blob: 7bb2e61c329fd907b34707e1e8a5e0b189d4eb51 [file] [log] [blame]
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include <assert.h>
29#include <stdio.h>
30#include <stdarg.h>
31
32#include "v8.h"
Leon Clarkef7060e22010-06-03 12:02:55 +010033
34#if defined(V8_TARGET_ARCH_X64)
35
Steve Blocka7e24c12009-10-30 11:49:00 +000036#include "disasm.h"
37
38namespace disasm {
39
40enum OperandType {
41 UNSET_OP_ORDER = 0,
42 // Operand size decides between 16, 32 and 64 bit operands.
43 REG_OPER_OP_ORDER = 1, // Register destination, operand source.
44 OPER_REG_OP_ORDER = 2, // Operand destination, register source.
45 // Fixed 8-bit operands.
46 BYTE_SIZE_OPERAND_FLAG = 4,
47 BYTE_REG_OPER_OP_ORDER = REG_OPER_OP_ORDER | BYTE_SIZE_OPERAND_FLAG,
48 BYTE_OPER_REG_OP_ORDER = OPER_REG_OP_ORDER | BYTE_SIZE_OPERAND_FLAG
49};
50
51//------------------------------------------------------------------
52// Tables
53//------------------------------------------------------------------
54struct ByteMnemonic {
55 int b; // -1 terminates, otherwise must be in range (0..255)
56 OperandType op_order_;
57 const char* mnem;
58};
59
60
61static ByteMnemonic two_operands_instr[] = {
62 { 0x00, BYTE_OPER_REG_OP_ORDER, "add" },
63 { 0x01, OPER_REG_OP_ORDER, "add" },
64 { 0x02, BYTE_REG_OPER_OP_ORDER, "add" },
65 { 0x03, REG_OPER_OP_ORDER, "add" },
66 { 0x08, BYTE_OPER_REG_OP_ORDER, "or" },
67 { 0x09, OPER_REG_OP_ORDER, "or" },
68 { 0x0A, BYTE_REG_OPER_OP_ORDER, "or" },
69 { 0x0B, REG_OPER_OP_ORDER, "or" },
70 { 0x10, BYTE_OPER_REG_OP_ORDER, "adc" },
71 { 0x11, OPER_REG_OP_ORDER, "adc" },
72 { 0x12, BYTE_REG_OPER_OP_ORDER, "adc" },
73 { 0x13, REG_OPER_OP_ORDER, "adc" },
74 { 0x18, BYTE_OPER_REG_OP_ORDER, "sbb" },
75 { 0x19, OPER_REG_OP_ORDER, "sbb" },
76 { 0x1A, BYTE_REG_OPER_OP_ORDER, "sbb" },
77 { 0x1B, REG_OPER_OP_ORDER, "sbb" },
78 { 0x20, BYTE_OPER_REG_OP_ORDER, "and" },
79 { 0x21, OPER_REG_OP_ORDER, "and" },
80 { 0x22, BYTE_REG_OPER_OP_ORDER, "and" },
81 { 0x23, REG_OPER_OP_ORDER, "and" },
82 { 0x28, BYTE_OPER_REG_OP_ORDER, "sub" },
83 { 0x29, OPER_REG_OP_ORDER, "sub" },
84 { 0x2A, BYTE_REG_OPER_OP_ORDER, "sub" },
85 { 0x2B, REG_OPER_OP_ORDER, "sub" },
86 { 0x30, BYTE_OPER_REG_OP_ORDER, "xor" },
87 { 0x31, OPER_REG_OP_ORDER, "xor" },
88 { 0x32, BYTE_REG_OPER_OP_ORDER, "xor" },
89 { 0x33, REG_OPER_OP_ORDER, "xor" },
90 { 0x38, BYTE_OPER_REG_OP_ORDER, "cmp" },
91 { 0x39, OPER_REG_OP_ORDER, "cmp" },
92 { 0x3A, BYTE_REG_OPER_OP_ORDER, "cmp" },
93 { 0x3B, REG_OPER_OP_ORDER, "cmp" },
94 { 0x63, REG_OPER_OP_ORDER, "movsxlq" },
95 { 0x84, BYTE_REG_OPER_OP_ORDER, "test" },
96 { 0x85, REG_OPER_OP_ORDER, "test" },
97 { 0x86, BYTE_REG_OPER_OP_ORDER, "xchg" },
98 { 0x87, REG_OPER_OP_ORDER, "xchg" },
99 { 0x88, BYTE_OPER_REG_OP_ORDER, "mov" },
100 { 0x89, OPER_REG_OP_ORDER, "mov" },
101 { 0x8A, BYTE_REG_OPER_OP_ORDER, "mov" },
102 { 0x8B, REG_OPER_OP_ORDER, "mov" },
103 { 0x8D, REG_OPER_OP_ORDER, "lea" },
104 { -1, UNSET_OP_ORDER, "" }
105};
106
107
108static ByteMnemonic zero_operands_instr[] = {
109 { 0xC3, UNSET_OP_ORDER, "ret" },
110 { 0xC9, UNSET_OP_ORDER, "leave" },
111 { 0xF4, UNSET_OP_ORDER, "hlt" },
112 { 0xCC, UNSET_OP_ORDER, "int3" },
113 { 0x60, UNSET_OP_ORDER, "pushad" },
114 { 0x61, UNSET_OP_ORDER, "popad" },
115 { 0x9C, UNSET_OP_ORDER, "pushfd" },
116 { 0x9D, UNSET_OP_ORDER, "popfd" },
117 { 0x9E, UNSET_OP_ORDER, "sahf" },
118 { 0x99, UNSET_OP_ORDER, "cdq" },
119 { 0x9B, UNSET_OP_ORDER, "fwait" },
Leon Clarked91b9f72010-01-27 17:25:45 +0000120 { 0xA4, UNSET_OP_ORDER, "movs" },
121 { 0xA5, UNSET_OP_ORDER, "movs" },
122 { 0xA6, UNSET_OP_ORDER, "cmps" },
123 { 0xA7, UNSET_OP_ORDER, "cmps" },
Steve Blocka7e24c12009-10-30 11:49:00 +0000124 { -1, UNSET_OP_ORDER, "" }
125};
126
127
128static ByteMnemonic call_jump_instr[] = {
129 { 0xE8, UNSET_OP_ORDER, "call" },
130 { 0xE9, UNSET_OP_ORDER, "jmp" },
131 { -1, UNSET_OP_ORDER, "" }
132};
133
134
135static ByteMnemonic short_immediate_instr[] = {
136 { 0x05, UNSET_OP_ORDER, "add" },
137 { 0x0D, UNSET_OP_ORDER, "or" },
138 { 0x15, UNSET_OP_ORDER, "adc" },
139 { 0x1D, UNSET_OP_ORDER, "sbb" },
140 { 0x25, UNSET_OP_ORDER, "and" },
141 { 0x2D, UNSET_OP_ORDER, "sub" },
142 { 0x35, UNSET_OP_ORDER, "xor" },
143 { 0x3D, UNSET_OP_ORDER, "cmp" },
144 { -1, UNSET_OP_ORDER, "" }
145};
146
147
148static const char* conditional_code_suffix[] = {
149 "o", "no", "c", "nc", "z", "nz", "na", "a",
150 "s", "ns", "pe", "po", "l", "ge", "le", "g"
151};
152
153
154enum InstructionType {
155 NO_INSTR,
156 ZERO_OPERANDS_INSTR,
157 TWO_OPERANDS_INSTR,
158 JUMP_CONDITIONAL_SHORT_INSTR,
159 REGISTER_INSTR,
160 PUSHPOP_INSTR, // Has implicit 64-bit operand size.
161 MOVE_REG_INSTR,
162 CALL_JUMP_INSTR,
163 SHORT_IMMEDIATE_INSTR
164};
165
166
Leon Clarked91b9f72010-01-27 17:25:45 +0000167enum Prefixes {
168 ESCAPE_PREFIX = 0x0F,
169 OPERAND_SIZE_OVERRIDE_PREFIX = 0x66,
170 ADDRESS_SIZE_OVERRIDE_PREFIX = 0x67,
171 REPNE_PREFIX = 0xF2,
172 REP_PREFIX = 0xF3,
173 REPEQ_PREFIX = REP_PREFIX
174};
175
176
Steve Blocka7e24c12009-10-30 11:49:00 +0000177struct InstructionDesc {
178 const char* mnem;
179 InstructionType type;
180 OperandType op_order_;
181 bool byte_size_operation; // Fixed 8-bit operation.
182};
183
184
185class InstructionTable {
186 public:
187 InstructionTable();
188 const InstructionDesc& Get(byte x) const {
189 return instructions_[x];
190 }
191
192 private:
193 InstructionDesc instructions_[256];
194 void Clear();
195 void Init();
196 void CopyTable(ByteMnemonic bm[], InstructionType type);
197 void SetTableRange(InstructionType type, byte start, byte end, bool byte_size,
198 const char* mnem);
199 void AddJumpConditionalShort();
200};
201
202
203InstructionTable::InstructionTable() {
204 Clear();
205 Init();
206}
207
208
209void InstructionTable::Clear() {
210 for (int i = 0; i < 256; i++) {
211 instructions_[i].mnem = "(bad)";
212 instructions_[i].type = NO_INSTR;
213 instructions_[i].op_order_ = UNSET_OP_ORDER;
214 instructions_[i].byte_size_operation = false;
215 }
216}
217
218
219void InstructionTable::Init() {
220 CopyTable(two_operands_instr, TWO_OPERANDS_INSTR);
221 CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR);
222 CopyTable(call_jump_instr, CALL_JUMP_INSTR);
223 CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR);
224 AddJumpConditionalShort();
225 SetTableRange(PUSHPOP_INSTR, 0x50, 0x57, false, "push");
226 SetTableRange(PUSHPOP_INSTR, 0x58, 0x5F, false, "pop");
227 SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, false, "mov");
228}
229
230
231void InstructionTable::CopyTable(ByteMnemonic bm[], InstructionType type) {
232 for (int i = 0; bm[i].b >= 0; i++) {
233 InstructionDesc* id = &instructions_[bm[i].b];
234 id->mnem = bm[i].mnem;
235 OperandType op_order = bm[i].op_order_;
236 id->op_order_ =
237 static_cast<OperandType>(op_order & ~BYTE_SIZE_OPERAND_FLAG);
Steve Blockd0582a62009-12-15 09:54:21 +0000238 ASSERT_EQ(NO_INSTR, id->type); // Information not already entered
Steve Blocka7e24c12009-10-30 11:49:00 +0000239 id->type = type;
240 id->byte_size_operation = ((op_order & BYTE_SIZE_OPERAND_FLAG) != 0);
241 }
242}
243
244
245void InstructionTable::SetTableRange(InstructionType type,
246 byte start,
247 byte end,
248 bool byte_size,
249 const char* mnem) {
250 for (byte b = start; b <= end; b++) {
251 InstructionDesc* id = &instructions_[b];
Steve Blockd0582a62009-12-15 09:54:21 +0000252 ASSERT_EQ(NO_INSTR, id->type); // Information not already entered
Steve Blocka7e24c12009-10-30 11:49:00 +0000253 id->mnem = mnem;
254 id->type = type;
255 id->byte_size_operation = byte_size;
256 }
257}
258
259
260void InstructionTable::AddJumpConditionalShort() {
261 for (byte b = 0x70; b <= 0x7F; b++) {
262 InstructionDesc* id = &instructions_[b];
Steve Blockd0582a62009-12-15 09:54:21 +0000263 ASSERT_EQ(NO_INSTR, id->type); // Information not already entered
Steve Blocka7e24c12009-10-30 11:49:00 +0000264 id->mnem = NULL; // Computed depending on condition code.
265 id->type = JUMP_CONDITIONAL_SHORT_INSTR;
266 }
267}
268
269
270static InstructionTable instruction_table;
271
Steve Block44f0eee2011-05-26 01:26:41 +0100272
Steve Blocka7e24c12009-10-30 11:49:00 +0000273static InstructionDesc cmov_instructions[16] = {
274 {"cmovo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
275 {"cmovno", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
276 {"cmovc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
277 {"cmovnc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
278 {"cmovz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
279 {"cmovnz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
280 {"cmovna", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
281 {"cmova", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
282 {"cmovs", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
283 {"cmovns", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
284 {"cmovpe", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
285 {"cmovpo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
286 {"cmovl", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
287 {"cmovge", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
288 {"cmovle", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
289 {"cmovg", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}
290};
291
292//------------------------------------------------------------------------------
293// DisassemblerX64 implementation.
294
295enum UnimplementedOpcodeAction {
296 CONTINUE_ON_UNIMPLEMENTED_OPCODE,
297 ABORT_ON_UNIMPLEMENTED_OPCODE
298};
299
300// A new DisassemblerX64 object is created to disassemble each instruction.
301// The object can only disassemble a single instruction.
302class DisassemblerX64 {
303 public:
304 DisassemblerX64(const NameConverter& converter,
305 UnimplementedOpcodeAction unimplemented_action =
306 ABORT_ON_UNIMPLEMENTED_OPCODE)
307 : converter_(converter),
308 tmp_buffer_pos_(0),
309 abort_on_unimplemented_(
310 unimplemented_action == ABORT_ON_UNIMPLEMENTED_OPCODE),
311 rex_(0),
312 operand_size_(0),
313 group_1_prefix_(0),
314 byte_size_operand_(false) {
315 tmp_buffer_[0] = '\0';
316 }
317
318 virtual ~DisassemblerX64() {
319 }
320
321 // Writes one disassembled instruction into 'buffer' (0-terminated).
322 // Returns the length of the disassembled machine instruction in bytes.
323 int InstructionDecode(v8::internal::Vector<char> buffer, byte* instruction);
324
325 private:
326 enum OperandSize {
327 BYTE_SIZE = 0,
328 WORD_SIZE = 1,
329 DOUBLEWORD_SIZE = 2,
330 QUADWORD_SIZE = 3
331 };
332
333 const NameConverter& converter_;
334 v8::internal::EmbeddedVector<char, 128> tmp_buffer_;
335 unsigned int tmp_buffer_pos_;
336 bool abort_on_unimplemented_;
337 // Prefixes parsed
338 byte rex_;
339 byte operand_size_; // 0x66 or (if no group 3 prefix is present) 0x0.
340 byte group_1_prefix_; // 0xF2, 0xF3, or (if no group 1 prefix is present) 0.
341 // Byte size operand override.
342 bool byte_size_operand_;
343
344 void setRex(byte rex) {
345 ASSERT_EQ(0x40, rex & 0xF0);
346 rex_ = rex;
347 }
348
349 bool rex() { return rex_ != 0; }
350
351 bool rex_b() { return (rex_ & 0x01) != 0; }
352
353 // Actual number of base register given the low bits and the rex.b state.
354 int base_reg(int low_bits) { return low_bits | ((rex_ & 0x01) << 3); }
355
356 bool rex_x() { return (rex_ & 0x02) != 0; }
357
358 bool rex_r() { return (rex_ & 0x04) != 0; }
359
360 bool rex_w() { return (rex_ & 0x08) != 0; }
361
362 OperandSize operand_size() {
363 if (byte_size_operand_) return BYTE_SIZE;
364 if (rex_w()) return QUADWORD_SIZE;
365 if (operand_size_ != 0) return WORD_SIZE;
366 return DOUBLEWORD_SIZE;
367 }
368
369 char operand_size_code() {
370 return "bwlq"[operand_size()];
371 }
372
373 const char* NameOfCPURegister(int reg) const {
374 return converter_.NameOfCPURegister(reg);
375 }
376
377 const char* NameOfByteCPURegister(int reg) const {
378 return converter_.NameOfByteCPURegister(reg);
379 }
380
381 const char* NameOfXMMRegister(int reg) const {
382 return converter_.NameOfXMMRegister(reg);
383 }
384
385 const char* NameOfAddress(byte* addr) const {
386 return converter_.NameOfAddress(addr);
387 }
388
389 // Disassembler helper functions.
390 void get_modrm(byte data,
391 int* mod,
392 int* regop,
393 int* rm) {
394 *mod = (data >> 6) & 3;
395 *regop = ((data & 0x38) >> 3) | (rex_r() ? 8 : 0);
396 *rm = (data & 7) | (rex_b() ? 8 : 0);
397 }
398
399 void get_sib(byte data,
400 int* scale,
401 int* index,
402 int* base) {
403 *scale = (data >> 6) & 3;
404 *index = ((data >> 3) & 7) | (rex_x() ? 8 : 0);
405 *base = (data & 7) | (rex_b() ? 8 : 0);
406 }
407
408 typedef const char* (DisassemblerX64::*RegisterNameMapping)(int reg) const;
409
410 int PrintRightOperandHelper(byte* modrmp,
411 RegisterNameMapping register_name);
412 int PrintRightOperand(byte* modrmp);
413 int PrintRightByteOperand(byte* modrmp);
Steve Blockd0582a62009-12-15 09:54:21 +0000414 int PrintRightXMMOperand(byte* modrmp);
Steve Blocka7e24c12009-10-30 11:49:00 +0000415 int PrintOperands(const char* mnem,
416 OperandType op_order,
417 byte* data);
418 int PrintImmediate(byte* data, OperandSize size);
419 int PrintImmediateOp(byte* data);
420 const char* TwoByteMnemonic(byte opcode);
421 int TwoByteOpcodeInstruction(byte* data);
Steve Blockd0582a62009-12-15 09:54:21 +0000422 int F6F7Instruction(byte* data);
Steve Blocka7e24c12009-10-30 11:49:00 +0000423 int ShiftInstruction(byte* data);
424 int JumpShort(byte* data);
425 int JumpConditional(byte* data);
426 int JumpConditionalShort(byte* data);
427 int SetCC(byte* data);
428 int FPUInstruction(byte* data);
Steve Blockd0582a62009-12-15 09:54:21 +0000429 int MemoryFPUInstruction(int escape_opcode, int regop, byte* modrm_start);
430 int RegisterFPUInstruction(int escape_opcode, byte modrm_byte);
Steve Blocka7e24c12009-10-30 11:49:00 +0000431 void AppendToBuffer(const char* format, ...);
432
433 void UnimplementedInstruction() {
434 if (abort_on_unimplemented_) {
435 CHECK(false);
436 } else {
437 AppendToBuffer("'Unimplemented Instruction'");
438 }
439 }
440};
441
442
443void DisassemblerX64::AppendToBuffer(const char* format, ...) {
444 v8::internal::Vector<char> buf = tmp_buffer_ + tmp_buffer_pos_;
445 va_list args;
446 va_start(args, format);
447 int result = v8::internal::OS::VSNPrintF(buf, format, args);
448 va_end(args);
449 tmp_buffer_pos_ += result;
450}
451
452
453int DisassemblerX64::PrintRightOperandHelper(
454 byte* modrmp,
Steve Block44f0eee2011-05-26 01:26:41 +0100455 RegisterNameMapping direct_register_name) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000456 int mod, regop, rm;
457 get_modrm(*modrmp, &mod, &regop, &rm);
Steve Block44f0eee2011-05-26 01:26:41 +0100458 RegisterNameMapping register_name = (mod == 3) ? direct_register_name :
459 &DisassemblerX64::NameOfCPURegister;
Steve Blocka7e24c12009-10-30 11:49:00 +0000460 switch (mod) {
461 case 0:
462 if ((rm & 7) == 5) {
463 int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 1);
464 AppendToBuffer("[0x%x]", disp);
465 return 5;
466 } else if ((rm & 7) == 4) {
467 // Codes for SIB byte.
468 byte sib = *(modrmp + 1);
469 int scale, index, base;
470 get_sib(sib, &scale, &index, &base);
471 if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
472 // index == rsp means no index. Only use sib byte with no index for
473 // rsp and r12 base.
Steve Block8defd9f2010-07-08 12:39:36 +0100474 AppendToBuffer("[%s]", NameOfCPURegister(base));
Steve Blocka7e24c12009-10-30 11:49:00 +0000475 return 2;
476 } else if (base == 5) {
477 // base == rbp means no base register (when mod == 0).
478 int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 2);
479 AppendToBuffer("[%s*%d+0x%x]",
Steve Block8defd9f2010-07-08 12:39:36 +0100480 NameOfCPURegister(index),
Steve Blocka7e24c12009-10-30 11:49:00 +0000481 1 << scale, disp);
482 return 6;
483 } else if (index != 4 && base != 5) {
484 // [base+index*scale]
485 AppendToBuffer("[%s+%s*%d]",
Steve Block8defd9f2010-07-08 12:39:36 +0100486 NameOfCPURegister(base),
487 NameOfCPURegister(index),
Steve Blocka7e24c12009-10-30 11:49:00 +0000488 1 << scale);
489 return 2;
490 } else {
491 UnimplementedInstruction();
492 return 1;
493 }
494 } else {
Steve Block8defd9f2010-07-08 12:39:36 +0100495 AppendToBuffer("[%s]", NameOfCPURegister(rm));
Steve Blocka7e24c12009-10-30 11:49:00 +0000496 return 1;
497 }
498 break;
499 case 1: // fall through
500 case 2:
501 if ((rm & 7) == 4) {
502 byte sib = *(modrmp + 1);
503 int scale, index, base;
504 get_sib(sib, &scale, &index, &base);
505 int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 2)
506 : *reinterpret_cast<char*>(modrmp + 2);
507 if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
508 if (-disp > 0) {
Steve Block8defd9f2010-07-08 12:39:36 +0100509 AppendToBuffer("[%s-0x%x]", NameOfCPURegister(base), -disp);
Steve Blocka7e24c12009-10-30 11:49:00 +0000510 } else {
Steve Block8defd9f2010-07-08 12:39:36 +0100511 AppendToBuffer("[%s+0x%x]", NameOfCPURegister(base), disp);
Steve Blocka7e24c12009-10-30 11:49:00 +0000512 }
513 } else {
514 if (-disp > 0) {
515 AppendToBuffer("[%s+%s*%d-0x%x]",
Steve Block8defd9f2010-07-08 12:39:36 +0100516 NameOfCPURegister(base),
517 NameOfCPURegister(index),
Steve Blocka7e24c12009-10-30 11:49:00 +0000518 1 << scale,
519 -disp);
520 } else {
521 AppendToBuffer("[%s+%s*%d+0x%x]",
Steve Block8defd9f2010-07-08 12:39:36 +0100522 NameOfCPURegister(base),
523 NameOfCPURegister(index),
Steve Blocka7e24c12009-10-30 11:49:00 +0000524 1 << scale,
525 disp);
526 }
527 }
528 return mod == 2 ? 6 : 3;
529 } else {
530 // No sib.
531 int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 1)
532 : *reinterpret_cast<char*>(modrmp + 1);
533 if (-disp > 0) {
Steve Block8defd9f2010-07-08 12:39:36 +0100534 AppendToBuffer("[%s-0x%x]", NameOfCPURegister(rm), -disp);
Steve Blocka7e24c12009-10-30 11:49:00 +0000535 } else {
Steve Block8defd9f2010-07-08 12:39:36 +0100536 AppendToBuffer("[%s+0x%x]", NameOfCPURegister(rm), disp);
Steve Blocka7e24c12009-10-30 11:49:00 +0000537 }
538 return (mod == 2) ? 5 : 2;
539 }
540 break;
541 case 3:
542 AppendToBuffer("%s", (this->*register_name)(rm));
543 return 1;
544 default:
545 UnimplementedInstruction();
546 return 1;
547 }
548 UNREACHABLE();
549}
550
551
552int DisassemblerX64::PrintImmediate(byte* data, OperandSize size) {
553 int64_t value;
554 int count;
555 switch (size) {
556 case BYTE_SIZE:
557 value = *data;
558 count = 1;
559 break;
560 case WORD_SIZE:
561 value = *reinterpret_cast<int16_t*>(data);
562 count = 2;
563 break;
564 case DOUBLEWORD_SIZE:
565 value = *reinterpret_cast<uint32_t*>(data);
566 count = 4;
567 break;
568 case QUADWORD_SIZE:
569 value = *reinterpret_cast<int32_t*>(data);
570 count = 4;
571 break;
572 default:
573 UNREACHABLE();
574 value = 0; // Initialize variables on all paths to satisfy the compiler.
575 count = 0;
576 }
577 AppendToBuffer("%" V8_PTR_PREFIX "x", value);
578 return count;
579}
580
581
582int DisassemblerX64::PrintRightOperand(byte* modrmp) {
583 return PrintRightOperandHelper(modrmp,
584 &DisassemblerX64::NameOfCPURegister);
585}
586
587
588int DisassemblerX64::PrintRightByteOperand(byte* modrmp) {
589 return PrintRightOperandHelper(modrmp,
590 &DisassemblerX64::NameOfByteCPURegister);
591}
592
593
Steve Blockd0582a62009-12-15 09:54:21 +0000594int DisassemblerX64::PrintRightXMMOperand(byte* modrmp) {
595 return PrintRightOperandHelper(modrmp,
596 &DisassemblerX64::NameOfXMMRegister);
597}
598
599
Steve Blocka7e24c12009-10-30 11:49:00 +0000600// Returns number of bytes used including the current *data.
601// Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'.
602int DisassemblerX64::PrintOperands(const char* mnem,
603 OperandType op_order,
604 byte* data) {
605 byte modrm = *data;
606 int mod, regop, rm;
607 get_modrm(modrm, &mod, &regop, &rm);
608 int advance = 0;
609 const char* register_name =
610 byte_size_operand_ ? NameOfByteCPURegister(regop)
611 : NameOfCPURegister(regop);
612 switch (op_order) {
613 case REG_OPER_OP_ORDER: {
614 AppendToBuffer("%s%c %s,",
615 mnem,
616 operand_size_code(),
617 register_name);
618 advance = byte_size_operand_ ? PrintRightByteOperand(data)
619 : PrintRightOperand(data);
620 break;
621 }
622 case OPER_REG_OP_ORDER: {
623 AppendToBuffer("%s%c ", mnem, operand_size_code());
624 advance = byte_size_operand_ ? PrintRightByteOperand(data)
625 : PrintRightOperand(data);
626 AppendToBuffer(",%s", register_name);
627 break;
628 }
629 default:
630 UNREACHABLE();
631 break;
632 }
633 return advance;
634}
635
636
637// Returns number of bytes used by machine instruction, including *data byte.
638// Writes immediate instructions to 'tmp_buffer_'.
639int DisassemblerX64::PrintImmediateOp(byte* data) {
640 bool byte_size_immediate = (*data & 0x02) != 0;
641 byte modrm = *(data + 1);
642 int mod, regop, rm;
643 get_modrm(modrm, &mod, &regop, &rm);
644 const char* mnem = "Imm???";
645 switch (regop) {
646 case 0:
647 mnem = "add";
648 break;
649 case 1:
650 mnem = "or";
651 break;
652 case 2:
653 mnem = "adc";
654 break;
Ben Murdoch8b112d22011-06-08 16:22:53 +0100655 case 3:
656 mnem = "sbb";
657 break;
Steve Blocka7e24c12009-10-30 11:49:00 +0000658 case 4:
659 mnem = "and";
660 break;
661 case 5:
662 mnem = "sub";
663 break;
664 case 6:
665 mnem = "xor";
666 break;
667 case 7:
668 mnem = "cmp";
669 break;
670 default:
671 UnimplementedInstruction();
672 }
673 AppendToBuffer("%s%c ", mnem, operand_size_code());
674 int count = PrintRightOperand(data + 1);
675 AppendToBuffer(",0x");
676 OperandSize immediate_size = byte_size_immediate ? BYTE_SIZE : operand_size();
677 count += PrintImmediate(data + 1 + count, immediate_size);
678 return 1 + count;
679}
680
681
682// Returns number of bytes used, including *data.
Steve Blockd0582a62009-12-15 09:54:21 +0000683int DisassemblerX64::F6F7Instruction(byte* data) {
684 ASSERT(*data == 0xF7 || *data == 0xF6);
Steve Blocka7e24c12009-10-30 11:49:00 +0000685 byte modrm = *(data + 1);
686 int mod, regop, rm;
687 get_modrm(modrm, &mod, &regop, &rm);
688 if (mod == 3 && regop != 0) {
689 const char* mnem = NULL;
690 switch (regop) {
691 case 2:
692 mnem = "not";
693 break;
694 case 3:
695 mnem = "neg";
696 break;
697 case 4:
698 mnem = "mul";
699 break;
700 case 7:
701 mnem = "idiv";
702 break;
703 default:
704 UnimplementedInstruction();
705 }
706 AppendToBuffer("%s%c %s",
707 mnem,
708 operand_size_code(),
709 NameOfCPURegister(rm));
710 return 2;
Steve Blocka7e24c12009-10-30 11:49:00 +0000711 } else if (regop == 0) {
712 AppendToBuffer("test%c ", operand_size_code());
Steve Blockd0582a62009-12-15 09:54:21 +0000713 int count = PrintRightOperand(data + 1); // Use name of 64-bit register.
714 AppendToBuffer(",0x");
715 count += PrintImmediate(data + 1 + count, operand_size());
716 return 1 + count;
Steve Blocka7e24c12009-10-30 11:49:00 +0000717 } else {
718 UnimplementedInstruction();
719 return 2;
720 }
721}
722
723
724int DisassemblerX64::ShiftInstruction(byte* data) {
725 byte op = *data & (~1);
726 if (op != 0xD0 && op != 0xD2 && op != 0xC0) {
727 UnimplementedInstruction();
728 return 1;
729 }
730 byte modrm = *(data + 1);
731 int mod, regop, rm;
732 get_modrm(modrm, &mod, &regop, &rm);
733 regop &= 0x7; // The REX.R bit does not affect the operation.
734 int imm8 = -1;
735 int num_bytes = 2;
736 if (mod != 3) {
737 UnimplementedInstruction();
738 return num_bytes;
739 }
740 const char* mnem = NULL;
741 switch (regop) {
742 case 0:
743 mnem = "rol";
744 break;
745 case 1:
746 mnem = "ror";
747 break;
748 case 2:
749 mnem = "rcl";
750 break;
751 case 3:
752 mnem = "rcr";
753 break;
754 case 4:
755 mnem = "shl";
756 break;
757 case 5:
758 mnem = "shr";
759 break;
760 case 7:
761 mnem = "sar";
762 break;
763 default:
764 UnimplementedInstruction();
765 return num_bytes;
766 }
Steve Blockd0582a62009-12-15 09:54:21 +0000767 ASSERT_NE(NULL, mnem);
Steve Blocka7e24c12009-10-30 11:49:00 +0000768 if (op == 0xD0) {
769 imm8 = 1;
770 } else if (op == 0xC0) {
771 imm8 = *(data + 2);
772 num_bytes = 3;
773 }
774 AppendToBuffer("%s%c %s,",
775 mnem,
776 operand_size_code(),
777 byte_size_operand_ ? NameOfByteCPURegister(rm)
778 : NameOfCPURegister(rm));
779 if (op == 0xD2) {
780 AppendToBuffer("cl");
781 } else {
782 AppendToBuffer("%d", imm8);
783 }
784 return num_bytes;
785}
786
787
788// Returns number of bytes used, including *data.
789int DisassemblerX64::JumpShort(byte* data) {
Steve Blockd0582a62009-12-15 09:54:21 +0000790 ASSERT_EQ(0xEB, *data);
Steve Blocka7e24c12009-10-30 11:49:00 +0000791 byte b = *(data + 1);
792 byte* dest = data + static_cast<int8_t>(b) + 2;
793 AppendToBuffer("jmp %s", NameOfAddress(dest));
794 return 2;
795}
796
797
798// Returns number of bytes used, including *data.
799int DisassemblerX64::JumpConditional(byte* data) {
Steve Blockd0582a62009-12-15 09:54:21 +0000800 ASSERT_EQ(0x0F, *data);
Steve Blocka7e24c12009-10-30 11:49:00 +0000801 byte cond = *(data + 1) & 0x0F;
802 byte* dest = data + *reinterpret_cast<int32_t*>(data + 2) + 6;
803 const char* mnem = conditional_code_suffix[cond];
804 AppendToBuffer("j%s %s", mnem, NameOfAddress(dest));
805 return 6; // includes 0x0F
806}
807
808
809// Returns number of bytes used, including *data.
810int DisassemblerX64::JumpConditionalShort(byte* data) {
811 byte cond = *data & 0x0F;
812 byte b = *(data + 1);
813 byte* dest = data + static_cast<int8_t>(b) + 2;
814 const char* mnem = conditional_code_suffix[cond];
815 AppendToBuffer("j%s %s", mnem, NameOfAddress(dest));
816 return 2;
817}
818
819
820// Returns number of bytes used, including *data.
821int DisassemblerX64::SetCC(byte* data) {
Steve Blockd0582a62009-12-15 09:54:21 +0000822 ASSERT_EQ(0x0F, *data);
Steve Blocka7e24c12009-10-30 11:49:00 +0000823 byte cond = *(data + 1) & 0x0F;
824 const char* mnem = conditional_code_suffix[cond];
825 AppendToBuffer("set%s%c ", mnem, operand_size_code());
826 PrintRightByteOperand(data + 2);
827 return 3; // includes 0x0F
828}
829
830
831// Returns number of bytes used, including *data.
832int DisassemblerX64::FPUInstruction(byte* data) {
Steve Blockd0582a62009-12-15 09:54:21 +0000833 byte escape_opcode = *data;
834 ASSERT_EQ(0xD8, escape_opcode & 0xF8);
835 byte modrm_byte = *(data+1);
836
837 if (modrm_byte >= 0xC0) {
838 return RegisterFPUInstruction(escape_opcode, modrm_byte);
839 } else {
840 return MemoryFPUInstruction(escape_opcode, modrm_byte, data+1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000841 }
Steve Blockd0582a62009-12-15 09:54:21 +0000842}
843
844int DisassemblerX64::MemoryFPUInstruction(int escape_opcode,
845 int modrm_byte,
846 byte* modrm_start) {
847 const char* mnem = "?";
848 int regop = (modrm_byte >> 3) & 0x7; // reg/op field of modrm byte.
849 switch (escape_opcode) {
850 case 0xD9: switch (regop) {
851 case 0: mnem = "fld_s"; break;
852 case 3: mnem = "fstp_s"; break;
853 case 7: mnem = "fstcw"; break;
854 default: UnimplementedInstruction();
855 }
856 break;
857
858 case 0xDB: switch (regop) {
859 case 0: mnem = "fild_s"; break;
860 case 1: mnem = "fisttp_s"; break;
861 case 2: mnem = "fist_s"; break;
862 case 3: mnem = "fistp_s"; break;
863 default: UnimplementedInstruction();
864 }
865 break;
866
867 case 0xDD: switch (regop) {
868 case 0: mnem = "fld_d"; break;
869 case 3: mnem = "fstp_d"; break;
870 default: UnimplementedInstruction();
871 }
872 break;
873
874 case 0xDF: switch (regop) {
875 case 5: mnem = "fild_d"; break;
876 case 7: mnem = "fistp_d"; break;
877 default: UnimplementedInstruction();
878 }
879 break;
880
881 default: UnimplementedInstruction();
882 }
883 AppendToBuffer("%s ", mnem);
884 int count = PrintRightOperand(modrm_start);
885 return count + 1;
886}
887
888int DisassemblerX64::RegisterFPUInstruction(int escape_opcode,
889 byte modrm_byte) {
890 bool has_register = false; // Is the FPU register encoded in modrm_byte?
891 const char* mnem = "?";
892
893 switch (escape_opcode) {
894 case 0xD8:
895 UnimplementedInstruction();
896 break;
897
898 case 0xD9:
899 switch (modrm_byte & 0xF8) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +0100900 case 0xC0:
901 mnem = "fld";
902 has_register = true;
903 break;
Steve Blockd0582a62009-12-15 09:54:21 +0000904 case 0xC8:
905 mnem = "fxch";
906 has_register = true;
907 break;
908 default:
909 switch (modrm_byte) {
910 case 0xE0: mnem = "fchs"; break;
911 case 0xE1: mnem = "fabs"; break;
912 case 0xE4: mnem = "ftst"; break;
913 case 0xE8: mnem = "fld1"; break;
Kristian Monsen0d5e1162010-09-30 15:31:59 +0100914 case 0xEB: mnem = "fldpi"; break;
Ben Murdochb0fe1622011-05-05 13:52:32 +0100915 case 0xED: mnem = "fldln2"; break;
Steve Blockd0582a62009-12-15 09:54:21 +0000916 case 0xEE: mnem = "fldz"; break;
Ben Murdochb0fe1622011-05-05 13:52:32 +0100917 case 0xF1: mnem = "fyl2x"; break;
Steve Blockd0582a62009-12-15 09:54:21 +0000918 case 0xF5: mnem = "fprem1"; break;
919 case 0xF7: mnem = "fincstp"; break;
920 case 0xF8: mnem = "fprem"; break;
921 case 0xFE: mnem = "fsin"; break;
922 case 0xFF: mnem = "fcos"; break;
923 default: UnimplementedInstruction();
924 }
925 }
926 break;
927
928 case 0xDA:
929 if (modrm_byte == 0xE9) {
930 mnem = "fucompp";
931 } else {
932 UnimplementedInstruction();
933 }
934 break;
935
936 case 0xDB:
937 if ((modrm_byte & 0xF8) == 0xE8) {
938 mnem = "fucomi";
939 has_register = true;
940 } else if (modrm_byte == 0xE2) {
941 mnem = "fclex";
942 } else {
943 UnimplementedInstruction();
944 }
945 break;
946
947 case 0xDC:
948 has_register = true;
949 switch (modrm_byte & 0xF8) {
950 case 0xC0: mnem = "fadd"; break;
951 case 0xE8: mnem = "fsub"; break;
952 case 0xC8: mnem = "fmul"; break;
953 case 0xF8: mnem = "fdiv"; break;
954 default: UnimplementedInstruction();
955 }
956 break;
957
958 case 0xDD:
959 has_register = true;
960 switch (modrm_byte & 0xF8) {
961 case 0xC0: mnem = "ffree"; break;
962 case 0xD8: mnem = "fstp"; break;
963 default: UnimplementedInstruction();
964 }
965 break;
966
967 case 0xDE:
968 if (modrm_byte == 0xD9) {
969 mnem = "fcompp";
970 } else {
971 has_register = true;
972 switch (modrm_byte & 0xF8) {
973 case 0xC0: mnem = "faddp"; break;
974 case 0xE8: mnem = "fsubp"; break;
975 case 0xC8: mnem = "fmulp"; break;
976 case 0xF8: mnem = "fdivp"; break;
977 default: UnimplementedInstruction();
978 }
979 }
980 break;
981
982 case 0xDF:
983 if (modrm_byte == 0xE0) {
984 mnem = "fnstsw_ax";
985 } else if ((modrm_byte & 0xF8) == 0xE8) {
986 mnem = "fucomip";
987 has_register = true;
988 }
989 break;
990
991 default: UnimplementedInstruction();
992 }
993
994 if (has_register) {
995 AppendToBuffer("%s st%d", mnem, modrm_byte & 0x7);
996 } else {
997 AppendToBuffer("%s", mnem);
998 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000999 return 2;
1000}
1001
1002
Steve Blockd0582a62009-12-15 09:54:21 +00001003
Steve Blocka7e24c12009-10-30 11:49:00 +00001004// Handle all two-byte opcodes, which start with 0x0F.
1005// These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix.
1006// We do not use any three-byte opcodes, which start with 0x0F38 or 0x0F3A.
1007int DisassemblerX64::TwoByteOpcodeInstruction(byte* data) {
1008 byte opcode = *(data + 1);
1009 byte* current = data + 2;
1010 // At return, "current" points to the start of the next instruction.
1011 const char* mnemonic = TwoByteMnemonic(opcode);
Andrei Popescu402d9372010-02-26 13:31:12 +00001012 if (operand_size_ == 0x66) {
1013 // 0x66 0x0F prefix.
Steve Blocka7e24c12009-10-30 11:49:00 +00001014 int mod, regop, rm;
Steve Block6ded16b2010-05-10 14:33:55 +01001015 if (opcode == 0x3A) {
1016 byte third_byte = *current;
1017 current = data + 3;
1018 if (third_byte == 0x17) {
1019 get_modrm(*current, &mod, &regop, &rm);
1020 AppendToBuffer("extractps "); // reg/m32, xmm, imm8
1021 current += PrintRightOperand(current);
1022 AppendToBuffer(", %s, %d", NameOfCPURegister(regop), (*current) & 3);
1023 current += 1;
Ben Murdoch257744e2011-11-30 15:57:28 +00001024 } else if (third_byte == 0x0b) {
1025 get_modrm(*current, &mod, &regop, &rm);
1026 // roundsd xmm, xmm/m64, imm8
1027 AppendToBuffer("roundsd %s, ", NameOfCPURegister(regop));
1028 current += PrintRightOperand(current);
1029 AppendToBuffer(", %d", (*current) & 3);
1030 current += 1;
Steve Block6ded16b2010-05-10 14:33:55 +01001031 } else {
1032 UnimplementedInstruction();
1033 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001034 } else {
Steve Block6ded16b2010-05-10 14:33:55 +01001035 get_modrm(*current, &mod, &regop, &rm);
Ben Murdoch257744e2011-11-30 15:57:28 +00001036 if (opcode == 0x28) {
1037 AppendToBuffer("movapd %s, ", NameOfXMMRegister(regop));
1038 current += PrintRightXMMOperand(current);
1039 } else if (opcode == 0x29) {
1040 AppendToBuffer("movapd ");
1041 current += PrintRightXMMOperand(current);
1042 AppendToBuffer(", %s", NameOfXMMRegister(regop));
1043 } else if (opcode == 0x6E) {
Steve Block6ded16b2010-05-10 14:33:55 +01001044 AppendToBuffer("mov%c %s,",
1045 rex_w() ? 'q' : 'd',
1046 NameOfXMMRegister(regop));
1047 current += PrintRightOperand(current);
Steve Block1e0659c2011-05-24 12:43:12 +01001048 } else if (opcode == 0x6F) {
1049 AppendToBuffer("movdqa %s,",
1050 NameOfXMMRegister(regop));
Steve Block44f0eee2011-05-26 01:26:41 +01001051 current += PrintRightXMMOperand(current);
Steve Block6ded16b2010-05-10 14:33:55 +01001052 } else if (opcode == 0x7E) {
Ben Murdochbb769b22010-08-11 14:56:33 +01001053 AppendToBuffer("mov%c ",
1054 rex_w() ? 'q' : 'd');
1055 current += PrintRightOperand(current);
1056 AppendToBuffer(", %s", NameOfXMMRegister(regop));
Steve Block1e0659c2011-05-24 12:43:12 +01001057 } else if (opcode == 0x7F) {
1058 AppendToBuffer("movdqa ");
Steve Block44f0eee2011-05-26 01:26:41 +01001059 current += PrintRightXMMOperand(current);
Steve Block1e0659c2011-05-24 12:43:12 +01001060 AppendToBuffer(", %s", NameOfXMMRegister(regop));
Ben Murdoch257744e2011-11-30 15:57:28 +00001061 } else if (opcode == 0xD6) {
1062 AppendToBuffer("movq ");
1063 current += PrintRightXMMOperand(current);
1064 AppendToBuffer(", %s", NameOfXMMRegister(regop));
Steve Block6ded16b2010-05-10 14:33:55 +01001065 } else {
1066 const char* mnemonic = "?";
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001067 if (opcode == 0x50) {
1068 mnemonic = "movmskpd";
1069 } else if (opcode == 0x54) {
1070 mnemonic = "andpd";
1071 } else if (opcode == 0x56) {
1072 mnemonic = "orpd";
1073 } else if (opcode == 0x57) {
Steve Block6ded16b2010-05-10 14:33:55 +01001074 mnemonic = "xorpd";
1075 } else if (opcode == 0x2E) {
Steve Block6ded16b2010-05-10 14:33:55 +01001076 mnemonic = "ucomisd";
Steve Block8defd9f2010-07-08 12:39:36 +01001077 } else if (opcode == 0x2F) {
1078 mnemonic = "comisd";
Steve Block6ded16b2010-05-10 14:33:55 +01001079 } else {
1080 UnimplementedInstruction();
1081 }
1082 AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
1083 current += PrintRightXMMOperand(current);
1084 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001085 }
1086 } else if (group_1_prefix_ == 0xF2) {
1087 // Beginning of instructions with prefix 0xF2.
1088
1089 if (opcode == 0x11 || opcode == 0x10) {
1090 // MOVSD: Move scalar double-precision fp to/from/between XMM registers.
1091 AppendToBuffer("movsd ");
1092 int mod, regop, rm;
1093 get_modrm(*current, &mod, &regop, &rm);
1094 if (opcode == 0x11) {
Steve Block44f0eee2011-05-26 01:26:41 +01001095 current += PrintRightXMMOperand(current);
Steve Blocka7e24c12009-10-30 11:49:00 +00001096 AppendToBuffer(",%s", NameOfXMMRegister(regop));
1097 } else {
1098 AppendToBuffer("%s,", NameOfXMMRegister(regop));
Steve Block44f0eee2011-05-26 01:26:41 +01001099 current += PrintRightXMMOperand(current);
Steve Blocka7e24c12009-10-30 11:49:00 +00001100 }
1101 } else if (opcode == 0x2A) {
1102 // CVTSI2SD: integer to XMM double conversion.
1103 int mod, regop, rm;
1104 get_modrm(*current, &mod, &regop, &rm);
Steve Block8defd9f2010-07-08 12:39:36 +01001105 AppendToBuffer("%sd %s,", mnemonic, NameOfXMMRegister(regop));
Steve Blockd0582a62009-12-15 09:54:21 +00001106 current += PrintRightOperand(current);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001107 } else if (opcode == 0x2C) {
1108 // CVTTSD2SI:
1109 // Convert with truncation scalar double-precision FP to integer.
1110 int mod, regop, rm;
1111 get_modrm(*current, &mod, &regop, &rm);
1112 AppendToBuffer("cvttsd2si%c %s,",
1113 operand_size_code(), NameOfCPURegister(regop));
1114 current += PrintRightXMMOperand(current);
1115 } else if (opcode == 0x2D) {
1116 // CVTSD2SI: Convert scalar double-precision FP to integer.
1117 int mod, regop, rm;
1118 get_modrm(*current, &mod, &regop, &rm);
1119 AppendToBuffer("cvtsd2si%c %s,",
1120 operand_size_code(), NameOfCPURegister(regop));
1121 current += PrintRightXMMOperand(current);
Steve Block6ded16b2010-05-10 14:33:55 +01001122 } else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001123 // XMM arithmetic. Mnemonic was retrieved at the start of this function.
1124 int mod, regop, rm;
1125 get_modrm(*current, &mod, &regop, &rm);
Steve Blockd0582a62009-12-15 09:54:21 +00001126 AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
1127 current += PrintRightXMMOperand(current);
Steve Blocka7e24c12009-10-30 11:49:00 +00001128 } else {
1129 UnimplementedInstruction();
1130 }
Steve Block6ded16b2010-05-10 14:33:55 +01001131 } else if (group_1_prefix_ == 0xF3) {
1132 // Instructions with prefix 0xF3.
Steve Block8defd9f2010-07-08 12:39:36 +01001133 if (opcode == 0x11 || opcode == 0x10) {
1134 // MOVSS: Move scalar double-precision fp to/from/between XMM registers.
1135 AppendToBuffer("movss ");
1136 int mod, regop, rm;
1137 get_modrm(*current, &mod, &regop, &rm);
1138 if (opcode == 0x11) {
1139 current += PrintRightOperand(current);
1140 AppendToBuffer(",%s", NameOfXMMRegister(regop));
1141 } else {
1142 AppendToBuffer("%s,", NameOfXMMRegister(regop));
1143 current += PrintRightOperand(current);
1144 }
1145 } else if (opcode == 0x2A) {
1146 // CVTSI2SS: integer to XMM single conversion.
1147 int mod, regop, rm;
1148 get_modrm(*current, &mod, &regop, &rm);
1149 AppendToBuffer("%ss %s,", mnemonic, NameOfXMMRegister(regop));
1150 current += PrintRightOperand(current);
1151 } else if (opcode == 0x2C) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001152 // CVTTSS2SI:
1153 // Convert with truncation scalar single-precision FP to dword integer.
Steve Block1e0659c2011-05-24 12:43:12 +01001154 int mod, regop, rm;
1155 get_modrm(*current, &mod, &regop, &rm);
1156 AppendToBuffer("cvttss2si%c %s,",
1157 operand_size_code(), NameOfCPURegister(regop));
1158 current += PrintRightXMMOperand(current);
Steve Block6ded16b2010-05-10 14:33:55 +01001159 } else if (opcode == 0x5A) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001160 // CVTSS2SD:
1161 // Convert scalar single-precision FP to scalar double-precision FP.
Steve Block6ded16b2010-05-10 14:33:55 +01001162 int mod, regop, rm;
1163 get_modrm(*current, &mod, &regop, &rm);
1164 AppendToBuffer("cvtss2sd %s,", NameOfXMMRegister(regop));
1165 current += PrintRightXMMOperand(current);
Ben Murdoch257744e2011-11-30 15:57:28 +00001166 } else if (opcode == 0x7E) {
1167 int mod, regop, rm;
1168 get_modrm(*current, &mod, &regop, &rm);
1169 AppendToBuffer("movq %s, ", NameOfXMMRegister(regop));
1170 current += PrintRightXMMOperand(current);
Steve Block6ded16b2010-05-10 14:33:55 +01001171 } else {
1172 UnimplementedInstruction();
1173 }
Andrei Popescu402d9372010-02-26 13:31:12 +00001174 } else if (opcode == 0x1F) {
1175 // NOP
1176 int mod, regop, rm;
1177 get_modrm(*current, &mod, &regop, &rm);
1178 current++;
1179 if (regop == 4) { // SIB byte present.
1180 current++;
1181 }
1182 if (mod == 1) { // Byte displacement.
1183 current += 1;
1184 } else if (mod == 2) { // 32-bit displacement.
1185 current += 4;
1186 } // else no immediate displacement.
1187 AppendToBuffer("nop");
Ben Murdoch257744e2011-11-30 15:57:28 +00001188
1189 } else if (opcode == 0x28) {
1190 // movaps xmm, xmm/m128
1191 int mod, regop, rm;
1192 get_modrm(*current, &mod, &regop, &rm);
1193 AppendToBuffer("movaps %s, ", NameOfXMMRegister(regop));
1194 current += PrintRightXMMOperand(current);
1195
1196 } else if (opcode == 0x29) {
1197 // movaps xmm/m128, xmm
1198 int mod, regop, rm;
1199 get_modrm(*current, &mod, &regop, &rm);
1200 AppendToBuffer("movaps ");
1201 current += PrintRightXMMOperand(current);
1202 AppendToBuffer(", %s", NameOfXMMRegister(regop));
1203
Andrei Popescu402d9372010-02-26 13:31:12 +00001204 } else if (opcode == 0xA2 || opcode == 0x31) {
1205 // RDTSC or CPUID
1206 AppendToBuffer("%s", mnemonic);
1207
1208 } else if ((opcode & 0xF0) == 0x40) {
1209 // CMOVcc: conditional move.
1210 int condition = opcode & 0x0F;
1211 const InstructionDesc& idesc = cmov_instructions[condition];
1212 byte_size_operand_ = idesc.byte_size_operation;
1213 current += PrintOperands(idesc.mnem, idesc.op_order_, current);
1214
Ben Murdoch257744e2011-11-30 15:57:28 +00001215 } else if (opcode == 0x57) {
1216 // xorps xmm, xmm/m128
1217 int mod, regop, rm;
1218 get_modrm(*current, &mod, &regop, &rm);
1219 AppendToBuffer("xorps %s, ", NameOfXMMRegister(regop));
1220 current += PrintRightXMMOperand(current);
1221
Andrei Popescu402d9372010-02-26 13:31:12 +00001222 } else if ((opcode & 0xF0) == 0x80) {
1223 // Jcc: Conditional jump (branch).
1224 current = data + JumpConditional(data);
1225
1226 } else if (opcode == 0xBE || opcode == 0xBF || opcode == 0xB6 ||
1227 opcode == 0xB7 || opcode == 0xAF) {
1228 // Size-extending moves, IMUL.
1229 current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current);
1230
1231 } else if ((opcode & 0xF0) == 0x90) {
1232 // SETcc: Set byte on condition. Needs pointer to beginning of instruction.
1233 current = data + SetCC(data);
1234
1235 } else if (opcode == 0xAB || opcode == 0xA5 || opcode == 0xAD) {
1236 // SHLD, SHRD (double-precision shift), BTS (bit set).
1237 AppendToBuffer("%s ", mnemonic);
1238 int mod, regop, rm;
1239 get_modrm(*current, &mod, &regop, &rm);
1240 current += PrintRightOperand(current);
1241 if (opcode == 0xAB) {
1242 AppendToBuffer(",%s", NameOfCPURegister(regop));
1243 } else {
1244 AppendToBuffer(",%s,cl", NameOfCPURegister(regop));
1245 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001246 } else {
1247 UnimplementedInstruction();
1248 }
Steve Blockd0582a62009-12-15 09:54:21 +00001249 return static_cast<int>(current - data);
Steve Blocka7e24c12009-10-30 11:49:00 +00001250}
1251
1252
1253// Mnemonics for two-byte opcode instructions starting with 0x0F.
1254// The argument is the second byte of the two-byte opcode.
1255// Returns NULL if the instruction is not handled here.
1256const char* DisassemblerX64::TwoByteMnemonic(byte opcode) {
1257 switch (opcode) {
1258 case 0x1F:
1259 return "nop";
Steve Block8defd9f2010-07-08 12:39:36 +01001260 case 0x2A: // F2/F3 prefix.
1261 return "cvtsi2s";
Steve Blocka7e24c12009-10-30 11:49:00 +00001262 case 0x31:
1263 return "rdtsc";
Steve Block6ded16b2010-05-10 14:33:55 +01001264 case 0x51: // F2 prefix.
1265 return "sqrtsd";
Steve Blocka7e24c12009-10-30 11:49:00 +00001266 case 0x58: // F2 prefix.
1267 return "addsd";
1268 case 0x59: // F2 prefix.
1269 return "mulsd";
1270 case 0x5C: // F2 prefix.
1271 return "subsd";
1272 case 0x5E: // F2 prefix.
1273 return "divsd";
1274 case 0xA2:
1275 return "cpuid";
1276 case 0xA5:
1277 return "shld";
1278 case 0xAB:
1279 return "bts";
1280 case 0xAD:
1281 return "shrd";
1282 case 0xAF:
1283 return "imul";
1284 case 0xB6:
1285 return "movzxb";
1286 case 0xB7:
1287 return "movzxw";
1288 case 0xBE:
1289 return "movsxb";
1290 case 0xBF:
1291 return "movsxw";
1292 default:
1293 return NULL;
1294 }
1295}
1296
1297
1298// Disassembles the instruction at instr, and writes it into out_buffer.
1299int DisassemblerX64::InstructionDecode(v8::internal::Vector<char> out_buffer,
1300 byte* instr) {
1301 tmp_buffer_pos_ = 0; // starting to write as position 0
1302 byte* data = instr;
1303 bool processed = true; // Will be set to false if the current instruction
1304 // is not in 'instructions' table.
1305 byte current;
1306
1307 // Scan for prefixes.
1308 while (true) {
1309 current = *data;
Leon Clarked91b9f72010-01-27 17:25:45 +00001310 if (current == OPERAND_SIZE_OVERRIDE_PREFIX) { // Group 3 prefix.
Steve Blocka7e24c12009-10-30 11:49:00 +00001311 operand_size_ = current;
1312 } else if ((current & 0xF0) == 0x40) { // REX prefix.
1313 setRex(current);
1314 if (rex_w()) AppendToBuffer("REX.W ");
Leon Clarked91b9f72010-01-27 17:25:45 +00001315 } else if ((current & 0xFE) == 0xF2) { // Group 1 prefix (0xF2 or 0xF3).
Steve Blocka7e24c12009-10-30 11:49:00 +00001316 group_1_prefix_ = current;
1317 } else { // Not a prefix - an opcode.
1318 break;
1319 }
1320 data++;
1321 }
1322
1323 const InstructionDesc& idesc = instruction_table.Get(current);
1324 byte_size_operand_ = idesc.byte_size_operation;
1325 switch (idesc.type) {
1326 case ZERO_OPERANDS_INSTR:
Leon Clarked91b9f72010-01-27 17:25:45 +00001327 if (current >= 0xA4 && current <= 0xA7) {
1328 // String move or compare operations.
1329 if (group_1_prefix_ == REP_PREFIX) {
1330 // REP.
1331 AppendToBuffer("rep ");
1332 }
1333 if (rex_w()) AppendToBuffer("REX.W ");
1334 AppendToBuffer("%s%c", idesc.mnem, operand_size_code());
1335 } else {
1336 AppendToBuffer("%s", idesc.mnem, operand_size_code());
1337 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001338 data++;
1339 break;
1340
1341 case TWO_OPERANDS_INSTR:
1342 data++;
1343 data += PrintOperands(idesc.mnem, idesc.op_order_, data);
1344 break;
1345
1346 case JUMP_CONDITIONAL_SHORT_INSTR:
1347 data += JumpConditionalShort(data);
1348 break;
1349
1350 case REGISTER_INSTR:
1351 AppendToBuffer("%s%c %s",
1352 idesc.mnem,
1353 operand_size_code(),
1354 NameOfCPURegister(base_reg(current & 0x07)));
1355 data++;
1356 break;
1357 case PUSHPOP_INSTR:
1358 AppendToBuffer("%s %s",
1359 idesc.mnem,
1360 NameOfCPURegister(base_reg(current & 0x07)));
1361 data++;
1362 break;
1363 case MOVE_REG_INSTR: {
1364 byte* addr = NULL;
1365 switch (operand_size()) {
1366 case WORD_SIZE:
1367 addr = reinterpret_cast<byte*>(*reinterpret_cast<int16_t*>(data + 1));
1368 data += 3;
1369 break;
1370 case DOUBLEWORD_SIZE:
1371 addr = reinterpret_cast<byte*>(*reinterpret_cast<int32_t*>(data + 1));
1372 data += 5;
1373 break;
1374 case QUADWORD_SIZE:
1375 addr = reinterpret_cast<byte*>(*reinterpret_cast<int64_t*>(data + 1));
1376 data += 9;
1377 break;
1378 default:
1379 UNREACHABLE();
1380 }
1381 AppendToBuffer("mov%c %s,%s",
1382 operand_size_code(),
1383 NameOfCPURegister(base_reg(current & 0x07)),
1384 NameOfAddress(addr));
1385 break;
1386 }
1387
1388 case CALL_JUMP_INSTR: {
1389 byte* addr = data + *reinterpret_cast<int32_t*>(data + 1) + 5;
1390 AppendToBuffer("%s %s", idesc.mnem, NameOfAddress(addr));
1391 data += 5;
1392 break;
1393 }
1394
1395 case SHORT_IMMEDIATE_INSTR: {
1396 byte* addr =
1397 reinterpret_cast<byte*>(*reinterpret_cast<int32_t*>(data + 1));
1398 AppendToBuffer("%s rax, %s", idesc.mnem, NameOfAddress(addr));
1399 data += 5;
1400 break;
1401 }
1402
1403 case NO_INSTR:
1404 processed = false;
1405 break;
1406
1407 default:
1408 UNIMPLEMENTED(); // This type is not implemented.
1409 }
1410
1411 // The first byte didn't match any of the simple opcodes, so we
1412 // need to do special processing on it.
1413 if (!processed) {
1414 switch (*data) {
1415 case 0xC2:
1416 AppendToBuffer("ret 0x%x", *reinterpret_cast<uint16_t*>(data + 1));
1417 data += 3;
1418 break;
1419
1420 case 0x69: // fall through
1421 case 0x6B: {
1422 int mod, regop, rm;
1423 get_modrm(*(data + 1), &mod, &regop, &rm);
1424 int32_t imm = *data == 0x6B ? *(data + 2)
1425 : *reinterpret_cast<int32_t*>(data + 2);
Steve Block6ded16b2010-05-10 14:33:55 +01001426 AppendToBuffer("imul%c %s,%s,0x%x",
1427 operand_size_code(),
1428 NameOfCPURegister(regop),
Steve Blocka7e24c12009-10-30 11:49:00 +00001429 NameOfCPURegister(rm), imm);
1430 data += 2 + (*data == 0x6B ? 1 : 4);
1431 break;
1432 }
1433
Steve Blocka7e24c12009-10-30 11:49:00 +00001434 case 0x81: // fall through
1435 case 0x83: // 0x81 with sign extension bit set
1436 data += PrintImmediateOp(data);
1437 break;
1438
1439 case 0x0F:
1440 data += TwoByteOpcodeInstruction(data);
1441 break;
1442
1443 case 0x8F: {
1444 data++;
1445 int mod, regop, rm;
1446 get_modrm(*data, &mod, &regop, &rm);
1447 if (regop == 0) {
1448 AppendToBuffer("pop ");
1449 data += PrintRightOperand(data);
1450 }
1451 }
1452 break;
1453
1454 case 0xFF: {
1455 data++;
1456 int mod, regop, rm;
1457 get_modrm(*data, &mod, &regop, &rm);
1458 const char* mnem = NULL;
1459 switch (regop) {
1460 case 0:
1461 mnem = "inc";
1462 break;
1463 case 1:
1464 mnem = "dec";
1465 break;
1466 case 2:
1467 mnem = "call";
1468 break;
1469 case 4:
1470 mnem = "jmp";
1471 break;
1472 case 6:
1473 mnem = "push";
1474 break;
1475 default:
1476 mnem = "???";
1477 }
1478 AppendToBuffer(((regop <= 1) ? "%s%c " : "%s "),
1479 mnem,
1480 operand_size_code());
1481 data += PrintRightOperand(data);
1482 }
1483 break;
1484
1485 case 0xC7: // imm32, fall through
1486 case 0xC6: // imm8
1487 {
1488 bool is_byte = *data == 0xC6;
1489 data++;
Steve Block44f0eee2011-05-26 01:26:41 +01001490 if (is_byte) {
1491 AppendToBuffer("movb ");
1492 data += PrintRightByteOperand(data);
1493 int32_t imm = *data;
1494 AppendToBuffer(",0x%x", imm);
1495 data++;
1496 } else {
1497 AppendToBuffer("mov%c ", operand_size_code());
1498 data += PrintRightOperand(data);
1499 int32_t imm = *reinterpret_cast<int32_t*>(data);
1500 AppendToBuffer(",0x%x", imm);
1501 data += 4;
1502 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001503 }
1504 break;
1505
1506 case 0x80: {
1507 data++;
1508 AppendToBuffer("cmpb ");
Steve Block44f0eee2011-05-26 01:26:41 +01001509 data += PrintRightByteOperand(data);
Steve Blocka7e24c12009-10-30 11:49:00 +00001510 int32_t imm = *data;
1511 AppendToBuffer(",0x%x", imm);
1512 data++;
1513 }
1514 break;
1515
1516 case 0x88: // 8bit, fall through
1517 case 0x89: // 32bit
1518 {
1519 bool is_byte = *data == 0x88;
1520 int mod, regop, rm;
1521 data++;
1522 get_modrm(*data, &mod, &regop, &rm);
Steve Block44f0eee2011-05-26 01:26:41 +01001523 if (is_byte) {
1524 AppendToBuffer("movb ");
1525 data += PrintRightByteOperand(data);
1526 AppendToBuffer(",%s", NameOfByteCPURegister(regop));
1527 } else {
1528 AppendToBuffer("mov%c ", operand_size_code());
1529 data += PrintRightOperand(data);
1530 AppendToBuffer(",%s", NameOfCPURegister(regop));
1531 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001532 }
1533 break;
1534
1535 case 0x90:
1536 case 0x91:
1537 case 0x92:
1538 case 0x93:
1539 case 0x94:
1540 case 0x95:
1541 case 0x96:
1542 case 0x97: {
Steve Blockd0582a62009-12-15 09:54:21 +00001543 int reg = (*data & 0x7) | (rex_b() ? 8 : 0);
Steve Blocka7e24c12009-10-30 11:49:00 +00001544 if (reg == 0) {
1545 AppendToBuffer("nop"); // Common name for xchg rax,rax.
1546 } else {
1547 AppendToBuffer("xchg%c rax, %s",
1548 operand_size_code(),
1549 NameOfCPURegister(reg));
1550 }
Steve Blockd0582a62009-12-15 09:54:21 +00001551 data++;
Steve Blocka7e24c12009-10-30 11:49:00 +00001552 }
Steve Blockd0582a62009-12-15 09:54:21 +00001553 break;
Ben Murdoch8b112d22011-06-08 16:22:53 +01001554 case 0xB0:
1555 case 0xB1:
1556 case 0xB2:
1557 case 0xB3:
1558 case 0xB4:
1559 case 0xB5:
1560 case 0xB6:
1561 case 0xB7:
1562 case 0xB8:
1563 case 0xB9:
1564 case 0xBA:
1565 case 0xBB:
1566 case 0xBC:
1567 case 0xBD:
1568 case 0xBE:
1569 case 0xBF: {
1570 // mov reg8,imm8 or mov reg32,imm32
1571 byte opcode = *data;
1572 data++;
1573 bool is_32bit = (opcode >= 0xB8);
1574 int reg = (opcode & 0x7) | (rex_b() ? 8 : 0);
1575 if (is_32bit) {
1576 AppendToBuffer("mov%c %s, ",
1577 operand_size_code(),
1578 NameOfCPURegister(reg));
1579 data += PrintImmediate(data, DOUBLEWORD_SIZE);
1580 } else {
1581 AppendToBuffer("movb %s, ",
1582 NameOfByteCPURegister(reg));
1583 data += PrintImmediate(data, BYTE_SIZE);
1584 }
1585 break;
1586 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001587 case 0xFE: {
1588 data++;
1589 int mod, regop, rm;
1590 get_modrm(*data, &mod, &regop, &rm);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001591 if (regop == 1) {
1592 AppendToBuffer("decb ");
Steve Block44f0eee2011-05-26 01:26:41 +01001593 data += PrintRightByteOperand(data);
Steve Blocka7e24c12009-10-30 11:49:00 +00001594 } else {
1595 UnimplementedInstruction();
1596 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001597 break;
Ben Murdoch8b112d22011-06-08 16:22:53 +01001598 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001599 case 0x68:
1600 AppendToBuffer("push 0x%x", *reinterpret_cast<int32_t*>(data + 1));
1601 data += 5;
1602 break;
1603
1604 case 0x6A:
1605 AppendToBuffer("push 0x%x", *reinterpret_cast<int8_t*>(data + 1));
1606 data += 2;
1607 break;
1608
1609 case 0xA1: // Fall through.
1610 case 0xA3:
1611 switch (operand_size()) {
1612 case DOUBLEWORD_SIZE: {
1613 const char* memory_location = NameOfAddress(
1614 reinterpret_cast<byte*>(
1615 *reinterpret_cast<int32_t*>(data + 1)));
1616 if (*data == 0xA1) { // Opcode 0xA1
1617 AppendToBuffer("movzxlq rax,(%s)", memory_location);
1618 } else { // Opcode 0xA3
1619 AppendToBuffer("movzxlq (%s),rax", memory_location);
1620 }
1621 data += 5;
1622 break;
1623 }
1624 case QUADWORD_SIZE: {
1625 // New x64 instruction mov rax,(imm_64).
1626 const char* memory_location = NameOfAddress(
1627 *reinterpret_cast<byte**>(data + 1));
1628 if (*data == 0xA1) { // Opcode 0xA1
1629 AppendToBuffer("movq rax,(%s)", memory_location);
1630 } else { // Opcode 0xA3
1631 AppendToBuffer("movq (%s),rax", memory_location);
1632 }
1633 data += 9;
1634 break;
1635 }
1636 default:
1637 UnimplementedInstruction();
1638 data += 2;
1639 }
1640 break;
1641
1642 case 0xA8:
1643 AppendToBuffer("test al,0x%x", *reinterpret_cast<uint8_t*>(data + 1));
1644 data += 2;
1645 break;
1646
1647 case 0xA9: {
1648 int64_t value = 0;
1649 switch (operand_size()) {
1650 case WORD_SIZE:
1651 value = *reinterpret_cast<uint16_t*>(data + 1);
1652 data += 3;
1653 break;
1654 case DOUBLEWORD_SIZE:
1655 value = *reinterpret_cast<uint32_t*>(data + 1);
1656 data += 5;
1657 break;
1658 case QUADWORD_SIZE:
1659 value = *reinterpret_cast<int32_t*>(data + 1);
1660 data += 5;
1661 break;
1662 default:
1663 UNREACHABLE();
1664 }
1665 AppendToBuffer("test%c rax,0x%"V8_PTR_PREFIX"x",
1666 operand_size_code(),
1667 value);
1668 break;
1669 }
1670 case 0xD1: // fall through
1671 case 0xD3: // fall through
1672 case 0xC1:
1673 data += ShiftInstruction(data);
1674 break;
1675 case 0xD0: // fall through
1676 case 0xD2: // fall through
1677 case 0xC0:
1678 byte_size_operand_ = true;
1679 data += ShiftInstruction(data);
1680 break;
1681
1682 case 0xD9: // fall through
1683 case 0xDA: // fall through
1684 case 0xDB: // fall through
1685 case 0xDC: // fall through
1686 case 0xDD: // fall through
1687 case 0xDE: // fall through
1688 case 0xDF:
1689 data += FPUInstruction(data);
1690 break;
1691
1692 case 0xEB:
1693 data += JumpShort(data);
1694 break;
1695
Steve Blockd0582a62009-12-15 09:54:21 +00001696 case 0xF6:
1697 byte_size_operand_ = true; // fall through
Steve Blocka7e24c12009-10-30 11:49:00 +00001698 case 0xF7:
Steve Blockd0582a62009-12-15 09:54:21 +00001699 data += F6F7Instruction(data);
Steve Blocka7e24c12009-10-30 11:49:00 +00001700 break;
1701
1702 default:
1703 UnimplementedInstruction();
1704 data += 1;
1705 }
1706 } // !processed
1707
1708 if (tmp_buffer_pos_ < sizeof tmp_buffer_) {
1709 tmp_buffer_[tmp_buffer_pos_] = '\0';
1710 }
1711
Steve Blockd0582a62009-12-15 09:54:21 +00001712 int instr_len = static_cast<int>(data - instr);
Steve Blocka7e24c12009-10-30 11:49:00 +00001713 ASSERT(instr_len > 0); // Ensure progress.
1714
1715 int outp = 0;
1716 // Instruction bytes.
1717 for (byte* bp = instr; bp < data; bp++) {
1718 outp += v8::internal::OS::SNPrintF(out_buffer + outp, "%02x", *bp);
1719 }
1720 for (int i = 6 - instr_len; i >= 0; i--) {
1721 outp += v8::internal::OS::SNPrintF(out_buffer + outp, " ");
1722 }
1723
1724 outp += v8::internal::OS::SNPrintF(out_buffer + outp, " %s",
1725 tmp_buffer_.start());
1726 return instr_len;
1727}
1728
1729//------------------------------------------------------------------------------
1730
1731
1732static const char* cpu_regs[16] = {
1733 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
1734 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
1735};
1736
1737
1738static const char* byte_cpu_regs[16] = {
1739 "al", "cl", "dl", "bl", "spl", "bpl", "sil", "dil",
1740 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
1741};
1742
1743
1744static const char* xmm_regs[16] = {
1745 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
1746 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"
1747};
1748
1749
1750const char* NameConverter::NameOfAddress(byte* addr) const {
Steve Block44f0eee2011-05-26 01:26:41 +01001751 v8::internal::OS::SNPrintF(tmp_buffer_, "%p", addr);
1752 return tmp_buffer_.start();
Steve Blocka7e24c12009-10-30 11:49:00 +00001753}
1754
1755
1756const char* NameConverter::NameOfConstant(byte* addr) const {
1757 return NameOfAddress(addr);
1758}
1759
1760
1761const char* NameConverter::NameOfCPURegister(int reg) const {
1762 if (0 <= reg && reg < 16)
1763 return cpu_regs[reg];
1764 return "noreg";
1765}
1766
1767
1768const char* NameConverter::NameOfByteCPURegister(int reg) const {
1769 if (0 <= reg && reg < 16)
1770 return byte_cpu_regs[reg];
1771 return "noreg";
1772}
1773
1774
1775const char* NameConverter::NameOfXMMRegister(int reg) const {
1776 if (0 <= reg && reg < 16)
1777 return xmm_regs[reg];
1778 return "noxmmreg";
1779}
1780
1781
1782const char* NameConverter::NameInCode(byte* addr) const {
1783 // X64 does not embed debug strings at the moment.
1784 UNREACHABLE();
1785 return "";
1786}
1787
1788//------------------------------------------------------------------------------
1789
1790Disassembler::Disassembler(const NameConverter& converter)
1791 : converter_(converter) { }
1792
1793Disassembler::~Disassembler() { }
1794
1795
1796int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
1797 byte* instruction) {
1798 DisassemblerX64 d(converter_, CONTINUE_ON_UNIMPLEMENTED_OPCODE);
1799 return d.InstructionDecode(buffer, instruction);
1800}
1801
1802
1803// The X64 assembler does not use constant pools.
1804int Disassembler::ConstantPoolSizeAt(byte* instruction) {
1805 return -1;
1806}
1807
1808
1809void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
1810 NameConverter converter;
1811 Disassembler d(converter);
1812 for (byte* pc = begin; pc < end;) {
1813 v8::internal::EmbeddedVector<char, 128> buffer;
1814 buffer[0] = '\0';
1815 byte* prev_pc = pc;
1816 pc += d.InstructionDecode(buffer, pc);
1817 fprintf(f, "%p", prev_pc);
1818 fprintf(f, " ");
1819
1820 for (byte* bp = prev_pc; bp < pc; bp++) {
1821 fprintf(f, "%02x", *bp);
1822 }
Steve Blockd0582a62009-12-15 09:54:21 +00001823 for (int i = 6 - static_cast<int>(pc - prev_pc); i >= 0; i--) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001824 fprintf(f, " ");
1825 }
1826 fprintf(f, " %s\n", buffer.start());
1827 }
1828}
1829
1830} // namespace disasm
Leon Clarkef7060e22010-06-03 12:02:55 +01001831
1832#endif // V8_TARGET_ARCH_X64