does it have a non-empty DefaultOps field? If so, ignore this |
| 1577 | // operand. |
| 1578 | if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) |
| 1579 | continue; |
| 1580 | } |
| 1581 | I->error("Operand $" + OpName + |
| 1582 | " does not appear in the instruction pattern"); |
| 1583 | } |
| 1584 | TreePatternNode *InVal = InstInputsCheck[OpName]; |
| 1585 | InstInputsCheck.erase(OpName); // It occurred, remove from map. |
| 1586 | |
| 1587 | if (InVal->isLeaf() && |
| 1588 | dynamic_cast<DefInit*>(InVal->getLeafValue())) { |
| 1589 | Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); |
| 1590 | if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) |
| 1591 | I->error("Operand $" + OpName + "'s register class disagrees" |
| 1592 | " between the operand and pattern"); |
| 1593 | } |
| 1594 | Operands.push_back(Op.Rec); |
| 1595 | |
| 1596 | // Construct the result for the dest-pattern operand list. |
| 1597 | TreePatternNode *OpNode = InVal->clone(); |
| 1598 | |
| 1599 | // No predicate is useful on the result. |
| 1600 | OpNode->setPredicateFn(""); |
| 1601 | |
| 1602 | // Promote the xform function to be an explicit node if set. |
| 1603 | if (Record *Xform = OpNode->getTransformFn()) { |
| 1604 | OpNode->setTransformFn(0); |
| 1605 | std::vector<TreePatternNode*> Children; |
| 1606 | Children.push_back(OpNode); |
| 1607 | OpNode = new TreePatternNode(Xform, Children); |
| 1608 | } |
| 1609 | |
| 1610 | ResultNodeOperands.push_back(OpNode); |
| 1611 | } |
| 1612 | |
| 1613 | if (!InstInputsCheck.empty()) |
| 1614 | I->error("Input operand $" + InstInputsCheck.begin()->first + |
| 1615 | " occurs in pattern but not in operands list!"); |
| 1616 | |
| 1617 | TreePatternNode *ResultPattern = |
| 1618 | new TreePatternNode(I->getRecord(), ResultNodeOperands); |
| 1619 | // Copy fully inferred output node type to instruction result pattern. |
| 1620 | if (NumResults > 0) |
| 1621 | ResultPattern->setTypes(Res0Node->getExtTypes()); |
| 1622 | |
| 1623 | // Create and insert the instruction. |
| 1624 | DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs); |
| 1625 | Instructions.insert(std::make_pair(I->getRecord(), TheInst)); |
| 1626 | |
| 1627 | // Use a temporary tree pattern to infer all types and make sure that the |
| 1628 | // constructed result is correct. This depends on the instruction already |
| 1629 | // being inserted into the Instructions map. |
| 1630 | TreePattern Temp(I->getRecord(), ResultPattern, false, *this); |
| 1631 | Temp.InferAllTypes(); |
| 1632 | |
| 1633 | DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; |
| 1634 | TheInsertedInst.setResultPattern(Temp.getOnlyTree()); |
| 1635 | |
| 1636 | DEBUG(I->dump()); |
| 1637 | } |
| 1638 | |
| 1639 | // If we can, convert the instructions to be patterns that are matched! |
| 1640 | for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(), |
| 1641 | E = Instructions.end(); II != E; ++II) { |
| 1642 | DAGInstruction &TheInst = II->second; |
| 1643 | TreePattern *I = TheInst.getPattern(); |
| 1644 | if (I == 0) continue; // No pattern. |
| 1645 | |
| 1646 | if (I->getNumTrees() != 1) { |
| 1647 | cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!"; |
| 1648 | continue; |
| 1649 | } |
| 1650 | TreePatternNode *Pattern = I->getTree(0); |
| 1651 | TreePatternNode *SrcPattern; |
| 1652 | if (Pattern->getOperator()->getName() == "set") { |
Evan Cheng | f37df84 | 2007-09-11 19:52:18 +0000 | [diff] [blame^] | 1653 | SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1654 | } else{ |
| 1655 | // Not a set (store or something?) |
| 1656 | SrcPattern = Pattern; |
| 1657 | } |
| 1658 | |
| 1659 | std::string Reason; |
| 1660 | if (!SrcPattern->canPatternMatch(Reason, *this)) |
| 1661 | I->error("Instruction can never match: " + Reason); |
| 1662 | |
| 1663 | Record *Instr = II->first; |
| 1664 | TreePatternNode *DstPattern = TheInst.getResultPattern(); |
| 1665 | PatternsToMatch. |
| 1666 | push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"), |
| 1667 | SrcPattern, DstPattern, |
| 1668 | Instr->getValueAsInt("AddedComplexity"))); |
| 1669 | } |
| 1670 | } |
| 1671 | |
| 1672 | void DAGISelEmitter::ParsePatterns() { |
| 1673 | std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); |
| 1674 | |
| 1675 | for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| 1676 | DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); |
| 1677 | TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this); |
| 1678 | |
| 1679 | // Inline pattern fragments into it. |
| 1680 | Pattern->InlinePatternFragments(); |
| 1681 | |
| 1682 | ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); |
| 1683 | if (LI->getSize() == 0) continue; // no pattern. |
| 1684 | |
| 1685 | // Parse the instruction. |
| 1686 | TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); |
| 1687 | |
| 1688 | // Inline pattern fragments into it. |
| 1689 | Result->InlinePatternFragments(); |
| 1690 | |
| 1691 | if (Result->getNumTrees() != 1) |
| 1692 | Result->error("Cannot handle instructions producing instructions " |
| 1693 | "with temporaries yet!"); |
| 1694 | |
| 1695 | bool IterateInference; |
| 1696 | bool InferredAllPatternTypes, InferredAllResultTypes; |
| 1697 | do { |
| 1698 | // Infer as many types as possible. If we cannot infer all of them, we |
| 1699 | // can never do anything with this pattern: report it to the user. |
| 1700 | InferredAllPatternTypes = Pattern->InferAllTypes(); |
| 1701 | |
| 1702 | // Infer as many types as possible. If we cannot infer all of them, we |
| 1703 | // can never do anything with this pattern: report it to the user. |
| 1704 | InferredAllResultTypes = Result->InferAllTypes(); |
| 1705 | |
| 1706 | // Apply the type of the result to the source pattern. This helps us |
| 1707 | // resolve cases where the input type is known to be a pointer type (which |
| 1708 | // is considered resolved), but the result knows it needs to be 32- or |
| 1709 | // 64-bits. Infer the other way for good measure. |
| 1710 | IterateInference = Pattern->getOnlyTree()-> |
| 1711 | UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result); |
| 1712 | IterateInference |= Result->getOnlyTree()-> |
| 1713 | UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result); |
| 1714 | } while (IterateInference); |
| 1715 | |
| 1716 | // Verify that we inferred enough types that we can do something with the |
| 1717 | // pattern and result. If these fire the user has to add type casts. |
| 1718 | if (!InferredAllPatternTypes) |
| 1719 | Pattern->error("Could not infer all types in pattern!"); |
| 1720 | if (!InferredAllResultTypes) |
| 1721 | Result->error("Could not infer all types in pattern result!"); |
| 1722 | |
| 1723 | // Validate that the input pattern is correct. |
| 1724 | { |
| 1725 | std::map<std::string, TreePatternNode*> InstInputs; |
| 1726 | std::map<std::string, TreePatternNode*> InstResults; |
| 1727 | std::vector<Record*> InstImpInputs; |
| 1728 | std::vector<Record*> InstImpResults; |
| 1729 | FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(), |
| 1730 | InstInputs, InstResults, |
| 1731 | InstImpInputs, InstImpResults); |
| 1732 | } |
| 1733 | |
| 1734 | // Promote the xform function to be an explicit node if set. |
| 1735 | std::vector<TreePatternNode*> ResultNodeOperands; |
| 1736 | TreePatternNode *DstPattern = Result->getOnlyTree(); |
| 1737 | for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { |
| 1738 | TreePatternNode *OpNode = DstPattern->getChild(ii); |
| 1739 | if (Record *Xform = OpNode->getTransformFn()) { |
| 1740 | OpNode->setTransformFn(0); |
| 1741 | std::vector<TreePatternNode*> Children; |
| 1742 | Children.push_back(OpNode); |
| 1743 | OpNode = new TreePatternNode(Xform, Children); |
| 1744 | } |
| 1745 | ResultNodeOperands.push_back(OpNode); |
| 1746 | } |
| 1747 | DstPattern = Result->getOnlyTree(); |
| 1748 | if (!DstPattern->isLeaf()) |
| 1749 | DstPattern = new TreePatternNode(DstPattern->getOperator(), |
| 1750 | ResultNodeOperands); |
| 1751 | DstPattern->setTypes(Result->getOnlyTree()->getExtTypes()); |
| 1752 | TreePattern Temp(Result->getRecord(), DstPattern, false, *this); |
| 1753 | Temp.InferAllTypes(); |
| 1754 | |
| 1755 | std::string Reason; |
| 1756 | if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this)) |
| 1757 | Pattern->error("Pattern can never match: " + Reason); |
| 1758 | |
| 1759 | PatternsToMatch. |
| 1760 | push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"), |
| 1761 | Pattern->getOnlyTree(), |
| 1762 | Temp.getOnlyTree(), |
| 1763 | Patterns[i]->getValueAsInt("AddedComplexity"))); |
| 1764 | } |
| 1765 | } |
| 1766 | |
| 1767 | /// CombineChildVariants - Given a bunch of permutations of each child of the |
| 1768 | /// 'operator' node, put them together in all possible ways. |
| 1769 | static void CombineChildVariants(TreePatternNode *Orig, |
| 1770 | const std::vector<std::vector<TreePatternNode*> > &ChildVariants, |
| 1771 | std::vector<TreePatternNode*> &OutVariants, |
| 1772 | DAGISelEmitter &ISE) { |
| 1773 | // Make sure that each operand has at least one variant to choose from. |
| 1774 | for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) |
| 1775 | if (ChildVariants[i].empty()) |
| 1776 | return; |
| 1777 | |
| 1778 | // The end result is an all-pairs construction of the resultant pattern. |
| 1779 | std::vector<unsigned> Idxs; |
| 1780 | Idxs.resize(ChildVariants.size()); |
| 1781 | bool NotDone = true; |
| 1782 | while (NotDone) { |
| 1783 | // Create the variant and add it to the output list. |
| 1784 | std::vector<TreePatternNode*> NewChildren; |
| 1785 | for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) |
| 1786 | NewChildren.push_back(ChildVariants[i][Idxs[i]]); |
| 1787 | TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); |
| 1788 | |
| 1789 | // Copy over properties. |
| 1790 | R->setName(Orig->getName()); |
| 1791 | R->setPredicateFn(Orig->getPredicateFn()); |
| 1792 | R->setTransformFn(Orig->getTransformFn()); |
| 1793 | R->setTypes(Orig->getExtTypes()); |
| 1794 | |
| 1795 | // If this pattern cannot every match, do not include it as a variant. |
| 1796 | std::string ErrString; |
| 1797 | if (!R->canPatternMatch(ErrString, ISE)) { |
| 1798 | delete R; |
| 1799 | } else { |
| 1800 | bool AlreadyExists = false; |
| 1801 | |
| 1802 | // Scan to see if this pattern has already been emitted. We can get |
| 1803 | // duplication due to things like commuting: |
| 1804 | // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) |
| 1805 | // which are the same pattern. Ignore the dups. |
| 1806 | for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) |
| 1807 | if (R->isIsomorphicTo(OutVariants[i])) { |
| 1808 | AlreadyExists = true; |
| 1809 | break; |
| 1810 | } |
| 1811 | |
| 1812 | if (AlreadyExists) |
| 1813 | delete R; |
| 1814 | else |
| 1815 | OutVariants.push_back(R); |
| 1816 | } |
| 1817 | |
| 1818 | // Increment indices to the next permutation. |
| 1819 | NotDone = false; |
| 1820 | // Look for something we can increment without causing a wrap-around. |
| 1821 | for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) { |
| 1822 | if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) { |
| 1823 | NotDone = true; // Found something to increment. |
| 1824 | break; |
| 1825 | } |
| 1826 | Idxs[IdxsIdx] = 0; |
| 1827 | } |
| 1828 | } |
| 1829 | } |
| 1830 | |
| 1831 | /// CombineChildVariants - A helper function for binary operators. |
| 1832 | /// |
| 1833 | static void CombineChildVariants(TreePatternNode *Orig, |
| 1834 | const std::vector<TreePatternNode*> &LHS, |
| 1835 | const std::vector<TreePatternNode*> &RHS, |
| 1836 | std::vector<TreePatternNode*> &OutVariants, |
| 1837 | DAGISelEmitter &ISE) { |
| 1838 | std::vector<std::vector<TreePatternNode*> > ChildVariants; |
| 1839 | ChildVariants.push_back(LHS); |
| 1840 | ChildVariants.push_back(RHS); |
| 1841 | CombineChildVariants(Orig, ChildVariants, OutVariants, ISE); |
| 1842 | } |
| 1843 | |
| 1844 | |
| 1845 | static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, |
| 1846 | std::vector<TreePatternNode *> &Children) { |
| 1847 | assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); |
| 1848 | Record *Operator = N->getOperator(); |
| 1849 | |
| 1850 | // Only permit raw nodes. |
| 1851 | if (!N->getName().empty() || !N->getPredicateFn().empty() || |
| 1852 | N->getTransformFn()) { |
| 1853 | Children.push_back(N); |
| 1854 | return; |
| 1855 | } |
| 1856 | |
| 1857 | if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) |
| 1858 | Children.push_back(N->getChild(0)); |
| 1859 | else |
| 1860 | GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); |
| 1861 | |
| 1862 | if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) |
| 1863 | Children.push_back(N->getChild(1)); |
| 1864 | else |
| 1865 | GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); |
| 1866 | } |
| 1867 | |
| 1868 | /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of |
| 1869 | /// the (potentially recursive) pattern by using algebraic laws. |
| 1870 | /// |
| 1871 | static void GenerateVariantsOf(TreePatternNode *N, |
| 1872 | std::vector<TreePatternNode*> &OutVariants, |
| 1873 | DAGISelEmitter &ISE) { |
| 1874 | // We cannot permute leaves. |
| 1875 | if (N->isLeaf()) { |
| 1876 | OutVariants.push_back(N); |
| 1877 | return; |
| 1878 | } |
| 1879 | |
| 1880 | // Look up interesting info about the node. |
| 1881 | const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator()); |
| 1882 | |
| 1883 | // If this node is associative, reassociate. |
| 1884 | if (NodeInfo.hasProperty(SDNPAssociative)) { |
| 1885 | // Reassociate by pulling together all of the linked operators |
| 1886 | std::vector<TreePatternNode*> MaximalChildren; |
| 1887 | GatherChildrenOfAssociativeOpcode(N, MaximalChildren); |
| 1888 | |
| 1889 | // Only handle child sizes of 3. Otherwise we'll end up trying too many |
| 1890 | // permutations. |
| 1891 | if (MaximalChildren.size() == 3) { |
| 1892 | // Find the variants of all of our maximal children. |
| 1893 | std::vector<TreePatternNode*> AVariants, BVariants, CVariants; |
| 1894 | GenerateVariantsOf(MaximalChildren[0], AVariants, ISE); |
| 1895 | GenerateVariantsOf(MaximalChildren[1], BVariants, ISE); |
| 1896 | GenerateVariantsOf(MaximalChildren[2], CVariants, ISE); |
| 1897 | |
| 1898 | // There are only two ways we can permute the tree: |
| 1899 | // (A op B) op C and A op (B op C) |
| 1900 | // Within these forms, we can also permute A/B/C. |
| 1901 | |
| 1902 | // Generate legal pair permutations of A/B/C. |
| 1903 | std::vector<TreePatternNode*> ABVariants; |
| 1904 | std::vector<TreePatternNode*> BAVariants; |
| 1905 | std::vector<TreePatternNode*> ACVariants; |
| 1906 | std::vector<TreePatternNode*> CAVariants; |
| 1907 | std::vector<TreePatternNode*> BCVariants; |
| 1908 | std::vector<TreePatternNode*> CBVariants; |
| 1909 | CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE); |
| 1910 | CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE); |
| 1911 | CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE); |
| 1912 | CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE); |
| 1913 | CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE); |
| 1914 | CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE); |
| 1915 | |
| 1916 | // Combine those into the result: (x op x) op x |
| 1917 | CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE); |
| 1918 | CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE); |
| 1919 | CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE); |
| 1920 | CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE); |
| 1921 | CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE); |
| 1922 | CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE); |
| 1923 | |
| 1924 | // Combine those into the result: x op (x op x) |
| 1925 | CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE); |
| 1926 | CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE); |
| 1927 | CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE); |
| 1928 | CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE); |
| 1929 | CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE); |
| 1930 | CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE); |
| 1931 | return; |
| 1932 | } |
| 1933 | } |
| 1934 | |
| 1935 | // Compute permutations of all children. |
| 1936 | std::vector<std::vector<TreePatternNode*> > ChildVariants; |
| 1937 | ChildVariants.resize(N->getNumChildren()); |
| 1938 | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| 1939 | GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE); |
| 1940 | |
| 1941 | // Build all permutations based on how the children were formed. |
| 1942 | CombineChildVariants(N, ChildVariants, OutVariants, ISE); |
| 1943 | |
| 1944 | // If this node is commutative, consider the commuted order. |
| 1945 | if (NodeInfo.hasProperty(SDNPCommutative)) { |
| 1946 | assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!"); |
| 1947 | // Don't count children which are actually register references. |
| 1948 | unsigned NC = 0; |
| 1949 | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| 1950 | TreePatternNode *Child = N->getChild(i); |
| 1951 | if (Child->isLeaf()) |
| 1952 | if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { |
| 1953 | Record *RR = DI->getDef(); |
| 1954 | if (RR->isSubClassOf("Register")) |
| 1955 | continue; |
| 1956 | } |
| 1957 | NC++; |
| 1958 | } |
| 1959 | // Consider the commuted order. |
| 1960 | if (NC == 2) |
| 1961 | CombineChildVariants(N, ChildVariants[1], ChildVariants[0], |
| 1962 | OutVariants, ISE); |
| 1963 | } |
| 1964 | } |
| 1965 | |
| 1966 | |
| 1967 | // GenerateVariants - Generate variants. For example, commutative patterns can |
| 1968 | // match multiple ways. Add them to PatternsToMatch as well. |
| 1969 | void DAGISelEmitter::GenerateVariants() { |
| 1970 | |
| 1971 | DOUT << "Generating instruction variants.\n"; |
| 1972 | |
| 1973 | // Loop over all of the patterns we've collected, checking to see if we can |
| 1974 | // generate variants of the instruction, through the exploitation of |
| 1975 | // identities. This permits the target to provide agressive matching without |
| 1976 | // the .td file having to contain tons of variants of instructions. |
| 1977 | // |
| 1978 | // Note that this loop adds new patterns to the PatternsToMatch list, but we |
| 1979 | // intentionally do not reconsider these. Any variants of added patterns have |
| 1980 | // already been added. |
| 1981 | // |
| 1982 | for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { |
| 1983 | std::vector<TreePatternNode*> Variants; |
| 1984 | GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this); |
| 1985 | |
| 1986 | assert(!Variants.empty() && "Must create at least original variant!"); |
| 1987 | Variants.erase(Variants.begin()); // Remove the original pattern. |
| 1988 | |
| 1989 | if (Variants.empty()) // No variants for this pattern. |
| 1990 | continue; |
| 1991 | |
| 1992 | DOUT << "FOUND VARIANTS OF: "; |
| 1993 | DEBUG(PatternsToMatch[i].getSrcPattern()->dump()); |
| 1994 | DOUT << "\n"; |
| 1995 | |
| 1996 | for (unsigned v = 0, e = Variants.size(); v != e; ++v) { |
| 1997 | TreePatternNode *Variant = Variants[v]; |
| 1998 | |
| 1999 | DOUT << " VAR#" << v << ": "; |
| 2000 | DEBUG(Variant->dump()); |
| 2001 | DOUT << "\n"; |
| 2002 | |
| 2003 | // Scan to see if an instruction or explicit pattern already matches this. |
| 2004 | bool AlreadyExists = false; |
| 2005 | for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { |
| 2006 | // Check to see if this variant already exists. |
| 2007 | if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) { |
| 2008 | DOUT << " *** ALREADY EXISTS, ignoring variant.\n"; |
| 2009 | AlreadyExists = true; |
| 2010 | break; |
| 2011 | } |
| 2012 | } |
| 2013 | // If we already have it, ignore the variant. |
| 2014 | if (AlreadyExists) continue; |
| 2015 | |
| 2016 | // Otherwise, add it to the list of patterns we have. |
| 2017 | PatternsToMatch. |
| 2018 | push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), |
| 2019 | Variant, PatternsToMatch[i].getDstPattern(), |
| 2020 | PatternsToMatch[i].getAddedComplexity())); |
| 2021 | } |
| 2022 | |
| 2023 | DOUT << "\n"; |
| 2024 | } |
| 2025 | } |
| 2026 | |
| 2027 | // NodeIsComplexPattern - return true if N is a leaf node and a subclass of |
| 2028 | // ComplexPattern. |
| 2029 | static bool NodeIsComplexPattern(TreePatternNode *N) |
| 2030 | { |
| 2031 | return (N->isLeaf() && |
| 2032 | dynamic_cast<DefInit*>(N->getLeafValue()) && |
| 2033 | static_cast<DefInit*>(N->getLeafValue())->getDef()-> |
| 2034 | isSubClassOf("ComplexPattern")); |
| 2035 | } |
| 2036 | |
| 2037 | // NodeGetComplexPattern - return the pointer to the ComplexPattern if N |
| 2038 | // is a leaf node and a subclass of ComplexPattern, else it returns NULL. |
| 2039 | static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N, |
| 2040 | DAGISelEmitter &ISE) |
| 2041 | { |
| 2042 | if (N->isLeaf() && |
| 2043 | dynamic_cast<DefInit*>(N->getLeafValue()) && |
| 2044 | static_cast<DefInit*>(N->getLeafValue())->getDef()-> |
| 2045 | isSubClassOf("ComplexPattern")) { |
| 2046 | return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue()) |
| 2047 | ->getDef()); |
| 2048 | } |
| 2049 | return NULL; |
| 2050 | } |
| 2051 | |
| 2052 | /// getPatternSize - Return the 'size' of this pattern. We want to match large |
| 2053 | /// patterns before small ones. This is used to determine the size of a |
| 2054 | /// pattern. |
| 2055 | static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { |
| 2056 | assert((isExtIntegerInVTs(P->getExtTypes()) || |
| 2057 | isExtFloatingPointInVTs(P->getExtTypes()) || |
| 2058 | P->getExtTypeNum(0) == MVT::isVoid || |
| 2059 | P->getExtTypeNum(0) == MVT::Flag || |
| 2060 | P->getExtTypeNum(0) == MVT::iPTR) && |
| 2061 | "Not a valid pattern node to size!"); |
| 2062 | unsigned Size = 3; // The node itself. |
| 2063 | // If the root node is a ConstantSDNode, increases its size. |
| 2064 | // e.g. (set R32:$dst, 0). |
| 2065 | if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) |
| 2066 | Size += 2; |
| 2067 | |
| 2068 | // FIXME: This is a hack to statically increase the priority of patterns |
| 2069 | // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. |
| 2070 | // Later we can allow complexity / cost for each pattern to be (optionally) |
| 2071 | // specified. To get best possible pattern match we'll need to dynamically |
| 2072 | // calculate the complexity of all patterns a dag can potentially map to. |
| 2073 | const ComplexPattern *AM = NodeGetComplexPattern(P, ISE); |
| 2074 | if (AM) |
| 2075 | Size += AM->getNumOperands() * 3; |
| 2076 | |
| 2077 | // If this node has some predicate function that must match, it adds to the |
| 2078 | // complexity of this node. |
| 2079 | if (!P->getPredicateFn().empty()) |
| 2080 | ++Size; |
| 2081 | |
| 2082 | // Count children in the count if they are also nodes. |
| 2083 | for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { |
| 2084 | TreePatternNode *Child = P->getChild(i); |
| 2085 | if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other) |
| 2086 | Size += getPatternSize(Child, ISE); |
| 2087 | else if (Child->isLeaf()) { |
| 2088 | if (dynamic_cast<IntInit*>(Child->getLeafValue())) |
| 2089 | Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). |
| 2090 | else if (NodeIsComplexPattern(Child)) |
| 2091 | Size += getPatternSize(Child, ISE); |
| 2092 | else if (!Child->getPredicateFn().empty()) |
| 2093 | ++Size; |
| 2094 | } |
| 2095 | } |
| 2096 | |
| 2097 | return Size; |
| 2098 | } |
| 2099 | |
| 2100 | /// getResultPatternCost - Compute the number of instructions for this pattern. |
| 2101 | /// This is a temporary hack. We should really include the instruction |
| 2102 | /// latencies in this calculation. |
| 2103 | static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) { |
| 2104 | if (P->isLeaf()) return 0; |
| 2105 | |
| 2106 | unsigned Cost = 0; |
| 2107 | Record *Op = P->getOperator(); |
| 2108 | if (Op->isSubClassOf("Instruction")) { |
| 2109 | Cost++; |
| 2110 | CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName()); |
| 2111 | if (II.usesCustomDAGSchedInserter) |
| 2112 | Cost += 10; |
| 2113 | } |
| 2114 | for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) |
| 2115 | Cost += getResultPatternCost(P->getChild(i), ISE); |
| 2116 | return Cost; |
| 2117 | } |
| 2118 | |
| 2119 | /// getResultPatternCodeSize - Compute the code size of instructions for this |
| 2120 | /// pattern. |
| 2121 | static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { |
| 2122 | if (P->isLeaf()) return 0; |
| 2123 | |
| 2124 | unsigned Cost = 0; |
| 2125 | Record *Op = P->getOperator(); |
| 2126 | if (Op->isSubClassOf("Instruction")) { |
| 2127 | Cost += Op->getValueAsInt("CodeSize"); |
| 2128 | } |
| 2129 | for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) |
| 2130 | Cost += getResultPatternSize(P->getChild(i), ISE); |
| 2131 | return Cost; |
| 2132 | } |
| 2133 | |
| 2134 | // PatternSortingPredicate - return true if we prefer to match LHS before RHS. |
| 2135 | // In particular, we want to match maximal patterns first and lowest cost within |
| 2136 | // a particular complexity first. |
| 2137 | struct PatternSortingPredicate { |
| 2138 | PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {}; |
| 2139 | DAGISelEmitter &ISE; |
| 2140 | |
| 2141 | bool operator()(PatternToMatch *LHS, |
| 2142 | PatternToMatch *RHS) { |
| 2143 | unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE); |
| 2144 | unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE); |
| 2145 | LHSSize += LHS->getAddedComplexity(); |
| 2146 | RHSSize += RHS->getAddedComplexity(); |
| 2147 | if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost |
| 2148 | if (LHSSize < RHSSize) return false; |
| 2149 | |
| 2150 | // If the patterns have equal complexity, compare generated instruction cost |
| 2151 | unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE); |
| 2152 | unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE); |
| 2153 | if (LHSCost < RHSCost) return true; |
| 2154 | if (LHSCost > RHSCost) return false; |
| 2155 | |
| 2156 | return getResultPatternSize(LHS->getDstPattern(), ISE) < |
| 2157 | getResultPatternSize(RHS->getDstPattern(), ISE); |
| 2158 | } |
| 2159 | }; |
| 2160 | |
| 2161 | /// getRegisterValueType - Look up and return the first ValueType of specified |
| 2162 | /// RegisterClass record |
| 2163 | static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { |
| 2164 | if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R)) |
| 2165 | return RC->getValueTypeNum(0); |
| 2166 | return MVT::Other; |
| 2167 | } |
| 2168 | |
| 2169 | |
| 2170 | /// RemoveAllTypes - A quick recursive walk over a pattern which removes all |
| 2171 | /// type information from it. |
| 2172 | static void RemoveAllTypes(TreePatternNode *N) { |
| 2173 | N->removeTypes(); |
| 2174 | if (!N->isLeaf()) |
| 2175 | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| 2176 | RemoveAllTypes(N->getChild(i)); |
| 2177 | } |
| 2178 | |
| 2179 | Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const { |
| 2180 | Record *N = Records.getDef(Name); |
| 2181 | if (!N || !N->isSubClassOf("SDNode")) { |
| 2182 | cerr << "Error getting SDNode '" << Name << "'!\n"; |
| 2183 | exit(1); |
| 2184 | } |
| 2185 | return N; |
| 2186 | } |
| 2187 | |
| 2188 | /// NodeHasProperty - return true if TreePatternNode has the specified |
| 2189 | /// property. |
| 2190 | static bool NodeHasProperty(TreePatternNode *N, SDNP Property, |
| 2191 | DAGISelEmitter &ISE) |
| 2192 | { |
| 2193 | if (N->isLeaf()) { |
| 2194 | const ComplexPattern *CP = NodeGetComplexPattern(N, ISE); |
| 2195 | if (CP) |
| 2196 | return CP->hasProperty(Property); |
| 2197 | return false; |
| 2198 | } |
| 2199 | Record *Operator = N->getOperator(); |
| 2200 | if (!Operator->isSubClassOf("SDNode")) return false; |
| 2201 | |
| 2202 | const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator); |
| 2203 | return NodeInfo.hasProperty(Property); |
| 2204 | } |
| 2205 | |
| 2206 | static bool PatternHasProperty(TreePatternNode *N, SDNP Property, |
| 2207 | DAGISelEmitter &ISE) |
| 2208 | { |
| 2209 | if (NodeHasProperty(N, Property, ISE)) |
| 2210 | return true; |
| 2211 | |
| 2212 | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| 2213 | TreePatternNode *Child = N->getChild(i); |
| 2214 | if (PatternHasProperty(Child, Property, ISE)) |
| 2215 | return true; |
| 2216 | } |
| 2217 | |
| 2218 | return false; |
| 2219 | } |
| 2220 | |
| 2221 | class PatternCodeEmitter { |
| 2222 | private: |
| 2223 | DAGISelEmitter &ISE; |
| 2224 | |
| 2225 | // Predicates. |
| 2226 | ListInit *Predicates; |
| 2227 | // Pattern cost. |
| 2228 | unsigned Cost; |
| 2229 | // Instruction selector pattern. |
| 2230 | TreePatternNode *Pattern; |
| 2231 | // Matched instruction. |
| 2232 | TreePatternNode *Instruction; |
| 2233 | |
| 2234 | // Node to name mapping |
| 2235 | std::map<std::string, std::string> VariableMap; |
| 2236 | // Node to operator mapping |
| 2237 | std::map<std::string, Record*> OperatorMap; |
| 2238 | // Names of all the folded nodes which produce chains. |
| 2239 | std::vector<std::pair<std::string, unsigned> > FoldedChains; |
| 2240 | // Original input chain(s). |
| 2241 | std::vector<std::pair<std::string, std::string> > OrigChains; |
| 2242 | std::set<std::string> Duplicates; |
| 2243 | |
| 2244 | /// GeneratedCode - This is the buffer that we emit code to. The first int |
| 2245 | /// indicates whether this is an exit predicate (something that should be |
| 2246 | /// tested, and if true, the match fails) [when 1], or normal code to emit |
| 2247 | /// [when 0], or initialization code to emit [when 2]. |
| 2248 | std::vector<std::pair<unsigned, std::string> > &GeneratedCode; |
| 2249 | /// GeneratedDecl - This is the set of all SDOperand declarations needed for |
| 2250 | /// the set of patterns for each top-level opcode. |
| 2251 | std::set<std::string> &GeneratedDecl; |
| 2252 | /// TargetOpcodes - The target specific opcodes used by the resulting |
| 2253 | /// instructions. |
| 2254 | std::vector<std::string> &TargetOpcodes; |
| 2255 | std::vector<std::string> &TargetVTs; |
| 2256 | |
| 2257 | std::string ChainName; |
| 2258 | unsigned TmpNo; |
| 2259 | unsigned OpcNo; |
| 2260 | unsigned VTNo; |
| 2261 | |
| 2262 | void emitCheck(const std::string &S) { |
| 2263 | if (!S.empty()) |
| 2264 | GeneratedCode.push_back(std::make_pair(1, S)); |
| 2265 | } |
| 2266 | void emitCode(const std::string &S) { |
| 2267 | if (!S.empty()) |
| 2268 | GeneratedCode.push_back(std::make_pair(0, S)); |
| 2269 | } |
| 2270 | void emitInit(const std::string &S) { |
| 2271 | if (!S.empty()) |
| 2272 | GeneratedCode.push_back(std::make_pair(2, S)); |
| 2273 | } |
| 2274 | void emitDecl(const std::string &S) { |
| 2275 | assert(!S.empty() && "Invalid declaration"); |
| 2276 | GeneratedDecl.insert(S); |
| 2277 | } |
| 2278 | void emitOpcode(const std::string &Opc) { |
| 2279 | TargetOpcodes.push_back(Opc); |
| 2280 | OpcNo++; |
| 2281 | } |
| 2282 | void emitVT(const std::string &VT) { |
| 2283 | TargetVTs.push_back(VT); |
| 2284 | VTNo++; |
| 2285 | } |
| 2286 | public: |
| 2287 | PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds, |
| 2288 | TreePatternNode *pattern, TreePatternNode *instr, |
| 2289 | std::vector<std::pair<unsigned, std::string> > &gc, |
| 2290 | std::set<std::string> &gd, |
| 2291 | std::vector<std::string> &to, |
| 2292 | std::vector<std::string> &tv) |
| 2293 | : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr), |
| 2294 | GeneratedCode(gc), GeneratedDecl(gd), |
| 2295 | TargetOpcodes(to), TargetVTs(tv), |
| 2296 | TmpNo(0), OpcNo(0), VTNo(0) {} |
| 2297 | |
| 2298 | /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo |
| 2299 | /// if the match fails. At this point, we already know that the opcode for N |
| 2300 | /// matches, and the SDNode for the result has the RootName specified name. |
| 2301 | void EmitMatchCode(TreePatternNode *N, TreePatternNode *P, |
| 2302 | const std::string &RootName, const std::string &ChainSuffix, |
| 2303 | bool &FoundChain) { |
| 2304 | bool isRoot = (P == NULL); |
| 2305 | // Emit instruction predicates. Each predicate is just a string for now. |
| 2306 | if (isRoot) { |
| 2307 | std::string PredicateCheck; |
| 2308 | for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { |
| 2309 | if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { |
| 2310 | Record *Def = Pred->getDef(); |
| 2311 | if (!Def->isSubClassOf("Predicate")) { |
| 2312 | #ifndef NDEBUG |
| 2313 | Def->dump(); |
| 2314 | #endif |
| 2315 | assert(0 && "Unknown predicate type!"); |
| 2316 | } |
| 2317 | if (!PredicateCheck.empty()) |
| 2318 | PredicateCheck += " && "; |
| 2319 | PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; |
| 2320 | } |
| 2321 | } |
| 2322 | |
| 2323 | emitCheck(PredicateCheck); |
| 2324 | } |
| 2325 | |
| 2326 | if (N->isLeaf()) { |
| 2327 | if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { |
| 2328 | emitCheck("cast<ConstantSDNode>(" + RootName + |
| 2329 | ")->getSignExtended() == " + itostr(II->getValue())); |
| 2330 | return; |
| 2331 | } else if (!NodeIsComplexPattern(N)) { |
| 2332 | assert(0 && "Cannot match this as a leaf value!"); |
| 2333 | abort(); |
| 2334 | } |
| 2335 | } |
| 2336 | |
| 2337 | // If this node has a name associated with it, capture it in VariableMap. If |
| 2338 | // we already saw this in the pattern, emit code to verify dagness. |
| 2339 | if (!N->getName().empty()) { |
| 2340 | std::string &VarMapEntry = VariableMap[N->getName()]; |
| 2341 | if (VarMapEntry.empty()) { |
| 2342 | VarMapEntry = RootName; |
| 2343 | } else { |
| 2344 | // If we get here, this is a second reference to a specific name. Since |
| 2345 | // we already have checked that the first reference is valid, we don't |
| 2346 | // have to recursively match it, just check that it's the same as the |
| 2347 | // previously named thing. |
| 2348 | emitCheck(VarMapEntry + " == " + RootName); |
| 2349 | return; |
| 2350 | } |
| 2351 | |
| 2352 | if (!N->isLeaf()) |
| 2353 | OperatorMap[N->getName()] = N->getOperator(); |
| 2354 | } |
| 2355 | |
| 2356 | |
| 2357 | // Emit code to load the child nodes and match their contents recursively. |
| 2358 | unsigned OpNo = 0; |
| 2359 | bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, ISE); |
| 2360 | bool HasChain = PatternHasProperty(N, SDNPHasChain, ISE); |
| 2361 | bool EmittedUseCheck = false; |
| 2362 | if (HasChain) { |
| 2363 | if (NodeHasChain) |
| 2364 | OpNo = 1; |
| 2365 | if (!isRoot) { |
| 2366 | // Multiple uses of actual result? |
| 2367 | emitCheck(RootName + ".hasOneUse()"); |
| 2368 | EmittedUseCheck = true; |
| 2369 | if (NodeHasChain) { |
| 2370 | // If the immediate use can somehow reach this node through another |
| 2371 | // path, then can't fold it either or it will create a cycle. |
| 2372 | // e.g. In the following diagram, XX can reach ld through YY. If |
| 2373 | // ld is folded into XX, then YY is both a predecessor and a successor |
| 2374 | // of XX. |
| 2375 | // |
| 2376 | // [ld] |
| 2377 | // ^ ^ |
| 2378 | // | | |
| 2379 | // / \--- |
| 2380 | // / [YY] |
| 2381 | // | ^ |
| 2382 | // [XX]-------| |
| 2383 | bool NeedCheck = false; |
| 2384 | if (P != Pattern) |
| 2385 | NeedCheck = true; |
| 2386 | else { |
| 2387 | const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator()); |
| 2388 | NeedCheck = |
| 2389 | P->getOperator() == ISE.get_intrinsic_void_sdnode() || |
| 2390 | P->getOperator() == ISE.get_intrinsic_w_chain_sdnode() || |
| 2391 | P->getOperator() == ISE.get_intrinsic_wo_chain_sdnode() || |
| 2392 | PInfo.getNumOperands() > 1 || |
| 2393 | PInfo.hasProperty(SDNPHasChain) || |
| 2394 | PInfo.hasProperty(SDNPInFlag) || |
| 2395 | PInfo.hasProperty(SDNPOptInFlag); |
| 2396 | } |
| 2397 | |
| 2398 | if (NeedCheck) { |
| 2399 | std::string ParentName(RootName.begin(), RootName.end()-1); |
| 2400 | emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName + |
| 2401 | ".Val, N.Val)"); |
| 2402 | } |
| 2403 | } |
| 2404 | } |
| 2405 | |
| 2406 | if (NodeHasChain) { |
| 2407 | if (FoundChain) { |
| 2408 | emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || " |
| 2409 | "IsChainCompatible(" + ChainName + ".Val, " + |
| 2410 | RootName + ".Val))"); |
| 2411 | OrigChains.push_back(std::make_pair(ChainName, RootName)); |
| 2412 | } else |
| 2413 | FoundChain = true; |
| 2414 | ChainName = "Chain" + ChainSuffix; |
| 2415 | emitInit("SDOperand " + ChainName + " = " + RootName + |
| 2416 | ".getOperand(0);"); |
| 2417 | } |
| 2418 | } |
| 2419 | |
| 2420 | // Don't fold any node which reads or writes a flag and has multiple uses. |
| 2421 | // FIXME: We really need to separate the concepts of flag and "glue". Those |
| 2422 | // real flag results, e.g. X86CMP output, can have multiple uses. |
| 2423 | // FIXME: If the optional incoming flag does not exist. Then it is ok to |
| 2424 | // fold it. |
| 2425 | if (!isRoot && |
| 2426 | (PatternHasProperty(N, SDNPInFlag, ISE) || |
| 2427 | PatternHasProperty(N, SDNPOptInFlag, ISE) || |
| 2428 | PatternHasProperty(N, SDNPOutFlag, ISE))) { |
| 2429 | if (!EmittedUseCheck) { |
| 2430 | // Multiple uses of actual result? |
| 2431 | emitCheck(RootName + ".hasOneUse()"); |
| 2432 | } |
| 2433 | } |
| 2434 | |
| 2435 | // If there is a node predicate for this, emit the call. |
| 2436 | if (!N->getPredicateFn().empty()) |
| 2437 | emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)"); |
| 2438 | |
| 2439 | |
| 2440 | // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is |
| 2441 | // a constant without a predicate fn that has more that one bit set, handle |
| 2442 | // this as a special case. This is usually for targets that have special |
| 2443 | // handling of certain large constants (e.g. alpha with it's 8/16/32-bit |
| 2444 | // handling stuff). Using these instructions is often far more efficient |
| 2445 | // than materializing the constant. Unfortunately, both the instcombiner |
| 2446 | // and the dag combiner can often infer that bits are dead, and thus drop |
| 2447 | // them from the mask in the dag. For example, it might turn 'AND X, 255' |
| 2448 | // into 'AND X, 254' if it knows the low bit is set. Emit code that checks |
| 2449 | // to handle this. |
| 2450 | if (!N->isLeaf() && |
| 2451 | (N->getOperator()->getName() == "and" || |
| 2452 | N->getOperator()->getName() == "or") && |
| 2453 | N->getChild(1)->isLeaf() && |
| 2454 | N->getChild(1)->getPredicateFn().empty()) { |
| 2455 | if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) { |
| 2456 | if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. |
| 2457 | emitInit("SDOperand " + RootName + "0" + " = " + |
| 2458 | RootName + ".getOperand(" + utostr(0) + ");"); |
| 2459 | emitInit("SDOperand " + RootName + "1" + " = " + |
| 2460 | RootName + ".getOperand(" + utostr(1) + ");"); |
| 2461 | |
| 2462 | emitCheck("isa<ConstantSDNode>(" + RootName + "1)"); |
| 2463 | const char *MaskPredicate = N->getOperator()->getName() == "or" |
| 2464 | ? "CheckOrMask(" : "CheckAndMask("; |
| 2465 | emitCheck(MaskPredicate + RootName + "0, cast<ConstantSDNode>(" + |
| 2466 | RootName + "1), " + itostr(II->getValue()) + ")"); |
| 2467 | |
| 2468 | EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), |
| 2469 | ChainSuffix + utostr(0), FoundChain); |
| 2470 | return; |
| 2471 | } |
| 2472 | } |
| 2473 | } |
| 2474 | |
| 2475 | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { |
| 2476 | emitInit("SDOperand " + RootName + utostr(OpNo) + " = " + |
| 2477 | RootName + ".getOperand(" +utostr(OpNo) + ");"); |
| 2478 | |
| 2479 | EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), |
| 2480 | ChainSuffix + utostr(OpNo), FoundChain); |
| 2481 | } |
| 2482 | |
| 2483 | // Handle cases when root is a complex pattern. |
| 2484 | const ComplexPattern *CP; |
| 2485 | if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) { |
| 2486 | std::string Fn = CP->getSelectFunc(); |
| 2487 | unsigned NumOps = CP->getNumOperands(); |
| 2488 | for (unsigned i = 0; i < NumOps; ++i) { |
| 2489 | emitDecl("CPTmp" + utostr(i)); |
| 2490 | emitCode("SDOperand CPTmp" + utostr(i) + ";"); |
| 2491 | } |
| 2492 | if (CP->hasProperty(SDNPHasChain)) { |
| 2493 | emitDecl("CPInChain"); |
| 2494 | emitDecl("Chain" + ChainSuffix); |
| 2495 | emitCode("SDOperand CPInChain;"); |
| 2496 | emitCode("SDOperand Chain" + ChainSuffix + ";"); |
| 2497 | } |
| 2498 | |
| 2499 | std::string Code = Fn + "(" + RootName + ", " + RootName; |
| 2500 | for (unsigned i = 0; i < NumOps; i++) |
| 2501 | Code += ", CPTmp" + utostr(i); |
| 2502 | if (CP->hasProperty(SDNPHasChain)) { |
| 2503 | ChainName = "Chain" + ChainSuffix; |
| 2504 | Code += ", CPInChain, Chain" + ChainSuffix; |
| 2505 | } |
| 2506 | emitCheck(Code + ")"); |
| 2507 | } |
| 2508 | } |
| 2509 | |
| 2510 | void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent, |
| 2511 | const std::string &RootName, |
| 2512 | const std::string &ChainSuffix, bool &FoundChain) { |
| 2513 | if (!Child->isLeaf()) { |
| 2514 | // If it's not a leaf, recursively match. |
| 2515 | const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator()); |
| 2516 | emitCheck(RootName + ".getOpcode() == " + |
| 2517 | CInfo.getEnumName()); |
| 2518 | EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain); |
| 2519 | if (NodeHasProperty(Child, SDNPHasChain, ISE)) |
| 2520 | FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults())); |
| 2521 | } else { |
| 2522 | // If this child has a name associated with it, capture it in VarMap. If |
| 2523 | // we already saw this in the pattern, emit code to verify dagness. |
| 2524 | if (!Child->getName().empty()) { |
| 2525 | std::string &VarMapEntry = VariableMap[Child->getName()]; |
| 2526 | if (VarMapEntry.empty()) { |
| 2527 | VarMapEntry = RootName; |
| 2528 | } else { |
| 2529 | // If we get here, this is a second reference to a specific name. |
| 2530 | // Since we already have checked that the first reference is valid, |
| 2531 | // we don't have to recursively match it, just check that it's the |
| 2532 | // same as the previously named thing. |
| 2533 | emitCheck(VarMapEntry + " == " + RootName); |
| 2534 | Duplicates.insert(RootName); |
| 2535 | return; |
| 2536 | } |
| 2537 | } |
| 2538 | |
| 2539 | // Handle leaves of various types. |
| 2540 | if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { |
| 2541 | Record *LeafRec = DI->getDef(); |
| 2542 | if (LeafRec->isSubClassOf("RegisterClass") || |
| 2543 | LeafRec->getName() == "ptr_rc") { |
| 2544 | // Handle register references. Nothing to do here. |
| 2545 | } else if (LeafRec->isSubClassOf("Register")) { |
| 2546 | // Handle register references. |
| 2547 | } else if (LeafRec->isSubClassOf("ComplexPattern")) { |
| 2548 | // Handle complex pattern. |
| 2549 | const ComplexPattern *CP = NodeGetComplexPattern(Child, ISE); |
| 2550 | std::string Fn = CP->getSelectFunc(); |
| 2551 | unsigned NumOps = CP->getNumOperands(); |
| 2552 | for (unsigned i = 0; i < NumOps; ++i) { |
| 2553 | emitDecl("CPTmp" + utostr(i)); |
| 2554 | emitCode("SDOperand CPTmp" + utostr(i) + ";"); |
| 2555 | } |
| 2556 | if (CP->hasProperty(SDNPHasChain)) { |
| 2557 | const SDNodeInfo &PInfo = ISE.getSDNodeInfo(Parent->getOperator()); |
| 2558 | FoldedChains.push_back(std::make_pair("CPInChain", |
| 2559 | PInfo.getNumResults())); |
| 2560 | ChainName = "Chain" + ChainSuffix; |
| 2561 | emitDecl("CPInChain"); |
| 2562 | emitDecl(ChainName); |
| 2563 | emitCode("SDOperand CPInChain;"); |
| 2564 | emitCode("SDOperand " + ChainName + ";"); |
| 2565 | } |
| 2566 | |
| 2567 | std::string Code = Fn + "(N, "; |
| 2568 | if (CP->hasProperty(SDNPHasChain)) { |
| 2569 | std::string ParentName(RootName.begin(), RootName.end()-1); |
| 2570 | Code += ParentName + ", "; |
| 2571 | } |
| 2572 | Code += RootName; |
| 2573 | for (unsigned i = 0; i < NumOps; i++) |
| 2574 | Code += ", CPTmp" + utostr(i); |
| 2575 | if (CP->hasProperty(SDNPHasChain)) |
| 2576 | Code += ", CPInChain, Chain" + ChainSuffix; |
| 2577 | emitCheck(Code + ")"); |
| 2578 | } else if (LeafRec->getName() == "srcvalue") { |
| 2579 | // Place holder for SRCVALUE nodes. Nothing to do here. |
| 2580 | } else if (LeafRec->isSubClassOf("ValueType")) { |
| 2581 | // Make sure this is the specified value type. |
| 2582 | emitCheck("cast<VTSDNode>(" + RootName + |
| 2583 | ")->getVT() == MVT::" + LeafRec->getName()); |
| 2584 | } else if (LeafRec->isSubClassOf("CondCode")) { |
| 2585 | // Make sure this is the specified cond code. |
| 2586 | emitCheck("cast<CondCodeSDNode>(" + RootName + |
| 2587 | ")->get() == ISD::" + LeafRec->getName()); |
| 2588 | } else { |
| 2589 | #ifndef NDEBUG |
| 2590 | Child->dump(); |
| 2591 | cerr << " "; |
| 2592 | #endif |
| 2593 | assert(0 && "Unknown leaf type!"); |
| 2594 | } |
| 2595 | |
| 2596 | // If there is a node predicate for this, emit the call. |
| 2597 | if (!Child->getPredicateFn().empty()) |
| 2598 | emitCheck(Child->getPredicateFn() + "(" + RootName + |
| 2599 | ".Val)"); |
| 2600 | } else if (IntInit *II = |
| 2601 | dynamic_cast<IntInit*>(Child->getLeafValue())) { |
| 2602 | emitCheck("isa<ConstantSDNode>(" + RootName + ")"); |
| 2603 | unsigned CTmp = TmpNo++; |
| 2604 | emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+ |
| 2605 | RootName + ")->getSignExtended();"); |
| 2606 | |
| 2607 | emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue())); |
| 2608 | } else { |
| 2609 | #ifndef NDEBUG |
| 2610 | Child->dump(); |
| 2611 | #endif |
| 2612 | assert(0 && "Unknown leaf type!"); |
| 2613 | } |
| 2614 | } |
| 2615 | } |
| 2616 | |
| 2617 | /// EmitResultCode - Emit the action for a pattern. Now that it has matched |
| 2618 | /// we actually have to build a DAG! |
| 2619 | std::vector<std::string> |
| 2620 | EmitResultCode(TreePatternNode *N, bool RetSelected, |
| 2621 | bool InFlagDecled, bool ResNodeDecled, |
| 2622 | bool LikeLeaf = false, bool isRoot = false) { |
| 2623 | // List of arguments of getTargetNode() or SelectNodeTo(). |
| 2624 | std::vector<std::string> NodeOps; |
| 2625 | // This is something selected from the pattern we matched. |
| 2626 | if (!N->getName().empty()) { |
| 2627 | std::string &Val = VariableMap[N->getName()]; |
| 2628 | assert(!Val.empty() && |
| 2629 | "Variable referenced but not defined and not caught earlier!"); |
| 2630 | if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') { |
| 2631 | // Already selected this operand, just return the tmpval. |
| 2632 | NodeOps.push_back(Val); |
| 2633 | return NodeOps; |
| 2634 | } |
| 2635 | |
| 2636 | const ComplexPattern *CP; |
| 2637 | unsigned ResNo = TmpNo++; |
| 2638 | if (!N->isLeaf() && N->getOperator()->getName() == "imm") { |
| 2639 | assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); |
| 2640 | std::string CastType; |
| 2641 | switch (N->getTypeNum(0)) { |
| 2642 | default: |
| 2643 | cerr << "Cannot handle " << getEnumName(N->getTypeNum(0)) |
| 2644 | << " type as an immediate constant. Aborting\n"; |
| 2645 | abort(); |
| 2646 | case MVT::i1: CastType = "bool"; break; |
| 2647 | case MVT::i8: CastType = "unsigned char"; break; |
| 2648 | case MVT::i16: CastType = "unsigned short"; break; |
| 2649 | case MVT::i32: CastType = "unsigned"; break; |
| 2650 | case MVT::i64: CastType = "uint64_t"; break; |
| 2651 | } |
| 2652 | emitCode("SDOperand Tmp" + utostr(ResNo) + |
| 2653 | " = CurDAG->getTargetConstant(((" + CastType + |
| 2654 | ") cast<ConstantSDNode>(" + Val + ")->getValue()), " + |
| 2655 | getEnumName(N->getTypeNum(0)) + ");"); |
| 2656 | NodeOps.push_back("Tmp" + utostr(ResNo)); |
| 2657 | // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this |
| 2658 | // value if used multiple times by this pattern result. |
| 2659 | Val = "Tmp"+utostr(ResNo); |
| 2660 | } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ |
| 2661 | Record *Op = OperatorMap[N->getName()]; |
| 2662 | // Transform ExternalSymbol to TargetExternalSymbol |
| 2663 | if (Op && Op->getName() == "externalsym") { |
| 2664 | emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget" |
| 2665 | "ExternalSymbol(cast<ExternalSymbolSDNode>(" + |
| 2666 | Val + ")->getSymbol(), " + |
| 2667 | getEnumName(N->getTypeNum(0)) + ");"); |
| 2668 | NodeOps.push_back("Tmp" + utostr(ResNo)); |
| 2669 | // Add Tmp<ResNo> to VariableMap, so that we don't multiply select |
| 2670 | // this value if used multiple times by this pattern result. |
| 2671 | Val = "Tmp"+utostr(ResNo); |
| 2672 | } else { |
| 2673 | NodeOps.push_back(Val); |
| 2674 | } |
| 2675 | } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr" |
| 2676 | || N->getOperator()->getName() == "tglobaltlsaddr")) { |
| 2677 | Record *Op = OperatorMap[N->getName()]; |
| 2678 | // Transform GlobalAddress to TargetGlobalAddress |
| 2679 | if (Op && (Op->getName() == "globaladdr" || |
| 2680 | Op->getName() == "globaltlsaddr")) { |
| 2681 | emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget" |
| 2682 | "GlobalAddress(cast<GlobalAddressSDNode>(" + Val + |
| 2683 | ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) + |
| 2684 | ");"); |
| 2685 | NodeOps.push_back("Tmp" + utostr(ResNo)); |
| 2686 | // Add Tmp<ResNo> to VariableMap, so that we don't multiply select |
| 2687 | // this value if used multiple times by this pattern result. |
| 2688 | Val = "Tmp"+utostr(ResNo); |
| 2689 | } else { |
| 2690 | NodeOps.push_back(Val); |
| 2691 | } |
| 2692 | } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ |
| 2693 | NodeOps.push_back(Val); |
| 2694 | // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this |
| 2695 | // value if used multiple times by this pattern result. |
| 2696 | Val = "Tmp"+utostr(ResNo); |
| 2697 | } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") { |
| 2698 | NodeOps.push_back(Val); |
| 2699 | // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this |
| 2700 | // value if used multiple times by this pattern result. |
| 2701 | Val = "Tmp"+utostr(ResNo); |
| 2702 | } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) { |
| 2703 | for (unsigned i = 0; i < CP->getNumOperands(); ++i) { |
| 2704 | emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");"); |
| 2705 | NodeOps.push_back("CPTmp" + utostr(i)); |
| 2706 | } |
| 2707 | } else { |
| 2708 | // This node, probably wrapped in a SDNodeXForm, behaves like a leaf |
| 2709 | // node even if it isn't one. Don't select it. |
| 2710 | if (!LikeLeaf) { |
| 2711 | emitCode("AddToISelQueue(" + Val + ");"); |
| 2712 | if (isRoot && N->isLeaf()) { |
| 2713 | emitCode("ReplaceUses(N, " + Val + ");"); |
| 2714 | emitCode("return NULL;"); |
| 2715 | } |
| 2716 | } |
| 2717 | NodeOps.push_back(Val); |
| 2718 | } |
| 2719 | return NodeOps; |
| 2720 | } |
| 2721 | if (N->isLeaf()) { |
| 2722 | // If this is an explicit register reference, handle it. |
| 2723 | if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { |
| 2724 | unsigned ResNo = TmpNo++; |
| 2725 | if (DI->getDef()->isSubClassOf("Register")) { |
| 2726 | emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" + |
| 2727 | ISE.getQualifiedName(DI->getDef()) + ", " + |
| 2728 | getEnumName(N->getTypeNum(0)) + ");"); |
| 2729 | NodeOps.push_back("Tmp" + utostr(ResNo)); |
| 2730 | return NodeOps; |
| 2731 | } else if (DI->getDef()->getName() == "zero_reg") { |
| 2732 | emitCode("SDOperand Tmp" + utostr(ResNo) + |
| 2733 | " = CurDAG->getRegister(0, " + |
| 2734 | getEnumName(N->getTypeNum(0)) + ");"); |
| 2735 | NodeOps.push_back("Tmp" + utostr(ResNo)); |
| 2736 | return NodeOps; |
| 2737 | } |
| 2738 | } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { |
| 2739 | unsigned ResNo = TmpNo++; |
| 2740 | assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); |
| 2741 | emitCode("SDOperand Tmp" + utostr(ResNo) + |
| 2742 | " = CurDAG->getTargetConstant(" + itostr(II->getValue()) + |
| 2743 | ", " + getEnumName(N->getTypeNum(0)) + ");"); |
| 2744 | NodeOps.push_back("Tmp" + utostr(ResNo)); |
| 2745 | return NodeOps; |
| 2746 | } |
| 2747 | |
| 2748 | #ifndef NDEBUG |
| 2749 | N->dump(); |
| 2750 | #endif |
| 2751 | assert(0 && "Unknown leaf type!"); |
| 2752 | return NodeOps; |
| 2753 | } |
| 2754 | |
| 2755 | Record *Op = N->getOperator(); |
| 2756 | if (Op->isSubClassOf("Instruction")) { |
| 2757 | const CodeGenTarget &CGT = ISE.getTargetInfo(); |
| 2758 | CodeGenInstruction &II = CGT.getInstruction(Op->getName()); |
| 2759 | const DAGInstruction &Inst = ISE.getInstruction(Op); |
| 2760 | TreePattern *InstPat = Inst.getPattern(); |
| 2761 | TreePatternNode *InstPatNode = |
| 2762 | isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern) |
| 2763 | : (InstPat ? InstPat->getOnlyTree() : NULL); |
| 2764 | if (InstPatNode && InstPatNode->getOperator()->getName() == "set") { |
Evan Cheng | f37df84 | 2007-09-11 19:52:18 +0000 | [diff] [blame^] | 2765 | InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 2766 | } |
| 2767 | bool HasVarOps = isRoot && II.hasVariableNumberOfOperands; |
| 2768 | bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0; |
| 2769 | bool HasImpResults = isRoot && Inst.getNumImpResults() > 0; |
| 2770 | bool NodeHasOptInFlag = isRoot && |
| 2771 | PatternHasProperty(Pattern, SDNPOptInFlag, ISE); |
| 2772 | bool NodeHasInFlag = isRoot && |
| 2773 | PatternHasProperty(Pattern, SDNPInFlag, ISE); |
Evan Cheng | dec1dd1 | 2007-09-07 23:59:02 +0000 | [diff] [blame] | 2774 | bool NodeHasOutFlag = isRoot && |
| 2775 | PatternHasProperty(Pattern, SDNPOutFlag, ISE); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 2776 | bool NodeHasChain = InstPatNode && |
| 2777 | PatternHasProperty(InstPatNode, SDNPHasChain, ISE); |
| 2778 | bool InputHasChain = isRoot && |
| 2779 | NodeHasProperty(Pattern, SDNPHasChain, ISE); |
| 2780 | unsigned NumResults = Inst.getNumResults(); |
| 2781 | |
| 2782 | if (NodeHasOptInFlag) { |
| 2783 | emitCode("bool HasInFlag = " |
| 2784 | "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);"); |
| 2785 | } |
| 2786 | if (HasVarOps) |
| 2787 | emitCode("SmallVector<SDOperand, 8> Ops" + utostr(OpcNo) + ";"); |
| 2788 | |
| 2789 | // How many results is this pattern expected to produce? |
| 2790 | unsigned PatResults = 0; |
| 2791 | for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) { |
| 2792 | MVT::ValueType VT = Pattern->getTypeNum(i); |
| 2793 | if (VT != MVT::isVoid && VT != MVT::Flag) |
| 2794 | PatResults++; |
| 2795 | } |
| 2796 | |
| 2797 | if (OrigChains.size() > 0) { |
| 2798 | // The original input chain is being ignored. If it is not just |
| 2799 | // pointing to the op that's being folded, we should create a |
| 2800 | // TokenFactor with it and the chain of the folded op as the new chain. |
| 2801 | // We could potentially be doing multiple levels of folding, in that |
| 2802 | // case, the TokenFactor can have more operands. |
| 2803 | emitCode("SmallVector<SDOperand, 8> InChains;"); |
| 2804 | for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) { |
| 2805 | emitCode("if (" + OrigChains[i].first + ".Val != " + |
| 2806 | OrigChains[i].second + ".Val) {"); |
| 2807 | emitCode(" AddToISelQueue(" + OrigChains[i].first + ");"); |
| 2808 | emitCode(" InChains.push_back(" + OrigChains[i].first + ");"); |
| 2809 | emitCode("}"); |
| 2810 | } |
| 2811 | emitCode("AddToISelQueue(" + ChainName + ");"); |
| 2812 | emitCode("InChains.push_back(" + ChainName + ");"); |
| 2813 | emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, " |
| 2814 | "&InChains[0], InChains.size());"); |
| 2815 | } |
| 2816 | |
| 2817 | // Loop over all of the operands of the instruction pattern, emitting code |
| 2818 | // to fill them all in. The node 'N' usually has number children equal to |
| 2819 | // the number of input operands of the instruction. However, in cases |
| 2820 | // where there are predicate operands for an instruction, we need to fill |
| 2821 | // in the 'execute always' values. Match up the node operands to the |
| 2822 | // instruction operands to do this. |
| 2823 | std::vector<std::string> AllOps; |
| 2824 | unsigned NumEAInputs = 0; // # of synthesized 'execute always' inputs. |
| 2825 | for (unsigned ChildNo = 0, InstOpNo = NumResults; |
| 2826 | InstOpNo != II.OperandList.size(); ++InstOpNo) { |
| 2827 | std::vector<std::string> Ops; |
| 2828 | |
| 2829 | // If this is a normal operand or a predicate operand without |
| 2830 | // 'execute always', emit it. |
| 2831 | Record *OperandNode = II.OperandList[InstOpNo].Rec; |
| 2832 | if ((!OperandNode->isSubClassOf("PredicateOperand") && |
| 2833 | !OperandNode->isSubClassOf("OptionalDefOperand")) || |
| 2834 | ISE.getDefaultOperand(OperandNode).DefaultOps.empty()) { |
| 2835 | Ops = EmitResultCode(N->getChild(ChildNo), RetSelected, |
| 2836 | InFlagDecled, ResNodeDecled); |
| 2837 | AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); |
| 2838 | ++ChildNo; |
| 2839 | } else { |
| 2840 | // Otherwise, this is a predicate or optional def operand, emit the |
| 2841 | // 'default ops' operands. |
| 2842 | const DAGDefaultOperand &DefaultOp = |
| 2843 | ISE.getDefaultOperand(II.OperandList[InstOpNo].Rec); |
| 2844 | for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) { |
| 2845 | Ops = EmitResultCode(DefaultOp.DefaultOps[i], RetSelected, |
| 2846 | InFlagDecled, ResNodeDecled); |
| 2847 | AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); |
| 2848 | NumEAInputs += Ops.size(); |
| 2849 | } |
| 2850 | } |
| 2851 | } |
| 2852 | |
| 2853 | // Emit all the chain and CopyToReg stuff. |
| 2854 | bool ChainEmitted = NodeHasChain; |
| 2855 | if (NodeHasChain) |
| 2856 | emitCode("AddToISelQueue(" + ChainName + ");"); |
| 2857 | if (NodeHasInFlag || HasImpInputs) |
| 2858 | EmitInFlagSelectCode(Pattern, "N", ChainEmitted, |
| 2859 | InFlagDecled, ResNodeDecled, true); |
| 2860 | if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) { |
| 2861 | if (!InFlagDecled) { |
| 2862 | emitCode("SDOperand InFlag(0, 0);"); |
| 2863 | InFlagDecled = true; |
| 2864 | } |
| 2865 | if (NodeHasOptInFlag) { |
| 2866 | emitCode("if (HasInFlag) {"); |
| 2867 | emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);"); |
| 2868 | emitCode(" AddToISelQueue(InFlag);"); |
| 2869 | emitCode("}"); |
| 2870 | } |
| 2871 | } |
| 2872 | |
| 2873 | unsigned ResNo = TmpNo++; |
| 2874 | if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag || |
Evan Cheng | dec1dd1 | 2007-09-07 23:59:02 +0000 | [diff] [blame] | 2875 | NodeHasOptInFlag || HasImpResults) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 2876 | std::string Code; |
| 2877 | std::string Code2; |
| 2878 | std::string NodeName; |
| 2879 | if (!isRoot) { |
| 2880 | NodeName = "Tmp" + utostr(ResNo); |
Dan Gohman | 875770e | 2007-07-24 22:58:00 +0000 | [diff] [blame] | 2881 | Code2 = "SDOperand " + NodeName + "("; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 2882 | } else { |
| 2883 | NodeName = "ResNode"; |
| 2884 | if (!ResNodeDecled) { |
| 2885 | Code2 = "SDNode *" + NodeName + " = "; |
| 2886 | ResNodeDecled = true; |
| 2887 | } else |
| 2888 | Code2 = NodeName + " = "; |
| 2889 | } |
| 2890 | |
| 2891 | Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo); |
| 2892 | unsigned OpsNo = OpcNo; |
| 2893 | emitOpcode(II.Namespace + "::" + II.TheDef->getName()); |
| 2894 | |
| 2895 | // Output order: results, chain, flags |
| 2896 | // Result types. |
| 2897 | if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) { |
| 2898 | Code += ", VT" + utostr(VTNo); |
| 2899 | emitVT(getEnumName(N->getTypeNum(0))); |
| 2900 | } |
Evan Cheng | dec1dd1 | 2007-09-07 23:59:02 +0000 | [diff] [blame] | 2901 | // Add types for implicit results in physical registers, scheduler will |
| 2902 | // care of adding copyfromreg nodes. |
| 2903 | if (HasImpResults) { |
| 2904 | for (unsigned i = 0, e = Inst.getNumImpResults(); i < e; i++) { |
| 2905 | Record *RR = Inst.getImpResult(i); |
| 2906 | if (RR->isSubClassOf("Register")) { |
| 2907 | MVT::ValueType RVT = getRegisterValueType(RR, CGT); |
| 2908 | Code += ", " + getEnumName(RVT); |
| 2909 | ++NumResults; |
| 2910 | } |
| 2911 | } |
| 2912 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 2913 | if (NodeHasChain) |
| 2914 | Code += ", MVT::Other"; |
| 2915 | if (NodeHasOutFlag) |
| 2916 | Code += ", MVT::Flag"; |
| 2917 | |
| 2918 | // Figure out how many fixed inputs the node has. This is important to |
| 2919 | // know which inputs are the variable ones if present. |
| 2920 | unsigned NumInputs = AllOps.size(); |
| 2921 | NumInputs += NodeHasChain; |
| 2922 | |
| 2923 | // Inputs. |
| 2924 | if (HasVarOps) { |
| 2925 | for (unsigned i = 0, e = AllOps.size(); i != e; ++i) |
| 2926 | emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");"); |
| 2927 | AllOps.clear(); |
| 2928 | } |
| 2929 | |
| 2930 | if (HasVarOps) { |
| 2931 | // Figure out whether any operands at the end of the op list are not |
| 2932 | // part of the variable section. |
| 2933 | std::string EndAdjust; |
| 2934 | if (NodeHasInFlag || HasImpInputs) |
| 2935 | EndAdjust = "-1"; // Always has one flag. |
| 2936 | else if (NodeHasOptInFlag) |
| 2937 | EndAdjust = "-(HasInFlag?1:0)"; // May have a flag. |
| 2938 | |
| 2939 | emitCode("for (unsigned i = " + utostr(NumInputs - NumEAInputs) + |
| 2940 | ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {"); |
| 2941 | |
| 2942 | emitCode(" AddToISelQueue(N.getOperand(i));"); |
| 2943 | emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));"); |
| 2944 | emitCode("}"); |
| 2945 | } |
| 2946 | |
| 2947 | if (NodeHasChain) { |
| 2948 | if (HasVarOps) |
| 2949 | emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");"); |
| 2950 | else |
| 2951 | AllOps.push_back(ChainName); |
| 2952 | } |
| 2953 | |
| 2954 | if (HasVarOps) { |
| 2955 | if (NodeHasInFlag || HasImpInputs) |
| 2956 | emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);"); |
| 2957 | else if (NodeHasOptInFlag) { |
| 2958 | emitCode("if (HasInFlag)"); |
| 2959 | emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);"); |
| 2960 | } |
| 2961 | Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) + |
| 2962 | ".size()"; |
| 2963 | } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) |
| 2964 | AllOps.push_back("InFlag"); |
| 2965 | |
| 2966 | unsigned NumOps = AllOps.size(); |
| 2967 | if (NumOps) { |
| 2968 | if (!NodeHasOptInFlag && NumOps < 4) { |
| 2969 | for (unsigned i = 0; i != NumOps; ++i) |
| 2970 | Code += ", " + AllOps[i]; |
| 2971 | } else { |
| 2972 | std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { "; |
| 2973 | for (unsigned i = 0; i != NumOps; ++i) { |
| 2974 | OpsCode += AllOps[i]; |
| 2975 | if (i != NumOps-1) |
| 2976 | OpsCode += ", "; |
| 2977 | } |
| 2978 | emitCode(OpsCode + " };"); |
| 2979 | Code += ", Ops" + utostr(OpsNo) + ", "; |
| 2980 | if (NodeHasOptInFlag) { |
| 2981 | Code += "HasInFlag ? "; |
| 2982 | Code += utostr(NumOps) + " : " + utostr(NumOps-1); |
| 2983 | } else |
| 2984 | Code += utostr(NumOps); |
| 2985 | } |
| 2986 | } |
| 2987 | |
| 2988 | if (!isRoot) |
| 2989 | Code += "), 0"; |
| 2990 | emitCode(Code2 + Code + ");"); |
| 2991 | |
| 2992 | if (NodeHasChain) |
| 2993 | // Remember which op produces the chain. |
| 2994 | if (!isRoot) |
| 2995 | emitCode(ChainName + " = SDOperand(" + NodeName + |
| 2996 | ".Val, " + utostr(PatResults) + ");"); |
| 2997 | else |
| 2998 | emitCode(ChainName + " = SDOperand(" + NodeName + |
| 2999 | ", " + utostr(PatResults) + ");"); |
| 3000 | |
| 3001 | if (!isRoot) { |
| 3002 | NodeOps.push_back("Tmp" + utostr(ResNo)); |
| 3003 | return NodeOps; |
| 3004 | } |
| 3005 | |
| 3006 | bool NeedReplace = false; |
| 3007 | if (NodeHasOutFlag) { |
| 3008 | if (!InFlagDecled) { |
Dan Gohman | 875770e | 2007-07-24 22:58:00 +0000 | [diff] [blame] | 3009 | emitCode("SDOperand InFlag(ResNode, " + |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3010 | utostr(NumResults + (unsigned)NodeHasChain) + ");"); |
| 3011 | InFlagDecled = true; |
| 3012 | } else |
| 3013 | emitCode("InFlag = SDOperand(ResNode, " + |
| 3014 | utostr(NumResults + (unsigned)NodeHasChain) + ");"); |
| 3015 | } |
| 3016 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3017 | if (FoldedChains.size() > 0) { |
| 3018 | std::string Code; |
| 3019 | for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) |
| 3020 | emitCode("ReplaceUses(SDOperand(" + |
| 3021 | FoldedChains[j].first + ".Val, " + |
| 3022 | utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " + |
| 3023 | utostr(NumResults) + "));"); |
| 3024 | NeedReplace = true; |
| 3025 | } |
| 3026 | |
| 3027 | if (NodeHasOutFlag) { |
| 3028 | emitCode("ReplaceUses(SDOperand(N.Val, " + |
| 3029 | utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);"); |
| 3030 | NeedReplace = true; |
| 3031 | } |
| 3032 | |
| 3033 | if (NeedReplace) { |
| 3034 | for (unsigned i = 0; i < NumResults; i++) |
| 3035 | emitCode("ReplaceUses(SDOperand(N.Val, " + |
| 3036 | utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));"); |
| 3037 | if (InputHasChain) |
| 3038 | emitCode("ReplaceUses(SDOperand(N.Val, " + |
| 3039 | utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, " |
| 3040 | + ChainName + ".ResNo" + "));"); |
| 3041 | } else |
| 3042 | RetSelected = true; |
| 3043 | |
| 3044 | // User does not expect the instruction would produce a chain! |
| 3045 | if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) { |
| 3046 | ; |
| 3047 | } else if (InputHasChain && !NodeHasChain) { |
| 3048 | // One of the inner node produces a chain. |
| 3049 | if (NodeHasOutFlag) |
| 3050 | emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults+1) + |
| 3051 | "), SDOperand(ResNode, N.ResNo-1));"); |
| 3052 | for (unsigned i = 0; i < PatResults; ++i) |
| 3053 | emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) + |
| 3054 | "), SDOperand(ResNode, " + utostr(i) + "));"); |
| 3055 | emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) + |
| 3056 | "), " + ChainName + ");"); |
| 3057 | RetSelected = false; |
| 3058 | } |
| 3059 | |
| 3060 | if (RetSelected) |
| 3061 | emitCode("return ResNode;"); |
| 3062 | else |
| 3063 | emitCode("return NULL;"); |
| 3064 | } else { |
| 3065 | std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" + |
| 3066 | utostr(OpcNo); |
| 3067 | if (N->getTypeNum(0) != MVT::isVoid) |
| 3068 | Code += ", VT" + utostr(VTNo); |
| 3069 | if (NodeHasOutFlag) |
| 3070 | Code += ", MVT::Flag"; |
| 3071 | |
| 3072 | if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) |
| 3073 | AllOps.push_back("InFlag"); |
| 3074 | |
| 3075 | unsigned NumOps = AllOps.size(); |
| 3076 | if (NumOps) { |
| 3077 | if (!NodeHasOptInFlag && NumOps < 4) { |
| 3078 | for (unsigned i = 0; i != NumOps; ++i) |
| 3079 | Code += ", " + AllOps[i]; |
| 3080 | } else { |
| 3081 | std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { "; |
| 3082 | for (unsigned i = 0; i != NumOps; ++i) { |
| 3083 | OpsCode += AllOps[i]; |
| 3084 | if (i != NumOps-1) |
| 3085 | OpsCode += ", "; |
| 3086 | } |
| 3087 | emitCode(OpsCode + " };"); |
| 3088 | Code += ", Ops" + utostr(OpcNo) + ", "; |
| 3089 | Code += utostr(NumOps); |
| 3090 | } |
| 3091 | } |
| 3092 | emitCode(Code + ");"); |
| 3093 | emitOpcode(II.Namespace + "::" + II.TheDef->getName()); |
| 3094 | if (N->getTypeNum(0) != MVT::isVoid) |
| 3095 | emitVT(getEnumName(N->getTypeNum(0))); |
| 3096 | } |
| 3097 | |
| 3098 | return NodeOps; |
| 3099 | } else if (Op->isSubClassOf("SDNodeXForm")) { |
| 3100 | assert(N->getNumChildren() == 1 && "node xform should have one child!"); |
| 3101 | // PatLeaf node - the operand may or may not be a leaf node. But it should |
| 3102 | // behave like one. |
| 3103 | std::vector<std::string> Ops = |
| 3104 | EmitResultCode(N->getChild(0), RetSelected, InFlagDecled, |
| 3105 | ResNodeDecled, true); |
| 3106 | unsigned ResNo = TmpNo++; |
| 3107 | emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName() |
| 3108 | + "(" + Ops.back() + ".Val);"); |
| 3109 | NodeOps.push_back("Tmp" + utostr(ResNo)); |
| 3110 | if (isRoot) |
| 3111 | emitCode("return Tmp" + utostr(ResNo) + ".Val;"); |
| 3112 | return NodeOps; |
| 3113 | } else { |
| 3114 | N->dump(); |
| 3115 | cerr << "\n"; |
| 3116 | throw std::string("Unknown node in result pattern!"); |
| 3117 | } |
| 3118 | } |
| 3119 | |
| 3120 | /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' |
| 3121 | /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that |
| 3122 | /// 'Pat' may be missing types. If we find an unresolved type to add a check |
| 3123 | /// for, this returns true otherwise false if Pat has all types. |
| 3124 | bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other, |
| 3125 | const std::string &Prefix, bool isRoot = false) { |
| 3126 | // Did we find one? |
| 3127 | if (Pat->getExtTypes() != Other->getExtTypes()) { |
| 3128 | // Move a type over from 'other' to 'pat'. |
| 3129 | Pat->setTypes(Other->getExtTypes()); |
| 3130 | // The top level node type is checked outside of the select function. |
| 3131 | if (!isRoot) |
| 3132 | emitCheck(Prefix + ".Val->getValueType(0) == " + |
| 3133 | getName(Pat->getTypeNum(0))); |
| 3134 | return true; |
| 3135 | } |
| 3136 | |
| 3137 | unsigned OpNo = |
| 3138 | (unsigned) NodeHasProperty(Pat, SDNPHasChain, ISE); |
| 3139 | for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo) |
| 3140 | if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), |
| 3141 | Prefix + utostr(OpNo))) |
| 3142 | return true; |
| 3143 | return false; |
| 3144 | } |
| 3145 | |
| 3146 | private: |
| 3147 | /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is |
| 3148 | /// being built. |
| 3149 | void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName, |
| 3150 | bool &ChainEmitted, bool &InFlagDecled, |
| 3151 | bool &ResNodeDecled, bool isRoot = false) { |
| 3152 | const CodeGenTarget &T = ISE.getTargetInfo(); |
| 3153 | unsigned OpNo = |
| 3154 | (unsigned) NodeHasProperty(N, SDNPHasChain, ISE); |
| 3155 | bool HasInFlag = NodeHasProperty(N, SDNPInFlag, ISE); |
| 3156 | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { |
| 3157 | TreePatternNode *Child = N->getChild(i); |
| 3158 | if (!Child->isLeaf()) { |
| 3159 | EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted, |
| 3160 | InFlagDecled, ResNodeDecled); |
| 3161 | } else { |
| 3162 | if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { |
| 3163 | if (!Child->getName().empty()) { |
| 3164 | std::string Name = RootName + utostr(OpNo); |
| 3165 | if (Duplicates.find(Name) != Duplicates.end()) |
| 3166 | // A duplicate! Do not emit a copy for this node. |
| 3167 | continue; |
| 3168 | } |
| 3169 | |
| 3170 | Record *RR = DI->getDef(); |
| 3171 | if (RR->isSubClassOf("Register")) { |
| 3172 | MVT::ValueType RVT = getRegisterValueType(RR, T); |
| 3173 | if (RVT == MVT::Flag) { |
| 3174 | if (!InFlagDecled) { |
| 3175 | emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";"); |
| 3176 | InFlagDecled = true; |
| 3177 | } else |
| 3178 | emitCode("InFlag = " + RootName + utostr(OpNo) + ";"); |
| 3179 | emitCode("AddToISelQueue(InFlag);"); |
| 3180 | } else { |
| 3181 | if (!ChainEmitted) { |
| 3182 | emitCode("SDOperand Chain = CurDAG->getEntryNode();"); |
| 3183 | ChainName = "Chain"; |
| 3184 | ChainEmitted = true; |
| 3185 | } |
| 3186 | emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");"); |
| 3187 | if (!InFlagDecled) { |
| 3188 | emitCode("SDOperand InFlag(0, 0);"); |
| 3189 | InFlagDecled = true; |
| 3190 | } |
| 3191 | std::string Decl = (!ResNodeDecled) ? "SDNode *" : ""; |
| 3192 | emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName + |
| 3193 | ", " + ISE.getQualifiedName(RR) + |
| 3194 | ", " + RootName + utostr(OpNo) + ", InFlag).Val;"); |
| 3195 | ResNodeDecled = true; |
| 3196 | emitCode(ChainName + " = SDOperand(ResNode, 0);"); |
| 3197 | emitCode("InFlag = SDOperand(ResNode, 1);"); |
| 3198 | } |
| 3199 | } |
| 3200 | } |
| 3201 | } |
| 3202 | } |
| 3203 | |
| 3204 | if (HasInFlag) { |
| 3205 | if (!InFlagDecled) { |
| 3206 | emitCode("SDOperand InFlag = " + RootName + |
| 3207 | ".getOperand(" + utostr(OpNo) + ");"); |
| 3208 | InFlagDecled = true; |
| 3209 | } else |
| 3210 | emitCode("InFlag = " + RootName + |
| 3211 | ".getOperand(" + utostr(OpNo) + ");"); |
| 3212 | emitCode("AddToISelQueue(InFlag);"); |
| 3213 | } |
| 3214 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3215 | }; |
| 3216 | |
| 3217 | /// EmitCodeForPattern - Given a pattern to match, emit code to the specified |
| 3218 | /// stream to match the pattern, and generate the code for the match if it |
| 3219 | /// succeeds. Returns true if the pattern is not guaranteed to match. |
| 3220 | void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern, |
| 3221 | std::vector<std::pair<unsigned, std::string> > &GeneratedCode, |
| 3222 | std::set<std::string> &GeneratedDecl, |
| 3223 | std::vector<std::string> &TargetOpcodes, |
| 3224 | std::vector<std::string> &TargetVTs) { |
| 3225 | PatternCodeEmitter Emitter(*this, Pattern.getPredicates(), |
| 3226 | Pattern.getSrcPattern(), Pattern.getDstPattern(), |
| 3227 | GeneratedCode, GeneratedDecl, |
| 3228 | TargetOpcodes, TargetVTs); |
| 3229 | |
| 3230 | // Emit the matcher, capturing named arguments in VariableMap. |
| 3231 | bool FoundChain = false; |
| 3232 | Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain); |
| 3233 | |
| 3234 | // TP - Get *SOME* tree pattern, we don't care which. |
| 3235 | TreePattern &TP = *PatternFragments.begin()->second; |
| 3236 | |
| 3237 | // At this point, we know that we structurally match the pattern, but the |
| 3238 | // types of the nodes may not match. Figure out the fewest number of type |
| 3239 | // comparisons we need to emit. For example, if there is only one integer |
| 3240 | // type supported by a target, there should be no type comparisons at all for |
| 3241 | // integer patterns! |
| 3242 | // |
| 3243 | // To figure out the fewest number of type checks needed, clone the pattern, |
| 3244 | // remove the types, then perform type inference on the pattern as a whole. |
| 3245 | // If there are unresolved types, emit an explicit check for those types, |
| 3246 | // apply the type to the tree, then rerun type inference. Iterate until all |
| 3247 | // types are resolved. |
| 3248 | // |
| 3249 | TreePatternNode *Pat = Pattern.getSrcPattern()->clone(); |
| 3250 | RemoveAllTypes(Pat); |
| 3251 | |
| 3252 | do { |
| 3253 | // Resolve/propagate as many types as possible. |
| 3254 | try { |
| 3255 | bool MadeChange = true; |
| 3256 | while (MadeChange) |
| 3257 | MadeChange = Pat->ApplyTypeConstraints(TP, |
| 3258 | true/*Ignore reg constraints*/); |
| 3259 | } catch (...) { |
| 3260 | assert(0 && "Error: could not find consistent types for something we" |
| 3261 | " already decided was ok!"); |
| 3262 | abort(); |
| 3263 | } |
| 3264 | |
| 3265 | // Insert a check for an unresolved type and add it to the tree. If we find |
| 3266 | // an unresolved type to add a check for, this returns true and we iterate, |
| 3267 | // otherwise we are done. |
| 3268 | } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true)); |
| 3269 | |
| 3270 | Emitter.EmitResultCode(Pattern.getDstPattern(), |
| 3271 | false, false, false, false, true); |
| 3272 | delete Pat; |
| 3273 | } |
| 3274 | |
| 3275 | /// EraseCodeLine - Erase one code line from all of the patterns. If removing |
| 3276 | /// a line causes any of them to be empty, remove them and return true when |
| 3277 | /// done. |
| 3278 | static bool EraseCodeLine(std::vector<std::pair<PatternToMatch*, |
| 3279 | std::vector<std::pair<unsigned, std::string> > > > |
| 3280 | &Patterns) { |
| 3281 | bool ErasedPatterns = false; |
| 3282 | for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| 3283 | Patterns[i].second.pop_back(); |
| 3284 | if (Patterns[i].second.empty()) { |
| 3285 | Patterns.erase(Patterns.begin()+i); |
| 3286 | --i; --e; |
| 3287 | ErasedPatterns = true; |
| 3288 | } |
| 3289 | } |
| 3290 | return ErasedPatterns; |
| 3291 | } |
| 3292 | |
| 3293 | /// EmitPatterns - Emit code for at least one pattern, but try to group common |
| 3294 | /// code together between the patterns. |
| 3295 | void DAGISelEmitter::EmitPatterns(std::vector<std::pair<PatternToMatch*, |
| 3296 | std::vector<std::pair<unsigned, std::string> > > > |
| 3297 | &Patterns, unsigned Indent, |
| 3298 | std::ostream &OS) { |
| 3299 | typedef std::pair<unsigned, std::string> CodeLine; |
| 3300 | typedef std::vector<CodeLine> CodeList; |
| 3301 | typedef std::vector<std::pair<PatternToMatch*, CodeList> > PatternList; |
| 3302 | |
| 3303 | if (Patterns.empty()) return; |
| 3304 | |
| 3305 | // Figure out how many patterns share the next code line. Explicitly copy |
| 3306 | // FirstCodeLine so that we don't invalidate a reference when changing |
| 3307 | // Patterns. |
| 3308 | const CodeLine FirstCodeLine = Patterns.back().second.back(); |
| 3309 | unsigned LastMatch = Patterns.size()-1; |
| 3310 | while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine) |
| 3311 | --LastMatch; |
| 3312 | |
| 3313 | // If not all patterns share this line, split the list into two pieces. The |
| 3314 | // first chunk will use this line, the second chunk won't. |
| 3315 | if (LastMatch != 0) { |
| 3316 | PatternList Shared(Patterns.begin()+LastMatch, Patterns.end()); |
| 3317 | PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch); |
| 3318 | |
| 3319 | // FIXME: Emit braces? |
| 3320 | if (Shared.size() == 1) { |
| 3321 | PatternToMatch &Pattern = *Shared.back().first; |
| 3322 | OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; |
| 3323 | Pattern.getSrcPattern()->print(OS); |
| 3324 | OS << "\n" << std::string(Indent, ' ') << "// Emits: "; |
| 3325 | Pattern.getDstPattern()->print(OS); |
| 3326 | OS << "\n"; |
| 3327 | unsigned AddedComplexity = Pattern.getAddedComplexity(); |
| 3328 | OS << std::string(Indent, ' ') << "// Pattern complexity = " |
| 3329 | << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity |
| 3330 | << " cost = " |
| 3331 | << getResultPatternCost(Pattern.getDstPattern(), *this) |
| 3332 | << " size = " |
| 3333 | << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n"; |
| 3334 | } |
| 3335 | if (FirstCodeLine.first != 1) { |
| 3336 | OS << std::string(Indent, ' ') << "{\n"; |
| 3337 | Indent += 2; |
| 3338 | } |
| 3339 | EmitPatterns(Shared, Indent, OS); |
| 3340 | if (FirstCodeLine.first != 1) { |
| 3341 | Indent -= 2; |
| 3342 | OS << std::string(Indent, ' ') << "}\n"; |
| 3343 | } |
| 3344 | |
| 3345 | if (Other.size() == 1) { |
| 3346 | PatternToMatch &Pattern = *Other.back().first; |
| 3347 | OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; |
| 3348 | Pattern.getSrcPattern()->print(OS); |
| 3349 | OS << "\n" << std::string(Indent, ' ') << "// Emits: "; |
| 3350 | Pattern.getDstPattern()->print(OS); |
| 3351 | OS << "\n"; |
| 3352 | unsigned AddedComplexity = Pattern.getAddedComplexity(); |
| 3353 | OS << std::string(Indent, ' ') << "// Pattern complexity = " |
| 3354 | << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity |
| 3355 | << " cost = " |
| 3356 | << getResultPatternCost(Pattern.getDstPattern(), *this) |
| 3357 | << " size = " |
| 3358 | << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n"; |
| 3359 | } |
| 3360 | EmitPatterns(Other, Indent, OS); |
| 3361 | return; |
| 3362 | } |
| 3363 | |
| 3364 | // Remove this code from all of the patterns that share it. |
| 3365 | bool ErasedPatterns = EraseCodeLine(Patterns); |
| 3366 | |
| 3367 | bool isPredicate = FirstCodeLine.first == 1; |
| 3368 | |
| 3369 | // Otherwise, every pattern in the list has this line. Emit it. |
| 3370 | if (!isPredicate) { |
| 3371 | // Normal code. |
| 3372 | OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n"; |
| 3373 | } else { |
| 3374 | OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second; |
| 3375 | |
| 3376 | // If the next code line is another predicate, and if all of the pattern |
| 3377 | // in this group share the same next line, emit it inline now. Do this |
| 3378 | // until we run out of common predicates. |
| 3379 | while (!ErasedPatterns && Patterns.back().second.back().first == 1) { |
| 3380 | // Check that all of fhe patterns in Patterns end with the same predicate. |
| 3381 | bool AllEndWithSamePredicate = true; |
| 3382 | for (unsigned i = 0, e = Patterns.size(); i != e; ++i) |
| 3383 | if (Patterns[i].second.back() != Patterns.back().second.back()) { |
| 3384 | AllEndWithSamePredicate = false; |
| 3385 | break; |
| 3386 | } |
| 3387 | // If all of the predicates aren't the same, we can't share them. |
| 3388 | if (!AllEndWithSamePredicate) break; |
| 3389 | |
| 3390 | // Otherwise we can. Emit it shared now. |
| 3391 | OS << " &&\n" << std::string(Indent+4, ' ') |
| 3392 | << Patterns.back().second.back().second; |
| 3393 | ErasedPatterns = EraseCodeLine(Patterns); |
| 3394 | } |
| 3395 | |
| 3396 | OS << ") {\n"; |
| 3397 | Indent += 2; |
| 3398 | } |
| 3399 | |
| 3400 | EmitPatterns(Patterns, Indent, OS); |
| 3401 | |
| 3402 | if (isPredicate) |
| 3403 | OS << std::string(Indent-2, ' ') << "}\n"; |
| 3404 | } |
| 3405 | |
| 3406 | static std::string getOpcodeName(Record *Op, DAGISelEmitter &ISE) { |
| 3407 | const SDNodeInfo &OpcodeInfo = ISE.getSDNodeInfo(Op); |
| 3408 | return OpcodeInfo.getEnumName(); |
| 3409 | } |
| 3410 | |
| 3411 | static std::string getLegalCName(std::string OpName) { |
| 3412 | std::string::size_type pos = OpName.find("::"); |
| 3413 | if (pos != std::string::npos) |
| 3414 | OpName.replace(pos, 2, "_"); |
| 3415 | return OpName; |
| 3416 | } |
| 3417 | |
| 3418 | void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { |
| 3419 | // Get the namespace to insert instructions into. Make sure not to pick up |
| 3420 | // "TargetInstrInfo" by accidentally getting the namespace off the PHI |
| 3421 | // instruction or something. |
| 3422 | std::string InstNS; |
| 3423 | for (CodeGenTarget::inst_iterator i = Target.inst_begin(), |
| 3424 | e = Target.inst_end(); i != e; ++i) { |
| 3425 | InstNS = i->second.Namespace; |
| 3426 | if (InstNS != "TargetInstrInfo") |
| 3427 | break; |
| 3428 | } |
| 3429 | |
| 3430 | if (!InstNS.empty()) InstNS += "::"; |
| 3431 | |
| 3432 | // Group the patterns by their top-level opcodes. |
| 3433 | std::map<std::string, std::vector<PatternToMatch*> > PatternsByOpcode; |
| 3434 | // All unique target node emission functions. |
| 3435 | std::map<std::string, unsigned> EmitFunctions; |
| 3436 | for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { |
| 3437 | TreePatternNode *Node = PatternsToMatch[i].getSrcPattern(); |
| 3438 | if (!Node->isLeaf()) { |
| 3439 | PatternsByOpcode[getOpcodeName(Node->getOperator(), *this)]. |
| 3440 | push_back(&PatternsToMatch[i]); |
| 3441 | } else { |
| 3442 | const ComplexPattern *CP; |
| 3443 | if (dynamic_cast<IntInit*>(Node->getLeafValue())) { |
| 3444 | PatternsByOpcode[getOpcodeName(getSDNodeNamed("imm"), *this)]. |
| 3445 | push_back(&PatternsToMatch[i]); |
| 3446 | } else if ((CP = NodeGetComplexPattern(Node, *this))) { |
| 3447 | std::vector<Record*> OpNodes = CP->getRootNodes(); |
| 3448 | for (unsigned j = 0, e = OpNodes.size(); j != e; j++) { |
| 3449 | PatternsByOpcode[getOpcodeName(OpNodes[j], *this)] |
| 3450 | .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], *this)].begin(), |
| 3451 | &PatternsToMatch[i]); |
| 3452 | } |
| 3453 | } else { |
| 3454 | cerr << "Unrecognized opcode '"; |
| 3455 | Node->dump(); |
| 3456 | cerr << "' on tree pattern '"; |
| 3457 | cerr << PatternsToMatch[i].getDstPattern()->getOperator()->getName(); |
| 3458 | cerr << "'!\n"; |
| 3459 | exit(1); |
| 3460 | } |
| 3461 | } |
| 3462 | } |
| 3463 | |
| 3464 | // For each opcode, there might be multiple select functions, one per |
| 3465 | // ValueType of the node (or its first operand if it doesn't produce a |
| 3466 | // non-chain result. |
| 3467 | std::map<std::string, std::vector<std::string> > OpcodeVTMap; |
| 3468 | |
| 3469 | // Emit one Select_* method for each top-level opcode. We do this instead of |
| 3470 | // emitting one giant switch statement to support compilers where this will |
| 3471 | // result in the recursive functions taking less stack space. |
| 3472 | for (std::map<std::string, std::vector<PatternToMatch*> >::iterator |
| 3473 | PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); |
| 3474 | PBOI != E; ++PBOI) { |
| 3475 | const std::string &OpName = PBOI->first; |
| 3476 | std::vector<PatternToMatch*> &PatternsOfOp = PBOI->second; |
| 3477 | assert(!PatternsOfOp.empty() && "No patterns but map has entry?"); |
| 3478 | |
| 3479 | // We want to emit all of the matching code now. However, we want to emit |
| 3480 | // the matches in order of minimal cost. Sort the patterns so the least |
| 3481 | // cost one is at the start. |
| 3482 | std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(), |
| 3483 | PatternSortingPredicate(*this)); |
| 3484 | |
| 3485 | // Split them into groups by type. |
| 3486 | std::map<MVT::ValueType, std::vector<PatternToMatch*> > PatternsByType; |
| 3487 | for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) { |
| 3488 | PatternToMatch *Pat = PatternsOfOp[i]; |
| 3489 | TreePatternNode *SrcPat = Pat->getSrcPattern(); |
| 3490 | MVT::ValueType VT = SrcPat->getTypeNum(0); |
| 3491 | std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator TI = |
| 3492 | PatternsByType.find(VT); |
| 3493 | if (TI != PatternsByType.end()) |
| 3494 | TI->second.push_back(Pat); |
| 3495 | else { |
| 3496 | std::vector<PatternToMatch*> PVec; |
| 3497 | PVec.push_back(Pat); |
| 3498 | PatternsByType.insert(std::make_pair(VT, PVec)); |
| 3499 | } |
| 3500 | } |
| 3501 | |
| 3502 | for (std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator |
| 3503 | II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE; |
| 3504 | ++II) { |
| 3505 | MVT::ValueType OpVT = II->first; |
| 3506 | std::vector<PatternToMatch*> &Patterns = II->second; |
| 3507 | typedef std::vector<std::pair<unsigned,std::string> > CodeList; |
| 3508 | typedef std::vector<std::pair<unsigned,std::string> >::iterator CodeListI; |
| 3509 | |
| 3510 | std::vector<std::pair<PatternToMatch*, CodeList> > CodeForPatterns; |
| 3511 | std::vector<std::vector<std::string> > PatternOpcodes; |
| 3512 | std::vector<std::vector<std::string> > PatternVTs; |
| 3513 | std::vector<std::set<std::string> > PatternDecls; |
| 3514 | for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| 3515 | CodeList GeneratedCode; |
| 3516 | std::set<std::string> GeneratedDecl; |
| 3517 | std::vector<std::string> TargetOpcodes; |
| 3518 | std::vector<std::string> TargetVTs; |
| 3519 | GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl, |
| 3520 | TargetOpcodes, TargetVTs); |
| 3521 | CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode)); |
| 3522 | PatternDecls.push_back(GeneratedDecl); |
| 3523 | PatternOpcodes.push_back(TargetOpcodes); |
| 3524 | PatternVTs.push_back(TargetVTs); |
| 3525 | } |
| 3526 | |
| 3527 | // Scan the code to see if all of the patterns are reachable and if it is |
| 3528 | // possible that the last one might not match. |
| 3529 | bool mightNotMatch = true; |
| 3530 | for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { |
| 3531 | CodeList &GeneratedCode = CodeForPatterns[i].second; |
| 3532 | mightNotMatch = false; |
| 3533 | |
| 3534 | for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) { |
| 3535 | if (GeneratedCode[j].first == 1) { // predicate. |
| 3536 | mightNotMatch = true; |
| 3537 | break; |
| 3538 | } |
| 3539 | } |
| 3540 | |
| 3541 | // If this pattern definitely matches, and if it isn't the last one, the |
| 3542 | // patterns after it CANNOT ever match. Error out. |
| 3543 | if (mightNotMatch == false && i != CodeForPatterns.size()-1) { |
| 3544 | cerr << "Pattern '"; |
| 3545 | CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream()); |
| 3546 | cerr << "' is impossible to select!\n"; |
| 3547 | exit(1); |
| 3548 | } |
| 3549 | } |
| 3550 | |
| 3551 | // Factor target node emission code (emitted by EmitResultCode) into |
| 3552 | // separate functions. Uniquing and share them among all instruction |
| 3553 | // selection routines. |
| 3554 | for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { |
| 3555 | CodeList &GeneratedCode = CodeForPatterns[i].second; |
| 3556 | std::vector<std::string> &TargetOpcodes = PatternOpcodes[i]; |
| 3557 | std::vector<std::string> &TargetVTs = PatternVTs[i]; |
| 3558 | std::set<std::string> Decls = PatternDecls[i]; |
| 3559 | std::vector<std::string> AddedInits; |
| 3560 | int CodeSize = (int)GeneratedCode.size(); |
| 3561 | int LastPred = -1; |
| 3562 | for (int j = CodeSize-1; j >= 0; --j) { |
| 3563 | if (LastPred == -1 && GeneratedCode[j].first == 1) |
| 3564 | LastPred = j; |
| 3565 | else if (LastPred != -1 && GeneratedCode[j].first == 2) |
| 3566 | AddedInits.push_back(GeneratedCode[j].second); |
| 3567 | } |
| 3568 | |
| 3569 | std::string CalleeCode = "(const SDOperand &N"; |
| 3570 | std::string CallerCode = "(N"; |
| 3571 | for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) { |
| 3572 | CalleeCode += ", unsigned Opc" + utostr(j); |
| 3573 | CallerCode += ", " + TargetOpcodes[j]; |
| 3574 | } |
| 3575 | for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) { |
| 3576 | CalleeCode += ", MVT::ValueType VT" + utostr(j); |
| 3577 | CallerCode += ", " + TargetVTs[j]; |
| 3578 | } |
| 3579 | for (std::set<std::string>::iterator |
| 3580 | I = Decls.begin(), E = Decls.end(); I != E; ++I) { |
| 3581 | std::string Name = *I; |
| 3582 | CalleeCode += ", SDOperand &" + Name; |
| 3583 | CallerCode += ", " + Name; |
| 3584 | } |
| 3585 | CallerCode += ");"; |
| 3586 | CalleeCode += ") "; |
| 3587 | // Prevent emission routines from being inlined to reduce selection |
| 3588 | // routines stack frame sizes. |
| 3589 | CalleeCode += "DISABLE_INLINE "; |
| 3590 | CalleeCode += "{\n"; |
| 3591 | |
| 3592 | for (std::vector<std::string>::const_reverse_iterator |
| 3593 | I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I) |
| 3594 | CalleeCode += " " + *I + "\n"; |
| 3595 | |
| 3596 | for (int j = LastPred+1; j < CodeSize; ++j) |
| 3597 | CalleeCode += " " + GeneratedCode[j].second + "\n"; |
| 3598 | for (int j = LastPred+1; j < CodeSize; ++j) |
| 3599 | GeneratedCode.pop_back(); |
| 3600 | CalleeCode += "}\n"; |
| 3601 | |
| 3602 | // Uniquing the emission routines. |
| 3603 | unsigned EmitFuncNum; |
| 3604 | std::map<std::string, unsigned>::iterator EFI = |
| 3605 | EmitFunctions.find(CalleeCode); |
| 3606 | if (EFI != EmitFunctions.end()) { |
| 3607 | EmitFuncNum = EFI->second; |
| 3608 | } else { |
| 3609 | EmitFuncNum = EmitFunctions.size(); |
| 3610 | EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum)); |
| 3611 | OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode; |
| 3612 | } |
| 3613 | |
| 3614 | // Replace the emission code within selection routines with calls to the |
| 3615 | // emission functions. |
| 3616 | CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode; |
| 3617 | GeneratedCode.push_back(std::make_pair(false, CallerCode)); |
| 3618 | } |
| 3619 | |
| 3620 | // Print function. |
| 3621 | std::string OpVTStr; |
| 3622 | if (OpVT == MVT::iPTR) { |
| 3623 | OpVTStr = "_iPTR"; |
| 3624 | } else if (OpVT == MVT::isVoid) { |
| 3625 | // Nodes with a void result actually have a first result type of either |
| 3626 | // Other (a chain) or Flag. Since there is no one-to-one mapping from |
| 3627 | // void to this case, we handle it specially here. |
| 3628 | } else { |
| 3629 | OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::' |
| 3630 | } |
| 3631 | std::map<std::string, std::vector<std::string> >::iterator OpVTI = |
| 3632 | OpcodeVTMap.find(OpName); |
| 3633 | if (OpVTI == OpcodeVTMap.end()) { |
| 3634 | std::vector<std::string> VTSet; |
| 3635 | VTSet.push_back(OpVTStr); |
| 3636 | OpcodeVTMap.insert(std::make_pair(OpName, VTSet)); |
| 3637 | } else |
| 3638 | OpVTI->second.push_back(OpVTStr); |
| 3639 | |
| 3640 | OS << "SDNode *Select_" << getLegalCName(OpName) |
| 3641 | << OpVTStr << "(const SDOperand &N) {\n"; |
| 3642 | |
| 3643 | // Loop through and reverse all of the CodeList vectors, as we will be |
| 3644 | // accessing them from their logical front, but accessing the end of a |
| 3645 | // vector is more efficient. |
| 3646 | for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { |
| 3647 | CodeList &GeneratedCode = CodeForPatterns[i].second; |
| 3648 | std::reverse(GeneratedCode.begin(), GeneratedCode.end()); |
| 3649 | } |
| 3650 | |
| 3651 | // Next, reverse the list of patterns itself for the same reason. |
| 3652 | std::reverse(CodeForPatterns.begin(), CodeForPatterns.end()); |
| 3653 | |
| 3654 | // Emit all of the patterns now, grouped together to share code. |
| 3655 | EmitPatterns(CodeForPatterns, 2, OS); |
| 3656 | |
| 3657 | // If the last pattern has predicates (which could fail) emit code to |
| 3658 | // catch the case where nothing handles a pattern. |
| 3659 | if (mightNotMatch) { |
| 3660 | OS << " cerr << \"Cannot yet select: \";\n"; |
| 3661 | if (OpName != "ISD::INTRINSIC_W_CHAIN" && |
| 3662 | OpName != "ISD::INTRINSIC_WO_CHAIN" && |
| 3663 | OpName != "ISD::INTRINSIC_VOID") { |
| 3664 | OS << " N.Val->dump(CurDAG);\n"; |
| 3665 | } else { |
| 3666 | OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand(" |
| 3667 | "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" |
| 3668 | << " cerr << \"intrinsic %\"<< " |
| 3669 | "Intrinsic::getName((Intrinsic::ID)iid);\n"; |
| 3670 | } |
| 3671 | OS << " cerr << '\\n';\n" |
| 3672 | << " abort();\n" |
| 3673 | << " return NULL;\n"; |
| 3674 | } |
| 3675 | OS << "}\n\n"; |
| 3676 | } |
| 3677 | } |
| 3678 | |
| 3679 | // Emit boilerplate. |
| 3680 | OS << "SDNode *Select_INLINEASM(SDOperand N) {\n" |
| 3681 | << " std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n" |
| 3682 | << " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n\n" |
| 3683 | |
| 3684 | << " // Ensure that the asm operands are themselves selected.\n" |
| 3685 | << " for (unsigned j = 0, e = Ops.size(); j != e; ++j)\n" |
| 3686 | << " AddToISelQueue(Ops[j]);\n\n" |
| 3687 | |
| 3688 | << " std::vector<MVT::ValueType> VTs;\n" |
| 3689 | << " VTs.push_back(MVT::Other);\n" |
| 3690 | << " VTs.push_back(MVT::Flag);\n" |
| 3691 | << " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], " |
| 3692 | "Ops.size());\n" |
| 3693 | << " return New.Val;\n" |
| 3694 | << "}\n\n"; |
| 3695 | |
| 3696 | OS << "SDNode *Select_LABEL(const SDOperand &N) {\n" |
| 3697 | << " SDOperand Chain = N.getOperand(0);\n" |
| 3698 | << " SDOperand N1 = N.getOperand(1);\n" |
| 3699 | << " unsigned C = cast<ConstantSDNode>(N1)->getValue();\n" |
| 3700 | << " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n" |
| 3701 | << " AddToISelQueue(Chain);\n" |
| 3702 | << " return CurDAG->getTargetNode(TargetInstrInfo::LABEL,\n" |
| 3703 | << " MVT::Other, Tmp, Chain);\n" |
| 3704 | << "}\n\n"; |
| 3705 | |
Christopher Lamb | 071a2a7 | 2007-07-26 07:48:21 +0000 | [diff] [blame] | 3706 | OS << "SDNode *Select_EXTRACT_SUBREG(const SDOperand &N) {\n" |
| 3707 | << " SDOperand N0 = N.getOperand(0);\n" |
| 3708 | << " SDOperand N1 = N.getOperand(1);\n" |
| 3709 | << " unsigned C = cast<ConstantSDNode>(N1)->getValue();\n" |
| 3710 | << " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n" |
| 3711 | << " AddToISelQueue(N0);\n" |
| 3712 | << " return CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,\n" |
| 3713 | << " N.getValueType(), N0, Tmp);\n" |
| 3714 | << "}\n\n"; |
| 3715 | |
| 3716 | OS << "SDNode *Select_INSERT_SUBREG(const SDOperand &N) {\n" |
| 3717 | << " SDOperand N0 = N.getOperand(0);\n" |
| 3718 | << " SDOperand N1 = N.getOperand(1);\n" |
| 3719 | << " SDOperand N2 = N.getOperand(2);\n" |
| 3720 | << " unsigned C = cast<ConstantSDNode>(N2)->getValue();\n" |
| 3721 | << " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n" |
| 3722 | << " AddToISelQueue(N1);\n" |
| 3723 | << " if (N0.getOpcode() == ISD::UNDEF) {\n" |
| 3724 | << " return CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,\n" |
| 3725 | << " N.getValueType(), N1, Tmp);\n" |
| 3726 | << " } else {\n" |
| 3727 | << " AddToISelQueue(N0);\n" |
| 3728 | << " return CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,\n" |
| 3729 | << " N.getValueType(), N0, N1, Tmp);\n" |
| 3730 | << " }\n" |
| 3731 | << "}\n\n"; |
| 3732 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3733 | OS << "// The main instruction selector code.\n" |
| 3734 | << "SDNode *SelectCode(SDOperand N) {\n" |
| 3735 | << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n" |
| 3736 | << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS |
| 3737 | << "INSTRUCTION_LIST_END)) {\n" |
| 3738 | << " return NULL; // Already selected.\n" |
| 3739 | << " }\n\n" |
| 3740 | << " MVT::ValueType NVT = N.Val->getValueType(0);\n" |
| 3741 | << " switch (N.getOpcode()) {\n" |
| 3742 | << " default: break;\n" |
| 3743 | << " case ISD::EntryToken: // These leaves remain the same.\n" |
| 3744 | << " case ISD::BasicBlock:\n" |
| 3745 | << " case ISD::Register:\n" |
| 3746 | << " case ISD::HANDLENODE:\n" |
| 3747 | << " case ISD::TargetConstant:\n" |
| 3748 | << " case ISD::TargetConstantPool:\n" |
| 3749 | << " case ISD::TargetFrameIndex:\n" |
| 3750 | << " case ISD::TargetExternalSymbol:\n" |
| 3751 | << " case ISD::TargetJumpTable:\n" |
| 3752 | << " case ISD::TargetGlobalTLSAddress:\n" |
| 3753 | << " case ISD::TargetGlobalAddress: {\n" |
| 3754 | << " return NULL;\n" |
| 3755 | << " }\n" |
| 3756 | << " case ISD::AssertSext:\n" |
| 3757 | << " case ISD::AssertZext: {\n" |
| 3758 | << " AddToISelQueue(N.getOperand(0));\n" |
| 3759 | << " ReplaceUses(N, N.getOperand(0));\n" |
| 3760 | << " return NULL;\n" |
| 3761 | << " }\n" |
| 3762 | << " case ISD::TokenFactor:\n" |
| 3763 | << " case ISD::CopyFromReg:\n" |
| 3764 | << " case ISD::CopyToReg: {\n" |
| 3765 | << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n" |
| 3766 | << " AddToISelQueue(N.getOperand(i));\n" |
| 3767 | << " return NULL;\n" |
| 3768 | << " }\n" |
| 3769 | << " case ISD::INLINEASM: return Select_INLINEASM(N);\n" |
Christopher Lamb | 071a2a7 | 2007-07-26 07:48:21 +0000 | [diff] [blame] | 3770 | << " case ISD::LABEL: return Select_LABEL(N);\n" |
| 3771 | << " case ISD::EXTRACT_SUBREG: return Select_EXTRACT_SUBREG(N);\n" |
| 3772 | << " case ISD::INSERT_SUBREG: return Select_INSERT_SUBREG(N);\n"; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3773 | |
| 3774 | |
| 3775 | // Loop over all of the case statements, emiting a call to each method we |
| 3776 | // emitted above. |
| 3777 | for (std::map<std::string, std::vector<PatternToMatch*> >::iterator |
| 3778 | PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); |
| 3779 | PBOI != E; ++PBOI) { |
| 3780 | const std::string &OpName = PBOI->first; |
| 3781 | // Potentially multiple versions of select for this opcode. One for each |
| 3782 | // ValueType of the node (or its first true operand if it doesn't produce a |
| 3783 | // result. |
| 3784 | std::map<std::string, std::vector<std::string> >::iterator OpVTI = |
| 3785 | OpcodeVTMap.find(OpName); |
| 3786 | std::vector<std::string> &OpVTs = OpVTI->second; |
| 3787 | OS << " case " << OpName << ": {\n"; |
Evan Cheng | b8b6b18 | 2007-09-04 20:18:28 +0000 | [diff] [blame] | 3788 | // Keep track of whether we see a pattern that has an iPtr result. |
| 3789 | bool HasPtrPattern = false; |
| 3790 | bool HasDefaultPattern = false; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3791 | |
Evan Cheng | b8b6b18 | 2007-09-04 20:18:28 +0000 | [diff] [blame] | 3792 | OS << " switch (NVT) {\n"; |
| 3793 | for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) { |
| 3794 | std::string &VTStr = OpVTs[i]; |
| 3795 | if (VTStr.empty()) { |
| 3796 | HasDefaultPattern = true; |
| 3797 | continue; |
| 3798 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3799 | |
Evan Cheng | b8b6b18 | 2007-09-04 20:18:28 +0000 | [diff] [blame] | 3800 | // If this is a match on iPTR: don't emit it directly, we need special |
| 3801 | // code. |
| 3802 | if (VTStr == "_iPTR") { |
| 3803 | HasPtrPattern = true; |
| 3804 | continue; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3805 | } |
Evan Cheng | b8b6b18 | 2007-09-04 20:18:28 +0000 | [diff] [blame] | 3806 | OS << " case MVT::" << VTStr.substr(1) << ":\n" |
| 3807 | << " return Select_" << getLegalCName(OpName) |
| 3808 | << VTStr << "(N);\n"; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3809 | } |
Evan Cheng | b8b6b18 | 2007-09-04 20:18:28 +0000 | [diff] [blame] | 3810 | OS << " default:\n"; |
| 3811 | |
| 3812 | // If there is an iPTR result version of this pattern, emit it here. |
| 3813 | if (HasPtrPattern) { |
| 3814 | OS << " if (NVT == TLI.getPointerTy())\n"; |
| 3815 | OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n"; |
| 3816 | } |
| 3817 | if (HasDefaultPattern) { |
| 3818 | OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; |
| 3819 | } |
| 3820 | OS << " break;\n"; |
| 3821 | OS << " }\n"; |
| 3822 | OS << " break;\n"; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 3823 | OS << " }\n"; |
| 3824 | } |
| 3825 | |
| 3826 | OS << " } // end of big switch.\n\n" |
| 3827 | << " cerr << \"Cannot yet select: \";\n" |
| 3828 | << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n" |
| 3829 | << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n" |
| 3830 | << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n" |
| 3831 | << " N.Val->dump(CurDAG);\n" |
| 3832 | << " } else {\n" |
| 3833 | << " unsigned iid = cast<ConstantSDNode>(N.getOperand(" |
| 3834 | "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" |
| 3835 | << " cerr << \"intrinsic %\"<< " |
| 3836 | "Intrinsic::getName((Intrinsic::ID)iid);\n" |
| 3837 | << " }\n" |
| 3838 | << " cerr << '\\n';\n" |
| 3839 | << " abort();\n" |
| 3840 | << " return NULL;\n" |
| 3841 | << "}\n"; |
| 3842 | } |
| 3843 | |
| 3844 | void DAGISelEmitter::run(std::ostream &OS) { |
| 3845 | EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() + |
| 3846 | " target", OS); |
| 3847 | |
| 3848 | OS << "// *** NOTE: This file is #included into the middle of the target\n" |
| 3849 | << "// *** instruction selector class. These functions are really " |
| 3850 | << "methods.\n\n"; |
| 3851 | |
| 3852 | OS << "#include \"llvm/Support/Compiler.h\"\n"; |
| 3853 | |
| 3854 | OS << "// Instruction selector priority queue:\n" |
| 3855 | << "std::vector<SDNode*> ISelQueue;\n"; |
| 3856 | OS << "/// Keep track of nodes which have already been added to queue.\n" |
| 3857 | << "unsigned char *ISelQueued;\n"; |
| 3858 | OS << "/// Keep track of nodes which have already been selected.\n" |
| 3859 | << "unsigned char *ISelSelected;\n"; |
| 3860 | OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n" |
| 3861 | << "std::vector<SDNode*> ISelKilled;\n\n"; |
| 3862 | |
| 3863 | OS << "/// IsChainCompatible - Returns true if Chain is Op or Chain does\n"; |
| 3864 | OS << "/// not reach Op.\n"; |
| 3865 | OS << "static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {\n"; |
| 3866 | OS << " if (Chain->getOpcode() == ISD::EntryToken)\n"; |
| 3867 | OS << " return true;\n"; |
| 3868 | OS << " else if (Chain->getOpcode() == ISD::TokenFactor)\n"; |
| 3869 | OS << " return false;\n"; |
| 3870 | OS << " else if (Chain->getNumOperands() > 0) {\n"; |
| 3871 | OS << " SDOperand C0 = Chain->getOperand(0);\n"; |
| 3872 | OS << " if (C0.getValueType() == MVT::Other)\n"; |
| 3873 | OS << " return C0.Val != Op && IsChainCompatible(C0.Val, Op);\n"; |
| 3874 | OS << " }\n"; |
| 3875 | OS << " return true;\n"; |
| 3876 | OS << "}\n"; |
| 3877 | |
| 3878 | OS << "/// Sorting functions for the selection queue.\n" |
| 3879 | << "struct isel_sort : public std::binary_function" |
| 3880 | << "<SDNode*, SDNode*, bool> {\n" |
| 3881 | << " bool operator()(const SDNode* left, const SDNode* right) " |
| 3882 | << "const {\n" |
| 3883 | << " return (left->getNodeId() > right->getNodeId());\n" |
| 3884 | << " }\n" |
| 3885 | << "};\n\n"; |
| 3886 | |
| 3887 | OS << "inline void setQueued(int Id) {\n"; |
| 3888 | OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n"; |
| 3889 | OS << "}\n"; |
| 3890 | OS << "inline bool isQueued(int Id) {\n"; |
| 3891 | OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n"; |
| 3892 | OS << "}\n"; |
| 3893 | OS << "inline void setSelected(int Id) {\n"; |
| 3894 | OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n"; |
| 3895 | OS << "}\n"; |
| 3896 | OS << "inline bool isSelected(int Id) {\n"; |
| 3897 | OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n"; |
| 3898 | OS << "}\n\n"; |
| 3899 | |
| 3900 | OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n"; |
| 3901 | OS << " int Id = N.Val->getNodeId();\n"; |
| 3902 | OS << " if (Id != -1 && !isQueued(Id)) {\n"; |
| 3903 | OS << " ISelQueue.push_back(N.Val);\n"; |
| 3904 | OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; |
| 3905 | OS << " setQueued(Id);\n"; |
| 3906 | OS << " }\n"; |
| 3907 | OS << "}\n\n"; |
| 3908 | |
| 3909 | OS << "inline void RemoveKilled() {\n"; |
| 3910 | OS << " unsigned NumKilled = ISelKilled.size();\n"; |
| 3911 | OS << " if (NumKilled) {\n"; |
| 3912 | OS << " for (unsigned i = 0; i != NumKilled; ++i) {\n"; |
| 3913 | OS << " SDNode *Temp = ISelKilled[i];\n"; |
| 3914 | OS << " ISelQueue.erase(std::remove(ISelQueue.begin(), ISelQueue.end(), " |
| 3915 | << "Temp), ISelQueue.end());\n"; |
| 3916 | OS << " };\n"; |
| 3917 | OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; |
| 3918 | OS << " ISelKilled.clear();\n"; |
| 3919 | OS << " }\n"; |
| 3920 | OS << "}\n\n"; |
| 3921 | |
| 3922 | OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n"; |
| 3923 | OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n"; |
| 3924 | OS << " setSelected(F.Val->getNodeId());\n"; |
| 3925 | OS << " RemoveKilled();\n"; |
| 3926 | OS << "}\n"; |
| 3927 | OS << "inline void ReplaceUses(SDNode *F, SDNode *T) {\n"; |
| 3928 | OS << " CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n"; |
| 3929 | OS << " setSelected(F->getNodeId());\n"; |
| 3930 | OS << " RemoveKilled();\n"; |
| 3931 | OS << "}\n\n"; |
| 3932 | |
| 3933 | OS << "// SelectRoot - Top level entry to DAG isel.\n"; |
| 3934 | OS << "SDOperand SelectRoot(SDOperand Root) {\n"; |
| 3935 | OS << " SelectRootInit();\n"; |
| 3936 | OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n"; |
| 3937 | OS << " ISelQueued = new unsigned char[NumBytes];\n"; |
| 3938 | OS << " ISelSelected = new unsigned char[NumBytes];\n"; |
| 3939 | OS << " memset(ISelQueued, 0, NumBytes);\n"; |
| 3940 | OS << " memset(ISelSelected, 0, NumBytes);\n"; |
| 3941 | OS << "\n"; |
| 3942 | OS << " // Create a dummy node (which is not added to allnodes), that adds\n" |
| 3943 | << " // a reference to the root node, preventing it from being deleted,\n" |
| 3944 | << " // and tracking any changes of the root.\n" |
| 3945 | << " HandleSDNode Dummy(CurDAG->getRoot());\n" |
| 3946 | << " ISelQueue.push_back(CurDAG->getRoot().Val);\n"; |
| 3947 | OS << " while (!ISelQueue.empty()) {\n"; |
| 3948 | OS << " SDNode *Node = ISelQueue.front();\n"; |
| 3949 | OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; |
| 3950 | OS << " ISelQueue.pop_back();\n"; |
| 3951 | OS << " if (!isSelected(Node->getNodeId())) {\n"; |
| 3952 | OS << " SDNode *ResNode = Select(SDOperand(Node, 0));\n"; |
| 3953 | OS << " if (ResNode != Node) {\n"; |
| 3954 | OS << " if (ResNode)\n"; |
| 3955 | OS << " ReplaceUses(Node, ResNode);\n"; |
| 3956 | OS << " if (Node->use_empty()) { // Don't delete EntryToken, etc.\n"; |
| 3957 | OS << " CurDAG->RemoveDeadNode(Node, ISelKilled);\n"; |
| 3958 | OS << " RemoveKilled();\n"; |
| 3959 | OS << " }\n"; |
| 3960 | OS << " }\n"; |
| 3961 | OS << " }\n"; |
| 3962 | OS << " }\n"; |
| 3963 | OS << "\n"; |
| 3964 | OS << " delete[] ISelQueued;\n"; |
| 3965 | OS << " ISelQueued = NULL;\n"; |
| 3966 | OS << " delete[] ISelSelected;\n"; |
| 3967 | OS << " ISelSelected = NULL;\n"; |
| 3968 | OS << " return Dummy.getValue();\n"; |
| 3969 | OS << "}\n"; |
| 3970 | |
| 3971 | Intrinsics = LoadIntrinsics(Records); |
| 3972 | ParseNodeInfo(); |
| 3973 | ParseNodeTransforms(OS); |
| 3974 | ParseComplexPatterns(); |
| 3975 | ParsePatternFragments(OS); |
| 3976 | ParseDefaultOperands(); |
| 3977 | ParseInstructions(); |
| 3978 | ParsePatterns(); |
| 3979 | |
| 3980 | // Generate variants. For example, commutative patterns can match |
| 3981 | // multiple ways. Add them to PatternsToMatch as well. |
| 3982 | GenerateVariants(); |
| 3983 | |
| 3984 | DOUT << "\n\nALL PATTERNS TO MATCH:\n\n"; |
| 3985 | for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { |
| 3986 | DOUT << "PATTERN: "; DEBUG(PatternsToMatch[i].getSrcPattern()->dump()); |
| 3987 | DOUT << "\nRESULT: "; DEBUG(PatternsToMatch[i].getDstPattern()->dump()); |
| 3988 | DOUT << "\n"; |
| 3989 | } |
| 3990 | |
| 3991 | // At this point, we have full information about the 'Patterns' we need to |
| 3992 | // parse, both implicitly from instructions as well as from explicit pattern |
| 3993 | // definitions. Emit the resultant instruction selector. |
| 3994 | EmitInstructionSelector(OS); |
| 3995 | |
| 3996 | for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), |
| 3997 | E = PatternFragments.end(); I != E; ++I) |
| 3998 | delete I->second; |
| 3999 | PatternFragments.clear(); |
| 4000 | |
| 4001 | Instructions.clear(); |
| 4002 | } |