| |
| /* |
| * Mesa 3-D graphics library |
| * Version: 3.3 |
| * Copyright (C) 1995-2000 Brian Paul |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public |
| * License along with this library; if not, write to the Free |
| * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| |
| #ifdef PC_HEADER |
| #include "all.h" |
| #else |
| #include <stdio.h> |
| #include <string.h> |
| #include <math.h> |
| #include "gluP.h" |
| #endif |
| |
| |
| /* |
| * This code was contributed by Marc Buffat (buffat@mecaflu.ec-lyon.fr). |
| * Thanks Marc!!! |
| */ |
| |
| |
| |
| /* implementation de gluProject et gluUnproject */ |
| /* M. Buffat 17/2/95 */ |
| |
| |
| |
| /* |
| * Transform a point (column vector) by a 4x4 matrix. I.e. out = m * in |
| * Input: m - the 4x4 matrix |
| * in - the 4x1 vector |
| * Output: out - the resulting 4x1 vector. |
| */ |
| static void |
| transform_point(GLdouble out[4], const GLdouble m[16], const GLdouble in[4]) |
| { |
| #define M(row,col) m[col*4+row] |
| out[0] = |
| M(0, 0) * in[0] + M(0, 1) * in[1] + M(0, 2) * in[2] + M(0, 3) * in[3]; |
| out[1] = |
| M(1, 0) * in[0] + M(1, 1) * in[1] + M(1, 2) * in[2] + M(1, 3) * in[3]; |
| out[2] = |
| M(2, 0) * in[0] + M(2, 1) * in[1] + M(2, 2) * in[2] + M(2, 3) * in[3]; |
| out[3] = |
| M(3, 0) * in[0] + M(3, 1) * in[1] + M(3, 2) * in[2] + M(3, 3) * in[3]; |
| #undef M |
| } |
| |
| |
| |
| |
| /* |
| * Perform a 4x4 matrix multiplication (product = a x b). |
| * Input: a, b - matrices to multiply |
| * Output: product - product of a and b |
| */ |
| static void |
| matmul(GLdouble * product, const GLdouble * a, const GLdouble * b) |
| { |
| /* This matmul was contributed by Thomas Malik */ |
| GLdouble temp[16]; |
| GLint i; |
| |
| #define A(row,col) a[(col<<2)+row] |
| #define B(row,col) b[(col<<2)+row] |
| #define T(row,col) temp[(col<<2)+row] |
| |
| /* i-te Zeile */ |
| for (i = 0; i < 4; i++) { |
| T(i, 0) = |
| A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i, |
| 3) * |
| B(3, 0); |
| T(i, 1) = |
| A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i, |
| 3) * |
| B(3, 1); |
| T(i, 2) = |
| A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i, |
| 3) * |
| B(3, 2); |
| T(i, 3) = |
| A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i, |
| 3) * |
| B(3, 3); |
| } |
| |
| #undef A |
| #undef B |
| #undef T |
| MEMCPY(product, temp, 16 * sizeof(GLdouble)); |
| } |
| |
| |
| |
| /* |
| * Compute inverse of 4x4 transformation matrix. |
| * Code contributed by Jacques Leroy jle@star.be |
| * Return GL_TRUE for success, GL_FALSE for failure (singular matrix) |
| */ |
| static GLboolean |
| invert_matrix(const GLdouble * m, GLdouble * out) |
| { |
| /* NB. OpenGL Matrices are COLUMN major. */ |
| #define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; } |
| #define MAT(m,r,c) (m)[(c)*4+(r)] |
| |
| GLdouble wtmp[4][8]; |
| GLdouble m0, m1, m2, m3, s; |
| GLdouble *r0, *r1, *r2, *r3; |
| |
| r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; |
| |
| r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1), |
| r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3), |
| r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, |
| r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1), |
| r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3), |
| r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, |
| r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1), |
| r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3), |
| r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, |
| r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1), |
| r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3), |
| r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; |
| |
| /* choose pivot - or die */ |
| if (fabs(r3[0]) > fabs(r2[0])) |
| SWAP_ROWS(r3, r2); |
| if (fabs(r2[0]) > fabs(r1[0])) |
| SWAP_ROWS(r2, r1); |
| if (fabs(r1[0]) > fabs(r0[0])) |
| SWAP_ROWS(r1, r0); |
| if (0.0 == r0[0]) |
| return GL_FALSE; |
| |
| /* eliminate first variable */ |
| m1 = r1[0] / r0[0]; |
| m2 = r2[0] / r0[0]; |
| m3 = r3[0] / r0[0]; |
| s = r0[1]; |
| r1[1] -= m1 * s; |
| r2[1] -= m2 * s; |
| r3[1] -= m3 * s; |
| s = r0[2]; |
| r1[2] -= m1 * s; |
| r2[2] -= m2 * s; |
| r3[2] -= m3 * s; |
| s = r0[3]; |
| r1[3] -= m1 * s; |
| r2[3] -= m2 * s; |
| r3[3] -= m3 * s; |
| s = r0[4]; |
| if (s != 0.0) { |
| r1[4] -= m1 * s; |
| r2[4] -= m2 * s; |
| r3[4] -= m3 * s; |
| } |
| s = r0[5]; |
| if (s != 0.0) { |
| r1[5] -= m1 * s; |
| r2[5] -= m2 * s; |
| r3[5] -= m3 * s; |
| } |
| s = r0[6]; |
| if (s != 0.0) { |
| r1[6] -= m1 * s; |
| r2[6] -= m2 * s; |
| r3[6] -= m3 * s; |
| } |
| s = r0[7]; |
| if (s != 0.0) { |
| r1[7] -= m1 * s; |
| r2[7] -= m2 * s; |
| r3[7] -= m3 * s; |
| } |
| |
| /* choose pivot - or die */ |
| if (fabs(r3[1]) > fabs(r2[1])) |
| SWAP_ROWS(r3, r2); |
| if (fabs(r2[1]) > fabs(r1[1])) |
| SWAP_ROWS(r2, r1); |
| if (0.0 == r1[1]) |
| return GL_FALSE; |
| |
| /* eliminate second variable */ |
| m2 = r2[1] / r1[1]; |
| m3 = r3[1] / r1[1]; |
| r2[2] -= m2 * r1[2]; |
| r3[2] -= m3 * r1[2]; |
| r2[3] -= m2 * r1[3]; |
| r3[3] -= m3 * r1[3]; |
| s = r1[4]; |
| if (0.0 != s) { |
| r2[4] -= m2 * s; |
| r3[4] -= m3 * s; |
| } |
| s = r1[5]; |
| if (0.0 != s) { |
| r2[5] -= m2 * s; |
| r3[5] -= m3 * s; |
| } |
| s = r1[6]; |
| if (0.0 != s) { |
| r2[6] -= m2 * s; |
| r3[6] -= m3 * s; |
| } |
| s = r1[7]; |
| if (0.0 != s) { |
| r2[7] -= m2 * s; |
| r3[7] -= m3 * s; |
| } |
| |
| /* choose pivot - or die */ |
| if (fabs(r3[2]) > fabs(r2[2])) |
| SWAP_ROWS(r3, r2); |
| if (0.0 == r2[2]) |
| return GL_FALSE; |
| |
| /* eliminate third variable */ |
| m3 = r3[2] / r2[2]; |
| r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], |
| r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; |
| |
| /* last check */ |
| if (0.0 == r3[3]) |
| return GL_FALSE; |
| |
| s = 1.0 / r3[3]; /* now back substitute row 3 */ |
| r3[4] *= s; |
| r3[5] *= s; |
| r3[6] *= s; |
| r3[7] *= s; |
| |
| m2 = r2[3]; /* now back substitute row 2 */ |
| s = 1.0 / r2[2]; |
| r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), |
| r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); |
| m1 = r1[3]; |
| r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, |
| r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; |
| m0 = r0[3]; |
| r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, |
| r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; |
| |
| m1 = r1[2]; /* now back substitute row 1 */ |
| s = 1.0 / r1[1]; |
| r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), |
| r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); |
| m0 = r0[2]; |
| r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, |
| r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; |
| |
| m0 = r0[1]; /* now back substitute row 0 */ |
| s = 1.0 / r0[0]; |
| r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), |
| r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); |
| |
| MAT(out, 0, 0) = r0[4]; |
| MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6]; |
| MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4]; |
| MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6]; |
| MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4]; |
| MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6]; |
| MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4]; |
| MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6]; |
| MAT(out, 3, 3) = r3[7]; |
| |
| return GL_TRUE; |
| |
| #undef MAT |
| #undef SWAP_ROWS |
| } |
| |
| |
| |
| /* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */ |
| GLint GLAPIENTRY |
| gluProject(GLdouble objx, GLdouble objy, GLdouble objz, |
| const GLdouble model[16], const GLdouble proj[16], |
| const GLint viewport[4], |
| GLdouble * winx, GLdouble * winy, GLdouble * winz) |
| { |
| /* matrice de transformation */ |
| GLdouble in[4], out[4]; |
| |
| /* initilise la matrice et le vecteur a transformer */ |
| in[0] = objx; |
| in[1] = objy; |
| in[2] = objz; |
| in[3] = 1.0; |
| transform_point(out, model, in); |
| transform_point(in, proj, out); |
| |
| /* d'ou le resultat normalise entre -1 et 1 */ |
| if (in[3] == 0.0) |
| return GL_FALSE; |
| |
| in[0] /= in[3]; |
| in[1] /= in[3]; |
| in[2] /= in[3]; |
| |
| /* en coordonnees ecran */ |
| *winx = viewport[0] + (1 + in[0]) * viewport[2] / 2; |
| *winy = viewport[1] + (1 + in[1]) * viewport[3] / 2; |
| /* entre 0 et 1 suivant z */ |
| *winz = (1 + in[2]) / 2; |
| return GL_TRUE; |
| } |
| |
| |
| |
| /* transformation du point ecran (winx,winy,winz) en point objet */ |
| GLint GLAPIENTRY |
| gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz, |
| const GLdouble model[16], const GLdouble proj[16], |
| const GLint viewport[4], |
| GLdouble * objx, GLdouble * objy, GLdouble * objz) |
| { |
| /* matrice de transformation */ |
| GLdouble m[16], A[16]; |
| GLdouble in[4], out[4]; |
| |
| /* transformation coordonnees normalisees entre -1 et 1 */ |
| in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0; |
| in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0; |
| in[2] = 2 * winz - 1.0; |
| in[3] = 1.0; |
| |
| /* calcul transformation inverse */ |
| matmul(A, proj, model); |
| if (!invert_matrix(A, m)) |
| return GL_FALSE; |
| |
| /* d'ou les coordonnees objets */ |
| transform_point(out, m, in); |
| if (out[3] == 0.0) |
| return GL_FALSE; |
| *objx = out[0] / out[3]; |
| *objy = out[1] / out[3]; |
| *objz = out[2] / out[3]; |
| return GL_TRUE; |
| } |
| |
| |
| /* |
| * New in GLU 1.3 |
| * This is like gluUnProject but also takes near and far DepthRange values. |
| */ |
| #ifdef GLU_VERSION_1_3 |
| GLint GLAPIENTRY |
| gluUnProject4(GLdouble winx, GLdouble winy, GLdouble winz, GLdouble clipw, |
| const GLdouble modelMatrix[16], |
| const GLdouble projMatrix[16], |
| const GLint viewport[4], |
| GLclampd nearZ, GLclampd farZ, |
| GLdouble * objx, GLdouble * objy, GLdouble * objz, |
| GLdouble * objw) |
| { |
| /* matrice de transformation */ |
| GLdouble m[16], A[16]; |
| GLdouble in[4], out[4]; |
| GLdouble z = nearZ + winz * (farZ - nearZ); |
| |
| /* transformation coordonnees normalisees entre -1 et 1 */ |
| in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0; |
| in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0; |
| in[2] = 2.0 * z - 1.0; |
| in[3] = clipw; |
| |
| /* calcul transformation inverse */ |
| matmul(A, projMatrix, modelMatrix); |
| if (!invert_matrix(A, m)) |
| return GL_FALSE; |
| |
| /* d'ou les coordonnees objets */ |
| transform_point(out, m, in); |
| if (out[3] == 0.0) |
| return GL_FALSE; |
| *objx = out[0] / out[3]; |
| *objy = out[1] / out[3]; |
| *objz = out[2] / out[3]; |
| *objw = out[3]; |
| return GL_TRUE; |
| } |
| #endif |