blob: 94e0cd24f96449b39adffb90c1800c8984c9db43 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_SPACES_H_
29#define V8_SPACES_H_
30
31#include "list-inl.h"
32#include "log.h"
33
34namespace v8 {
35namespace internal {
36
37// -----------------------------------------------------------------------------
38// Heap structures:
39//
40// A JS heap consists of a young generation, an old generation, and a large
41// object space. The young generation is divided into two semispaces. A
42// scavenger implements Cheney's copying algorithm. The old generation is
43// separated into a map space and an old object space. The map space contains
44// all (and only) map objects, the rest of old objects go into the old space.
45// The old generation is collected by a mark-sweep-compact collector.
46//
47// The semispaces of the young generation are contiguous. The old and map
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010048// spaces consists of a list of pages. A page has a page header and an object
49// area. A page size is deliberately chosen as 8K bytes.
50// The first word of a page is an opaque page header that has the
Steve Blocka7e24c12009-10-30 11:49:00 +000051// address of the next page and its ownership information. The second word may
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010052// have the allocation top address of this page. Heap objects are aligned to the
53// pointer size.
Steve Blocka7e24c12009-10-30 11:49:00 +000054//
55// There is a separate large object space for objects larger than
56// Page::kMaxHeapObjectSize, so that they do not have to move during
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010057// collection. The large object space is paged. Pages in large object space
58// may be larger than 8K.
Steve Blocka7e24c12009-10-30 11:49:00 +000059//
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010060// A card marking write barrier is used to keep track of intergenerational
61// references. Old space pages are divided into regions of Page::kRegionSize
62// size. Each region has a corresponding dirty bit in the page header which is
63// set if the region might contain pointers to new space. For details about
64// dirty bits encoding see comments in the Page::GetRegionNumberForAddress()
65// method body.
66//
67// During scavenges and mark-sweep collections we iterate intergenerational
68// pointers without decoding heap object maps so if the page belongs to old
69// pointer space or large object space it is essential to guarantee that
70// the page does not contain any garbage pointers to new space: every pointer
71// aligned word which satisfies the Heap::InNewSpace() predicate must be a
72// pointer to a live heap object in new space. Thus objects in old pointer
73// and large object spaces should have a special layout (e.g. no bare integer
74// fields). This requirement does not apply to map space which is iterated in
75// a special fashion. However we still require pointer fields of dead maps to
76// be cleaned.
77//
78// To enable lazy cleaning of old space pages we use a notion of allocation
79// watermark. Every pointer under watermark is considered to be well formed.
80// Page allocation watermark is not necessarily equal to page allocation top but
81// all alive objects on page should reside under allocation watermark.
82// During scavenge allocation watermark might be bumped and invalid pointers
83// might appear below it. To avoid following them we store a valid watermark
84// into special field in the page header and set a page WATERMARK_INVALIDATED
85// flag. For details see comments in the Page::SetAllocationWatermark() method
86// body.
87//
Steve Blocka7e24c12009-10-30 11:49:00 +000088
89// Some assertion macros used in the debugging mode.
90
Leon Clarkee46be812010-01-19 14:06:41 +000091#define ASSERT_PAGE_ALIGNED(address) \
Steve Blocka7e24c12009-10-30 11:49:00 +000092 ASSERT((OffsetFrom(address) & Page::kPageAlignmentMask) == 0)
93
Leon Clarkee46be812010-01-19 14:06:41 +000094#define ASSERT_OBJECT_ALIGNED(address) \
Steve Blocka7e24c12009-10-30 11:49:00 +000095 ASSERT((OffsetFrom(address) & kObjectAlignmentMask) == 0)
96
Leon Clarkee46be812010-01-19 14:06:41 +000097#define ASSERT_MAP_ALIGNED(address) \
98 ASSERT((OffsetFrom(address) & kMapAlignmentMask) == 0)
99
100#define ASSERT_OBJECT_SIZE(size) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000101 ASSERT((0 < size) && (size <= Page::kMaxHeapObjectSize))
102
Leon Clarkee46be812010-01-19 14:06:41 +0000103#define ASSERT_PAGE_OFFSET(offset) \
104 ASSERT((Page::kObjectStartOffset <= offset) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000105 && (offset <= Page::kPageSize))
106
Leon Clarkee46be812010-01-19 14:06:41 +0000107#define ASSERT_MAP_PAGE_INDEX(index) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000108 ASSERT((0 <= index) && (index <= MapSpace::kMaxMapPageIndex))
109
110
111class PagedSpace;
112class MemoryAllocator;
113class AllocationInfo;
114
115// -----------------------------------------------------------------------------
116// A page normally has 8K bytes. Large object pages may be larger. A page
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100117// address is always aligned to the 8K page size.
Steve Blocka7e24c12009-10-30 11:49:00 +0000118//
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100119// Each page starts with a header of Page::kPageHeaderSize size which contains
120// bookkeeping data.
Steve Blocka7e24c12009-10-30 11:49:00 +0000121//
122// The mark-compact collector transforms a map pointer into a page index and a
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100123// page offset. The exact encoding is described in the comments for
Leon Clarkee46be812010-01-19 14:06:41 +0000124// class MapWord in objects.h.
Steve Blocka7e24c12009-10-30 11:49:00 +0000125//
126// The only way to get a page pointer is by calling factory methods:
127// Page* p = Page::FromAddress(addr); or
128// Page* p = Page::FromAllocationTop(top);
129class Page {
130 public:
131 // Returns the page containing a given address. The address ranges
132 // from [page_addr .. page_addr + kPageSize[
133 //
134 // Note that this function only works for addresses in normal paged
135 // spaces and addresses in the first 8K of large object pages (i.e.,
136 // the start of large objects but not necessarily derived pointers
137 // within them).
138 INLINE(static Page* FromAddress(Address a)) {
139 return reinterpret_cast<Page*>(OffsetFrom(a) & ~kPageAlignmentMask);
140 }
141
142 // Returns the page containing an allocation top. Because an allocation
143 // top address can be the upper bound of the page, we need to subtract
144 // it with kPointerSize first. The address ranges from
145 // [page_addr + kObjectStartOffset .. page_addr + kPageSize].
146 INLINE(static Page* FromAllocationTop(Address top)) {
147 Page* p = FromAddress(top - kPointerSize);
148 ASSERT_PAGE_OFFSET(p->Offset(top));
149 return p;
150 }
151
152 // Returns the start address of this page.
153 Address address() { return reinterpret_cast<Address>(this); }
154
155 // Checks whether this is a valid page address.
156 bool is_valid() { return address() != NULL; }
157
158 // Returns the next page of this page.
159 inline Page* next_page();
160
161 // Return the end of allocation in this page. Undefined for unused pages.
162 inline Address AllocationTop();
163
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100164 // Return the allocation watermark for the page.
165 // For old space pages it is guaranteed that the area under the watermark
166 // does not contain any garbage pointers to new space.
167 inline Address AllocationWatermark();
168
169 // Return the allocation watermark offset from the beginning of the page.
170 inline uint32_t AllocationWatermarkOffset();
171
172 inline void SetAllocationWatermark(Address allocation_watermark);
173
174 inline void SetCachedAllocationWatermark(Address allocation_watermark);
175 inline Address CachedAllocationWatermark();
176
Steve Blocka7e24c12009-10-30 11:49:00 +0000177 // Returns the start address of the object area in this page.
178 Address ObjectAreaStart() { return address() + kObjectStartOffset; }
179
180 // Returns the end address (exclusive) of the object area in this page.
181 Address ObjectAreaEnd() { return address() + Page::kPageSize; }
182
Steve Blocka7e24c12009-10-30 11:49:00 +0000183 // Checks whether an address is page aligned.
184 static bool IsAlignedToPageSize(Address a) {
185 return 0 == (OffsetFrom(a) & kPageAlignmentMask);
186 }
187
Steve Block6ded16b2010-05-10 14:33:55 +0100188 // True if this page was in use before current compaction started.
189 // Result is valid only for pages owned by paged spaces and
190 // only after PagedSpace::PrepareForMarkCompact was called.
191 inline bool WasInUseBeforeMC();
192
193 inline void SetWasInUseBeforeMC(bool was_in_use);
194
Steve Blocka7e24c12009-10-30 11:49:00 +0000195 // True if this page is a large object page.
Steve Block6ded16b2010-05-10 14:33:55 +0100196 inline bool IsLargeObjectPage();
197
198 inline void SetIsLargeObjectPage(bool is_large_object_page);
Steve Blocka7e24c12009-10-30 11:49:00 +0000199
Steve Block791712a2010-08-27 10:21:07 +0100200 inline bool IsPageExecutable();
201
202 inline void SetIsPageExecutable(bool is_page_executable);
203
Steve Blocka7e24c12009-10-30 11:49:00 +0000204 // Returns the offset of a given address to this page.
205 INLINE(int Offset(Address a)) {
Steve Blockd0582a62009-12-15 09:54:21 +0000206 int offset = static_cast<int>(a - address());
Steve Blocka7e24c12009-10-30 11:49:00 +0000207 ASSERT_PAGE_OFFSET(offset);
208 return offset;
209 }
210
211 // Returns the address for a given offset to the this page.
212 Address OffsetToAddress(int offset) {
213 ASSERT_PAGE_OFFSET(offset);
214 return address() + offset;
215 }
216
217 // ---------------------------------------------------------------------
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100218 // Card marking support
Steve Blocka7e24c12009-10-30 11:49:00 +0000219
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100220 static const uint32_t kAllRegionsCleanMarks = 0x0;
221 static const uint32_t kAllRegionsDirtyMarks = 0xFFFFFFFF;
Steve Blocka7e24c12009-10-30 11:49:00 +0000222
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100223 inline uint32_t GetRegionMarks();
224 inline void SetRegionMarks(uint32_t dirty);
Steve Blocka7e24c12009-10-30 11:49:00 +0000225
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100226 inline uint32_t GetRegionMaskForAddress(Address addr);
227 inline uint32_t GetRegionMaskForSpan(Address start, int length_in_bytes);
228 inline int GetRegionNumberForAddress(Address addr);
Steve Blocka7e24c12009-10-30 11:49:00 +0000229
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100230 inline void MarkRegionDirty(Address addr);
231 inline bool IsRegionDirty(Address addr);
Steve Blocka7e24c12009-10-30 11:49:00 +0000232
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100233 inline void ClearRegionMarks(Address start,
234 Address end,
235 bool reaches_limit);
Steve Blocka7e24c12009-10-30 11:49:00 +0000236
Steve Blocka7e24c12009-10-30 11:49:00 +0000237 // Page size in bytes. This must be a multiple of the OS page size.
238 static const int kPageSize = 1 << kPageSizeBits;
239
240 // Page size mask.
241 static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1;
242
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100243 static const int kPageHeaderSize = kPointerSize + kPointerSize + kIntSize +
244 kIntSize + kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +0000245
Kristian Monsen0d5e1162010-09-30 15:31:59 +0100246 // The start offset of the object area in a page. Aligned to both maps and
247 // code alignment to be suitable for both.
248 static const int kObjectStartOffset =
249 CODE_POINTER_ALIGN(MAP_POINTER_ALIGN(kPageHeaderSize));
Steve Blocka7e24c12009-10-30 11:49:00 +0000250
251 // Object area size in bytes.
252 static const int kObjectAreaSize = kPageSize - kObjectStartOffset;
253
254 // Maximum object size that fits in a page.
255 static const int kMaxHeapObjectSize = kObjectAreaSize;
256
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100257 static const int kDirtyFlagOffset = 2 * kPointerSize;
258 static const int kRegionSizeLog2 = 8;
259 static const int kRegionSize = 1 << kRegionSizeLog2;
260 static const intptr_t kRegionAlignmentMask = (kRegionSize - 1);
261
262 STATIC_CHECK(kRegionSize == kPageSize / kBitsPerInt);
263
Steve Block6ded16b2010-05-10 14:33:55 +0100264 enum PageFlag {
Steve Block791712a2010-08-27 10:21:07 +0100265 IS_NORMAL_PAGE = 0,
266 WAS_IN_USE_BEFORE_MC,
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100267
268 // Page allocation watermark was bumped by preallocation during scavenge.
269 // Correct watermark can be retrieved by CachedAllocationWatermark() method
Steve Block791712a2010-08-27 10:21:07 +0100270 WATERMARK_INVALIDATED,
271 IS_EXECUTABLE,
272 NUM_PAGE_FLAGS // Must be last
Steve Block6ded16b2010-05-10 14:33:55 +0100273 };
Steve Block791712a2010-08-27 10:21:07 +0100274 static const int kPageFlagMask = (1 << NUM_PAGE_FLAGS) - 1;
Steve Block6ded16b2010-05-10 14:33:55 +0100275
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100276 // To avoid an additional WATERMARK_INVALIDATED flag clearing pass during
277 // scavenge we just invalidate the watermark on each old space page after
278 // processing it. And then we flip the meaning of the WATERMARK_INVALIDATED
279 // flag at the beginning of the next scavenge and each page becomes marked as
280 // having a valid watermark.
281 //
282 // The following invariant must hold for pages in old pointer and map spaces:
283 // If page is in use then page is marked as having invalid watermark at
284 // the beginning and at the end of any GC.
285 //
286 // This invariant guarantees that after flipping flag meaning at the
287 // beginning of scavenge all pages in use will be marked as having valid
288 // watermark.
289 static inline void FlipMeaningOfInvalidatedWatermarkFlag();
290
291 // Returns true if the page allocation watermark was not altered during
292 // scavenge.
293 inline bool IsWatermarkValid();
294
295 inline void InvalidateWatermark(bool value);
296
Steve Block6ded16b2010-05-10 14:33:55 +0100297 inline bool GetPageFlag(PageFlag flag);
298 inline void SetPageFlag(PageFlag flag, bool value);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100299 inline void ClearPageFlags();
300
301 inline void ClearGCFields();
302
Steve Block791712a2010-08-27 10:21:07 +0100303 static const int kAllocationWatermarkOffsetShift = WATERMARK_INVALIDATED + 1;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100304 static const int kAllocationWatermarkOffsetBits = kPageSizeBits + 1;
305 static const uint32_t kAllocationWatermarkOffsetMask =
306 ((1 << kAllocationWatermarkOffsetBits) - 1) <<
307 kAllocationWatermarkOffsetShift;
308
309 static const uint32_t kFlagsMask =
310 ((1 << kAllocationWatermarkOffsetShift) - 1);
311
312 STATIC_CHECK(kBitsPerInt - kAllocationWatermarkOffsetShift >=
313 kAllocationWatermarkOffsetBits);
314
315 // This field contains the meaning of the WATERMARK_INVALIDATED flag.
316 // Instead of clearing this flag from all pages we just flip
317 // its meaning at the beginning of a scavenge.
318 static intptr_t watermark_invalidated_mark_;
Steve Block6ded16b2010-05-10 14:33:55 +0100319
Steve Blocka7e24c12009-10-30 11:49:00 +0000320 //---------------------------------------------------------------------------
321 // Page header description.
322 //
323 // If a page is not in the large object space, the first word,
324 // opaque_header, encodes the next page address (aligned to kPageSize 8K)
325 // and the chunk number (0 ~ 8K-1). Only MemoryAllocator should use
326 // opaque_header. The value range of the opaque_header is [0..kPageSize[,
327 // or [next_page_start, next_page_end[. It cannot point to a valid address
328 // in the current page. If a page is in the large object space, the first
329 // word *may* (if the page start and large object chunk start are the
330 // same) contain the address of the next large object chunk.
331 intptr_t opaque_header;
332
333 // If the page is not in the large object space, the low-order bit of the
334 // second word is set. If the page is in the large object space, the
335 // second word *may* (if the page start and large object chunk start are
336 // the same) contain the large object chunk size. In either case, the
337 // low-order bit for large object pages will be cleared.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100338 // For normal pages this word is used to store page flags and
339 // offset of allocation top.
340 intptr_t flags_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000341
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100342 // This field contains dirty marks for regions covering the page. Only dirty
343 // regions might contain intergenerational references.
344 // Only 32 dirty marks are supported so for large object pages several regions
345 // might be mapped to a single dirty mark.
346 uint32_t dirty_regions_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000347
348 // The index of the page in its owner space.
349 int mc_page_index;
350
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100351 // During mark-compact collections this field contains the forwarding address
352 // of the first live object in this page.
353 // During scavenge collection this field is used to store allocation watermark
354 // if it is altered during scavenge.
Steve Blocka7e24c12009-10-30 11:49:00 +0000355 Address mc_first_forwarded;
Steve Blocka7e24c12009-10-30 11:49:00 +0000356};
357
358
359// ----------------------------------------------------------------------------
360// Space is the abstract superclass for all allocation spaces.
361class Space : public Malloced {
362 public:
363 Space(AllocationSpace id, Executability executable)
364 : id_(id), executable_(executable) {}
365
366 virtual ~Space() {}
367
368 // Does the space need executable memory?
369 Executability executable() { return executable_; }
370
371 // Identity used in error reporting.
372 AllocationSpace identity() { return id_; }
373
374 virtual int Size() = 0;
375
Steve Block6ded16b2010-05-10 14:33:55 +0100376#ifdef ENABLE_HEAP_PROTECTION
377 // Protect/unprotect the space by marking it read-only/writable.
378 virtual void Protect() = 0;
379 virtual void Unprotect() = 0;
380#endif
381
Steve Blocka7e24c12009-10-30 11:49:00 +0000382#ifdef DEBUG
383 virtual void Print() = 0;
384#endif
385
Leon Clarkee46be812010-01-19 14:06:41 +0000386 // After calling this we can allocate a certain number of bytes using only
387 // linear allocation (with a LinearAllocationScope and an AlwaysAllocateScope)
388 // without using freelists or causing a GC. This is used by partial
389 // snapshots. It returns true of space was reserved or false if a GC is
390 // needed. For paged spaces the space requested must include the space wasted
391 // at the end of each when allocating linearly.
392 virtual bool ReserveSpace(int bytes) = 0;
393
Steve Blocka7e24c12009-10-30 11:49:00 +0000394 private:
395 AllocationSpace id_;
396 Executability executable_;
397};
398
399
400// ----------------------------------------------------------------------------
401// All heap objects containing executable code (code objects) must be allocated
402// from a 2 GB range of memory, so that they can call each other using 32-bit
403// displacements. This happens automatically on 32-bit platforms, where 32-bit
404// displacements cover the entire 4GB virtual address space. On 64-bit
405// platforms, we support this using the CodeRange object, which reserves and
406// manages a range of virtual memory.
407class CodeRange : public AllStatic {
408 public:
409 // Reserves a range of virtual memory, but does not commit any of it.
410 // Can only be called once, at heap initialization time.
411 // Returns false on failure.
412 static bool Setup(const size_t requested_size);
413
414 // Frees the range of virtual memory, and frees the data structures used to
415 // manage it.
416 static void TearDown();
417
418 static bool exists() { return code_range_ != NULL; }
419 static bool contains(Address address) {
420 if (code_range_ == NULL) return false;
421 Address start = static_cast<Address>(code_range_->address());
422 return start <= address && address < start + code_range_->size();
423 }
424
425 // Allocates a chunk of memory from the large-object portion of
426 // the code range. On platforms with no separate code range, should
427 // not be called.
428 static void* AllocateRawMemory(const size_t requested, size_t* allocated);
429 static void FreeRawMemory(void* buf, size_t length);
430
431 private:
432 // The reserved range of virtual memory that all code objects are put in.
433 static VirtualMemory* code_range_;
434 // Plain old data class, just a struct plus a constructor.
435 class FreeBlock {
436 public:
437 FreeBlock(Address start_arg, size_t size_arg)
438 : start(start_arg), size(size_arg) {}
439 FreeBlock(void* start_arg, size_t size_arg)
440 : start(static_cast<Address>(start_arg)), size(size_arg) {}
441
442 Address start;
443 size_t size;
444 };
445
446 // Freed blocks of memory are added to the free list. When the allocation
447 // list is exhausted, the free list is sorted and merged to make the new
448 // allocation list.
449 static List<FreeBlock> free_list_;
450 // Memory is allocated from the free blocks on the allocation list.
451 // The block at current_allocation_block_index_ is the current block.
452 static List<FreeBlock> allocation_list_;
453 static int current_allocation_block_index_;
454
455 // Finds a block on the allocation list that contains at least the
456 // requested amount of memory. If none is found, sorts and merges
457 // the existing free memory blocks, and searches again.
458 // If none can be found, terminates V8 with FatalProcessOutOfMemory.
459 static void GetNextAllocationBlock(size_t requested);
460 // Compares the start addresses of two free blocks.
461 static int CompareFreeBlockAddress(const FreeBlock* left,
462 const FreeBlock* right);
463};
464
465
466// ----------------------------------------------------------------------------
467// A space acquires chunks of memory from the operating system. The memory
468// allocator manages chunks for the paged heap spaces (old space and map
469// space). A paged chunk consists of pages. Pages in a chunk have contiguous
470// addresses and are linked as a list.
471//
472// The allocator keeps an initial chunk which is used for the new space. The
473// leftover regions of the initial chunk are used for the initial chunks of
474// old space and map space if they are big enough to hold at least one page.
475// The allocator assumes that there is one old space and one map space, each
476// expands the space by allocating kPagesPerChunk pages except the last
477// expansion (before running out of space). The first chunk may contain fewer
478// than kPagesPerChunk pages as well.
479//
480// The memory allocator also allocates chunks for the large object space, but
481// they are managed by the space itself. The new space does not expand.
Steve Block6ded16b2010-05-10 14:33:55 +0100482//
483// The fact that pages for paged spaces are allocated and deallocated in chunks
484// induces a constraint on the order of pages in a linked lists. We say that
485// pages are linked in the chunk-order if and only if every two consecutive
486// pages from the same chunk are consecutive in the linked list.
487//
488
Steve Blocka7e24c12009-10-30 11:49:00 +0000489
490class MemoryAllocator : public AllStatic {
491 public:
492 // Initializes its internal bookkeeping structures.
493 // Max capacity of the total space.
494 static bool Setup(int max_capacity);
495
496 // Deletes valid chunks.
497 static void TearDown();
498
499 // Reserves an initial address range of virtual memory to be split between
500 // the two new space semispaces, the old space, and the map space. The
501 // memory is not yet committed or assigned to spaces and split into pages.
502 // The initial chunk is unmapped when the memory allocator is torn down.
503 // This function should only be called when there is not already a reserved
504 // initial chunk (initial_chunk_ should be NULL). It returns the start
505 // address of the initial chunk if successful, with the side effect of
506 // setting the initial chunk, or else NULL if unsuccessful and leaves the
507 // initial chunk NULL.
508 static void* ReserveInitialChunk(const size_t requested);
509
510 // Commits pages from an as-yet-unmanaged block of virtual memory into a
511 // paged space. The block should be part of the initial chunk reserved via
512 // a call to ReserveInitialChunk. The number of pages is always returned in
513 // the output parameter num_pages. This function assumes that the start
514 // address is non-null and that it is big enough to hold at least one
515 // page-aligned page. The call always succeeds, and num_pages is always
516 // greater than zero.
517 static Page* CommitPages(Address start, size_t size, PagedSpace* owner,
518 int* num_pages);
519
520 // Commit a contiguous block of memory from the initial chunk. Assumes that
521 // the address is not NULL, the size is greater than zero, and that the
522 // block is contained in the initial chunk. Returns true if it succeeded
523 // and false otherwise.
524 static bool CommitBlock(Address start, size_t size, Executability executable);
525
Steve Blocka7e24c12009-10-30 11:49:00 +0000526 // Uncommit a contiguous block of memory [start..(start+size)[.
527 // start is not NULL, the size is greater than zero, and the
528 // block is contained in the initial chunk. Returns true if it succeeded
529 // and false otherwise.
530 static bool UncommitBlock(Address start, size_t size);
531
Leon Clarke4515c472010-02-03 11:58:03 +0000532 // Zaps a contiguous block of memory [start..(start+size)[ thus
533 // filling it up with a recognizable non-NULL bit pattern.
534 static void ZapBlock(Address start, size_t size);
535
Steve Blocka7e24c12009-10-30 11:49:00 +0000536 // Attempts to allocate the requested (non-zero) number of pages from the
537 // OS. Fewer pages might be allocated than requested. If it fails to
538 // allocate memory for the OS or cannot allocate a single page, this
539 // function returns an invalid page pointer (NULL). The caller must check
540 // whether the returned page is valid (by calling Page::is_valid()). It is
541 // guaranteed that allocated pages have contiguous addresses. The actual
542 // number of allocated pages is returned in the output parameter
543 // allocated_pages. If the PagedSpace owner is executable and there is
544 // a code range, the pages are allocated from the code range.
545 static Page* AllocatePages(int requested_pages, int* allocated_pages,
546 PagedSpace* owner);
547
Steve Block6ded16b2010-05-10 14:33:55 +0100548 // Frees pages from a given page and after. Requires pages to be
549 // linked in chunk-order (see comment for class).
550 // If 'p' is the first page of a chunk, pages from 'p' are freed
551 // and this function returns an invalid page pointer.
552 // Otherwise, the function searches a page after 'p' that is
553 // the first page of a chunk. Pages after the found page
554 // are freed and the function returns 'p'.
Steve Blocka7e24c12009-10-30 11:49:00 +0000555 static Page* FreePages(Page* p);
556
Steve Block6ded16b2010-05-10 14:33:55 +0100557 // Frees all pages owned by given space.
558 static void FreeAllPages(PagedSpace* space);
559
Steve Blocka7e24c12009-10-30 11:49:00 +0000560 // Allocates and frees raw memory of certain size.
561 // These are just thin wrappers around OS::Allocate and OS::Free,
562 // but keep track of allocated bytes as part of heap.
563 // If the flag is EXECUTABLE and a code range exists, the requested
564 // memory is allocated from the code range. If a code range exists
565 // and the freed memory is in it, the code range manages the freed memory.
566 static void* AllocateRawMemory(const size_t requested,
567 size_t* allocated,
568 Executability executable);
Steve Block791712a2010-08-27 10:21:07 +0100569 static void FreeRawMemory(void* buf,
570 size_t length,
571 Executability executable);
Iain Merrick9ac36c92010-09-13 15:29:50 +0100572 static void PerformAllocationCallback(ObjectSpace space,
573 AllocationAction action,
574 size_t size);
575
576 static void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
577 ObjectSpace space,
578 AllocationAction action);
579 static void RemoveMemoryAllocationCallback(
580 MemoryAllocationCallback callback);
581 static bool MemoryAllocationCallbackRegistered(
582 MemoryAllocationCallback callback);
Steve Blocka7e24c12009-10-30 11:49:00 +0000583
584 // Returns the maximum available bytes of heaps.
585 static int Available() { return capacity_ < size_ ? 0 : capacity_ - size_; }
586
587 // Returns allocated spaces in bytes.
588 static int Size() { return size_; }
589
Steve Block791712a2010-08-27 10:21:07 +0100590 // Returns allocated executable spaces in bytes.
591 static int SizeExecutable() { return size_executable_; }
592
Steve Blocka7e24c12009-10-30 11:49:00 +0000593 // Returns maximum available bytes that the old space can have.
594 static int MaxAvailable() {
595 return (Available() / Page::kPageSize) * Page::kObjectAreaSize;
596 }
597
598 // Links two pages.
599 static inline void SetNextPage(Page* prev, Page* next);
600
601 // Returns the next page of a given page.
602 static inline Page* GetNextPage(Page* p);
603
604 // Checks whether a page belongs to a space.
605 static inline bool IsPageInSpace(Page* p, PagedSpace* space);
606
607 // Returns the space that owns the given page.
608 static inline PagedSpace* PageOwner(Page* page);
609
610 // Finds the first/last page in the same chunk as a given page.
611 static Page* FindFirstPageInSameChunk(Page* p);
612 static Page* FindLastPageInSameChunk(Page* p);
613
Steve Block6ded16b2010-05-10 14:33:55 +0100614 // Relinks list of pages owned by space to make it chunk-ordered.
615 // Returns new first and last pages of space.
616 // Also returns last page in relinked list which has WasInUsedBeforeMC
617 // flag set.
618 static void RelinkPageListInChunkOrder(PagedSpace* space,
619 Page** first_page,
620 Page** last_page,
621 Page** last_page_in_use);
622
Steve Blocka7e24c12009-10-30 11:49:00 +0000623#ifdef ENABLE_HEAP_PROTECTION
624 // Protect/unprotect a block of memory by marking it read-only/writable.
625 static inline void Protect(Address start, size_t size);
626 static inline void Unprotect(Address start, size_t size,
627 Executability executable);
628
629 // Protect/unprotect a chunk given a page in the chunk.
630 static inline void ProtectChunkFromPage(Page* page);
631 static inline void UnprotectChunkFromPage(Page* page);
632#endif
633
634#ifdef DEBUG
635 // Reports statistic info of the space.
636 static void ReportStatistics();
637#endif
638
639 // Due to encoding limitation, we can only have 8K chunks.
Leon Clarkee46be812010-01-19 14:06:41 +0000640 static const int kMaxNofChunks = 1 << kPageSizeBits;
Steve Blocka7e24c12009-10-30 11:49:00 +0000641 // If a chunk has at least 16 pages, the maximum heap size is about
642 // 8K * 8K * 16 = 1G bytes.
643#ifdef V8_TARGET_ARCH_X64
644 static const int kPagesPerChunk = 32;
645#else
646 static const int kPagesPerChunk = 16;
647#endif
648 static const int kChunkSize = kPagesPerChunk * Page::kPageSize;
649
650 private:
651 // Maximum space size in bytes.
652 static int capacity_;
653
654 // Allocated space size in bytes.
655 static int size_;
Steve Block791712a2010-08-27 10:21:07 +0100656 // Allocated executable space size in bytes.
657 static int size_executable_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000658
Iain Merrick9ac36c92010-09-13 15:29:50 +0100659 struct MemoryAllocationCallbackRegistration {
660 MemoryAllocationCallbackRegistration(MemoryAllocationCallback callback,
661 ObjectSpace space,
662 AllocationAction action)
663 : callback(callback), space(space), action(action) {
664 }
665 MemoryAllocationCallback callback;
666 ObjectSpace space;
667 AllocationAction action;
668 };
669 // A List of callback that are triggered when memory is allocated or free'd
670 static List<MemoryAllocationCallbackRegistration>
671 memory_allocation_callbacks_;
672
Steve Blocka7e24c12009-10-30 11:49:00 +0000673 // The initial chunk of virtual memory.
674 static VirtualMemory* initial_chunk_;
675
676 // Allocated chunk info: chunk start address, chunk size, and owning space.
677 class ChunkInfo BASE_EMBEDDED {
678 public:
Iain Merrick9ac36c92010-09-13 15:29:50 +0100679 ChunkInfo() : address_(NULL),
680 size_(0),
681 owner_(NULL),
682 executable_(NOT_EXECUTABLE) {}
683 inline void init(Address a, size_t s, PagedSpace* o);
Steve Blocka7e24c12009-10-30 11:49:00 +0000684 Address address() { return address_; }
685 size_t size() { return size_; }
686 PagedSpace* owner() { return owner_; }
Iain Merrick9ac36c92010-09-13 15:29:50 +0100687 // We save executability of the owner to allow using it
688 // when collecting stats after the owner has been destroyed.
689 Executability executable() const { return executable_; }
Steve Blocka7e24c12009-10-30 11:49:00 +0000690
691 private:
692 Address address_;
693 size_t size_;
694 PagedSpace* owner_;
Iain Merrick9ac36c92010-09-13 15:29:50 +0100695 Executability executable_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000696 };
697
698 // Chunks_, free_chunk_ids_ and top_ act as a stack of free chunk ids.
699 static List<ChunkInfo> chunks_;
700 static List<int> free_chunk_ids_;
701 static int max_nof_chunks_;
702 static int top_;
703
704 // Push/pop a free chunk id onto/from the stack.
705 static void Push(int free_chunk_id);
706 static int Pop();
707 static bool OutOfChunkIds() { return top_ == 0; }
708
709 // Frees a chunk.
710 static void DeleteChunk(int chunk_id);
711
712 // Basic check whether a chunk id is in the valid range.
713 static inline bool IsValidChunkId(int chunk_id);
714
715 // Checks whether a chunk id identifies an allocated chunk.
716 static inline bool IsValidChunk(int chunk_id);
717
718 // Returns the chunk id that a page belongs to.
719 static inline int GetChunkId(Page* p);
720
721 // True if the address lies in the initial chunk.
722 static inline bool InInitialChunk(Address address);
723
724 // Initializes pages in a chunk. Returns the first page address.
725 // This function and GetChunkId() are provided for the mark-compact
726 // collector to rebuild page headers in the from space, which is
727 // used as a marking stack and its page headers are destroyed.
728 static Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk,
729 PagedSpace* owner);
Steve Block6ded16b2010-05-10 14:33:55 +0100730
731 static Page* RelinkPagesInChunk(int chunk_id,
732 Address chunk_start,
733 size_t chunk_size,
734 Page* prev,
735 Page** last_page_in_use);
Steve Blocka7e24c12009-10-30 11:49:00 +0000736};
737
738
739// -----------------------------------------------------------------------------
740// Interface for heap object iterator to be implemented by all object space
741// object iterators.
742//
Leon Clarked91b9f72010-01-27 17:25:45 +0000743// NOTE: The space specific object iterators also implements the own next()
744// method which is used to avoid using virtual functions
Steve Blocka7e24c12009-10-30 11:49:00 +0000745// iterating a specific space.
746
747class ObjectIterator : public Malloced {
748 public:
749 virtual ~ObjectIterator() { }
750
Steve Blocka7e24c12009-10-30 11:49:00 +0000751 virtual HeapObject* next_object() = 0;
752};
753
754
755// -----------------------------------------------------------------------------
756// Heap object iterator in new/old/map spaces.
757//
758// A HeapObjectIterator iterates objects from a given address to the
759// top of a space. The given address must be below the current
760// allocation pointer (space top). There are some caveats.
761//
762// (1) If the space top changes upward during iteration (because of
763// allocating new objects), the iterator does not iterate objects
764// above the original space top. The caller must create a new
765// iterator starting from the old top in order to visit these new
766// objects.
767//
768// (2) If new objects are allocated below the original allocation top
769// (e.g., free-list allocation in paged spaces), the new objects
770// may or may not be iterated depending on their position with
771// respect to the current point of iteration.
772//
773// (3) The space top should not change downward during iteration,
774// otherwise the iterator will return not-necessarily-valid
775// objects.
776
777class HeapObjectIterator: public ObjectIterator {
778 public:
779 // Creates a new object iterator in a given space. If a start
780 // address is not given, the iterator starts from the space bottom.
781 // If the size function is not given, the iterator calls the default
782 // Object::Size().
783 explicit HeapObjectIterator(PagedSpace* space);
784 HeapObjectIterator(PagedSpace* space, HeapObjectCallback size_func);
785 HeapObjectIterator(PagedSpace* space, Address start);
786 HeapObjectIterator(PagedSpace* space,
787 Address start,
788 HeapObjectCallback size_func);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100789 HeapObjectIterator(Page* page, HeapObjectCallback size_func);
Steve Blocka7e24c12009-10-30 11:49:00 +0000790
Leon Clarked91b9f72010-01-27 17:25:45 +0000791 inline HeapObject* next() {
792 return (cur_addr_ < cur_limit_) ? FromCurrentPage() : FromNextPage();
793 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000794
795 // implementation of ObjectIterator.
Steve Blocka7e24c12009-10-30 11:49:00 +0000796 virtual HeapObject* next_object() { return next(); }
797
798 private:
799 Address cur_addr_; // current iteration point
800 Address end_addr_; // end iteration point
801 Address cur_limit_; // current page limit
802 HeapObjectCallback size_func_; // size function
803 Page* end_page_; // caches the page of the end address
804
Leon Clarked91b9f72010-01-27 17:25:45 +0000805 HeapObject* FromCurrentPage() {
806 ASSERT(cur_addr_ < cur_limit_);
807
808 HeapObject* obj = HeapObject::FromAddress(cur_addr_);
809 int obj_size = (size_func_ == NULL) ? obj->Size() : size_func_(obj);
810 ASSERT_OBJECT_SIZE(obj_size);
811
812 cur_addr_ += obj_size;
813 ASSERT(cur_addr_ <= cur_limit_);
814
815 return obj;
816 }
817
818 // Slow path of next, goes into the next page.
819 HeapObject* FromNextPage();
Steve Blocka7e24c12009-10-30 11:49:00 +0000820
821 // Initializes fields.
822 void Initialize(Address start, Address end, HeapObjectCallback size_func);
823
824#ifdef DEBUG
825 // Verifies whether fields have valid values.
826 void Verify();
827#endif
828};
829
830
831// -----------------------------------------------------------------------------
832// A PageIterator iterates the pages in a paged space.
833//
834// The PageIterator class provides three modes for iterating pages in a space:
835// PAGES_IN_USE iterates pages containing allocated objects.
836// PAGES_USED_BY_MC iterates pages that hold relocated objects during a
837// mark-compact collection.
838// ALL_PAGES iterates all pages in the space.
839//
840// There are some caveats.
841//
842// (1) If the space expands during iteration, new pages will not be
843// returned by the iterator in any mode.
844//
845// (2) If new objects are allocated during iteration, they will appear
846// in pages returned by the iterator. Allocation may cause the
847// allocation pointer or MC allocation pointer in the last page to
848// change between constructing the iterator and iterating the last
849// page.
850//
851// (3) The space should not shrink during iteration, otherwise the
852// iterator will return deallocated pages.
853
854class PageIterator BASE_EMBEDDED {
855 public:
856 enum Mode {
857 PAGES_IN_USE,
858 PAGES_USED_BY_MC,
859 ALL_PAGES
860 };
861
862 PageIterator(PagedSpace* space, Mode mode);
863
864 inline bool has_next();
865 inline Page* next();
866
867 private:
868 PagedSpace* space_;
869 Page* prev_page_; // Previous page returned.
870 Page* stop_page_; // Page to stop at (last page returned by the iterator).
871};
872
873
874// -----------------------------------------------------------------------------
875// A space has a list of pages. The next page can be accessed via
876// Page::next_page() call. The next page of the last page is an
877// invalid page pointer. A space can expand and shrink dynamically.
878
879// An abstraction of allocation and relocation pointers in a page-structured
880// space.
881class AllocationInfo {
882 public:
883 Address top; // current allocation top
884 Address limit; // current allocation limit
885
886#ifdef DEBUG
887 bool VerifyPagedAllocation() {
888 return (Page::FromAllocationTop(top) == Page::FromAllocationTop(limit))
889 && (top <= limit);
890 }
891#endif
892};
893
894
895// An abstraction of the accounting statistics of a page-structured space.
896// The 'capacity' of a space is the number of object-area bytes (ie, not
897// including page bookkeeping structures) currently in the space. The 'size'
898// of a space is the number of allocated bytes, the 'waste' in the space is
899// the number of bytes that are not allocated and not available to
900// allocation without reorganizing the space via a GC (eg, small blocks due
901// to internal fragmentation, top of page areas in map space), and the bytes
902// 'available' is the number of unallocated bytes that are not waste. The
903// capacity is the sum of size, waste, and available.
904//
905// The stats are only set by functions that ensure they stay balanced. These
906// functions increase or decrease one of the non-capacity stats in
907// conjunction with capacity, or else they always balance increases and
908// decreases to the non-capacity stats.
909class AllocationStats BASE_EMBEDDED {
910 public:
911 AllocationStats() { Clear(); }
912
913 // Zero out all the allocation statistics (ie, no capacity).
914 void Clear() {
915 capacity_ = 0;
916 available_ = 0;
917 size_ = 0;
918 waste_ = 0;
919 }
920
921 // Reset the allocation statistics (ie, available = capacity with no
922 // wasted or allocated bytes).
923 void Reset() {
924 available_ = capacity_;
925 size_ = 0;
926 waste_ = 0;
927 }
928
929 // Accessors for the allocation statistics.
930 int Capacity() { return capacity_; }
931 int Available() { return available_; }
932 int Size() { return size_; }
933 int Waste() { return waste_; }
934
935 // Grow the space by adding available bytes.
936 void ExpandSpace(int size_in_bytes) {
937 capacity_ += size_in_bytes;
938 available_ += size_in_bytes;
939 }
940
941 // Shrink the space by removing available bytes.
942 void ShrinkSpace(int size_in_bytes) {
943 capacity_ -= size_in_bytes;
944 available_ -= size_in_bytes;
945 }
946
947 // Allocate from available bytes (available -> size).
948 void AllocateBytes(int size_in_bytes) {
949 available_ -= size_in_bytes;
950 size_ += size_in_bytes;
951 }
952
953 // Free allocated bytes, making them available (size -> available).
954 void DeallocateBytes(int size_in_bytes) {
955 size_ -= size_in_bytes;
956 available_ += size_in_bytes;
957 }
958
959 // Waste free bytes (available -> waste).
960 void WasteBytes(int size_in_bytes) {
961 available_ -= size_in_bytes;
962 waste_ += size_in_bytes;
963 }
964
965 // Consider the wasted bytes to be allocated, as they contain filler
966 // objects (waste -> size).
967 void FillWastedBytes(int size_in_bytes) {
968 waste_ -= size_in_bytes;
969 size_ += size_in_bytes;
970 }
971
972 private:
973 int capacity_;
974 int available_;
975 int size_;
976 int waste_;
977};
978
979
980class PagedSpace : public Space {
981 public:
982 // Creates a space with a maximum capacity, and an id.
983 PagedSpace(int max_capacity, AllocationSpace id, Executability executable);
984
985 virtual ~PagedSpace() {}
986
987 // Set up the space using the given address range of virtual memory (from
988 // the memory allocator's initial chunk) if possible. If the block of
989 // addresses is not big enough to contain a single page-aligned page, a
990 // fresh chunk will be allocated.
991 bool Setup(Address start, size_t size);
992
993 // Returns true if the space has been successfully set up and not
994 // subsequently torn down.
995 bool HasBeenSetup();
996
997 // Cleans up the space, frees all pages in this space except those belonging
998 // to the initial chunk, uncommits addresses in the initial chunk.
999 void TearDown();
1000
1001 // Checks whether an object/address is in this space.
1002 inline bool Contains(Address a);
1003 bool Contains(HeapObject* o) { return Contains(o->address()); }
1004
1005 // Given an address occupied by a live object, return that object if it is
1006 // in this space, or Failure::Exception() if it is not. The implementation
1007 // iterates over objects in the page containing the address, the cost is
1008 // linear in the number of objects in the page. It may be slow.
1009 Object* FindObject(Address addr);
1010
1011 // Checks whether page is currently in use by this space.
1012 bool IsUsed(Page* page);
1013
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001014 void MarkAllPagesClean();
Steve Blocka7e24c12009-10-30 11:49:00 +00001015
1016 // Prepares for a mark-compact GC.
Steve Block6ded16b2010-05-10 14:33:55 +01001017 virtual void PrepareForMarkCompact(bool will_compact);
Steve Blocka7e24c12009-10-30 11:49:00 +00001018
Steve Block6ded16b2010-05-10 14:33:55 +01001019 // The top of allocation in a page in this space. Undefined if page is unused.
1020 Address PageAllocationTop(Page* page) {
1021 return page == TopPageOf(allocation_info_) ? top()
1022 : PageAllocationLimit(page);
1023 }
1024
1025 // The limit of allocation for a page in this space.
1026 virtual Address PageAllocationLimit(Page* page) = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +00001027
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001028 void FlushTopPageWatermark() {
1029 AllocationTopPage()->SetCachedAllocationWatermark(top());
1030 AllocationTopPage()->InvalidateWatermark(true);
1031 }
1032
Steve Blocka7e24c12009-10-30 11:49:00 +00001033 // Current capacity without growing (Size() + Available() + Waste()).
1034 int Capacity() { return accounting_stats_.Capacity(); }
1035
Steve Block3ce2e202009-11-05 08:53:23 +00001036 // Total amount of memory committed for this space. For paged
1037 // spaces this equals the capacity.
1038 int CommittedMemory() { return Capacity(); }
1039
Steve Blocka7e24c12009-10-30 11:49:00 +00001040 // Available bytes without growing.
1041 int Available() { return accounting_stats_.Available(); }
1042
1043 // Allocated bytes in this space.
1044 virtual int Size() { return accounting_stats_.Size(); }
1045
1046 // Wasted bytes due to fragmentation and not recoverable until the
1047 // next GC of this space.
1048 int Waste() { return accounting_stats_.Waste(); }
1049
1050 // Returns the address of the first object in this space.
1051 Address bottom() { return first_page_->ObjectAreaStart(); }
1052
1053 // Returns the allocation pointer in this space.
1054 Address top() { return allocation_info_.top; }
1055
1056 // Allocate the requested number of bytes in the space if possible, return a
1057 // failure object if not.
1058 inline Object* AllocateRaw(int size_in_bytes);
1059
1060 // Allocate the requested number of bytes for relocation during mark-compact
1061 // collection.
1062 inline Object* MCAllocateRaw(int size_in_bytes);
1063
Leon Clarkee46be812010-01-19 14:06:41 +00001064 virtual bool ReserveSpace(int bytes);
1065
1066 // Used by ReserveSpace.
1067 virtual void PutRestOfCurrentPageOnFreeList(Page* current_page) = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +00001068
Steve Block6ded16b2010-05-10 14:33:55 +01001069 // Free all pages in range from prev (exclusive) to last (inclusive).
1070 // Freed pages are moved to the end of page list.
1071 void FreePages(Page* prev, Page* last);
1072
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001073 // Deallocates a block.
1074 virtual void DeallocateBlock(Address start,
1075 int size_in_bytes,
1076 bool add_to_freelist) = 0;
1077
Steve Block6ded16b2010-05-10 14:33:55 +01001078 // Set space allocation info.
1079 void SetTop(Address top) {
1080 allocation_info_.top = top;
1081 allocation_info_.limit = PageAllocationLimit(Page::FromAllocationTop(top));
1082 }
1083
Steve Blocka7e24c12009-10-30 11:49:00 +00001084 // ---------------------------------------------------------------------------
1085 // Mark-compact collection support functions
1086
1087 // Set the relocation point to the beginning of the space.
1088 void MCResetRelocationInfo();
1089
1090 // Writes relocation info to the top page.
1091 void MCWriteRelocationInfoToPage() {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001092 TopPageOf(mc_forwarding_info_)->
1093 SetAllocationWatermark(mc_forwarding_info_.top);
Steve Blocka7e24c12009-10-30 11:49:00 +00001094 }
1095
1096 // Computes the offset of a given address in this space to the beginning
1097 // of the space.
1098 int MCSpaceOffsetForAddress(Address addr);
1099
1100 // Updates the allocation pointer to the relocation top after a mark-compact
1101 // collection.
1102 virtual void MCCommitRelocationInfo() = 0;
1103
1104 // Releases half of unused pages.
1105 void Shrink();
1106
1107 // Ensures that the capacity is at least 'capacity'. Returns false on failure.
1108 bool EnsureCapacity(int capacity);
1109
1110#ifdef ENABLE_HEAP_PROTECTION
1111 // Protect/unprotect the space by marking it read-only/writable.
1112 void Protect();
1113 void Unprotect();
1114#endif
1115
1116#ifdef DEBUG
1117 // Print meta info and objects in this space.
1118 virtual void Print();
1119
1120 // Verify integrity of this space.
1121 virtual void Verify(ObjectVisitor* visitor);
1122
1123 // Overridden by subclasses to verify space-specific object
1124 // properties (e.g., only maps or free-list nodes are in map space).
1125 virtual void VerifyObject(HeapObject* obj) {}
1126
1127 // Report code object related statistics
1128 void CollectCodeStatistics();
1129 static void ReportCodeStatistics();
1130 static void ResetCodeStatistics();
1131#endif
1132
Steve Block6ded16b2010-05-10 14:33:55 +01001133 // Returns the page of the allocation pointer.
1134 Page* AllocationTopPage() { return TopPageOf(allocation_info_); }
1135
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001136 void RelinkPageListInChunkOrder(bool deallocate_blocks);
1137
Steve Blocka7e24c12009-10-30 11:49:00 +00001138 protected:
1139 // Maximum capacity of this space.
1140 int max_capacity_;
1141
1142 // Accounting information for this space.
1143 AllocationStats accounting_stats_;
1144
1145 // The first page in this space.
1146 Page* first_page_;
1147
1148 // The last page in this space. Initially set in Setup, updated in
1149 // Expand and Shrink.
1150 Page* last_page_;
1151
Steve Block6ded16b2010-05-10 14:33:55 +01001152 // True if pages owned by this space are linked in chunk-order.
1153 // See comment for class MemoryAllocator for definition of chunk-order.
1154 bool page_list_is_chunk_ordered_;
1155
Steve Blocka7e24c12009-10-30 11:49:00 +00001156 // Normal allocation information.
1157 AllocationInfo allocation_info_;
1158
1159 // Relocation information during mark-compact collections.
1160 AllocationInfo mc_forwarding_info_;
1161
1162 // Bytes of each page that cannot be allocated. Possibly non-zero
1163 // for pages in spaces with only fixed-size objects. Always zero
1164 // for pages in spaces with variable sized objects (those pages are
1165 // padded with free-list nodes).
1166 int page_extra_;
1167
1168 // Sets allocation pointer to a page bottom.
1169 static void SetAllocationInfo(AllocationInfo* alloc_info, Page* p);
1170
1171 // Returns the top page specified by an allocation info structure.
1172 static Page* TopPageOf(AllocationInfo alloc_info) {
1173 return Page::FromAllocationTop(alloc_info.limit);
1174 }
1175
Leon Clarked91b9f72010-01-27 17:25:45 +00001176 int CountPagesToTop() {
1177 Page* p = Page::FromAllocationTop(allocation_info_.top);
1178 PageIterator it(this, PageIterator::ALL_PAGES);
1179 int counter = 1;
1180 while (it.has_next()) {
1181 if (it.next() == p) return counter;
1182 counter++;
1183 }
1184 UNREACHABLE();
1185 return -1;
1186 }
1187
Steve Blocka7e24c12009-10-30 11:49:00 +00001188 // Expands the space by allocating a fixed number of pages. Returns false if
1189 // it cannot allocate requested number of pages from OS. Newly allocated
1190 // pages are append to the last_page;
1191 bool Expand(Page* last_page);
1192
1193 // Generic fast case allocation function that tries linear allocation in
1194 // the top page of 'alloc_info'. Returns NULL on failure.
1195 inline HeapObject* AllocateLinearly(AllocationInfo* alloc_info,
1196 int size_in_bytes);
1197
1198 // During normal allocation or deserialization, roll to the next page in
1199 // the space (there is assumed to be one) and allocate there. This
1200 // function is space-dependent.
1201 virtual HeapObject* AllocateInNextPage(Page* current_page,
1202 int size_in_bytes) = 0;
1203
1204 // Slow path of AllocateRaw. This function is space-dependent.
1205 virtual HeapObject* SlowAllocateRaw(int size_in_bytes) = 0;
1206
1207 // Slow path of MCAllocateRaw.
1208 HeapObject* SlowMCAllocateRaw(int size_in_bytes);
1209
1210#ifdef DEBUG
Leon Clarkee46be812010-01-19 14:06:41 +00001211 // Returns the number of total pages in this space.
1212 int CountTotalPages();
Steve Blocka7e24c12009-10-30 11:49:00 +00001213#endif
1214 private:
Steve Blocka7e24c12009-10-30 11:49:00 +00001215
1216 // Returns a pointer to the page of the relocation pointer.
1217 Page* MCRelocationTopPage() { return TopPageOf(mc_forwarding_info_); }
1218
Steve Blocka7e24c12009-10-30 11:49:00 +00001219 friend class PageIterator;
1220};
1221
1222
1223#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1224class NumberAndSizeInfo BASE_EMBEDDED {
1225 public:
1226 NumberAndSizeInfo() : number_(0), bytes_(0) {}
1227
1228 int number() const { return number_; }
1229 void increment_number(int num) { number_ += num; }
1230
1231 int bytes() const { return bytes_; }
1232 void increment_bytes(int size) { bytes_ += size; }
1233
1234 void clear() {
1235 number_ = 0;
1236 bytes_ = 0;
1237 }
1238
1239 private:
1240 int number_;
1241 int bytes_;
1242};
1243
1244
1245// HistogramInfo class for recording a single "bar" of a histogram. This
1246// class is used for collecting statistics to print to stdout (when compiled
1247// with DEBUG) or to the log file (when compiled with
1248// ENABLE_LOGGING_AND_PROFILING).
1249class HistogramInfo: public NumberAndSizeInfo {
1250 public:
1251 HistogramInfo() : NumberAndSizeInfo() {}
1252
1253 const char* name() { return name_; }
1254 void set_name(const char* name) { name_ = name; }
1255
1256 private:
1257 const char* name_;
1258};
1259#endif
1260
1261
1262// -----------------------------------------------------------------------------
1263// SemiSpace in young generation
1264//
1265// A semispace is a contiguous chunk of memory. The mark-compact collector
1266// uses the memory in the from space as a marking stack when tracing live
1267// objects.
1268
1269class SemiSpace : public Space {
1270 public:
1271 // Constructor.
1272 SemiSpace() :Space(NEW_SPACE, NOT_EXECUTABLE) {
1273 start_ = NULL;
1274 age_mark_ = NULL;
1275 }
1276
1277 // Sets up the semispace using the given chunk.
1278 bool Setup(Address start, int initial_capacity, int maximum_capacity);
1279
1280 // Tear down the space. Heap memory was not allocated by the space, so it
1281 // is not deallocated here.
1282 void TearDown();
1283
1284 // True if the space has been set up but not torn down.
1285 bool HasBeenSetup() { return start_ != NULL; }
1286
1287 // Grow the size of the semispace by committing extra virtual memory.
1288 // Assumes that the caller has checked that the semispace has not reached
1289 // its maximum capacity (and thus there is space available in the reserved
1290 // address range to grow).
1291 bool Grow();
1292
1293 // Grow the semispace to the new capacity. The new capacity
1294 // requested must be larger than the current capacity.
1295 bool GrowTo(int new_capacity);
1296
1297 // Shrinks the semispace to the new capacity. The new capacity
1298 // requested must be more than the amount of used memory in the
1299 // semispace and less than the current capacity.
1300 bool ShrinkTo(int new_capacity);
1301
1302 // Returns the start address of the space.
1303 Address low() { return start_; }
1304 // Returns one past the end address of the space.
1305 Address high() { return low() + capacity_; }
1306
1307 // Age mark accessors.
1308 Address age_mark() { return age_mark_; }
1309 void set_age_mark(Address mark) { age_mark_ = mark; }
1310
1311 // True if the address is in the address range of this semispace (not
1312 // necessarily below the allocation pointer).
1313 bool Contains(Address a) {
1314 return (reinterpret_cast<uintptr_t>(a) & address_mask_)
1315 == reinterpret_cast<uintptr_t>(start_);
1316 }
1317
1318 // True if the object is a heap object in the address range of this
1319 // semispace (not necessarily below the allocation pointer).
1320 bool Contains(Object* o) {
1321 return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_;
1322 }
1323
1324 // The offset of an address from the beginning of the space.
Steve Blockd0582a62009-12-15 09:54:21 +00001325 int SpaceOffsetForAddress(Address addr) {
1326 return static_cast<int>(addr - low());
1327 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001328
Leon Clarkee46be812010-01-19 14:06:41 +00001329 // If we don't have these here then SemiSpace will be abstract. However
1330 // they should never be called.
Steve Blocka7e24c12009-10-30 11:49:00 +00001331 virtual int Size() {
1332 UNREACHABLE();
1333 return 0;
1334 }
1335
Leon Clarkee46be812010-01-19 14:06:41 +00001336 virtual bool ReserveSpace(int bytes) {
1337 UNREACHABLE();
1338 return false;
1339 }
1340
Steve Blocka7e24c12009-10-30 11:49:00 +00001341 bool is_committed() { return committed_; }
1342 bool Commit();
1343 bool Uncommit();
1344
Steve Block6ded16b2010-05-10 14:33:55 +01001345#ifdef ENABLE_HEAP_PROTECTION
1346 // Protect/unprotect the space by marking it read-only/writable.
1347 virtual void Protect() {}
1348 virtual void Unprotect() {}
1349#endif
1350
Steve Blocka7e24c12009-10-30 11:49:00 +00001351#ifdef DEBUG
1352 virtual void Print();
1353 virtual void Verify();
1354#endif
1355
1356 // Returns the current capacity of the semi space.
1357 int Capacity() { return capacity_; }
1358
1359 // Returns the maximum capacity of the semi space.
1360 int MaximumCapacity() { return maximum_capacity_; }
1361
1362 // Returns the initial capacity of the semi space.
1363 int InitialCapacity() { return initial_capacity_; }
1364
1365 private:
1366 // The current and maximum capacity of the space.
1367 int capacity_;
1368 int maximum_capacity_;
1369 int initial_capacity_;
1370
1371 // The start address of the space.
1372 Address start_;
1373 // Used to govern object promotion during mark-compact collection.
1374 Address age_mark_;
1375
1376 // Masks and comparison values to test for containment in this semispace.
1377 uintptr_t address_mask_;
1378 uintptr_t object_mask_;
1379 uintptr_t object_expected_;
1380
1381 bool committed_;
1382
1383 public:
1384 TRACK_MEMORY("SemiSpace")
1385};
1386
1387
1388// A SemiSpaceIterator is an ObjectIterator that iterates over the active
1389// semispace of the heap's new space. It iterates over the objects in the
1390// semispace from a given start address (defaulting to the bottom of the
1391// semispace) to the top of the semispace. New objects allocated after the
1392// iterator is created are not iterated.
1393class SemiSpaceIterator : public ObjectIterator {
1394 public:
1395 // Create an iterator over the objects in the given space. If no start
1396 // address is given, the iterator starts from the bottom of the space. If
1397 // no size function is given, the iterator calls Object::Size().
1398 explicit SemiSpaceIterator(NewSpace* space);
1399 SemiSpaceIterator(NewSpace* space, HeapObjectCallback size_func);
1400 SemiSpaceIterator(NewSpace* space, Address start);
1401
Steve Blocka7e24c12009-10-30 11:49:00 +00001402 HeapObject* next() {
Leon Clarked91b9f72010-01-27 17:25:45 +00001403 if (current_ == limit_) return NULL;
Steve Blocka7e24c12009-10-30 11:49:00 +00001404
1405 HeapObject* object = HeapObject::FromAddress(current_);
1406 int size = (size_func_ == NULL) ? object->Size() : size_func_(object);
1407
1408 current_ += size;
1409 return object;
1410 }
1411
1412 // Implementation of the ObjectIterator functions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001413 virtual HeapObject* next_object() { return next(); }
1414
1415 private:
1416 void Initialize(NewSpace* space, Address start, Address end,
1417 HeapObjectCallback size_func);
1418
1419 // The semispace.
1420 SemiSpace* space_;
1421 // The current iteration point.
1422 Address current_;
1423 // The end of iteration.
1424 Address limit_;
1425 // The callback function.
1426 HeapObjectCallback size_func_;
1427};
1428
1429
1430// -----------------------------------------------------------------------------
1431// The young generation space.
1432//
1433// The new space consists of a contiguous pair of semispaces. It simply
1434// forwards most functions to the appropriate semispace.
1435
1436class NewSpace : public Space {
1437 public:
1438 // Constructor.
1439 NewSpace() : Space(NEW_SPACE, NOT_EXECUTABLE) {}
1440
1441 // Sets up the new space using the given chunk.
1442 bool Setup(Address start, int size);
1443
1444 // Tears down the space. Heap memory was not allocated by the space, so it
1445 // is not deallocated here.
1446 void TearDown();
1447
1448 // True if the space has been set up but not torn down.
1449 bool HasBeenSetup() {
1450 return to_space_.HasBeenSetup() && from_space_.HasBeenSetup();
1451 }
1452
1453 // Flip the pair of spaces.
1454 void Flip();
1455
1456 // Grow the capacity of the semispaces. Assumes that they are not at
1457 // their maximum capacity.
1458 void Grow();
1459
1460 // Shrink the capacity of the semispaces.
1461 void Shrink();
1462
1463 // True if the address or object lies in the address range of either
1464 // semispace (not necessarily below the allocation pointer).
1465 bool Contains(Address a) {
1466 return (reinterpret_cast<uintptr_t>(a) & address_mask_)
1467 == reinterpret_cast<uintptr_t>(start_);
1468 }
1469 bool Contains(Object* o) {
1470 return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_;
1471 }
1472
1473 // Return the allocated bytes in the active semispace.
Steve Blockd0582a62009-12-15 09:54:21 +00001474 virtual int Size() { return static_cast<int>(top() - bottom()); }
Steve Block3ce2e202009-11-05 08:53:23 +00001475
Steve Blocka7e24c12009-10-30 11:49:00 +00001476 // Return the current capacity of a semispace.
1477 int Capacity() {
1478 ASSERT(to_space_.Capacity() == from_space_.Capacity());
1479 return to_space_.Capacity();
1480 }
Steve Block3ce2e202009-11-05 08:53:23 +00001481
1482 // Return the total amount of memory committed for new space.
1483 int CommittedMemory() {
1484 if (from_space_.is_committed()) return 2 * Capacity();
1485 return Capacity();
1486 }
1487
Steve Blocka7e24c12009-10-30 11:49:00 +00001488 // Return the available bytes without growing in the active semispace.
1489 int Available() { return Capacity() - Size(); }
1490
1491 // Return the maximum capacity of a semispace.
1492 int MaximumCapacity() {
1493 ASSERT(to_space_.MaximumCapacity() == from_space_.MaximumCapacity());
1494 return to_space_.MaximumCapacity();
1495 }
1496
1497 // Returns the initial capacity of a semispace.
1498 int InitialCapacity() {
1499 ASSERT(to_space_.InitialCapacity() == from_space_.InitialCapacity());
1500 return to_space_.InitialCapacity();
1501 }
1502
1503 // Return the address of the allocation pointer in the active semispace.
1504 Address top() { return allocation_info_.top; }
1505 // Return the address of the first object in the active semispace.
1506 Address bottom() { return to_space_.low(); }
1507
1508 // Get the age mark of the inactive semispace.
1509 Address age_mark() { return from_space_.age_mark(); }
1510 // Set the age mark in the active semispace.
1511 void set_age_mark(Address mark) { to_space_.set_age_mark(mark); }
1512
1513 // The start address of the space and a bit mask. Anding an address in the
1514 // new space with the mask will result in the start address.
1515 Address start() { return start_; }
1516 uintptr_t mask() { return address_mask_; }
1517
1518 // The allocation top and limit addresses.
1519 Address* allocation_top_address() { return &allocation_info_.top; }
1520 Address* allocation_limit_address() { return &allocation_info_.limit; }
1521
1522 Object* AllocateRaw(int size_in_bytes) {
1523 return AllocateRawInternal(size_in_bytes, &allocation_info_);
1524 }
1525
1526 // Allocate the requested number of bytes for relocation during mark-compact
1527 // collection.
1528 Object* MCAllocateRaw(int size_in_bytes) {
1529 return AllocateRawInternal(size_in_bytes, &mc_forwarding_info_);
1530 }
1531
1532 // Reset the allocation pointer to the beginning of the active semispace.
1533 void ResetAllocationInfo();
1534 // Reset the reloction pointer to the bottom of the inactive semispace in
1535 // preparation for mark-compact collection.
1536 void MCResetRelocationInfo();
1537 // Update the allocation pointer in the active semispace after a
1538 // mark-compact collection.
1539 void MCCommitRelocationInfo();
1540
1541 // Get the extent of the inactive semispace (for use as a marking stack).
1542 Address FromSpaceLow() { return from_space_.low(); }
1543 Address FromSpaceHigh() { return from_space_.high(); }
1544
1545 // Get the extent of the active semispace (to sweep newly copied objects
1546 // during a scavenge collection).
1547 Address ToSpaceLow() { return to_space_.low(); }
1548 Address ToSpaceHigh() { return to_space_.high(); }
1549
1550 // Offsets from the beginning of the semispaces.
1551 int ToSpaceOffsetForAddress(Address a) {
1552 return to_space_.SpaceOffsetForAddress(a);
1553 }
1554 int FromSpaceOffsetForAddress(Address a) {
1555 return from_space_.SpaceOffsetForAddress(a);
1556 }
1557
1558 // True if the object is a heap object in the address range of the
1559 // respective semispace (not necessarily below the allocation pointer of the
1560 // semispace).
1561 bool ToSpaceContains(Object* o) { return to_space_.Contains(o); }
1562 bool FromSpaceContains(Object* o) { return from_space_.Contains(o); }
1563
1564 bool ToSpaceContains(Address a) { return to_space_.Contains(a); }
1565 bool FromSpaceContains(Address a) { return from_space_.Contains(a); }
1566
Leon Clarkee46be812010-01-19 14:06:41 +00001567 virtual bool ReserveSpace(int bytes);
1568
Steve Blocka7e24c12009-10-30 11:49:00 +00001569#ifdef ENABLE_HEAP_PROTECTION
1570 // Protect/unprotect the space by marking it read-only/writable.
1571 virtual void Protect();
1572 virtual void Unprotect();
1573#endif
1574
1575#ifdef DEBUG
1576 // Verify the active semispace.
1577 virtual void Verify();
1578 // Print the active semispace.
1579 virtual void Print() { to_space_.Print(); }
1580#endif
1581
1582#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1583 // Iterates the active semispace to collect statistics.
1584 void CollectStatistics();
1585 // Reports previously collected statistics of the active semispace.
1586 void ReportStatistics();
1587 // Clears previously collected statistics.
1588 void ClearHistograms();
1589
1590 // Record the allocation or promotion of a heap object. Note that we don't
1591 // record every single allocation, but only those that happen in the
1592 // to space during a scavenge GC.
1593 void RecordAllocation(HeapObject* obj);
1594 void RecordPromotion(HeapObject* obj);
1595#endif
1596
1597 // Return whether the operation succeded.
1598 bool CommitFromSpaceIfNeeded() {
1599 if (from_space_.is_committed()) return true;
1600 return from_space_.Commit();
1601 }
1602
1603 bool UncommitFromSpace() {
1604 if (!from_space_.is_committed()) return true;
1605 return from_space_.Uncommit();
1606 }
1607
1608 private:
1609 // The semispaces.
1610 SemiSpace to_space_;
1611 SemiSpace from_space_;
1612
1613 // Start address and bit mask for containment testing.
1614 Address start_;
1615 uintptr_t address_mask_;
1616 uintptr_t object_mask_;
1617 uintptr_t object_expected_;
1618
1619 // Allocation pointer and limit for normal allocation and allocation during
1620 // mark-compact collection.
1621 AllocationInfo allocation_info_;
1622 AllocationInfo mc_forwarding_info_;
1623
1624#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1625 HistogramInfo* allocated_histogram_;
1626 HistogramInfo* promoted_histogram_;
1627#endif
1628
1629 // Implementation of AllocateRaw and MCAllocateRaw.
1630 inline Object* AllocateRawInternal(int size_in_bytes,
1631 AllocationInfo* alloc_info);
1632
1633 friend class SemiSpaceIterator;
1634
1635 public:
1636 TRACK_MEMORY("NewSpace")
1637};
1638
1639
1640// -----------------------------------------------------------------------------
1641// Free lists for old object spaces
1642//
1643// Free-list nodes are free blocks in the heap. They look like heap objects
1644// (free-list node pointers have the heap object tag, and they have a map like
1645// a heap object). They have a size and a next pointer. The next pointer is
1646// the raw address of the next free list node (or NULL).
1647class FreeListNode: public HeapObject {
1648 public:
1649 // Obtain a free-list node from a raw address. This is not a cast because
1650 // it does not check nor require that the first word at the address is a map
1651 // pointer.
1652 static FreeListNode* FromAddress(Address address) {
1653 return reinterpret_cast<FreeListNode*>(HeapObject::FromAddress(address));
1654 }
1655
Steve Block3ce2e202009-11-05 08:53:23 +00001656 static inline bool IsFreeListNode(HeapObject* object);
1657
Steve Blocka7e24c12009-10-30 11:49:00 +00001658 // Set the size in bytes, which can be read with HeapObject::Size(). This
1659 // function also writes a map to the first word of the block so that it
1660 // looks like a heap object to the garbage collector and heap iteration
1661 // functions.
1662 void set_size(int size_in_bytes);
1663
1664 // Accessors for the next field.
1665 inline Address next();
1666 inline void set_next(Address next);
1667
1668 private:
1669 static const int kNextOffset = POINTER_SIZE_ALIGN(ByteArray::kHeaderSize);
1670
1671 DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode);
1672};
1673
1674
1675// The free list for the old space.
1676class OldSpaceFreeList BASE_EMBEDDED {
1677 public:
1678 explicit OldSpaceFreeList(AllocationSpace owner);
1679
1680 // Clear the free list.
1681 void Reset();
1682
1683 // Return the number of bytes available on the free list.
1684 int available() { return available_; }
1685
1686 // Place a node on the free list. The block of size 'size_in_bytes'
1687 // starting at 'start' is placed on the free list. The return value is the
1688 // number of bytes that have been lost due to internal fragmentation by
1689 // freeing the block. Bookkeeping information will be written to the block,
1690 // ie, its contents will be destroyed. The start address should be word
1691 // aligned, and the size should be a non-zero multiple of the word size.
1692 int Free(Address start, int size_in_bytes);
1693
1694 // Allocate a block of size 'size_in_bytes' from the free list. The block
1695 // is unitialized. A failure is returned if no block is available. The
1696 // number of bytes lost to fragmentation is returned in the output parameter
1697 // 'wasted_bytes'. The size should be a non-zero multiple of the word size.
1698 Object* Allocate(int size_in_bytes, int* wasted_bytes);
1699
1700 private:
1701 // The size range of blocks, in bytes. (Smaller allocations are allowed, but
1702 // will always result in waste.)
1703 static const int kMinBlockSize = 2 * kPointerSize;
1704 static const int kMaxBlockSize = Page::kMaxHeapObjectSize;
1705
1706 // The identity of the owning space, for building allocation Failure
1707 // objects.
1708 AllocationSpace owner_;
1709
1710 // Total available bytes in all blocks on this free list.
1711 int available_;
1712
1713 // Blocks are put on exact free lists in an array, indexed by size in words.
1714 // The available sizes are kept in an increasingly ordered list. Entries
1715 // corresponding to sizes < kMinBlockSize always have an empty free list
1716 // (but index kHead is used for the head of the size list).
1717 struct SizeNode {
1718 // Address of the head FreeListNode of the implied block size or NULL.
1719 Address head_node_;
1720 // Size (words) of the next larger available size if head_node_ != NULL.
1721 int next_size_;
1722 };
1723 static const int kFreeListsLength = kMaxBlockSize / kPointerSize + 1;
1724 SizeNode free_[kFreeListsLength];
1725
1726 // Sentinel elements for the size list. Real elements are in ]kHead..kEnd[.
1727 static const int kHead = kMinBlockSize / kPointerSize - 1;
1728 static const int kEnd = kMaxInt;
1729
1730 // We keep a "finger" in the size list to speed up a common pattern:
1731 // repeated requests for the same or increasing sizes.
1732 int finger_;
1733
1734 // Starting from *prev, find and return the smallest size >= index (words),
1735 // or kEnd. Update *prev to be the largest size < index, or kHead.
1736 int FindSize(int index, int* prev) {
1737 int cur = free_[*prev].next_size_;
1738 while (cur < index) {
1739 *prev = cur;
1740 cur = free_[cur].next_size_;
1741 }
1742 return cur;
1743 }
1744
1745 // Remove an existing element from the size list.
1746 void RemoveSize(int index) {
1747 int prev = kHead;
1748 int cur = FindSize(index, &prev);
1749 ASSERT(cur == index);
1750 free_[prev].next_size_ = free_[cur].next_size_;
1751 finger_ = prev;
1752 }
1753
1754 // Insert a new element into the size list.
1755 void InsertSize(int index) {
1756 int prev = kHead;
1757 int cur = FindSize(index, &prev);
1758 ASSERT(cur != index);
1759 free_[prev].next_size_ = index;
1760 free_[index].next_size_ = cur;
1761 }
1762
1763 // The size list is not updated during a sequence of calls to Free, but is
1764 // rebuilt before the next allocation.
1765 void RebuildSizeList();
1766 bool needs_rebuild_;
1767
1768#ifdef DEBUG
1769 // Does this free list contain a free block located at the address of 'node'?
1770 bool Contains(FreeListNode* node);
1771#endif
1772
1773 DISALLOW_COPY_AND_ASSIGN(OldSpaceFreeList);
1774};
1775
1776
1777// The free list for the map space.
1778class FixedSizeFreeList BASE_EMBEDDED {
1779 public:
1780 FixedSizeFreeList(AllocationSpace owner, int object_size);
1781
1782 // Clear the free list.
1783 void Reset();
1784
1785 // Return the number of bytes available on the free list.
1786 int available() { return available_; }
1787
1788 // Place a node on the free list. The block starting at 'start' (assumed to
1789 // have size object_size_) is placed on the free list. Bookkeeping
1790 // information will be written to the block, ie, its contents will be
1791 // destroyed. The start address should be word aligned.
1792 void Free(Address start);
1793
1794 // Allocate a fixed sized block from the free list. The block is unitialized.
1795 // A failure is returned if no block is available.
1796 Object* Allocate();
1797
1798 private:
1799 // Available bytes on the free list.
1800 int available_;
1801
1802 // The head of the free list.
1803 Address head_;
1804
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001805 // The tail of the free list.
1806 Address tail_;
1807
Steve Blocka7e24c12009-10-30 11:49:00 +00001808 // The identity of the owning space, for building allocation Failure
1809 // objects.
1810 AllocationSpace owner_;
1811
1812 // The size of the objects in this space.
1813 int object_size_;
1814
1815 DISALLOW_COPY_AND_ASSIGN(FixedSizeFreeList);
1816};
1817
1818
1819// -----------------------------------------------------------------------------
1820// Old object space (excluding map objects)
1821
1822class OldSpace : public PagedSpace {
1823 public:
1824 // Creates an old space object with a given maximum capacity.
1825 // The constructor does not allocate pages from OS.
1826 explicit OldSpace(int max_capacity,
1827 AllocationSpace id,
1828 Executability executable)
1829 : PagedSpace(max_capacity, id, executable), free_list_(id) {
1830 page_extra_ = 0;
1831 }
1832
1833 // The bytes available on the free list (ie, not above the linear allocation
1834 // pointer).
1835 int AvailableFree() { return free_list_.available(); }
1836
Steve Block6ded16b2010-05-10 14:33:55 +01001837 // The limit of allocation for a page in this space.
1838 virtual Address PageAllocationLimit(Page* page) {
1839 return page->ObjectAreaEnd();
Steve Blocka7e24c12009-10-30 11:49:00 +00001840 }
1841
1842 // Give a block of memory to the space's free list. It might be added to
1843 // the free list or accounted as waste.
Steve Block6ded16b2010-05-10 14:33:55 +01001844 // If add_to_freelist is false then just accounting stats are updated and
1845 // no attempt to add area to free list is made.
1846 void Free(Address start, int size_in_bytes, bool add_to_freelist) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001847 accounting_stats_.DeallocateBytes(size_in_bytes);
Steve Block6ded16b2010-05-10 14:33:55 +01001848
1849 if (add_to_freelist) {
1850 int wasted_bytes = free_list_.Free(start, size_in_bytes);
1851 accounting_stats_.WasteBytes(wasted_bytes);
1852 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001853 }
1854
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001855 virtual void DeallocateBlock(Address start,
1856 int size_in_bytes,
1857 bool add_to_freelist);
1858
Steve Blocka7e24c12009-10-30 11:49:00 +00001859 // Prepare for full garbage collection. Resets the relocation pointer and
1860 // clears the free list.
1861 virtual void PrepareForMarkCompact(bool will_compact);
1862
1863 // Updates the allocation pointer to the relocation top after a mark-compact
1864 // collection.
1865 virtual void MCCommitRelocationInfo();
1866
Leon Clarkee46be812010-01-19 14:06:41 +00001867 virtual void PutRestOfCurrentPageOnFreeList(Page* current_page);
1868
Steve Blocka7e24c12009-10-30 11:49:00 +00001869#ifdef DEBUG
1870 // Reports statistics for the space
1871 void ReportStatistics();
Steve Blocka7e24c12009-10-30 11:49:00 +00001872#endif
1873
1874 protected:
1875 // Virtual function in the superclass. Slow path of AllocateRaw.
1876 HeapObject* SlowAllocateRaw(int size_in_bytes);
1877
1878 // Virtual function in the superclass. Allocate linearly at the start of
1879 // the page after current_page (there is assumed to be one).
1880 HeapObject* AllocateInNextPage(Page* current_page, int size_in_bytes);
1881
1882 private:
1883 // The space's free list.
1884 OldSpaceFreeList free_list_;
1885
1886 public:
1887 TRACK_MEMORY("OldSpace")
1888};
1889
1890
1891// -----------------------------------------------------------------------------
1892// Old space for objects of a fixed size
1893
1894class FixedSpace : public PagedSpace {
1895 public:
1896 FixedSpace(int max_capacity,
1897 AllocationSpace id,
1898 int object_size_in_bytes,
1899 const char* name)
1900 : PagedSpace(max_capacity, id, NOT_EXECUTABLE),
1901 object_size_in_bytes_(object_size_in_bytes),
1902 name_(name),
1903 free_list_(id, object_size_in_bytes) {
1904 page_extra_ = Page::kObjectAreaSize % object_size_in_bytes;
1905 }
1906
Steve Block6ded16b2010-05-10 14:33:55 +01001907 // The limit of allocation for a page in this space.
1908 virtual Address PageAllocationLimit(Page* page) {
1909 return page->ObjectAreaEnd() - page_extra_;
Steve Blocka7e24c12009-10-30 11:49:00 +00001910 }
1911
1912 int object_size_in_bytes() { return object_size_in_bytes_; }
1913
1914 // Give a fixed sized block of memory to the space's free list.
Steve Block6ded16b2010-05-10 14:33:55 +01001915 // If add_to_freelist is false then just accounting stats are updated and
1916 // no attempt to add area to free list is made.
1917 void Free(Address start, bool add_to_freelist) {
1918 if (add_to_freelist) {
1919 free_list_.Free(start);
1920 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001921 accounting_stats_.DeallocateBytes(object_size_in_bytes_);
1922 }
1923
1924 // Prepares for a mark-compact GC.
1925 virtual void PrepareForMarkCompact(bool will_compact);
1926
1927 // Updates the allocation pointer to the relocation top after a mark-compact
1928 // collection.
1929 virtual void MCCommitRelocationInfo();
1930
Leon Clarkee46be812010-01-19 14:06:41 +00001931 virtual void PutRestOfCurrentPageOnFreeList(Page* current_page);
1932
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001933 virtual void DeallocateBlock(Address start,
1934 int size_in_bytes,
1935 bool add_to_freelist);
Steve Blocka7e24c12009-10-30 11:49:00 +00001936#ifdef DEBUG
1937 // Reports statistic info of the space
1938 void ReportStatistics();
Steve Blocka7e24c12009-10-30 11:49:00 +00001939#endif
1940
1941 protected:
1942 // Virtual function in the superclass. Slow path of AllocateRaw.
1943 HeapObject* SlowAllocateRaw(int size_in_bytes);
1944
1945 // Virtual function in the superclass. Allocate linearly at the start of
1946 // the page after current_page (there is assumed to be one).
1947 HeapObject* AllocateInNextPage(Page* current_page, int size_in_bytes);
1948
Leon Clarkee46be812010-01-19 14:06:41 +00001949 void ResetFreeList() {
1950 free_list_.Reset();
1951 }
1952
Steve Blocka7e24c12009-10-30 11:49:00 +00001953 private:
1954 // The size of objects in this space.
1955 int object_size_in_bytes_;
1956
1957 // The name of this space.
1958 const char* name_;
1959
1960 // The space's free list.
1961 FixedSizeFreeList free_list_;
1962};
1963
1964
1965// -----------------------------------------------------------------------------
1966// Old space for all map objects
1967
1968class MapSpace : public FixedSpace {
1969 public:
1970 // Creates a map space object with a maximum capacity.
Leon Clarked91b9f72010-01-27 17:25:45 +00001971 MapSpace(int max_capacity, int max_map_space_pages, AllocationSpace id)
1972 : FixedSpace(max_capacity, id, Map::kSize, "map"),
1973 max_map_space_pages_(max_map_space_pages) {
1974 ASSERT(max_map_space_pages < kMaxMapPageIndex);
1975 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001976
1977 // Prepares for a mark-compact GC.
1978 virtual void PrepareForMarkCompact(bool will_compact);
1979
1980 // Given an index, returns the page address.
1981 Address PageAddress(int page_index) { return page_addresses_[page_index]; }
1982
Leon Clarked91b9f72010-01-27 17:25:45 +00001983 static const int kMaxMapPageIndex = 1 << MapWord::kMapPageIndexBits;
Steve Blocka7e24c12009-10-30 11:49:00 +00001984
Leon Clarkee46be812010-01-19 14:06:41 +00001985 // Are map pointers encodable into map word?
1986 bool MapPointersEncodable() {
1987 if (!FLAG_use_big_map_space) {
Leon Clarked91b9f72010-01-27 17:25:45 +00001988 ASSERT(CountPagesToTop() <= kMaxMapPageIndex);
Leon Clarkee46be812010-01-19 14:06:41 +00001989 return true;
1990 }
Leon Clarked91b9f72010-01-27 17:25:45 +00001991 return CountPagesToTop() <= max_map_space_pages_;
Leon Clarkee46be812010-01-19 14:06:41 +00001992 }
1993
1994 // Should be called after forced sweep to find out if map space needs
1995 // compaction.
1996 bool NeedsCompaction(int live_maps) {
Leon Clarked91b9f72010-01-27 17:25:45 +00001997 return !MapPointersEncodable() && live_maps <= CompactionThreshold();
Leon Clarkee46be812010-01-19 14:06:41 +00001998 }
1999
2000 Address TopAfterCompaction(int live_maps) {
2001 ASSERT(NeedsCompaction(live_maps));
2002
2003 int pages_left = live_maps / kMapsPerPage;
2004 PageIterator it(this, PageIterator::ALL_PAGES);
2005 while (pages_left-- > 0) {
2006 ASSERT(it.has_next());
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002007 it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks);
Leon Clarkee46be812010-01-19 14:06:41 +00002008 }
2009 ASSERT(it.has_next());
2010 Page* top_page = it.next();
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002011 top_page->SetRegionMarks(Page::kAllRegionsCleanMarks);
Leon Clarkee46be812010-01-19 14:06:41 +00002012 ASSERT(top_page->is_valid());
2013
2014 int offset = live_maps % kMapsPerPage * Map::kSize;
2015 Address top = top_page->ObjectAreaStart() + offset;
2016 ASSERT(top < top_page->ObjectAreaEnd());
2017 ASSERT(Contains(top));
2018
2019 return top;
2020 }
2021
2022 void FinishCompaction(Address new_top, int live_maps) {
2023 Page* top_page = Page::FromAddress(new_top);
2024 ASSERT(top_page->is_valid());
2025
2026 SetAllocationInfo(&allocation_info_, top_page);
2027 allocation_info_.top = new_top;
2028
2029 int new_size = live_maps * Map::kSize;
2030 accounting_stats_.DeallocateBytes(accounting_stats_.Size());
2031 accounting_stats_.AllocateBytes(new_size);
2032
2033#ifdef DEBUG
2034 if (FLAG_enable_slow_asserts) {
Leon Clarked91b9f72010-01-27 17:25:45 +00002035 intptr_t actual_size = 0;
Leon Clarkee46be812010-01-19 14:06:41 +00002036 for (Page* p = first_page_; p != top_page; p = p->next_page())
2037 actual_size += kMapsPerPage * Map::kSize;
2038 actual_size += (new_top - top_page->ObjectAreaStart());
2039 ASSERT(accounting_stats_.Size() == actual_size);
2040 }
2041#endif
2042
2043 Shrink();
2044 ResetFreeList();
2045 }
2046
Steve Blocka7e24c12009-10-30 11:49:00 +00002047 protected:
2048#ifdef DEBUG
2049 virtual void VerifyObject(HeapObject* obj);
2050#endif
2051
2052 private:
Leon Clarkee46be812010-01-19 14:06:41 +00002053 static const int kMapsPerPage = Page::kObjectAreaSize / Map::kSize;
2054
2055 // Do map space compaction if there is a page gap.
Leon Clarked91b9f72010-01-27 17:25:45 +00002056 int CompactionThreshold() {
2057 return kMapsPerPage * (max_map_space_pages_ - 1);
2058 }
2059
2060 const int max_map_space_pages_;
Leon Clarkee46be812010-01-19 14:06:41 +00002061
Steve Blocka7e24c12009-10-30 11:49:00 +00002062 // An array of page start address in a map space.
Leon Clarked91b9f72010-01-27 17:25:45 +00002063 Address page_addresses_[kMaxMapPageIndex];
Steve Blocka7e24c12009-10-30 11:49:00 +00002064
2065 public:
2066 TRACK_MEMORY("MapSpace")
2067};
2068
2069
2070// -----------------------------------------------------------------------------
2071// Old space for all global object property cell objects
2072
2073class CellSpace : public FixedSpace {
2074 public:
2075 // Creates a property cell space object with a maximum capacity.
2076 CellSpace(int max_capacity, AllocationSpace id)
2077 : FixedSpace(max_capacity, id, JSGlobalPropertyCell::kSize, "cell") {}
2078
2079 protected:
2080#ifdef DEBUG
2081 virtual void VerifyObject(HeapObject* obj);
2082#endif
2083
2084 public:
2085 TRACK_MEMORY("CellSpace")
2086};
2087
2088
2089// -----------------------------------------------------------------------------
2090// Large objects ( > Page::kMaxHeapObjectSize ) are allocated and managed by
2091// the large object space. A large object is allocated from OS heap with
2092// extra padding bytes (Page::kPageSize + Page::kObjectStartOffset).
2093// A large object always starts at Page::kObjectStartOffset to a page.
2094// Large objects do not move during garbage collections.
2095
2096// A LargeObjectChunk holds exactly one large object page with exactly one
2097// large object.
2098class LargeObjectChunk {
2099 public:
2100 // Allocates a new LargeObjectChunk that contains a large object page
2101 // (Page::kPageSize aligned) that has at least size_in_bytes (for a large
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002102 // object) bytes after the object area start of that page.
2103 // The allocated chunk size is set in the output parameter chunk_size.
Steve Blocka7e24c12009-10-30 11:49:00 +00002104 static LargeObjectChunk* New(int size_in_bytes,
2105 size_t* chunk_size,
2106 Executability executable);
2107
2108 // Interpret a raw address as a large object chunk.
2109 static LargeObjectChunk* FromAddress(Address address) {
2110 return reinterpret_cast<LargeObjectChunk*>(address);
2111 }
2112
2113 // Returns the address of this chunk.
2114 Address address() { return reinterpret_cast<Address>(this); }
2115
2116 // Accessors for the fields of the chunk.
2117 LargeObjectChunk* next() { return next_; }
2118 void set_next(LargeObjectChunk* chunk) { next_ = chunk; }
2119
Steve Block791712a2010-08-27 10:21:07 +01002120 size_t size() { return size_ & ~Page::kPageFlagMask; }
Steve Blocka7e24c12009-10-30 11:49:00 +00002121 void set_size(size_t size_in_bytes) { size_ = size_in_bytes; }
2122
2123 // Returns the object in this chunk.
2124 inline HeapObject* GetObject();
2125
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002126 // Given a requested size returns the physical size of a chunk to be
2127 // allocated.
Steve Blocka7e24c12009-10-30 11:49:00 +00002128 static int ChunkSizeFor(int size_in_bytes);
2129
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002130 // Given a chunk size, returns the object size it can accommodate. Used by
2131 // LargeObjectSpace::Available.
Steve Blocka7e24c12009-10-30 11:49:00 +00002132 static int ObjectSizeFor(int chunk_size) {
2133 if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0;
2134 return chunk_size - Page::kPageSize - Page::kObjectStartOffset;
2135 }
2136
2137 private:
2138 // A pointer to the next large object chunk in the space or NULL.
2139 LargeObjectChunk* next_;
2140
2141 // The size of this chunk.
2142 size_t size_;
2143
2144 public:
2145 TRACK_MEMORY("LargeObjectChunk")
2146};
2147
2148
2149class LargeObjectSpace : public Space {
2150 public:
2151 explicit LargeObjectSpace(AllocationSpace id);
2152 virtual ~LargeObjectSpace() {}
2153
2154 // Initializes internal data structures.
2155 bool Setup();
2156
2157 // Releases internal resources, frees objects in this space.
2158 void TearDown();
2159
2160 // Allocates a (non-FixedArray, non-Code) large object.
2161 Object* AllocateRaw(int size_in_bytes);
2162 // Allocates a large Code object.
2163 Object* AllocateRawCode(int size_in_bytes);
2164 // Allocates a large FixedArray.
2165 Object* AllocateRawFixedArray(int size_in_bytes);
2166
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002167 // Available bytes for objects in this space.
Steve Blocka7e24c12009-10-30 11:49:00 +00002168 int Available() {
2169 return LargeObjectChunk::ObjectSizeFor(MemoryAllocator::Available());
2170 }
2171
2172 virtual int Size() {
2173 return size_;
2174 }
2175
2176 int PageCount() {
2177 return page_count_;
2178 }
2179
2180 // Finds an object for a given address, returns Failure::Exception()
2181 // if it is not found. The function iterates through all objects in this
2182 // space, may be slow.
2183 Object* FindObject(Address a);
2184
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002185 // Finds a large object page containing the given pc, returns NULL
2186 // if such a page doesn't exist.
2187 LargeObjectChunk* FindChunkContainingPc(Address pc);
2188
2189
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002190 // Iterates objects covered by dirty regions.
2191 void IterateDirtyRegions(ObjectSlotCallback func);
Steve Blocka7e24c12009-10-30 11:49:00 +00002192
2193 // Frees unmarked objects.
2194 void FreeUnmarkedObjects();
2195
2196 // Checks whether a heap object is in this space; O(1).
2197 bool Contains(HeapObject* obj);
2198
2199 // Checks whether the space is empty.
2200 bool IsEmpty() { return first_chunk_ == NULL; }
2201
Leon Clarkee46be812010-01-19 14:06:41 +00002202 // See the comments for ReserveSpace in the Space class. This has to be
2203 // called after ReserveSpace has been called on the paged spaces, since they
2204 // may use some memory, leaving less for large objects.
2205 virtual bool ReserveSpace(int bytes);
2206
Steve Blocka7e24c12009-10-30 11:49:00 +00002207#ifdef ENABLE_HEAP_PROTECTION
2208 // Protect/unprotect the space by marking it read-only/writable.
2209 void Protect();
2210 void Unprotect();
2211#endif
2212
2213#ifdef DEBUG
2214 virtual void Verify();
2215 virtual void Print();
2216 void ReportStatistics();
2217 void CollectCodeStatistics();
Steve Blocka7e24c12009-10-30 11:49:00 +00002218#endif
2219 // Checks whether an address is in the object area in this space. It
2220 // iterates all objects in the space. May be slow.
2221 bool SlowContains(Address addr) { return !FindObject(addr)->IsFailure(); }
2222
2223 private:
2224 // The head of the linked list of large object chunks.
2225 LargeObjectChunk* first_chunk_;
2226 int size_; // allocated bytes
2227 int page_count_; // number of chunks
2228
2229
2230 // Shared implementation of AllocateRaw, AllocateRawCode and
2231 // AllocateRawFixedArray.
2232 Object* AllocateRawInternal(int requested_size,
2233 int object_size,
2234 Executability executable);
2235
Steve Blocka7e24c12009-10-30 11:49:00 +00002236 friend class LargeObjectIterator;
2237
2238 public:
2239 TRACK_MEMORY("LargeObjectSpace")
2240};
2241
2242
2243class LargeObjectIterator: public ObjectIterator {
2244 public:
2245 explicit LargeObjectIterator(LargeObjectSpace* space);
2246 LargeObjectIterator(LargeObjectSpace* space, HeapObjectCallback size_func);
2247
Steve Blocka7e24c12009-10-30 11:49:00 +00002248 HeapObject* next();
2249
2250 // implementation of ObjectIterator.
Steve Blocka7e24c12009-10-30 11:49:00 +00002251 virtual HeapObject* next_object() { return next(); }
2252
2253 private:
2254 LargeObjectChunk* current_;
2255 HeapObjectCallback size_func_;
2256};
2257
2258
2259} } // namespace v8::internal
2260
2261#endif // V8_SPACES_H_