blob: 575b701801cede0077cc1a1a3c0594c2865aa878 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a DAG instruction selector.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DAGISelEmitter.h"
15#include "Record.h"
16#include "llvm/ADT/StringExtras.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/MathExtras.h"
19#include "llvm/Support/Streams.h"
20#include <algorithm>
21#include <set>
22using namespace llvm;
23
24//===----------------------------------------------------------------------===//
25// Helpers for working with extended types.
26
27/// FilterVTs - Filter a list of VT's according to a predicate.
28///
29template<typename T>
30static std::vector<MVT::ValueType>
31FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
32 std::vector<MVT::ValueType> Result;
33 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
34 if (Filter(InVTs[i]))
35 Result.push_back(InVTs[i]);
36 return Result;
37}
38
39template<typename T>
40static std::vector<unsigned char>
41FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
42 std::vector<unsigned char> Result;
43 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
44 if (Filter((MVT::ValueType)InVTs[i]))
45 Result.push_back(InVTs[i]);
46 return Result;
47}
48
49static std::vector<unsigned char>
50ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
51 std::vector<unsigned char> Result;
52 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
53 Result.push_back(InVTs[i]);
54 return Result;
55}
56
57static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
58 const std::vector<unsigned char> &RHS) {
59 if (LHS.size() > RHS.size()) return false;
60 for (unsigned i = 0, e = LHS.size(); i != e; ++i)
61 if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
62 return false;
63 return true;
64}
65
66/// isExtIntegerVT - Return true if the specified extended value type vector
67/// contains isInt or an integer value type.
68static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
69 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
70 return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty());
71}
72
73/// isExtFloatingPointVT - Return true if the specified extended value type
74/// vector contains isFP or a FP value type.
75static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
76 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
77 return EVTs[0] == MVT::isFP ||
78 !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty());
79}
80
81//===----------------------------------------------------------------------===//
82// SDTypeConstraint implementation
83//
84
85SDTypeConstraint::SDTypeConstraint(Record *R) {
86 OperandNo = R->getValueAsInt("OperandNum");
87
88 if (R->isSubClassOf("SDTCisVT")) {
89 ConstraintType = SDTCisVT;
90 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
91 } else if (R->isSubClassOf("SDTCisPtrTy")) {
92 ConstraintType = SDTCisPtrTy;
93 } else if (R->isSubClassOf("SDTCisInt")) {
94 ConstraintType = SDTCisInt;
95 } else if (R->isSubClassOf("SDTCisFP")) {
96 ConstraintType = SDTCisFP;
97 } else if (R->isSubClassOf("SDTCisSameAs")) {
98 ConstraintType = SDTCisSameAs;
99 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
100 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
101 ConstraintType = SDTCisVTSmallerThanOp;
102 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
103 R->getValueAsInt("OtherOperandNum");
104 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
105 ConstraintType = SDTCisOpSmallerThanOp;
106 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
107 R->getValueAsInt("BigOperandNum");
108 } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
109 ConstraintType = SDTCisIntVectorOfSameSize;
110 x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
111 R->getValueAsInt("OtherOpNum");
112 } else {
113 cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
114 exit(1);
115 }
116}
117
118/// getOperandNum - Return the node corresponding to operand #OpNo in tree
119/// N, which has NumResults results.
120TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
121 TreePatternNode *N,
122 unsigned NumResults) const {
123 assert(NumResults <= 1 &&
124 "We only work with nodes with zero or one result so far!");
125
126 if (OpNo >= (NumResults + N->getNumChildren())) {
127 cerr << "Invalid operand number " << OpNo << " ";
128 N->dump();
129 cerr << '\n';
130 exit(1);
131 }
132
133 if (OpNo < NumResults)
134 return N; // FIXME: need value #
135 else
136 return N->getChild(OpNo-NumResults);
137}
138
139/// ApplyTypeConstraint - Given a node in a pattern, apply this type
140/// constraint to the nodes operands. This returns true if it makes a
141/// change, false otherwise. If a type contradiction is found, throw an
142/// exception.
143bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
144 const SDNodeInfo &NodeInfo,
145 TreePattern &TP) const {
146 unsigned NumResults = NodeInfo.getNumResults();
147 assert(NumResults <= 1 &&
148 "We only work with nodes with zero or one result so far!");
149
150 // Check that the number of operands is sane. Negative operands -> varargs.
151 if (NodeInfo.getNumOperands() >= 0) {
152 if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
153 TP.error(N->getOperator()->getName() + " node requires exactly " +
154 itostr(NodeInfo.getNumOperands()) + " operands!");
155 }
156
157 const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo();
158
159 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
160
161 switch (ConstraintType) {
162 default: assert(0 && "Unknown constraint type!");
163 case SDTCisVT:
164 // Operand must be a particular type.
165 return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
166 case SDTCisPtrTy: {
167 // Operand must be same as target pointer type.
168 return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
169 }
170 case SDTCisInt: {
171 // If there is only one integer type supported, this must be it.
172 std::vector<MVT::ValueType> IntVTs =
173 FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
174
175 // If we found exactly one supported integer type, apply it.
176 if (IntVTs.size() == 1)
177 return NodeToApply->UpdateNodeType(IntVTs[0], TP);
178 return NodeToApply->UpdateNodeType(MVT::isInt, TP);
179 }
180 case SDTCisFP: {
181 // If there is only one FP type supported, this must be it.
182 std::vector<MVT::ValueType> FPVTs =
183 FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
184
185 // If we found exactly one supported FP type, apply it.
186 if (FPVTs.size() == 1)
187 return NodeToApply->UpdateNodeType(FPVTs[0], TP);
188 return NodeToApply->UpdateNodeType(MVT::isFP, TP);
189 }
190 case SDTCisSameAs: {
191 TreePatternNode *OtherNode =
192 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
193 return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
194 OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
195 }
196 case SDTCisVTSmallerThanOp: {
197 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
198 // have an integer type that is smaller than the VT.
199 if (!NodeToApply->isLeaf() ||
200 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
201 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
202 ->isSubClassOf("ValueType"))
203 TP.error(N->getOperator()->getName() + " expects a VT operand!");
204 MVT::ValueType VT =
205 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
206 if (!MVT::isInteger(VT))
207 TP.error(N->getOperator()->getName() + " VT operand must be integer!");
208
209 TreePatternNode *OtherNode =
210 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
211
212 // It must be integer.
213 bool MadeChange = false;
214 MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
215
216 // This code only handles nodes that have one type set. Assert here so
217 // that we can change this if we ever need to deal with multiple value
218 // types at this point.
219 assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
220 if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
221 OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
222 return false;
223 }
224 case SDTCisOpSmallerThanOp: {
225 TreePatternNode *BigOperand =
226 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
227
228 // Both operands must be integer or FP, but we don't care which.
229 bool MadeChange = false;
230
231 // This code does not currently handle nodes which have multiple types,
232 // where some types are integer, and some are fp. Assert that this is not
233 // the case.
234 assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
235 isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
236 !(isExtIntegerInVTs(BigOperand->getExtTypes()) &&
237 isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
238 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
239 if (isExtIntegerInVTs(NodeToApply->getExtTypes()))
240 MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
241 else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
242 MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
243 if (isExtIntegerInVTs(BigOperand->getExtTypes()))
244 MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
245 else if (isExtFloatingPointInVTs(BigOperand->getExtTypes()))
246 MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
247
248 std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
249
250 if (isExtIntegerInVTs(NodeToApply->getExtTypes())) {
251 VTs = FilterVTs(VTs, MVT::isInteger);
252 } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
253 VTs = FilterVTs(VTs, MVT::isFloatingPoint);
254 } else {
255 VTs.clear();
256 }
257
258 switch (VTs.size()) {
259 default: // Too many VT's to pick from.
260 case 0: break; // No info yet.
261 case 1:
262 // Only one VT of this flavor. Cannot ever satisify the constraints.
263 return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
264 case 2:
265 // If we have exactly two possible types, the little operand must be the
266 // small one, the big operand should be the big one. Common with
267 // float/double for example.
268 assert(VTs[0] < VTs[1] && "Should be sorted!");
269 MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
270 MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
271 break;
272 }
273 return MadeChange;
274 }
275 case SDTCisIntVectorOfSameSize: {
276 TreePatternNode *OtherOperand =
277 getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
278 N, NumResults);
279 if (OtherOperand->hasTypeSet()) {
280 if (!MVT::isVector(OtherOperand->getTypeNum(0)))
281 TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
282 MVT::ValueType IVT = OtherOperand->getTypeNum(0);
283 IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
284 return NodeToApply->UpdateNodeType(IVT, TP);
285 }
286 return false;
287 }
288 }
289 return false;
290}
291
292
293//===----------------------------------------------------------------------===//
294// SDNodeInfo implementation
295//
296SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
297 EnumName = R->getValueAsString("Opcode");
298 SDClassName = R->getValueAsString("SDClass");
299 Record *TypeProfile = R->getValueAsDef("TypeProfile");
300 NumResults = TypeProfile->getValueAsInt("NumResults");
301 NumOperands = TypeProfile->getValueAsInt("NumOperands");
302
303 // Parse the properties.
304 Properties = 0;
305 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
306 for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
307 if (PropList[i]->getName() == "SDNPCommutative") {
308 Properties |= 1 << SDNPCommutative;
309 } else if (PropList[i]->getName() == "SDNPAssociative") {
310 Properties |= 1 << SDNPAssociative;
311 } else if (PropList[i]->getName() == "SDNPHasChain") {
312 Properties |= 1 << SDNPHasChain;
313 } else if (PropList[i]->getName() == "SDNPOutFlag") {
314 Properties |= 1 << SDNPOutFlag;
315 } else if (PropList[i]->getName() == "SDNPInFlag") {
316 Properties |= 1 << SDNPInFlag;
317 } else if (PropList[i]->getName() == "SDNPOptInFlag") {
318 Properties |= 1 << SDNPOptInFlag;
319 } else {
320 cerr << "Unknown SD Node property '" << PropList[i]->getName()
321 << "' on node '" << R->getName() << "'!\n";
322 exit(1);
323 }
324 }
325
326
327 // Parse the type constraints.
328 std::vector<Record*> ConstraintList =
329 TypeProfile->getValueAsListOfDefs("Constraints");
330 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
331}
332
333//===----------------------------------------------------------------------===//
334// TreePatternNode implementation
335//
336
337TreePatternNode::~TreePatternNode() {
338#if 0 // FIXME: implement refcounted tree nodes!
339 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
340 delete getChild(i);
341#endif
342}
343
344/// UpdateNodeType - Set the node type of N to VT if VT contains
345/// information. If N already contains a conflicting type, then throw an
346/// exception. This returns true if any information was updated.
347///
348bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
349 TreePattern &TP) {
350 assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
351
352 if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
353 return false;
354 if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
355 setTypes(ExtVTs);
356 return true;
357 }
358
359 if (getExtTypeNum(0) == MVT::iPTR) {
360 if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
361 return false;
362 if (isExtIntegerInVTs(ExtVTs)) {
363 std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
364 if (FVTs.size()) {
365 setTypes(ExtVTs);
366 return true;
367 }
368 }
369 }
370
371 if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) {
372 assert(hasTypeSet() && "should be handled above!");
373 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
374 if (getExtTypes() == FVTs)
375 return false;
376 setTypes(FVTs);
377 return true;
378 }
379 if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) {
380 //assert(hasTypeSet() && "should be handled above!");
381 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
382 if (getExtTypes() == FVTs)
383 return false;
384 if (FVTs.size()) {
385 setTypes(FVTs);
386 return true;
387 }
388 }
389 if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) {
390 assert(hasTypeSet() && "should be handled above!");
391 std::vector<unsigned char> FVTs =
392 FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
393 if (getExtTypes() == FVTs)
394 return false;
395 setTypes(FVTs);
396 return true;
397 }
398
399 // If we know this is an int or fp type, and we are told it is a specific one,
400 // take the advice.
401 //
402 // Similarly, we should probably set the type here to the intersection of
403 // {isInt|isFP} and ExtVTs
404 if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) ||
405 (getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) {
406 setTypes(ExtVTs);
407 return true;
408 }
409 if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
410 setTypes(ExtVTs);
411 return true;
412 }
413
414 if (isLeaf()) {
415 dump();
416 cerr << " ";
417 TP.error("Type inference contradiction found in node!");
418 } else {
419 TP.error("Type inference contradiction found in node " +
420 getOperator()->getName() + "!");
421 }
422 return true; // unreachable
423}
424
425
426void TreePatternNode::print(std::ostream &OS) const {
427 if (isLeaf()) {
428 OS << *getLeafValue();
429 } else {
430 OS << "(" << getOperator()->getName();
431 }
432
433 // FIXME: At some point we should handle printing all the value types for
434 // nodes that are multiply typed.
435 switch (getExtTypeNum(0)) {
436 case MVT::Other: OS << ":Other"; break;
437 case MVT::isInt: OS << ":isInt"; break;
438 case MVT::isFP : OS << ":isFP"; break;
439 case MVT::isUnknown: ; /*OS << ":?";*/ break;
440 case MVT::iPTR: OS << ":iPTR"; break;
441 default: {
442 std::string VTName = llvm::getName(getTypeNum(0));
443 // Strip off MVT:: prefix if present.
444 if (VTName.substr(0,5) == "MVT::")
445 VTName = VTName.substr(5);
446 OS << ":" << VTName;
447 break;
448 }
449 }
450
451 if (!isLeaf()) {
452 if (getNumChildren() != 0) {
453 OS << " ";
454 getChild(0)->print(OS);
455 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
456 OS << ", ";
457 getChild(i)->print(OS);
458 }
459 }
460 OS << ")";
461 }
462
463 if (!PredicateFn.empty())
464 OS << "<<P:" << PredicateFn << ">>";
465 if (TransformFn)
466 OS << "<<X:" << TransformFn->getName() << ">>";
467 if (!getName().empty())
468 OS << ":$" << getName();
469
470}
471void TreePatternNode::dump() const {
472 print(*cerr.stream());
473}
474
475/// isIsomorphicTo - Return true if this node is recursively isomorphic to
476/// the specified node. For this comparison, all of the state of the node
477/// is considered, except for the assigned name. Nodes with differing names
478/// that are otherwise identical are considered isomorphic.
479bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
480 if (N == this) return true;
481 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
482 getPredicateFn() != N->getPredicateFn() ||
483 getTransformFn() != N->getTransformFn())
484 return false;
485
486 if (isLeaf()) {
487 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
488 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
489 return DI->getDef() == NDI->getDef();
490 return getLeafValue() == N->getLeafValue();
491 }
492
493 if (N->getOperator() != getOperator() ||
494 N->getNumChildren() != getNumChildren()) return false;
495 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
496 if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
497 return false;
498 return true;
499}
500
501/// clone - Make a copy of this tree and all of its children.
502///
503TreePatternNode *TreePatternNode::clone() const {
504 TreePatternNode *New;
505 if (isLeaf()) {
506 New = new TreePatternNode(getLeafValue());
507 } else {
508 std::vector<TreePatternNode*> CChildren;
509 CChildren.reserve(Children.size());
510 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
511 CChildren.push_back(getChild(i)->clone());
512 New = new TreePatternNode(getOperator(), CChildren);
513 }
514 New->setName(getName());
515 New->setTypes(getExtTypes());
516 New->setPredicateFn(getPredicateFn());
517 New->setTransformFn(getTransformFn());
518 return New;
519}
520
521/// SubstituteFormalArguments - Replace the formal arguments in this tree
522/// with actual values specified by ArgMap.
523void TreePatternNode::
524SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
525 if (isLeaf()) return;
526
527 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
528 TreePatternNode *Child = getChild(i);
529 if (Child->isLeaf()) {
530 Init *Val = Child->getLeafValue();
531 if (dynamic_cast<DefInit*>(Val) &&
532 static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
533 // We found a use of a formal argument, replace it with its value.
534 Child = ArgMap[Child->getName()];
535 assert(Child && "Couldn't find formal argument!");
536 setChild(i, Child);
537 }
538 } else {
539 getChild(i)->SubstituteFormalArguments(ArgMap);
540 }
541 }
542}
543
544
545/// InlinePatternFragments - If this pattern refers to any pattern
546/// fragments, inline them into place, giving us a pattern without any
547/// PatFrag references.
548TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
549 if (isLeaf()) return this; // nothing to do.
550 Record *Op = getOperator();
551
552 if (!Op->isSubClassOf("PatFrag")) {
553 // Just recursively inline children nodes.
554 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
555 setChild(i, getChild(i)->InlinePatternFragments(TP));
556 return this;
557 }
558
559 // Otherwise, we found a reference to a fragment. First, look up its
560 // TreePattern record.
561 TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op);
562
563 // Verify that we are passing the right number of operands.
564 if (Frag->getNumArgs() != Children.size())
565 TP.error("'" + Op->getName() + "' fragment requires " +
566 utostr(Frag->getNumArgs()) + " operands!");
567
568 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
569
570 // Resolve formal arguments to their actual value.
571 if (Frag->getNumArgs()) {
572 // Compute the map of formal to actual arguments.
573 std::map<std::string, TreePatternNode*> ArgMap;
574 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
575 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
576
577 FragTree->SubstituteFormalArguments(ArgMap);
578 }
579
580 FragTree->setName(getName());
581 FragTree->UpdateNodeType(getExtTypes(), TP);
582
583 // Get a new copy of this fragment to stitch into here.
584 //delete this; // FIXME: implement refcounting!
585 return FragTree;
586}
587
588/// getImplicitType - Check to see if the specified record has an implicit
589/// type which should be applied to it. This infer the type of register
590/// references from the register file information, for example.
591///
592static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
593 TreePattern &TP) {
594 // Some common return values
595 std::vector<unsigned char> Unknown(1, MVT::isUnknown);
596 std::vector<unsigned char> Other(1, MVT::Other);
597
598 // Check to see if this is a register or a register class...
599 if (R->isSubClassOf("RegisterClass")) {
600 if (NotRegisters)
601 return Unknown;
602 const CodeGenRegisterClass &RC =
603 TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R);
604 return ConvertVTs(RC.getValueTypes());
605 } else if (R->isSubClassOf("PatFrag")) {
606 // Pattern fragment types will be resolved when they are inlined.
607 return Unknown;
608 } else if (R->isSubClassOf("Register")) {
609 if (NotRegisters)
610 return Unknown;
611 const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo();
612 return T.getRegisterVTs(R);
613 } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
614 // Using a VTSDNode or CondCodeSDNode.
615 return Other;
616 } else if (R->isSubClassOf("ComplexPattern")) {
617 if (NotRegisters)
618 return Unknown;
619 std::vector<unsigned char>
620 ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType());
621 return ComplexPat;
622 } else if (R->getName() == "ptr_rc") {
623 Other[0] = MVT::iPTR;
624 return Other;
625 } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
626 R->getName() == "zero_reg") {
627 // Placeholder.
628 return Unknown;
629 }
630
631 TP.error("Unknown node flavor used in pattern: " + R->getName());
632 return Other;
633}
634
635/// ApplyTypeConstraints - Apply all of the type constraints relevent to
636/// this node and its children in the tree. This returns true if it makes a
637/// change, false otherwise. If a type contradiction is found, throw an
638/// exception.
639bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
640 DAGISelEmitter &ISE = TP.getDAGISelEmitter();
641 if (isLeaf()) {
642 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
643 // If it's a regclass or something else known, include the type.
644 return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
645 } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
646 // Int inits are always integers. :)
647 bool MadeChange = UpdateNodeType(MVT::isInt, TP);
648
649 if (hasTypeSet()) {
650 // At some point, it may make sense for this tree pattern to have
651 // multiple types. Assert here that it does not, so we revisit this
652 // code when appropriate.
653 assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
654 MVT::ValueType VT = getTypeNum(0);
655 for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
656 assert(getTypeNum(i) == VT && "TreePattern has too many types!");
657
658 VT = getTypeNum(0);
659 if (VT != MVT::iPTR) {
660 unsigned Size = MVT::getSizeInBits(VT);
661 // Make sure that the value is representable for this type.
662 if (Size < 32) {
663 int Val = (II->getValue() << (32-Size)) >> (32-Size);
664 if (Val != II->getValue())
665 TP.error("Sign-extended integer value '" + itostr(II->getValue())+
666 "' is out of range for type '" +
667 getEnumName(getTypeNum(0)) + "'!");
668 }
669 }
670 }
671
672 return MadeChange;
673 }
674 return false;
675 }
676
677 // special handling for set, which isn't really an SDNode.
678 if (getOperator()->getName() == "set") {
Evan Chengf37df842007-09-11 19:52:18 +0000679 assert (getNumChildren() >= 2 && "Missing RHS of a set?");
680 unsigned NC = getNumChildren();
681 bool MadeChange = false;
682 for (unsigned i = 0; i < NC-1; ++i) {
683 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
684 MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000685
Evan Chengf37df842007-09-11 19:52:18 +0000686 // Types of operands must match.
687 MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
688 TP);
689 MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
690 TP);
691 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
692 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000693 return MadeChange;
694 } else if (getOperator() == ISE.get_intrinsic_void_sdnode() ||
695 getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
696 getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) {
697 unsigned IID =
698 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
699 const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID);
700 bool MadeChange = false;
701
702 // Apply the result type to the node.
703 MadeChange = UpdateNodeType(Int.ArgVTs[0], TP);
704
705 if (getNumChildren() != Int.ArgVTs.size())
706 TP.error("Intrinsic '" + Int.Name + "' expects " +
707 utostr(Int.ArgVTs.size()-1) + " operands, not " +
708 utostr(getNumChildren()-1) + " operands!");
709
710 // Apply type info to the intrinsic ID.
711 MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
712
713 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
714 MVT::ValueType OpVT = Int.ArgVTs[i];
715 MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
716 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
717 }
718 return MadeChange;
719 } else if (getOperator()->isSubClassOf("SDNode")) {
720 const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator());
721
722 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
723 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
724 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
725 // Branch, etc. do not produce results and top-level forms in instr pattern
726 // must have void types.
727 if (NI.getNumResults() == 0)
728 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
729
730 // If this is a vector_shuffle operation, apply types to the build_vector
731 // operation. The types of the integers don't matter, but this ensures they
732 // won't get checked.
733 if (getOperator()->getName() == "vector_shuffle" &&
734 getChild(2)->getOperator()->getName() == "build_vector") {
735 TreePatternNode *BV = getChild(2);
736 const std::vector<MVT::ValueType> &LegalVTs
737 = ISE.getTargetInfo().getLegalValueTypes();
738 MVT::ValueType LegalIntVT = MVT::Other;
739 for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
740 if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
741 LegalIntVT = LegalVTs[i];
742 break;
743 }
744 assert(LegalIntVT != MVT::Other && "No legal integer VT?");
745
746 for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
747 MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
748 }
749 return MadeChange;
750 } else if (getOperator()->isSubClassOf("Instruction")) {
751 const DAGInstruction &Inst = ISE.getInstruction(getOperator());
752 bool MadeChange = false;
753 unsigned NumResults = Inst.getNumResults();
754
755 assert(NumResults <= 1 &&
756 "Only supports zero or one result instrs!");
757
758 CodeGenInstruction &InstInfo =
759 ISE.getTargetInfo().getInstruction(getOperator()->getName());
760 // Apply the result type to the node
Evan Chengfc61b592007-07-20 00:21:23 +0000761 if (NumResults == 0 || InstInfo.NumDefs == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000762 MadeChange = UpdateNodeType(MVT::isVoid, TP);
763 } else {
764 Record *ResultNode = Inst.getResult(0);
765
766 if (ResultNode->getName() == "ptr_rc") {
767 std::vector<unsigned char> VT;
768 VT.push_back(MVT::iPTR);
769 MadeChange = UpdateNodeType(VT, TP);
770 } else {
771 assert(ResultNode->isSubClassOf("RegisterClass") &&
772 "Operands should be register classes!");
773
774 const CodeGenRegisterClass &RC =
775 ISE.getTargetInfo().getRegisterClass(ResultNode);
776 MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
777 }
778 }
779
780 unsigned ChildNo = 0;
781 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
782 Record *OperandNode = Inst.getOperand(i);
783
784 // If the instruction expects a predicate or optional def operand, we
785 // codegen this by setting the operand to it's default value if it has a
786 // non-empty DefaultOps field.
787 if ((OperandNode->isSubClassOf("PredicateOperand") ||
788 OperandNode->isSubClassOf("OptionalDefOperand")) &&
789 !ISE.getDefaultOperand(OperandNode).DefaultOps.empty())
790 continue;
791
792 // Verify that we didn't run out of provided operands.
793 if (ChildNo >= getNumChildren())
794 TP.error("Instruction '" + getOperator()->getName() +
795 "' expects more operands than were provided.");
796
797 MVT::ValueType VT;
798 TreePatternNode *Child = getChild(ChildNo++);
799 if (OperandNode->isSubClassOf("RegisterClass")) {
800 const CodeGenRegisterClass &RC =
801 ISE.getTargetInfo().getRegisterClass(OperandNode);
802 MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
803 } else if (OperandNode->isSubClassOf("Operand")) {
804 VT = getValueType(OperandNode->getValueAsDef("Type"));
805 MadeChange |= Child->UpdateNodeType(VT, TP);
806 } else if (OperandNode->getName() == "ptr_rc") {
807 MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
808 } else {
809 assert(0 && "Unknown operand type!");
810 abort();
811 }
812 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
813 }
814
815 if (ChildNo != getNumChildren())
816 TP.error("Instruction '" + getOperator()->getName() +
817 "' was provided too many operands!");
818
819 return MadeChange;
820 } else {
821 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
822
823 // Node transforms always take one operand.
824 if (getNumChildren() != 1)
825 TP.error("Node transform '" + getOperator()->getName() +
826 "' requires one operand!");
827
828 // If either the output or input of the xform does not have exact
829 // type info. We assume they must be the same. Otherwise, it is perfectly
830 // legal to transform from one type to a completely different type.
831 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
832 bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
833 MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
834 return MadeChange;
835 }
836 return false;
837 }
838}
839
840/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
841/// RHS of a commutative operation, not the on LHS.
842static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
843 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
844 return true;
845 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
846 return true;
847 return false;
848}
849
850
851/// canPatternMatch - If it is impossible for this pattern to match on this
852/// target, fill in Reason and return false. Otherwise, return true. This is
853/// used as a santity check for .td files (to prevent people from writing stuff
854/// that can never possibly work), and to prevent the pattern permuter from
855/// generating stuff that is useless.
856bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){
857 if (isLeaf()) return true;
858
859 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
860 if (!getChild(i)->canPatternMatch(Reason, ISE))
861 return false;
862
863 // If this is an intrinsic, handle cases that would make it not match. For
864 // example, if an operand is required to be an immediate.
865 if (getOperator()->isSubClassOf("Intrinsic")) {
866 // TODO:
867 return true;
868 }
869
870 // If this node is a commutative operator, check that the LHS isn't an
871 // immediate.
872 const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator());
873 if (NodeInfo.hasProperty(SDNPCommutative)) {
874 // Scan all of the operands of the node and make sure that only the last one
875 // is a constant node, unless the RHS also is.
876 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
877 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
878 if (OnlyOnRHSOfCommutative(getChild(i))) {
879 Reason="Immediate value must be on the RHS of commutative operators!";
880 return false;
881 }
882 }
883 }
884
885 return true;
886}
887
888//===----------------------------------------------------------------------===//
889// TreePattern implementation
890//
891
892TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
893 DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
894 isInputPattern = isInput;
895 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
896 Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
897}
898
899TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
900 DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
901 isInputPattern = isInput;
902 Trees.push_back(ParseTreePattern(Pat));
903}
904
905TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
906 DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
907 isInputPattern = isInput;
908 Trees.push_back(Pat);
909}
910
911
912
913void TreePattern::error(const std::string &Msg) const {
914 dump();
915 throw "In " + TheRecord->getName() + ": " + Msg;
916}
917
918TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
919 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
920 if (!OpDef) error("Pattern has unexpected operator type!");
921 Record *Operator = OpDef->getDef();
922
923 if (Operator->isSubClassOf("ValueType")) {
924 // If the operator is a ValueType, then this must be "type cast" of a leaf
925 // node.
926 if (Dag->getNumArgs() != 1)
927 error("Type cast only takes one operand!");
928
929 Init *Arg = Dag->getArg(0);
930 TreePatternNode *New;
931 if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
932 Record *R = DI->getDef();
933 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
934 Dag->setArg(0, new DagInit(DI,
935 std::vector<std::pair<Init*, std::string> >()));
936 return ParseTreePattern(Dag);
937 }
938 New = new TreePatternNode(DI);
939 } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
940 New = ParseTreePattern(DI);
941 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
942 New = new TreePatternNode(II);
943 if (!Dag->getArgName(0).empty())
944 error("Constant int argument should not have a name!");
945 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
946 // Turn this into an IntInit.
947 Init *II = BI->convertInitializerTo(new IntRecTy());
948 if (II == 0 || !dynamic_cast<IntInit*>(II))
949 error("Bits value must be constants!");
950
951 New = new TreePatternNode(dynamic_cast<IntInit*>(II));
952 if (!Dag->getArgName(0).empty())
953 error("Constant int argument should not have a name!");
954 } else {
955 Arg->dump();
956 error("Unknown leaf value for tree pattern!");
957 return 0;
958 }
959
960 // Apply the type cast.
961 New->UpdateNodeType(getValueType(Operator), *this);
962 New->setName(Dag->getArgName(0));
963 return New;
964 }
965
966 // Verify that this is something that makes sense for an operator.
967 if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
968 !Operator->isSubClassOf("Instruction") &&
969 !Operator->isSubClassOf("SDNodeXForm") &&
970 !Operator->isSubClassOf("Intrinsic") &&
971 Operator->getName() != "set")
972 error("Unrecognized node '" + Operator->getName() + "'!");
973
974 // Check to see if this is something that is illegal in an input pattern.
975 if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
976 Operator->isSubClassOf("SDNodeXForm")))
977 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
978
979 std::vector<TreePatternNode*> Children;
980
981 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
982 Init *Arg = Dag->getArg(i);
983 if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
984 Children.push_back(ParseTreePattern(DI));
985 if (Children.back()->getName().empty())
986 Children.back()->setName(Dag->getArgName(i));
987 } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
988 Record *R = DefI->getDef();
989 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
990 // TreePatternNode if its own.
991 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
992 Dag->setArg(i, new DagInit(DefI,
993 std::vector<std::pair<Init*, std::string> >()));
994 --i; // Revisit this node...
995 } else {
996 TreePatternNode *Node = new TreePatternNode(DefI);
997 Node->setName(Dag->getArgName(i));
998 Children.push_back(Node);
999
1000 // Input argument?
1001 if (R->getName() == "node") {
1002 if (Dag->getArgName(i).empty())
1003 error("'node' argument requires a name to match with operand list");
1004 Args.push_back(Dag->getArgName(i));
1005 }
1006 }
1007 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
1008 TreePatternNode *Node = new TreePatternNode(II);
1009 if (!Dag->getArgName(i).empty())
1010 error("Constant int argument should not have a name!");
1011 Children.push_back(Node);
1012 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
1013 // Turn this into an IntInit.
1014 Init *II = BI->convertInitializerTo(new IntRecTy());
1015 if (II == 0 || !dynamic_cast<IntInit*>(II))
1016 error("Bits value must be constants!");
1017
1018 TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
1019 if (!Dag->getArgName(i).empty())
1020 error("Constant int argument should not have a name!");
1021 Children.push_back(Node);
1022 } else {
1023 cerr << '"';
1024 Arg->dump();
1025 cerr << "\": ";
1026 error("Unknown leaf value for tree pattern!");
1027 }
1028 }
1029
1030 // If the operator is an intrinsic, then this is just syntactic sugar for for
1031 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1032 // convert the intrinsic name to a number.
1033 if (Operator->isSubClassOf("Intrinsic")) {
1034 const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator);
1035 unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1;
1036
1037 // If this intrinsic returns void, it must have side-effects and thus a
1038 // chain.
1039 if (Int.ArgVTs[0] == MVT::isVoid) {
1040 Operator = getDAGISelEmitter().get_intrinsic_void_sdnode();
1041 } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
1042 // Has side-effects, requires chain.
1043 Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode();
1044 } else {
1045 // Otherwise, no chain.
1046 Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode();
1047 }
1048
1049 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
1050 Children.insert(Children.begin(), IIDNode);
1051 }
1052
1053 return new TreePatternNode(Operator, Children);
1054}
1055
1056/// InferAllTypes - Infer/propagate as many types throughout the expression
1057/// patterns as possible. Return true if all types are infered, false
1058/// otherwise. Throw an exception if a type contradiction is found.
1059bool TreePattern::InferAllTypes() {
1060 bool MadeChange = true;
1061 while (MadeChange) {
1062 MadeChange = false;
1063 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1064 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1065 }
1066
1067 bool HasUnresolvedTypes = false;
1068 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1069 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1070 return !HasUnresolvedTypes;
1071}
1072
1073void TreePattern::print(std::ostream &OS) const {
1074 OS << getRecord()->getName();
1075 if (!Args.empty()) {
1076 OS << "(" << Args[0];
1077 for (unsigned i = 1, e = Args.size(); i != e; ++i)
1078 OS << ", " << Args[i];
1079 OS << ")";
1080 }
1081 OS << ": ";
1082
1083 if (Trees.size() > 1)
1084 OS << "[\n";
1085 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1086 OS << "\t";
1087 Trees[i]->print(OS);
1088 OS << "\n";
1089 }
1090
1091 if (Trees.size() > 1)
1092 OS << "]\n";
1093}
1094
1095void TreePattern::dump() const { print(*cerr.stream()); }
1096
1097
1098
1099//===----------------------------------------------------------------------===//
1100// DAGISelEmitter implementation
1101//
1102
1103// Parse all of the SDNode definitions for the target, populating SDNodes.
1104void DAGISelEmitter::ParseNodeInfo() {
1105 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
1106 while (!Nodes.empty()) {
1107 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
1108 Nodes.pop_back();
1109 }
1110
1111 // Get the buildin intrinsic nodes.
1112 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
1113 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
1114 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
1115}
1116
1117/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1118/// map, and emit them to the file as functions.
1119void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) {
1120 OS << "\n// Node transformations.\n";
1121 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
1122 while (!Xforms.empty()) {
1123 Record *XFormNode = Xforms.back();
1124 Record *SDNode = XFormNode->getValueAsDef("Opcode");
1125 std::string Code = XFormNode->getValueAsCode("XFormFunction");
1126 SDNodeXForms.insert(std::make_pair(XFormNode,
1127 std::make_pair(SDNode, Code)));
1128
1129 if (!Code.empty()) {
1130 std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
1131 const char *C2 = ClassName == "SDNode" ? "N" : "inN";
1132
1133 OS << "inline SDOperand Transform_" << XFormNode->getName()
1134 << "(SDNode *" << C2 << ") {\n";
1135 if (ClassName != "SDNode")
1136 OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
1137 OS << Code << "\n}\n";
1138 }
1139
1140 Xforms.pop_back();
1141 }
1142}
1143
1144void DAGISelEmitter::ParseComplexPatterns() {
1145 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
1146 while (!AMs.empty()) {
1147 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
1148 AMs.pop_back();
1149 }
1150}
1151
1152
1153/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
1154/// file, building up the PatternFragments map. After we've collected them all,
1155/// inline fragments together as necessary, so that there are no references left
1156/// inside a pattern fragment to a pattern fragment.
1157///
1158/// This also emits all of the predicate functions to the output file.
1159///
1160void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) {
1161 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
1162
1163 // First step, parse all of the fragments and emit predicate functions.
1164 OS << "\n// Predicate functions.\n";
1165 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1166 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
1167 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
1168 PatternFragments[Fragments[i]] = P;
1169
1170 // Validate the argument list, converting it to map, to discard duplicates.
1171 std::vector<std::string> &Args = P->getArgList();
1172 std::set<std::string> OperandsMap(Args.begin(), Args.end());
1173
1174 if (OperandsMap.count(""))
1175 P->error("Cannot have unnamed 'node' values in pattern fragment!");
1176
1177 // Parse the operands list.
1178 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
1179 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
Evan Chengb783fa32007-07-19 01:14:50 +00001180 // Special cases: ops == outs == ins. Different names are used to
1181 // improve readibility.
1182 if (!OpsOp ||
1183 (OpsOp->getDef()->getName() != "ops" &&
1184 OpsOp->getDef()->getName() != "outs" &&
1185 OpsOp->getDef()->getName() != "ins"))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001186 P->error("Operands list should start with '(ops ... '!");
1187
1188 // Copy over the arguments.
1189 Args.clear();
1190 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
1191 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
1192 static_cast<DefInit*>(OpsList->getArg(j))->
1193 getDef()->getName() != "node")
1194 P->error("Operands list should all be 'node' values.");
1195 if (OpsList->getArgName(j).empty())
1196 P->error("Operands list should have names for each operand!");
1197 if (!OperandsMap.count(OpsList->getArgName(j)))
1198 P->error("'" + OpsList->getArgName(j) +
1199 "' does not occur in pattern or was multiply specified!");
1200 OperandsMap.erase(OpsList->getArgName(j));
1201 Args.push_back(OpsList->getArgName(j));
1202 }
1203
1204 if (!OperandsMap.empty())
1205 P->error("Operands list does not contain an entry for operand '" +
1206 *OperandsMap.begin() + "'!");
1207
1208 // If there is a code init for this fragment, emit the predicate code and
1209 // keep track of the fact that this fragment uses it.
1210 std::string Code = Fragments[i]->getValueAsCode("Predicate");
1211 if (!Code.empty()) {
1212 if (P->getOnlyTree()->isLeaf())
1213 OS << "inline bool Predicate_" << Fragments[i]->getName()
1214 << "(SDNode *N) {\n";
1215 else {
1216 std::string ClassName =
1217 getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
1218 const char *C2 = ClassName == "SDNode" ? "N" : "inN";
1219
1220 OS << "inline bool Predicate_" << Fragments[i]->getName()
1221 << "(SDNode *" << C2 << ") {\n";
1222 if (ClassName != "SDNode")
1223 OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
1224 }
1225 OS << Code << "\n}\n";
1226 P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
1227 }
1228
1229 // If there is a node transformation corresponding to this, keep track of
1230 // it.
1231 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
1232 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
1233 P->getOnlyTree()->setTransformFn(Transform);
1234 }
1235
1236 OS << "\n\n";
1237
1238 // Now that we've parsed all of the tree fragments, do a closure on them so
1239 // that there are not references to PatFrags left inside of them.
1240 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1241 E = PatternFragments.end(); I != E; ++I) {
1242 TreePattern *ThePat = I->second;
1243 ThePat->InlinePatternFragments();
1244
1245 // Infer as many types as possible. Don't worry about it if we don't infer
1246 // all of them, some may depend on the inputs of the pattern.
1247 try {
1248 ThePat->InferAllTypes();
1249 } catch (...) {
1250 // If this pattern fragment is not supported by this target (no types can
1251 // satisfy its constraints), just ignore it. If the bogus pattern is
1252 // actually used by instructions, the type consistency error will be
1253 // reported there.
1254 }
1255
1256 // If debugging, print out the pattern fragment result.
1257 DEBUG(ThePat->dump());
1258 }
1259}
1260
1261void DAGISelEmitter::ParseDefaultOperands() {
1262 std::vector<Record*> DefaultOps[2];
1263 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
1264 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
1265
1266 // Find some SDNode.
1267 assert(!SDNodes.empty() && "No SDNodes parsed?");
1268 Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
1269
1270 for (unsigned iter = 0; iter != 2; ++iter) {
1271 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
1272 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
1273
1274 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
1275 // SomeSDnode so that we can parse this.
1276 std::vector<std::pair<Init*, std::string> > Ops;
1277 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
1278 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
1279 DefaultInfo->getArgName(op)));
1280 DagInit *DI = new DagInit(SomeSDNode, Ops);
1281
1282 // Create a TreePattern to parse this.
1283 TreePattern P(DefaultOps[iter][i], DI, false, *this);
1284 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
1285
1286 // Copy the operands over into a DAGDefaultOperand.
1287 DAGDefaultOperand DefaultOpInfo;
1288
1289 TreePatternNode *T = P.getTree(0);
1290 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
1291 TreePatternNode *TPN = T->getChild(op);
1292 while (TPN->ApplyTypeConstraints(P, false))
1293 /* Resolve all types */;
1294
1295 if (TPN->ContainsUnresolvedType())
1296 if (iter == 0)
1297 throw "Value #" + utostr(i) + " of PredicateOperand '" +
1298 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1299 else
1300 throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
1301 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1302
1303 DefaultOpInfo.DefaultOps.push_back(TPN);
1304 }
1305
1306 // Insert it into the DefaultOperands map so we can find it later.
1307 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
1308 }
1309 }
1310}
1311
1312/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
1313/// instruction input. Return true if this is a real use.
1314static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
1315 std::map<std::string, TreePatternNode*> &InstInputs,
1316 std::vector<Record*> &InstImpInputs) {
1317 // No name -> not interesting.
1318 if (Pat->getName().empty()) {
1319 if (Pat->isLeaf()) {
1320 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1321 if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
1322 I->error("Input " + DI->getDef()->getName() + " must be named!");
1323 else if (DI && DI->getDef()->isSubClassOf("Register"))
1324 InstImpInputs.push_back(DI->getDef());
Evan Chengf37df842007-09-11 19:52:18 +00001325 ;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001326 }
1327 return false;
1328 }
1329
1330 Record *Rec;
1331 if (Pat->isLeaf()) {
1332 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1333 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
1334 Rec = DI->getDef();
1335 } else {
1336 assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
1337 Rec = Pat->getOperator();
1338 }
1339
1340 // SRCVALUE nodes are ignored.
1341 if (Rec->getName() == "srcvalue")
1342 return false;
1343
1344 TreePatternNode *&Slot = InstInputs[Pat->getName()];
1345 if (!Slot) {
1346 Slot = Pat;
1347 } else {
1348 Record *SlotRec;
1349 if (Slot->isLeaf()) {
1350 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
1351 } else {
1352 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
1353 SlotRec = Slot->getOperator();
1354 }
1355
1356 // Ensure that the inputs agree if we've already seen this input.
1357 if (Rec != SlotRec)
1358 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1359 if (Slot->getExtTypes() != Pat->getExtTypes())
1360 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1361 }
1362 return true;
1363}
1364
1365/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
1366/// part of "I", the instruction), computing the set of inputs and outputs of
1367/// the pattern. Report errors if we see anything naughty.
1368void DAGISelEmitter::
1369FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
1370 std::map<std::string, TreePatternNode*> &InstInputs,
1371 std::map<std::string, TreePatternNode*>&InstResults,
1372 std::vector<Record*> &InstImpInputs,
1373 std::vector<Record*> &InstImpResults) {
1374 if (Pat->isLeaf()) {
1375 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1376 if (!isUse && Pat->getTransformFn())
1377 I->error("Cannot specify a transform function for a non-input value!");
1378 return;
1379 } else if (Pat->getOperator()->getName() != "set") {
1380 // If this is not a set, verify that the children nodes are not void typed,
1381 // and recurse.
1382 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1383 if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
1384 I->error("Cannot have void nodes inside of patterns!");
1385 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
1386 InstImpInputs, InstImpResults);
1387 }
1388
1389 // If this is a non-leaf node with no children, treat it basically as if
1390 // it were a leaf. This handles nodes like (imm).
1391 bool isUse = false;
1392 if (Pat->getNumChildren() == 0)
1393 isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1394
1395 if (!isUse && Pat->getTransformFn())
1396 I->error("Cannot specify a transform function for a non-input value!");
1397 return;
1398 }
1399
1400 // Otherwise, this is a set, validate and collect instruction results.
1401 if (Pat->getNumChildren() == 0)
1402 I->error("set requires operands!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001403
1404 if (Pat->getTransformFn())
1405 I->error("Cannot specify a transform function on a set node!");
1406
1407 // Check the set destinations.
Evan Chengf37df842007-09-11 19:52:18 +00001408 unsigned NumDests = Pat->getNumChildren()-1;
1409 for (unsigned i = 0; i != NumDests; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001410 TreePatternNode *Dest = Pat->getChild(i);
1411 if (!Dest->isLeaf())
1412 I->error("set destination should be a register!");
1413
1414 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1415 if (!Val)
1416 I->error("set destination should be a register!");
1417
1418 if (Val->getDef()->isSubClassOf("RegisterClass") ||
1419 Val->getDef()->getName() == "ptr_rc") {
1420 if (Dest->getName().empty())
1421 I->error("set destination must have a name!");
1422 if (InstResults.count(Dest->getName()))
1423 I->error("cannot set '" + Dest->getName() +"' multiple times");
1424 InstResults[Dest->getName()] = Dest;
1425 } else if (Val->getDef()->isSubClassOf("Register")) {
1426 InstImpResults.push_back(Val->getDef());
Evan Chengf37df842007-09-11 19:52:18 +00001427 ;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001428 } else {
1429 I->error("set destination should be a register!");
1430 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001431 }
Evan Chengf37df842007-09-11 19:52:18 +00001432
1433 // Verify and collect info from the computation.
1434 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
1435 InstInputs, InstResults,
1436 InstImpInputs, InstImpResults);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001437}
1438
1439/// ParseInstructions - Parse all of the instructions, inlining and resolving
1440/// any fragments involved. This populates the Instructions list with fully
1441/// resolved instructions.
1442void DAGISelEmitter::ParseInstructions() {
1443 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
1444
1445 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
1446 ListInit *LI = 0;
1447
1448 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
1449 LI = Instrs[i]->getValueAsListInit("Pattern");
1450
1451 // If there is no pattern, only collect minimal information about the
1452 // instruction for its operand list. We have to assume that there is one
1453 // result, as we have no detailed info.
1454 if (!LI || LI->getSize() == 0) {
1455 std::vector<Record*> Results;
1456 std::vector<Record*> Operands;
1457
1458 CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
1459
1460 if (InstInfo.OperandList.size() != 0) {
Evan Chengfc61b592007-07-20 00:21:23 +00001461 if (InstInfo.NumDefs == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001462 // These produce no results
1463 for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
1464 Operands.push_back(InstInfo.OperandList[j].Rec);
1465 } else {
1466 // Assume the first operand is the result.
1467 Results.push_back(InstInfo.OperandList[0].Rec);
1468
1469 // The rest are inputs.
1470 for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
1471 Operands.push_back(InstInfo.OperandList[j].Rec);
1472 }
1473 }
1474
1475 // Create and insert the instruction.
1476 std::vector<Record*> ImpResults;
1477 std::vector<Record*> ImpOperands;
1478 Instructions.insert(std::make_pair(Instrs[i],
1479 DAGInstruction(0, Results, Operands, ImpResults,
1480 ImpOperands)));
1481 continue; // no pattern.
1482 }
1483
1484 // Parse the instruction.
1485 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
1486 // Inline pattern fragments into it.
1487 I->InlinePatternFragments();
1488
1489 // Infer as many types as possible. If we cannot infer all of them, we can
1490 // never do anything with this instruction pattern: report it to the user.
1491 if (!I->InferAllTypes())
1492 I->error("Could not infer all types in pattern!");
1493
1494 // InstInputs - Keep track of all of the inputs of the instruction, along
1495 // with the record they are declared as.
1496 std::map<std::string, TreePatternNode*> InstInputs;
1497
1498 // InstResults - Keep track of all the virtual registers that are 'set'
1499 // in the instruction, including what reg class they are.
1500 std::map<std::string, TreePatternNode*> InstResults;
1501
1502 std::vector<Record*> InstImpInputs;
1503 std::vector<Record*> InstImpResults;
1504
1505 // Verify that the top-level forms in the instruction are of void type, and
1506 // fill in the InstResults map.
1507 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
1508 TreePatternNode *Pat = I->getTree(j);
1509 if (Pat->getExtTypeNum(0) != MVT::isVoid)
1510 I->error("Top-level forms in instruction pattern should have"
1511 " void types");
1512
1513 // Find inputs and outputs, and verify the structure of the uses/defs.
1514 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
1515 InstImpInputs, InstImpResults);
1516 }
1517
1518 // Now that we have inputs and outputs of the pattern, inspect the operands
1519 // list for the instruction. This determines the order that operands are
1520 // added to the machine instruction the node corresponds to.
1521 unsigned NumResults = InstResults.size();
1522
1523 // Parse the operands list from the (ops) list, validating it.
1524 assert(I->getArgList().empty() && "Args list should still be empty here!");
1525 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
1526
1527 // Check that all of the results occur first in the list.
1528 std::vector<Record*> Results;
1529 TreePatternNode *Res0Node = NULL;
1530 for (unsigned i = 0; i != NumResults; ++i) {
1531 if (i == CGI.OperandList.size())
1532 I->error("'" + InstResults.begin()->first +
1533 "' set but does not appear in operand list!");
1534 const std::string &OpName = CGI.OperandList[i].Name;
1535
1536 // Check that it exists in InstResults.
1537 TreePatternNode *RNode = InstResults[OpName];
1538 if (RNode == 0)
1539 I->error("Operand $" + OpName + " does not exist in operand list!");
1540
1541 if (i == 0)
1542 Res0Node = RNode;
1543 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
1544 if (R == 0)
1545 I->error("Operand $" + OpName + " should be a set destination: all "
1546 "outputs must occur before inputs in operand list!");
1547
1548 if (CGI.OperandList[i].Rec != R)
1549 I->error("Operand $" + OpName + " class mismatch!");
1550
1551 // Remember the return type.
1552 Results.push_back(CGI.OperandList[i].Rec);
1553
1554 // Okay, this one checks out.
1555 InstResults.erase(OpName);
1556 }
1557
1558 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
1559 // the copy while we're checking the inputs.
1560 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
1561
1562 std::vector<TreePatternNode*> ResultNodeOperands;
1563 std::vector<Record*> Operands;
1564 for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
1565 CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
1566 const std::string &OpName = Op.Name;
1567 if (OpName.empty())
1568 I->error("Operand #" + utostr(i) + " in operands list has no name!");
1569
1570 if (!InstInputsCheck.count(OpName)) {
1571 // If this is an predicate operand or optional def operand with an
1572 // DefaultOps set filled in, we can ignore this. When we codegen it,
1573 // we will do so as always executed.
1574 if (Op.Rec->isSubClassOf("PredicateOperand") ||
1575 Op.Rec->isSubClassOf("OptionalDefOperand")) {
1576 // Does it have a non-empty DefaultOps field? If so, ignore this
1577 // operand.
1578 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
1579 continue;
1580 }
1581 I->error("Operand $" + OpName +
1582 " does not appear in the instruction pattern");
1583 }
1584 TreePatternNode *InVal = InstInputsCheck[OpName];
1585 InstInputsCheck.erase(OpName); // It occurred, remove from map.
1586
1587 if (InVal->isLeaf() &&
1588 dynamic_cast<DefInit*>(InVal->getLeafValue())) {
1589 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
1590 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
1591 I->error("Operand $" + OpName + "'s register class disagrees"
1592 " between the operand and pattern");
1593 }
1594 Operands.push_back(Op.Rec);
1595
1596 // Construct the result for the dest-pattern operand list.
1597 TreePatternNode *OpNode = InVal->clone();
1598
1599 // No predicate is useful on the result.
1600 OpNode->setPredicateFn("");
1601
1602 // Promote the xform function to be an explicit node if set.
1603 if (Record *Xform = OpNode->getTransformFn()) {
1604 OpNode->setTransformFn(0);
1605 std::vector<TreePatternNode*> Children;
1606 Children.push_back(OpNode);
1607 OpNode = new TreePatternNode(Xform, Children);
1608 }
1609
1610 ResultNodeOperands.push_back(OpNode);
1611 }
1612
1613 if (!InstInputsCheck.empty())
1614 I->error("Input operand $" + InstInputsCheck.begin()->first +
1615 " occurs in pattern but not in operands list!");
1616
1617 TreePatternNode *ResultPattern =
1618 new TreePatternNode(I->getRecord(), ResultNodeOperands);
1619 // Copy fully inferred output node type to instruction result pattern.
1620 if (NumResults > 0)
1621 ResultPattern->setTypes(Res0Node->getExtTypes());
1622
1623 // Create and insert the instruction.
1624 DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
1625 Instructions.insert(std::make_pair(I->getRecord(), TheInst));
1626
1627 // Use a temporary tree pattern to infer all types and make sure that the
1628 // constructed result is correct. This depends on the instruction already
1629 // being inserted into the Instructions map.
1630 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
1631 Temp.InferAllTypes();
1632
1633 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
1634 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
1635
1636 DEBUG(I->dump());
1637 }
1638
1639 // If we can, convert the instructions to be patterns that are matched!
1640 for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
1641 E = Instructions.end(); II != E; ++II) {
1642 DAGInstruction &TheInst = II->second;
1643 TreePattern *I = TheInst.getPattern();
1644 if (I == 0) continue; // No pattern.
1645
1646 if (I->getNumTrees() != 1) {
1647 cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!";
1648 continue;
1649 }
1650 TreePatternNode *Pattern = I->getTree(0);
1651 TreePatternNode *SrcPattern;
1652 if (Pattern->getOperator()->getName() == "set") {
Evan Chengf37df842007-09-11 19:52:18 +00001653 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001654 } else{
1655 // Not a set (store or something?)
1656 SrcPattern = Pattern;
1657 }
1658
1659 std::string Reason;
1660 if (!SrcPattern->canPatternMatch(Reason, *this))
1661 I->error("Instruction can never match: " + Reason);
1662
1663 Record *Instr = II->first;
1664 TreePatternNode *DstPattern = TheInst.getResultPattern();
1665 PatternsToMatch.
1666 push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
1667 SrcPattern, DstPattern,
1668 Instr->getValueAsInt("AddedComplexity")));
1669 }
1670}
1671
1672void DAGISelEmitter::ParsePatterns() {
1673 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
1674
1675 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
1676 DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
1677 TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this);
1678
1679 // Inline pattern fragments into it.
1680 Pattern->InlinePatternFragments();
1681
1682 ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
1683 if (LI->getSize() == 0) continue; // no pattern.
1684
1685 // Parse the instruction.
1686 TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
1687
1688 // Inline pattern fragments into it.
1689 Result->InlinePatternFragments();
1690
1691 if (Result->getNumTrees() != 1)
1692 Result->error("Cannot handle instructions producing instructions "
1693 "with temporaries yet!");
1694
1695 bool IterateInference;
1696 bool InferredAllPatternTypes, InferredAllResultTypes;
1697 do {
1698 // Infer as many types as possible. If we cannot infer all of them, we
1699 // can never do anything with this pattern: report it to the user.
1700 InferredAllPatternTypes = Pattern->InferAllTypes();
1701
1702 // Infer as many types as possible. If we cannot infer all of them, we
1703 // can never do anything with this pattern: report it to the user.
1704 InferredAllResultTypes = Result->InferAllTypes();
1705
1706 // Apply the type of the result to the source pattern. This helps us
1707 // resolve cases where the input type is known to be a pointer type (which
1708 // is considered resolved), but the result knows it needs to be 32- or
1709 // 64-bits. Infer the other way for good measure.
1710 IterateInference = Pattern->getOnlyTree()->
1711 UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result);
1712 IterateInference |= Result->getOnlyTree()->
1713 UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result);
1714 } while (IterateInference);
1715
1716 // Verify that we inferred enough types that we can do something with the
1717 // pattern and result. If these fire the user has to add type casts.
1718 if (!InferredAllPatternTypes)
1719 Pattern->error("Could not infer all types in pattern!");
1720 if (!InferredAllResultTypes)
1721 Result->error("Could not infer all types in pattern result!");
1722
1723 // Validate that the input pattern is correct.
1724 {
1725 std::map<std::string, TreePatternNode*> InstInputs;
1726 std::map<std::string, TreePatternNode*> InstResults;
1727 std::vector<Record*> InstImpInputs;
1728 std::vector<Record*> InstImpResults;
1729 FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(),
1730 InstInputs, InstResults,
1731 InstImpInputs, InstImpResults);
1732 }
1733
1734 // Promote the xform function to be an explicit node if set.
1735 std::vector<TreePatternNode*> ResultNodeOperands;
1736 TreePatternNode *DstPattern = Result->getOnlyTree();
1737 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
1738 TreePatternNode *OpNode = DstPattern->getChild(ii);
1739 if (Record *Xform = OpNode->getTransformFn()) {
1740 OpNode->setTransformFn(0);
1741 std::vector<TreePatternNode*> Children;
1742 Children.push_back(OpNode);
1743 OpNode = new TreePatternNode(Xform, Children);
1744 }
1745 ResultNodeOperands.push_back(OpNode);
1746 }
1747 DstPattern = Result->getOnlyTree();
1748 if (!DstPattern->isLeaf())
1749 DstPattern = new TreePatternNode(DstPattern->getOperator(),
1750 ResultNodeOperands);
1751 DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
1752 TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
1753 Temp.InferAllTypes();
1754
1755 std::string Reason;
1756 if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this))
1757 Pattern->error("Pattern can never match: " + Reason);
1758
1759 PatternsToMatch.
1760 push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
1761 Pattern->getOnlyTree(),
1762 Temp.getOnlyTree(),
1763 Patterns[i]->getValueAsInt("AddedComplexity")));
1764 }
1765}
1766
1767/// CombineChildVariants - Given a bunch of permutations of each child of the
1768/// 'operator' node, put them together in all possible ways.
1769static void CombineChildVariants(TreePatternNode *Orig,
1770 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
1771 std::vector<TreePatternNode*> &OutVariants,
1772 DAGISelEmitter &ISE) {
1773 // Make sure that each operand has at least one variant to choose from.
1774 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1775 if (ChildVariants[i].empty())
1776 return;
1777
1778 // The end result is an all-pairs construction of the resultant pattern.
1779 std::vector<unsigned> Idxs;
1780 Idxs.resize(ChildVariants.size());
1781 bool NotDone = true;
1782 while (NotDone) {
1783 // Create the variant and add it to the output list.
1784 std::vector<TreePatternNode*> NewChildren;
1785 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1786 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
1787 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
1788
1789 // Copy over properties.
1790 R->setName(Orig->getName());
1791 R->setPredicateFn(Orig->getPredicateFn());
1792 R->setTransformFn(Orig->getTransformFn());
1793 R->setTypes(Orig->getExtTypes());
1794
1795 // If this pattern cannot every match, do not include it as a variant.
1796 std::string ErrString;
1797 if (!R->canPatternMatch(ErrString, ISE)) {
1798 delete R;
1799 } else {
1800 bool AlreadyExists = false;
1801
1802 // Scan to see if this pattern has already been emitted. We can get
1803 // duplication due to things like commuting:
1804 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
1805 // which are the same pattern. Ignore the dups.
1806 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
1807 if (R->isIsomorphicTo(OutVariants[i])) {
1808 AlreadyExists = true;
1809 break;
1810 }
1811
1812 if (AlreadyExists)
1813 delete R;
1814 else
1815 OutVariants.push_back(R);
1816 }
1817
1818 // Increment indices to the next permutation.
1819 NotDone = false;
1820 // Look for something we can increment without causing a wrap-around.
1821 for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
1822 if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
1823 NotDone = true; // Found something to increment.
1824 break;
1825 }
1826 Idxs[IdxsIdx] = 0;
1827 }
1828 }
1829}
1830
1831/// CombineChildVariants - A helper function for binary operators.
1832///
1833static void CombineChildVariants(TreePatternNode *Orig,
1834 const std::vector<TreePatternNode*> &LHS,
1835 const std::vector<TreePatternNode*> &RHS,
1836 std::vector<TreePatternNode*> &OutVariants,
1837 DAGISelEmitter &ISE) {
1838 std::vector<std::vector<TreePatternNode*> > ChildVariants;
1839 ChildVariants.push_back(LHS);
1840 ChildVariants.push_back(RHS);
1841 CombineChildVariants(Orig, ChildVariants, OutVariants, ISE);
1842}
1843
1844
1845static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
1846 std::vector<TreePatternNode *> &Children) {
1847 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
1848 Record *Operator = N->getOperator();
1849
1850 // Only permit raw nodes.
1851 if (!N->getName().empty() || !N->getPredicateFn().empty() ||
1852 N->getTransformFn()) {
1853 Children.push_back(N);
1854 return;
1855 }
1856
1857 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
1858 Children.push_back(N->getChild(0));
1859 else
1860 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
1861
1862 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
1863 Children.push_back(N->getChild(1));
1864 else
1865 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
1866}
1867
1868/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
1869/// the (potentially recursive) pattern by using algebraic laws.
1870///
1871static void GenerateVariantsOf(TreePatternNode *N,
1872 std::vector<TreePatternNode*> &OutVariants,
1873 DAGISelEmitter &ISE) {
1874 // We cannot permute leaves.
1875 if (N->isLeaf()) {
1876 OutVariants.push_back(N);
1877 return;
1878 }
1879
1880 // Look up interesting info about the node.
1881 const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator());
1882
1883 // If this node is associative, reassociate.
1884 if (NodeInfo.hasProperty(SDNPAssociative)) {
1885 // Reassociate by pulling together all of the linked operators
1886 std::vector<TreePatternNode*> MaximalChildren;
1887 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
1888
1889 // Only handle child sizes of 3. Otherwise we'll end up trying too many
1890 // permutations.
1891 if (MaximalChildren.size() == 3) {
1892 // Find the variants of all of our maximal children.
1893 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
1894 GenerateVariantsOf(MaximalChildren[0], AVariants, ISE);
1895 GenerateVariantsOf(MaximalChildren[1], BVariants, ISE);
1896 GenerateVariantsOf(MaximalChildren[2], CVariants, ISE);
1897
1898 // There are only two ways we can permute the tree:
1899 // (A op B) op C and A op (B op C)
1900 // Within these forms, we can also permute A/B/C.
1901
1902 // Generate legal pair permutations of A/B/C.
1903 std::vector<TreePatternNode*> ABVariants;
1904 std::vector<TreePatternNode*> BAVariants;
1905 std::vector<TreePatternNode*> ACVariants;
1906 std::vector<TreePatternNode*> CAVariants;
1907 std::vector<TreePatternNode*> BCVariants;
1908 std::vector<TreePatternNode*> CBVariants;
1909 CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE);
1910 CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE);
1911 CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE);
1912 CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE);
1913 CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE);
1914 CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE);
1915
1916 // Combine those into the result: (x op x) op x
1917 CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE);
1918 CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE);
1919 CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE);
1920 CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE);
1921 CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE);
1922 CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE);
1923
1924 // Combine those into the result: x op (x op x)
1925 CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE);
1926 CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE);
1927 CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE);
1928 CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE);
1929 CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE);
1930 CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE);
1931 return;
1932 }
1933 }
1934
1935 // Compute permutations of all children.
1936 std::vector<std::vector<TreePatternNode*> > ChildVariants;
1937 ChildVariants.resize(N->getNumChildren());
1938 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1939 GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE);
1940
1941 // Build all permutations based on how the children were formed.
1942 CombineChildVariants(N, ChildVariants, OutVariants, ISE);
1943
1944 // If this node is commutative, consider the commuted order.
1945 if (NodeInfo.hasProperty(SDNPCommutative)) {
1946 assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
1947 // Don't count children which are actually register references.
1948 unsigned NC = 0;
1949 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1950 TreePatternNode *Child = N->getChild(i);
1951 if (Child->isLeaf())
1952 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
1953 Record *RR = DI->getDef();
1954 if (RR->isSubClassOf("Register"))
1955 continue;
1956 }
1957 NC++;
1958 }
1959 // Consider the commuted order.
1960 if (NC == 2)
1961 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
1962 OutVariants, ISE);
1963 }
1964}
1965
1966
1967// GenerateVariants - Generate variants. For example, commutative patterns can
1968// match multiple ways. Add them to PatternsToMatch as well.
1969void DAGISelEmitter::GenerateVariants() {
1970
1971 DOUT << "Generating instruction variants.\n";
1972
1973 // Loop over all of the patterns we've collected, checking to see if we can
1974 // generate variants of the instruction, through the exploitation of
1975 // identities. This permits the target to provide agressive matching without
1976 // the .td file having to contain tons of variants of instructions.
1977 //
1978 // Note that this loop adds new patterns to the PatternsToMatch list, but we
1979 // intentionally do not reconsider these. Any variants of added patterns have
1980 // already been added.
1981 //
1982 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
1983 std::vector<TreePatternNode*> Variants;
1984 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
1985
1986 assert(!Variants.empty() && "Must create at least original variant!");
1987 Variants.erase(Variants.begin()); // Remove the original pattern.
1988
1989 if (Variants.empty()) // No variants for this pattern.
1990 continue;
1991
1992 DOUT << "FOUND VARIANTS OF: ";
1993 DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
1994 DOUT << "\n";
1995
1996 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
1997 TreePatternNode *Variant = Variants[v];
1998
1999 DOUT << " VAR#" << v << ": ";
2000 DEBUG(Variant->dump());
2001 DOUT << "\n";
2002
2003 // Scan to see if an instruction or explicit pattern already matches this.
2004 bool AlreadyExists = false;
2005 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
2006 // Check to see if this variant already exists.
2007 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
2008 DOUT << " *** ALREADY EXISTS, ignoring variant.\n";
2009 AlreadyExists = true;
2010 break;
2011 }
2012 }
2013 // If we already have it, ignore the variant.
2014 if (AlreadyExists) continue;
2015
2016 // Otherwise, add it to the list of patterns we have.
2017 PatternsToMatch.
2018 push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
2019 Variant, PatternsToMatch[i].getDstPattern(),
2020 PatternsToMatch[i].getAddedComplexity()));
2021 }
2022
2023 DOUT << "\n";
2024 }
2025}
2026
2027// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
2028// ComplexPattern.
2029static bool NodeIsComplexPattern(TreePatternNode *N)
2030{
2031 return (N->isLeaf() &&
2032 dynamic_cast<DefInit*>(N->getLeafValue()) &&
2033 static_cast<DefInit*>(N->getLeafValue())->getDef()->
2034 isSubClassOf("ComplexPattern"));
2035}
2036
2037// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
2038// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
2039static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
2040 DAGISelEmitter &ISE)
2041{
2042 if (N->isLeaf() &&
2043 dynamic_cast<DefInit*>(N->getLeafValue()) &&
2044 static_cast<DefInit*>(N->getLeafValue())->getDef()->
2045 isSubClassOf("ComplexPattern")) {
2046 return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
2047 ->getDef());
2048 }
2049 return NULL;
2050}
2051
2052/// getPatternSize - Return the 'size' of this pattern. We want to match large
2053/// patterns before small ones. This is used to determine the size of a
2054/// pattern.
2055static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
2056 assert((isExtIntegerInVTs(P->getExtTypes()) ||
2057 isExtFloatingPointInVTs(P->getExtTypes()) ||
2058 P->getExtTypeNum(0) == MVT::isVoid ||
2059 P->getExtTypeNum(0) == MVT::Flag ||
2060 P->getExtTypeNum(0) == MVT::iPTR) &&
2061 "Not a valid pattern node to size!");
2062 unsigned Size = 3; // The node itself.
2063 // If the root node is a ConstantSDNode, increases its size.
2064 // e.g. (set R32:$dst, 0).
2065 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
2066 Size += 2;
2067
2068 // FIXME: This is a hack to statically increase the priority of patterns
2069 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
2070 // Later we can allow complexity / cost for each pattern to be (optionally)
2071 // specified. To get best possible pattern match we'll need to dynamically
2072 // calculate the complexity of all patterns a dag can potentially map to.
2073 const ComplexPattern *AM = NodeGetComplexPattern(P, ISE);
2074 if (AM)
2075 Size += AM->getNumOperands() * 3;
2076
2077 // If this node has some predicate function that must match, it adds to the
2078 // complexity of this node.
2079 if (!P->getPredicateFn().empty())
2080 ++Size;
2081
2082 // Count children in the count if they are also nodes.
2083 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
2084 TreePatternNode *Child = P->getChild(i);
2085 if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
2086 Size += getPatternSize(Child, ISE);
2087 else if (Child->isLeaf()) {
2088 if (dynamic_cast<IntInit*>(Child->getLeafValue()))
2089 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
2090 else if (NodeIsComplexPattern(Child))
2091 Size += getPatternSize(Child, ISE);
2092 else if (!Child->getPredicateFn().empty())
2093 ++Size;
2094 }
2095 }
2096
2097 return Size;
2098}
2099
2100/// getResultPatternCost - Compute the number of instructions for this pattern.
2101/// This is a temporary hack. We should really include the instruction
2102/// latencies in this calculation.
2103static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) {
2104 if (P->isLeaf()) return 0;
2105
2106 unsigned Cost = 0;
2107 Record *Op = P->getOperator();
2108 if (Op->isSubClassOf("Instruction")) {
2109 Cost++;
2110 CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName());
2111 if (II.usesCustomDAGSchedInserter)
2112 Cost += 10;
2113 }
2114 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2115 Cost += getResultPatternCost(P->getChild(i), ISE);
2116 return Cost;
2117}
2118
2119/// getResultPatternCodeSize - Compute the code size of instructions for this
2120/// pattern.
2121static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
2122 if (P->isLeaf()) return 0;
2123
2124 unsigned Cost = 0;
2125 Record *Op = P->getOperator();
2126 if (Op->isSubClassOf("Instruction")) {
2127 Cost += Op->getValueAsInt("CodeSize");
2128 }
2129 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2130 Cost += getResultPatternSize(P->getChild(i), ISE);
2131 return Cost;
2132}
2133
2134// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
2135// In particular, we want to match maximal patterns first and lowest cost within
2136// a particular complexity first.
2137struct PatternSortingPredicate {
2138 PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {};
2139 DAGISelEmitter &ISE;
2140
2141 bool operator()(PatternToMatch *LHS,
2142 PatternToMatch *RHS) {
2143 unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE);
2144 unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE);
2145 LHSSize += LHS->getAddedComplexity();
2146 RHSSize += RHS->getAddedComplexity();
2147 if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
2148 if (LHSSize < RHSSize) return false;
2149
2150 // If the patterns have equal complexity, compare generated instruction cost
2151 unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE);
2152 unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE);
2153 if (LHSCost < RHSCost) return true;
2154 if (LHSCost > RHSCost) return false;
2155
2156 return getResultPatternSize(LHS->getDstPattern(), ISE) <
2157 getResultPatternSize(RHS->getDstPattern(), ISE);
2158 }
2159};
2160
2161/// getRegisterValueType - Look up and return the first ValueType of specified
2162/// RegisterClass record
2163static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
2164 if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
2165 return RC->getValueTypeNum(0);
2166 return MVT::Other;
2167}
2168
2169
2170/// RemoveAllTypes - A quick recursive walk over a pattern which removes all
2171/// type information from it.
2172static void RemoveAllTypes(TreePatternNode *N) {
2173 N->removeTypes();
2174 if (!N->isLeaf())
2175 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2176 RemoveAllTypes(N->getChild(i));
2177}
2178
2179Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const {
2180 Record *N = Records.getDef(Name);
2181 if (!N || !N->isSubClassOf("SDNode")) {
2182 cerr << "Error getting SDNode '" << Name << "'!\n";
2183 exit(1);
2184 }
2185 return N;
2186}
2187
2188/// NodeHasProperty - return true if TreePatternNode has the specified
2189/// property.
2190static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
2191 DAGISelEmitter &ISE)
2192{
2193 if (N->isLeaf()) {
2194 const ComplexPattern *CP = NodeGetComplexPattern(N, ISE);
2195 if (CP)
2196 return CP->hasProperty(Property);
2197 return false;
2198 }
2199 Record *Operator = N->getOperator();
2200 if (!Operator->isSubClassOf("SDNode")) return false;
2201
2202 const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator);
2203 return NodeInfo.hasProperty(Property);
2204}
2205
2206static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
2207 DAGISelEmitter &ISE)
2208{
2209 if (NodeHasProperty(N, Property, ISE))
2210 return true;
2211
2212 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2213 TreePatternNode *Child = N->getChild(i);
2214 if (PatternHasProperty(Child, Property, ISE))
2215 return true;
2216 }
2217
2218 return false;
2219}
2220
2221class PatternCodeEmitter {
2222private:
2223 DAGISelEmitter &ISE;
2224
2225 // Predicates.
2226 ListInit *Predicates;
2227 // Pattern cost.
2228 unsigned Cost;
2229 // Instruction selector pattern.
2230 TreePatternNode *Pattern;
2231 // Matched instruction.
2232 TreePatternNode *Instruction;
2233
2234 // Node to name mapping
2235 std::map<std::string, std::string> VariableMap;
2236 // Node to operator mapping
2237 std::map<std::string, Record*> OperatorMap;
2238 // Names of all the folded nodes which produce chains.
2239 std::vector<std::pair<std::string, unsigned> > FoldedChains;
2240 // Original input chain(s).
2241 std::vector<std::pair<std::string, std::string> > OrigChains;
2242 std::set<std::string> Duplicates;
2243
2244 /// GeneratedCode - This is the buffer that we emit code to. The first int
2245 /// indicates whether this is an exit predicate (something that should be
2246 /// tested, and if true, the match fails) [when 1], or normal code to emit
2247 /// [when 0], or initialization code to emit [when 2].
2248 std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
2249 /// GeneratedDecl - This is the set of all SDOperand declarations needed for
2250 /// the set of patterns for each top-level opcode.
2251 std::set<std::string> &GeneratedDecl;
2252 /// TargetOpcodes - The target specific opcodes used by the resulting
2253 /// instructions.
2254 std::vector<std::string> &TargetOpcodes;
2255 std::vector<std::string> &TargetVTs;
2256
2257 std::string ChainName;
2258 unsigned TmpNo;
2259 unsigned OpcNo;
2260 unsigned VTNo;
2261
2262 void emitCheck(const std::string &S) {
2263 if (!S.empty())
2264 GeneratedCode.push_back(std::make_pair(1, S));
2265 }
2266 void emitCode(const std::string &S) {
2267 if (!S.empty())
2268 GeneratedCode.push_back(std::make_pair(0, S));
2269 }
2270 void emitInit(const std::string &S) {
2271 if (!S.empty())
2272 GeneratedCode.push_back(std::make_pair(2, S));
2273 }
2274 void emitDecl(const std::string &S) {
2275 assert(!S.empty() && "Invalid declaration");
2276 GeneratedDecl.insert(S);
2277 }
2278 void emitOpcode(const std::string &Opc) {
2279 TargetOpcodes.push_back(Opc);
2280 OpcNo++;
2281 }
2282 void emitVT(const std::string &VT) {
2283 TargetVTs.push_back(VT);
2284 VTNo++;
2285 }
2286public:
2287 PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds,
2288 TreePatternNode *pattern, TreePatternNode *instr,
2289 std::vector<std::pair<unsigned, std::string> > &gc,
2290 std::set<std::string> &gd,
2291 std::vector<std::string> &to,
2292 std::vector<std::string> &tv)
2293 : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr),
2294 GeneratedCode(gc), GeneratedDecl(gd),
2295 TargetOpcodes(to), TargetVTs(tv),
2296 TmpNo(0), OpcNo(0), VTNo(0) {}
2297
2298 /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
2299 /// if the match fails. At this point, we already know that the opcode for N
2300 /// matches, and the SDNode for the result has the RootName specified name.
2301 void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
2302 const std::string &RootName, const std::string &ChainSuffix,
2303 bool &FoundChain) {
2304 bool isRoot = (P == NULL);
2305 // Emit instruction predicates. Each predicate is just a string for now.
2306 if (isRoot) {
2307 std::string PredicateCheck;
2308 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
2309 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
2310 Record *Def = Pred->getDef();
2311 if (!Def->isSubClassOf("Predicate")) {
2312#ifndef NDEBUG
2313 Def->dump();
2314#endif
2315 assert(0 && "Unknown predicate type!");
2316 }
2317 if (!PredicateCheck.empty())
2318 PredicateCheck += " && ";
2319 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
2320 }
2321 }
2322
2323 emitCheck(PredicateCheck);
2324 }
2325
2326 if (N->isLeaf()) {
2327 if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
2328 emitCheck("cast<ConstantSDNode>(" + RootName +
2329 ")->getSignExtended() == " + itostr(II->getValue()));
2330 return;
2331 } else if (!NodeIsComplexPattern(N)) {
2332 assert(0 && "Cannot match this as a leaf value!");
2333 abort();
2334 }
2335 }
2336
2337 // If this node has a name associated with it, capture it in VariableMap. If
2338 // we already saw this in the pattern, emit code to verify dagness.
2339 if (!N->getName().empty()) {
2340 std::string &VarMapEntry = VariableMap[N->getName()];
2341 if (VarMapEntry.empty()) {
2342 VarMapEntry = RootName;
2343 } else {
2344 // If we get here, this is a second reference to a specific name. Since
2345 // we already have checked that the first reference is valid, we don't
2346 // have to recursively match it, just check that it's the same as the
2347 // previously named thing.
2348 emitCheck(VarMapEntry + " == " + RootName);
2349 return;
2350 }
2351
2352 if (!N->isLeaf())
2353 OperatorMap[N->getName()] = N->getOperator();
2354 }
2355
2356
2357 // Emit code to load the child nodes and match their contents recursively.
2358 unsigned OpNo = 0;
2359 bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, ISE);
2360 bool HasChain = PatternHasProperty(N, SDNPHasChain, ISE);
2361 bool EmittedUseCheck = false;
2362 if (HasChain) {
2363 if (NodeHasChain)
2364 OpNo = 1;
2365 if (!isRoot) {
2366 // Multiple uses of actual result?
2367 emitCheck(RootName + ".hasOneUse()");
2368 EmittedUseCheck = true;
2369 if (NodeHasChain) {
2370 // If the immediate use can somehow reach this node through another
2371 // path, then can't fold it either or it will create a cycle.
2372 // e.g. In the following diagram, XX can reach ld through YY. If
2373 // ld is folded into XX, then YY is both a predecessor and a successor
2374 // of XX.
2375 //
2376 // [ld]
2377 // ^ ^
2378 // | |
2379 // / \---
2380 // / [YY]
2381 // | ^
2382 // [XX]-------|
2383 bool NeedCheck = false;
2384 if (P != Pattern)
2385 NeedCheck = true;
2386 else {
2387 const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator());
2388 NeedCheck =
2389 P->getOperator() == ISE.get_intrinsic_void_sdnode() ||
2390 P->getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
2391 P->getOperator() == ISE.get_intrinsic_wo_chain_sdnode() ||
2392 PInfo.getNumOperands() > 1 ||
2393 PInfo.hasProperty(SDNPHasChain) ||
2394 PInfo.hasProperty(SDNPInFlag) ||
2395 PInfo.hasProperty(SDNPOptInFlag);
2396 }
2397
2398 if (NeedCheck) {
2399 std::string ParentName(RootName.begin(), RootName.end()-1);
2400 emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName +
2401 ".Val, N.Val)");
2402 }
2403 }
2404 }
2405
2406 if (NodeHasChain) {
2407 if (FoundChain) {
2408 emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || "
2409 "IsChainCompatible(" + ChainName + ".Val, " +
2410 RootName + ".Val))");
2411 OrigChains.push_back(std::make_pair(ChainName, RootName));
2412 } else
2413 FoundChain = true;
2414 ChainName = "Chain" + ChainSuffix;
2415 emitInit("SDOperand " + ChainName + " = " + RootName +
2416 ".getOperand(0);");
2417 }
2418 }
2419
2420 // Don't fold any node which reads or writes a flag and has multiple uses.
2421 // FIXME: We really need to separate the concepts of flag and "glue". Those
2422 // real flag results, e.g. X86CMP output, can have multiple uses.
2423 // FIXME: If the optional incoming flag does not exist. Then it is ok to
2424 // fold it.
2425 if (!isRoot &&
2426 (PatternHasProperty(N, SDNPInFlag, ISE) ||
2427 PatternHasProperty(N, SDNPOptInFlag, ISE) ||
2428 PatternHasProperty(N, SDNPOutFlag, ISE))) {
2429 if (!EmittedUseCheck) {
2430 // Multiple uses of actual result?
2431 emitCheck(RootName + ".hasOneUse()");
2432 }
2433 }
2434
2435 // If there is a node predicate for this, emit the call.
2436 if (!N->getPredicateFn().empty())
2437 emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)");
2438
2439
2440 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
2441 // a constant without a predicate fn that has more that one bit set, handle
2442 // this as a special case. This is usually for targets that have special
2443 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
2444 // handling stuff). Using these instructions is often far more efficient
2445 // than materializing the constant. Unfortunately, both the instcombiner
2446 // and the dag combiner can often infer that bits are dead, and thus drop
2447 // them from the mask in the dag. For example, it might turn 'AND X, 255'
2448 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
2449 // to handle this.
2450 if (!N->isLeaf() &&
2451 (N->getOperator()->getName() == "and" ||
2452 N->getOperator()->getName() == "or") &&
2453 N->getChild(1)->isLeaf() &&
2454 N->getChild(1)->getPredicateFn().empty()) {
2455 if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
2456 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
2457 emitInit("SDOperand " + RootName + "0" + " = " +
2458 RootName + ".getOperand(" + utostr(0) + ");");
2459 emitInit("SDOperand " + RootName + "1" + " = " +
2460 RootName + ".getOperand(" + utostr(1) + ");");
2461
2462 emitCheck("isa<ConstantSDNode>(" + RootName + "1)");
2463 const char *MaskPredicate = N->getOperator()->getName() == "or"
2464 ? "CheckOrMask(" : "CheckAndMask(";
2465 emitCheck(MaskPredicate + RootName + "0, cast<ConstantSDNode>(" +
2466 RootName + "1), " + itostr(II->getValue()) + ")");
2467
2468 EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0),
2469 ChainSuffix + utostr(0), FoundChain);
2470 return;
2471 }
2472 }
2473 }
2474
2475 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
2476 emitInit("SDOperand " + RootName + utostr(OpNo) + " = " +
2477 RootName + ".getOperand(" +utostr(OpNo) + ");");
2478
2479 EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo),
2480 ChainSuffix + utostr(OpNo), FoundChain);
2481 }
2482
2483 // Handle cases when root is a complex pattern.
2484 const ComplexPattern *CP;
2485 if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
2486 std::string Fn = CP->getSelectFunc();
2487 unsigned NumOps = CP->getNumOperands();
2488 for (unsigned i = 0; i < NumOps; ++i) {
2489 emitDecl("CPTmp" + utostr(i));
2490 emitCode("SDOperand CPTmp" + utostr(i) + ";");
2491 }
2492 if (CP->hasProperty(SDNPHasChain)) {
2493 emitDecl("CPInChain");
2494 emitDecl("Chain" + ChainSuffix);
2495 emitCode("SDOperand CPInChain;");
2496 emitCode("SDOperand Chain" + ChainSuffix + ";");
2497 }
2498
2499 std::string Code = Fn + "(" + RootName + ", " + RootName;
2500 for (unsigned i = 0; i < NumOps; i++)
2501 Code += ", CPTmp" + utostr(i);
2502 if (CP->hasProperty(SDNPHasChain)) {
2503 ChainName = "Chain" + ChainSuffix;
2504 Code += ", CPInChain, Chain" + ChainSuffix;
2505 }
2506 emitCheck(Code + ")");
2507 }
2508 }
2509
2510 void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent,
2511 const std::string &RootName,
2512 const std::string &ChainSuffix, bool &FoundChain) {
2513 if (!Child->isLeaf()) {
2514 // If it's not a leaf, recursively match.
2515 const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator());
2516 emitCheck(RootName + ".getOpcode() == " +
2517 CInfo.getEnumName());
2518 EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain);
2519 if (NodeHasProperty(Child, SDNPHasChain, ISE))
2520 FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults()));
2521 } else {
2522 // If this child has a name associated with it, capture it in VarMap. If
2523 // we already saw this in the pattern, emit code to verify dagness.
2524 if (!Child->getName().empty()) {
2525 std::string &VarMapEntry = VariableMap[Child->getName()];
2526 if (VarMapEntry.empty()) {
2527 VarMapEntry = RootName;
2528 } else {
2529 // If we get here, this is a second reference to a specific name.
2530 // Since we already have checked that the first reference is valid,
2531 // we don't have to recursively match it, just check that it's the
2532 // same as the previously named thing.
2533 emitCheck(VarMapEntry + " == " + RootName);
2534 Duplicates.insert(RootName);
2535 return;
2536 }
2537 }
2538
2539 // Handle leaves of various types.
2540 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
2541 Record *LeafRec = DI->getDef();
2542 if (LeafRec->isSubClassOf("RegisterClass") ||
2543 LeafRec->getName() == "ptr_rc") {
2544 // Handle register references. Nothing to do here.
2545 } else if (LeafRec->isSubClassOf("Register")) {
2546 // Handle register references.
2547 } else if (LeafRec->isSubClassOf("ComplexPattern")) {
2548 // Handle complex pattern.
2549 const ComplexPattern *CP = NodeGetComplexPattern(Child, ISE);
2550 std::string Fn = CP->getSelectFunc();
2551 unsigned NumOps = CP->getNumOperands();
2552 for (unsigned i = 0; i < NumOps; ++i) {
2553 emitDecl("CPTmp" + utostr(i));
2554 emitCode("SDOperand CPTmp" + utostr(i) + ";");
2555 }
2556 if (CP->hasProperty(SDNPHasChain)) {
2557 const SDNodeInfo &PInfo = ISE.getSDNodeInfo(Parent->getOperator());
2558 FoldedChains.push_back(std::make_pair("CPInChain",
2559 PInfo.getNumResults()));
2560 ChainName = "Chain" + ChainSuffix;
2561 emitDecl("CPInChain");
2562 emitDecl(ChainName);
2563 emitCode("SDOperand CPInChain;");
2564 emitCode("SDOperand " + ChainName + ";");
2565 }
2566
2567 std::string Code = Fn + "(N, ";
2568 if (CP->hasProperty(SDNPHasChain)) {
2569 std::string ParentName(RootName.begin(), RootName.end()-1);
2570 Code += ParentName + ", ";
2571 }
2572 Code += RootName;
2573 for (unsigned i = 0; i < NumOps; i++)
2574 Code += ", CPTmp" + utostr(i);
2575 if (CP->hasProperty(SDNPHasChain))
2576 Code += ", CPInChain, Chain" + ChainSuffix;
2577 emitCheck(Code + ")");
2578 } else if (LeafRec->getName() == "srcvalue") {
2579 // Place holder for SRCVALUE nodes. Nothing to do here.
2580 } else if (LeafRec->isSubClassOf("ValueType")) {
2581 // Make sure this is the specified value type.
2582 emitCheck("cast<VTSDNode>(" + RootName +
2583 ")->getVT() == MVT::" + LeafRec->getName());
2584 } else if (LeafRec->isSubClassOf("CondCode")) {
2585 // Make sure this is the specified cond code.
2586 emitCheck("cast<CondCodeSDNode>(" + RootName +
2587 ")->get() == ISD::" + LeafRec->getName());
2588 } else {
2589#ifndef NDEBUG
2590 Child->dump();
2591 cerr << " ";
2592#endif
2593 assert(0 && "Unknown leaf type!");
2594 }
2595
2596 // If there is a node predicate for this, emit the call.
2597 if (!Child->getPredicateFn().empty())
2598 emitCheck(Child->getPredicateFn() + "(" + RootName +
2599 ".Val)");
2600 } else if (IntInit *II =
2601 dynamic_cast<IntInit*>(Child->getLeafValue())) {
2602 emitCheck("isa<ConstantSDNode>(" + RootName + ")");
2603 unsigned CTmp = TmpNo++;
2604 emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+
2605 RootName + ")->getSignExtended();");
2606
2607 emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue()));
2608 } else {
2609#ifndef NDEBUG
2610 Child->dump();
2611#endif
2612 assert(0 && "Unknown leaf type!");
2613 }
2614 }
2615 }
2616
2617 /// EmitResultCode - Emit the action for a pattern. Now that it has matched
2618 /// we actually have to build a DAG!
2619 std::vector<std::string>
2620 EmitResultCode(TreePatternNode *N, bool RetSelected,
2621 bool InFlagDecled, bool ResNodeDecled,
2622 bool LikeLeaf = false, bool isRoot = false) {
2623 // List of arguments of getTargetNode() or SelectNodeTo().
2624 std::vector<std::string> NodeOps;
2625 // This is something selected from the pattern we matched.
2626 if (!N->getName().empty()) {
2627 std::string &Val = VariableMap[N->getName()];
2628 assert(!Val.empty() &&
2629 "Variable referenced but not defined and not caught earlier!");
2630 if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
2631 // Already selected this operand, just return the tmpval.
2632 NodeOps.push_back(Val);
2633 return NodeOps;
2634 }
2635
2636 const ComplexPattern *CP;
2637 unsigned ResNo = TmpNo++;
2638 if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
2639 assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
2640 std::string CastType;
2641 switch (N->getTypeNum(0)) {
2642 default:
2643 cerr << "Cannot handle " << getEnumName(N->getTypeNum(0))
2644 << " type as an immediate constant. Aborting\n";
2645 abort();
2646 case MVT::i1: CastType = "bool"; break;
2647 case MVT::i8: CastType = "unsigned char"; break;
2648 case MVT::i16: CastType = "unsigned short"; break;
2649 case MVT::i32: CastType = "unsigned"; break;
2650 case MVT::i64: CastType = "uint64_t"; break;
2651 }
2652 emitCode("SDOperand Tmp" + utostr(ResNo) +
2653 " = CurDAG->getTargetConstant(((" + CastType +
2654 ") cast<ConstantSDNode>(" + Val + ")->getValue()), " +
2655 getEnumName(N->getTypeNum(0)) + ");");
2656 NodeOps.push_back("Tmp" + utostr(ResNo));
2657 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
2658 // value if used multiple times by this pattern result.
2659 Val = "Tmp"+utostr(ResNo);
2660 } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
2661 Record *Op = OperatorMap[N->getName()];
2662 // Transform ExternalSymbol to TargetExternalSymbol
2663 if (Op && Op->getName() == "externalsym") {
2664 emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
2665 "ExternalSymbol(cast<ExternalSymbolSDNode>(" +
2666 Val + ")->getSymbol(), " +
2667 getEnumName(N->getTypeNum(0)) + ");");
2668 NodeOps.push_back("Tmp" + utostr(ResNo));
2669 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
2670 // this value if used multiple times by this pattern result.
2671 Val = "Tmp"+utostr(ResNo);
2672 } else {
2673 NodeOps.push_back(Val);
2674 }
2675 } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr"
2676 || N->getOperator()->getName() == "tglobaltlsaddr")) {
2677 Record *Op = OperatorMap[N->getName()];
2678 // Transform GlobalAddress to TargetGlobalAddress
2679 if (Op && (Op->getName() == "globaladdr" ||
2680 Op->getName() == "globaltlsaddr")) {
2681 emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
2682 "GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
2683 ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
2684 ");");
2685 NodeOps.push_back("Tmp" + utostr(ResNo));
2686 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
2687 // this value if used multiple times by this pattern result.
2688 Val = "Tmp"+utostr(ResNo);
2689 } else {
2690 NodeOps.push_back(Val);
2691 }
2692 } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
2693 NodeOps.push_back(Val);
2694 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
2695 // value if used multiple times by this pattern result.
2696 Val = "Tmp"+utostr(ResNo);
2697 } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") {
2698 NodeOps.push_back(Val);
2699 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
2700 // value if used multiple times by this pattern result.
2701 Val = "Tmp"+utostr(ResNo);
2702 } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
2703 for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
2704 emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");");
2705 NodeOps.push_back("CPTmp" + utostr(i));
2706 }
2707 } else {
2708 // This node, probably wrapped in a SDNodeXForm, behaves like a leaf
2709 // node even if it isn't one. Don't select it.
2710 if (!LikeLeaf) {
2711 emitCode("AddToISelQueue(" + Val + ");");
2712 if (isRoot && N->isLeaf()) {
2713 emitCode("ReplaceUses(N, " + Val + ");");
2714 emitCode("return NULL;");
2715 }
2716 }
2717 NodeOps.push_back(Val);
2718 }
2719 return NodeOps;
2720 }
2721 if (N->isLeaf()) {
2722 // If this is an explicit register reference, handle it.
2723 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
2724 unsigned ResNo = TmpNo++;
2725 if (DI->getDef()->isSubClassOf("Register")) {
2726 emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
2727 ISE.getQualifiedName(DI->getDef()) + ", " +
2728 getEnumName(N->getTypeNum(0)) + ");");
2729 NodeOps.push_back("Tmp" + utostr(ResNo));
2730 return NodeOps;
2731 } else if (DI->getDef()->getName() == "zero_reg") {
2732 emitCode("SDOperand Tmp" + utostr(ResNo) +
2733 " = CurDAG->getRegister(0, " +
2734 getEnumName(N->getTypeNum(0)) + ");");
2735 NodeOps.push_back("Tmp" + utostr(ResNo));
2736 return NodeOps;
2737 }
2738 } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
2739 unsigned ResNo = TmpNo++;
2740 assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
2741 emitCode("SDOperand Tmp" + utostr(ResNo) +
2742 " = CurDAG->getTargetConstant(" + itostr(II->getValue()) +
2743 ", " + getEnumName(N->getTypeNum(0)) + ");");
2744 NodeOps.push_back("Tmp" + utostr(ResNo));
2745 return NodeOps;
2746 }
2747
2748#ifndef NDEBUG
2749 N->dump();
2750#endif
2751 assert(0 && "Unknown leaf type!");
2752 return NodeOps;
2753 }
2754
2755 Record *Op = N->getOperator();
2756 if (Op->isSubClassOf("Instruction")) {
2757 const CodeGenTarget &CGT = ISE.getTargetInfo();
2758 CodeGenInstruction &II = CGT.getInstruction(Op->getName());
2759 const DAGInstruction &Inst = ISE.getInstruction(Op);
2760 TreePattern *InstPat = Inst.getPattern();
2761 TreePatternNode *InstPatNode =
2762 isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern)
2763 : (InstPat ? InstPat->getOnlyTree() : NULL);
2764 if (InstPatNode && InstPatNode->getOperator()->getName() == "set") {
Evan Chengf37df842007-09-11 19:52:18 +00002765 InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002766 }
2767 bool HasVarOps = isRoot && II.hasVariableNumberOfOperands;
2768 bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0;
2769 bool HasImpResults = isRoot && Inst.getNumImpResults() > 0;
2770 bool NodeHasOptInFlag = isRoot &&
2771 PatternHasProperty(Pattern, SDNPOptInFlag, ISE);
2772 bool NodeHasInFlag = isRoot &&
2773 PatternHasProperty(Pattern, SDNPInFlag, ISE);
Evan Chengdec1dd12007-09-07 23:59:02 +00002774 bool NodeHasOutFlag = isRoot &&
2775 PatternHasProperty(Pattern, SDNPOutFlag, ISE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002776 bool NodeHasChain = InstPatNode &&
2777 PatternHasProperty(InstPatNode, SDNPHasChain, ISE);
2778 bool InputHasChain = isRoot &&
2779 NodeHasProperty(Pattern, SDNPHasChain, ISE);
2780 unsigned NumResults = Inst.getNumResults();
2781
2782 if (NodeHasOptInFlag) {
2783 emitCode("bool HasInFlag = "
2784 "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);");
2785 }
2786 if (HasVarOps)
2787 emitCode("SmallVector<SDOperand, 8> Ops" + utostr(OpcNo) + ";");
2788
2789 // How many results is this pattern expected to produce?
2790 unsigned PatResults = 0;
2791 for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
2792 MVT::ValueType VT = Pattern->getTypeNum(i);
2793 if (VT != MVT::isVoid && VT != MVT::Flag)
2794 PatResults++;
2795 }
2796
2797 if (OrigChains.size() > 0) {
2798 // The original input chain is being ignored. If it is not just
2799 // pointing to the op that's being folded, we should create a
2800 // TokenFactor with it and the chain of the folded op as the new chain.
2801 // We could potentially be doing multiple levels of folding, in that
2802 // case, the TokenFactor can have more operands.
2803 emitCode("SmallVector<SDOperand, 8> InChains;");
2804 for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) {
2805 emitCode("if (" + OrigChains[i].first + ".Val != " +
2806 OrigChains[i].second + ".Val) {");
2807 emitCode(" AddToISelQueue(" + OrigChains[i].first + ");");
2808 emitCode(" InChains.push_back(" + OrigChains[i].first + ");");
2809 emitCode("}");
2810 }
2811 emitCode("AddToISelQueue(" + ChainName + ");");
2812 emitCode("InChains.push_back(" + ChainName + ");");
2813 emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, "
2814 "&InChains[0], InChains.size());");
2815 }
2816
2817 // Loop over all of the operands of the instruction pattern, emitting code
2818 // to fill them all in. The node 'N' usually has number children equal to
2819 // the number of input operands of the instruction. However, in cases
2820 // where there are predicate operands for an instruction, we need to fill
2821 // in the 'execute always' values. Match up the node operands to the
2822 // instruction operands to do this.
2823 std::vector<std::string> AllOps;
2824 unsigned NumEAInputs = 0; // # of synthesized 'execute always' inputs.
2825 for (unsigned ChildNo = 0, InstOpNo = NumResults;
2826 InstOpNo != II.OperandList.size(); ++InstOpNo) {
2827 std::vector<std::string> Ops;
2828
2829 // If this is a normal operand or a predicate operand without
2830 // 'execute always', emit it.
2831 Record *OperandNode = II.OperandList[InstOpNo].Rec;
2832 if ((!OperandNode->isSubClassOf("PredicateOperand") &&
2833 !OperandNode->isSubClassOf("OptionalDefOperand")) ||
2834 ISE.getDefaultOperand(OperandNode).DefaultOps.empty()) {
2835 Ops = EmitResultCode(N->getChild(ChildNo), RetSelected,
2836 InFlagDecled, ResNodeDecled);
2837 AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
2838 ++ChildNo;
2839 } else {
2840 // Otherwise, this is a predicate or optional def operand, emit the
2841 // 'default ops' operands.
2842 const DAGDefaultOperand &DefaultOp =
2843 ISE.getDefaultOperand(II.OperandList[InstOpNo].Rec);
2844 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) {
2845 Ops = EmitResultCode(DefaultOp.DefaultOps[i], RetSelected,
2846 InFlagDecled, ResNodeDecled);
2847 AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
2848 NumEAInputs += Ops.size();
2849 }
2850 }
2851 }
2852
2853 // Emit all the chain and CopyToReg stuff.
2854 bool ChainEmitted = NodeHasChain;
2855 if (NodeHasChain)
2856 emitCode("AddToISelQueue(" + ChainName + ");");
2857 if (NodeHasInFlag || HasImpInputs)
2858 EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
2859 InFlagDecled, ResNodeDecled, true);
2860 if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
2861 if (!InFlagDecled) {
2862 emitCode("SDOperand InFlag(0, 0);");
2863 InFlagDecled = true;
2864 }
2865 if (NodeHasOptInFlag) {
2866 emitCode("if (HasInFlag) {");
2867 emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);");
2868 emitCode(" AddToISelQueue(InFlag);");
2869 emitCode("}");
2870 }
2871 }
2872
2873 unsigned ResNo = TmpNo++;
2874 if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag ||
Evan Chengdec1dd12007-09-07 23:59:02 +00002875 NodeHasOptInFlag || HasImpResults) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002876 std::string Code;
2877 std::string Code2;
2878 std::string NodeName;
2879 if (!isRoot) {
2880 NodeName = "Tmp" + utostr(ResNo);
Dan Gohman875770e2007-07-24 22:58:00 +00002881 Code2 = "SDOperand " + NodeName + "(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002882 } else {
2883 NodeName = "ResNode";
2884 if (!ResNodeDecled) {
2885 Code2 = "SDNode *" + NodeName + " = ";
2886 ResNodeDecled = true;
2887 } else
2888 Code2 = NodeName + " = ";
2889 }
2890
2891 Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo);
2892 unsigned OpsNo = OpcNo;
2893 emitOpcode(II.Namespace + "::" + II.TheDef->getName());
2894
2895 // Output order: results, chain, flags
2896 // Result types.
2897 if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
2898 Code += ", VT" + utostr(VTNo);
2899 emitVT(getEnumName(N->getTypeNum(0)));
2900 }
Evan Chengdec1dd12007-09-07 23:59:02 +00002901 // Add types for implicit results in physical registers, scheduler will
2902 // care of adding copyfromreg nodes.
2903 if (HasImpResults) {
2904 for (unsigned i = 0, e = Inst.getNumImpResults(); i < e; i++) {
2905 Record *RR = Inst.getImpResult(i);
2906 if (RR->isSubClassOf("Register")) {
2907 MVT::ValueType RVT = getRegisterValueType(RR, CGT);
2908 Code += ", " + getEnumName(RVT);
2909 ++NumResults;
2910 }
2911 }
2912 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002913 if (NodeHasChain)
2914 Code += ", MVT::Other";
2915 if (NodeHasOutFlag)
2916 Code += ", MVT::Flag";
2917
2918 // Figure out how many fixed inputs the node has. This is important to
2919 // know which inputs are the variable ones if present.
2920 unsigned NumInputs = AllOps.size();
2921 NumInputs += NodeHasChain;
2922
2923 // Inputs.
2924 if (HasVarOps) {
2925 for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
2926 emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
2927 AllOps.clear();
2928 }
2929
2930 if (HasVarOps) {
2931 // Figure out whether any operands at the end of the op list are not
2932 // part of the variable section.
2933 std::string EndAdjust;
2934 if (NodeHasInFlag || HasImpInputs)
2935 EndAdjust = "-1"; // Always has one flag.
2936 else if (NodeHasOptInFlag)
2937 EndAdjust = "-(HasInFlag?1:0)"; // May have a flag.
2938
2939 emitCode("for (unsigned i = " + utostr(NumInputs - NumEAInputs) +
2940 ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {");
2941
2942 emitCode(" AddToISelQueue(N.getOperand(i));");
2943 emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));");
2944 emitCode("}");
2945 }
2946
2947 if (NodeHasChain) {
2948 if (HasVarOps)
2949 emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
2950 else
2951 AllOps.push_back(ChainName);
2952 }
2953
2954 if (HasVarOps) {
2955 if (NodeHasInFlag || HasImpInputs)
2956 emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
2957 else if (NodeHasOptInFlag) {
2958 emitCode("if (HasInFlag)");
2959 emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);");
2960 }
2961 Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
2962 ".size()";
2963 } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
2964 AllOps.push_back("InFlag");
2965
2966 unsigned NumOps = AllOps.size();
2967 if (NumOps) {
2968 if (!NodeHasOptInFlag && NumOps < 4) {
2969 for (unsigned i = 0; i != NumOps; ++i)
2970 Code += ", " + AllOps[i];
2971 } else {
2972 std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { ";
2973 for (unsigned i = 0; i != NumOps; ++i) {
2974 OpsCode += AllOps[i];
2975 if (i != NumOps-1)
2976 OpsCode += ", ";
2977 }
2978 emitCode(OpsCode + " };");
2979 Code += ", Ops" + utostr(OpsNo) + ", ";
2980 if (NodeHasOptInFlag) {
2981 Code += "HasInFlag ? ";
2982 Code += utostr(NumOps) + " : " + utostr(NumOps-1);
2983 } else
2984 Code += utostr(NumOps);
2985 }
2986 }
2987
2988 if (!isRoot)
2989 Code += "), 0";
2990 emitCode(Code2 + Code + ");");
2991
2992 if (NodeHasChain)
2993 // Remember which op produces the chain.
2994 if (!isRoot)
2995 emitCode(ChainName + " = SDOperand(" + NodeName +
2996 ".Val, " + utostr(PatResults) + ");");
2997 else
2998 emitCode(ChainName + " = SDOperand(" + NodeName +
2999 ", " + utostr(PatResults) + ");");
3000
3001 if (!isRoot) {
3002 NodeOps.push_back("Tmp" + utostr(ResNo));
3003 return NodeOps;
3004 }
3005
3006 bool NeedReplace = false;
3007 if (NodeHasOutFlag) {
3008 if (!InFlagDecled) {
Dan Gohman875770e2007-07-24 22:58:00 +00003009 emitCode("SDOperand InFlag(ResNode, " +
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003010 utostr(NumResults + (unsigned)NodeHasChain) + ");");
3011 InFlagDecled = true;
3012 } else
3013 emitCode("InFlag = SDOperand(ResNode, " +
3014 utostr(NumResults + (unsigned)NodeHasChain) + ");");
3015 }
3016
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003017 if (FoldedChains.size() > 0) {
3018 std::string Code;
3019 for (unsigned j = 0, e = FoldedChains.size(); j < e; j++)
3020 emitCode("ReplaceUses(SDOperand(" +
3021 FoldedChains[j].first + ".Val, " +
3022 utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " +
3023 utostr(NumResults) + "));");
3024 NeedReplace = true;
3025 }
3026
3027 if (NodeHasOutFlag) {
3028 emitCode("ReplaceUses(SDOperand(N.Val, " +
3029 utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);");
3030 NeedReplace = true;
3031 }
3032
3033 if (NeedReplace) {
3034 for (unsigned i = 0; i < NumResults; i++)
3035 emitCode("ReplaceUses(SDOperand(N.Val, " +
3036 utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));");
3037 if (InputHasChain)
3038 emitCode("ReplaceUses(SDOperand(N.Val, " +
3039 utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, "
3040 + ChainName + ".ResNo" + "));");
3041 } else
3042 RetSelected = true;
3043
3044 // User does not expect the instruction would produce a chain!
3045 if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
3046 ;
3047 } else if (InputHasChain && !NodeHasChain) {
3048 // One of the inner node produces a chain.
3049 if (NodeHasOutFlag)
3050 emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults+1) +
3051 "), SDOperand(ResNode, N.ResNo-1));");
3052 for (unsigned i = 0; i < PatResults; ++i)
3053 emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) +
3054 "), SDOperand(ResNode, " + utostr(i) + "));");
3055 emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) +
3056 "), " + ChainName + ");");
3057 RetSelected = false;
3058 }
3059
3060 if (RetSelected)
3061 emitCode("return ResNode;");
3062 else
3063 emitCode("return NULL;");
3064 } else {
3065 std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" +
3066 utostr(OpcNo);
3067 if (N->getTypeNum(0) != MVT::isVoid)
3068 Code += ", VT" + utostr(VTNo);
3069 if (NodeHasOutFlag)
3070 Code += ", MVT::Flag";
3071
3072 if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
3073 AllOps.push_back("InFlag");
3074
3075 unsigned NumOps = AllOps.size();
3076 if (NumOps) {
3077 if (!NodeHasOptInFlag && NumOps < 4) {
3078 for (unsigned i = 0; i != NumOps; ++i)
3079 Code += ", " + AllOps[i];
3080 } else {
3081 std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { ";
3082 for (unsigned i = 0; i != NumOps; ++i) {
3083 OpsCode += AllOps[i];
3084 if (i != NumOps-1)
3085 OpsCode += ", ";
3086 }
3087 emitCode(OpsCode + " };");
3088 Code += ", Ops" + utostr(OpcNo) + ", ";
3089 Code += utostr(NumOps);
3090 }
3091 }
3092 emitCode(Code + ");");
3093 emitOpcode(II.Namespace + "::" + II.TheDef->getName());
3094 if (N->getTypeNum(0) != MVT::isVoid)
3095 emitVT(getEnumName(N->getTypeNum(0)));
3096 }
3097
3098 return NodeOps;
3099 } else if (Op->isSubClassOf("SDNodeXForm")) {
3100 assert(N->getNumChildren() == 1 && "node xform should have one child!");
3101 // PatLeaf node - the operand may or may not be a leaf node. But it should
3102 // behave like one.
3103 std::vector<std::string> Ops =
3104 EmitResultCode(N->getChild(0), RetSelected, InFlagDecled,
3105 ResNodeDecled, true);
3106 unsigned ResNo = TmpNo++;
3107 emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
3108 + "(" + Ops.back() + ".Val);");
3109 NodeOps.push_back("Tmp" + utostr(ResNo));
3110 if (isRoot)
3111 emitCode("return Tmp" + utostr(ResNo) + ".Val;");
3112 return NodeOps;
3113 } else {
3114 N->dump();
3115 cerr << "\n";
3116 throw std::string("Unknown node in result pattern!");
3117 }
3118 }
3119
3120 /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
3121 /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
3122 /// 'Pat' may be missing types. If we find an unresolved type to add a check
3123 /// for, this returns true otherwise false if Pat has all types.
3124 bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
3125 const std::string &Prefix, bool isRoot = false) {
3126 // Did we find one?
3127 if (Pat->getExtTypes() != Other->getExtTypes()) {
3128 // Move a type over from 'other' to 'pat'.
3129 Pat->setTypes(Other->getExtTypes());
3130 // The top level node type is checked outside of the select function.
3131 if (!isRoot)
3132 emitCheck(Prefix + ".Val->getValueType(0) == " +
3133 getName(Pat->getTypeNum(0)));
3134 return true;
3135 }
3136
3137 unsigned OpNo =
3138 (unsigned) NodeHasProperty(Pat, SDNPHasChain, ISE);
3139 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
3140 if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
3141 Prefix + utostr(OpNo)))
3142 return true;
3143 return false;
3144 }
3145
3146private:
3147 /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
3148 /// being built.
3149 void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
3150 bool &ChainEmitted, bool &InFlagDecled,
3151 bool &ResNodeDecled, bool isRoot = false) {
3152 const CodeGenTarget &T = ISE.getTargetInfo();
3153 unsigned OpNo =
3154 (unsigned) NodeHasProperty(N, SDNPHasChain, ISE);
3155 bool HasInFlag = NodeHasProperty(N, SDNPInFlag, ISE);
3156 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
3157 TreePatternNode *Child = N->getChild(i);
3158 if (!Child->isLeaf()) {
3159 EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
3160 InFlagDecled, ResNodeDecled);
3161 } else {
3162 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
3163 if (!Child->getName().empty()) {
3164 std::string Name = RootName + utostr(OpNo);
3165 if (Duplicates.find(Name) != Duplicates.end())
3166 // A duplicate! Do not emit a copy for this node.
3167 continue;
3168 }
3169
3170 Record *RR = DI->getDef();
3171 if (RR->isSubClassOf("Register")) {
3172 MVT::ValueType RVT = getRegisterValueType(RR, T);
3173 if (RVT == MVT::Flag) {
3174 if (!InFlagDecled) {
3175 emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";");
3176 InFlagDecled = true;
3177 } else
3178 emitCode("InFlag = " + RootName + utostr(OpNo) + ";");
3179 emitCode("AddToISelQueue(InFlag);");
3180 } else {
3181 if (!ChainEmitted) {
3182 emitCode("SDOperand Chain = CurDAG->getEntryNode();");
3183 ChainName = "Chain";
3184 ChainEmitted = true;
3185 }
3186 emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");");
3187 if (!InFlagDecled) {
3188 emitCode("SDOperand InFlag(0, 0);");
3189 InFlagDecled = true;
3190 }
3191 std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
3192 emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
3193 ", " + ISE.getQualifiedName(RR) +
3194 ", " + RootName + utostr(OpNo) + ", InFlag).Val;");
3195 ResNodeDecled = true;
3196 emitCode(ChainName + " = SDOperand(ResNode, 0);");
3197 emitCode("InFlag = SDOperand(ResNode, 1);");
3198 }
3199 }
3200 }
3201 }
3202 }
3203
3204 if (HasInFlag) {
3205 if (!InFlagDecled) {
3206 emitCode("SDOperand InFlag = " + RootName +
3207 ".getOperand(" + utostr(OpNo) + ");");
3208 InFlagDecled = true;
3209 } else
3210 emitCode("InFlag = " + RootName +
3211 ".getOperand(" + utostr(OpNo) + ");");
3212 emitCode("AddToISelQueue(InFlag);");
3213 }
3214 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003215};
3216
3217/// EmitCodeForPattern - Given a pattern to match, emit code to the specified
3218/// stream to match the pattern, and generate the code for the match if it
3219/// succeeds. Returns true if the pattern is not guaranteed to match.
3220void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern,
3221 std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
3222 std::set<std::string> &GeneratedDecl,
3223 std::vector<std::string> &TargetOpcodes,
3224 std::vector<std::string> &TargetVTs) {
3225 PatternCodeEmitter Emitter(*this, Pattern.getPredicates(),
3226 Pattern.getSrcPattern(), Pattern.getDstPattern(),
3227 GeneratedCode, GeneratedDecl,
3228 TargetOpcodes, TargetVTs);
3229
3230 // Emit the matcher, capturing named arguments in VariableMap.
3231 bool FoundChain = false;
3232 Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain);
3233
3234 // TP - Get *SOME* tree pattern, we don't care which.
3235 TreePattern &TP = *PatternFragments.begin()->second;
3236
3237 // At this point, we know that we structurally match the pattern, but the
3238 // types of the nodes may not match. Figure out the fewest number of type
3239 // comparisons we need to emit. For example, if there is only one integer
3240 // type supported by a target, there should be no type comparisons at all for
3241 // integer patterns!
3242 //
3243 // To figure out the fewest number of type checks needed, clone the pattern,
3244 // remove the types, then perform type inference on the pattern as a whole.
3245 // If there are unresolved types, emit an explicit check for those types,
3246 // apply the type to the tree, then rerun type inference. Iterate until all
3247 // types are resolved.
3248 //
3249 TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
3250 RemoveAllTypes(Pat);
3251
3252 do {
3253 // Resolve/propagate as many types as possible.
3254 try {
3255 bool MadeChange = true;
3256 while (MadeChange)
3257 MadeChange = Pat->ApplyTypeConstraints(TP,
3258 true/*Ignore reg constraints*/);
3259 } catch (...) {
3260 assert(0 && "Error: could not find consistent types for something we"
3261 " already decided was ok!");
3262 abort();
3263 }
3264
3265 // Insert a check for an unresolved type and add it to the tree. If we find
3266 // an unresolved type to add a check for, this returns true and we iterate,
3267 // otherwise we are done.
3268 } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));
3269
3270 Emitter.EmitResultCode(Pattern.getDstPattern(),
3271 false, false, false, false, true);
3272 delete Pat;
3273}
3274
3275/// EraseCodeLine - Erase one code line from all of the patterns. If removing
3276/// a line causes any of them to be empty, remove them and return true when
3277/// done.
3278static bool EraseCodeLine(std::vector<std::pair<PatternToMatch*,
3279 std::vector<std::pair<unsigned, std::string> > > >
3280 &Patterns) {
3281 bool ErasedPatterns = false;
3282 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3283 Patterns[i].second.pop_back();
3284 if (Patterns[i].second.empty()) {
3285 Patterns.erase(Patterns.begin()+i);
3286 --i; --e;
3287 ErasedPatterns = true;
3288 }
3289 }
3290 return ErasedPatterns;
3291}
3292
3293/// EmitPatterns - Emit code for at least one pattern, but try to group common
3294/// code together between the patterns.
3295void DAGISelEmitter::EmitPatterns(std::vector<std::pair<PatternToMatch*,
3296 std::vector<std::pair<unsigned, std::string> > > >
3297 &Patterns, unsigned Indent,
3298 std::ostream &OS) {
3299 typedef std::pair<unsigned, std::string> CodeLine;
3300 typedef std::vector<CodeLine> CodeList;
3301 typedef std::vector<std::pair<PatternToMatch*, CodeList> > PatternList;
3302
3303 if (Patterns.empty()) return;
3304
3305 // Figure out how many patterns share the next code line. Explicitly copy
3306 // FirstCodeLine so that we don't invalidate a reference when changing
3307 // Patterns.
3308 const CodeLine FirstCodeLine = Patterns.back().second.back();
3309 unsigned LastMatch = Patterns.size()-1;
3310 while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
3311 --LastMatch;
3312
3313 // If not all patterns share this line, split the list into two pieces. The
3314 // first chunk will use this line, the second chunk won't.
3315 if (LastMatch != 0) {
3316 PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
3317 PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
3318
3319 // FIXME: Emit braces?
3320 if (Shared.size() == 1) {
3321 PatternToMatch &Pattern = *Shared.back().first;
3322 OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
3323 Pattern.getSrcPattern()->print(OS);
3324 OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
3325 Pattern.getDstPattern()->print(OS);
3326 OS << "\n";
3327 unsigned AddedComplexity = Pattern.getAddedComplexity();
3328 OS << std::string(Indent, ' ') << "// Pattern complexity = "
3329 << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
3330 << " cost = "
3331 << getResultPatternCost(Pattern.getDstPattern(), *this)
3332 << " size = "
3333 << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
3334 }
3335 if (FirstCodeLine.first != 1) {
3336 OS << std::string(Indent, ' ') << "{\n";
3337 Indent += 2;
3338 }
3339 EmitPatterns(Shared, Indent, OS);
3340 if (FirstCodeLine.first != 1) {
3341 Indent -= 2;
3342 OS << std::string(Indent, ' ') << "}\n";
3343 }
3344
3345 if (Other.size() == 1) {
3346 PatternToMatch &Pattern = *Other.back().first;
3347 OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
3348 Pattern.getSrcPattern()->print(OS);
3349 OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
3350 Pattern.getDstPattern()->print(OS);
3351 OS << "\n";
3352 unsigned AddedComplexity = Pattern.getAddedComplexity();
3353 OS << std::string(Indent, ' ') << "// Pattern complexity = "
3354 << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
3355 << " cost = "
3356 << getResultPatternCost(Pattern.getDstPattern(), *this)
3357 << " size = "
3358 << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
3359 }
3360 EmitPatterns(Other, Indent, OS);
3361 return;
3362 }
3363
3364 // Remove this code from all of the patterns that share it.
3365 bool ErasedPatterns = EraseCodeLine(Patterns);
3366
3367 bool isPredicate = FirstCodeLine.first == 1;
3368
3369 // Otherwise, every pattern in the list has this line. Emit it.
3370 if (!isPredicate) {
3371 // Normal code.
3372 OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
3373 } else {
3374 OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
3375
3376 // If the next code line is another predicate, and if all of the pattern
3377 // in this group share the same next line, emit it inline now. Do this
3378 // until we run out of common predicates.
3379 while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
3380 // Check that all of fhe patterns in Patterns end with the same predicate.
3381 bool AllEndWithSamePredicate = true;
3382 for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
3383 if (Patterns[i].second.back() != Patterns.back().second.back()) {
3384 AllEndWithSamePredicate = false;
3385 break;
3386 }
3387 // If all of the predicates aren't the same, we can't share them.
3388 if (!AllEndWithSamePredicate) break;
3389
3390 // Otherwise we can. Emit it shared now.
3391 OS << " &&\n" << std::string(Indent+4, ' ')
3392 << Patterns.back().second.back().second;
3393 ErasedPatterns = EraseCodeLine(Patterns);
3394 }
3395
3396 OS << ") {\n";
3397 Indent += 2;
3398 }
3399
3400 EmitPatterns(Patterns, Indent, OS);
3401
3402 if (isPredicate)
3403 OS << std::string(Indent-2, ' ') << "}\n";
3404}
3405
3406static std::string getOpcodeName(Record *Op, DAGISelEmitter &ISE) {
3407 const SDNodeInfo &OpcodeInfo = ISE.getSDNodeInfo(Op);
3408 return OpcodeInfo.getEnumName();
3409}
3410
3411static std::string getLegalCName(std::string OpName) {
3412 std::string::size_type pos = OpName.find("::");
3413 if (pos != std::string::npos)
3414 OpName.replace(pos, 2, "_");
3415 return OpName;
3416}
3417
3418void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
3419 // Get the namespace to insert instructions into. Make sure not to pick up
3420 // "TargetInstrInfo" by accidentally getting the namespace off the PHI
3421 // instruction or something.
3422 std::string InstNS;
3423 for (CodeGenTarget::inst_iterator i = Target.inst_begin(),
3424 e = Target.inst_end(); i != e; ++i) {
3425 InstNS = i->second.Namespace;
3426 if (InstNS != "TargetInstrInfo")
3427 break;
3428 }
3429
3430 if (!InstNS.empty()) InstNS += "::";
3431
3432 // Group the patterns by their top-level opcodes.
3433 std::map<std::string, std::vector<PatternToMatch*> > PatternsByOpcode;
3434 // All unique target node emission functions.
3435 std::map<std::string, unsigned> EmitFunctions;
3436 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3437 TreePatternNode *Node = PatternsToMatch[i].getSrcPattern();
3438 if (!Node->isLeaf()) {
3439 PatternsByOpcode[getOpcodeName(Node->getOperator(), *this)].
3440 push_back(&PatternsToMatch[i]);
3441 } else {
3442 const ComplexPattern *CP;
3443 if (dynamic_cast<IntInit*>(Node->getLeafValue())) {
3444 PatternsByOpcode[getOpcodeName(getSDNodeNamed("imm"), *this)].
3445 push_back(&PatternsToMatch[i]);
3446 } else if ((CP = NodeGetComplexPattern(Node, *this))) {
3447 std::vector<Record*> OpNodes = CP->getRootNodes();
3448 for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
3449 PatternsByOpcode[getOpcodeName(OpNodes[j], *this)]
3450 .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], *this)].begin(),
3451 &PatternsToMatch[i]);
3452 }
3453 } else {
3454 cerr << "Unrecognized opcode '";
3455 Node->dump();
3456 cerr << "' on tree pattern '";
3457 cerr << PatternsToMatch[i].getDstPattern()->getOperator()->getName();
3458 cerr << "'!\n";
3459 exit(1);
3460 }
3461 }
3462 }
3463
3464 // For each opcode, there might be multiple select functions, one per
3465 // ValueType of the node (or its first operand if it doesn't produce a
3466 // non-chain result.
3467 std::map<std::string, std::vector<std::string> > OpcodeVTMap;
3468
3469 // Emit one Select_* method for each top-level opcode. We do this instead of
3470 // emitting one giant switch statement to support compilers where this will
3471 // result in the recursive functions taking less stack space.
3472 for (std::map<std::string, std::vector<PatternToMatch*> >::iterator
3473 PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
3474 PBOI != E; ++PBOI) {
3475 const std::string &OpName = PBOI->first;
3476 std::vector<PatternToMatch*> &PatternsOfOp = PBOI->second;
3477 assert(!PatternsOfOp.empty() && "No patterns but map has entry?");
3478
3479 // We want to emit all of the matching code now. However, we want to emit
3480 // the matches in order of minimal cost. Sort the patterns so the least
3481 // cost one is at the start.
3482 std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(),
3483 PatternSortingPredicate(*this));
3484
3485 // Split them into groups by type.
3486 std::map<MVT::ValueType, std::vector<PatternToMatch*> > PatternsByType;
3487 for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
3488 PatternToMatch *Pat = PatternsOfOp[i];
3489 TreePatternNode *SrcPat = Pat->getSrcPattern();
3490 MVT::ValueType VT = SrcPat->getTypeNum(0);
3491 std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator TI =
3492 PatternsByType.find(VT);
3493 if (TI != PatternsByType.end())
3494 TI->second.push_back(Pat);
3495 else {
3496 std::vector<PatternToMatch*> PVec;
3497 PVec.push_back(Pat);
3498 PatternsByType.insert(std::make_pair(VT, PVec));
3499 }
3500 }
3501
3502 for (std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator
3503 II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
3504 ++II) {
3505 MVT::ValueType OpVT = II->first;
3506 std::vector<PatternToMatch*> &Patterns = II->second;
3507 typedef std::vector<std::pair<unsigned,std::string> > CodeList;
3508 typedef std::vector<std::pair<unsigned,std::string> >::iterator CodeListI;
3509
3510 std::vector<std::pair<PatternToMatch*, CodeList> > CodeForPatterns;
3511 std::vector<std::vector<std::string> > PatternOpcodes;
3512 std::vector<std::vector<std::string> > PatternVTs;
3513 std::vector<std::set<std::string> > PatternDecls;
3514 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3515 CodeList GeneratedCode;
3516 std::set<std::string> GeneratedDecl;
3517 std::vector<std::string> TargetOpcodes;
3518 std::vector<std::string> TargetVTs;
3519 GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
3520 TargetOpcodes, TargetVTs);
3521 CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
3522 PatternDecls.push_back(GeneratedDecl);
3523 PatternOpcodes.push_back(TargetOpcodes);
3524 PatternVTs.push_back(TargetVTs);
3525 }
3526
3527 // Scan the code to see if all of the patterns are reachable and if it is
3528 // possible that the last one might not match.
3529 bool mightNotMatch = true;
3530 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
3531 CodeList &GeneratedCode = CodeForPatterns[i].second;
3532 mightNotMatch = false;
3533
3534 for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
3535 if (GeneratedCode[j].first == 1) { // predicate.
3536 mightNotMatch = true;
3537 break;
3538 }
3539 }
3540
3541 // If this pattern definitely matches, and if it isn't the last one, the
3542 // patterns after it CANNOT ever match. Error out.
3543 if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
3544 cerr << "Pattern '";
3545 CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream());
3546 cerr << "' is impossible to select!\n";
3547 exit(1);
3548 }
3549 }
3550
3551 // Factor target node emission code (emitted by EmitResultCode) into
3552 // separate functions. Uniquing and share them among all instruction
3553 // selection routines.
3554 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
3555 CodeList &GeneratedCode = CodeForPatterns[i].second;
3556 std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
3557 std::vector<std::string> &TargetVTs = PatternVTs[i];
3558 std::set<std::string> Decls = PatternDecls[i];
3559 std::vector<std::string> AddedInits;
3560 int CodeSize = (int)GeneratedCode.size();
3561 int LastPred = -1;
3562 for (int j = CodeSize-1; j >= 0; --j) {
3563 if (LastPred == -1 && GeneratedCode[j].first == 1)
3564 LastPred = j;
3565 else if (LastPred != -1 && GeneratedCode[j].first == 2)
3566 AddedInits.push_back(GeneratedCode[j].second);
3567 }
3568
3569 std::string CalleeCode = "(const SDOperand &N";
3570 std::string CallerCode = "(N";
3571 for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
3572 CalleeCode += ", unsigned Opc" + utostr(j);
3573 CallerCode += ", " + TargetOpcodes[j];
3574 }
3575 for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
3576 CalleeCode += ", MVT::ValueType VT" + utostr(j);
3577 CallerCode += ", " + TargetVTs[j];
3578 }
3579 for (std::set<std::string>::iterator
3580 I = Decls.begin(), E = Decls.end(); I != E; ++I) {
3581 std::string Name = *I;
3582 CalleeCode += ", SDOperand &" + Name;
3583 CallerCode += ", " + Name;
3584 }
3585 CallerCode += ");";
3586 CalleeCode += ") ";
3587 // Prevent emission routines from being inlined to reduce selection
3588 // routines stack frame sizes.
3589 CalleeCode += "DISABLE_INLINE ";
3590 CalleeCode += "{\n";
3591
3592 for (std::vector<std::string>::const_reverse_iterator
3593 I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
3594 CalleeCode += " " + *I + "\n";
3595
3596 for (int j = LastPred+1; j < CodeSize; ++j)
3597 CalleeCode += " " + GeneratedCode[j].second + "\n";
3598 for (int j = LastPred+1; j < CodeSize; ++j)
3599 GeneratedCode.pop_back();
3600 CalleeCode += "}\n";
3601
3602 // Uniquing the emission routines.
3603 unsigned EmitFuncNum;
3604 std::map<std::string, unsigned>::iterator EFI =
3605 EmitFunctions.find(CalleeCode);
3606 if (EFI != EmitFunctions.end()) {
3607 EmitFuncNum = EFI->second;
3608 } else {
3609 EmitFuncNum = EmitFunctions.size();
3610 EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
3611 OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
3612 }
3613
3614 // Replace the emission code within selection routines with calls to the
3615 // emission functions.
3616 CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode;
3617 GeneratedCode.push_back(std::make_pair(false, CallerCode));
3618 }
3619
3620 // Print function.
3621 std::string OpVTStr;
3622 if (OpVT == MVT::iPTR) {
3623 OpVTStr = "_iPTR";
3624 } else if (OpVT == MVT::isVoid) {
3625 // Nodes with a void result actually have a first result type of either
3626 // Other (a chain) or Flag. Since there is no one-to-one mapping from
3627 // void to this case, we handle it specially here.
3628 } else {
3629 OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::'
3630 }
3631 std::map<std::string, std::vector<std::string> >::iterator OpVTI =
3632 OpcodeVTMap.find(OpName);
3633 if (OpVTI == OpcodeVTMap.end()) {
3634 std::vector<std::string> VTSet;
3635 VTSet.push_back(OpVTStr);
3636 OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
3637 } else
3638 OpVTI->second.push_back(OpVTStr);
3639
3640 OS << "SDNode *Select_" << getLegalCName(OpName)
3641 << OpVTStr << "(const SDOperand &N) {\n";
3642
3643 // Loop through and reverse all of the CodeList vectors, as we will be
3644 // accessing them from their logical front, but accessing the end of a
3645 // vector is more efficient.
3646 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
3647 CodeList &GeneratedCode = CodeForPatterns[i].second;
3648 std::reverse(GeneratedCode.begin(), GeneratedCode.end());
3649 }
3650
3651 // Next, reverse the list of patterns itself for the same reason.
3652 std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
3653
3654 // Emit all of the patterns now, grouped together to share code.
3655 EmitPatterns(CodeForPatterns, 2, OS);
3656
3657 // If the last pattern has predicates (which could fail) emit code to
3658 // catch the case where nothing handles a pattern.
3659 if (mightNotMatch) {
3660 OS << " cerr << \"Cannot yet select: \";\n";
3661 if (OpName != "ISD::INTRINSIC_W_CHAIN" &&
3662 OpName != "ISD::INTRINSIC_WO_CHAIN" &&
3663 OpName != "ISD::INTRINSIC_VOID") {
3664 OS << " N.Val->dump(CurDAG);\n";
3665 } else {
3666 OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
3667 "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
3668 << " cerr << \"intrinsic %\"<< "
3669 "Intrinsic::getName((Intrinsic::ID)iid);\n";
3670 }
3671 OS << " cerr << '\\n';\n"
3672 << " abort();\n"
3673 << " return NULL;\n";
3674 }
3675 OS << "}\n\n";
3676 }
3677 }
3678
3679 // Emit boilerplate.
3680 OS << "SDNode *Select_INLINEASM(SDOperand N) {\n"
3681 << " std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n"
3682 << " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n\n"
3683
3684 << " // Ensure that the asm operands are themselves selected.\n"
3685 << " for (unsigned j = 0, e = Ops.size(); j != e; ++j)\n"
3686 << " AddToISelQueue(Ops[j]);\n\n"
3687
3688 << " std::vector<MVT::ValueType> VTs;\n"
3689 << " VTs.push_back(MVT::Other);\n"
3690 << " VTs.push_back(MVT::Flag);\n"
3691 << " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], "
3692 "Ops.size());\n"
3693 << " return New.Val;\n"
3694 << "}\n\n";
3695
3696 OS << "SDNode *Select_LABEL(const SDOperand &N) {\n"
3697 << " SDOperand Chain = N.getOperand(0);\n"
3698 << " SDOperand N1 = N.getOperand(1);\n"
3699 << " unsigned C = cast<ConstantSDNode>(N1)->getValue();\n"
3700 << " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
3701 << " AddToISelQueue(Chain);\n"
3702 << " return CurDAG->getTargetNode(TargetInstrInfo::LABEL,\n"
3703 << " MVT::Other, Tmp, Chain);\n"
3704 << "}\n\n";
3705
Christopher Lamb071a2a72007-07-26 07:48:21 +00003706 OS << "SDNode *Select_EXTRACT_SUBREG(const SDOperand &N) {\n"
3707 << " SDOperand N0 = N.getOperand(0);\n"
3708 << " SDOperand N1 = N.getOperand(1);\n"
3709 << " unsigned C = cast<ConstantSDNode>(N1)->getValue();\n"
3710 << " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
3711 << " AddToISelQueue(N0);\n"
3712 << " return CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,\n"
3713 << " N.getValueType(), N0, Tmp);\n"
3714 << "}\n\n";
3715
3716 OS << "SDNode *Select_INSERT_SUBREG(const SDOperand &N) {\n"
3717 << " SDOperand N0 = N.getOperand(0);\n"
3718 << " SDOperand N1 = N.getOperand(1);\n"
3719 << " SDOperand N2 = N.getOperand(2);\n"
3720 << " unsigned C = cast<ConstantSDNode>(N2)->getValue();\n"
3721 << " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
3722 << " AddToISelQueue(N1);\n"
3723 << " if (N0.getOpcode() == ISD::UNDEF) {\n"
3724 << " return CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,\n"
3725 << " N.getValueType(), N1, Tmp);\n"
3726 << " } else {\n"
3727 << " AddToISelQueue(N0);\n"
3728 << " return CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,\n"
3729 << " N.getValueType(), N0, N1, Tmp);\n"
3730 << " }\n"
3731 << "}\n\n";
3732
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003733 OS << "// The main instruction selector code.\n"
3734 << "SDNode *SelectCode(SDOperand N) {\n"
3735 << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
3736 << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS
3737 << "INSTRUCTION_LIST_END)) {\n"
3738 << " return NULL; // Already selected.\n"
3739 << " }\n\n"
3740 << " MVT::ValueType NVT = N.Val->getValueType(0);\n"
3741 << " switch (N.getOpcode()) {\n"
3742 << " default: break;\n"
3743 << " case ISD::EntryToken: // These leaves remain the same.\n"
3744 << " case ISD::BasicBlock:\n"
3745 << " case ISD::Register:\n"
3746 << " case ISD::HANDLENODE:\n"
3747 << " case ISD::TargetConstant:\n"
3748 << " case ISD::TargetConstantPool:\n"
3749 << " case ISD::TargetFrameIndex:\n"
3750 << " case ISD::TargetExternalSymbol:\n"
3751 << " case ISD::TargetJumpTable:\n"
3752 << " case ISD::TargetGlobalTLSAddress:\n"
3753 << " case ISD::TargetGlobalAddress: {\n"
3754 << " return NULL;\n"
3755 << " }\n"
3756 << " case ISD::AssertSext:\n"
3757 << " case ISD::AssertZext: {\n"
3758 << " AddToISelQueue(N.getOperand(0));\n"
3759 << " ReplaceUses(N, N.getOperand(0));\n"
3760 << " return NULL;\n"
3761 << " }\n"
3762 << " case ISD::TokenFactor:\n"
3763 << " case ISD::CopyFromReg:\n"
3764 << " case ISD::CopyToReg: {\n"
3765 << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n"
3766 << " AddToISelQueue(N.getOperand(i));\n"
3767 << " return NULL;\n"
3768 << " }\n"
3769 << " case ISD::INLINEASM: return Select_INLINEASM(N);\n"
Christopher Lamb071a2a72007-07-26 07:48:21 +00003770 << " case ISD::LABEL: return Select_LABEL(N);\n"
3771 << " case ISD::EXTRACT_SUBREG: return Select_EXTRACT_SUBREG(N);\n"
3772 << " case ISD::INSERT_SUBREG: return Select_INSERT_SUBREG(N);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003773
3774
3775 // Loop over all of the case statements, emiting a call to each method we
3776 // emitted above.
3777 for (std::map<std::string, std::vector<PatternToMatch*> >::iterator
3778 PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
3779 PBOI != E; ++PBOI) {
3780 const std::string &OpName = PBOI->first;
3781 // Potentially multiple versions of select for this opcode. One for each
3782 // ValueType of the node (or its first true operand if it doesn't produce a
3783 // result.
3784 std::map<std::string, std::vector<std::string> >::iterator OpVTI =
3785 OpcodeVTMap.find(OpName);
3786 std::vector<std::string> &OpVTs = OpVTI->second;
3787 OS << " case " << OpName << ": {\n";
Evan Chengb8b6b182007-09-04 20:18:28 +00003788 // Keep track of whether we see a pattern that has an iPtr result.
3789 bool HasPtrPattern = false;
3790 bool HasDefaultPattern = false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003791
Evan Chengb8b6b182007-09-04 20:18:28 +00003792 OS << " switch (NVT) {\n";
3793 for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
3794 std::string &VTStr = OpVTs[i];
3795 if (VTStr.empty()) {
3796 HasDefaultPattern = true;
3797 continue;
3798 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003799
Evan Chengb8b6b182007-09-04 20:18:28 +00003800 // If this is a match on iPTR: don't emit it directly, we need special
3801 // code.
3802 if (VTStr == "_iPTR") {
3803 HasPtrPattern = true;
3804 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003805 }
Evan Chengb8b6b182007-09-04 20:18:28 +00003806 OS << " case MVT::" << VTStr.substr(1) << ":\n"
3807 << " return Select_" << getLegalCName(OpName)
3808 << VTStr << "(N);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003809 }
Evan Chengb8b6b182007-09-04 20:18:28 +00003810 OS << " default:\n";
3811
3812 // If there is an iPTR result version of this pattern, emit it here.
3813 if (HasPtrPattern) {
3814 OS << " if (NVT == TLI.getPointerTy())\n";
3815 OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n";
3816 }
3817 if (HasDefaultPattern) {
3818 OS << " return Select_" << getLegalCName(OpName) << "(N);\n";
3819 }
3820 OS << " break;\n";
3821 OS << " }\n";
3822 OS << " break;\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003823 OS << " }\n";
3824 }
3825
3826 OS << " } // end of big switch.\n\n"
3827 << " cerr << \"Cannot yet select: \";\n"
3828 << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
3829 << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
3830 << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
3831 << " N.Val->dump(CurDAG);\n"
3832 << " } else {\n"
3833 << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
3834 "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
3835 << " cerr << \"intrinsic %\"<< "
3836 "Intrinsic::getName((Intrinsic::ID)iid);\n"
3837 << " }\n"
3838 << " cerr << '\\n';\n"
3839 << " abort();\n"
3840 << " return NULL;\n"
3841 << "}\n";
3842}
3843
3844void DAGISelEmitter::run(std::ostream &OS) {
3845 EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() +
3846 " target", OS);
3847
3848 OS << "// *** NOTE: This file is #included into the middle of the target\n"
3849 << "// *** instruction selector class. These functions are really "
3850 << "methods.\n\n";
3851
3852 OS << "#include \"llvm/Support/Compiler.h\"\n";
3853
3854 OS << "// Instruction selector priority queue:\n"
3855 << "std::vector<SDNode*> ISelQueue;\n";
3856 OS << "/// Keep track of nodes which have already been added to queue.\n"
3857 << "unsigned char *ISelQueued;\n";
3858 OS << "/// Keep track of nodes which have already been selected.\n"
3859 << "unsigned char *ISelSelected;\n";
3860 OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n"
3861 << "std::vector<SDNode*> ISelKilled;\n\n";
3862
3863 OS << "/// IsChainCompatible - Returns true if Chain is Op or Chain does\n";
3864 OS << "/// not reach Op.\n";
3865 OS << "static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {\n";
3866 OS << " if (Chain->getOpcode() == ISD::EntryToken)\n";
3867 OS << " return true;\n";
3868 OS << " else if (Chain->getOpcode() == ISD::TokenFactor)\n";
3869 OS << " return false;\n";
3870 OS << " else if (Chain->getNumOperands() > 0) {\n";
3871 OS << " SDOperand C0 = Chain->getOperand(0);\n";
3872 OS << " if (C0.getValueType() == MVT::Other)\n";
3873 OS << " return C0.Val != Op && IsChainCompatible(C0.Val, Op);\n";
3874 OS << " }\n";
3875 OS << " return true;\n";
3876 OS << "}\n";
3877
3878 OS << "/// Sorting functions for the selection queue.\n"
3879 << "struct isel_sort : public std::binary_function"
3880 << "<SDNode*, SDNode*, bool> {\n"
3881 << " bool operator()(const SDNode* left, const SDNode* right) "
3882 << "const {\n"
3883 << " return (left->getNodeId() > right->getNodeId());\n"
3884 << " }\n"
3885 << "};\n\n";
3886
3887 OS << "inline void setQueued(int Id) {\n";
3888 OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n";
3889 OS << "}\n";
3890 OS << "inline bool isQueued(int Id) {\n";
3891 OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n";
3892 OS << "}\n";
3893 OS << "inline void setSelected(int Id) {\n";
3894 OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n";
3895 OS << "}\n";
3896 OS << "inline bool isSelected(int Id) {\n";
3897 OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n";
3898 OS << "}\n\n";
3899
3900 OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n";
3901 OS << " int Id = N.Val->getNodeId();\n";
3902 OS << " if (Id != -1 && !isQueued(Id)) {\n";
3903 OS << " ISelQueue.push_back(N.Val);\n";
3904 OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
3905 OS << " setQueued(Id);\n";
3906 OS << " }\n";
3907 OS << "}\n\n";
3908
3909 OS << "inline void RemoveKilled() {\n";
3910OS << " unsigned NumKilled = ISelKilled.size();\n";
3911 OS << " if (NumKilled) {\n";
3912 OS << " for (unsigned i = 0; i != NumKilled; ++i) {\n";
3913 OS << " SDNode *Temp = ISelKilled[i];\n";
3914 OS << " ISelQueue.erase(std::remove(ISelQueue.begin(), ISelQueue.end(), "
3915 << "Temp), ISelQueue.end());\n";
3916 OS << " };\n";
3917 OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
3918 OS << " ISelKilled.clear();\n";
3919 OS << " }\n";
3920 OS << "}\n\n";
3921
3922 OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n";
3923 OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n";
3924 OS << " setSelected(F.Val->getNodeId());\n";
3925 OS << " RemoveKilled();\n";
3926 OS << "}\n";
3927 OS << "inline void ReplaceUses(SDNode *F, SDNode *T) {\n";
3928 OS << " CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n";
3929 OS << " setSelected(F->getNodeId());\n";
3930 OS << " RemoveKilled();\n";
3931 OS << "}\n\n";
3932
3933 OS << "// SelectRoot - Top level entry to DAG isel.\n";
3934 OS << "SDOperand SelectRoot(SDOperand Root) {\n";
3935 OS << " SelectRootInit();\n";
3936 OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n";
3937 OS << " ISelQueued = new unsigned char[NumBytes];\n";
3938 OS << " ISelSelected = new unsigned char[NumBytes];\n";
3939 OS << " memset(ISelQueued, 0, NumBytes);\n";
3940 OS << " memset(ISelSelected, 0, NumBytes);\n";
3941 OS << "\n";
3942 OS << " // Create a dummy node (which is not added to allnodes), that adds\n"
3943 << " // a reference to the root node, preventing it from being deleted,\n"
3944 << " // and tracking any changes of the root.\n"
3945 << " HandleSDNode Dummy(CurDAG->getRoot());\n"
3946 << " ISelQueue.push_back(CurDAG->getRoot().Val);\n";
3947 OS << " while (!ISelQueue.empty()) {\n";
3948 OS << " SDNode *Node = ISelQueue.front();\n";
3949 OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
3950 OS << " ISelQueue.pop_back();\n";
3951 OS << " if (!isSelected(Node->getNodeId())) {\n";
3952 OS << " SDNode *ResNode = Select(SDOperand(Node, 0));\n";
3953 OS << " if (ResNode != Node) {\n";
3954 OS << " if (ResNode)\n";
3955 OS << " ReplaceUses(Node, ResNode);\n";
3956 OS << " if (Node->use_empty()) { // Don't delete EntryToken, etc.\n";
3957 OS << " CurDAG->RemoveDeadNode(Node, ISelKilled);\n";
3958 OS << " RemoveKilled();\n";
3959 OS << " }\n";
3960 OS << " }\n";
3961 OS << " }\n";
3962 OS << " }\n";
3963 OS << "\n";
3964 OS << " delete[] ISelQueued;\n";
3965 OS << " ISelQueued = NULL;\n";
3966 OS << " delete[] ISelSelected;\n";
3967 OS << " ISelSelected = NULL;\n";
3968 OS << " return Dummy.getValue();\n";
3969 OS << "}\n";
3970
3971 Intrinsics = LoadIntrinsics(Records);
3972 ParseNodeInfo();
3973 ParseNodeTransforms(OS);
3974 ParseComplexPatterns();
3975 ParsePatternFragments(OS);
3976 ParseDefaultOperands();
3977 ParseInstructions();
3978 ParsePatterns();
3979
3980 // Generate variants. For example, commutative patterns can match
3981 // multiple ways. Add them to PatternsToMatch as well.
3982 GenerateVariants();
3983
3984 DOUT << "\n\nALL PATTERNS TO MATCH:\n\n";
3985 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3986 DOUT << "PATTERN: "; DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
3987 DOUT << "\nRESULT: "; DEBUG(PatternsToMatch[i].getDstPattern()->dump());
3988 DOUT << "\n";
3989 }
3990
3991 // At this point, we have full information about the 'Patterns' we need to
3992 // parse, both implicitly from instructions as well as from explicit pattern
3993 // definitions. Emit the resultant instruction selector.
3994 EmitInstructionSelector(OS);
3995
3996 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
3997 E = PatternFragments.end(); I != E; ++I)
3998 delete I->second;
3999 PatternFragments.clear();
4000
4001 Instructions.clear();
4002}