blob: fefbfe9af6e36bd0ff56fd1e6cef3a62951b08f6 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_UTILS_H_
29#define V8_UTILS_H_
30
31#include <stdlib.h>
Steve Block6ded16b2010-05-10 14:33:55 +010032#include <string.h>
Steve Blocka7e24c12009-10-30 11:49:00 +000033
34namespace v8 {
35namespace internal {
36
37// ----------------------------------------------------------------------------
38// General helper functions
39
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010040#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
41
Steve Block3ce2e202009-11-05 08:53:23 +000042// Returns true iff x is a power of 2 (or zero). Cannot be used with the
43// maximally negative value of the type T (the -1 overflows).
Steve Blocka7e24c12009-10-30 11:49:00 +000044template <typename T>
45static inline bool IsPowerOf2(T x) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010046 return IS_POWER_OF_TWO(x);
Steve Blocka7e24c12009-10-30 11:49:00 +000047}
48
49
Kristian Monsen9dcf7e22010-06-28 14:14:28 +010050// X must be a power of 2. Returns the number of trailing zeros.
51template <typename T>
52static inline int WhichPowerOf2(T x) {
53 ASSERT(IsPowerOf2(x));
54 ASSERT(x != 0);
55 if (x < 0) return 31;
56 int bits = 0;
57#ifdef DEBUG
58 int original_x = x;
59#endif
60 if (x >= 0x10000) {
61 bits += 16;
62 x >>= 16;
63 }
64 if (x >= 0x100) {
65 bits += 8;
66 x >>= 8;
67 }
68 if (x >= 0x10) {
69 bits += 4;
70 x >>= 4;
71 }
72 switch (x) {
73 default: UNREACHABLE();
74 case 8: bits++; // Fall through.
75 case 4: bits++; // Fall through.
76 case 2: bits++; // Fall through.
77 case 1: break;
78 }
79 ASSERT_EQ(1 << bits, original_x);
80 return bits;
81 return 0;
82}
83
84
Steve Blocka7e24c12009-10-30 11:49:00 +000085// The C++ standard leaves the semantics of '>>' undefined for
86// negative signed operands. Most implementations do the right thing,
87// though.
88static inline int ArithmeticShiftRight(int x, int s) {
89 return x >> s;
90}
91
92
93// Compute the 0-relative offset of some absolute value x of type T.
94// This allows conversion of Addresses and integral types into
95// 0-relative int offsets.
96template <typename T>
97static inline intptr_t OffsetFrom(T x) {
98 return x - static_cast<T>(0);
99}
100
101
102// Compute the absolute value of type T for some 0-relative offset x.
103// This allows conversion of 0-relative int offsets into Addresses and
104// integral types.
105template <typename T>
106static inline T AddressFrom(intptr_t x) {
Steve Blockd0582a62009-12-15 09:54:21 +0000107 return static_cast<T>(static_cast<T>(0) + x);
Steve Blocka7e24c12009-10-30 11:49:00 +0000108}
109
110
111// Return the largest multiple of m which is <= x.
112template <typename T>
113static inline T RoundDown(T x, int m) {
114 ASSERT(IsPowerOf2(m));
115 return AddressFrom<T>(OffsetFrom(x) & -m);
116}
117
118
119// Return the smallest multiple of m which is >= x.
120template <typename T>
121static inline T RoundUp(T x, int m) {
122 return RoundDown(x + m - 1, m);
123}
124
125
126template <typename T>
127static int Compare(const T& a, const T& b) {
128 if (a == b)
129 return 0;
130 else if (a < b)
131 return -1;
132 else
133 return 1;
134}
135
136
137template <typename T>
138static int PointerValueCompare(const T* a, const T* b) {
139 return Compare<T>(*a, *b);
140}
141
142
143// Returns the smallest power of two which is >= x. If you pass in a
144// number that is already a power of two, it is returned as is.
145uint32_t RoundUpToPowerOf2(uint32_t x);
146
147
148template <typename T>
149static inline bool IsAligned(T value, T alignment) {
150 ASSERT(IsPowerOf2(alignment));
151 return (value & (alignment - 1)) == 0;
152}
153
154
155// Returns true if (addr + offset) is aligned.
156static inline bool IsAddressAligned(Address addr,
157 intptr_t alignment,
158 int offset) {
159 intptr_t offs = OffsetFrom(addr + offset);
160 return IsAligned(offs, alignment);
161}
162
163
164// Returns the maximum of the two parameters.
165template <typename T>
166static T Max(T a, T b) {
167 return a < b ? b : a;
168}
169
170
171// Returns the minimum of the two parameters.
172template <typename T>
173static T Min(T a, T b) {
174 return a < b ? a : b;
175}
176
177
Steve Blockd0582a62009-12-15 09:54:21 +0000178inline int StrLength(const char* string) {
179 size_t length = strlen(string);
180 ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
181 return static_cast<int>(length);
182}
183
184
Steve Blocka7e24c12009-10-30 11:49:00 +0000185// ----------------------------------------------------------------------------
186// BitField is a help template for encoding and decode bitfield with
187// unsigned content.
188template<class T, int shift, int size>
189class BitField {
190 public:
191 // Tells whether the provided value fits into the bit field.
192 static bool is_valid(T value) {
193 return (static_cast<uint32_t>(value) & ~((1U << (size)) - 1)) == 0;
194 }
195
196 // Returns a uint32_t mask of bit field.
197 static uint32_t mask() {
Andrei Popescu402d9372010-02-26 13:31:12 +0000198 // To use all bits of a uint32 in a bitfield without compiler warnings we
199 // have to compute 2^32 without using a shift count of 32.
200 return ((1U << shift) << size) - (1U << shift);
Steve Blocka7e24c12009-10-30 11:49:00 +0000201 }
202
203 // Returns a uint32_t with the bit field value encoded.
204 static uint32_t encode(T value) {
205 ASSERT(is_valid(value));
206 return static_cast<uint32_t>(value) << shift;
207 }
208
209 // Extracts the bit field from the value.
210 static T decode(uint32_t value) {
Andrei Popescu402d9372010-02-26 13:31:12 +0000211 return static_cast<T>((value & mask()) >> shift);
Steve Blocka7e24c12009-10-30 11:49:00 +0000212 }
213};
214
215
216// ----------------------------------------------------------------------------
Steve Blocka7e24c12009-10-30 11:49:00 +0000217// Hash function.
218
219uint32_t ComputeIntegerHash(uint32_t key);
220
221
222// ----------------------------------------------------------------------------
223// I/O support.
224
225// Our version of printf(). Avoids compilation errors that we get
226// with standard printf when attempting to print pointers, etc.
227// (the errors are due to the extra compilation flags, which we
228// want elsewhere).
229void PrintF(const char* format, ...);
230
231// Our version of fflush.
232void Flush();
233
234
235// Read a line of characters after printing the prompt to stdout. The resulting
236// char* needs to be disposed off with DeleteArray by the caller.
237char* ReadLine(const char* prompt);
238
239
240// Read and return the raw bytes in a file. the size of the buffer is returned
241// in size.
242// The returned buffer must be freed by the caller.
243byte* ReadBytes(const char* filename, int* size, bool verbose = true);
244
245
246// Write size chars from str to the file given by filename.
247// The file is overwritten. Returns the number of chars written.
248int WriteChars(const char* filename,
249 const char* str,
250 int size,
251 bool verbose = true);
252
253
254// Write size bytes to the file given by filename.
255// The file is overwritten. Returns the number of bytes written.
256int WriteBytes(const char* filename,
257 const byte* bytes,
258 int size,
259 bool verbose = true);
260
261
262// Write the C code
263// const char* <varname> = "<str>";
264// const int <varname>_len = <len>;
265// to the file given by filename. Only the first len chars are written.
266int WriteAsCFile(const char* filename, const char* varname,
267 const char* str, int size, bool verbose = true);
268
269
270// ----------------------------------------------------------------------------
271// Miscellaneous
272
273// A static resource holds a static instance that can be reserved in
274// a local scope using an instance of Access. Attempts to re-reserve
275// the instance will cause an error.
276template <typename T>
277class StaticResource {
278 public:
279 StaticResource() : is_reserved_(false) {}
280
281 private:
282 template <typename S> friend class Access;
283 T instance_;
284 bool is_reserved_;
285};
286
287
288// Locally scoped access to a static resource.
289template <typename T>
290class Access {
291 public:
292 explicit Access(StaticResource<T>* resource)
293 : resource_(resource)
294 , instance_(&resource->instance_) {
295 ASSERT(!resource->is_reserved_);
296 resource->is_reserved_ = true;
297 }
298
299 ~Access() {
300 resource_->is_reserved_ = false;
301 resource_ = NULL;
302 instance_ = NULL;
303 }
304
305 T* value() { return instance_; }
306 T* operator -> () { return instance_; }
307
308 private:
309 StaticResource<T>* resource_;
310 T* instance_;
311};
312
313
314template <typename T>
315class Vector {
316 public:
317 Vector() : start_(NULL), length_(0) {}
318 Vector(T* data, int length) : start_(data), length_(length) {
319 ASSERT(length == 0 || (length > 0 && data != NULL));
320 }
321
322 static Vector<T> New(int length) {
323 return Vector<T>(NewArray<T>(length), length);
324 }
325
326 // Returns a vector using the same backing storage as this one,
327 // spanning from and including 'from', to but not including 'to'.
328 Vector<T> SubVector(int from, int to) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000329 ASSERT(to <= length_);
330 ASSERT(from < to);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100331 ASSERT(0 <= from);
Steve Blocka7e24c12009-10-30 11:49:00 +0000332 return Vector<T>(start() + from, to - from);
333 }
334
335 // Returns the length of the vector.
336 int length() const { return length_; }
337
338 // Returns whether or not the vector is empty.
339 bool is_empty() const { return length_ == 0; }
340
341 // Returns the pointer to the start of the data in the vector.
342 T* start() const { return start_; }
343
344 // Access individual vector elements - checks bounds in debug mode.
345 T& operator[](int index) const {
346 ASSERT(0 <= index && index < length_);
347 return start_[index];
348 }
349
350 T& first() { return start_[0]; }
351
352 T& last() { return start_[length_ - 1]; }
353
354 // Returns a clone of this vector with a new backing store.
355 Vector<T> Clone() const {
356 T* result = NewArray<T>(length_);
357 for (int i = 0; i < length_; i++) result[i] = start_[i];
358 return Vector<T>(result, length_);
359 }
360
361 void Sort(int (*cmp)(const T*, const T*)) {
362 typedef int (*RawComparer)(const void*, const void*);
363 qsort(start(),
364 length(),
365 sizeof(T),
366 reinterpret_cast<RawComparer>(cmp));
367 }
368
369 void Sort() {
370 Sort(PointerValueCompare<T>);
371 }
372
373 void Truncate(int length) {
374 ASSERT(length <= length_);
375 length_ = length;
376 }
377
378 // Releases the array underlying this vector. Once disposed the
379 // vector is empty.
380 void Dispose() {
Steve Blocka7e24c12009-10-30 11:49:00 +0000381 DeleteArray(start_);
382 start_ = NULL;
383 length_ = 0;
384 }
385
386 inline Vector<T> operator+(int offset) {
387 ASSERT(offset < length_);
388 return Vector<T>(start_ + offset, length_ - offset);
389 }
390
391 // Factory method for creating empty vectors.
392 static Vector<T> empty() { return Vector<T>(NULL, 0); }
393
Kristian Monsen0d5e1162010-09-30 15:31:59 +0100394 template<typename S>
395 static Vector<T> cast(Vector<S> input) {
396 return Vector<T>(reinterpret_cast<T*>(input.start()),
397 input.length() * sizeof(S) / sizeof(T));
398 }
399
Steve Blocka7e24c12009-10-30 11:49:00 +0000400 protected:
401 void set_start(T* start) { start_ = start; }
402
403 private:
404 T* start_;
405 int length_;
406};
407
408
409// A temporary assignment sets a (non-local) variable to a value on
410// construction and resets it the value on destruction.
411template <typename T>
412class TempAssign {
413 public:
414 TempAssign(T* var, T value): var_(var), old_value_(*var) {
415 *var = value;
416 }
417
418 ~TempAssign() { *var_ = old_value_; }
419
420 private:
421 T* var_;
422 T old_value_;
423};
424
425
426template <typename T, int kSize>
427class EmbeddedVector : public Vector<T> {
428 public:
429 EmbeddedVector() : Vector<T>(buffer_, kSize) { }
430
431 // When copying, make underlying Vector to reference our buffer.
432 EmbeddedVector(const EmbeddedVector& rhs)
433 : Vector<T>(rhs) {
434 memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
435 set_start(buffer_);
436 }
437
438 EmbeddedVector& operator=(const EmbeddedVector& rhs) {
439 if (this == &rhs) return *this;
440 Vector<T>::operator=(rhs);
441 memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
Steve Block6ded16b2010-05-10 14:33:55 +0100442 this->set_start(buffer_);
Steve Blocka7e24c12009-10-30 11:49:00 +0000443 return *this;
444 }
445
446 private:
447 T buffer_[kSize];
448};
449
450
451template <typename T>
452class ScopedVector : public Vector<T> {
453 public:
454 explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
455 ~ScopedVector() {
456 DeleteArray(this->start());
457 }
Kristian Monsen25f61362010-05-21 11:50:48 +0100458
459 private:
460 DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
Steve Blocka7e24c12009-10-30 11:49:00 +0000461};
462
463
464inline Vector<const char> CStrVector(const char* data) {
Steve Blockd0582a62009-12-15 09:54:21 +0000465 return Vector<const char>(data, StrLength(data));
Steve Blocka7e24c12009-10-30 11:49:00 +0000466}
467
468inline Vector<char> MutableCStrVector(char* data) {
Steve Blockd0582a62009-12-15 09:54:21 +0000469 return Vector<char>(data, StrLength(data));
Steve Blocka7e24c12009-10-30 11:49:00 +0000470}
471
472inline Vector<char> MutableCStrVector(char* data, int max) {
Steve Blockd0582a62009-12-15 09:54:21 +0000473 int length = StrLength(data);
Steve Blocka7e24c12009-10-30 11:49:00 +0000474 return Vector<char>(data, (length < max) ? length : max);
475}
476
477template <typename T>
478inline Vector< Handle<Object> > HandleVector(v8::internal::Handle<T>* elms,
479 int length) {
480 return Vector< Handle<Object> >(
481 reinterpret_cast<v8::internal::Handle<Object>*>(elms), length);
482}
483
484
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100485/*
486 * A class that collects values into a backing store.
487 * Specialized versions of the class can allow access to the backing store
488 * in different ways.
489 * There is no guarantee that the backing store is contiguous (and, as a
490 * consequence, no guarantees that consecutively added elements are adjacent
491 * in memory). The collector may move elements unless it has guaranteed not
492 * to.
493 */
494template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
495class Collector {
496 public:
497 explicit Collector(int initial_capacity = kMinCapacity)
498 : index_(0), size_(0) {
499 if (initial_capacity < kMinCapacity) {
500 initial_capacity = kMinCapacity;
501 }
502 current_chunk_ = Vector<T>::New(initial_capacity);
503 }
504
505 virtual ~Collector() {
506 // Free backing store (in reverse allocation order).
507 current_chunk_.Dispose();
508 for (int i = chunks_.length() - 1; i >= 0; i--) {
509 chunks_.at(i).Dispose();
510 }
511 }
512
513 // Add a single element.
514 inline void Add(T value) {
515 if (index_ >= current_chunk_.length()) {
516 Grow(1);
517 }
518 current_chunk_[index_] = value;
519 index_++;
520 size_++;
521 }
522
523 // Add a block of contiguous elements and return a Vector backed by the
524 // memory area.
525 // A basic Collector will keep this vector valid as long as the Collector
526 // is alive.
527 inline Vector<T> AddBlock(int size, T initial_value) {
528 ASSERT(size > 0);
529 if (size > current_chunk_.length() - index_) {
530 Grow(size);
531 }
532 T* position = current_chunk_.start() + index_;
533 index_ += size;
534 size_ += size;
535 for (int i = 0; i < size; i++) {
536 position[i] = initial_value;
537 }
538 return Vector<T>(position, size);
539 }
540
541
542 // Write the contents of the collector into the provided vector.
543 void WriteTo(Vector<T> destination) {
544 ASSERT(size_ <= destination.length());
545 int position = 0;
546 for (int i = 0; i < chunks_.length(); i++) {
547 Vector<T> chunk = chunks_.at(i);
548 for (int j = 0; j < chunk.length(); j++) {
549 destination[position] = chunk[j];
550 position++;
551 }
552 }
553 for (int i = 0; i < index_; i++) {
554 destination[position] = current_chunk_[i];
555 position++;
556 }
557 }
558
559 // Allocate a single contiguous vector, copy all the collected
560 // elements to the vector, and return it.
561 // The caller is responsible for freeing the memory of the returned
562 // vector (e.g., using Vector::Dispose).
563 Vector<T> ToVector() {
564 Vector<T> new_store = Vector<T>::New(size_);
565 WriteTo(new_store);
566 return new_store;
567 }
568
569 // Resets the collector to be empty.
570 virtual void Reset() {
571 for (int i = chunks_.length() - 1; i >= 0; i--) {
572 chunks_.at(i).Dispose();
573 }
574 chunks_.Rewind(0);
575 index_ = 0;
576 size_ = 0;
577 }
578
579 // Total number of elements added to collector so far.
580 inline int size() { return size_; }
581
582 protected:
583 static const int kMinCapacity = 16;
584 List<Vector<T> > chunks_;
585 Vector<T> current_chunk_; // Block of memory currently being written into.
586 int index_; // Current index in current chunk.
587 int size_; // Total number of elements in collector.
588
589 // Creates a new current chunk, and stores the old chunk in the chunks_ list.
590 void Grow(int min_capacity) {
591 ASSERT(growth_factor > 1);
592 int growth = current_chunk_.length() * (growth_factor - 1);
593 if (growth > max_growth) {
594 growth = max_growth;
595 }
596 int new_capacity = current_chunk_.length() + growth;
597 if (new_capacity < min_capacity) {
598 new_capacity = min_capacity + growth;
599 }
600 Vector<T> new_chunk = Vector<T>::New(new_capacity);
601 int new_index = PrepareGrow(new_chunk);
602 if (index_ > 0) {
603 chunks_.Add(current_chunk_.SubVector(0, index_));
604 } else {
605 // Can happen if the call to PrepareGrow moves everything into
606 // the new chunk.
607 current_chunk_.Dispose();
608 }
609 current_chunk_ = new_chunk;
610 index_ = new_index;
611 ASSERT(index_ + min_capacity <= current_chunk_.length());
612 }
613
614 // Before replacing the current chunk, give a subclass the option to move
615 // some of the current data into the new chunk. The function may update
616 // the current index_ value to represent data no longer in the current chunk.
617 // Returns the initial index of the new chunk (after copied data).
618 virtual int PrepareGrow(Vector<T> new_chunk) {
619 return 0;
620 }
621};
622
623
624/*
625 * A collector that allows sequences of values to be guaranteed to
626 * stay consecutive.
627 * If the backing store grows while a sequence is active, the current
628 * sequence might be moved, but after the sequence is ended, it will
629 * not move again.
630 * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
631 * as well, if inside an active sequence where another element is added.
632 */
633template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
634class SequenceCollector : public Collector<T, growth_factor, max_growth> {
635 public:
636 explicit SequenceCollector(int initial_capacity)
637 : Collector<T, growth_factor, max_growth>(initial_capacity),
638 sequence_start_(kNoSequence) { }
639
640 virtual ~SequenceCollector() {}
641
642 void StartSequence() {
643 ASSERT(sequence_start_ == kNoSequence);
644 sequence_start_ = this->index_;
645 }
646
647 Vector<T> EndSequence() {
648 ASSERT(sequence_start_ != kNoSequence);
649 int sequence_start = sequence_start_;
650 sequence_start_ = kNoSequence;
651 if (sequence_start == this->index_) return Vector<T>();
652 return this->current_chunk_.SubVector(sequence_start, this->index_);
653 }
654
655 // Drops the currently added sequence, and all collected elements in it.
656 void DropSequence() {
657 ASSERT(sequence_start_ != kNoSequence);
658 int sequence_length = this->index_ - sequence_start_;
659 this->index_ = sequence_start_;
660 this->size_ -= sequence_length;
661 sequence_start_ = kNoSequence;
662 }
663
664 virtual void Reset() {
665 sequence_start_ = kNoSequence;
666 this->Collector<T, growth_factor, max_growth>::Reset();
667 }
668
669 private:
670 static const int kNoSequence = -1;
671 int sequence_start_;
672
673 // Move the currently active sequence to the new chunk.
674 virtual int PrepareGrow(Vector<T> new_chunk) {
675 if (sequence_start_ != kNoSequence) {
676 int sequence_length = this->index_ - sequence_start_;
677 // The new chunk is always larger than the current chunk, so there
678 // is room for the copy.
679 ASSERT(sequence_length < new_chunk.length());
680 for (int i = 0; i < sequence_length; i++) {
681 new_chunk[i] = this->current_chunk_[sequence_start_ + i];
682 }
683 this->index_ = sequence_start_;
684 sequence_start_ = 0;
685 return sequence_length;
686 }
687 return 0;
688 }
689};
690
691
Steve Blocka7e24c12009-10-30 11:49:00 +0000692// Simple support to read a file into a 0-terminated C-string.
693// The returned buffer must be freed by the caller.
694// On return, *exits tells whether the file existed.
695Vector<const char> ReadFile(const char* filename,
696 bool* exists,
697 bool verbose = true);
698
699
700// Simple wrapper that allows an ExternalString to refer to a
701// Vector<const char>. Doesn't assume ownership of the data.
702class AsciiStringAdapter: public v8::String::ExternalAsciiStringResource {
703 public:
704 explicit AsciiStringAdapter(Vector<const char> data) : data_(data) {}
705
706 virtual const char* data() const { return data_.start(); }
707
708 virtual size_t length() const { return data_.length(); }
709
710 private:
711 Vector<const char> data_;
712};
713
714
715// Helper class for building result strings in a character buffer. The
716// purpose of the class is to use safe operations that checks the
717// buffer bounds on all operations in debug mode.
718class StringBuilder {
719 public:
720 // Create a string builder with a buffer of the given size. The
721 // buffer is allocated through NewArray<char> and must be
722 // deallocated by the caller of Finalize().
723 explicit StringBuilder(int size);
724
725 StringBuilder(char* buffer, int size)
726 : buffer_(buffer, size), position_(0) { }
727
728 ~StringBuilder() { if (!is_finalized()) Finalize(); }
729
730 int size() const { return buffer_.length(); }
731
732 // Get the current position in the builder.
733 int position() const {
734 ASSERT(!is_finalized());
735 return position_;
736 }
737
738 // Reset the position.
739 void Reset() { position_ = 0; }
740
741 // Add a single character to the builder. It is not allowed to add
742 // 0-characters; use the Finalize() method to terminate the string
743 // instead.
744 void AddCharacter(char c) {
745 ASSERT(c != '\0');
746 ASSERT(!is_finalized() && position_ < buffer_.length());
747 buffer_[position_++] = c;
748 }
749
750 // Add an entire string to the builder. Uses strlen() internally to
751 // compute the length of the input string.
752 void AddString(const char* s);
753
754 // Add the first 'n' characters of the given string 's' to the
755 // builder. The input string must have enough characters.
756 void AddSubstring(const char* s, int n);
757
758 // Add formatted contents to the builder just like printf().
759 void AddFormatted(const char* format, ...);
760
761 // Add character padding to the builder. If count is non-positive,
762 // nothing is added to the builder.
763 void AddPadding(char c, int count);
764
765 // Finalize the string by 0-terminating it and returning the buffer.
766 char* Finalize();
767
768 private:
769 Vector<char> buffer_;
770 int position_;
771
772 bool is_finalized() const { return position_ < 0; }
773
774 DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
775};
776
777
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100778// Custom memcpy implementation for platforms where the standard version
779// may not be good enough.
780// TODO(lrn): Check whether some IA32 platforms should be excluded.
781#if defined(V8_TARGET_ARCH_IA32)
782
783// TODO(lrn): Extend to other platforms as needed.
784
785typedef void (*MemCopyFunction)(void* dest, const void* src, size_t size);
786
787// Implemented in codegen-<arch>.cc.
788MemCopyFunction CreateMemCopyFunction();
789
790// Copy memory area to disjoint memory area.
791static inline void MemCopy(void* dest, const void* src, size_t size) {
792 static MemCopyFunction memcopy = CreateMemCopyFunction();
793 (*memcopy)(dest, src, size);
794#ifdef DEBUG
795 CHECK_EQ(0, memcmp(dest, src, size));
796#endif
797}
798
799
800// Limit below which the extra overhead of the MemCopy function is likely
801// to outweigh the benefits of faster copying.
802// TODO(lrn): Try to find a more precise value.
Steve Block8defd9f2010-07-08 12:39:36 +0100803static const int kMinComplexMemCopy = 64;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100804
805#else // V8_TARGET_ARCH_IA32
806
807static inline void MemCopy(void* dest, const void* src, size_t size) {
808 memcpy(dest, src, size);
809}
810
811static const int kMinComplexMemCopy = 256;
812
813#endif // V8_TARGET_ARCH_IA32
814
815
Steve Blocka7e24c12009-10-30 11:49:00 +0000816// Copy from ASCII/16bit chars to ASCII/16bit chars.
817template <typename sourcechar, typename sinkchar>
818static inline void CopyChars(sinkchar* dest, const sourcechar* src, int chars) {
819 sinkchar* limit = dest + chars;
820#ifdef V8_HOST_CAN_READ_UNALIGNED
821 if (sizeof(*dest) == sizeof(*src)) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100822 if (chars >= static_cast<int>(kMinComplexMemCopy / sizeof(*dest))) {
823 MemCopy(dest, src, chars * sizeof(*dest));
824 return;
825 }
Steve Block6ded16b2010-05-10 14:33:55 +0100826 // Number of characters in a uintptr_t.
827 static const int kStepSize = sizeof(uintptr_t) / sizeof(*dest); // NOLINT
Steve Blocka7e24c12009-10-30 11:49:00 +0000828 while (dest <= limit - kStepSize) {
Steve Block6ded16b2010-05-10 14:33:55 +0100829 *reinterpret_cast<uintptr_t*>(dest) =
830 *reinterpret_cast<const uintptr_t*>(src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000831 dest += kStepSize;
832 src += kStepSize;
833 }
834 }
835#endif
836 while (dest < limit) {
837 *dest++ = static_cast<sinkchar>(*src++);
838 }
839}
840
841
Steve Block6ded16b2010-05-10 14:33:55 +0100842// Compare ASCII/16bit chars to ASCII/16bit chars.
843template <typename lchar, typename rchar>
844static inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
845 const lchar* limit = lhs + chars;
846#ifdef V8_HOST_CAN_READ_UNALIGNED
847 if (sizeof(*lhs) == sizeof(*rhs)) {
848 // Number of characters in a uintptr_t.
849 static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs); // NOLINT
850 while (lhs <= limit - kStepSize) {
851 if (*reinterpret_cast<const uintptr_t*>(lhs) !=
852 *reinterpret_cast<const uintptr_t*>(rhs)) {
853 break;
854 }
855 lhs += kStepSize;
856 rhs += kStepSize;
857 }
858 }
859#endif
860 while (lhs < limit) {
861 int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
862 if (r != 0) return r;
863 ++lhs;
864 ++rhs;
865 }
866 return 0;
867}
868
869
870template <typename T>
871static inline void MemsetPointer(T** dest, T* value, int counter) {
872#if defined(V8_HOST_ARCH_IA32)
873#define STOS "stosl"
874#elif defined(V8_HOST_ARCH_X64)
875#define STOS "stosq"
876#endif
877
878#if defined(__GNUC__) && defined(STOS)
879 asm volatile(
880 "cld;"
881 "rep ; " STOS
882 : "+&c" (counter), "+&D" (dest)
883 : "a" (value)
884 : "memory", "cc");
885#else
886 for (int i = 0; i < counter; i++) {
887 dest[i] = value;
888 }
889#endif
890
891#undef STOS
892}
893
894
895// Copies data from |src| to |dst|. The data spans MUST not overlap.
896inline void CopyWords(Object** dst, Object** src, int num_words) {
897 ASSERT(Min(dst, src) + num_words <= Max(dst, src));
898 ASSERT(num_words > 0);
899
900 // Use block copying memcpy if the segment we're copying is
901 // enough to justify the extra call/setup overhead.
902 static const int kBlockCopyLimit = 16;
903
904 if (num_words >= kBlockCopyLimit) {
905 memcpy(dst, src, num_words * kPointerSize);
906 } else {
907 int remaining = num_words;
908 do {
909 remaining--;
910 *dst++ = *src++;
911 } while (remaining > 0);
912 }
913}
914
915
Steve Blockd0582a62009-12-15 09:54:21 +0000916// Calculate 10^exponent.
917int TenToThe(int exponent);
918
Steve Block6ded16b2010-05-10 14:33:55 +0100919
920// The type-based aliasing rule allows the compiler to assume that pointers of
921// different types (for some definition of different) never alias each other.
922// Thus the following code does not work:
923//
924// float f = foo();
925// int fbits = *(int*)(&f);
926//
927// The compiler 'knows' that the int pointer can't refer to f since the types
928// don't match, so the compiler may cache f in a register, leaving random data
929// in fbits. Using C++ style casts makes no difference, however a pointer to
930// char data is assumed to alias any other pointer. This is the 'memcpy
931// exception'.
932//
933// Bit_cast uses the memcpy exception to move the bits from a variable of one
934// type of a variable of another type. Of course the end result is likely to
935// be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005)
936// will completely optimize BitCast away.
937//
938// There is an additional use for BitCast.
939// Recent gccs will warn when they see casts that may result in breakage due to
940// the type-based aliasing rule. If you have checked that there is no breakage
941// you can use BitCast to cast one pointer type to another. This confuses gcc
942// enough that it can no longer see that you have cast one pointer type to
943// another thus avoiding the warning.
944template <class Dest, class Source>
945inline Dest BitCast(const Source& source) {
946 // Compile time assertion: sizeof(Dest) == sizeof(Source)
947 // A compile error here means your Dest and Source have different sizes.
948 typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
949
950 Dest dest;
951 memcpy(&dest, &source, sizeof(dest));
952 return dest;
953}
954
Iain Merrick75681382010-08-19 15:07:18 +0100955template <class Dest, class Source>
Steve Block791712a2010-08-27 10:21:07 +0100956inline Dest BitCast(Source* source) {
957 return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
Iain Merrick75681382010-08-19 15:07:18 +0100958}
Steve Blocka7e24c12009-10-30 11:49:00 +0000959
Iain Merrick75681382010-08-19 15:07:18 +0100960} } // namespace v8::internal
Steve Block6ded16b2010-05-10 14:33:55 +0100961
Steve Blocka7e24c12009-10-30 11:49:00 +0000962#endif // V8_UTILS_H_