blob: c4d6ecfe7c96078cf76383ec9279d2c4af6aaa0d [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_X64
#include "src/ic/call-optimization.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup(
MacroAssembler* masm, Label* miss_label, Register receiver,
Handle<Name> name, Register scratch0, Register scratch1) {
DCHECK(name->IsUniqueName());
DCHECK(!receiver.is(scratch0));
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->negative_lookups(), 1);
__ IncrementCounter(counters->negative_lookups_miss(), 1);
__ movp(scratch0, FieldOperand(receiver, HeapObject::kMapOffset));
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
__ testb(FieldOperand(scratch0, Map::kBitFieldOffset),
Immediate(kInterceptorOrAccessCheckNeededMask));
__ j(not_zero, miss_label);
// Check that receiver is a JSObject.
__ CmpInstanceType(scratch0, FIRST_SPEC_OBJECT_TYPE);
__ j(below, miss_label);
// Load properties array.
Register properties = scratch0;
__ movp(properties, FieldOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ CompareRoot(FieldOperand(properties, HeapObject::kMapOffset),
Heap::kHashTableMapRootIndex);
__ j(not_equal, miss_label);
Label done;
NameDictionaryLookupStub::GenerateNegativeLookup(masm, miss_label, &done,
properties, name, scratch1);
__ bind(&done);
__ DecrementCounter(counters->negative_lookups_miss(), 1);
}
void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm, int index, Register prototype, Label* miss) {
Isolate* isolate = masm->isolate();
// Get the global function with the given index.
Handle<JSFunction> function(
JSFunction::cast(isolate->native_context()->get(index)));
// Check we're still in the same context.
Register scratch = prototype;
const int offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
__ movp(scratch, Operand(rsi, offset));
__ movp(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
__ Cmp(Operand(scratch, Context::SlotOffset(index)), function);
__ j(not_equal, miss);
// Load its initial map. The global functions all have initial maps.
__ Move(prototype, Handle<Map>(function->initial_map()));
// Load the prototype from the initial map.
__ movp(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(
MacroAssembler* masm, Register receiver, Register result, Register scratch,
Label* miss_label) {
__ TryGetFunctionPrototype(receiver, result, miss_label);
if (!result.is(rax)) __ movp(rax, result);
__ ret(0);
}
static void PushInterceptorArguments(MacroAssembler* masm, Register receiver,
Register holder, Register name,
Handle<JSObject> holder_obj) {
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsInfoIndex == 1);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 2);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 3);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 4);
__ Push(name);
Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
DCHECK(!masm->isolate()->heap()->InNewSpace(*interceptor));
__ Move(kScratchRegister, interceptor);
__ Push(kScratchRegister);
__ Push(receiver);
__ Push(holder);
}
static void CompileCallLoadPropertyWithInterceptor(
MacroAssembler* masm, Register receiver, Register holder, Register name,
Handle<JSObject> holder_obj, IC::UtilityId id) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
__ CallExternalReference(ExternalReference(IC_Utility(id), masm->isolate()),
NamedLoadHandlerCompiler::kInterceptorArgsLength);
}
// Generate call to api function.
void PropertyHandlerCompiler::GenerateFastApiCall(
MacroAssembler* masm, const CallOptimization& optimization,
Handle<Map> receiver_map, Register receiver, Register scratch_in,
bool is_store, int argc, Register* values) {
DCHECK(optimization.is_simple_api_call());
__ PopReturnAddressTo(scratch_in);
// receiver
__ Push(receiver);
// Write the arguments to stack frame.
for (int i = 0; i < argc; i++) {
Register arg = values[argc - 1 - i];
DCHECK(!receiver.is(arg));
DCHECK(!scratch_in.is(arg));
__ Push(arg);
}
__ PushReturnAddressFrom(scratch_in);
// Stack now matches JSFunction abi.
// Abi for CallApiFunctionStub.
Register callee = rax;
Register call_data = rbx;
Register holder = rcx;
Register api_function_address = rdx;
Register scratch = rdi; // scratch_in is no longer valid.
// Put holder in place.
CallOptimization::HolderLookup holder_lookup;
Handle<JSObject> api_holder =
optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup);
switch (holder_lookup) {
case CallOptimization::kHolderIsReceiver:
__ Move(holder, receiver);
break;
case CallOptimization::kHolderFound:
__ Move(holder, api_holder);
break;
case CallOptimization::kHolderNotFound:
UNREACHABLE();
break;
}
Isolate* isolate = masm->isolate();
Handle<JSFunction> function = optimization.constant_function();
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
Handle<Object> call_data_obj(api_call_info->data(), isolate);
// Put callee in place.
__ Move(callee, function);
bool call_data_undefined = false;
// Put call_data in place.
if (isolate->heap()->InNewSpace(*call_data_obj)) {
__ Move(scratch, api_call_info);
__ movp(call_data, FieldOperand(scratch, CallHandlerInfo::kDataOffset));
} else if (call_data_obj->IsUndefined()) {
call_data_undefined = true;
__ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
} else {
__ Move(call_data, call_data_obj);
}
// Put api_function_address in place.
Address function_address = v8::ToCData<Address>(api_call_info->callback());
__ Move(api_function_address, function_address,
RelocInfo::EXTERNAL_REFERENCE);
// Jump to stub.
CallApiFunctionStub stub(isolate, is_store, call_data_undefined, argc);
__ TailCallStub(&stub);
}
void PropertyHandlerCompiler::GenerateCheckPropertyCell(
MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name,
Register scratch, Label* miss) {
Handle<PropertyCell> cell = JSGlobalObject::EnsurePropertyCell(global, name);
DCHECK(cell->value()->IsTheHole());
__ Move(scratch, cell);
__ Cmp(FieldOperand(scratch, Cell::kValueOffset),
masm->isolate()->factory()->the_hole_value());
__ j(not_equal, miss);
}
void NamedStoreHandlerCompiler::GenerateStoreViaSetter(
MacroAssembler* masm, Handle<HeapType> type, Register receiver,
Handle<JSFunction> setter) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Save value register, so we can restore it later.
__ Push(value());
if (!setter.is_null()) {
// Call the JavaScript setter with receiver and value on the stack.
if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
// Swap in the global receiver.
__ movp(receiver,
FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
}
__ Push(receiver);
__ Push(value());
ParameterCount actual(1);
ParameterCount expected(setter);
__ InvokeFunction(setter, expected, actual, CALL_FUNCTION,
NullCallWrapper());
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
}
// We have to return the passed value, not the return value of the setter.
__ Pop(rax);
// Restore context register.
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
__ ret(0);
}
void NamedLoadHandlerCompiler::GenerateLoadViaGetter(
MacroAssembler* masm, Handle<HeapType> type, Register receiver,
Handle<JSFunction> getter) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
if (!getter.is_null()) {
// Call the JavaScript getter with the receiver on the stack.
if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
// Swap in the global receiver.
__ movp(receiver,
FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
}
__ Push(receiver);
ParameterCount actual(0);
ParameterCount expected(getter);
__ InvokeFunction(getter, expected, actual, CALL_FUNCTION,
NullCallWrapper());
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
}
// Restore context register.
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
__ ret(0);
}
static void StoreIC_PushArgs(MacroAssembler* masm) {
Register receiver = StoreDescriptor::ReceiverRegister();
Register name = StoreDescriptor::NameRegister();
Register value = StoreDescriptor::ValueRegister();
DCHECK(!rbx.is(receiver) && !rbx.is(name) && !rbx.is(value));
__ PopReturnAddressTo(rbx);
__ Push(receiver);
__ Push(name);
__ Push(value);
__ PushReturnAddressFrom(rbx);
}
void NamedStoreHandlerCompiler::GenerateSlow(MacroAssembler* masm) {
// Return address is on the stack.
StoreIC_PushArgs(masm);
// Do tail-call to runtime routine.
ExternalReference ref(IC_Utility(IC::kStoreIC_Slow), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void ElementHandlerCompiler::GenerateStoreSlow(MacroAssembler* masm) {
// Return address is on the stack.
StoreIC_PushArgs(masm);
// Do tail-call to runtime routine.
ExternalReference ref(IC_Utility(IC::kKeyedStoreIC_Slow), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
#undef __
#define __ ACCESS_MASM((masm()))
void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label,
Handle<Name> name) {
if (!label->is_unused()) {
__ bind(label);
__ Move(this->name(), name);
}
}
// Receiver_reg is preserved on jumps to miss_label, but may be destroyed if
// store is successful.
void NamedStoreHandlerCompiler::GenerateStoreTransition(
Handle<Map> transition, Handle<Name> name, Register receiver_reg,
Register storage_reg, Register value_reg, Register scratch1,
Register scratch2, Register unused, Label* miss_label, Label* slow) {
int descriptor = transition->LastAdded();
DescriptorArray* descriptors = transition->instance_descriptors();
PropertyDetails details = descriptors->GetDetails(descriptor);
Representation representation = details.representation();
DCHECK(!representation.IsNone());
if (details.type() == CONSTANT) {
Handle<Object> constant(descriptors->GetValue(descriptor), isolate());
__ Cmp(value_reg, constant);
__ j(not_equal, miss_label);
} else if (representation.IsSmi()) {
__ JumpIfNotSmi(value_reg, miss_label);
} else if (representation.IsHeapObject()) {
__ JumpIfSmi(value_reg, miss_label);
HeapType* field_type = descriptors->GetFieldType(descriptor);
HeapType::Iterator<Map> it = field_type->Classes();
if (!it.Done()) {
Label do_store;
while (true) {
__ CompareMap(value_reg, it.Current());
it.Advance();
if (it.Done()) {
__ j(not_equal, miss_label);
break;
}
__ j(equal, &do_store, Label::kNear);
}
__ bind(&do_store);
}
} else if (representation.IsDouble()) {
Label do_store, heap_number;
__ AllocateHeapNumber(storage_reg, scratch1, slow, MUTABLE);
__ JumpIfNotSmi(value_reg, &heap_number);
__ SmiToInteger32(scratch1, value_reg);
__ Cvtlsi2sd(xmm0, scratch1);
__ jmp(&do_store);
__ bind(&heap_number);
__ CheckMap(value_reg, isolate()->factory()->heap_number_map(), miss_label,
DONT_DO_SMI_CHECK);
__ movsd(xmm0, FieldOperand(value_reg, HeapNumber::kValueOffset));
__ bind(&do_store);
__ movsd(FieldOperand(storage_reg, HeapNumber::kValueOffset), xmm0);
}
// Stub never generated for objects that require access checks.
DCHECK(!transition->is_access_check_needed());
// Perform map transition for the receiver if necessary.
if (details.type() == FIELD &&
Map::cast(transition->GetBackPointer())->unused_property_fields() == 0) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ PopReturnAddressTo(scratch1);
__ Push(receiver_reg);
__ Push(transition);
__ Push(value_reg);
__ PushReturnAddressFrom(scratch1);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
isolate()),
3, 1);
return;
}
// Update the map of the object.
__ Move(scratch1, transition);
__ movp(FieldOperand(receiver_reg, HeapObject::kMapOffset), scratch1);
// Update the write barrier for the map field.
__ RecordWriteField(receiver_reg, HeapObject::kMapOffset, scratch1, scratch2,
kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
if (details.type() == CONSTANT) {
DCHECK(value_reg.is(rax));
__ ret(0);
return;
}
int index = transition->instance_descriptors()->GetFieldIndex(
transition->LastAdded());
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= transition->inobject_properties();
// TODO(verwaest): Share this code as a code stub.
SmiCheck smi_check =
representation.IsTagged() ? INLINE_SMI_CHECK : OMIT_SMI_CHECK;
if (index < 0) {
// Set the property straight into the object.
int offset = transition->instance_size() + (index * kPointerSize);
if (representation.IsDouble()) {
__ movp(FieldOperand(receiver_reg, offset), storage_reg);
} else {
__ movp(FieldOperand(receiver_reg, offset), value_reg);
}
if (!representation.IsSmi()) {
// Update the write barrier for the array address.
if (!representation.IsDouble()) {
__ movp(storage_reg, value_reg);
}
__ RecordWriteField(receiver_reg, offset, storage_reg, scratch1,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check);
}
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array (optimistically).
__ movp(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
if (representation.IsDouble()) {
__ movp(FieldOperand(scratch1, offset), storage_reg);
} else {
__ movp(FieldOperand(scratch1, offset), value_reg);
}
if (!representation.IsSmi()) {
// Update the write barrier for the array address.
if (!representation.IsDouble()) {
__ movp(storage_reg, value_reg);
}
__ RecordWriteField(scratch1, offset, storage_reg, receiver_reg,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check);
}
}
// Return the value (register rax).
DCHECK(value_reg.is(rax));
__ ret(0);
}
void NamedStoreHandlerCompiler::GenerateStoreField(LookupIterator* lookup,
Register value_reg,
Label* miss_label) {
DCHECK(lookup->representation().IsHeapObject());
__ JumpIfSmi(value_reg, miss_label);
HeapType::Iterator<Map> it = lookup->GetFieldType()->Classes();
Label do_store;
while (true) {
__ CompareMap(value_reg, it.Current());
it.Advance();
if (it.Done()) {
__ j(not_equal, miss_label);
break;
}
__ j(equal, &do_store, Label::kNear);
}
__ bind(&do_store);
StoreFieldStub stub(isolate(), lookup->GetFieldIndex(),
lookup->representation());
GenerateTailCall(masm(), stub.GetCode());
}
Register PropertyHandlerCompiler::CheckPrototypes(
Register object_reg, Register holder_reg, Register scratch1,
Register scratch2, Handle<Name> name, Label* miss,
PrototypeCheckType check) {
Handle<Map> receiver_map(IC::TypeToMap(*type(), isolate()));
// Make sure there's no overlap between holder and object registers.
DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg) &&
!scratch2.is(scratch1));
// Keep track of the current object in register reg. On the first
// iteration, reg is an alias for object_reg, on later iterations,
// it is an alias for holder_reg.
Register reg = object_reg;
int depth = 0;
Handle<JSObject> current = Handle<JSObject>::null();
if (type()->IsConstant()) {
current = Handle<JSObject>::cast(type()->AsConstant()->Value());
}
Handle<JSObject> prototype = Handle<JSObject>::null();
Handle<Map> current_map = receiver_map;
Handle<Map> holder_map(holder()->map());
// Traverse the prototype chain and check the maps in the prototype chain for
// fast and global objects or do negative lookup for normal objects.
while (!current_map.is_identical_to(holder_map)) {
++depth;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
DCHECK(current_map->IsJSGlobalProxyMap() ||
!current_map->is_access_check_needed());
prototype = handle(JSObject::cast(current_map->prototype()));
if (current_map->is_dictionary_map() &&
!current_map->IsJSGlobalObjectMap()) {
DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast.
if (!name->IsUniqueName()) {
DCHECK(name->IsString());
name = factory()->InternalizeString(Handle<String>::cast(name));
}
DCHECK(current.is_null() ||
current->property_dictionary()->FindEntry(name) ==
NameDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1,
scratch2);
__ movp(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // From now on the object will be in holder_reg.
__ movp(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
bool in_new_space = heap()->InNewSpace(*prototype);
// Two possible reasons for loading the prototype from the map:
// (1) Can't store references to new space in code.
// (2) Handler is shared for all receivers with the same prototype
// map (but not necessarily the same prototype instance).
bool load_prototype_from_map = in_new_space || depth == 1;
if (load_prototype_from_map) {
// Save the map in scratch1 for later.
__ movp(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
}
if (depth != 1 || check == CHECK_ALL_MAPS) {
__ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
}
// Check access rights to the global object. This has to happen after
// the map check so that we know that the object is actually a global
// object.
// This allows us to install generated handlers for accesses to the
// global proxy (as opposed to using slow ICs). See corresponding code
// in LookupForRead().
if (current_map->IsJSGlobalProxyMap()) {
__ CheckAccessGlobalProxy(reg, scratch2, miss);
} else if (current_map->IsJSGlobalObjectMap()) {
GenerateCheckPropertyCell(masm(), Handle<JSGlobalObject>::cast(current),
name, scratch2, miss);
}
reg = holder_reg; // From now on the object will be in holder_reg.
if (load_prototype_from_map) {
__ movp(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
__ Move(reg, prototype);
}
}
// Go to the next object in the prototype chain.
current = prototype;
current_map = handle(current->map());
}
// Log the check depth.
LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
if (depth != 0 || check == CHECK_ALL_MAPS) {
// Check the holder map.
__ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
}
// Perform security check for access to the global object.
DCHECK(current_map->IsJSGlobalProxyMap() ||
!current_map->is_access_check_needed());
if (current_map->IsJSGlobalProxyMap()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
}
// Return the register containing the holder.
return reg;
}
void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
if (!miss->is_unused()) {
Label success;
__ jmp(&success);
__ bind(miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
__ bind(&success);
}
}
void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
if (!miss->is_unused()) {
Label success;
__ jmp(&success);
GenerateRestoreName(miss, name);
TailCallBuiltin(masm(), MissBuiltin(kind()));
__ bind(&success);
}
}
void NamedLoadHandlerCompiler::GenerateLoadCallback(
Register reg, Handle<ExecutableAccessorInfo> callback) {
// Insert additional parameters into the stack frame above return address.
DCHECK(!scratch4().is(reg));
__ PopReturnAddressTo(scratch4());
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 6);
__ Push(receiver()); // receiver
if (heap()->InNewSpace(callback->data())) {
DCHECK(!scratch2().is(reg));
__ Move(scratch2(), callback);
__ Push(FieldOperand(scratch2(),
ExecutableAccessorInfo::kDataOffset)); // data
} else {
__ Push(Handle<Object>(callback->data(), isolate()));
}
DCHECK(!kScratchRegister.is(reg));
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ Push(kScratchRegister); // return value
__ Push(kScratchRegister); // return value default
__ PushAddress(ExternalReference::isolate_address(isolate()));
__ Push(reg); // holder
__ Push(name()); // name
// Save a pointer to where we pushed the arguments pointer. This will be
// passed as the const PropertyAccessorInfo& to the C++ callback.
__ PushReturnAddressFrom(scratch4());
// Abi for CallApiGetter
Register api_function_address = ApiGetterDescriptor::function_address();
Address getter_address = v8::ToCData<Address>(callback->getter());
__ Move(api_function_address, getter_address, RelocInfo::EXTERNAL_REFERENCE);
CallApiGetterStub stub(isolate());
__ TailCallStub(&stub);
}
void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle<Object> value) {
// Return the constant value.
__ Move(rax, value);
__ ret(0);
}
void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup(
LookupIterator* it, Register holder_reg) {
DCHECK(holder()->HasNamedInterceptor());
DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined());
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1()));
// Preserve the receiver register explicitly whenever it is different from the
// holder and it is needed should the interceptor return without any result.
// The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD
// case might cause a miss during the prototype check.
bool must_perform_prototype_check =
!holder().is_identical_to(it->GetHolder<JSObject>());
bool must_preserve_receiver_reg =
!receiver().is(holder_reg) &&
(it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check);
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
{
FrameScope frame_scope(masm(), StackFrame::INTERNAL);
if (must_preserve_receiver_reg) {
__ Push(receiver());
}
__ Push(holder_reg);
__ Push(this->name());
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method.)
CompileCallLoadPropertyWithInterceptor(
masm(), receiver(), holder_reg, this->name(), holder(),
IC::kLoadPropertyWithInterceptorOnly);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex);
__ j(equal, &interceptor_failed);
frame_scope.GenerateLeaveFrame();
__ ret(0);
__ bind(&interceptor_failed);
__ Pop(this->name());
__ Pop(holder_reg);
if (must_preserve_receiver_reg) {
__ Pop(receiver());
}
// Leave the internal frame.
}
GenerateLoadPostInterceptor(it, holder_reg);
}
void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) {
// Call the runtime system to load the interceptor.
DCHECK(holder()->HasNamedInterceptor());
DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined());
__ PopReturnAddressTo(scratch2());
PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(),
holder());
__ PushReturnAddressFrom(scratch2());
ExternalReference ref = ExternalReference(
IC_Utility(IC::kLoadPropertyWithInterceptor), isolate());
__ TailCallExternalReference(
ref, NamedLoadHandlerCompiler::kInterceptorArgsLength, 1);
}
Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback(
Handle<JSObject> object, Handle<Name> name,
Handle<ExecutableAccessorInfo> callback) {
Register holder_reg = Frontend(receiver(), name);
__ PopReturnAddressTo(scratch1());
__ Push(receiver());
__ Push(holder_reg);
__ Push(callback); // callback info
__ Push(name);
__ Push(value());
__ PushReturnAddressFrom(scratch1());
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
__ TailCallExternalReference(store_callback_property, 5, 1);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> NamedStoreHandlerCompiler::CompileStoreInterceptor(
Handle<Name> name) {
__ PopReturnAddressTo(scratch1());
__ Push(receiver());
__ Push(this->name());
__ Push(value());
__ PushReturnAddressFrom(scratch1());
// Do tail-call to the runtime system.
ExternalReference store_ic_property = ExternalReference(
IC_Utility(IC::kStorePropertyWithInterceptor), isolate());
__ TailCallExternalReference(store_ic_property, 3, 1);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Register NamedStoreHandlerCompiler::value() {
return StoreDescriptor::ValueRegister();
}
Handle<Code> NamedLoadHandlerCompiler::CompileLoadGlobal(
Handle<PropertyCell> cell, Handle<Name> name, bool is_configurable) {
Label miss;
FrontendHeader(receiver(), name, &miss);
// Get the value from the cell.
Register result = StoreDescriptor::ValueRegister();
__ Move(result, cell);
__ movp(result, FieldOperand(result, PropertyCell::kValueOffset));
// Check for deleted property if property can actually be deleted.
if (is_configurable) {
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
__ j(equal, &miss);
} else if (FLAG_debug_code) {
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
__ Check(not_equal, kDontDeleteCellsCannotContainTheHole);
}
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->named_load_global_stub(), 1);
__ ret(0);
FrontendFooter(name, &miss);
// Return the generated code.
return GetCode(kind(), Code::NORMAL, name);
}
#undef __
}
} // namespace v8::internal
#endif // V8_TARGET_ARCH_X64