blob: c227b13d2006dfcac3f65215d5a4113266c03884 [file] [log] [blame]
Steve Block1e0659c2011-05-24 12:43:12 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
Iain Merrick9ac36c92010-09-13 15:29:50 +010028#include <limits.h> // For LONG_MIN, LONG_MAX.
29
Steve Blocka7e24c12009-10-30 11:49:00 +000030#include "v8.h"
31
Leon Clarkef7060e22010-06-03 12:02:55 +010032#if defined(V8_TARGET_ARCH_ARM)
33
Steve Blocka7e24c12009-10-30 11:49:00 +000034#include "bootstrapper.h"
Ben Murdoch8b112d22011-06-08 16:22:53 +010035#include "codegen.h"
Steve Blocka7e24c12009-10-30 11:49:00 +000036#include "debug.h"
37#include "runtime.h"
38
39namespace v8 {
40namespace internal {
41
Ben Murdoch8b112d22011-06-08 16:22:53 +010042MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
43 : Assembler(arg_isolate, buffer, size),
Steve Blocka7e24c12009-10-30 11:49:00 +000044 generating_stub_(false),
Ben Murdoch8b112d22011-06-08 16:22:53 +010045 allow_stub_calls_(true) {
46 if (isolate() != NULL) {
47 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
48 isolate());
49 }
Steve Blocka7e24c12009-10-30 11:49:00 +000050}
51
52
53// We always generate arm code, never thumb code, even if V8 is compiled to
54// thumb, so we require inter-working support
55#if defined(__thumb__) && !defined(USE_THUMB_INTERWORK)
56#error "flag -mthumb-interwork missing"
57#endif
58
59
60// We do not support thumb inter-working with an arm architecture not supporting
61// the blx instruction (below v5t). If you know what CPU you are compiling for
62// you can use -march=armv7 or similar.
63#if defined(USE_THUMB_INTERWORK) && !defined(CAN_USE_THUMB_INSTRUCTIONS)
64# error "For thumb inter-working we require an architecture which supports blx"
65#endif
66
67
Steve Blocka7e24c12009-10-30 11:49:00 +000068// Using bx does not yield better code, so use it only when required
69#if defined(USE_THUMB_INTERWORK)
70#define USE_BX 1
71#endif
72
73
74void MacroAssembler::Jump(Register target, Condition cond) {
75#if USE_BX
76 bx(target, cond);
77#else
78 mov(pc, Operand(target), LeaveCC, cond);
79#endif
80}
81
82
83void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
84 Condition cond) {
85#if USE_BX
Ben Murdoch257744e2011-11-30 15:57:28 +000086 mov(ip, Operand(target, rmode));
Steve Blocka7e24c12009-10-30 11:49:00 +000087 bx(ip, cond);
88#else
89 mov(pc, Operand(target, rmode), LeaveCC, cond);
90#endif
91}
92
93
94void MacroAssembler::Jump(byte* target, RelocInfo::Mode rmode,
95 Condition cond) {
96 ASSERT(!RelocInfo::IsCodeTarget(rmode));
97 Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
98}
99
100
101void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
102 Condition cond) {
103 ASSERT(RelocInfo::IsCodeTarget(rmode));
104 // 'code' is always generated ARM code, never THUMB code
105 Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
106}
107
108
Steve Block44f0eee2011-05-26 01:26:41 +0100109int MacroAssembler::CallSize(Register target, Condition cond) {
110#if USE_BLX
111 return kInstrSize;
112#else
113 return 2 * kInstrSize;
114#endif
115}
116
117
Steve Blocka7e24c12009-10-30 11:49:00 +0000118void MacroAssembler::Call(Register target, Condition cond) {
Steve Block44f0eee2011-05-26 01:26:41 +0100119 // Block constant pool for the call instruction sequence.
120 BlockConstPoolScope block_const_pool(this);
121#ifdef DEBUG
122 int pre_position = pc_offset();
123#endif
124
Steve Blocka7e24c12009-10-30 11:49:00 +0000125#if USE_BLX
126 blx(target, cond);
127#else
128 // set lr for return at current pc + 8
129 mov(lr, Operand(pc), LeaveCC, cond);
130 mov(pc, Operand(target), LeaveCC, cond);
131#endif
Steve Block44f0eee2011-05-26 01:26:41 +0100132
133#ifdef DEBUG
134 int post_position = pc_offset();
135 CHECK_EQ(pre_position + CallSize(target, cond), post_position);
136#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000137}
138
139
Steve Block44f0eee2011-05-26 01:26:41 +0100140int MacroAssembler::CallSize(
141 intptr_t target, RelocInfo::Mode rmode, Condition cond) {
142 int size = 2 * kInstrSize;
143 Instr mov_instr = cond | MOV | LeaveCC;
144 if (!Operand(target, rmode).is_single_instruction(mov_instr)) {
145 size += kInstrSize;
146 }
147 return size;
148}
149
150
Ben Murdoch257744e2011-11-30 15:57:28 +0000151void MacroAssembler::Call(intptr_t target,
152 RelocInfo::Mode rmode,
153 Condition cond) {
Steve Block44f0eee2011-05-26 01:26:41 +0100154 // Block constant pool for the call instruction sequence.
155 BlockConstPoolScope block_const_pool(this);
156#ifdef DEBUG
157 int pre_position = pc_offset();
158#endif
159
Steve Block6ded16b2010-05-10 14:33:55 +0100160#if USE_BLX
161 // On ARMv5 and after the recommended call sequence is:
162 // ldr ip, [pc, #...]
163 // blx ip
164
Steve Block44f0eee2011-05-26 01:26:41 +0100165 // Statement positions are expected to be recorded when the target
166 // address is loaded. The mov method will automatically record
167 // positions when pc is the target, since this is not the case here
168 // we have to do it explicitly.
169 positions_recorder()->WriteRecordedPositions();
Steve Block6ded16b2010-05-10 14:33:55 +0100170
Ben Murdoch257744e2011-11-30 15:57:28 +0000171 mov(ip, Operand(target, rmode));
Steve Block44f0eee2011-05-26 01:26:41 +0100172 blx(ip, cond);
Steve Block6ded16b2010-05-10 14:33:55 +0100173
174 ASSERT(kCallTargetAddressOffset == 2 * kInstrSize);
175#else
Steve Blocka7e24c12009-10-30 11:49:00 +0000176 // Set lr for return at current pc + 8.
177 mov(lr, Operand(pc), LeaveCC, cond);
178 // Emit a ldr<cond> pc, [pc + offset of target in constant pool].
179 mov(pc, Operand(target, rmode), LeaveCC, cond);
Steve Blocka7e24c12009-10-30 11:49:00 +0000180 ASSERT(kCallTargetAddressOffset == kInstrSize);
Steve Block6ded16b2010-05-10 14:33:55 +0100181#endif
Steve Block44f0eee2011-05-26 01:26:41 +0100182
183#ifdef DEBUG
184 int post_position = pc_offset();
185 CHECK_EQ(pre_position + CallSize(target, rmode, cond), post_position);
186#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000187}
188
189
Steve Block44f0eee2011-05-26 01:26:41 +0100190int MacroAssembler::CallSize(
191 byte* target, RelocInfo::Mode rmode, Condition cond) {
192 return CallSize(reinterpret_cast<intptr_t>(target), rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +0000193}
194
195
Steve Block44f0eee2011-05-26 01:26:41 +0100196void MacroAssembler::Call(
197 byte* target, RelocInfo::Mode rmode, Condition cond) {
198#ifdef DEBUG
199 int pre_position = pc_offset();
200#endif
201
202 ASSERT(!RelocInfo::IsCodeTarget(rmode));
203 Call(reinterpret_cast<intptr_t>(target), rmode, cond);
204
205#ifdef DEBUG
206 int post_position = pc_offset();
207 CHECK_EQ(pre_position + CallSize(target, rmode, cond), post_position);
208#endif
209}
210
211
212int MacroAssembler::CallSize(
213 Handle<Code> code, RelocInfo::Mode rmode, Condition cond) {
214 return CallSize(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
215}
216
217
Ben Murdoch257744e2011-11-30 15:57:28 +0000218void MacroAssembler::CallWithAstId(Handle<Code> code,
219 RelocInfo::Mode rmode,
220 unsigned ast_id,
221 Condition cond) {
222#ifdef DEBUG
223 int pre_position = pc_offset();
224#endif
225
226 ASSERT(rmode == RelocInfo::CODE_TARGET_WITH_ID);
227 ASSERT(ast_id != kNoASTId);
228 ASSERT(ast_id_for_reloc_info_ == kNoASTId);
229 ast_id_for_reloc_info_ = ast_id;
230 // 'code' is always generated ARM code, never THUMB code
231 Call(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
232
233#ifdef DEBUG
234 int post_position = pc_offset();
235 CHECK_EQ(pre_position + CallSize(code, rmode, cond), post_position);
236#endif
237}
238
239
240void MacroAssembler::Call(Handle<Code> code,
241 RelocInfo::Mode rmode,
242 Condition cond) {
Steve Block44f0eee2011-05-26 01:26:41 +0100243#ifdef DEBUG
244 int pre_position = pc_offset();
245#endif
246
Steve Blocka7e24c12009-10-30 11:49:00 +0000247 ASSERT(RelocInfo::IsCodeTarget(rmode));
248 // 'code' is always generated ARM code, never THUMB code
249 Call(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
Steve Block44f0eee2011-05-26 01:26:41 +0100250
251#ifdef DEBUG
252 int post_position = pc_offset();
253 CHECK_EQ(pre_position + CallSize(code, rmode, cond), post_position);
254#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000255}
256
257
258void MacroAssembler::Ret(Condition cond) {
259#if USE_BX
260 bx(lr, cond);
261#else
262 mov(pc, Operand(lr), LeaveCC, cond);
263#endif
264}
265
266
Leon Clarkee46be812010-01-19 14:06:41 +0000267void MacroAssembler::Drop(int count, Condition cond) {
268 if (count > 0) {
269 add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond);
270 }
271}
272
273
Ben Murdochb0fe1622011-05-05 13:52:32 +0100274void MacroAssembler::Ret(int drop, Condition cond) {
275 Drop(drop, cond);
276 Ret(cond);
277}
278
279
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100280void MacroAssembler::Swap(Register reg1,
281 Register reg2,
282 Register scratch,
283 Condition cond) {
Steve Block6ded16b2010-05-10 14:33:55 +0100284 if (scratch.is(no_reg)) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100285 eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
286 eor(reg2, reg2, Operand(reg1), LeaveCC, cond);
287 eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
Steve Block6ded16b2010-05-10 14:33:55 +0100288 } else {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100289 mov(scratch, reg1, LeaveCC, cond);
290 mov(reg1, reg2, LeaveCC, cond);
291 mov(reg2, scratch, LeaveCC, cond);
Steve Block6ded16b2010-05-10 14:33:55 +0100292 }
293}
294
295
Leon Clarkee46be812010-01-19 14:06:41 +0000296void MacroAssembler::Call(Label* target) {
297 bl(target);
298}
299
300
301void MacroAssembler::Move(Register dst, Handle<Object> value) {
302 mov(dst, Operand(value));
303}
Steve Blockd0582a62009-12-15 09:54:21 +0000304
305
Steve Block6ded16b2010-05-10 14:33:55 +0100306void MacroAssembler::Move(Register dst, Register src) {
307 if (!dst.is(src)) {
308 mov(dst, src);
309 }
310}
311
312
Ben Murdoch257744e2011-11-30 15:57:28 +0000313void MacroAssembler::Move(DoubleRegister dst, DoubleRegister src) {
314 ASSERT(CpuFeatures::IsSupported(VFP3));
315 CpuFeatures::Scope scope(VFP3);
316 if (!dst.is(src)) {
317 vmov(dst, src);
318 }
319}
320
321
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100322void MacroAssembler::And(Register dst, Register src1, const Operand& src2,
323 Condition cond) {
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800324 if (!src2.is_reg() &&
325 !src2.must_use_constant_pool() &&
326 src2.immediate() == 0) {
Iain Merrick9ac36c92010-09-13 15:29:50 +0100327 mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, cond);
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800328
329 } else if (!src2.is_single_instruction() &&
330 !src2.must_use_constant_pool() &&
Ben Murdoch8b112d22011-06-08 16:22:53 +0100331 CpuFeatures::IsSupported(ARMv7) &&
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800332 IsPowerOf2(src2.immediate() + 1)) {
333 ubfx(dst, src1, 0, WhichPowerOf2(src2.immediate() + 1), cond);
334
335 } else {
336 and_(dst, src1, src2, LeaveCC, cond);
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100337 }
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100338}
339
340
341void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width,
342 Condition cond) {
343 ASSERT(lsb < 32);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100344 if (!CpuFeatures::IsSupported(ARMv7)) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100345 int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
346 and_(dst, src1, Operand(mask), LeaveCC, cond);
347 if (lsb != 0) {
348 mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond);
349 }
350 } else {
351 ubfx(dst, src1, lsb, width, cond);
352 }
353}
354
355
356void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width,
357 Condition cond) {
358 ASSERT(lsb < 32);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100359 if (!CpuFeatures::IsSupported(ARMv7)) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100360 int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
361 and_(dst, src1, Operand(mask), LeaveCC, cond);
362 int shift_up = 32 - lsb - width;
363 int shift_down = lsb + shift_up;
364 if (shift_up != 0) {
365 mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond);
366 }
367 if (shift_down != 0) {
368 mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond);
369 }
370 } else {
371 sbfx(dst, src1, lsb, width, cond);
372 }
373}
374
375
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100376void MacroAssembler::Bfi(Register dst,
377 Register src,
378 Register scratch,
379 int lsb,
380 int width,
381 Condition cond) {
382 ASSERT(0 <= lsb && lsb < 32);
383 ASSERT(0 <= width && width < 32);
384 ASSERT(lsb + width < 32);
385 ASSERT(!scratch.is(dst));
386 if (width == 0) return;
Ben Murdoch8b112d22011-06-08 16:22:53 +0100387 if (!CpuFeatures::IsSupported(ARMv7)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100388 int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
389 bic(dst, dst, Operand(mask));
390 and_(scratch, src, Operand((1 << width) - 1));
391 mov(scratch, Operand(scratch, LSL, lsb));
392 orr(dst, dst, scratch);
393 } else {
394 bfi(dst, src, lsb, width, cond);
395 }
396}
397
398
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100399void MacroAssembler::Bfc(Register dst, int lsb, int width, Condition cond) {
400 ASSERT(lsb < 32);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100401 if (!CpuFeatures::IsSupported(ARMv7)) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100402 int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
403 bic(dst, dst, Operand(mask));
404 } else {
405 bfc(dst, lsb, width, cond);
406 }
407}
408
409
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100410void MacroAssembler::Usat(Register dst, int satpos, const Operand& src,
411 Condition cond) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100412 if (!CpuFeatures::IsSupported(ARMv7)) {
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100413 ASSERT(!dst.is(pc) && !src.rm().is(pc));
414 ASSERT((satpos >= 0) && (satpos <= 31));
415
416 // These asserts are required to ensure compatibility with the ARMv7
417 // implementation.
418 ASSERT((src.shift_op() == ASR) || (src.shift_op() == LSL));
419 ASSERT(src.rs().is(no_reg));
420
421 Label done;
422 int satval = (1 << satpos) - 1;
423
424 if (cond != al) {
425 b(NegateCondition(cond), &done); // Skip saturate if !condition.
426 }
427 if (!(src.is_reg() && dst.is(src.rm()))) {
428 mov(dst, src);
429 }
430 tst(dst, Operand(~satval));
431 b(eq, &done);
Iain Merrick9ac36c92010-09-13 15:29:50 +0100432 mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, mi); // 0 if negative.
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100433 mov(dst, Operand(satval), LeaveCC, pl); // satval if positive.
434 bind(&done);
435 } else {
436 usat(dst, satpos, src, cond);
437 }
438}
439
440
Steve Blocka7e24c12009-10-30 11:49:00 +0000441void MacroAssembler::SmiJumpTable(Register index, Vector<Label*> targets) {
442 // Empty the const pool.
443 CheckConstPool(true, true);
444 add(pc, pc, Operand(index,
445 LSL,
Steve Block1e0659c2011-05-24 12:43:12 +0100446 Instruction::kInstrSizeLog2 - kSmiTagSize));
Steve Blocka7e24c12009-10-30 11:49:00 +0000447 BlockConstPoolBefore(pc_offset() + (targets.length() + 1) * kInstrSize);
448 nop(); // Jump table alignment.
449 for (int i = 0; i < targets.length(); i++) {
450 b(targets[i]);
451 }
452}
453
454
455void MacroAssembler::LoadRoot(Register destination,
456 Heap::RootListIndex index,
457 Condition cond) {
Andrei Popescu31002712010-02-23 13:46:05 +0000458 ldr(destination, MemOperand(roots, index << kPointerSizeLog2), cond);
Steve Blocka7e24c12009-10-30 11:49:00 +0000459}
460
461
Kristian Monsen25f61362010-05-21 11:50:48 +0100462void MacroAssembler::StoreRoot(Register source,
463 Heap::RootListIndex index,
464 Condition cond) {
465 str(source, MemOperand(roots, index << kPointerSizeLog2), cond);
466}
467
468
Steve Block6ded16b2010-05-10 14:33:55 +0100469void MacroAssembler::RecordWriteHelper(Register object,
Steve Block8defd9f2010-07-08 12:39:36 +0100470 Register address,
471 Register scratch) {
Steve Block44f0eee2011-05-26 01:26:41 +0100472 if (emit_debug_code()) {
Steve Block6ded16b2010-05-10 14:33:55 +0100473 // Check that the object is not in new space.
474 Label not_in_new_space;
Steve Block8defd9f2010-07-08 12:39:36 +0100475 InNewSpace(object, scratch, ne, &not_in_new_space);
Steve Block6ded16b2010-05-10 14:33:55 +0100476 Abort("new-space object passed to RecordWriteHelper");
477 bind(&not_in_new_space);
478 }
Leon Clarke4515c472010-02-03 11:58:03 +0000479
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100480 // Calculate page address.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100481 Bfc(object, 0, kPageSizeBits);
482
483 // Calculate region number.
Steve Block8defd9f2010-07-08 12:39:36 +0100484 Ubfx(address, address, Page::kRegionSizeLog2,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100485 kPageSizeBits - Page::kRegionSizeLog2);
Steve Blocka7e24c12009-10-30 11:49:00 +0000486
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100487 // Mark region dirty.
Steve Block8defd9f2010-07-08 12:39:36 +0100488 ldr(scratch, MemOperand(object, Page::kDirtyFlagOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +0000489 mov(ip, Operand(1));
Steve Block8defd9f2010-07-08 12:39:36 +0100490 orr(scratch, scratch, Operand(ip, LSL, address));
491 str(scratch, MemOperand(object, Page::kDirtyFlagOffset));
Steve Block6ded16b2010-05-10 14:33:55 +0100492}
493
494
495void MacroAssembler::InNewSpace(Register object,
496 Register scratch,
Steve Block1e0659c2011-05-24 12:43:12 +0100497 Condition cond,
Steve Block6ded16b2010-05-10 14:33:55 +0100498 Label* branch) {
Steve Block1e0659c2011-05-24 12:43:12 +0100499 ASSERT(cond == eq || cond == ne);
Steve Block44f0eee2011-05-26 01:26:41 +0100500 and_(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
501 cmp(scratch, Operand(ExternalReference::new_space_start(isolate())));
Steve Block1e0659c2011-05-24 12:43:12 +0100502 b(cond, branch);
Steve Block6ded16b2010-05-10 14:33:55 +0100503}
504
505
506// Will clobber 4 registers: object, offset, scratch, ip. The
507// register 'object' contains a heap object pointer. The heap object
508// tag is shifted away.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100509void MacroAssembler::RecordWrite(Register object,
510 Operand offset,
511 Register scratch0,
512 Register scratch1) {
Steve Block6ded16b2010-05-10 14:33:55 +0100513 // The compiled code assumes that record write doesn't change the
514 // context register, so we check that none of the clobbered
515 // registers are cp.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100516 ASSERT(!object.is(cp) && !scratch0.is(cp) && !scratch1.is(cp));
Steve Block6ded16b2010-05-10 14:33:55 +0100517
518 Label done;
519
520 // First, test that the object is not in the new space. We cannot set
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100521 // region marks for new space pages.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100522 InNewSpace(object, scratch0, eq, &done);
Steve Block6ded16b2010-05-10 14:33:55 +0100523
Steve Block8defd9f2010-07-08 12:39:36 +0100524 // Add offset into the object.
525 add(scratch0, object, offset);
526
Steve Block6ded16b2010-05-10 14:33:55 +0100527 // Record the actual write.
Steve Block8defd9f2010-07-08 12:39:36 +0100528 RecordWriteHelper(object, scratch0, scratch1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000529
530 bind(&done);
Leon Clarke4515c472010-02-03 11:58:03 +0000531
532 // Clobber all input registers when running with the debug-code flag
533 // turned on to provoke errors.
Steve Block44f0eee2011-05-26 01:26:41 +0100534 if (emit_debug_code()) {
Steve Block6ded16b2010-05-10 14:33:55 +0100535 mov(object, Operand(BitCast<int32_t>(kZapValue)));
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100536 mov(scratch0, Operand(BitCast<int32_t>(kZapValue)));
537 mov(scratch1, Operand(BitCast<int32_t>(kZapValue)));
Leon Clarke4515c472010-02-03 11:58:03 +0000538 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000539}
540
541
Steve Block8defd9f2010-07-08 12:39:36 +0100542// Will clobber 4 registers: object, address, scratch, ip. The
543// register 'object' contains a heap object pointer. The heap object
544// tag is shifted away.
545void MacroAssembler::RecordWrite(Register object,
546 Register address,
547 Register scratch) {
548 // The compiled code assumes that record write doesn't change the
549 // context register, so we check that none of the clobbered
550 // registers are cp.
551 ASSERT(!object.is(cp) && !address.is(cp) && !scratch.is(cp));
552
553 Label done;
554
555 // First, test that the object is not in the new space. We cannot set
556 // region marks for new space pages.
557 InNewSpace(object, scratch, eq, &done);
558
559 // Record the actual write.
560 RecordWriteHelper(object, address, scratch);
561
562 bind(&done);
563
564 // Clobber all input registers when running with the debug-code flag
565 // turned on to provoke errors.
Steve Block44f0eee2011-05-26 01:26:41 +0100566 if (emit_debug_code()) {
Steve Block8defd9f2010-07-08 12:39:36 +0100567 mov(object, Operand(BitCast<int32_t>(kZapValue)));
568 mov(address, Operand(BitCast<int32_t>(kZapValue)));
569 mov(scratch, Operand(BitCast<int32_t>(kZapValue)));
570 }
571}
572
573
Ben Murdochb0fe1622011-05-05 13:52:32 +0100574// Push and pop all registers that can hold pointers.
575void MacroAssembler::PushSafepointRegisters() {
576 // Safepoints expect a block of contiguous register values starting with r0:
577 ASSERT(((1 << kNumSafepointSavedRegisters) - 1) == kSafepointSavedRegisters);
578 // Safepoints expect a block of kNumSafepointRegisters values on the
579 // stack, so adjust the stack for unsaved registers.
580 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
581 ASSERT(num_unsaved >= 0);
582 sub(sp, sp, Operand(num_unsaved * kPointerSize));
583 stm(db_w, sp, kSafepointSavedRegisters);
584}
585
586
587void MacroAssembler::PopSafepointRegisters() {
588 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
589 ldm(ia_w, sp, kSafepointSavedRegisters);
590 add(sp, sp, Operand(num_unsaved * kPointerSize));
591}
592
593
Ben Murdochb8e0da22011-05-16 14:20:40 +0100594void MacroAssembler::PushSafepointRegistersAndDoubles() {
595 PushSafepointRegisters();
596 sub(sp, sp, Operand(DwVfpRegister::kNumAllocatableRegisters *
597 kDoubleSize));
598 for (int i = 0; i < DwVfpRegister::kNumAllocatableRegisters; i++) {
599 vstr(DwVfpRegister::FromAllocationIndex(i), sp, i * kDoubleSize);
600 }
601}
602
603
604void MacroAssembler::PopSafepointRegistersAndDoubles() {
605 for (int i = 0; i < DwVfpRegister::kNumAllocatableRegisters; i++) {
606 vldr(DwVfpRegister::FromAllocationIndex(i), sp, i * kDoubleSize);
607 }
608 add(sp, sp, Operand(DwVfpRegister::kNumAllocatableRegisters *
609 kDoubleSize));
610 PopSafepointRegisters();
611}
612
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100613void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src,
614 Register dst) {
615 str(src, SafepointRegistersAndDoublesSlot(dst));
Steve Block1e0659c2011-05-24 12:43:12 +0100616}
617
618
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100619void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
620 str(src, SafepointRegisterSlot(dst));
Steve Block1e0659c2011-05-24 12:43:12 +0100621}
622
623
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100624void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
625 ldr(dst, SafepointRegisterSlot(src));
Steve Block1e0659c2011-05-24 12:43:12 +0100626}
627
628
Ben Murdochb0fe1622011-05-05 13:52:32 +0100629int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
630 // The registers are pushed starting with the highest encoding,
631 // which means that lowest encodings are closest to the stack pointer.
632 ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
633 return reg_code;
634}
635
636
Steve Block1e0659c2011-05-24 12:43:12 +0100637MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
638 return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
639}
640
641
642MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
643 // General purpose registers are pushed last on the stack.
644 int doubles_size = DwVfpRegister::kNumAllocatableRegisters * kDoubleSize;
645 int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
646 return MemOperand(sp, doubles_size + register_offset);
647}
648
649
Leon Clarkef7060e22010-06-03 12:02:55 +0100650void MacroAssembler::Ldrd(Register dst1, Register dst2,
651 const MemOperand& src, Condition cond) {
652 ASSERT(src.rm().is(no_reg));
653 ASSERT(!dst1.is(lr)); // r14.
654 ASSERT_EQ(0, dst1.code() % 2);
655 ASSERT_EQ(dst1.code() + 1, dst2.code());
656
657 // Generate two ldr instructions if ldrd is not available.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100658 if (CpuFeatures::IsSupported(ARMv7)) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100659 CpuFeatures::Scope scope(ARMv7);
660 ldrd(dst1, dst2, src, cond);
661 } else {
662 MemOperand src2(src);
663 src2.set_offset(src2.offset() + 4);
664 if (dst1.is(src.rn())) {
665 ldr(dst2, src2, cond);
666 ldr(dst1, src, cond);
667 } else {
668 ldr(dst1, src, cond);
669 ldr(dst2, src2, cond);
670 }
671 }
672}
673
674
675void MacroAssembler::Strd(Register src1, Register src2,
676 const MemOperand& dst, Condition cond) {
677 ASSERT(dst.rm().is(no_reg));
678 ASSERT(!src1.is(lr)); // r14.
679 ASSERT_EQ(0, src1.code() % 2);
680 ASSERT_EQ(src1.code() + 1, src2.code());
681
682 // Generate two str instructions if strd is not available.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100683 if (CpuFeatures::IsSupported(ARMv7)) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100684 CpuFeatures::Scope scope(ARMv7);
685 strd(src1, src2, dst, cond);
686 } else {
687 MemOperand dst2(dst);
688 dst2.set_offset(dst2.offset() + 4);
689 str(src1, dst, cond);
690 str(src2, dst2, cond);
691 }
692}
693
694
Ben Murdochb8e0da22011-05-16 14:20:40 +0100695void MacroAssembler::ClearFPSCRBits(const uint32_t bits_to_clear,
696 const Register scratch,
697 const Condition cond) {
698 vmrs(scratch, cond);
699 bic(scratch, scratch, Operand(bits_to_clear), LeaveCC, cond);
700 vmsr(scratch, cond);
701}
702
703
704void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
705 const DwVfpRegister src2,
706 const Condition cond) {
707 // Compare and move FPSCR flags to the normal condition flags.
708 VFPCompareAndLoadFlags(src1, src2, pc, cond);
709}
710
711void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
712 const double src2,
713 const Condition cond) {
714 // Compare and move FPSCR flags to the normal condition flags.
715 VFPCompareAndLoadFlags(src1, src2, pc, cond);
716}
717
718
719void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
720 const DwVfpRegister src2,
721 const Register fpscr_flags,
722 const Condition cond) {
723 // Compare and load FPSCR.
724 vcmp(src1, src2, cond);
725 vmrs(fpscr_flags, cond);
726}
727
728void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
729 const double src2,
730 const Register fpscr_flags,
731 const Condition cond) {
732 // Compare and load FPSCR.
733 vcmp(src1, src2, cond);
734 vmrs(fpscr_flags, cond);
Ben Murdoch086aeea2011-05-13 15:57:08 +0100735}
736
737
Steve Blocka7e24c12009-10-30 11:49:00 +0000738void MacroAssembler::EnterFrame(StackFrame::Type type) {
739 // r0-r3: preserved
740 stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
741 mov(ip, Operand(Smi::FromInt(type)));
742 push(ip);
743 mov(ip, Operand(CodeObject()));
744 push(ip);
745 add(fp, sp, Operand(3 * kPointerSize)); // Adjust FP to point to saved FP.
746}
747
748
749void MacroAssembler::LeaveFrame(StackFrame::Type type) {
750 // r0: preserved
751 // r1: preserved
752 // r2: preserved
753
754 // Drop the execution stack down to the frame pointer and restore
755 // the caller frame pointer and return address.
756 mov(sp, fp);
757 ldm(ia_w, sp, fp.bit() | lr.bit());
758}
759
760
Steve Block1e0659c2011-05-24 12:43:12 +0100761void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) {
762 // Setup the frame structure on the stack.
763 ASSERT_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
764 ASSERT_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
765 ASSERT_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
766 Push(lr, fp);
Andrei Popescu402d9372010-02-26 13:31:12 +0000767 mov(fp, Operand(sp)); // Setup new frame pointer.
Steve Block1e0659c2011-05-24 12:43:12 +0100768 // Reserve room for saved entry sp and code object.
769 sub(sp, sp, Operand(2 * kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +0100770 if (emit_debug_code()) {
Steve Block1e0659c2011-05-24 12:43:12 +0100771 mov(ip, Operand(0));
772 str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
773 }
Andrei Popescu402d9372010-02-26 13:31:12 +0000774 mov(ip, Operand(CodeObject()));
Steve Block1e0659c2011-05-24 12:43:12 +0100775 str(ip, MemOperand(fp, ExitFrameConstants::kCodeOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +0000776
777 // Save the frame pointer and the context in top.
Steve Block44f0eee2011-05-26 01:26:41 +0100778 mov(ip, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate())));
Steve Blocka7e24c12009-10-30 11:49:00 +0000779 str(fp, MemOperand(ip));
Steve Block44f0eee2011-05-26 01:26:41 +0100780 mov(ip, Operand(ExternalReference(Isolate::k_context_address, isolate())));
Steve Blocka7e24c12009-10-30 11:49:00 +0000781 str(cp, MemOperand(ip));
782
Ben Murdochb0fe1622011-05-05 13:52:32 +0100783 // Optionally save all double registers.
784 if (save_doubles) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100785 DwVfpRegister first = d0;
786 DwVfpRegister last =
787 DwVfpRegister::from_code(DwVfpRegister::kNumRegisters - 1);
788 vstm(db_w, sp, first, last);
Steve Block1e0659c2011-05-24 12:43:12 +0100789 // Note that d0 will be accessible at
790 // fp - 2 * kPointerSize - DwVfpRegister::kNumRegisters * kDoubleSize,
791 // since the sp slot and code slot were pushed after the fp.
Ben Murdochb0fe1622011-05-05 13:52:32 +0100792 }
Steve Block1e0659c2011-05-24 12:43:12 +0100793
794 // Reserve place for the return address and stack space and align the frame
795 // preparing for calling the runtime function.
796 const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
797 sub(sp, sp, Operand((stack_space + 1) * kPointerSize));
798 if (frame_alignment > 0) {
799 ASSERT(IsPowerOf2(frame_alignment));
800 and_(sp, sp, Operand(-frame_alignment));
801 }
802
803 // Set the exit frame sp value to point just before the return address
804 // location.
805 add(ip, sp, Operand(kPointerSize));
806 str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +0000807}
808
809
Steve Block6ded16b2010-05-10 14:33:55 +0100810void MacroAssembler::InitializeNewString(Register string,
811 Register length,
812 Heap::RootListIndex map_index,
813 Register scratch1,
814 Register scratch2) {
815 mov(scratch1, Operand(length, LSL, kSmiTagSize));
816 LoadRoot(scratch2, map_index);
817 str(scratch1, FieldMemOperand(string, String::kLengthOffset));
818 mov(scratch1, Operand(String::kEmptyHashField));
819 str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
820 str(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
821}
822
823
824int MacroAssembler::ActivationFrameAlignment() {
Steve Blocka7e24c12009-10-30 11:49:00 +0000825#if defined(V8_HOST_ARCH_ARM)
826 // Running on the real platform. Use the alignment as mandated by the local
827 // environment.
828 // Note: This will break if we ever start generating snapshots on one ARM
829 // platform for another ARM platform with a different alignment.
Steve Block6ded16b2010-05-10 14:33:55 +0100830 return OS::ActivationFrameAlignment();
Steve Blocka7e24c12009-10-30 11:49:00 +0000831#else // defined(V8_HOST_ARCH_ARM)
832 // If we are using the simulator then we should always align to the expected
833 // alignment. As the simulator is used to generate snapshots we do not know
Steve Block6ded16b2010-05-10 14:33:55 +0100834 // if the target platform will need alignment, so this is controlled from a
835 // flag.
836 return FLAG_sim_stack_alignment;
Steve Blocka7e24c12009-10-30 11:49:00 +0000837#endif // defined(V8_HOST_ARCH_ARM)
Steve Blocka7e24c12009-10-30 11:49:00 +0000838}
839
840
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100841void MacroAssembler::LeaveExitFrame(bool save_doubles,
842 Register argument_count) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100843 // Optionally restore all double registers.
844 if (save_doubles) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100845 // Calculate the stack location of the saved doubles and restore them.
846 const int offset = 2 * kPointerSize;
847 sub(r3, fp, Operand(offset + DwVfpRegister::kNumRegisters * kDoubleSize));
848 DwVfpRegister first = d0;
849 DwVfpRegister last =
850 DwVfpRegister::from_code(DwVfpRegister::kNumRegisters - 1);
851 vldm(ia, r3, first, last);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100852 }
853
Steve Blocka7e24c12009-10-30 11:49:00 +0000854 // Clear top frame.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100855 mov(r3, Operand(0, RelocInfo::NONE));
Steve Block44f0eee2011-05-26 01:26:41 +0100856 mov(ip, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate())));
Steve Blocka7e24c12009-10-30 11:49:00 +0000857 str(r3, MemOperand(ip));
858
859 // Restore current context from top and clear it in debug mode.
Steve Block44f0eee2011-05-26 01:26:41 +0100860 mov(ip, Operand(ExternalReference(Isolate::k_context_address, isolate())));
Steve Blocka7e24c12009-10-30 11:49:00 +0000861 ldr(cp, MemOperand(ip));
862#ifdef DEBUG
863 str(r3, MemOperand(ip));
864#endif
865
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100866 // Tear down the exit frame, pop the arguments, and return.
Steve Block1e0659c2011-05-24 12:43:12 +0100867 mov(sp, Operand(fp));
868 ldm(ia_w, sp, fp.bit() | lr.bit());
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100869 if (argument_count.is_valid()) {
870 add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2));
871 }
872}
873
874void MacroAssembler::GetCFunctionDoubleResult(const DoubleRegister dst) {
Ben Murdoch257744e2011-11-30 15:57:28 +0000875 if (use_eabi_hardfloat()) {
876 Move(dst, d0);
877 } else {
878 vmov(dst, r0, r1);
879 }
880}
881
882
883void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) {
884 // This macro takes the dst register to make the code more readable
885 // at the call sites. However, the dst register has to be r5 to
886 // follow the calling convention which requires the call type to be
887 // in r5.
888 ASSERT(dst.is(r5));
889 if (call_kind == CALL_AS_FUNCTION) {
890 mov(dst, Operand(Smi::FromInt(1)));
891 } else {
892 mov(dst, Operand(Smi::FromInt(0)));
893 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000894}
895
896
897void MacroAssembler::InvokePrologue(const ParameterCount& expected,
898 const ParameterCount& actual,
899 Handle<Code> code_constant,
900 Register code_reg,
901 Label* done,
Ben Murdochb8e0da22011-05-16 14:20:40 +0100902 InvokeFlag flag,
Ben Murdoch257744e2011-11-30 15:57:28 +0000903 const CallWrapper& call_wrapper,
904 CallKind call_kind) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000905 bool definitely_matches = false;
906 Label regular_invoke;
907
908 // Check whether the expected and actual arguments count match. If not,
909 // setup registers according to contract with ArgumentsAdaptorTrampoline:
910 // r0: actual arguments count
911 // r1: function (passed through to callee)
912 // r2: expected arguments count
913 // r3: callee code entry
914
915 // The code below is made a lot easier because the calling code already sets
916 // up actual and expected registers according to the contract if values are
917 // passed in registers.
918 ASSERT(actual.is_immediate() || actual.reg().is(r0));
919 ASSERT(expected.is_immediate() || expected.reg().is(r2));
920 ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3));
921
922 if (expected.is_immediate()) {
923 ASSERT(actual.is_immediate());
924 if (expected.immediate() == actual.immediate()) {
925 definitely_matches = true;
926 } else {
927 mov(r0, Operand(actual.immediate()));
928 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
929 if (expected.immediate() == sentinel) {
930 // Don't worry about adapting arguments for builtins that
931 // don't want that done. Skip adaption code by making it look
932 // like we have a match between expected and actual number of
933 // arguments.
934 definitely_matches = true;
935 } else {
936 mov(r2, Operand(expected.immediate()));
937 }
938 }
939 } else {
940 if (actual.is_immediate()) {
941 cmp(expected.reg(), Operand(actual.immediate()));
942 b(eq, &regular_invoke);
943 mov(r0, Operand(actual.immediate()));
944 } else {
945 cmp(expected.reg(), Operand(actual.reg()));
946 b(eq, &regular_invoke);
947 }
948 }
949
950 if (!definitely_matches) {
951 if (!code_constant.is_null()) {
952 mov(r3, Operand(code_constant));
953 add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
954 }
955
956 Handle<Code> adaptor =
Steve Block44f0eee2011-05-26 01:26:41 +0100957 isolate()->builtins()->ArgumentsAdaptorTrampoline();
Steve Blocka7e24c12009-10-30 11:49:00 +0000958 if (flag == CALL_FUNCTION) {
Ben Murdoch257744e2011-11-30 15:57:28 +0000959 call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
960 SetCallKind(r5, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +0000961 Call(adaptor, RelocInfo::CODE_TARGET);
Ben Murdoch257744e2011-11-30 15:57:28 +0000962 call_wrapper.AfterCall();
Steve Blocka7e24c12009-10-30 11:49:00 +0000963 b(done);
964 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +0000965 SetCallKind(r5, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +0000966 Jump(adaptor, RelocInfo::CODE_TARGET);
967 }
968 bind(&regular_invoke);
969 }
970}
971
972
973void MacroAssembler::InvokeCode(Register code,
974 const ParameterCount& expected,
975 const ParameterCount& actual,
Ben Murdochb8e0da22011-05-16 14:20:40 +0100976 InvokeFlag flag,
Ben Murdoch257744e2011-11-30 15:57:28 +0000977 const CallWrapper& call_wrapper,
978 CallKind call_kind) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000979 Label done;
980
Ben Murdochb8e0da22011-05-16 14:20:40 +0100981 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
Ben Murdoch257744e2011-11-30 15:57:28 +0000982 call_wrapper, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +0000983 if (flag == CALL_FUNCTION) {
Ben Murdoch257744e2011-11-30 15:57:28 +0000984 call_wrapper.BeforeCall(CallSize(code));
985 SetCallKind(r5, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +0000986 Call(code);
Ben Murdoch257744e2011-11-30 15:57:28 +0000987 call_wrapper.AfterCall();
Steve Blocka7e24c12009-10-30 11:49:00 +0000988 } else {
989 ASSERT(flag == JUMP_FUNCTION);
Ben Murdoch257744e2011-11-30 15:57:28 +0000990 SetCallKind(r5, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +0000991 Jump(code);
992 }
993
994 // Continue here if InvokePrologue does handle the invocation due to
995 // mismatched parameter counts.
996 bind(&done);
997}
998
999
1000void MacroAssembler::InvokeCode(Handle<Code> code,
1001 const ParameterCount& expected,
1002 const ParameterCount& actual,
1003 RelocInfo::Mode rmode,
Ben Murdoch257744e2011-11-30 15:57:28 +00001004 InvokeFlag flag,
1005 CallKind call_kind) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001006 Label done;
1007
Ben Murdoch257744e2011-11-30 15:57:28 +00001008 InvokePrologue(expected, actual, code, no_reg, &done, flag,
1009 NullCallWrapper(), call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +00001010 if (flag == CALL_FUNCTION) {
Ben Murdoch257744e2011-11-30 15:57:28 +00001011 SetCallKind(r5, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +00001012 Call(code, rmode);
1013 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00001014 SetCallKind(r5, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +00001015 Jump(code, rmode);
1016 }
1017
1018 // Continue here if InvokePrologue does handle the invocation due to
1019 // mismatched parameter counts.
1020 bind(&done);
1021}
1022
1023
1024void MacroAssembler::InvokeFunction(Register fun,
1025 const ParameterCount& actual,
Ben Murdochb8e0da22011-05-16 14:20:40 +01001026 InvokeFlag flag,
Ben Murdoch257744e2011-11-30 15:57:28 +00001027 const CallWrapper& call_wrapper,
1028 CallKind call_kind) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001029 // Contract with called JS functions requires that function is passed in r1.
1030 ASSERT(fun.is(r1));
1031
1032 Register expected_reg = r2;
1033 Register code_reg = r3;
1034
1035 ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1036 ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1037 ldr(expected_reg,
1038 FieldMemOperand(code_reg,
1039 SharedFunctionInfo::kFormalParameterCountOffset));
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001040 mov(expected_reg, Operand(expected_reg, ASR, kSmiTagSize));
Steve Blocka7e24c12009-10-30 11:49:00 +00001041 ldr(code_reg,
Steve Block791712a2010-08-27 10:21:07 +01001042 FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +00001043
1044 ParameterCount expected(expected_reg);
Ben Murdoch257744e2011-11-30 15:57:28 +00001045 InvokeCode(code_reg, expected, actual, flag, call_wrapper, call_kind);
Steve Blocka7e24c12009-10-30 11:49:00 +00001046}
1047
1048
Andrei Popescu402d9372010-02-26 13:31:12 +00001049void MacroAssembler::InvokeFunction(JSFunction* function,
1050 const ParameterCount& actual,
Ben Murdoch257744e2011-11-30 15:57:28 +00001051 InvokeFlag flag,
1052 CallKind call_kind) {
Andrei Popescu402d9372010-02-26 13:31:12 +00001053 ASSERT(function->is_compiled());
1054
1055 // Get the function and setup the context.
1056 mov(r1, Operand(Handle<JSFunction>(function)));
1057 ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1058
1059 // Invoke the cached code.
1060 Handle<Code> code(function->code());
1061 ParameterCount expected(function->shared()->formal_parameter_count());
Ben Murdochb0fe1622011-05-05 13:52:32 +01001062 if (V8::UseCrankshaft()) {
1063 // TODO(kasperl): For now, we always call indirectly through the
1064 // code field in the function to allow recompilation to take effect
1065 // without changing any of the call sites.
1066 ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
Ben Murdoch257744e2011-11-30 15:57:28 +00001067 InvokeCode(r3, expected, actual, flag, NullCallWrapper(), call_kind);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001068 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00001069 InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag, call_kind);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001070 }
1071}
1072
1073
1074void MacroAssembler::IsObjectJSObjectType(Register heap_object,
1075 Register map,
1076 Register scratch,
1077 Label* fail) {
1078 ldr(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
1079 IsInstanceJSObjectType(map, scratch, fail);
1080}
1081
1082
1083void MacroAssembler::IsInstanceJSObjectType(Register map,
1084 Register scratch,
1085 Label* fail) {
1086 ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
1087 cmp(scratch, Operand(FIRST_JS_OBJECT_TYPE));
1088 b(lt, fail);
1089 cmp(scratch, Operand(LAST_JS_OBJECT_TYPE));
1090 b(gt, fail);
1091}
1092
1093
1094void MacroAssembler::IsObjectJSStringType(Register object,
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001095 Register scratch,
1096 Label* fail) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001097 ASSERT(kNotStringTag != 0);
1098
1099 ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1100 ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1101 tst(scratch, Operand(kIsNotStringMask));
Steve Block1e0659c2011-05-24 12:43:12 +01001102 b(ne, fail);
Andrei Popescu402d9372010-02-26 13:31:12 +00001103}
1104
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001105
Steve Blocka7e24c12009-10-30 11:49:00 +00001106#ifdef ENABLE_DEBUGGER_SUPPORT
Andrei Popescu402d9372010-02-26 13:31:12 +00001107void MacroAssembler::DebugBreak() {
1108 ASSERT(allow_stub_calls());
Iain Merrick9ac36c92010-09-13 15:29:50 +01001109 mov(r0, Operand(0, RelocInfo::NONE));
Steve Block44f0eee2011-05-26 01:26:41 +01001110 mov(r1, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
Andrei Popescu402d9372010-02-26 13:31:12 +00001111 CEntryStub ces(1);
1112 Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
1113}
Steve Blocka7e24c12009-10-30 11:49:00 +00001114#endif
1115
1116
1117void MacroAssembler::PushTryHandler(CodeLocation try_location,
1118 HandlerType type) {
1119 // Adjust this code if not the case.
1120 ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
1121 // The pc (return address) is passed in register lr.
1122 if (try_location == IN_JAVASCRIPT) {
1123 if (type == TRY_CATCH_HANDLER) {
1124 mov(r3, Operand(StackHandler::TRY_CATCH));
1125 } else {
1126 mov(r3, Operand(StackHandler::TRY_FINALLY));
1127 }
1128 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
1129 && StackHandlerConstants::kFPOffset == 2 * kPointerSize
1130 && StackHandlerConstants::kPCOffset == 3 * kPointerSize);
1131 stm(db_w, sp, r3.bit() | fp.bit() | lr.bit());
1132 // Save the current handler as the next handler.
Steve Block44f0eee2011-05-26 01:26:41 +01001133 mov(r3, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
Steve Blocka7e24c12009-10-30 11:49:00 +00001134 ldr(r1, MemOperand(r3));
1135 ASSERT(StackHandlerConstants::kNextOffset == 0);
1136 push(r1);
1137 // Link this handler as the new current one.
1138 str(sp, MemOperand(r3));
1139 } else {
1140 // Must preserve r0-r4, r5-r7 are available.
1141 ASSERT(try_location == IN_JS_ENTRY);
1142 // The frame pointer does not point to a JS frame so we save NULL
1143 // for fp. We expect the code throwing an exception to check fp
1144 // before dereferencing it to restore the context.
Iain Merrick9ac36c92010-09-13 15:29:50 +01001145 mov(ip, Operand(0, RelocInfo::NONE)); // To save a NULL frame pointer.
Steve Blocka7e24c12009-10-30 11:49:00 +00001146 mov(r6, Operand(StackHandler::ENTRY));
1147 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
1148 && StackHandlerConstants::kFPOffset == 2 * kPointerSize
1149 && StackHandlerConstants::kPCOffset == 3 * kPointerSize);
1150 stm(db_w, sp, r6.bit() | ip.bit() | lr.bit());
1151 // Save the current handler as the next handler.
Steve Block44f0eee2011-05-26 01:26:41 +01001152 mov(r7, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
Steve Blocka7e24c12009-10-30 11:49:00 +00001153 ldr(r6, MemOperand(r7));
1154 ASSERT(StackHandlerConstants::kNextOffset == 0);
1155 push(r6);
1156 // Link this handler as the new current one.
1157 str(sp, MemOperand(r7));
1158 }
1159}
1160
1161
Leon Clarkee46be812010-01-19 14:06:41 +00001162void MacroAssembler::PopTryHandler() {
1163 ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
1164 pop(r1);
Steve Block44f0eee2011-05-26 01:26:41 +01001165 mov(ip, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
Leon Clarkee46be812010-01-19 14:06:41 +00001166 add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
1167 str(r1, MemOperand(ip));
1168}
1169
1170
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001171void MacroAssembler::Throw(Register value) {
1172 // r0 is expected to hold the exception.
1173 if (!value.is(r0)) {
1174 mov(r0, value);
1175 }
1176
1177 // Adjust this code if not the case.
1178 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
1179
1180 // Drop the sp to the top of the handler.
Steve Block44f0eee2011-05-26 01:26:41 +01001181 mov(r3, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001182 ldr(sp, MemOperand(r3));
1183
1184 // Restore the next handler and frame pointer, discard handler state.
1185 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1186 pop(r2);
1187 str(r2, MemOperand(r3));
1188 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
1189 ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state.
1190
1191 // Before returning we restore the context from the frame pointer if
1192 // not NULL. The frame pointer is NULL in the exception handler of a
1193 // JS entry frame.
1194 cmp(fp, Operand(0, RelocInfo::NONE));
1195 // Set cp to NULL if fp is NULL.
1196 mov(cp, Operand(0, RelocInfo::NONE), LeaveCC, eq);
1197 // Restore cp otherwise.
1198 ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
1199#ifdef DEBUG
Steve Block44f0eee2011-05-26 01:26:41 +01001200 if (emit_debug_code()) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001201 mov(lr, Operand(pc));
1202 }
1203#endif
1204 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
1205 pop(pc);
1206}
1207
1208
1209void MacroAssembler::ThrowUncatchable(UncatchableExceptionType type,
1210 Register value) {
1211 // Adjust this code if not the case.
1212 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
1213
1214 // r0 is expected to hold the exception.
1215 if (!value.is(r0)) {
1216 mov(r0, value);
1217 }
1218
1219 // Drop sp to the top stack handler.
Steve Block44f0eee2011-05-26 01:26:41 +01001220 mov(r3, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001221 ldr(sp, MemOperand(r3));
1222
1223 // Unwind the handlers until the ENTRY handler is found.
1224 Label loop, done;
1225 bind(&loop);
1226 // Load the type of the current stack handler.
1227 const int kStateOffset = StackHandlerConstants::kStateOffset;
1228 ldr(r2, MemOperand(sp, kStateOffset));
1229 cmp(r2, Operand(StackHandler::ENTRY));
1230 b(eq, &done);
1231 // Fetch the next handler in the list.
1232 const int kNextOffset = StackHandlerConstants::kNextOffset;
1233 ldr(sp, MemOperand(sp, kNextOffset));
1234 jmp(&loop);
1235 bind(&done);
1236
1237 // Set the top handler address to next handler past the current ENTRY handler.
1238 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1239 pop(r2);
1240 str(r2, MemOperand(r3));
1241
1242 if (type == OUT_OF_MEMORY) {
1243 // Set external caught exception to false.
Steve Block44f0eee2011-05-26 01:26:41 +01001244 ExternalReference external_caught(
1245 Isolate::k_external_caught_exception_address, isolate());
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001246 mov(r0, Operand(false, RelocInfo::NONE));
1247 mov(r2, Operand(external_caught));
1248 str(r0, MemOperand(r2));
1249
1250 // Set pending exception and r0 to out of memory exception.
1251 Failure* out_of_memory = Failure::OutOfMemoryException();
1252 mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
Steve Block44f0eee2011-05-26 01:26:41 +01001253 mov(r2, Operand(ExternalReference(Isolate::k_pending_exception_address,
1254 isolate())));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001255 str(r0, MemOperand(r2));
1256 }
1257
1258 // Stack layout at this point. See also StackHandlerConstants.
1259 // sp -> state (ENTRY)
1260 // fp
1261 // lr
1262
1263 // Discard handler state (r2 is not used) and restore frame pointer.
1264 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
1265 ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state.
1266 // Before returning we restore the context from the frame pointer if
1267 // not NULL. The frame pointer is NULL in the exception handler of a
1268 // JS entry frame.
1269 cmp(fp, Operand(0, RelocInfo::NONE));
1270 // Set cp to NULL if fp is NULL.
1271 mov(cp, Operand(0, RelocInfo::NONE), LeaveCC, eq);
1272 // Restore cp otherwise.
1273 ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
1274#ifdef DEBUG
Steve Block44f0eee2011-05-26 01:26:41 +01001275 if (emit_debug_code()) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001276 mov(lr, Operand(pc));
1277 }
1278#endif
1279 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
1280 pop(pc);
1281}
1282
1283
Steve Blocka7e24c12009-10-30 11:49:00 +00001284void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
1285 Register scratch,
1286 Label* miss) {
1287 Label same_contexts;
1288
1289 ASSERT(!holder_reg.is(scratch));
1290 ASSERT(!holder_reg.is(ip));
1291 ASSERT(!scratch.is(ip));
1292
1293 // Load current lexical context from the stack frame.
1294 ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
1295 // In debug mode, make sure the lexical context is set.
1296#ifdef DEBUG
Iain Merrick9ac36c92010-09-13 15:29:50 +01001297 cmp(scratch, Operand(0, RelocInfo::NONE));
Steve Blocka7e24c12009-10-30 11:49:00 +00001298 Check(ne, "we should not have an empty lexical context");
1299#endif
1300
1301 // Load the global context of the current context.
1302 int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1303 ldr(scratch, FieldMemOperand(scratch, offset));
1304 ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
1305
1306 // Check the context is a global context.
Steve Block44f0eee2011-05-26 01:26:41 +01001307 if (emit_debug_code()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001308 // TODO(119): avoid push(holder_reg)/pop(holder_reg)
1309 // Cannot use ip as a temporary in this verification code. Due to the fact
1310 // that ip is clobbered as part of cmp with an object Operand.
1311 push(holder_reg); // Temporarily save holder on the stack.
1312 // Read the first word and compare to the global_context_map.
1313 ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
1314 LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
1315 cmp(holder_reg, ip);
1316 Check(eq, "JSGlobalObject::global_context should be a global context.");
1317 pop(holder_reg); // Restore holder.
1318 }
1319
1320 // Check if both contexts are the same.
1321 ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
1322 cmp(scratch, Operand(ip));
1323 b(eq, &same_contexts);
1324
1325 // Check the context is a global context.
Steve Block44f0eee2011-05-26 01:26:41 +01001326 if (emit_debug_code()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001327 // TODO(119): avoid push(holder_reg)/pop(holder_reg)
1328 // Cannot use ip as a temporary in this verification code. Due to the fact
1329 // that ip is clobbered as part of cmp with an object Operand.
1330 push(holder_reg); // Temporarily save holder on the stack.
1331 mov(holder_reg, ip); // Move ip to its holding place.
1332 LoadRoot(ip, Heap::kNullValueRootIndex);
1333 cmp(holder_reg, ip);
1334 Check(ne, "JSGlobalProxy::context() should not be null.");
1335
1336 ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
1337 LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
1338 cmp(holder_reg, ip);
1339 Check(eq, "JSGlobalObject::global_context should be a global context.");
1340 // Restore ip is not needed. ip is reloaded below.
1341 pop(holder_reg); // Restore holder.
1342 // Restore ip to holder's context.
1343 ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
1344 }
1345
1346 // Check that the security token in the calling global object is
1347 // compatible with the security token in the receiving global
1348 // object.
1349 int token_offset = Context::kHeaderSize +
1350 Context::SECURITY_TOKEN_INDEX * kPointerSize;
1351
1352 ldr(scratch, FieldMemOperand(scratch, token_offset));
1353 ldr(ip, FieldMemOperand(ip, token_offset));
1354 cmp(scratch, Operand(ip));
1355 b(ne, miss);
1356
1357 bind(&same_contexts);
1358}
1359
1360
1361void MacroAssembler::AllocateInNewSpace(int object_size,
1362 Register result,
1363 Register scratch1,
1364 Register scratch2,
1365 Label* gc_required,
1366 AllocationFlags flags) {
John Reck59135872010-11-02 12:39:01 -07001367 if (!FLAG_inline_new) {
Steve Block44f0eee2011-05-26 01:26:41 +01001368 if (emit_debug_code()) {
John Reck59135872010-11-02 12:39:01 -07001369 // Trash the registers to simulate an allocation failure.
1370 mov(result, Operand(0x7091));
1371 mov(scratch1, Operand(0x7191));
1372 mov(scratch2, Operand(0x7291));
1373 }
1374 jmp(gc_required);
1375 return;
1376 }
1377
Steve Blocka7e24c12009-10-30 11:49:00 +00001378 ASSERT(!result.is(scratch1));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001379 ASSERT(!result.is(scratch2));
Steve Blocka7e24c12009-10-30 11:49:00 +00001380 ASSERT(!scratch1.is(scratch2));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001381 ASSERT(!scratch1.is(ip));
1382 ASSERT(!scratch2.is(ip));
Steve Blocka7e24c12009-10-30 11:49:00 +00001383
Kristian Monsen25f61362010-05-21 11:50:48 +01001384 // Make object size into bytes.
1385 if ((flags & SIZE_IN_WORDS) != 0) {
1386 object_size *= kPointerSize;
1387 }
1388 ASSERT_EQ(0, object_size & kObjectAlignmentMask);
1389
Ben Murdochb0fe1622011-05-05 13:52:32 +01001390 // Check relative positions of allocation top and limit addresses.
1391 // The values must be adjacent in memory to allow the use of LDM.
1392 // Also, assert that the registers are numbered such that the values
1393 // are loaded in the correct order.
Steve Blocka7e24c12009-10-30 11:49:00 +00001394 ExternalReference new_space_allocation_top =
Steve Block44f0eee2011-05-26 01:26:41 +01001395 ExternalReference::new_space_allocation_top_address(isolate());
Ben Murdochb0fe1622011-05-05 13:52:32 +01001396 ExternalReference new_space_allocation_limit =
Steve Block44f0eee2011-05-26 01:26:41 +01001397 ExternalReference::new_space_allocation_limit_address(isolate());
Ben Murdochb0fe1622011-05-05 13:52:32 +01001398 intptr_t top =
1399 reinterpret_cast<intptr_t>(new_space_allocation_top.address());
1400 intptr_t limit =
1401 reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
1402 ASSERT((limit - top) == kPointerSize);
1403 ASSERT(result.code() < ip.code());
1404
1405 // Set up allocation top address and object size registers.
1406 Register topaddr = scratch1;
1407 Register obj_size_reg = scratch2;
1408 mov(topaddr, Operand(new_space_allocation_top));
1409 mov(obj_size_reg, Operand(object_size));
1410
1411 // This code stores a temporary value in ip. This is OK, as the code below
1412 // does not need ip for implicit literal generation.
Steve Blocka7e24c12009-10-30 11:49:00 +00001413 if ((flags & RESULT_CONTAINS_TOP) == 0) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001414 // Load allocation top into result and allocation limit into ip.
1415 ldm(ia, topaddr, result.bit() | ip.bit());
1416 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01001417 if (emit_debug_code()) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001418 // Assert that result actually contains top on entry. ip is used
1419 // immediately below so this use of ip does not cause difference with
1420 // respect to register content between debug and release mode.
1421 ldr(ip, MemOperand(topaddr));
1422 cmp(result, ip);
1423 Check(eq, "Unexpected allocation top");
1424 }
1425 // Load allocation limit into ip. Result already contains allocation top.
1426 ldr(ip, MemOperand(topaddr, limit - top));
Steve Blocka7e24c12009-10-30 11:49:00 +00001427 }
1428
1429 // Calculate new top and bail out if new space is exhausted. Use result
1430 // to calculate the new top.
Steve Block1e0659c2011-05-24 12:43:12 +01001431 add(scratch2, result, Operand(obj_size_reg), SetCC);
1432 b(cs, gc_required);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001433 cmp(scratch2, Operand(ip));
Steve Blocka7e24c12009-10-30 11:49:00 +00001434 b(hi, gc_required);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001435 str(scratch2, MemOperand(topaddr));
Steve Blocka7e24c12009-10-30 11:49:00 +00001436
Ben Murdochb0fe1622011-05-05 13:52:32 +01001437 // Tag object if requested.
Steve Blocka7e24c12009-10-30 11:49:00 +00001438 if ((flags & TAG_OBJECT) != 0) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001439 add(result, result, Operand(kHeapObjectTag));
Steve Blocka7e24c12009-10-30 11:49:00 +00001440 }
1441}
1442
1443
1444void MacroAssembler::AllocateInNewSpace(Register object_size,
1445 Register result,
1446 Register scratch1,
1447 Register scratch2,
1448 Label* gc_required,
1449 AllocationFlags flags) {
John Reck59135872010-11-02 12:39:01 -07001450 if (!FLAG_inline_new) {
Steve Block44f0eee2011-05-26 01:26:41 +01001451 if (emit_debug_code()) {
John Reck59135872010-11-02 12:39:01 -07001452 // Trash the registers to simulate an allocation failure.
1453 mov(result, Operand(0x7091));
1454 mov(scratch1, Operand(0x7191));
1455 mov(scratch2, Operand(0x7291));
1456 }
1457 jmp(gc_required);
1458 return;
1459 }
1460
Ben Murdochb0fe1622011-05-05 13:52:32 +01001461 // Assert that the register arguments are different and that none of
1462 // them are ip. ip is used explicitly in the code generated below.
Steve Blocka7e24c12009-10-30 11:49:00 +00001463 ASSERT(!result.is(scratch1));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001464 ASSERT(!result.is(scratch2));
Steve Blocka7e24c12009-10-30 11:49:00 +00001465 ASSERT(!scratch1.is(scratch2));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001466 ASSERT(!result.is(ip));
1467 ASSERT(!scratch1.is(ip));
1468 ASSERT(!scratch2.is(ip));
Steve Blocka7e24c12009-10-30 11:49:00 +00001469
Ben Murdochb0fe1622011-05-05 13:52:32 +01001470 // Check relative positions of allocation top and limit addresses.
1471 // The values must be adjacent in memory to allow the use of LDM.
1472 // Also, assert that the registers are numbered such that the values
1473 // are loaded in the correct order.
Steve Blocka7e24c12009-10-30 11:49:00 +00001474 ExternalReference new_space_allocation_top =
Steve Block44f0eee2011-05-26 01:26:41 +01001475 ExternalReference::new_space_allocation_top_address(isolate());
Ben Murdochb0fe1622011-05-05 13:52:32 +01001476 ExternalReference new_space_allocation_limit =
Steve Block44f0eee2011-05-26 01:26:41 +01001477 ExternalReference::new_space_allocation_limit_address(isolate());
Ben Murdochb0fe1622011-05-05 13:52:32 +01001478 intptr_t top =
1479 reinterpret_cast<intptr_t>(new_space_allocation_top.address());
1480 intptr_t limit =
1481 reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
1482 ASSERT((limit - top) == kPointerSize);
1483 ASSERT(result.code() < ip.code());
1484
1485 // Set up allocation top address.
1486 Register topaddr = scratch1;
1487 mov(topaddr, Operand(new_space_allocation_top));
1488
1489 // This code stores a temporary value in ip. This is OK, as the code below
1490 // does not need ip for implicit literal generation.
Steve Blocka7e24c12009-10-30 11:49:00 +00001491 if ((flags & RESULT_CONTAINS_TOP) == 0) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001492 // Load allocation top into result and allocation limit into ip.
1493 ldm(ia, topaddr, result.bit() | ip.bit());
1494 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01001495 if (emit_debug_code()) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001496 // Assert that result actually contains top on entry. ip is used
1497 // immediately below so this use of ip does not cause difference with
1498 // respect to register content between debug and release mode.
1499 ldr(ip, MemOperand(topaddr));
1500 cmp(result, ip);
1501 Check(eq, "Unexpected allocation top");
1502 }
1503 // Load allocation limit into ip. Result already contains allocation top.
1504 ldr(ip, MemOperand(topaddr, limit - top));
Steve Blocka7e24c12009-10-30 11:49:00 +00001505 }
1506
1507 // Calculate new top and bail out if new space is exhausted. Use result
Ben Murdochb0fe1622011-05-05 13:52:32 +01001508 // to calculate the new top. Object size may be in words so a shift is
1509 // required to get the number of bytes.
Kristian Monsen25f61362010-05-21 11:50:48 +01001510 if ((flags & SIZE_IN_WORDS) != 0) {
Steve Block1e0659c2011-05-24 12:43:12 +01001511 add(scratch2, result, Operand(object_size, LSL, kPointerSizeLog2), SetCC);
Kristian Monsen25f61362010-05-21 11:50:48 +01001512 } else {
Steve Block1e0659c2011-05-24 12:43:12 +01001513 add(scratch2, result, Operand(object_size), SetCC);
Kristian Monsen25f61362010-05-21 11:50:48 +01001514 }
Steve Block1e0659c2011-05-24 12:43:12 +01001515 b(cs, gc_required);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001516 cmp(scratch2, Operand(ip));
Steve Blocka7e24c12009-10-30 11:49:00 +00001517 b(hi, gc_required);
1518
Steve Blockd0582a62009-12-15 09:54:21 +00001519 // Update allocation top. result temporarily holds the new top.
Steve Block44f0eee2011-05-26 01:26:41 +01001520 if (emit_debug_code()) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001521 tst(scratch2, Operand(kObjectAlignmentMask));
Steve Blockd0582a62009-12-15 09:54:21 +00001522 Check(eq, "Unaligned allocation in new space");
1523 }
Ben Murdochb0fe1622011-05-05 13:52:32 +01001524 str(scratch2, MemOperand(topaddr));
Steve Blocka7e24c12009-10-30 11:49:00 +00001525
1526 // Tag object if requested.
1527 if ((flags & TAG_OBJECT) != 0) {
1528 add(result, result, Operand(kHeapObjectTag));
1529 }
1530}
1531
1532
1533void MacroAssembler::UndoAllocationInNewSpace(Register object,
1534 Register scratch) {
1535 ExternalReference new_space_allocation_top =
Steve Block44f0eee2011-05-26 01:26:41 +01001536 ExternalReference::new_space_allocation_top_address(isolate());
Steve Blocka7e24c12009-10-30 11:49:00 +00001537
1538 // Make sure the object has no tag before resetting top.
1539 and_(object, object, Operand(~kHeapObjectTagMask));
1540#ifdef DEBUG
1541 // Check that the object un-allocated is below the current top.
1542 mov(scratch, Operand(new_space_allocation_top));
1543 ldr(scratch, MemOperand(scratch));
1544 cmp(object, scratch);
1545 Check(lt, "Undo allocation of non allocated memory");
1546#endif
1547 // Write the address of the object to un-allocate as the current top.
1548 mov(scratch, Operand(new_space_allocation_top));
1549 str(object, MemOperand(scratch));
1550}
1551
1552
Andrei Popescu31002712010-02-23 13:46:05 +00001553void MacroAssembler::AllocateTwoByteString(Register result,
1554 Register length,
1555 Register scratch1,
1556 Register scratch2,
1557 Register scratch3,
1558 Label* gc_required) {
1559 // Calculate the number of bytes needed for the characters in the string while
1560 // observing object alignment.
1561 ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1562 mov(scratch1, Operand(length, LSL, 1)); // Length in bytes, not chars.
1563 add(scratch1, scratch1,
1564 Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
Kristian Monsen25f61362010-05-21 11:50:48 +01001565 and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
Andrei Popescu31002712010-02-23 13:46:05 +00001566
1567 // Allocate two-byte string in new space.
1568 AllocateInNewSpace(scratch1,
1569 result,
1570 scratch2,
1571 scratch3,
1572 gc_required,
1573 TAG_OBJECT);
1574
1575 // Set the map, length and hash field.
Steve Block6ded16b2010-05-10 14:33:55 +01001576 InitializeNewString(result,
1577 length,
1578 Heap::kStringMapRootIndex,
1579 scratch1,
1580 scratch2);
Andrei Popescu31002712010-02-23 13:46:05 +00001581}
1582
1583
1584void MacroAssembler::AllocateAsciiString(Register result,
1585 Register length,
1586 Register scratch1,
1587 Register scratch2,
1588 Register scratch3,
1589 Label* gc_required) {
1590 // Calculate the number of bytes needed for the characters in the string while
1591 // observing object alignment.
1592 ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
1593 ASSERT(kCharSize == 1);
1594 add(scratch1, length,
1595 Operand(kObjectAlignmentMask + SeqAsciiString::kHeaderSize));
Kristian Monsen25f61362010-05-21 11:50:48 +01001596 and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
Andrei Popescu31002712010-02-23 13:46:05 +00001597
1598 // Allocate ASCII string in new space.
1599 AllocateInNewSpace(scratch1,
1600 result,
1601 scratch2,
1602 scratch3,
1603 gc_required,
1604 TAG_OBJECT);
1605
1606 // Set the map, length and hash field.
Steve Block6ded16b2010-05-10 14:33:55 +01001607 InitializeNewString(result,
1608 length,
1609 Heap::kAsciiStringMapRootIndex,
1610 scratch1,
1611 scratch2);
Andrei Popescu31002712010-02-23 13:46:05 +00001612}
1613
1614
1615void MacroAssembler::AllocateTwoByteConsString(Register result,
1616 Register length,
1617 Register scratch1,
1618 Register scratch2,
1619 Label* gc_required) {
Kristian Monsen25f61362010-05-21 11:50:48 +01001620 AllocateInNewSpace(ConsString::kSize,
Andrei Popescu31002712010-02-23 13:46:05 +00001621 result,
1622 scratch1,
1623 scratch2,
1624 gc_required,
1625 TAG_OBJECT);
Steve Block6ded16b2010-05-10 14:33:55 +01001626
1627 InitializeNewString(result,
1628 length,
1629 Heap::kConsStringMapRootIndex,
1630 scratch1,
1631 scratch2);
Andrei Popescu31002712010-02-23 13:46:05 +00001632}
1633
1634
1635void MacroAssembler::AllocateAsciiConsString(Register result,
1636 Register length,
1637 Register scratch1,
1638 Register scratch2,
1639 Label* gc_required) {
Kristian Monsen25f61362010-05-21 11:50:48 +01001640 AllocateInNewSpace(ConsString::kSize,
Andrei Popescu31002712010-02-23 13:46:05 +00001641 result,
1642 scratch1,
1643 scratch2,
1644 gc_required,
1645 TAG_OBJECT);
Steve Block6ded16b2010-05-10 14:33:55 +01001646
1647 InitializeNewString(result,
1648 length,
1649 Heap::kConsAsciiStringMapRootIndex,
1650 scratch1,
1651 scratch2);
Andrei Popescu31002712010-02-23 13:46:05 +00001652}
1653
1654
Steve Block6ded16b2010-05-10 14:33:55 +01001655void MacroAssembler::CompareObjectType(Register object,
Steve Blocka7e24c12009-10-30 11:49:00 +00001656 Register map,
1657 Register type_reg,
1658 InstanceType type) {
Steve Block6ded16b2010-05-10 14:33:55 +01001659 ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +00001660 CompareInstanceType(map, type_reg, type);
1661}
1662
1663
1664void MacroAssembler::CompareInstanceType(Register map,
1665 Register type_reg,
1666 InstanceType type) {
1667 ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
1668 cmp(type_reg, Operand(type));
1669}
1670
1671
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001672void MacroAssembler::CompareRoot(Register obj,
1673 Heap::RootListIndex index) {
1674 ASSERT(!obj.is(ip));
1675 LoadRoot(ip, index);
1676 cmp(obj, ip);
1677}
1678
1679
Andrei Popescu31002712010-02-23 13:46:05 +00001680void MacroAssembler::CheckMap(Register obj,
1681 Register scratch,
1682 Handle<Map> map,
1683 Label* fail,
Ben Murdoch257744e2011-11-30 15:57:28 +00001684 SmiCheckType smi_check_type) {
1685 if (smi_check_type == DO_SMI_CHECK) {
Steve Block1e0659c2011-05-24 12:43:12 +01001686 JumpIfSmi(obj, fail);
Andrei Popescu31002712010-02-23 13:46:05 +00001687 }
1688 ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
1689 mov(ip, Operand(map));
1690 cmp(scratch, ip);
1691 b(ne, fail);
1692}
1693
1694
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001695void MacroAssembler::CheckMap(Register obj,
1696 Register scratch,
1697 Heap::RootListIndex index,
1698 Label* fail,
Ben Murdoch257744e2011-11-30 15:57:28 +00001699 SmiCheckType smi_check_type) {
1700 if (smi_check_type == DO_SMI_CHECK) {
Steve Block1e0659c2011-05-24 12:43:12 +01001701 JumpIfSmi(obj, fail);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001702 }
1703 ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
1704 LoadRoot(ip, index);
1705 cmp(scratch, ip);
1706 b(ne, fail);
1707}
1708
1709
Ben Murdoch257744e2011-11-30 15:57:28 +00001710void MacroAssembler::DispatchMap(Register obj,
1711 Register scratch,
1712 Handle<Map> map,
1713 Handle<Code> success,
1714 SmiCheckType smi_check_type) {
1715 Label fail;
1716 if (smi_check_type == DO_SMI_CHECK) {
1717 JumpIfSmi(obj, &fail);
1718 }
1719 ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
1720 mov(ip, Operand(map));
1721 cmp(scratch, ip);
1722 Jump(success, RelocInfo::CODE_TARGET, eq);
1723 bind(&fail);
1724}
1725
1726
Steve Blocka7e24c12009-10-30 11:49:00 +00001727void MacroAssembler::TryGetFunctionPrototype(Register function,
1728 Register result,
1729 Register scratch,
1730 Label* miss) {
1731 // Check that the receiver isn't a smi.
Steve Block1e0659c2011-05-24 12:43:12 +01001732 JumpIfSmi(function, miss);
Steve Blocka7e24c12009-10-30 11:49:00 +00001733
1734 // Check that the function really is a function. Load map into result reg.
1735 CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
1736 b(ne, miss);
1737
1738 // Make sure that the function has an instance prototype.
1739 Label non_instance;
1740 ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
1741 tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
1742 b(ne, &non_instance);
1743
1744 // Get the prototype or initial map from the function.
1745 ldr(result,
1746 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1747
1748 // If the prototype or initial map is the hole, don't return it and
1749 // simply miss the cache instead. This will allow us to allocate a
1750 // prototype object on-demand in the runtime system.
1751 LoadRoot(ip, Heap::kTheHoleValueRootIndex);
1752 cmp(result, ip);
1753 b(eq, miss);
1754
1755 // If the function does not have an initial map, we're done.
1756 Label done;
1757 CompareObjectType(result, scratch, scratch, MAP_TYPE);
1758 b(ne, &done);
1759
1760 // Get the prototype from the initial map.
1761 ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
1762 jmp(&done);
1763
1764 // Non-instance prototype: Fetch prototype from constructor field
1765 // in initial map.
1766 bind(&non_instance);
1767 ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
1768
1769 // All done.
1770 bind(&done);
1771}
1772
1773
1774void MacroAssembler::CallStub(CodeStub* stub, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001775 ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
Steve Blocka7e24c12009-10-30 11:49:00 +00001776 Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
1777}
1778
1779
Ben Murdoch257744e2011-11-30 15:57:28 +00001780MaybeObject* MacroAssembler::TryCallStub(CodeStub* stub, Condition cond) {
1781 ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
1782 Object* result;
1783 { MaybeObject* maybe_result = stub->TryGetCode();
1784 if (!maybe_result->ToObject(&result)) return maybe_result;
1785 }
1786 Call(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET, cond);
1787 return result;
1788}
1789
1790
Andrei Popescu31002712010-02-23 13:46:05 +00001791void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001792 ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
Andrei Popescu31002712010-02-23 13:46:05 +00001793 Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
1794}
1795
1796
Steve Block1e0659c2011-05-24 12:43:12 +01001797MaybeObject* MacroAssembler::TryTailCallStub(CodeStub* stub, Condition cond) {
1798 ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
1799 Object* result;
1800 { MaybeObject* maybe_result = stub->TryGetCode();
1801 if (!maybe_result->ToObject(&result)) return maybe_result;
1802 }
Ben Murdoch257744e2011-11-30 15:57:28 +00001803 Jump(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET, cond);
Steve Block1e0659c2011-05-24 12:43:12 +01001804 return result;
1805}
1806
1807
1808static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
1809 return ref0.address() - ref1.address();
1810}
1811
1812
1813MaybeObject* MacroAssembler::TryCallApiFunctionAndReturn(
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001814 ExternalReference function, int stack_space) {
Steve Block1e0659c2011-05-24 12:43:12 +01001815 ExternalReference next_address =
1816 ExternalReference::handle_scope_next_address();
1817 const int kNextOffset = 0;
1818 const int kLimitOffset = AddressOffset(
1819 ExternalReference::handle_scope_limit_address(),
1820 next_address);
1821 const int kLevelOffset = AddressOffset(
1822 ExternalReference::handle_scope_level_address(),
1823 next_address);
1824
1825 // Allocate HandleScope in callee-save registers.
1826 mov(r7, Operand(next_address));
1827 ldr(r4, MemOperand(r7, kNextOffset));
1828 ldr(r5, MemOperand(r7, kLimitOffset));
1829 ldr(r6, MemOperand(r7, kLevelOffset));
1830 add(r6, r6, Operand(1));
1831 str(r6, MemOperand(r7, kLevelOffset));
1832
1833 // Native call returns to the DirectCEntry stub which redirects to the
1834 // return address pushed on stack (could have moved after GC).
1835 // DirectCEntry stub itself is generated early and never moves.
1836 DirectCEntryStub stub;
1837 stub.GenerateCall(this, function);
1838
1839 Label promote_scheduled_exception;
1840 Label delete_allocated_handles;
1841 Label leave_exit_frame;
1842
1843 // If result is non-zero, dereference to get the result value
1844 // otherwise set it to undefined.
1845 cmp(r0, Operand(0));
1846 LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
1847 ldr(r0, MemOperand(r0), ne);
1848
1849 // No more valid handles (the result handle was the last one). Restore
1850 // previous handle scope.
1851 str(r4, MemOperand(r7, kNextOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01001852 if (emit_debug_code()) {
Steve Block1e0659c2011-05-24 12:43:12 +01001853 ldr(r1, MemOperand(r7, kLevelOffset));
1854 cmp(r1, r6);
1855 Check(eq, "Unexpected level after return from api call");
1856 }
1857 sub(r6, r6, Operand(1));
1858 str(r6, MemOperand(r7, kLevelOffset));
1859 ldr(ip, MemOperand(r7, kLimitOffset));
1860 cmp(r5, ip);
1861 b(ne, &delete_allocated_handles);
1862
1863 // Check if the function scheduled an exception.
1864 bind(&leave_exit_frame);
1865 LoadRoot(r4, Heap::kTheHoleValueRootIndex);
Steve Block44f0eee2011-05-26 01:26:41 +01001866 mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate())));
Steve Block1e0659c2011-05-24 12:43:12 +01001867 ldr(r5, MemOperand(ip));
1868 cmp(r4, r5);
1869 b(ne, &promote_scheduled_exception);
1870
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001871 // LeaveExitFrame expects unwind space to be in a register.
Steve Block1e0659c2011-05-24 12:43:12 +01001872 mov(r4, Operand(stack_space));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001873 LeaveExitFrame(false, r4);
1874 mov(pc, lr);
Steve Block1e0659c2011-05-24 12:43:12 +01001875
1876 bind(&promote_scheduled_exception);
Steve Block44f0eee2011-05-26 01:26:41 +01001877 MaybeObject* result
1878 = TryTailCallExternalReference(
1879 ExternalReference(Runtime::kPromoteScheduledException, isolate()),
1880 0,
1881 1);
Steve Block1e0659c2011-05-24 12:43:12 +01001882 if (result->IsFailure()) {
1883 return result;
1884 }
1885
1886 // HandleScope limit has changed. Delete allocated extensions.
1887 bind(&delete_allocated_handles);
1888 str(r5, MemOperand(r7, kLimitOffset));
1889 mov(r4, r0);
Ben Murdoch8b112d22011-06-08 16:22:53 +01001890 PrepareCallCFunction(1, r5);
1891 mov(r0, Operand(ExternalReference::isolate_address()));
Steve Block44f0eee2011-05-26 01:26:41 +01001892 CallCFunction(
Ben Murdoch8b112d22011-06-08 16:22:53 +01001893 ExternalReference::delete_handle_scope_extensions(isolate()), 1);
Steve Block1e0659c2011-05-24 12:43:12 +01001894 mov(r0, r4);
1895 jmp(&leave_exit_frame);
1896
1897 return result;
1898}
1899
1900
Steve Blocka7e24c12009-10-30 11:49:00 +00001901void MacroAssembler::IllegalOperation(int num_arguments) {
1902 if (num_arguments > 0) {
1903 add(sp, sp, Operand(num_arguments * kPointerSize));
1904 }
1905 LoadRoot(r0, Heap::kUndefinedValueRootIndex);
1906}
1907
1908
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001909void MacroAssembler::IndexFromHash(Register hash, Register index) {
1910 // If the hash field contains an array index pick it out. The assert checks
1911 // that the constants for the maximum number of digits for an array index
1912 // cached in the hash field and the number of bits reserved for it does not
1913 // conflict.
1914 ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
1915 (1 << String::kArrayIndexValueBits));
1916 // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
1917 // the low kHashShift bits.
1918 STATIC_ASSERT(kSmiTag == 0);
1919 Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
1920 mov(index, Operand(hash, LSL, kSmiTagSize));
1921}
1922
1923
Steve Blockd0582a62009-12-15 09:54:21 +00001924void MacroAssembler::IntegerToDoubleConversionWithVFP3(Register inReg,
1925 Register outHighReg,
1926 Register outLowReg) {
1927 // ARMv7 VFP3 instructions to implement integer to double conversion.
1928 mov(r7, Operand(inReg, ASR, kSmiTagSize));
Leon Clarkee46be812010-01-19 14:06:41 +00001929 vmov(s15, r7);
Steve Block6ded16b2010-05-10 14:33:55 +01001930 vcvt_f64_s32(d7, s15);
Leon Clarkee46be812010-01-19 14:06:41 +00001931 vmov(outLowReg, outHighReg, d7);
Steve Blockd0582a62009-12-15 09:54:21 +00001932}
1933
1934
Steve Block8defd9f2010-07-08 12:39:36 +01001935void MacroAssembler::ObjectToDoubleVFPRegister(Register object,
1936 DwVfpRegister result,
1937 Register scratch1,
1938 Register scratch2,
1939 Register heap_number_map,
1940 SwVfpRegister scratch3,
1941 Label* not_number,
1942 ObjectToDoubleFlags flags) {
1943 Label done;
1944 if ((flags & OBJECT_NOT_SMI) == 0) {
1945 Label not_smi;
Steve Block1e0659c2011-05-24 12:43:12 +01001946 JumpIfNotSmi(object, &not_smi);
Steve Block8defd9f2010-07-08 12:39:36 +01001947 // Remove smi tag and convert to double.
1948 mov(scratch1, Operand(object, ASR, kSmiTagSize));
1949 vmov(scratch3, scratch1);
1950 vcvt_f64_s32(result, scratch3);
1951 b(&done);
1952 bind(&not_smi);
1953 }
1954 // Check for heap number and load double value from it.
1955 ldr(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
1956 sub(scratch2, object, Operand(kHeapObjectTag));
1957 cmp(scratch1, heap_number_map);
1958 b(ne, not_number);
1959 if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
1960 // If exponent is all ones the number is either a NaN or +/-Infinity.
1961 ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
1962 Sbfx(scratch1,
1963 scratch1,
1964 HeapNumber::kExponentShift,
1965 HeapNumber::kExponentBits);
1966 // All-one value sign extend to -1.
1967 cmp(scratch1, Operand(-1));
1968 b(eq, not_number);
1969 }
1970 vldr(result, scratch2, HeapNumber::kValueOffset);
1971 bind(&done);
1972}
1973
1974
1975void MacroAssembler::SmiToDoubleVFPRegister(Register smi,
1976 DwVfpRegister value,
1977 Register scratch1,
1978 SwVfpRegister scratch2) {
1979 mov(scratch1, Operand(smi, ASR, kSmiTagSize));
1980 vmov(scratch2, scratch1);
1981 vcvt_f64_s32(value, scratch2);
1982}
1983
1984
Iain Merrick9ac36c92010-09-13 15:29:50 +01001985// Tries to get a signed int32 out of a double precision floating point heap
1986// number. Rounds towards 0. Branch to 'not_int32' if the double is out of the
1987// 32bits signed integer range.
1988void MacroAssembler::ConvertToInt32(Register source,
1989 Register dest,
1990 Register scratch,
1991 Register scratch2,
Steve Block1e0659c2011-05-24 12:43:12 +01001992 DwVfpRegister double_scratch,
Iain Merrick9ac36c92010-09-13 15:29:50 +01001993 Label *not_int32) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01001994 if (CpuFeatures::IsSupported(VFP3)) {
Iain Merrick9ac36c92010-09-13 15:29:50 +01001995 CpuFeatures::Scope scope(VFP3);
1996 sub(scratch, source, Operand(kHeapObjectTag));
Steve Block1e0659c2011-05-24 12:43:12 +01001997 vldr(double_scratch, scratch, HeapNumber::kValueOffset);
1998 vcvt_s32_f64(double_scratch.low(), double_scratch);
1999 vmov(dest, double_scratch.low());
Iain Merrick9ac36c92010-09-13 15:29:50 +01002000 // Signed vcvt instruction will saturate to the minimum (0x80000000) or
2001 // maximun (0x7fffffff) signed 32bits integer when the double is out of
2002 // range. When substracting one, the minimum signed integer becomes the
2003 // maximun signed integer.
2004 sub(scratch, dest, Operand(1));
2005 cmp(scratch, Operand(LONG_MAX - 1));
2006 // If equal then dest was LONG_MAX, if greater dest was LONG_MIN.
2007 b(ge, not_int32);
2008 } else {
2009 // This code is faster for doubles that are in the ranges -0x7fffffff to
2010 // -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds almost to
2011 // the range of signed int32 values that are not Smis. Jumps to the label
2012 // 'not_int32' if the double isn't in the range -0x80000000.0 to
2013 // 0x80000000.0 (excluding the endpoints).
2014 Label right_exponent, done;
2015 // Get exponent word.
2016 ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
2017 // Get exponent alone in scratch2.
2018 Ubfx(scratch2,
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002019 scratch,
2020 HeapNumber::kExponentShift,
2021 HeapNumber::kExponentBits);
Iain Merrick9ac36c92010-09-13 15:29:50 +01002022 // Load dest with zero. We use this either for the final shift or
2023 // for the answer.
2024 mov(dest, Operand(0, RelocInfo::NONE));
2025 // Check whether the exponent matches a 32 bit signed int that is not a Smi.
2026 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is
2027 // the exponent that we are fastest at and also the highest exponent we can
2028 // handle here.
2029 const uint32_t non_smi_exponent = HeapNumber::kExponentBias + 30;
2030 // The non_smi_exponent, 0x41d, is too big for ARM's immediate field so we
2031 // split it up to avoid a constant pool entry. You can't do that in general
2032 // for cmp because of the overflow flag, but we know the exponent is in the
2033 // range 0-2047 so there is no overflow.
2034 int fudge_factor = 0x400;
2035 sub(scratch2, scratch2, Operand(fudge_factor));
2036 cmp(scratch2, Operand(non_smi_exponent - fudge_factor));
2037 // If we have a match of the int32-but-not-Smi exponent then skip some
2038 // logic.
2039 b(eq, &right_exponent);
2040 // If the exponent is higher than that then go to slow case. This catches
2041 // numbers that don't fit in a signed int32, infinities and NaNs.
2042 b(gt, not_int32);
2043
2044 // We know the exponent is smaller than 30 (biased). If it is less than
2045 // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
2046 // it rounds to zero.
2047 const uint32_t zero_exponent = HeapNumber::kExponentBias + 0;
2048 sub(scratch2, scratch2, Operand(zero_exponent - fudge_factor), SetCC);
2049 // Dest already has a Smi zero.
2050 b(lt, &done);
2051
2052 // We have an exponent between 0 and 30 in scratch2. Subtract from 30 to
2053 // get how much to shift down.
2054 rsb(dest, scratch2, Operand(30));
2055
2056 bind(&right_exponent);
2057 // Get the top bits of the mantissa.
2058 and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask));
2059 // Put back the implicit 1.
2060 orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift));
2061 // Shift up the mantissa bits to take up the space the exponent used to
2062 // take. We just orred in the implicit bit so that took care of one and
2063 // we want to leave the sign bit 0 so we subtract 2 bits from the shift
2064 // distance.
2065 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
2066 mov(scratch2, Operand(scratch2, LSL, shift_distance));
2067 // Put sign in zero flag.
2068 tst(scratch, Operand(HeapNumber::kSignMask));
2069 // Get the second half of the double. For some exponents we don't
2070 // actually need this because the bits get shifted out again, but
2071 // it's probably slower to test than just to do it.
2072 ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
2073 // Shift down 22 bits to get the last 10 bits.
2074 orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance));
2075 // Move down according to the exponent.
2076 mov(dest, Operand(scratch, LSR, dest));
2077 // Fix sign if sign bit was set.
2078 rsb(dest, dest, Operand(0, RelocInfo::NONE), LeaveCC, ne);
2079 bind(&done);
2080 }
2081}
2082
2083
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002084void MacroAssembler::EmitVFPTruncate(VFPRoundingMode rounding_mode,
2085 SwVfpRegister result,
2086 DwVfpRegister double_input,
2087 Register scratch1,
2088 Register scratch2,
2089 CheckForInexactConversion check_inexact) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002090 ASSERT(CpuFeatures::IsSupported(VFP3));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002091 CpuFeatures::Scope scope(VFP3);
2092 Register prev_fpscr = scratch1;
2093 Register scratch = scratch2;
2094
2095 int32_t check_inexact_conversion =
2096 (check_inexact == kCheckForInexactConversion) ? kVFPInexactExceptionBit : 0;
2097
2098 // Set custom FPCSR:
2099 // - Set rounding mode.
2100 // - Clear vfp cumulative exception flags.
2101 // - Make sure Flush-to-zero mode control bit is unset.
2102 vmrs(prev_fpscr);
2103 bic(scratch,
2104 prev_fpscr,
2105 Operand(kVFPExceptionMask |
2106 check_inexact_conversion |
2107 kVFPRoundingModeMask |
2108 kVFPFlushToZeroMask));
2109 // 'Round To Nearest' is encoded by 0b00 so no bits need to be set.
2110 if (rounding_mode != kRoundToNearest) {
2111 orr(scratch, scratch, Operand(rounding_mode));
2112 }
2113 vmsr(scratch);
2114
2115 // Convert the argument to an integer.
2116 vcvt_s32_f64(result,
2117 double_input,
2118 (rounding_mode == kRoundToZero) ? kDefaultRoundToZero
2119 : kFPSCRRounding);
2120
2121 // Retrieve FPSCR.
2122 vmrs(scratch);
2123 // Restore FPSCR.
2124 vmsr(prev_fpscr);
2125 // Check for vfp exceptions.
2126 tst(scratch, Operand(kVFPExceptionMask | check_inexact_conversion));
2127}
2128
2129
Steve Block44f0eee2011-05-26 01:26:41 +01002130void MacroAssembler::EmitOutOfInt32RangeTruncate(Register result,
2131 Register input_high,
2132 Register input_low,
2133 Register scratch) {
2134 Label done, normal_exponent, restore_sign;
2135
2136 // Extract the biased exponent in result.
2137 Ubfx(result,
2138 input_high,
2139 HeapNumber::kExponentShift,
2140 HeapNumber::kExponentBits);
2141
2142 // Check for Infinity and NaNs, which should return 0.
2143 cmp(result, Operand(HeapNumber::kExponentMask));
2144 mov(result, Operand(0), LeaveCC, eq);
2145 b(eq, &done);
2146
2147 // Express exponent as delta to (number of mantissa bits + 31).
2148 sub(result,
2149 result,
2150 Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31),
2151 SetCC);
2152
2153 // If the delta is strictly positive, all bits would be shifted away,
2154 // which means that we can return 0.
2155 b(le, &normal_exponent);
2156 mov(result, Operand(0));
2157 b(&done);
2158
2159 bind(&normal_exponent);
2160 const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
2161 // Calculate shift.
2162 add(scratch, result, Operand(kShiftBase + HeapNumber::kMantissaBits), SetCC);
2163
2164 // Save the sign.
2165 Register sign = result;
2166 result = no_reg;
2167 and_(sign, input_high, Operand(HeapNumber::kSignMask));
2168
2169 // Set the implicit 1 before the mantissa part in input_high.
2170 orr(input_high,
2171 input_high,
2172 Operand(1 << HeapNumber::kMantissaBitsInTopWord));
2173 // Shift the mantissa bits to the correct position.
2174 // We don't need to clear non-mantissa bits as they will be shifted away.
2175 // If they weren't, it would mean that the answer is in the 32bit range.
2176 mov(input_high, Operand(input_high, LSL, scratch));
2177
2178 // Replace the shifted bits with bits from the lower mantissa word.
2179 Label pos_shift, shift_done;
2180 rsb(scratch, scratch, Operand(32), SetCC);
2181 b(&pos_shift, ge);
2182
2183 // Negate scratch.
2184 rsb(scratch, scratch, Operand(0));
2185 mov(input_low, Operand(input_low, LSL, scratch));
2186 b(&shift_done);
2187
2188 bind(&pos_shift);
2189 mov(input_low, Operand(input_low, LSR, scratch));
2190
2191 bind(&shift_done);
2192 orr(input_high, input_high, Operand(input_low));
2193 // Restore sign if necessary.
2194 cmp(sign, Operand(0));
2195 result = sign;
2196 sign = no_reg;
2197 rsb(result, input_high, Operand(0), LeaveCC, ne);
2198 mov(result, input_high, LeaveCC, eq);
2199 bind(&done);
2200}
2201
2202
2203void MacroAssembler::EmitECMATruncate(Register result,
2204 DwVfpRegister double_input,
2205 SwVfpRegister single_scratch,
2206 Register scratch,
2207 Register input_high,
2208 Register input_low) {
2209 CpuFeatures::Scope scope(VFP3);
2210 ASSERT(!input_high.is(result));
2211 ASSERT(!input_low.is(result));
2212 ASSERT(!input_low.is(input_high));
2213 ASSERT(!scratch.is(result) &&
2214 !scratch.is(input_high) &&
2215 !scratch.is(input_low));
2216 ASSERT(!single_scratch.is(double_input.low()) &&
2217 !single_scratch.is(double_input.high()));
2218
2219 Label done;
2220
2221 // Clear cumulative exception flags.
2222 ClearFPSCRBits(kVFPExceptionMask, scratch);
2223 // Try a conversion to a signed integer.
2224 vcvt_s32_f64(single_scratch, double_input);
2225 vmov(result, single_scratch);
2226 // Retrieve he FPSCR.
2227 vmrs(scratch);
2228 // Check for overflow and NaNs.
2229 tst(scratch, Operand(kVFPOverflowExceptionBit |
2230 kVFPUnderflowExceptionBit |
2231 kVFPInvalidOpExceptionBit));
2232 // If we had no exceptions we are done.
2233 b(eq, &done);
2234
2235 // Load the double value and perform a manual truncation.
2236 vmov(input_low, input_high, double_input);
2237 EmitOutOfInt32RangeTruncate(result,
2238 input_high,
2239 input_low,
2240 scratch);
2241 bind(&done);
2242}
2243
2244
Andrei Popescu31002712010-02-23 13:46:05 +00002245void MacroAssembler::GetLeastBitsFromSmi(Register dst,
2246 Register src,
2247 int num_least_bits) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002248 if (CpuFeatures::IsSupported(ARMv7)) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002249 ubfx(dst, src, kSmiTagSize, num_least_bits);
Andrei Popescu31002712010-02-23 13:46:05 +00002250 } else {
2251 mov(dst, Operand(src, ASR, kSmiTagSize));
2252 and_(dst, dst, Operand((1 << num_least_bits) - 1));
2253 }
2254}
2255
2256
Steve Block1e0659c2011-05-24 12:43:12 +01002257void MacroAssembler::GetLeastBitsFromInt32(Register dst,
2258 Register src,
2259 int num_least_bits) {
2260 and_(dst, src, Operand((1 << num_least_bits) - 1));
2261}
2262
2263
Steve Block44f0eee2011-05-26 01:26:41 +01002264void MacroAssembler::CallRuntime(const Runtime::Function* f,
2265 int num_arguments) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002266 // All parameters are on the stack. r0 has the return value after call.
2267
2268 // If the expected number of arguments of the runtime function is
2269 // constant, we check that the actual number of arguments match the
2270 // expectation.
2271 if (f->nargs >= 0 && f->nargs != num_arguments) {
2272 IllegalOperation(num_arguments);
2273 return;
2274 }
2275
Leon Clarke4515c472010-02-03 11:58:03 +00002276 // TODO(1236192): Most runtime routines don't need the number of
2277 // arguments passed in because it is constant. At some point we
2278 // should remove this need and make the runtime routine entry code
2279 // smarter.
2280 mov(r0, Operand(num_arguments));
Steve Block44f0eee2011-05-26 01:26:41 +01002281 mov(r1, Operand(ExternalReference(f, isolate())));
Leon Clarke4515c472010-02-03 11:58:03 +00002282 CEntryStub stub(1);
Steve Blocka7e24c12009-10-30 11:49:00 +00002283 CallStub(&stub);
2284}
2285
2286
2287void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
2288 CallRuntime(Runtime::FunctionForId(fid), num_arguments);
2289}
2290
2291
Ben Murdochb0fe1622011-05-05 13:52:32 +01002292void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
Steve Block44f0eee2011-05-26 01:26:41 +01002293 const Runtime::Function* function = Runtime::FunctionForId(id);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002294 mov(r0, Operand(function->nargs));
Steve Block44f0eee2011-05-26 01:26:41 +01002295 mov(r1, Operand(ExternalReference(function, isolate())));
Ben Murdochb0fe1622011-05-05 13:52:32 +01002296 CEntryStub stub(1);
2297 stub.SaveDoubles();
2298 CallStub(&stub);
2299}
2300
2301
Andrei Popescu402d9372010-02-26 13:31:12 +00002302void MacroAssembler::CallExternalReference(const ExternalReference& ext,
2303 int num_arguments) {
2304 mov(r0, Operand(num_arguments));
2305 mov(r1, Operand(ext));
2306
2307 CEntryStub stub(1);
2308 CallStub(&stub);
2309}
2310
2311
Steve Block6ded16b2010-05-10 14:33:55 +01002312void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
2313 int num_arguments,
2314 int result_size) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002315 // TODO(1236192): Most runtime routines don't need the number of
2316 // arguments passed in because it is constant. At some point we
2317 // should remove this need and make the runtime routine entry code
2318 // smarter.
2319 mov(r0, Operand(num_arguments));
Steve Block6ded16b2010-05-10 14:33:55 +01002320 JumpToExternalReference(ext);
Steve Blocka7e24c12009-10-30 11:49:00 +00002321}
2322
2323
Steve Block1e0659c2011-05-24 12:43:12 +01002324MaybeObject* MacroAssembler::TryTailCallExternalReference(
2325 const ExternalReference& ext, int num_arguments, int result_size) {
2326 // TODO(1236192): Most runtime routines don't need the number of
2327 // arguments passed in because it is constant. At some point we
2328 // should remove this need and make the runtime routine entry code
2329 // smarter.
2330 mov(r0, Operand(num_arguments));
2331 return TryJumpToExternalReference(ext);
2332}
2333
2334
Steve Block6ded16b2010-05-10 14:33:55 +01002335void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
2336 int num_arguments,
2337 int result_size) {
Steve Block44f0eee2011-05-26 01:26:41 +01002338 TailCallExternalReference(ExternalReference(fid, isolate()),
2339 num_arguments,
2340 result_size);
Steve Block6ded16b2010-05-10 14:33:55 +01002341}
2342
2343
2344void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002345#if defined(__thumb__)
2346 // Thumb mode builtin.
2347 ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
2348#endif
2349 mov(r1, Operand(builtin));
2350 CEntryStub stub(1);
2351 Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2352}
2353
2354
Steve Block1e0659c2011-05-24 12:43:12 +01002355MaybeObject* MacroAssembler::TryJumpToExternalReference(
2356 const ExternalReference& builtin) {
2357#if defined(__thumb__)
2358 // Thumb mode builtin.
2359 ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
2360#endif
2361 mov(r1, Operand(builtin));
2362 CEntryStub stub(1);
2363 return TryTailCallStub(&stub);
2364}
2365
2366
Steve Blocka7e24c12009-10-30 11:49:00 +00002367void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
Ben Murdoch257744e2011-11-30 15:57:28 +00002368 InvokeFlag flag,
2369 const CallWrapper& call_wrapper) {
Andrei Popescu402d9372010-02-26 13:31:12 +00002370 GetBuiltinEntry(r2, id);
Ben Murdoch257744e2011-11-30 15:57:28 +00002371 if (flag == CALL_FUNCTION) {
2372 call_wrapper.BeforeCall(CallSize(r2));
2373 SetCallKind(r5, CALL_AS_METHOD);
Andrei Popescu402d9372010-02-26 13:31:12 +00002374 Call(r2);
Ben Murdoch257744e2011-11-30 15:57:28 +00002375 call_wrapper.AfterCall();
Steve Blocka7e24c12009-10-30 11:49:00 +00002376 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00002377 ASSERT(flag == JUMP_FUNCTION);
2378 SetCallKind(r5, CALL_AS_METHOD);
Andrei Popescu402d9372010-02-26 13:31:12 +00002379 Jump(r2);
Steve Blocka7e24c12009-10-30 11:49:00 +00002380 }
2381}
2382
2383
Steve Block791712a2010-08-27 10:21:07 +01002384void MacroAssembler::GetBuiltinFunction(Register target,
2385 Builtins::JavaScript id) {
Steve Block6ded16b2010-05-10 14:33:55 +01002386 // Load the builtins object into target register.
2387 ldr(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
2388 ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
Andrei Popescu402d9372010-02-26 13:31:12 +00002389 // Load the JavaScript builtin function from the builtins object.
Steve Block6ded16b2010-05-10 14:33:55 +01002390 ldr(target, FieldMemOperand(target,
Steve Block791712a2010-08-27 10:21:07 +01002391 JSBuiltinsObject::OffsetOfFunctionWithId(id)));
2392}
2393
2394
2395void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
2396 ASSERT(!target.is(r1));
2397 GetBuiltinFunction(r1, id);
2398 // Load the code entry point from the builtins object.
2399 ldr(target, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +00002400}
2401
2402
2403void MacroAssembler::SetCounter(StatsCounter* counter, int value,
2404 Register scratch1, Register scratch2) {
2405 if (FLAG_native_code_counters && counter->Enabled()) {
2406 mov(scratch1, Operand(value));
2407 mov(scratch2, Operand(ExternalReference(counter)));
2408 str(scratch1, MemOperand(scratch2));
2409 }
2410}
2411
2412
2413void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
2414 Register scratch1, Register scratch2) {
2415 ASSERT(value > 0);
2416 if (FLAG_native_code_counters && counter->Enabled()) {
2417 mov(scratch2, Operand(ExternalReference(counter)));
2418 ldr(scratch1, MemOperand(scratch2));
2419 add(scratch1, scratch1, Operand(value));
2420 str(scratch1, MemOperand(scratch2));
2421 }
2422}
2423
2424
2425void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
2426 Register scratch1, Register scratch2) {
2427 ASSERT(value > 0);
2428 if (FLAG_native_code_counters && counter->Enabled()) {
2429 mov(scratch2, Operand(ExternalReference(counter)));
2430 ldr(scratch1, MemOperand(scratch2));
2431 sub(scratch1, scratch1, Operand(value));
2432 str(scratch1, MemOperand(scratch2));
2433 }
2434}
2435
2436
Steve Block1e0659c2011-05-24 12:43:12 +01002437void MacroAssembler::Assert(Condition cond, const char* msg) {
Steve Block44f0eee2011-05-26 01:26:41 +01002438 if (emit_debug_code())
Steve Block1e0659c2011-05-24 12:43:12 +01002439 Check(cond, msg);
Steve Blocka7e24c12009-10-30 11:49:00 +00002440}
2441
2442
Kristian Monsen9dcf7e22010-06-28 14:14:28 +01002443void MacroAssembler::AssertRegisterIsRoot(Register reg,
2444 Heap::RootListIndex index) {
Steve Block44f0eee2011-05-26 01:26:41 +01002445 if (emit_debug_code()) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +01002446 LoadRoot(ip, index);
2447 cmp(reg, ip);
2448 Check(eq, "Register did not match expected root");
2449 }
2450}
2451
2452
Iain Merrick75681382010-08-19 15:07:18 +01002453void MacroAssembler::AssertFastElements(Register elements) {
Steve Block44f0eee2011-05-26 01:26:41 +01002454 if (emit_debug_code()) {
Iain Merrick75681382010-08-19 15:07:18 +01002455 ASSERT(!elements.is(ip));
2456 Label ok;
2457 push(elements);
2458 ldr(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
2459 LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
2460 cmp(elements, ip);
2461 b(eq, &ok);
2462 LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
2463 cmp(elements, ip);
2464 b(eq, &ok);
2465 Abort("JSObject with fast elements map has slow elements");
2466 bind(&ok);
2467 pop(elements);
2468 }
2469}
2470
2471
Steve Block1e0659c2011-05-24 12:43:12 +01002472void MacroAssembler::Check(Condition cond, const char* msg) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002473 Label L;
Steve Block1e0659c2011-05-24 12:43:12 +01002474 b(cond, &L);
Steve Blocka7e24c12009-10-30 11:49:00 +00002475 Abort(msg);
2476 // will not return here
2477 bind(&L);
2478}
2479
2480
2481void MacroAssembler::Abort(const char* msg) {
Steve Block8defd9f2010-07-08 12:39:36 +01002482 Label abort_start;
2483 bind(&abort_start);
Steve Blocka7e24c12009-10-30 11:49:00 +00002484 // We want to pass the msg string like a smi to avoid GC
2485 // problems, however msg is not guaranteed to be aligned
2486 // properly. Instead, we pass an aligned pointer that is
2487 // a proper v8 smi, but also pass the alignment difference
2488 // from the real pointer as a smi.
2489 intptr_t p1 = reinterpret_cast<intptr_t>(msg);
2490 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
2491 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
2492#ifdef DEBUG
2493 if (msg != NULL) {
2494 RecordComment("Abort message: ");
2495 RecordComment(msg);
2496 }
2497#endif
Steve Blockd0582a62009-12-15 09:54:21 +00002498 // Disable stub call restrictions to always allow calls to abort.
Ben Murdoch086aeea2011-05-13 15:57:08 +01002499 AllowStubCallsScope allow_scope(this, true);
Steve Blockd0582a62009-12-15 09:54:21 +00002500
Steve Blocka7e24c12009-10-30 11:49:00 +00002501 mov(r0, Operand(p0));
2502 push(r0);
2503 mov(r0, Operand(Smi::FromInt(p1 - p0)));
2504 push(r0);
2505 CallRuntime(Runtime::kAbort, 2);
2506 // will not return here
Steve Block8defd9f2010-07-08 12:39:36 +01002507 if (is_const_pool_blocked()) {
2508 // If the calling code cares about the exact number of
2509 // instructions generated, we insert padding here to keep the size
2510 // of the Abort macro constant.
2511 static const int kExpectedAbortInstructions = 10;
2512 int abort_instructions = InstructionsGeneratedSince(&abort_start);
2513 ASSERT(abort_instructions <= kExpectedAbortInstructions);
2514 while (abort_instructions++ < kExpectedAbortInstructions) {
2515 nop();
2516 }
2517 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002518}
2519
2520
Steve Blockd0582a62009-12-15 09:54:21 +00002521void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2522 if (context_chain_length > 0) {
2523 // Move up the chain of contexts to the context containing the slot.
2524 ldr(dst, MemOperand(cp, Context::SlotOffset(Context::CLOSURE_INDEX)));
2525 // Load the function context (which is the incoming, outer context).
2526 ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset));
2527 for (int i = 1; i < context_chain_length; i++) {
2528 ldr(dst, MemOperand(dst, Context::SlotOffset(Context::CLOSURE_INDEX)));
2529 ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset));
2530 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002531 } else {
2532 // Slot is in the current function context. Move it into the
2533 // destination register in case we store into it (the write barrier
2534 // cannot be allowed to destroy the context in esi).
2535 mov(dst, cp);
2536 }
2537
2538 // We should not have found a 'with' context by walking the context chain
2539 // (i.e., the static scope chain and runtime context chain do not agree).
2540 // A variable occurring in such a scope should have slot type LOOKUP and
2541 // not CONTEXT.
Steve Block44f0eee2011-05-26 01:26:41 +01002542 if (emit_debug_code()) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002543 ldr(ip, MemOperand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX)));
2544 cmp(dst, ip);
2545 Check(eq, "Yo dawg, I heard you liked function contexts "
2546 "so I put function contexts in all your contexts");
Steve Blockd0582a62009-12-15 09:54:21 +00002547 }
2548}
2549
2550
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002551void MacroAssembler::LoadGlobalFunction(int index, Register function) {
2552 // Load the global or builtins object from the current context.
2553 ldr(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
2554 // Load the global context from the global or builtins object.
2555 ldr(function, FieldMemOperand(function,
2556 GlobalObject::kGlobalContextOffset));
2557 // Load the function from the global context.
2558 ldr(function, MemOperand(function, Context::SlotOffset(index)));
2559}
2560
2561
2562void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
2563 Register map,
2564 Register scratch) {
2565 // Load the initial map. The global functions all have initial maps.
2566 ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002567 if (emit_debug_code()) {
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002568 Label ok, fail;
Ben Murdoch257744e2011-11-30 15:57:28 +00002569 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002570 b(&ok);
2571 bind(&fail);
2572 Abort("Global functions must have initial map");
2573 bind(&ok);
2574 }
2575}
2576
2577
Steve Block1e0659c2011-05-24 12:43:12 +01002578void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
2579 Register reg,
2580 Register scratch,
2581 Label* not_power_of_two_or_zero) {
2582 sub(scratch, reg, Operand(1), SetCC);
2583 b(mi, not_power_of_two_or_zero);
2584 tst(scratch, reg);
2585 b(ne, not_power_of_two_or_zero);
2586}
2587
2588
Steve Block44f0eee2011-05-26 01:26:41 +01002589void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(
2590 Register reg,
2591 Register scratch,
2592 Label* zero_and_neg,
2593 Label* not_power_of_two) {
2594 sub(scratch, reg, Operand(1), SetCC);
2595 b(mi, zero_and_neg);
2596 tst(scratch, reg);
2597 b(ne, not_power_of_two);
2598}
2599
2600
Andrei Popescu31002712010-02-23 13:46:05 +00002601void MacroAssembler::JumpIfNotBothSmi(Register reg1,
2602 Register reg2,
2603 Label* on_not_both_smi) {
Steve Block1e0659c2011-05-24 12:43:12 +01002604 STATIC_ASSERT(kSmiTag == 0);
Andrei Popescu31002712010-02-23 13:46:05 +00002605 tst(reg1, Operand(kSmiTagMask));
2606 tst(reg2, Operand(kSmiTagMask), eq);
2607 b(ne, on_not_both_smi);
2608}
2609
2610
2611void MacroAssembler::JumpIfEitherSmi(Register reg1,
2612 Register reg2,
2613 Label* on_either_smi) {
Steve Block1e0659c2011-05-24 12:43:12 +01002614 STATIC_ASSERT(kSmiTag == 0);
Andrei Popescu31002712010-02-23 13:46:05 +00002615 tst(reg1, Operand(kSmiTagMask));
2616 tst(reg2, Operand(kSmiTagMask), ne);
2617 b(eq, on_either_smi);
2618}
2619
2620
Iain Merrick75681382010-08-19 15:07:18 +01002621void MacroAssembler::AbortIfSmi(Register object) {
Steve Block1e0659c2011-05-24 12:43:12 +01002622 STATIC_ASSERT(kSmiTag == 0);
Iain Merrick75681382010-08-19 15:07:18 +01002623 tst(object, Operand(kSmiTagMask));
2624 Assert(ne, "Operand is a smi");
2625}
2626
2627
Steve Block1e0659c2011-05-24 12:43:12 +01002628void MacroAssembler::AbortIfNotSmi(Register object) {
2629 STATIC_ASSERT(kSmiTag == 0);
2630 tst(object, Operand(kSmiTagMask));
2631 Assert(eq, "Operand is not smi");
2632}
2633
2634
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002635void MacroAssembler::AbortIfNotString(Register object) {
2636 STATIC_ASSERT(kSmiTag == 0);
2637 tst(object, Operand(kSmiTagMask));
2638 Assert(ne, "Operand is not a string");
2639 push(object);
2640 ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
2641 CompareInstanceType(object, object, FIRST_NONSTRING_TYPE);
2642 pop(object);
2643 Assert(lo, "Operand is not a string");
2644}
2645
2646
2647
Steve Block1e0659c2011-05-24 12:43:12 +01002648void MacroAssembler::AbortIfNotRootValue(Register src,
2649 Heap::RootListIndex root_value_index,
2650 const char* message) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002651 CompareRoot(src, root_value_index);
Steve Block1e0659c2011-05-24 12:43:12 +01002652 Assert(eq, message);
2653}
2654
2655
2656void MacroAssembler::JumpIfNotHeapNumber(Register object,
2657 Register heap_number_map,
2658 Register scratch,
2659 Label* on_not_heap_number) {
2660 ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
2661 AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2662 cmp(scratch, heap_number_map);
2663 b(ne, on_not_heap_number);
2664}
2665
2666
Leon Clarked91b9f72010-01-27 17:25:45 +00002667void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
2668 Register first,
2669 Register second,
2670 Register scratch1,
2671 Register scratch2,
2672 Label* failure) {
2673 // Test that both first and second are sequential ASCII strings.
2674 // Assume that they are non-smis.
2675 ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
2676 ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
2677 ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
2678 ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
Steve Block6ded16b2010-05-10 14:33:55 +01002679
2680 JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1,
2681 scratch2,
2682 scratch1,
2683 scratch2,
2684 failure);
Leon Clarked91b9f72010-01-27 17:25:45 +00002685}
2686
2687void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
2688 Register second,
2689 Register scratch1,
2690 Register scratch2,
2691 Label* failure) {
2692 // Check that neither is a smi.
Steve Block1e0659c2011-05-24 12:43:12 +01002693 STATIC_ASSERT(kSmiTag == 0);
Leon Clarked91b9f72010-01-27 17:25:45 +00002694 and_(scratch1, first, Operand(second));
2695 tst(scratch1, Operand(kSmiTagMask));
2696 b(eq, failure);
2697 JumpIfNonSmisNotBothSequentialAsciiStrings(first,
2698 second,
2699 scratch1,
2700 scratch2,
2701 failure);
2702}
2703
Steve Blockd0582a62009-12-15 09:54:21 +00002704
Steve Block6ded16b2010-05-10 14:33:55 +01002705// Allocates a heap number or jumps to the need_gc label if the young space
2706// is full and a scavenge is needed.
2707void MacroAssembler::AllocateHeapNumber(Register result,
2708 Register scratch1,
2709 Register scratch2,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +01002710 Register heap_number_map,
Steve Block6ded16b2010-05-10 14:33:55 +01002711 Label* gc_required) {
2712 // Allocate an object in the heap for the heap number and tag it as a heap
2713 // object.
Kristian Monsen25f61362010-05-21 11:50:48 +01002714 AllocateInNewSpace(HeapNumber::kSize,
Steve Block6ded16b2010-05-10 14:33:55 +01002715 result,
2716 scratch1,
2717 scratch2,
2718 gc_required,
2719 TAG_OBJECT);
2720
Kristian Monsen9dcf7e22010-06-28 14:14:28 +01002721 // Store heap number map in the allocated object.
2722 AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2723 str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
Steve Block6ded16b2010-05-10 14:33:55 +01002724}
2725
2726
Steve Block8defd9f2010-07-08 12:39:36 +01002727void MacroAssembler::AllocateHeapNumberWithValue(Register result,
2728 DwVfpRegister value,
2729 Register scratch1,
2730 Register scratch2,
2731 Register heap_number_map,
2732 Label* gc_required) {
2733 AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
2734 sub(scratch1, result, Operand(kHeapObjectTag));
2735 vstr(value, scratch1, HeapNumber::kValueOffset);
2736}
2737
2738
Ben Murdochbb769b22010-08-11 14:56:33 +01002739// Copies a fixed number of fields of heap objects from src to dst.
2740void MacroAssembler::CopyFields(Register dst,
2741 Register src,
2742 RegList temps,
2743 int field_count) {
2744 // At least one bit set in the first 15 registers.
2745 ASSERT((temps & ((1 << 15) - 1)) != 0);
2746 ASSERT((temps & dst.bit()) == 0);
2747 ASSERT((temps & src.bit()) == 0);
2748 // Primitive implementation using only one temporary register.
2749
2750 Register tmp = no_reg;
2751 // Find a temp register in temps list.
2752 for (int i = 0; i < 15; i++) {
2753 if ((temps & (1 << i)) != 0) {
2754 tmp.set_code(i);
2755 break;
2756 }
2757 }
2758 ASSERT(!tmp.is(no_reg));
2759
2760 for (int i = 0; i < field_count; i++) {
2761 ldr(tmp, FieldMemOperand(src, i * kPointerSize));
2762 str(tmp, FieldMemOperand(dst, i * kPointerSize));
2763 }
2764}
2765
2766
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002767void MacroAssembler::CopyBytes(Register src,
2768 Register dst,
2769 Register length,
2770 Register scratch) {
2771 Label align_loop, align_loop_1, word_loop, byte_loop, byte_loop_1, done;
2772
2773 // Align src before copying in word size chunks.
2774 bind(&align_loop);
2775 cmp(length, Operand(0));
2776 b(eq, &done);
2777 bind(&align_loop_1);
2778 tst(src, Operand(kPointerSize - 1));
2779 b(eq, &word_loop);
2780 ldrb(scratch, MemOperand(src, 1, PostIndex));
2781 strb(scratch, MemOperand(dst, 1, PostIndex));
2782 sub(length, length, Operand(1), SetCC);
2783 b(ne, &byte_loop_1);
2784
2785 // Copy bytes in word size chunks.
2786 bind(&word_loop);
Steve Block44f0eee2011-05-26 01:26:41 +01002787 if (emit_debug_code()) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002788 tst(src, Operand(kPointerSize - 1));
2789 Assert(eq, "Expecting alignment for CopyBytes");
2790 }
2791 cmp(length, Operand(kPointerSize));
2792 b(lt, &byte_loop);
2793 ldr(scratch, MemOperand(src, kPointerSize, PostIndex));
2794#if CAN_USE_UNALIGNED_ACCESSES
2795 str(scratch, MemOperand(dst, kPointerSize, PostIndex));
2796#else
2797 strb(scratch, MemOperand(dst, 1, PostIndex));
2798 mov(scratch, Operand(scratch, LSR, 8));
2799 strb(scratch, MemOperand(dst, 1, PostIndex));
2800 mov(scratch, Operand(scratch, LSR, 8));
2801 strb(scratch, MemOperand(dst, 1, PostIndex));
2802 mov(scratch, Operand(scratch, LSR, 8));
2803 strb(scratch, MemOperand(dst, 1, PostIndex));
2804#endif
2805 sub(length, length, Operand(kPointerSize));
2806 b(&word_loop);
2807
2808 // Copy the last bytes if any left.
2809 bind(&byte_loop);
2810 cmp(length, Operand(0));
2811 b(eq, &done);
2812 bind(&byte_loop_1);
2813 ldrb(scratch, MemOperand(src, 1, PostIndex));
2814 strb(scratch, MemOperand(dst, 1, PostIndex));
2815 sub(length, length, Operand(1), SetCC);
2816 b(ne, &byte_loop_1);
2817 bind(&done);
2818}
2819
2820
Steve Block8defd9f2010-07-08 12:39:36 +01002821void MacroAssembler::CountLeadingZeros(Register zeros, // Answer.
2822 Register source, // Input.
2823 Register scratch) {
Steve Block1e0659c2011-05-24 12:43:12 +01002824 ASSERT(!zeros.is(source) || !source.is(scratch));
Steve Block8defd9f2010-07-08 12:39:36 +01002825 ASSERT(!zeros.is(scratch));
2826 ASSERT(!scratch.is(ip));
2827 ASSERT(!source.is(ip));
2828 ASSERT(!zeros.is(ip));
Steve Block6ded16b2010-05-10 14:33:55 +01002829#ifdef CAN_USE_ARMV5_INSTRUCTIONS
2830 clz(zeros, source); // This instruction is only supported after ARM5.
2831#else
Iain Merrick9ac36c92010-09-13 15:29:50 +01002832 mov(zeros, Operand(0, RelocInfo::NONE));
Steve Block8defd9f2010-07-08 12:39:36 +01002833 Move(scratch, source);
Steve Block6ded16b2010-05-10 14:33:55 +01002834 // Top 16.
2835 tst(scratch, Operand(0xffff0000));
2836 add(zeros, zeros, Operand(16), LeaveCC, eq);
2837 mov(scratch, Operand(scratch, LSL, 16), LeaveCC, eq);
2838 // Top 8.
2839 tst(scratch, Operand(0xff000000));
2840 add(zeros, zeros, Operand(8), LeaveCC, eq);
2841 mov(scratch, Operand(scratch, LSL, 8), LeaveCC, eq);
2842 // Top 4.
2843 tst(scratch, Operand(0xf0000000));
2844 add(zeros, zeros, Operand(4), LeaveCC, eq);
2845 mov(scratch, Operand(scratch, LSL, 4), LeaveCC, eq);
2846 // Top 2.
2847 tst(scratch, Operand(0xc0000000));
2848 add(zeros, zeros, Operand(2), LeaveCC, eq);
2849 mov(scratch, Operand(scratch, LSL, 2), LeaveCC, eq);
2850 // Top bit.
2851 tst(scratch, Operand(0x80000000u));
2852 add(zeros, zeros, Operand(1), LeaveCC, eq);
2853#endif
2854}
2855
2856
2857void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
2858 Register first,
2859 Register second,
2860 Register scratch1,
2861 Register scratch2,
2862 Label* failure) {
2863 int kFlatAsciiStringMask =
2864 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2865 int kFlatAsciiStringTag = ASCII_STRING_TYPE;
2866 and_(scratch1, first, Operand(kFlatAsciiStringMask));
2867 and_(scratch2, second, Operand(kFlatAsciiStringMask));
2868 cmp(scratch1, Operand(kFlatAsciiStringTag));
2869 // Ignore second test if first test failed.
2870 cmp(scratch2, Operand(kFlatAsciiStringTag), eq);
2871 b(ne, failure);
2872}
2873
2874
2875void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
2876 Register scratch,
2877 Label* failure) {
2878 int kFlatAsciiStringMask =
2879 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2880 int kFlatAsciiStringTag = ASCII_STRING_TYPE;
2881 and_(scratch, type, Operand(kFlatAsciiStringMask));
2882 cmp(scratch, Operand(kFlatAsciiStringTag));
2883 b(ne, failure);
2884}
2885
Steve Block44f0eee2011-05-26 01:26:41 +01002886static const int kRegisterPassedArguments = 4;
Steve Block6ded16b2010-05-10 14:33:55 +01002887
Steve Block44f0eee2011-05-26 01:26:41 +01002888
Ben Murdoch257744e2011-11-30 15:57:28 +00002889int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
2890 int num_double_arguments) {
2891 int stack_passed_words = 0;
2892 if (use_eabi_hardfloat()) {
2893 // In the hard floating point calling convention, we can use
2894 // all double registers to pass doubles.
2895 if (num_double_arguments > DoubleRegister::kNumRegisters) {
2896 stack_passed_words +=
2897 2 * (num_double_arguments - DoubleRegister::kNumRegisters);
2898 }
2899 } else {
2900 // In the soft floating point calling convention, every double
2901 // argument is passed using two registers.
2902 num_reg_arguments += 2 * num_double_arguments;
2903 }
Steve Block6ded16b2010-05-10 14:33:55 +01002904 // Up to four simple arguments are passed in registers r0..r3.
Ben Murdoch257744e2011-11-30 15:57:28 +00002905 if (num_reg_arguments > kRegisterPassedArguments) {
2906 stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
2907 }
2908 return stack_passed_words;
2909}
2910
2911
2912void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
2913 int num_double_arguments,
2914 Register scratch) {
2915 int frame_alignment = ActivationFrameAlignment();
2916 int stack_passed_arguments = CalculateStackPassedWords(
2917 num_reg_arguments, num_double_arguments);
Steve Block6ded16b2010-05-10 14:33:55 +01002918 if (frame_alignment > kPointerSize) {
2919 // Make stack end at alignment and make room for num_arguments - 4 words
2920 // and the original value of sp.
2921 mov(scratch, sp);
2922 sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
2923 ASSERT(IsPowerOf2(frame_alignment));
2924 and_(sp, sp, Operand(-frame_alignment));
2925 str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
2926 } else {
2927 sub(sp, sp, Operand(stack_passed_arguments * kPointerSize));
2928 }
2929}
2930
2931
Ben Murdoch257744e2011-11-30 15:57:28 +00002932void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
2933 Register scratch) {
2934 PrepareCallCFunction(num_reg_arguments, 0, scratch);
2935}
2936
2937
2938void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg) {
2939 if (use_eabi_hardfloat()) {
2940 Move(d0, dreg);
2941 } else {
2942 vmov(r0, r1, dreg);
2943 }
2944}
2945
2946
2947void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg1,
2948 DoubleRegister dreg2) {
2949 if (use_eabi_hardfloat()) {
2950 if (dreg2.is(d0)) {
2951 ASSERT(!dreg1.is(d1));
2952 Move(d1, dreg2);
2953 Move(d0, dreg1);
2954 } else {
2955 Move(d0, dreg1);
2956 Move(d1, dreg2);
2957 }
2958 } else {
2959 vmov(r0, r1, dreg1);
2960 vmov(r2, r3, dreg2);
2961 }
2962}
2963
2964
2965void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg,
2966 Register reg) {
2967 if (use_eabi_hardfloat()) {
2968 Move(d0, dreg);
2969 Move(r0, reg);
2970 } else {
2971 Move(r2, reg);
2972 vmov(r0, r1, dreg);
2973 }
2974}
2975
2976
2977void MacroAssembler::CallCFunction(ExternalReference function,
2978 int num_reg_arguments,
2979 int num_double_arguments) {
2980 CallCFunctionHelper(no_reg,
2981 function,
2982 ip,
2983 num_reg_arguments,
2984 num_double_arguments);
2985}
2986
2987
2988void MacroAssembler::CallCFunction(Register function,
2989 Register scratch,
2990 int num_reg_arguments,
2991 int num_double_arguments) {
2992 CallCFunctionHelper(function,
2993 ExternalReference::the_hole_value_location(isolate()),
2994 scratch,
2995 num_reg_arguments,
2996 num_double_arguments);
2997}
2998
2999
Steve Block6ded16b2010-05-10 14:33:55 +01003000void MacroAssembler::CallCFunction(ExternalReference function,
3001 int num_arguments) {
Ben Murdoch257744e2011-11-30 15:57:28 +00003002 CallCFunction(function, num_arguments, 0);
Steve Block44f0eee2011-05-26 01:26:41 +01003003}
3004
Ben Murdoch257744e2011-11-30 15:57:28 +00003005
Steve Block44f0eee2011-05-26 01:26:41 +01003006void MacroAssembler::CallCFunction(Register function,
3007 Register scratch,
3008 int num_arguments) {
Ben Murdoch257744e2011-11-30 15:57:28 +00003009 CallCFunction(function, scratch, num_arguments, 0);
Steve Block6ded16b2010-05-10 14:33:55 +01003010}
3011
3012
Steve Block44f0eee2011-05-26 01:26:41 +01003013void MacroAssembler::CallCFunctionHelper(Register function,
3014 ExternalReference function_reference,
3015 Register scratch,
Ben Murdoch257744e2011-11-30 15:57:28 +00003016 int num_reg_arguments,
3017 int num_double_arguments) {
Steve Block6ded16b2010-05-10 14:33:55 +01003018 // Make sure that the stack is aligned before calling a C function unless
3019 // running in the simulator. The simulator has its own alignment check which
3020 // provides more information.
3021#if defined(V8_HOST_ARCH_ARM)
Steve Block44f0eee2011-05-26 01:26:41 +01003022 if (emit_debug_code()) {
Steve Block6ded16b2010-05-10 14:33:55 +01003023 int frame_alignment = OS::ActivationFrameAlignment();
3024 int frame_alignment_mask = frame_alignment - 1;
3025 if (frame_alignment > kPointerSize) {
3026 ASSERT(IsPowerOf2(frame_alignment));
3027 Label alignment_as_expected;
3028 tst(sp, Operand(frame_alignment_mask));
3029 b(eq, &alignment_as_expected);
3030 // Don't use Check here, as it will call Runtime_Abort possibly
3031 // re-entering here.
3032 stop("Unexpected alignment");
3033 bind(&alignment_as_expected);
3034 }
3035 }
3036#endif
3037
3038 // Just call directly. The function called cannot cause a GC, or
3039 // allow preemption, so the return address in the link register
3040 // stays correct.
Steve Block44f0eee2011-05-26 01:26:41 +01003041 if (function.is(no_reg)) {
3042 mov(scratch, Operand(function_reference));
3043 function = scratch;
3044 }
Steve Block6ded16b2010-05-10 14:33:55 +01003045 Call(function);
Ben Murdoch257744e2011-11-30 15:57:28 +00003046 int stack_passed_arguments = CalculateStackPassedWords(
3047 num_reg_arguments, num_double_arguments);
3048 if (ActivationFrameAlignment() > kPointerSize) {
Steve Block6ded16b2010-05-10 14:33:55 +01003049 ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
3050 } else {
3051 add(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
3052 }
3053}
3054
3055
Steve Block1e0659c2011-05-24 12:43:12 +01003056void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
3057 Register result) {
3058 const uint32_t kLdrOffsetMask = (1 << 12) - 1;
3059 const int32_t kPCRegOffset = 2 * kPointerSize;
3060 ldr(result, MemOperand(ldr_location));
Steve Block44f0eee2011-05-26 01:26:41 +01003061 if (emit_debug_code()) {
Steve Block1e0659c2011-05-24 12:43:12 +01003062 // Check that the instruction is a ldr reg, [pc + offset] .
3063 and_(result, result, Operand(kLdrPCPattern));
3064 cmp(result, Operand(kLdrPCPattern));
3065 Check(eq, "The instruction to patch should be a load from pc.");
3066 // Result was clobbered. Restore it.
3067 ldr(result, MemOperand(ldr_location));
3068 }
3069 // Get the address of the constant.
3070 and_(result, result, Operand(kLdrOffsetMask));
3071 add(result, ldr_location, Operand(result));
3072 add(result, result, Operand(kPCRegOffset));
3073}
3074
3075
Ben Murdoch257744e2011-11-30 15:57:28 +00003076void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
3077 Usat(output_reg, 8, Operand(input_reg));
3078}
3079
3080
3081void MacroAssembler::ClampDoubleToUint8(Register result_reg,
3082 DoubleRegister input_reg,
3083 DoubleRegister temp_double_reg) {
3084 Label above_zero;
3085 Label done;
3086 Label in_bounds;
3087
3088 vmov(temp_double_reg, 0.0);
3089 VFPCompareAndSetFlags(input_reg, temp_double_reg);
3090 b(gt, &above_zero);
3091
3092 // Double value is less than zero, NaN or Inf, return 0.
3093 mov(result_reg, Operand(0));
3094 b(al, &done);
3095
3096 // Double value is >= 255, return 255.
3097 bind(&above_zero);
3098 vmov(temp_double_reg, 255.0);
3099 VFPCompareAndSetFlags(input_reg, temp_double_reg);
3100 b(le, &in_bounds);
3101 mov(result_reg, Operand(255));
3102 b(al, &done);
3103
3104 // In 0-255 range, round and truncate.
3105 bind(&in_bounds);
3106 vmov(temp_double_reg, 0.5);
3107 vadd(temp_double_reg, input_reg, temp_double_reg);
3108 vcvt_u32_f64(s0, temp_double_reg);
3109 vmov(result_reg, s0);
3110 bind(&done);
3111}
3112
3113
3114void MacroAssembler::LoadInstanceDescriptors(Register map,
3115 Register descriptors) {
3116 ldr(descriptors,
3117 FieldMemOperand(map, Map::kInstanceDescriptorsOrBitField3Offset));
3118 Label not_smi;
3119 JumpIfNotSmi(descriptors, &not_smi);
3120 mov(descriptors, Operand(FACTORY->empty_descriptor_array()));
3121 bind(&not_smi);
3122}
3123
3124
Steve Blocka7e24c12009-10-30 11:49:00 +00003125CodePatcher::CodePatcher(byte* address, int instructions)
3126 : address_(address),
3127 instructions_(instructions),
3128 size_(instructions * Assembler::kInstrSize),
Ben Murdoch8b112d22011-06-08 16:22:53 +01003129 masm_(Isolate::Current(), address, size_ + Assembler::kGap) {
Steve Blocka7e24c12009-10-30 11:49:00 +00003130 // Create a new macro assembler pointing to the address of the code to patch.
3131 // The size is adjusted with kGap on order for the assembler to generate size
3132 // bytes of instructions without failing with buffer size constraints.
3133 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3134}
3135
3136
3137CodePatcher::~CodePatcher() {
3138 // Indicate that code has changed.
3139 CPU::FlushICache(address_, size_);
3140
3141 // Check that the code was patched as expected.
3142 ASSERT(masm_.pc_ == address_ + size_);
3143 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3144}
3145
3146
Steve Block1e0659c2011-05-24 12:43:12 +01003147void CodePatcher::Emit(Instr instr) {
3148 masm()->emit(instr);
Steve Blocka7e24c12009-10-30 11:49:00 +00003149}
3150
3151
3152void CodePatcher::Emit(Address addr) {
3153 masm()->emit(reinterpret_cast<Instr>(addr));
3154}
Steve Block1e0659c2011-05-24 12:43:12 +01003155
3156
3157void CodePatcher::EmitCondition(Condition cond) {
3158 Instr instr = Assembler::instr_at(masm_.pc_);
3159 instr = (instr & ~kCondMask) | cond;
3160 masm_.emit(instr);
3161}
Steve Blocka7e24c12009-10-30 11:49:00 +00003162
3163
3164} } // namespace v8::internal
Leon Clarkef7060e22010-06-03 12:02:55 +01003165
3166#endif // V8_TARGET_ARCH_ARM