blob: 9a93adf2e7f74fc4c26cdd2e4fe21cf046727567 [file] [log] [blame]
Chris Lattnerf6e5233f2003-09-10 05:08:19 +00001//===- InductionVariable.cpp - Induction variable classification ----------===//
Chris Lattner0bbe58f2001-11-26 18:41:20 +00002//
Chris Lattnerf6e5233f2003-09-10 05:08:19 +00003// This file implements identification and classification of induction
4// variables. Induction variables must contain a PHI node that exists in a
5// loop header. Because of this, they are identified an managed by this PHI
6// node.
Chris Lattner0bbe58f2001-11-26 18:41:20 +00007//
8// Induction variables are classified into a type. Knowing that an induction
9// variable is of a specific type can constrain the values of the start and
10// step. For example, a SimpleLinear induction variable must have a start and
11// step values that are constants.
12//
13// Induction variables can be created with or without loop information. If no
14// loop information is available, induction variables cannot be recognized to be
15// more than SimpleLinear variables.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/InductionVariable.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/Analysis/Expressions.h"
Misha Brukmana2722902002-10-11 05:34:32 +000022#include "llvm/BasicBlock.h"
Chris Lattner7061dc52001-12-03 18:02:31 +000023#include "llvm/iPHINode.h"
Misha Brukmana2722902002-10-11 05:34:32 +000024#include "llvm/iOperators.h"
25#include "llvm/iTerminators.h"
Chris Lattner0bbe58f2001-11-26 18:41:20 +000026#include "llvm/Type.h"
Chris Lattner31bcdb82002-04-28 19:55:58 +000027#include "llvm/Constants.h"
Misha Brukmana2722902002-10-11 05:34:32 +000028#include "llvm/Support/CFG.h"
Chris Lattnera59cbb22002-07-27 01:12:17 +000029#include "llvm/Assembly/Writer.h"
Chris Lattner6806f562003-08-01 22:15:03 +000030#include "Support/Debug.h"
Chris Lattner0bbe58f2001-11-26 18:41:20 +000031
Chris Lattner1b7f7dc2002-04-28 16:21:30 +000032static bool isLoopInvariant(const Value *V, const Loop *L) {
Chris Lattner36836a62003-09-10 04:49:10 +000033 if (const Instruction *I = dyn_cast<Instruction>(V))
34 return !L->contains(I->getParent());
35 // non-instructions all dominate instructions/blocks
36 return true;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000037}
38
39enum InductionVariable::iType
40InductionVariable::Classify(const Value *Start, const Value *Step,
Misha Brukmana2722902002-10-11 05:34:32 +000041 const Loop *L) {
Chris Lattner0bbe58f2001-11-26 18:41:20 +000042 // Check for cannonical and simple linear expressions now...
Chris Lattner7e708292002-06-25 16:13:24 +000043 if (const ConstantInt *CStart = dyn_cast<ConstantInt>(Start))
44 if (const ConstantInt *CStep = dyn_cast<ConstantInt>(Step)) {
Chris Lattner36836a62003-09-10 04:49:10 +000045 if (CStart->isNullValue() && CStep->equalsInt(1))
Misha Brukmana2722902002-10-11 05:34:32 +000046 return Cannonical;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000047 else
Misha Brukmana2722902002-10-11 05:34:32 +000048 return SimpleLinear;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000049 }
50
51 // Without loop information, we cannot do any better, so bail now...
52 if (L == 0) return Unknown;
53
54 if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L))
55 return Linear;
56 return Unknown;
57}
58
59// Create an induction variable for the specified value. If it is a PHI, and
60// if it's recognizable, classify it and fill in instance variables.
61//
Misha Brukmana2722902002-10-11 05:34:32 +000062InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo): End(0) {
Chris Lattner0bbe58f2001-11-26 18:41:20 +000063 InductionType = Unknown; // Assume the worst
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000064 Phi = P;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000065
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000066 // If the PHI node has more than two predecessors, we don't know how to
Chris Lattner0bbe58f2001-11-26 18:41:20 +000067 // handle it.
68 //
Chris Lattnerdf89f6e2001-12-03 17:27:42 +000069 if (Phi->getNumIncomingValues() != 2) return;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000070
Chris Lattner6de230a2001-12-05 06:32:30 +000071 // FIXME: Handle FP induction variables.
72 if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy)
73 return;
74
Chris Lattner0bbe58f2001-11-26 18:41:20 +000075 // If we have loop information, make sure that this PHI node is in the header
76 // of a loop...
77 //
Chris Lattner1b7f7dc2002-04-28 16:21:30 +000078 const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
Chris Lattner0bbe58f2001-11-26 18:41:20 +000079 if (L && L->getHeader() != Phi->getParent())
80 return;
81
82 Value *V1 = Phi->getIncomingValue(0);
83 Value *V2 = Phi->getIncomingValue(1);
84
85 if (L == 0) { // No loop information? Base everything on expression analysis
Chris Lattnerc74cb862002-08-30 22:53:53 +000086 ExprType E1 = ClassifyExpression(V1);
87 ExprType E2 = ClassifyExpression(V2);
Chris Lattner0bbe58f2001-11-26 18:41:20 +000088
89 if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression
Chris Lattner697954c2002-01-20 22:54:45 +000090 std::swap(E1, E2);
Chris Lattner0bbe58f2001-11-26 18:41:20 +000091
92 // E1 must be a constant incoming value, and E2 must be a linear expression
93 // with respect to the PHI node.
94 //
95 if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear ||
Misha Brukmana2722902002-10-11 05:34:32 +000096 E2.Var != Phi)
Chris Lattner0bbe58f2001-11-26 18:41:20 +000097 return;
98
99 // Okay, we have found an induction variable. Save the start and step values
100 const Type *ETy = Phi->getType();
Chris Lattner9b625032002-05-06 16:15:30 +0000101 if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000102
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000103 Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0));
104 Step = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0));
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000105 } else {
106 // Okay, at this point, we know that we have loop information...
107
108 // Make sure that V1 is the incoming value, and V2 is from the backedge of
109 // the loop.
110 if (L->contains(Phi->getIncomingBlock(0))) // Wrong order. Swap now.
Chris Lattner697954c2002-01-20 22:54:45 +0000111 std::swap(V1, V2);
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000112
113 Start = V1; // We know that Start has to be loop invariant...
114 Step = 0;
115
116 if (V2 == Phi) { // referencing the PHI directly? Must have zero step
Chris Lattner1a18b7c2002-04-27 02:25:14 +0000117 Step = Constant::getNullValue(Phi->getType());
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000118 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) {
119 // TODO: This could be much better...
120 if (I->getOpcode() == Instruction::Add) {
Misha Brukmana2722902002-10-11 05:34:32 +0000121 if (I->getOperand(0) == Phi)
122 Step = I->getOperand(1);
123 else if (I->getOperand(1) == Phi)
124 Step = I->getOperand(0);
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000125 }
126 }
127
128 if (Step == 0) { // Unrecognized step value...
Chris Lattnerc74cb862002-08-30 22:53:53 +0000129 ExprType StepE = ClassifyExpression(V2);
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000130 if (StepE.ExprTy != ExprType::Linear ||
Misha Brukmana2722902002-10-11 05:34:32 +0000131 StepE.Var != Phi) return;
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000132
133 const Type *ETy = Phi->getType();
Chris Lattner9b625032002-05-06 16:15:30 +0000134 if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000135 Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0));
Chris Lattner621c9922001-12-04 08:12:47 +0000136 } else { // We were able to get a step value, simplify with expr analysis
Chris Lattnerc74cb862002-08-30 22:53:53 +0000137 ExprType StepE = ClassifyExpression(Step);
Chris Lattner621c9922001-12-04 08:12:47 +0000138 if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) {
139 // No offset from variable? Grab the variable
140 Step = StepE.Var;
141 } else if (StepE.ExprTy == ExprType::Constant) {
142 if (StepE.Offset)
143 Step = (Value*)StepE.Offset;
144 else
Chris Lattner1a18b7c2002-04-27 02:25:14 +0000145 Step = Constant::getNullValue(Step->getType());
Chris Lattner6de230a2001-12-05 06:32:30 +0000146 const Type *ETy = Phi->getType();
Chris Lattner9b625032002-05-06 16:15:30 +0000147 if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
Chris Lattner6de230a2001-12-05 06:32:30 +0000148 Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0));
Chris Lattner621c9922001-12-04 08:12:47 +0000149 }
Chris Lattner0bbe58f2001-11-26 18:41:20 +0000150 }
151 }
152
153 // Classify the induction variable type now...
154 InductionType = InductionVariable::Classify(Start, Step, L);
155}
Chris Lattnera59cbb22002-07-27 01:12:17 +0000156
Misha Brukmana2722902002-10-11 05:34:32 +0000157
158Value* InductionVariable::getExecutionCount(LoopInfo *LoopInfo) {
159 DEBUG(std::cerr << "entering getExecutionCount\n");
160
161 // Don't recompute if already available
162 if (End) {
163 DEBUG(std::cerr << "returning cached End value.\n");
164 return End;
165 }
166
167 const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
168 if (!L) {
169 DEBUG(std::cerr << "null loop. oops\n");
170 return NULL;
171 }
172
173 // >1 backedge => cannot predict number of iterations
174 if (Phi->getNumIncomingValues() != 2) {
175 DEBUG(std::cerr << ">2 incoming values. oops\n");
176 return NULL;
177 }
178
179 // Find final node: predecesor of the loop header that's also an exit
Chris Lattner0006bd72002-11-09 00:49:43 +0000180 BasicBlock *terminator = 0;
Misha Brukmana2722902002-10-11 05:34:32 +0000181 BasicBlock *header = L->getHeader();
182 for (pred_iterator PI = pred_begin(header), PE = pred_end(header);
183 PI != PE; ++PI) {
184 if (L->isLoopExit(*PI)) {
185 terminator = *PI;
186 break;
187 }
188 }
189
190 // Break in the loop => cannot predict number of iterations
191 // break: any block which is an exit node whose successor is not in loop,
192 // and this block is not marked as the terminator
193 //
194 const std::vector<BasicBlock*> &blocks = L->getBlocks();
195 for (std::vector<BasicBlock*>::const_iterator i = blocks.begin(), e = blocks.end();
196 i != e; ++i) {
197 if (L->isLoopExit(*i) && (*i != terminator)) {
198 for (succ_iterator SI = succ_begin(*i), SE = succ_end(*i); SI != SE; ++SI) {
199 if (! L->contains(*SI)) {
200 DEBUG(std::cerr << "break found in loop");
201 return NULL;
202 }
203 }
204 }
205 }
206
207 BranchInst *B = dyn_cast<BranchInst>(terminator->getTerminator());
208 if (!B) {
209 // this really should not happen
210 DEBUG(std::cerr << "no terminator instruction!");
211 return NULL;
212 }
Chris Lattner2ee82e02003-04-23 16:36:11 +0000213 SetCondInst *SCI = dyn_cast<SetCondInst>(B->getCondition());
Misha Brukmana2722902002-10-11 05:34:32 +0000214
215 if (SCI && InductionType == Cannonical) {
216 DEBUG(std::cerr << "sci:" << *SCI);
217 Value *condVal0 = SCI->getOperand(0);
218 Value *condVal1 = SCI->getOperand(1);
219 Value *indVar = 0;
220
221 // the induction variable is the one coming from the backedge
222 if (L->contains(Phi->getIncomingBlock(0))) {
223 indVar = Phi->getIncomingValue(0);
224 } else {
225 indVar = Phi->getIncomingValue(1);
226 }
227
228 // check to see if indVar is one of the parameters in SCI
229 // and if the other is loop-invariant, it is the UB
230 if (indVar == condVal0) {
231 if (isLoopInvariant(condVal1, L)) {
232 End = condVal1;
233 } else {
234 DEBUG(std::cerr << "not loop invariant 1\n");
235 }
236 } else if (indVar == condVal1) {
237 if (isLoopInvariant(condVal0, L)) {
238 End = condVal0;
239 } else {
240 DEBUG(std::cerr << "not loop invariant 0\n");
241 }
242 }
243
244 if (End) {
245 switch (SCI->getOpcode()) {
246 case Instruction::SetLT:
247 case Instruction::SetNE: break; // already done
248 case Instruction::SetLE: {
249 // if compared to a constant int N, then predict N+1 iterations
250 if (ConstantSInt *ubSigned = dyn_cast<ConstantSInt>(End)) {
251 End = ConstantSInt::get(ubSigned->getType(), ubSigned->getValue()+1);
252 DEBUG(std::cerr << "signed int constant\n");
253 } else if (ConstantUInt *ubUnsigned = dyn_cast<ConstantUInt>(End)) {
Chris Lattnerbfcdf142003-07-23 15:17:01 +0000254 End = ConstantUInt::get(ubUnsigned->getType(),
255 ubUnsigned->getValue()+1);
Misha Brukmana2722902002-10-11 05:34:32 +0000256 DEBUG(std::cerr << "unsigned int constant\n");
257 } else {
258 DEBUG(std::cerr << "symbolic bound\n");
259 //End = NULL;
260 // new expression N+1
261 End = BinaryOperator::create(Instruction::Add, End,
Chris Lattnerbfcdf142003-07-23 15:17:01 +0000262 ConstantUInt::get(ubUnsigned->getType(),
263 1));
Misha Brukmana2722902002-10-11 05:34:32 +0000264 }
265 break;
266 }
267 default: End = NULL; // cannot predict
268 }
269 }
270 return End;
271 } else {
272 DEBUG(std::cerr << "SCI null or non-cannonical ind var\n");
273 }
274 return NULL;
275}
276
277
Chris Lattnera59cbb22002-07-27 01:12:17 +0000278void InductionVariable::print(std::ostream &o) const {
279 switch (InductionType) {
280 case InductionVariable::Cannonical: o << "Cannonical "; break;
281 case InductionVariable::SimpleLinear: o << "SimpleLinear "; break;
282 case InductionVariable::Linear: o << "Linear "; break;
283 case InductionVariable::Unknown: o << "Unrecognized "; break;
284 }
Chris Lattner74493a42002-09-10 15:35:39 +0000285 o << "Induction Variable: ";
Chris Lattnera59cbb22002-07-27 01:12:17 +0000286 if (Phi) {
287 WriteAsOperand(o, Phi);
288 o << ":\n" << Phi;
289 } else {
290 o << "\n";
291 }
292 if (InductionType == InductionVariable::Unknown) return;
293
Chris Lattner74493a42002-09-10 15:35:39 +0000294 o << " Start = "; WriteAsOperand(o, Start);
295 o << " Step = " ; WriteAsOperand(o, Step);
Misha Brukmana2722902002-10-11 05:34:32 +0000296 if (End) {
297 o << " End = " ; WriteAsOperand(o, End);
298 }
Chris Lattnera59cbb22002-07-27 01:12:17 +0000299 o << "\n";
300}