blob: 2e79cdf0840477d24c87a886e9184cba34243803 [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 3.3
* Copyright (C) 1995-2000 Brian Paul
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef PC_HEADER
#include "all.h"
#else
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "gluP.h"
#endif
/*
* This code was contributed by Marc Buffat (buffat@mecaflu.ec-lyon.fr).
* Thanks Marc!!!
*/
/* implementation de gluProject et gluUnproject */
/* M. Buffat 17/2/95 */
/*
* Transform a point (column vector) by a 4x4 matrix. I.e. out = m * in
* Input: m - the 4x4 matrix
* in - the 4x1 vector
* Output: out - the resulting 4x1 vector.
*/
static void
transform_point(GLdouble out[4], const GLdouble m[16], const GLdouble in[4])
{
#define M(row,col) m[col*4+row]
out[0] =
M(0, 0) * in[0] + M(0, 1) * in[1] + M(0, 2) * in[2] + M(0, 3) * in[3];
out[1] =
M(1, 0) * in[0] + M(1, 1) * in[1] + M(1, 2) * in[2] + M(1, 3) * in[3];
out[2] =
M(2, 0) * in[0] + M(2, 1) * in[1] + M(2, 2) * in[2] + M(2, 3) * in[3];
out[3] =
M(3, 0) * in[0] + M(3, 1) * in[1] + M(3, 2) * in[2] + M(3, 3) * in[3];
#undef M
}
/*
* Perform a 4x4 matrix multiplication (product = a x b).
* Input: a, b - matrices to multiply
* Output: product - product of a and b
*/
static void
matmul(GLdouble * product, const GLdouble * a, const GLdouble * b)
{
/* This matmul was contributed by Thomas Malik */
GLdouble temp[16];
GLint i;
#define A(row,col) a[(col<<2)+row]
#define B(row,col) b[(col<<2)+row]
#define T(row,col) temp[(col<<2)+row]
/* i-te Zeile */
for (i = 0; i < 4; i++) {
T(i, 0) =
A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i,
3) *
B(3, 0);
T(i, 1) =
A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i,
3) *
B(3, 1);
T(i, 2) =
A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i,
3) *
B(3, 2);
T(i, 3) =
A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i,
3) *
B(3, 3);
}
#undef A
#undef B
#undef T
MEMCPY(product, temp, 16 * sizeof(GLdouble));
}
/*
* Compute inverse of 4x4 transformation matrix.
* Code contributed by Jacques Leroy jle@star.be
* Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
*/
static GLboolean
invert_matrix(const GLdouble * m, GLdouble * out)
{
/* NB. OpenGL Matrices are COLUMN major. */
#define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; }
#define MAT(m,r,c) (m)[(c)*4+(r)]
GLdouble wtmp[4][8];
GLdouble m0, m1, m2, m3, s;
GLdouble *r0, *r1, *r2, *r3;
r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1),
r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3),
r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1),
r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3),
r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1),
r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3),
r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1),
r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3),
r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
/* choose pivot - or die */
if (fabs(r3[0]) > fabs(r2[0]))
SWAP_ROWS(r3, r2);
if (fabs(r2[0]) > fabs(r1[0]))
SWAP_ROWS(r2, r1);
if (fabs(r1[0]) > fabs(r0[0]))
SWAP_ROWS(r1, r0);
if (0.0 == r0[0])
return GL_FALSE;
/* eliminate first variable */
m1 = r1[0] / r0[0];
m2 = r2[0] / r0[0];
m3 = r3[0] / r0[0];
s = r0[1];
r1[1] -= m1 * s;
r2[1] -= m2 * s;
r3[1] -= m3 * s;
s = r0[2];
r1[2] -= m1 * s;
r2[2] -= m2 * s;
r3[2] -= m3 * s;
s = r0[3];
r1[3] -= m1 * s;
r2[3] -= m2 * s;
r3[3] -= m3 * s;
s = r0[4];
if (s != 0.0) {
r1[4] -= m1 * s;
r2[4] -= m2 * s;
r3[4] -= m3 * s;
}
s = r0[5];
if (s != 0.0) {
r1[5] -= m1 * s;
r2[5] -= m2 * s;
r3[5] -= m3 * s;
}
s = r0[6];
if (s != 0.0) {
r1[6] -= m1 * s;
r2[6] -= m2 * s;
r3[6] -= m3 * s;
}
s = r0[7];
if (s != 0.0) {
r1[7] -= m1 * s;
r2[7] -= m2 * s;
r3[7] -= m3 * s;
}
/* choose pivot - or die */
if (fabs(r3[1]) > fabs(r2[1]))
SWAP_ROWS(r3, r2);
if (fabs(r2[1]) > fabs(r1[1]))
SWAP_ROWS(r2, r1);
if (0.0 == r1[1])
return GL_FALSE;
/* eliminate second variable */
m2 = r2[1] / r1[1];
m3 = r3[1] / r1[1];
r2[2] -= m2 * r1[2];
r3[2] -= m3 * r1[2];
r2[3] -= m2 * r1[3];
r3[3] -= m3 * r1[3];
s = r1[4];
if (0.0 != s) {
r2[4] -= m2 * s;
r3[4] -= m3 * s;
}
s = r1[5];
if (0.0 != s) {
r2[5] -= m2 * s;
r3[5] -= m3 * s;
}
s = r1[6];
if (0.0 != s) {
r2[6] -= m2 * s;
r3[6] -= m3 * s;
}
s = r1[7];
if (0.0 != s) {
r2[7] -= m2 * s;
r3[7] -= m3 * s;
}
/* choose pivot - or die */
if (fabs(r3[2]) > fabs(r2[2]))
SWAP_ROWS(r3, r2);
if (0.0 == r2[2])
return GL_FALSE;
/* eliminate third variable */
m3 = r3[2] / r2[2];
r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7];
/* last check */
if (0.0 == r3[3])
return GL_FALSE;
s = 1.0 / r3[3]; /* now back substitute row 3 */
r3[4] *= s;
r3[5] *= s;
r3[6] *= s;
r3[7] *= s;
m2 = r2[3]; /* now back substitute row 2 */
s = 1.0 / r2[2];
r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
m1 = r1[3];
r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
m0 = r0[3];
r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
m1 = r1[2]; /* now back substitute row 1 */
s = 1.0 / r1[1];
r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
m0 = r0[2];
r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
m0 = r0[1]; /* now back substitute row 0 */
s = 1.0 / r0[0];
r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
MAT(out, 0, 0) = r0[4];
MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6];
MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4];
MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6];
MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4];
MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6];
MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4];
MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6];
MAT(out, 3, 3) = r3[7];
return GL_TRUE;
#undef MAT
#undef SWAP_ROWS
}
/* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */
GLint GLAPIENTRY
gluProject(GLdouble objx, GLdouble objy, GLdouble objz,
const GLdouble model[16], const GLdouble proj[16],
const GLint viewport[4],
GLdouble * winx, GLdouble * winy, GLdouble * winz)
{
/* matrice de transformation */
GLdouble in[4], out[4];
/* initilise la matrice et le vecteur a transformer */
in[0] = objx;
in[1] = objy;
in[2] = objz;
in[3] = 1.0;
transform_point(out, model, in);
transform_point(in, proj, out);
/* d'ou le resultat normalise entre -1 et 1 */
if (in[3] == 0.0)
return GL_FALSE;
in[0] /= in[3];
in[1] /= in[3];
in[2] /= in[3];
/* en coordonnees ecran */
*winx = viewport[0] + (1 + in[0]) * viewport[2] / 2;
*winy = viewport[1] + (1 + in[1]) * viewport[3] / 2;
/* entre 0 et 1 suivant z */
*winz = (1 + in[2]) / 2;
return GL_TRUE;
}
/* transformation du point ecran (winx,winy,winz) en point objet */
GLint GLAPIENTRY
gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz,
const GLdouble model[16], const GLdouble proj[16],
const GLint viewport[4],
GLdouble * objx, GLdouble * objy, GLdouble * objz)
{
/* matrice de transformation */
GLdouble m[16], A[16];
GLdouble in[4], out[4];
/* transformation coordonnees normalisees entre -1 et 1 */
in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0;
in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0;
in[2] = 2 * winz - 1.0;
in[3] = 1.0;
/* calcul transformation inverse */
matmul(A, proj, model);
if (!invert_matrix(A, m))
return GL_FALSE;
/* d'ou les coordonnees objets */
transform_point(out, m, in);
if (out[3] == 0.0)
return GL_FALSE;
*objx = out[0] / out[3];
*objy = out[1] / out[3];
*objz = out[2] / out[3];
return GL_TRUE;
}
/*
* New in GLU 1.3
* This is like gluUnProject but also takes near and far DepthRange values.
*/
#ifdef GLU_VERSION_1_3
GLint GLAPIENTRY
gluUnProject4(GLdouble winx, GLdouble winy, GLdouble winz, GLdouble clipw,
const GLdouble modelMatrix[16],
const GLdouble projMatrix[16],
const GLint viewport[4],
GLclampd nearZ, GLclampd farZ,
GLdouble * objx, GLdouble * objy, GLdouble * objz,
GLdouble * objw)
{
/* matrice de transformation */
GLdouble m[16], A[16];
GLdouble in[4], out[4];
GLdouble z = nearZ + winz * (farZ - nearZ);
/* transformation coordonnees normalisees entre -1 et 1 */
in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0;
in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0;
in[2] = 2.0 * z - 1.0;
in[3] = clipw;
/* calcul transformation inverse */
matmul(A, projMatrix, modelMatrix);
if (!invert_matrix(A, m))
return GL_FALSE;
/* d'ou les coordonnees objets */
transform_point(out, m, in);
if (out[3] == 0.0)
return GL_FALSE;
*objx = out[0] / out[3];
*objy = out[1] / out[3];
*objz = out[2] / out[3];
*objw = out[3];
return GL_TRUE;
}
#endif