blob: c4d6ecfe7c96078cf76383ec9279d2c4af6aaa0d [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_X64
8
9#include "src/ic/call-optimization.h"
10#include "src/ic/handler-compiler.h"
11#include "src/ic/ic.h"
12
13namespace v8 {
14namespace internal {
15
16#define __ ACCESS_MASM(masm)
17
18void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup(
19 MacroAssembler* masm, Label* miss_label, Register receiver,
20 Handle<Name> name, Register scratch0, Register scratch1) {
21 DCHECK(name->IsUniqueName());
22 DCHECK(!receiver.is(scratch0));
23 Counters* counters = masm->isolate()->counters();
24 __ IncrementCounter(counters->negative_lookups(), 1);
25 __ IncrementCounter(counters->negative_lookups_miss(), 1);
26
27 __ movp(scratch0, FieldOperand(receiver, HeapObject::kMapOffset));
28
29 const int kInterceptorOrAccessCheckNeededMask =
30 (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
31
32 // Bail out if the receiver has a named interceptor or requires access checks.
33 __ testb(FieldOperand(scratch0, Map::kBitFieldOffset),
34 Immediate(kInterceptorOrAccessCheckNeededMask));
35 __ j(not_zero, miss_label);
36
37 // Check that receiver is a JSObject.
38 __ CmpInstanceType(scratch0, FIRST_SPEC_OBJECT_TYPE);
39 __ j(below, miss_label);
40
41 // Load properties array.
42 Register properties = scratch0;
43 __ movp(properties, FieldOperand(receiver, JSObject::kPropertiesOffset));
44
45 // Check that the properties array is a dictionary.
46 __ CompareRoot(FieldOperand(properties, HeapObject::kMapOffset),
47 Heap::kHashTableMapRootIndex);
48 __ j(not_equal, miss_label);
49
50 Label done;
51 NameDictionaryLookupStub::GenerateNegativeLookup(masm, miss_label, &done,
52 properties, name, scratch1);
53 __ bind(&done);
54 __ DecrementCounter(counters->negative_lookups_miss(), 1);
55}
56
57
58void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype(
59 MacroAssembler* masm, int index, Register prototype, Label* miss) {
60 Isolate* isolate = masm->isolate();
61 // Get the global function with the given index.
62 Handle<JSFunction> function(
63 JSFunction::cast(isolate->native_context()->get(index)));
64
65 // Check we're still in the same context.
66 Register scratch = prototype;
67 const int offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
68 __ movp(scratch, Operand(rsi, offset));
69 __ movp(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
70 __ Cmp(Operand(scratch, Context::SlotOffset(index)), function);
71 __ j(not_equal, miss);
72
73 // Load its initial map. The global functions all have initial maps.
74 __ Move(prototype, Handle<Map>(function->initial_map()));
75 // Load the prototype from the initial map.
76 __ movp(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
77}
78
79
80void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(
81 MacroAssembler* masm, Register receiver, Register result, Register scratch,
82 Label* miss_label) {
83 __ TryGetFunctionPrototype(receiver, result, miss_label);
84 if (!result.is(rax)) __ movp(rax, result);
85 __ ret(0);
86}
87
88
89static void PushInterceptorArguments(MacroAssembler* masm, Register receiver,
90 Register holder, Register name,
91 Handle<JSObject> holder_obj) {
92 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0);
93 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsInfoIndex == 1);
94 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 2);
95 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 3);
96 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 4);
97 __ Push(name);
98 Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
99 DCHECK(!masm->isolate()->heap()->InNewSpace(*interceptor));
100 __ Move(kScratchRegister, interceptor);
101 __ Push(kScratchRegister);
102 __ Push(receiver);
103 __ Push(holder);
104}
105
106
107static void CompileCallLoadPropertyWithInterceptor(
108 MacroAssembler* masm, Register receiver, Register holder, Register name,
109 Handle<JSObject> holder_obj, IC::UtilityId id) {
110 PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
111 __ CallExternalReference(ExternalReference(IC_Utility(id), masm->isolate()),
112 NamedLoadHandlerCompiler::kInterceptorArgsLength);
113}
114
115
116// Generate call to api function.
117void PropertyHandlerCompiler::GenerateFastApiCall(
118 MacroAssembler* masm, const CallOptimization& optimization,
119 Handle<Map> receiver_map, Register receiver, Register scratch_in,
120 bool is_store, int argc, Register* values) {
121 DCHECK(optimization.is_simple_api_call());
122
123 __ PopReturnAddressTo(scratch_in);
124 // receiver
125 __ Push(receiver);
126 // Write the arguments to stack frame.
127 for (int i = 0; i < argc; i++) {
128 Register arg = values[argc - 1 - i];
129 DCHECK(!receiver.is(arg));
130 DCHECK(!scratch_in.is(arg));
131 __ Push(arg);
132 }
133 __ PushReturnAddressFrom(scratch_in);
134 // Stack now matches JSFunction abi.
135
136 // Abi for CallApiFunctionStub.
137 Register callee = rax;
138 Register call_data = rbx;
139 Register holder = rcx;
140 Register api_function_address = rdx;
141 Register scratch = rdi; // scratch_in is no longer valid.
142
143 // Put holder in place.
144 CallOptimization::HolderLookup holder_lookup;
145 Handle<JSObject> api_holder =
146 optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup);
147 switch (holder_lookup) {
148 case CallOptimization::kHolderIsReceiver:
149 __ Move(holder, receiver);
150 break;
151 case CallOptimization::kHolderFound:
152 __ Move(holder, api_holder);
153 break;
154 case CallOptimization::kHolderNotFound:
155 UNREACHABLE();
156 break;
157 }
158
159 Isolate* isolate = masm->isolate();
160 Handle<JSFunction> function = optimization.constant_function();
161 Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
162 Handle<Object> call_data_obj(api_call_info->data(), isolate);
163
164 // Put callee in place.
165 __ Move(callee, function);
166
167 bool call_data_undefined = false;
168 // Put call_data in place.
169 if (isolate->heap()->InNewSpace(*call_data_obj)) {
170 __ Move(scratch, api_call_info);
171 __ movp(call_data, FieldOperand(scratch, CallHandlerInfo::kDataOffset));
172 } else if (call_data_obj->IsUndefined()) {
173 call_data_undefined = true;
174 __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
175 } else {
176 __ Move(call_data, call_data_obj);
177 }
178
179 // Put api_function_address in place.
180 Address function_address = v8::ToCData<Address>(api_call_info->callback());
181 __ Move(api_function_address, function_address,
182 RelocInfo::EXTERNAL_REFERENCE);
183
184 // Jump to stub.
185 CallApiFunctionStub stub(isolate, is_store, call_data_undefined, argc);
186 __ TailCallStub(&stub);
187}
188
189
190void PropertyHandlerCompiler::GenerateCheckPropertyCell(
191 MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name,
192 Register scratch, Label* miss) {
193 Handle<PropertyCell> cell = JSGlobalObject::EnsurePropertyCell(global, name);
194 DCHECK(cell->value()->IsTheHole());
195 __ Move(scratch, cell);
196 __ Cmp(FieldOperand(scratch, Cell::kValueOffset),
197 masm->isolate()->factory()->the_hole_value());
198 __ j(not_equal, miss);
199}
200
201
202void NamedStoreHandlerCompiler::GenerateStoreViaSetter(
203 MacroAssembler* masm, Handle<HeapType> type, Register receiver,
204 Handle<JSFunction> setter) {
205 // ----------- S t a t e -------------
206 // -- rsp[0] : return address
207 // -----------------------------------
208 {
209 FrameScope scope(masm, StackFrame::INTERNAL);
210
211 // Save value register, so we can restore it later.
212 __ Push(value());
213
214 if (!setter.is_null()) {
215 // Call the JavaScript setter with receiver and value on the stack.
216 if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
217 // Swap in the global receiver.
218 __ movp(receiver,
219 FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
220 }
221 __ Push(receiver);
222 __ Push(value());
223 ParameterCount actual(1);
224 ParameterCount expected(setter);
225 __ InvokeFunction(setter, expected, actual, CALL_FUNCTION,
226 NullCallWrapper());
227 } else {
228 // If we generate a global code snippet for deoptimization only, remember
229 // the place to continue after deoptimization.
230 masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
231 }
232
233 // We have to return the passed value, not the return value of the setter.
234 __ Pop(rax);
235
236 // Restore context register.
237 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
238 }
239 __ ret(0);
240}
241
242
243void NamedLoadHandlerCompiler::GenerateLoadViaGetter(
244 MacroAssembler* masm, Handle<HeapType> type, Register receiver,
245 Handle<JSFunction> getter) {
246 // ----------- S t a t e -------------
247 // -- rax : receiver
248 // -- rcx : name
249 // -- rsp[0] : return address
250 // -----------------------------------
251 {
252 FrameScope scope(masm, StackFrame::INTERNAL);
253
254 if (!getter.is_null()) {
255 // Call the JavaScript getter with the receiver on the stack.
256 if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
257 // Swap in the global receiver.
258 __ movp(receiver,
259 FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
260 }
261 __ Push(receiver);
262 ParameterCount actual(0);
263 ParameterCount expected(getter);
264 __ InvokeFunction(getter, expected, actual, CALL_FUNCTION,
265 NullCallWrapper());
266 } else {
267 // If we generate a global code snippet for deoptimization only, remember
268 // the place to continue after deoptimization.
269 masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
270 }
271
272 // Restore context register.
273 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
274 }
275 __ ret(0);
276}
277
278
279static void StoreIC_PushArgs(MacroAssembler* masm) {
280 Register receiver = StoreDescriptor::ReceiverRegister();
281 Register name = StoreDescriptor::NameRegister();
282 Register value = StoreDescriptor::ValueRegister();
283
284 DCHECK(!rbx.is(receiver) && !rbx.is(name) && !rbx.is(value));
285
286 __ PopReturnAddressTo(rbx);
287 __ Push(receiver);
288 __ Push(name);
289 __ Push(value);
290 __ PushReturnAddressFrom(rbx);
291}
292
293
294void NamedStoreHandlerCompiler::GenerateSlow(MacroAssembler* masm) {
295 // Return address is on the stack.
296 StoreIC_PushArgs(masm);
297
298 // Do tail-call to runtime routine.
299 ExternalReference ref(IC_Utility(IC::kStoreIC_Slow), masm->isolate());
300 __ TailCallExternalReference(ref, 3, 1);
301}
302
303
304void ElementHandlerCompiler::GenerateStoreSlow(MacroAssembler* masm) {
305 // Return address is on the stack.
306 StoreIC_PushArgs(masm);
307
308 // Do tail-call to runtime routine.
309 ExternalReference ref(IC_Utility(IC::kKeyedStoreIC_Slow), masm->isolate());
310 __ TailCallExternalReference(ref, 3, 1);
311}
312
313
314#undef __
315#define __ ACCESS_MASM((masm()))
316
317
318void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label,
319 Handle<Name> name) {
320 if (!label->is_unused()) {
321 __ bind(label);
322 __ Move(this->name(), name);
323 }
324}
325
326
327// Receiver_reg is preserved on jumps to miss_label, but may be destroyed if
328// store is successful.
329void NamedStoreHandlerCompiler::GenerateStoreTransition(
330 Handle<Map> transition, Handle<Name> name, Register receiver_reg,
331 Register storage_reg, Register value_reg, Register scratch1,
332 Register scratch2, Register unused, Label* miss_label, Label* slow) {
333 int descriptor = transition->LastAdded();
334 DescriptorArray* descriptors = transition->instance_descriptors();
335 PropertyDetails details = descriptors->GetDetails(descriptor);
336 Representation representation = details.representation();
337 DCHECK(!representation.IsNone());
338
339 if (details.type() == CONSTANT) {
340 Handle<Object> constant(descriptors->GetValue(descriptor), isolate());
341 __ Cmp(value_reg, constant);
342 __ j(not_equal, miss_label);
343 } else if (representation.IsSmi()) {
344 __ JumpIfNotSmi(value_reg, miss_label);
345 } else if (representation.IsHeapObject()) {
346 __ JumpIfSmi(value_reg, miss_label);
347 HeapType* field_type = descriptors->GetFieldType(descriptor);
348 HeapType::Iterator<Map> it = field_type->Classes();
349 if (!it.Done()) {
350 Label do_store;
351 while (true) {
352 __ CompareMap(value_reg, it.Current());
353 it.Advance();
354 if (it.Done()) {
355 __ j(not_equal, miss_label);
356 break;
357 }
358 __ j(equal, &do_store, Label::kNear);
359 }
360 __ bind(&do_store);
361 }
362 } else if (representation.IsDouble()) {
363 Label do_store, heap_number;
364 __ AllocateHeapNumber(storage_reg, scratch1, slow, MUTABLE);
365
366 __ JumpIfNotSmi(value_reg, &heap_number);
367 __ SmiToInteger32(scratch1, value_reg);
368 __ Cvtlsi2sd(xmm0, scratch1);
369 __ jmp(&do_store);
370
371 __ bind(&heap_number);
372 __ CheckMap(value_reg, isolate()->factory()->heap_number_map(), miss_label,
373 DONT_DO_SMI_CHECK);
374 __ movsd(xmm0, FieldOperand(value_reg, HeapNumber::kValueOffset));
375
376 __ bind(&do_store);
377 __ movsd(FieldOperand(storage_reg, HeapNumber::kValueOffset), xmm0);
378 }
379
380 // Stub never generated for objects that require access checks.
381 DCHECK(!transition->is_access_check_needed());
382
383 // Perform map transition for the receiver if necessary.
384 if (details.type() == FIELD &&
385 Map::cast(transition->GetBackPointer())->unused_property_fields() == 0) {
386 // The properties must be extended before we can store the value.
387 // We jump to a runtime call that extends the properties array.
388 __ PopReturnAddressTo(scratch1);
389 __ Push(receiver_reg);
390 __ Push(transition);
391 __ Push(value_reg);
392 __ PushReturnAddressFrom(scratch1);
393 __ TailCallExternalReference(
394 ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
395 isolate()),
396 3, 1);
397 return;
398 }
399
400 // Update the map of the object.
401 __ Move(scratch1, transition);
402 __ movp(FieldOperand(receiver_reg, HeapObject::kMapOffset), scratch1);
403
404 // Update the write barrier for the map field.
405 __ RecordWriteField(receiver_reg, HeapObject::kMapOffset, scratch1, scratch2,
406 kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
407
408 if (details.type() == CONSTANT) {
409 DCHECK(value_reg.is(rax));
410 __ ret(0);
411 return;
412 }
413
414 int index = transition->instance_descriptors()->GetFieldIndex(
415 transition->LastAdded());
416
417 // Adjust for the number of properties stored in the object. Even in the
418 // face of a transition we can use the old map here because the size of the
419 // object and the number of in-object properties is not going to change.
420 index -= transition->inobject_properties();
421
422 // TODO(verwaest): Share this code as a code stub.
423 SmiCheck smi_check =
424 representation.IsTagged() ? INLINE_SMI_CHECK : OMIT_SMI_CHECK;
425 if (index < 0) {
426 // Set the property straight into the object.
427 int offset = transition->instance_size() + (index * kPointerSize);
428 if (representation.IsDouble()) {
429 __ movp(FieldOperand(receiver_reg, offset), storage_reg);
430 } else {
431 __ movp(FieldOperand(receiver_reg, offset), value_reg);
432 }
433
434 if (!representation.IsSmi()) {
435 // Update the write barrier for the array address.
436 if (!representation.IsDouble()) {
437 __ movp(storage_reg, value_reg);
438 }
439 __ RecordWriteField(receiver_reg, offset, storage_reg, scratch1,
440 kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check);
441 }
442 } else {
443 // Write to the properties array.
444 int offset = index * kPointerSize + FixedArray::kHeaderSize;
445 // Get the properties array (optimistically).
446 __ movp(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
447 if (representation.IsDouble()) {
448 __ movp(FieldOperand(scratch1, offset), storage_reg);
449 } else {
450 __ movp(FieldOperand(scratch1, offset), value_reg);
451 }
452
453 if (!representation.IsSmi()) {
454 // Update the write barrier for the array address.
455 if (!representation.IsDouble()) {
456 __ movp(storage_reg, value_reg);
457 }
458 __ RecordWriteField(scratch1, offset, storage_reg, receiver_reg,
459 kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check);
460 }
461 }
462
463 // Return the value (register rax).
464 DCHECK(value_reg.is(rax));
465 __ ret(0);
466}
467
468
469void NamedStoreHandlerCompiler::GenerateStoreField(LookupIterator* lookup,
470 Register value_reg,
471 Label* miss_label) {
472 DCHECK(lookup->representation().IsHeapObject());
473 __ JumpIfSmi(value_reg, miss_label);
474 HeapType::Iterator<Map> it = lookup->GetFieldType()->Classes();
475 Label do_store;
476 while (true) {
477 __ CompareMap(value_reg, it.Current());
478 it.Advance();
479 if (it.Done()) {
480 __ j(not_equal, miss_label);
481 break;
482 }
483 __ j(equal, &do_store, Label::kNear);
484 }
485 __ bind(&do_store);
486
487 StoreFieldStub stub(isolate(), lookup->GetFieldIndex(),
488 lookup->representation());
489 GenerateTailCall(masm(), stub.GetCode());
490}
491
492
493Register PropertyHandlerCompiler::CheckPrototypes(
494 Register object_reg, Register holder_reg, Register scratch1,
495 Register scratch2, Handle<Name> name, Label* miss,
496 PrototypeCheckType check) {
497 Handle<Map> receiver_map(IC::TypeToMap(*type(), isolate()));
498
499 // Make sure there's no overlap between holder and object registers.
500 DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
501 DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg) &&
502 !scratch2.is(scratch1));
503
504 // Keep track of the current object in register reg. On the first
505 // iteration, reg is an alias for object_reg, on later iterations,
506 // it is an alias for holder_reg.
507 Register reg = object_reg;
508 int depth = 0;
509
510 Handle<JSObject> current = Handle<JSObject>::null();
511 if (type()->IsConstant()) {
512 current = Handle<JSObject>::cast(type()->AsConstant()->Value());
513 }
514 Handle<JSObject> prototype = Handle<JSObject>::null();
515 Handle<Map> current_map = receiver_map;
516 Handle<Map> holder_map(holder()->map());
517 // Traverse the prototype chain and check the maps in the prototype chain for
518 // fast and global objects or do negative lookup for normal objects.
519 while (!current_map.is_identical_to(holder_map)) {
520 ++depth;
521
522 // Only global objects and objects that do not require access
523 // checks are allowed in stubs.
524 DCHECK(current_map->IsJSGlobalProxyMap() ||
525 !current_map->is_access_check_needed());
526
527 prototype = handle(JSObject::cast(current_map->prototype()));
528 if (current_map->is_dictionary_map() &&
529 !current_map->IsJSGlobalObjectMap()) {
530 DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast.
531 if (!name->IsUniqueName()) {
532 DCHECK(name->IsString());
533 name = factory()->InternalizeString(Handle<String>::cast(name));
534 }
535 DCHECK(current.is_null() ||
536 current->property_dictionary()->FindEntry(name) ==
537 NameDictionary::kNotFound);
538
539 GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1,
540 scratch2);
541
542 __ movp(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
543 reg = holder_reg; // From now on the object will be in holder_reg.
544 __ movp(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
545 } else {
546 bool in_new_space = heap()->InNewSpace(*prototype);
547 // Two possible reasons for loading the prototype from the map:
548 // (1) Can't store references to new space in code.
549 // (2) Handler is shared for all receivers with the same prototype
550 // map (but not necessarily the same prototype instance).
551 bool load_prototype_from_map = in_new_space || depth == 1;
552 if (load_prototype_from_map) {
553 // Save the map in scratch1 for later.
554 __ movp(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
555 }
556 if (depth != 1 || check == CHECK_ALL_MAPS) {
557 __ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
558 }
559
560 // Check access rights to the global object. This has to happen after
561 // the map check so that we know that the object is actually a global
562 // object.
563 // This allows us to install generated handlers for accesses to the
564 // global proxy (as opposed to using slow ICs). See corresponding code
565 // in LookupForRead().
566 if (current_map->IsJSGlobalProxyMap()) {
567 __ CheckAccessGlobalProxy(reg, scratch2, miss);
568 } else if (current_map->IsJSGlobalObjectMap()) {
569 GenerateCheckPropertyCell(masm(), Handle<JSGlobalObject>::cast(current),
570 name, scratch2, miss);
571 }
572 reg = holder_reg; // From now on the object will be in holder_reg.
573
574 if (load_prototype_from_map) {
575 __ movp(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
576 } else {
577 __ Move(reg, prototype);
578 }
579 }
580
581 // Go to the next object in the prototype chain.
582 current = prototype;
583 current_map = handle(current->map());
584 }
585
586 // Log the check depth.
587 LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
588
589 if (depth != 0 || check == CHECK_ALL_MAPS) {
590 // Check the holder map.
591 __ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
592 }
593
594 // Perform security check for access to the global object.
595 DCHECK(current_map->IsJSGlobalProxyMap() ||
596 !current_map->is_access_check_needed());
597 if (current_map->IsJSGlobalProxyMap()) {
598 __ CheckAccessGlobalProxy(reg, scratch1, miss);
599 }
600
601 // Return the register containing the holder.
602 return reg;
603}
604
605
606void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
607 if (!miss->is_unused()) {
608 Label success;
609 __ jmp(&success);
610 __ bind(miss);
611 TailCallBuiltin(masm(), MissBuiltin(kind()));
612 __ bind(&success);
613 }
614}
615
616
617void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
618 if (!miss->is_unused()) {
619 Label success;
620 __ jmp(&success);
621 GenerateRestoreName(miss, name);
622 TailCallBuiltin(masm(), MissBuiltin(kind()));
623 __ bind(&success);
624 }
625}
626
627
628void NamedLoadHandlerCompiler::GenerateLoadCallback(
629 Register reg, Handle<ExecutableAccessorInfo> callback) {
630 // Insert additional parameters into the stack frame above return address.
631 DCHECK(!scratch4().is(reg));
632 __ PopReturnAddressTo(scratch4());
633
634 STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0);
635 STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1);
636 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2);
637 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3);
638 STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4);
639 STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5);
640 STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 6);
641 __ Push(receiver()); // receiver
642 if (heap()->InNewSpace(callback->data())) {
643 DCHECK(!scratch2().is(reg));
644 __ Move(scratch2(), callback);
645 __ Push(FieldOperand(scratch2(),
646 ExecutableAccessorInfo::kDataOffset)); // data
647 } else {
648 __ Push(Handle<Object>(callback->data(), isolate()));
649 }
650 DCHECK(!kScratchRegister.is(reg));
651 __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
652 __ Push(kScratchRegister); // return value
653 __ Push(kScratchRegister); // return value default
654 __ PushAddress(ExternalReference::isolate_address(isolate()));
655 __ Push(reg); // holder
656 __ Push(name()); // name
657 // Save a pointer to where we pushed the arguments pointer. This will be
658 // passed as the const PropertyAccessorInfo& to the C++ callback.
659
660 __ PushReturnAddressFrom(scratch4());
661
662 // Abi for CallApiGetter
663 Register api_function_address = ApiGetterDescriptor::function_address();
664 Address getter_address = v8::ToCData<Address>(callback->getter());
665 __ Move(api_function_address, getter_address, RelocInfo::EXTERNAL_REFERENCE);
666
667 CallApiGetterStub stub(isolate());
668 __ TailCallStub(&stub);
669}
670
671
672void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle<Object> value) {
673 // Return the constant value.
674 __ Move(rax, value);
675 __ ret(0);
676}
677
678
679void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup(
680 LookupIterator* it, Register holder_reg) {
681 DCHECK(holder()->HasNamedInterceptor());
682 DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined());
683
684 // Compile the interceptor call, followed by inline code to load the
685 // property from further up the prototype chain if the call fails.
686 // Check that the maps haven't changed.
687 DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1()));
688
689 // Preserve the receiver register explicitly whenever it is different from the
690 // holder and it is needed should the interceptor return without any result.
691 // The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD
692 // case might cause a miss during the prototype check.
693 bool must_perform_prototype_check =
694 !holder().is_identical_to(it->GetHolder<JSObject>());
695 bool must_preserve_receiver_reg =
696 !receiver().is(holder_reg) &&
697 (it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check);
698
699 // Save necessary data before invoking an interceptor.
700 // Requires a frame to make GC aware of pushed pointers.
701 {
702 FrameScope frame_scope(masm(), StackFrame::INTERNAL);
703
704 if (must_preserve_receiver_reg) {
705 __ Push(receiver());
706 }
707 __ Push(holder_reg);
708 __ Push(this->name());
709
710 // Invoke an interceptor. Note: map checks from receiver to
711 // interceptor's holder has been compiled before (see a caller
712 // of this method.)
713 CompileCallLoadPropertyWithInterceptor(
714 masm(), receiver(), holder_reg, this->name(), holder(),
715 IC::kLoadPropertyWithInterceptorOnly);
716
717 // Check if interceptor provided a value for property. If it's
718 // the case, return immediately.
719 Label interceptor_failed;
720 __ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex);
721 __ j(equal, &interceptor_failed);
722 frame_scope.GenerateLeaveFrame();
723 __ ret(0);
724
725 __ bind(&interceptor_failed);
726 __ Pop(this->name());
727 __ Pop(holder_reg);
728 if (must_preserve_receiver_reg) {
729 __ Pop(receiver());
730 }
731
732 // Leave the internal frame.
733 }
734
735 GenerateLoadPostInterceptor(it, holder_reg);
736}
737
738
739void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) {
740 // Call the runtime system to load the interceptor.
741 DCHECK(holder()->HasNamedInterceptor());
742 DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined());
743 __ PopReturnAddressTo(scratch2());
744 PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(),
745 holder());
746 __ PushReturnAddressFrom(scratch2());
747
748 ExternalReference ref = ExternalReference(
749 IC_Utility(IC::kLoadPropertyWithInterceptor), isolate());
750 __ TailCallExternalReference(
751 ref, NamedLoadHandlerCompiler::kInterceptorArgsLength, 1);
752}
753
754
755Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback(
756 Handle<JSObject> object, Handle<Name> name,
757 Handle<ExecutableAccessorInfo> callback) {
758 Register holder_reg = Frontend(receiver(), name);
759
760 __ PopReturnAddressTo(scratch1());
761 __ Push(receiver());
762 __ Push(holder_reg);
763 __ Push(callback); // callback info
764 __ Push(name);
765 __ Push(value());
766 __ PushReturnAddressFrom(scratch1());
767
768 // Do tail-call to the runtime system.
769 ExternalReference store_callback_property =
770 ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
771 __ TailCallExternalReference(store_callback_property, 5, 1);
772
773 // Return the generated code.
774 return GetCode(kind(), Code::FAST, name);
775}
776
777
778Handle<Code> NamedStoreHandlerCompiler::CompileStoreInterceptor(
779 Handle<Name> name) {
780 __ PopReturnAddressTo(scratch1());
781 __ Push(receiver());
782 __ Push(this->name());
783 __ Push(value());
784 __ PushReturnAddressFrom(scratch1());
785
786 // Do tail-call to the runtime system.
787 ExternalReference store_ic_property = ExternalReference(
788 IC_Utility(IC::kStorePropertyWithInterceptor), isolate());
789 __ TailCallExternalReference(store_ic_property, 3, 1);
790
791 // Return the generated code.
792 return GetCode(kind(), Code::FAST, name);
793}
794
795
796Register NamedStoreHandlerCompiler::value() {
797 return StoreDescriptor::ValueRegister();
798}
799
800
801Handle<Code> NamedLoadHandlerCompiler::CompileLoadGlobal(
802 Handle<PropertyCell> cell, Handle<Name> name, bool is_configurable) {
803 Label miss;
804 FrontendHeader(receiver(), name, &miss);
805
806 // Get the value from the cell.
807 Register result = StoreDescriptor::ValueRegister();
808 __ Move(result, cell);
809 __ movp(result, FieldOperand(result, PropertyCell::kValueOffset));
810
811 // Check for deleted property if property can actually be deleted.
812 if (is_configurable) {
813 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
814 __ j(equal, &miss);
815 } else if (FLAG_debug_code) {
816 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
817 __ Check(not_equal, kDontDeleteCellsCannotContainTheHole);
818 }
819
820 Counters* counters = isolate()->counters();
821 __ IncrementCounter(counters->named_load_global_stub(), 1);
822 __ ret(0);
823
824 FrontendFooter(name, &miss);
825
826 // Return the generated code.
827 return GetCode(kind(), Code::NORMAL, name);
828}
829
830
831#undef __
832}
833} // namespace v8::internal
834
835#endif // V8_TARGET_ARCH_X64