blob: 95f07efca56271a8ce4ce07f8c6b18d3baa6e76c [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 7.3
*
* Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
* Copyright (C) 2008 VMware, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file slang_builtin.c
* Resolve built-in uniform vars.
* \author Brian Paul
*/
#include "main/imports.h"
#include "main/mtypes.h"
#include "program/program.h"
#include "program/prog_instruction.h"
#include "program/prog_parameter.h"
#include "program/prog_statevars.h"
#include "slang/slang_ir.h"
#include "slang/slang_builtin.h"
/** special state token (see below) */
#define STATE_ARRAY ((gl_state_index) 0xfffff)
/**
* Lookup GL state given a variable name, 0, 1 or 2 indexes and a field.
* Allocate room for the state in the given param list and return position
* in the list.
* Yes, this is kind of ugly, but it works.
*/
static GLint
lookup_statevar(const char *var, GLint index1, GLint index2, const char *field,
GLuint *swizzleOut,
struct gl_program_parameter_list *paramList)
{
/*
* NOTE: The ARB_vertex_program extension specified that matrices get
* loaded in registers in row-major order. With GLSL, we want column-
* major order. So, we need to transpose all matrices here...
*/
static const struct {
const char *name;
gl_state_index matrix;
gl_state_index modifier;
} matrices[] = {
{ "gl_ModelViewMatrix", STATE_MODELVIEW_MATRIX, STATE_MATRIX_TRANSPOSE },
{ "gl_ModelViewMatrixInverse", STATE_MODELVIEW_MATRIX, STATE_MATRIX_INVTRANS },
{ "gl_ModelViewMatrixTranspose", STATE_MODELVIEW_MATRIX, 0 },
{ "gl_ModelViewMatrixInverseTranspose", STATE_MODELVIEW_MATRIX, STATE_MATRIX_INVERSE },
{ "gl_ProjectionMatrix", STATE_PROJECTION_MATRIX, STATE_MATRIX_TRANSPOSE },
{ "gl_ProjectionMatrixInverse", STATE_PROJECTION_MATRIX, STATE_MATRIX_INVTRANS },
{ "gl_ProjectionMatrixTranspose", STATE_PROJECTION_MATRIX, 0 },
{ "gl_ProjectionMatrixInverseTranspose", STATE_PROJECTION_MATRIX, STATE_MATRIX_INVERSE },
{ "gl_ModelViewProjectionMatrix", STATE_MVP_MATRIX, STATE_MATRIX_TRANSPOSE },
{ "gl_ModelViewProjectionMatrixInverse", STATE_MVP_MATRIX, STATE_MATRIX_INVTRANS },
{ "gl_ModelViewProjectionMatrixTranspose", STATE_MVP_MATRIX, 0 },
{ "gl_ModelViewProjectionMatrixInverseTranspose", STATE_MVP_MATRIX, STATE_MATRIX_INVERSE },
{ "gl_TextureMatrix", STATE_TEXTURE_MATRIX, STATE_MATRIX_TRANSPOSE },
{ "gl_TextureMatrixInverse", STATE_TEXTURE_MATRIX, STATE_MATRIX_INVTRANS },
{ "gl_TextureMatrixTranspose", STATE_TEXTURE_MATRIX, 0 },
{ "gl_TextureMatrixInverseTranspose", STATE_TEXTURE_MATRIX, STATE_MATRIX_INVERSE },
{ "gl_NormalMatrix", STATE_MODELVIEW_MATRIX, STATE_MATRIX_INVERSE },
{ NULL, 0, 0 }
};
gl_state_index tokens[STATE_LENGTH];
GLuint i;
GLboolean isMatrix = GL_FALSE;
for (i = 0; i < STATE_LENGTH; i++) {
tokens[i] = 0;
}
*swizzleOut = SWIZZLE_NOOP;
/* first, look if var is a pre-defined matrix */
for (i = 0; matrices[i].name; i++) {
if (strcmp(var, matrices[i].name) == 0) {
tokens[0] = matrices[i].matrix;
/* tokens[1], [2] and [3] filled below */
tokens[4] = matrices[i].modifier;
isMatrix = GL_TRUE;
break;
}
}
if (isMatrix) {
if (tokens[0] == STATE_TEXTURE_MATRIX) {
/* texture_matrix[index1][index2] */
tokens[1] = index1 >= 0 ? index1 : 0; /* which texture matrix */
index1 = index2; /* move matrix row value to index1 */
}
if (index1 < 0) {
/* index1 is unused: prevent extra addition at end of function */
index1 = 0;
}
}
else if (strcmp(var, "gl_DepthRange") == 0) {
tokens[0] = STATE_DEPTH_RANGE;
assert(field);
if (strcmp(field, "near") == 0) {
*swizzleOut = SWIZZLE_XXXX;
}
else if (strcmp(field, "far") == 0) {
*swizzleOut = SWIZZLE_YYYY;
}
else if (strcmp(field, "diff") == 0) {
*swizzleOut = SWIZZLE_ZZZZ;
}
else {
return -1;
}
}
else if (strcmp(var, "gl_ClipPlane") == 0) {
if (index1 < 0)
return -1;
tokens[0] = STATE_CLIPPLANE;
tokens[1] = index1;
}
else if (strcmp(var, "gl_Point") == 0) {
assert(field);
if (strcmp(field, "size") == 0) {
tokens[0] = STATE_POINT_SIZE;
*swizzleOut = SWIZZLE_XXXX;
}
else if (strcmp(field, "sizeMin") == 0) {
tokens[0] = STATE_POINT_SIZE;
*swizzleOut = SWIZZLE_YYYY;
}
else if (strcmp(field, "sizeMax") == 0) {
tokens[0] = STATE_POINT_SIZE;
*swizzleOut = SWIZZLE_ZZZZ;
}
else if (strcmp(field, "fadeThresholdSize") == 0) {
tokens[0] = STATE_POINT_SIZE;
*swizzleOut = SWIZZLE_WWWW;
}
else if (strcmp(field, "distanceConstantAttenuation") == 0) {
tokens[0] = STATE_POINT_ATTENUATION;
*swizzleOut = SWIZZLE_XXXX;
}
else if (strcmp(field, "distanceLinearAttenuation") == 0) {
tokens[0] = STATE_POINT_ATTENUATION;
*swizzleOut = SWIZZLE_YYYY;
}
else if (strcmp(field, "distanceQuadraticAttenuation") == 0) {
tokens[0] = STATE_POINT_ATTENUATION;
*swizzleOut = SWIZZLE_ZZZZ;
}
else {
return -1;
}
}
else if (strcmp(var, "gl_FrontMaterial") == 0 ||
strcmp(var, "gl_BackMaterial") == 0) {
tokens[0] = STATE_MATERIAL;
if (strcmp(var, "gl_FrontMaterial") == 0)
tokens[1] = 0;
else
tokens[1] = 1;
assert(field);
if (strcmp(field, "emission") == 0) {
tokens[2] = STATE_EMISSION;
}
else if (strcmp(field, "ambient") == 0) {
tokens[2] = STATE_AMBIENT;
}
else if (strcmp(field, "diffuse") == 0) {
tokens[2] = STATE_DIFFUSE;
}
else if (strcmp(field, "specular") == 0) {
tokens[2] = STATE_SPECULAR;
}
else if (strcmp(field, "shininess") == 0) {
tokens[2] = STATE_SHININESS;
*swizzleOut = SWIZZLE_XXXX;
}
else {
return -1;
}
}
else if (strcmp(var, "gl_LightSource") == 0) {
if (!field || index1 < 0)
return -1;
tokens[0] = STATE_LIGHT;
tokens[1] = index1;
if (strcmp(field, "ambient") == 0) {
tokens[2] = STATE_AMBIENT;
}
else if (strcmp(field, "diffuse") == 0) {
tokens[2] = STATE_DIFFUSE;
}
else if (strcmp(field, "specular") == 0) {
tokens[2] = STATE_SPECULAR;
}
else if (strcmp(field, "position") == 0) {
tokens[2] = STATE_POSITION;
}
else if (strcmp(field, "halfVector") == 0) {
tokens[2] = STATE_HALF_VECTOR;
}
else if (strcmp(field, "spotDirection") == 0) {
tokens[2] = STATE_SPOT_DIRECTION;
}
else if (strcmp(field, "spotCosCutoff") == 0) {
tokens[2] = STATE_SPOT_DIRECTION;
*swizzleOut = SWIZZLE_WWWW;
}
else if (strcmp(field, "spotCutoff") == 0) {
tokens[2] = STATE_SPOT_CUTOFF;
*swizzleOut = SWIZZLE_XXXX;
}
else if (strcmp(field, "spotExponent") == 0) {
tokens[2] = STATE_ATTENUATION;
*swizzleOut = SWIZZLE_WWWW;
}
else if (strcmp(field, "constantAttenuation") == 0) {
tokens[2] = STATE_ATTENUATION;
*swizzleOut = SWIZZLE_XXXX;
}
else if (strcmp(field, "linearAttenuation") == 0) {
tokens[2] = STATE_ATTENUATION;
*swizzleOut = SWIZZLE_YYYY;
}
else if (strcmp(field, "quadraticAttenuation") == 0) {
tokens[2] = STATE_ATTENUATION;
*swizzleOut = SWIZZLE_ZZZZ;
}
else {
return -1;
}
}
else if (strcmp(var, "gl_LightModel") == 0) {
if (strcmp(field, "ambient") == 0) {
tokens[0] = STATE_LIGHTMODEL_AMBIENT;
}
else {
return -1;
}
}
else if (strcmp(var, "gl_FrontLightModelProduct") == 0) {
if (strcmp(field, "sceneColor") == 0) {
tokens[0] = STATE_LIGHTMODEL_SCENECOLOR;
tokens[1] = 0;
}
else {
return -1;
}
}
else if (strcmp(var, "gl_BackLightModelProduct") == 0) {
if (strcmp(field, "sceneColor") == 0) {
tokens[0] = STATE_LIGHTMODEL_SCENECOLOR;
tokens[1] = 1;
}
else {
return -1;
}
}
else if (strcmp(var, "gl_FrontLightProduct") == 0 ||
strcmp(var, "gl_BackLightProduct") == 0) {
if (index1 < 0 || !field)
return -1;
tokens[0] = STATE_LIGHTPROD;
tokens[1] = index1; /* light number */
if (strcmp(var, "gl_FrontLightProduct") == 0) {
tokens[2] = 0; /* front */
}
else {
tokens[2] = 1; /* back */
}
if (strcmp(field, "ambient") == 0) {
tokens[3] = STATE_AMBIENT;
}
else if (strcmp(field, "diffuse") == 0) {
tokens[3] = STATE_DIFFUSE;
}
else if (strcmp(field, "specular") == 0) {
tokens[3] = STATE_SPECULAR;
}
else {
return -1;
}
}
else if (strcmp(var, "gl_TextureEnvColor") == 0) {
if (index1 < 0)
return -1;
tokens[0] = STATE_TEXENV_COLOR;
tokens[1] = index1;
}
else if (strcmp(var, "gl_EyePlaneS") == 0) {
if (index1 < 0)
return -1;
tokens[0] = STATE_TEXGEN;
tokens[1] = index1; /* tex unit */
tokens[2] = STATE_TEXGEN_EYE_S;
}
else if (strcmp(var, "gl_EyePlaneT") == 0) {
if (index1 < 0)
return -1;
tokens[0] = STATE_TEXGEN;
tokens[1] = index1; /* tex unit */
tokens[2] = STATE_TEXGEN_EYE_T;
}
else if (strcmp(var, "gl_EyePlaneR") == 0) {
if (index1 < 0)
return -1;
tokens[0] = STATE_TEXGEN;
tokens[1] = index1; /* tex unit */
tokens[2] = STATE_TEXGEN_EYE_R;
}
else if (strcmp(var, "gl_EyePlaneQ") == 0) {
if (index1 < 0)
return -1;
tokens[0] = STATE_TEXGEN;
tokens[1] = index1; /* tex unit */
tokens[2] = STATE_TEXGEN_EYE_Q;
}
else if (strcmp(var, "gl_ObjectPlaneS") == 0) {
if (index1 < 0)
return -1;
tokens[0] = STATE_TEXGEN;
tokens[1] = index1; /* tex unit */
tokens[2] = STATE_TEXGEN_OBJECT_S;
}
else if (strcmp(var, "gl_ObjectPlaneT") == 0) {
if (index1 < 0)
return -1;
tokens[0] = STATE_TEXGEN;
tokens[1] = index1; /* tex unit */
tokens[2] = STATE_TEXGEN_OBJECT_T;
}
else if (strcmp(var, "gl_ObjectPlaneR") == 0) {
if (index1 < 0)
return -1;
tokens[0] = STATE_TEXGEN;
tokens[1] = index1; /* tex unit */
tokens[2] = STATE_TEXGEN_OBJECT_R;
}
else if (strcmp(var, "gl_ObjectPlaneQ") == 0) {
if (index1 < 0)
return -1;
tokens[0] = STATE_TEXGEN;
tokens[1] = index1; /* tex unit */
tokens[2] = STATE_TEXGEN_OBJECT_Q;
}
else if (strcmp(var, "gl_Fog") == 0) {
if (strcmp(field, "color") == 0) {
tokens[0] = STATE_FOG_COLOR;
}
else if (strcmp(field, "density") == 0) {
tokens[0] = STATE_FOG_PARAMS;
*swizzleOut = SWIZZLE_XXXX;
}
else if (strcmp(field, "start") == 0) {
tokens[0] = STATE_FOG_PARAMS;
*swizzleOut = SWIZZLE_YYYY;
}
else if (strcmp(field, "end") == 0) {
tokens[0] = STATE_FOG_PARAMS;
*swizzleOut = SWIZZLE_ZZZZ;
}
else if (strcmp(field, "scale") == 0) {
tokens[0] = STATE_FOG_PARAMS;
*swizzleOut = SWIZZLE_WWWW;
}
else {
return -1;
}
}
else {
return -1;
}
if (isMatrix) {
/* load all four columns of matrix */
GLint pos[4];
GLuint j;
for (j = 0; j < 4; j++) {
tokens[2] = tokens[3] = j; /* jth row of matrix */
pos[j] = _mesa_add_state_reference(paramList, tokens);
assert(pos[j] >= 0);
ASSERT(pos[j] >= 0);
}
return pos[0] + index1;
}
else {
/* allocate a single register */
GLint pos = _mesa_add_state_reference(paramList, tokens);
ASSERT(pos >= 0);
return pos;
}
}
/**
* Given a variable name and datatype, emit uniform/constant buffer
* entries which will store that state variable.
* For example, if name="gl_LightSource" we'll emit 64 state variable
* vectors/references and return position where that data starts. This will
* allow run-time array indexing into the light source array.
*
* Note that this is a recursive function.
*
* \return -1 if error, else index of start of data in the program parameter list
*/
static GLint
emit_statevars(const char *name, int array_len,
const slang_type_specifier *type,
gl_state_index tokens[STATE_LENGTH],
struct gl_program_parameter_list *paramList)
{
if (type->type == SLANG_SPEC_ARRAY) {
GLint i, pos = -1;
assert(array_len > 0);
if (strcmp(name, "gl_ClipPlane") == 0) {
tokens[0] = STATE_CLIPPLANE;
}
else if (strcmp(name, "gl_LightSource") == 0) {
tokens[0] = STATE_LIGHT;
}
else if (strcmp(name, "gl_FrontLightProduct") == 0) {
tokens[0] = STATE_LIGHTPROD;
tokens[2] = 0; /* front */
}
else if (strcmp(name, "gl_BackLightProduct") == 0) {
tokens[0] = STATE_LIGHTPROD;
tokens[2] = 1; /* back */
}
else if (strcmp(name, "gl_TextureEnvColor") == 0) {
tokens[0] = STATE_TEXENV_COLOR;
}
else if (strcmp(name, "gl_EyePlaneS") == 0) {
tokens[0] = STATE_TEXGEN;
tokens[2] = STATE_TEXGEN_EYE_S;
}
else if (strcmp(name, "gl_EyePlaneT") == 0) {
tokens[0] = STATE_TEXGEN;
tokens[2] = STATE_TEXGEN_EYE_T;
}
else if (strcmp(name, "gl_EyePlaneR") == 0) {
tokens[0] = STATE_TEXGEN;
tokens[2] = STATE_TEXGEN_EYE_R;
}
else if (strcmp(name, "gl_EyePlaneQ") == 0) {
tokens[0] = STATE_TEXGEN;
tokens[2] = STATE_TEXGEN_EYE_Q;
}
else if (strcmp(name, "gl_ObjectPlaneS") == 0) {
tokens[0] = STATE_TEXGEN;
tokens[2] = STATE_TEXGEN_OBJECT_S;
}
else if (strcmp(name, "gl_ObjectPlaneT") == 0) {
tokens[0] = STATE_TEXGEN;
tokens[2] = STATE_TEXGEN_OBJECT_T;
}
else if (strcmp(name, "gl_ObjectPlaneR") == 0) {
tokens[0] = STATE_TEXGEN;
tokens[2] = STATE_TEXGEN_OBJECT_R;
}
else if (strcmp(name, "gl_ObjectPlaneQ") == 0) {
tokens[0] = STATE_TEXGEN;
tokens[2] = STATE_TEXGEN_OBJECT_Q;
}
else {
return -1; /* invalid array name */
}
for (i = 0; i < array_len; i++) {
GLint p;
tokens[1] = i;
p = emit_statevars(NULL, 0, type->_array, tokens, paramList);
if (i == 0)
pos = p;
}
return pos;
}
else if (type->type == SLANG_SPEC_STRUCT) {
const slang_variable_scope *fields = type->_struct->fields;
GLuint i, pos = 0;
for (i = 0; i < fields->num_variables; i++) {
const slang_variable *var = fields->variables[i];
GLint p = emit_statevars(var->a_name, 0, &var->type.specifier,
tokens, paramList);
if (i == 0)
pos = p;
}
return pos;
}
else {
GLint pos;
assert(type->type == SLANG_SPEC_VEC4 ||
type->type == SLANG_SPEC_VEC3 ||
type->type == SLANG_SPEC_VEC2 ||
type->type == SLANG_SPEC_FLOAT ||
type->type == SLANG_SPEC_IVEC4 ||
type->type == SLANG_SPEC_IVEC3 ||
type->type == SLANG_SPEC_IVEC2 ||
type->type == SLANG_SPEC_INT);
if (name) {
GLint t;
if (tokens[0] == STATE_LIGHT)
t = 2;
else if (tokens[0] == STATE_LIGHTPROD)
t = 3;
else
return -1; /* invalid array name */
if (strcmp(name, "ambient") == 0) {
tokens[t] = STATE_AMBIENT;
}
else if (strcmp(name, "diffuse") == 0) {
tokens[t] = STATE_DIFFUSE;
}
else if (strcmp(name, "specular") == 0) {
tokens[t] = STATE_SPECULAR;
}
else if (strcmp(name, "position") == 0) {
tokens[t] = STATE_POSITION;
}
else if (strcmp(name, "halfVector") == 0) {
tokens[t] = STATE_HALF_VECTOR;
}
else if (strcmp(name, "spotDirection") == 0) {
tokens[t] = STATE_SPOT_DIRECTION; /* xyz components */
}
else if (strcmp(name, "spotCosCutoff") == 0) {
tokens[t] = STATE_SPOT_DIRECTION; /* w component */
}
else if (strcmp(name, "constantAttenuation") == 0) {
tokens[t] = STATE_ATTENUATION; /* x component */
}
else if (strcmp(name, "linearAttenuation") == 0) {
tokens[t] = STATE_ATTENUATION; /* y component */
}
else if (strcmp(name, "quadraticAttenuation") == 0) {
tokens[t] = STATE_ATTENUATION; /* z component */
}
else if (strcmp(name, "spotExponent") == 0) {
tokens[t] = STATE_ATTENUATION; /* w = spot exponent */
}
else if (strcmp(name, "spotCutoff") == 0) {
tokens[t] = STATE_SPOT_CUTOFF; /* x component */
}
else {
return -1; /* invalid field name */
}
}
pos = _mesa_add_state_reference(paramList, tokens);
return pos;
}
return 1;
}
/**
* Unroll the named built-in uniform variable into a sequence of state
* vars in the given parameter list.
*/
static GLint
alloc_state_var_array(const slang_variable *var,
struct gl_program_parameter_list *paramList)
{
gl_state_index tokens[STATE_LENGTH];
GLuint i;
GLint pos;
/* Initialize the state tokens array. This is very important.
* When we call _mesa_add_state_reference() it'll searches the parameter
* list to see if the given statevar token sequence is already present.
* This is normally a good thing since it prevents redundant values in the
* constant buffer.
*
* But when we're building arrays of state this can be bad. For example,
* consider this fragment of GLSL code:
* foo = gl_LightSource[3].diffuse;
* ...
* bar = gl_LightSource[i].diffuse;
*
* When we unroll the gl_LightSource array (for "bar") we want to re-emit
* gl_LightSource[3].diffuse and not re-use the first instance (from "foo")
* since that would upset the array layout. We handle this situation by
* setting the last token in the state var token array to the special
* value STATE_ARRAY.
* This token will only be set for array state. We can hijack the last
* element in the array for this since it's never used for light, clipplane
* or texture env array state.
*/
for (i = 0; i < STATE_LENGTH; i++)
tokens[i] = 0;
tokens[STATE_LENGTH - 1] = STATE_ARRAY;
pos = emit_statevars(var->a_name, var->array_len, &var->type.specifier,
tokens, paramList);
return pos;
}
/**
* Allocate storage for a pre-defined uniform (a GL state variable).
* As a memory-saving optimization, we try to only allocate storage for
* state vars that are actually used.
*
* Arrays such as gl_LightSource are handled specially. For an expression
* like "gl_LightSource[2].diffuse", we can allocate a single uniform/constant
* slot and return the index. In this case, we return direct=TRUE.
*
* Buf for something like "gl_LightSource[i].diffuse" we don't know the value
* of 'i' at compile time so we need to "unroll" the gl_LightSource array
* into a consecutive sequence of uniform/constant slots so it can be indexed
* at runtime. In this case, we return direct=FALSE.
*
* Currently, all pre-defined uniforms are in one of these forms:
* var
* var[i]
* var.field
* var[i].field
* var[i][j]
*
* \return -1 upon error, else position in paramList of the state variable/data
*/
GLint
_slang_alloc_statevar(slang_ir_node *n,
struct gl_program_parameter_list *paramList,
GLboolean *direct)
{
slang_ir_node *n0 = n;
const char *field = NULL;
GLint index1 = -1, index2 = -1;
GLuint swizzle;
*direct = GL_TRUE;
if (n->Opcode == IR_FIELD) {
field = n->Field;
n = n->Children[0];
}
if (n->Opcode == IR_ELEMENT) {
if (n->Children[1]->Opcode == IR_FLOAT) {
index1 = (GLint) n->Children[1]->Value[0];
}
else {
*direct = GL_FALSE;
}
n = n->Children[0];
}
if (n->Opcode == IR_ELEMENT) {
/* XXX can only handle constant indexes for now */
if (n->Children[1]->Opcode == IR_FLOAT) {
/* two-dimensional array index: mat[i][j] */
index2 = index1;
index1 = (GLint) n->Children[1]->Value[0];
}
else {
*direct = GL_FALSE;
}
n = n->Children[0];
}
assert(n->Opcode == IR_VAR);
if (*direct) {
const char *var = (const char *) n->Var->a_name;
GLint pos =
lookup_statevar(var, index1, index2, field, &swizzle, paramList);
if (pos >= 0) {
/* newly resolved storage for the statevar/constant/uniform */
n0->Store->File = PROGRAM_STATE_VAR;
n0->Store->Index = pos;
n0->Store->Swizzle = swizzle;
n0->Store->Parent = NULL;
return pos;
}
}
*direct = GL_FALSE;
return alloc_state_var_array(n->Var, paramList);
}
#define SWIZZLE_ZWWW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W)
/** Predefined shader inputs */
struct input_info
{
const char *Name;
GLuint Attrib;
GLenum Type;
GLuint Swizzle;
};
/** Predefined vertex shader inputs/attributes */
static const struct input_info vertInputs[] = {
{ "gl_Vertex", VERT_ATTRIB_POS, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_Normal", VERT_ATTRIB_NORMAL, GL_FLOAT_VEC3, SWIZZLE_NOOP },
{ "gl_Color", VERT_ATTRIB_COLOR0, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_SecondaryColor", VERT_ATTRIB_COLOR1, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_FogCoord", VERT_ATTRIB_FOG, GL_FLOAT, SWIZZLE_XXXX },
{ "gl_MultiTexCoord0", VERT_ATTRIB_TEX0, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_MultiTexCoord1", VERT_ATTRIB_TEX1, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_MultiTexCoord2", VERT_ATTRIB_TEX2, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_MultiTexCoord3", VERT_ATTRIB_TEX3, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_MultiTexCoord4", VERT_ATTRIB_TEX4, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_MultiTexCoord5", VERT_ATTRIB_TEX5, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_MultiTexCoord6", VERT_ATTRIB_TEX6, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_MultiTexCoord7", VERT_ATTRIB_TEX7, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ NULL, 0, GL_NONE, SWIZZLE_NOOP }
};
static const struct input_info geomInputs[] = {
{ "gl_VerticesIn", GEOM_ATTRIB_VERTICES, GL_FLOAT, SWIZZLE_NOOP },
{ "gl_PrimitiveIDIn", GEOM_ATTRIB_PRIMITIVE_ID, GL_FLOAT, SWIZZLE_NOOP },
{ "gl_FrontColorIn", GEOM_ATTRIB_COLOR0, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_BackColorIn", GEOM_ATTRIB_COLOR1, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_FrontSecondaryColorIn", GEOM_ATTRIB_SECONDARY_COLOR0, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_BackSecondaryColorIn", GEOM_ATTRIB_SECONDARY_COLOR1, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_TexCoordIn", GEOM_ATTRIB_TEX_COORD, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_FogFragCoordIn", GEOM_ATTRIB_FOG_FRAG_COORD, GL_FLOAT, SWIZZLE_NOOP },
{ "gl_PositionIn", GEOM_ATTRIB_POSITION, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_ClipVertexIn", GEOM_ATTRIB_CLIP_VERTEX, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_PointSizeIn", GEOM_ATTRIB_POINT_SIZE, GL_FLOAT, SWIZZLE_NOOP },
{ NULL, 0, GL_NONE, SWIZZLE_NOOP }
};
/** Predefined fragment shader inputs */
static const struct input_info fragInputs[] = {
{ "gl_FragCoord", FRAG_ATTRIB_WPOS, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_Color", FRAG_ATTRIB_COL0, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_SecondaryColor", FRAG_ATTRIB_COL1, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_TexCoord", FRAG_ATTRIB_TEX0, GL_FLOAT_VEC4, SWIZZLE_NOOP },
{ "gl_FogFragCoord", FRAG_ATTRIB_FOGC, GL_FLOAT, SWIZZLE_XXXX },
{ "gl_FrontFacing", FRAG_ATTRIB_FACE, GL_FLOAT, SWIZZLE_XXXX },
{ "gl_PointCoord", FRAG_ATTRIB_PNTC, GL_FLOAT_VEC2, SWIZZLE_XYZW },
{ NULL, 0, GL_NONE, SWIZZLE_NOOP }
};
/**
* Return the VERT_ATTRIB_* or FRAG_ATTRIB_* value that corresponds to
* a vertex or fragment program input variable. Return -1 if the input
* name is invalid.
* XXX return size too
*/
GLint
_slang_input_index(const char *name, GLenum target, GLuint *swizzleOut)
{
const struct input_info *inputs;
GLuint i;
switch (target) {
case GL_VERTEX_PROGRAM_ARB:
inputs = vertInputs;
break;
case GL_FRAGMENT_PROGRAM_ARB:
inputs = fragInputs;
break;
case MESA_GEOMETRY_PROGRAM:
inputs = geomInputs;
break;
default:
_mesa_problem(NULL, "bad target in _slang_input_index");
return -1;
}
ASSERT(MAX_TEXTURE_COORD_UNITS == 8); /* if this fails, fix vertInputs above */
for (i = 0; inputs[i].Name; i++) {
if (strcmp(inputs[i].Name, name) == 0) {
/* found */
*swizzleOut = inputs[i].Swizzle;
return inputs[i].Attrib;
}
}
return -1;
}
/**
* Return name of the given vertex attribute (VERT_ATTRIB_x).
*/
const char *
_slang_vert_attrib_name(GLuint attrib)
{
GLuint i;
assert(attrib < VERT_ATTRIB_GENERIC0);
for (i = 0; vertInputs[i].Name; i++) {
if (vertInputs[i].Attrib == attrib)
return vertInputs[i].Name;
}
return NULL;
}
/**
* Return type (GL_FLOAT, GL_FLOAT_VEC2, etc) of the given vertex
* attribute (VERT_ATTRIB_x).
*/
GLenum
_slang_vert_attrib_type(GLuint attrib)
{
GLuint i;
assert(attrib < VERT_ATTRIB_GENERIC0);
for (i = 0; vertInputs[i].Name; i++) {
if (vertInputs[i].Attrib == attrib)
return vertInputs[i].Type;
}
return GL_NONE;
}
/** Predefined shader output info */
struct output_info
{
const char *Name;
GLuint Attrib;
GLenum Type;
};
/** Predefined vertex shader outputs */
static const struct output_info vertOutputs[] = {
{ "gl_Position", VERT_RESULT_HPOS, GL_FLOAT_VEC4 },
{ "gl_FrontColor", VERT_RESULT_COL0, GL_FLOAT_VEC4 },
{ "gl_BackColor", VERT_RESULT_BFC0, GL_FLOAT_VEC4 },
{ "gl_FrontSecondaryColor", VERT_RESULT_COL1, GL_FLOAT_VEC4 },
{ "gl_BackSecondaryColor", VERT_RESULT_BFC1, GL_FLOAT_VEC4 },
{ "gl_TexCoord", VERT_RESULT_TEX0, GL_FLOAT_VEC4 },
{ "gl_FogFragCoord", VERT_RESULT_FOGC, GL_FLOAT },
{ "gl_PointSize", VERT_RESULT_PSIZ, GL_FLOAT },
{ NULL, 0, GL_NONE }
};
/** Predefined geometry shader outputs */
static const struct output_info geomOutputs[] = {
{ "gl_Position", GEOM_RESULT_POS, GL_FLOAT_VEC4 },
{ "gl_FrontColor", GEOM_RESULT_COL0, GL_FLOAT_VEC4 },
{ "gl_BackColor", GEOM_RESULT_COL1, GL_FLOAT_VEC4 },
{ "gl_FrontSecondaryColor", GEOM_RESULT_SCOL0, GL_FLOAT_VEC4 },
{ "gl_BackSecondaryColor", GEOM_RESULT_SCOL1, GL_FLOAT_VEC4 },
{ "gl_TexCoord", GEOM_RESULT_TEX0, GL_FLOAT_VEC4 },
{ "gl_FogFragCoord", GEOM_RESULT_FOGC, GL_FLOAT },
{ "gl_ClipVertex", GEOM_RESULT_CLPV, GL_FLOAT_VEC4 },
{ "gl_PointSize", GEOM_RESULT_PSIZ, GL_FLOAT },
{ "gl_PrimitiveID", GEOM_RESULT_PRID, GL_FLOAT },
{ "gl_Layer", GEOM_RESULT_LAYR, GL_FLOAT },
{ NULL, 0, GL_NONE }
};
/** Predefined fragment shader outputs */
static const struct output_info fragOutputs[] = {
{ "gl_FragColor", FRAG_RESULT_COLOR, GL_FLOAT_VEC4 },
{ "gl_FragDepth", FRAG_RESULT_DEPTH, GL_FLOAT },
{ "gl_FragData", FRAG_RESULT_DATA0, GL_FLOAT_VEC4 },
{ NULL, 0, GL_NONE }
};
/**
* Return the VERT_RESULT_*, GEOM_RESULT_* or FRAG_RESULT_* value that corresponds to
* a vertex or fragment program output variable. Return -1 for an invalid
* output name.
*/
GLint
_slang_output_index(const char *name, GLenum target)
{
const struct output_info *outputs;
GLuint i;
switch (target) {
case GL_VERTEX_PROGRAM_ARB:
outputs = vertOutputs;
break;
case GL_FRAGMENT_PROGRAM_ARB:
outputs = fragOutputs;
break;
case MESA_GEOMETRY_PROGRAM:
outputs = geomOutputs;
break;
default:
_mesa_problem(NULL, "bad target in _slang_output_index");
return -1;
}
for (i = 0; outputs[i].Name; i++) {
if (strcmp(outputs[i].Name, name) == 0) {
/* found */
return outputs[i].Attrib;
}
}
return -1;
}
/**
* Given a VERT_RESULT_x index, return the corresponding string name.
*/
const char *
_slang_vertex_output_name(gl_vert_result index)
{
if (index < Elements(vertOutputs))
return vertOutputs[index].Name;
else
return NULL;
}
/**
* Given a GEOM_RESULT_x index, return the corresponding string name.
*/
const char *
_slang_geometry_output_name(gl_geom_result index)
{
if (index < Elements(geomOutputs))
return geomOutputs[index].Name;
else
return NULL;
}
/**
* Given a FRAG_RESULT_x index, return the corresponding string name.
*/
const char *
_slang_fragment_output_name(gl_frag_result index)
{
if (index < Elements(fragOutputs))
return fragOutputs[index].Name;
else
return NULL;
}
/**
* Given a VERT_RESULT_x index, return the corresponding varying
* var's datatype.
*/
GLenum
_slang_vertex_output_type(gl_vert_result index)
{
if (index < Elements(vertOutputs))
return vertOutputs[index].Type;
else
return GL_NONE;
}