blob: 284503977128c86ff92776424c47f3267be931c7 [file] [log] [blame]
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001// Copyright 2012 the V8 project authors. All rights reserved.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_X64)
31
32#include "bootstrapper.h"
33#include "code-stubs.h"
34#include "regexp-macro-assembler.h"
35
36namespace v8 {
37namespace internal {
38
39#define __ ACCESS_MASM(masm)
Steve Block1e0659c2011-05-24 12:43:12 +010040
41void ToNumberStub::Generate(MacroAssembler* masm) {
42 // The ToNumber stub takes one argument in eax.
Ben Murdoch257744e2011-11-30 15:57:28 +000043 Label check_heap_number, call_builtin;
Steve Block1e0659c2011-05-24 12:43:12 +010044 __ SmiTest(rax);
Ben Murdoch257744e2011-11-30 15:57:28 +000045 __ j(not_zero, &check_heap_number, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +010046 __ Ret();
47
48 __ bind(&check_heap_number);
Steve Block44f0eee2011-05-26 01:26:41 +010049 __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
50 Heap::kHeapNumberMapRootIndex);
Ben Murdoch257744e2011-11-30 15:57:28 +000051 __ j(not_equal, &call_builtin, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +010052 __ Ret();
53
54 __ bind(&call_builtin);
55 __ pop(rcx); // Pop return address.
56 __ push(rax);
57 __ push(rcx); // Push return address.
58 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
59}
60
61
Kristian Monsen80d68ea2010-09-08 11:05:35 +010062void FastNewClosureStub::Generate(MacroAssembler* masm) {
63 // Create a new closure from the given function info in new
64 // space. Set the context to the current context in rsi.
65 Label gc;
66 __ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT);
67
68 // Get the function info from the stack.
69 __ movq(rdx, Operand(rsp, 1 * kPointerSize));
70
Ben Murdoch3ef787d2012-04-12 10:51:47 +010071 int map_index = (language_mode_ == CLASSIC_MODE)
72 ? Context::FUNCTION_MAP_INDEX
73 : Context::STRICT_MODE_FUNCTION_MAP_INDEX;
Steve Block44f0eee2011-05-26 01:26:41 +010074
Kristian Monsen80d68ea2010-09-08 11:05:35 +010075 // Compute the function map in the current global context and set that
76 // as the map of the allocated object.
77 __ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
78 __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset));
Steve Block44f0eee2011-05-26 01:26:41 +010079 __ movq(rcx, Operand(rcx, Context::SlotOffset(map_index)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +010080 __ movq(FieldOperand(rax, JSObject::kMapOffset), rcx);
81
82 // Initialize the rest of the function. We don't have to update the
83 // write barrier because the allocated object is in new space.
84 __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
85 __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex);
Ben Murdochb0fe1622011-05-05 13:52:32 +010086 __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +010087 __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
88 __ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx);
89 __ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx);
90 __ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx);
91 __ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi);
92 __ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx);
Ben Murdochb0fe1622011-05-05 13:52:32 +010093 __ movq(FieldOperand(rax, JSFunction::kNextFunctionLinkOffset), rdi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +010094
95 // Initialize the code pointer in the function to be the one
96 // found in the shared function info object.
97 __ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset));
98 __ lea(rdx, FieldOperand(rdx, Code::kHeaderSize));
99 __ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx);
100
101
102 // Return and remove the on-stack parameter.
103 __ ret(1 * kPointerSize);
104
105 // Create a new closure through the slower runtime call.
106 __ bind(&gc);
107 __ pop(rcx); // Temporarily remove return address.
108 __ pop(rdx);
109 __ push(rsi);
110 __ push(rdx);
Steve Block44f0eee2011-05-26 01:26:41 +0100111 __ PushRoot(Heap::kFalseValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100112 __ push(rcx); // Restore return address.
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800113 __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100114}
115
116
117void FastNewContextStub::Generate(MacroAssembler* masm) {
118 // Try to allocate the context in new space.
119 Label gc;
120 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
121 __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
122 rax, rbx, rcx, &gc, TAG_OBJECT);
123
124 // Get the function from the stack.
125 __ movq(rcx, Operand(rsp, 1 * kPointerSize));
126
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100127 // Set up the object header.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000128 __ LoadRoot(kScratchRegister, Heap::kFunctionContextMapRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100129 __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister);
130 __ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length));
131
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100132 // Set up the fixed slots.
Steve Block9fac8402011-05-12 15:51:54 +0100133 __ Set(rbx, 0); // Set to NULL.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100134 __ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000135 __ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rsi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100136 __ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx);
137
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000138 // Copy the global object from the previous context.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100139 __ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
140 __ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx);
141
142 // Initialize the rest of the slots to undefined.
143 __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
144 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
145 __ movq(Operand(rax, Context::SlotOffset(i)), rbx);
146 }
147
148 // Return and remove the on-stack parameter.
149 __ movq(rsi, rax);
150 __ ret(1 * kPointerSize);
151
152 // Need to collect. Call into runtime system.
153 __ bind(&gc);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000154 __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100155}
156
157
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100158void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
159 // Stack layout on entry:
160 //
161 // [rsp + (1 * kPointerSize)]: function
162 // [rsp + (2 * kPointerSize)]: serialized scope info
163
164 // Try to allocate the context in new space.
165 Label gc;
166 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
167 __ AllocateInNewSpace(FixedArray::SizeFor(length),
168 rax, rbx, rcx, &gc, TAG_OBJECT);
169
170 // Get the function from the stack.
171 __ movq(rcx, Operand(rsp, 1 * kPointerSize));
172
173 // Get the serialized scope info from the stack.
174 __ movq(rbx, Operand(rsp, 2 * kPointerSize));
175
176 // Set up the object header.
177 __ LoadRoot(kScratchRegister, Heap::kBlockContextMapRootIndex);
178 __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister);
179 __ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length));
180
181 // If this block context is nested in the global context we get a smi
182 // sentinel instead of a function. The block context should get the
183 // canonical empty function of the global context as its closure which
184 // we still have to look up.
185 Label after_sentinel;
186 __ JumpIfNotSmi(rcx, &after_sentinel, Label::kNear);
187 if (FLAG_debug_code) {
188 const char* message = "Expected 0 as a Smi sentinel";
189 __ cmpq(rcx, Immediate(0));
190 __ Assert(equal, message);
191 }
192 __ movq(rcx, GlobalObjectOperand());
193 __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset));
194 __ movq(rcx, ContextOperand(rcx, Context::CLOSURE_INDEX));
195 __ bind(&after_sentinel);
196
197 // Set up the fixed slots.
198 __ movq(ContextOperand(rax, Context::CLOSURE_INDEX), rcx);
199 __ movq(ContextOperand(rax, Context::PREVIOUS_INDEX), rsi);
200 __ movq(ContextOperand(rax, Context::EXTENSION_INDEX), rbx);
201
202 // Copy the global object from the previous context.
203 __ movq(rbx, ContextOperand(rsi, Context::GLOBAL_INDEX));
204 __ movq(ContextOperand(rax, Context::GLOBAL_INDEX), rbx);
205
206 // Initialize the rest of the slots to the hole value.
207 __ LoadRoot(rbx, Heap::kTheHoleValueRootIndex);
208 for (int i = 0; i < slots_; i++) {
209 __ movq(ContextOperand(rax, i + Context::MIN_CONTEXT_SLOTS), rbx);
210 }
211
212 // Return and remove the on-stack parameter.
213 __ movq(rsi, rax);
214 __ ret(2 * kPointerSize);
215
216 // Need to collect. Call into runtime system.
217 __ bind(&gc);
218 __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
219}
220
221
222static void GenerateFastCloneShallowArrayCommon(
223 MacroAssembler* masm,
224 int length,
225 FastCloneShallowArrayStub::Mode mode,
226 Label* fail) {
227 // Registers on entry:
228 //
229 // rcx: boilerplate literal array.
230 ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);
231
232 // All sizes here are multiples of kPointerSize.
233 int elements_size = 0;
234 if (length > 0) {
235 elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
236 ? FixedDoubleArray::SizeFor(length)
237 : FixedArray::SizeFor(length);
238 }
239 int size = JSArray::kSize + elements_size;
240
241 // Allocate both the JS array and the elements array in one big
242 // allocation. This avoids multiple limit checks.
243 __ AllocateInNewSpace(size, rax, rbx, rdx, fail, TAG_OBJECT);
244
245 // Copy the JS array part.
246 for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
247 if ((i != JSArray::kElementsOffset) || (length == 0)) {
248 __ movq(rbx, FieldOperand(rcx, i));
249 __ movq(FieldOperand(rax, i), rbx);
250 }
251 }
252
253 if (length > 0) {
254 // Get hold of the elements array of the boilerplate and setup the
255 // elements pointer in the resulting object.
256 __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
257 __ lea(rdx, Operand(rax, JSArray::kSize));
258 __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx);
259
260 // Copy the elements array.
261 if (mode == FastCloneShallowArrayStub::CLONE_ELEMENTS) {
262 for (int i = 0; i < elements_size; i += kPointerSize) {
263 __ movq(rbx, FieldOperand(rcx, i));
264 __ movq(FieldOperand(rdx, i), rbx);
265 }
266 } else {
267 ASSERT(mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS);
268 int i;
269 for (i = 0; i < FixedDoubleArray::kHeaderSize; i += kPointerSize) {
270 __ movq(rbx, FieldOperand(rcx, i));
271 __ movq(FieldOperand(rdx, i), rbx);
272 }
273 while (i < elements_size) {
274 __ movsd(xmm0, FieldOperand(rcx, i));
275 __ movsd(FieldOperand(rdx, i), xmm0);
276 i += kDoubleSize;
277 }
278 ASSERT(i == elements_size);
279 }
280 }
281}
282
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100283void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
284 // Stack layout on entry:
285 //
286 // [rsp + kPointerSize]: constant elements.
287 // [rsp + (2 * kPointerSize)]: literal index.
288 // [rsp + (3 * kPointerSize)]: literals array.
289
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100290 // Load boilerplate object into rcx and check if we need to create a
291 // boilerplate.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100292 __ movq(rcx, Operand(rsp, 3 * kPointerSize));
293 __ movq(rax, Operand(rsp, 2 * kPointerSize));
294 SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
295 __ movq(rcx,
296 FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize));
297 __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex);
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100298 Label slow_case;
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100299 __ j(equal, &slow_case);
300
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100301 FastCloneShallowArrayStub::Mode mode = mode_;
302 // rcx is boilerplate object.
303 Factory* factory = masm->isolate()->factory();
304 if (mode == CLONE_ANY_ELEMENTS) {
305 Label double_elements, check_fast_elements;
306 __ movq(rbx, FieldOperand(rcx, JSArray::kElementsOffset));
307 __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
308 factory->fixed_cow_array_map());
309 __ j(not_equal, &check_fast_elements);
310 GenerateFastCloneShallowArrayCommon(masm, 0,
311 COPY_ON_WRITE_ELEMENTS, &slow_case);
312 __ ret(3 * kPointerSize);
313
314 __ bind(&check_fast_elements);
315 __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
316 factory->fixed_array_map());
317 __ j(not_equal, &double_elements);
318 GenerateFastCloneShallowArrayCommon(masm, length_,
319 CLONE_ELEMENTS, &slow_case);
320 __ ret(3 * kPointerSize);
321
322 __ bind(&double_elements);
323 mode = CLONE_DOUBLE_ELEMENTS;
324 // Fall through to generate the code to handle double elements.
325 }
326
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100327 if (FLAG_debug_code) {
328 const char* message;
329 Heap::RootListIndex expected_map_index;
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100330 if (mode == CLONE_ELEMENTS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100331 message = "Expected (writable) fixed array";
332 expected_map_index = Heap::kFixedArrayMapRootIndex;
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100333 } else if (mode == CLONE_DOUBLE_ELEMENTS) {
334 message = "Expected (writable) fixed double array";
335 expected_map_index = Heap::kFixedDoubleArrayMapRootIndex;
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100336 } else {
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100337 ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100338 message = "Expected copy-on-write fixed array";
339 expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
340 }
341 __ push(rcx);
342 __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
343 __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
344 expected_map_index);
345 __ Assert(equal, message);
346 __ pop(rcx);
347 }
348
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100349 GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100350 __ ret(3 * kPointerSize);
351
352 __ bind(&slow_case);
353 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
354}
355
356
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100357void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) {
358 // Stack layout on entry:
359 //
360 // [rsp + kPointerSize]: object literal flags.
361 // [rsp + (2 * kPointerSize)]: constant properties.
362 // [rsp + (3 * kPointerSize)]: literal index.
363 // [rsp + (4 * kPointerSize)]: literals array.
364
365 // Load boilerplate object into ecx and check if we need to create a
366 // boilerplate.
367 Label slow_case;
368 __ movq(rcx, Operand(rsp, 4 * kPointerSize));
369 __ movq(rax, Operand(rsp, 3 * kPointerSize));
370 SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
371 __ movq(rcx,
372 FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize));
373 __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex);
374 __ j(equal, &slow_case);
375
376 // Check that the boilerplate contains only fast properties and we can
377 // statically determine the instance size.
378 int size = JSObject::kHeaderSize + length_ * kPointerSize;
379 __ movq(rax, FieldOperand(rcx, HeapObject::kMapOffset));
380 __ movzxbq(rax, FieldOperand(rax, Map::kInstanceSizeOffset));
381 __ cmpq(rax, Immediate(size >> kPointerSizeLog2));
382 __ j(not_equal, &slow_case);
383
384 // Allocate the JS object and copy header together with all in-object
385 // properties from the boilerplate.
386 __ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT);
387 for (int i = 0; i < size; i += kPointerSize) {
388 __ movq(rbx, FieldOperand(rcx, i));
389 __ movq(FieldOperand(rax, i), rbx);
390 }
391
392 // Return and remove the on-stack parameters.
393 __ ret(4 * kPointerSize);
394
395 __ bind(&slow_case);
396 __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1);
397}
398
399
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000400// The stub expects its argument on the stack and returns its result in tos_:
401// zero for false, and a non-zero value for true.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100402void ToBooleanStub::Generate(MacroAssembler* masm) {
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100403 // This stub overrides SometimesSetsUpAFrame() to return false. That means
404 // we cannot call anything that could cause a GC from this stub.
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000405 Label patch;
406 const Register argument = rax;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000407 const Register map = rdx;
408
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000409 if (!types_.IsEmpty()) {
410 __ movq(argument, Operand(rsp, 1 * kPointerSize));
411 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100412
Ben Murdoch257744e2011-11-30 15:57:28 +0000413 // undefined -> false
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000414 CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
Ben Murdoch257744e2011-11-30 15:57:28 +0000415
416 // Boolean -> its value
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000417 CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
418 CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
Ben Murdoch257744e2011-11-30 15:57:28 +0000419
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000420 // 'null' -> false.
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000421 CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100422
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000423 if (types_.Contains(SMI)) {
424 // Smis: 0 -> false, all other -> true
425 Label not_smi;
426 __ JumpIfNotSmi(argument, &not_smi, Label::kNear);
427 // argument contains the correct return value already
428 if (!tos_.is(argument)) {
429 __ movq(tos_, argument);
430 }
431 __ ret(1 * kPointerSize);
432 __ bind(&not_smi);
433 } else if (types_.NeedsMap()) {
434 // If we need a map later and have a Smi -> patch.
435 __ JumpIfSmi(argument, &patch, Label::kNear);
436 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100437
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000438 if (types_.NeedsMap()) {
439 __ movq(map, FieldOperand(argument, HeapObject::kMapOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100440
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000441 if (types_.CanBeUndetectable()) {
442 __ testb(FieldOperand(map, Map::kBitFieldOffset),
443 Immediate(1 << Map::kIsUndetectable));
444 // Undetectable -> false.
445 Label not_undetectable;
446 __ j(zero, &not_undetectable, Label::kNear);
447 __ Set(tos_, 0);
448 __ ret(1 * kPointerSize);
449 __ bind(&not_undetectable);
450 }
451 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100452
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000453 if (types_.Contains(SPEC_OBJECT)) {
454 // spec object -> true.
455 Label not_js_object;
456 __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
457 __ j(below, &not_js_object, Label::kNear);
458 // argument contains the correct return value already.
459 if (!tos_.is(argument)) {
460 __ Set(tos_, 1);
461 }
462 __ ret(1 * kPointerSize);
463 __ bind(&not_js_object);
464 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100465
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000466 if (types_.Contains(STRING)) {
467 // String value -> false iff empty.
468 Label not_string;
469 __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
470 __ j(above_equal, &not_string, Label::kNear);
471 __ movq(tos_, FieldOperand(argument, String::kLengthOffset));
472 __ ret(1 * kPointerSize); // the string length is OK as the return value
473 __ bind(&not_string);
474 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100475
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000476 if (types_.Contains(HEAP_NUMBER)) {
477 // heap number -> false iff +0, -0, or NaN.
478 Label not_heap_number, false_result;
479 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
480 __ j(not_equal, &not_heap_number, Label::kNear);
481 __ xorps(xmm0, xmm0);
482 __ ucomisd(xmm0, FieldOperand(argument, HeapNumber::kValueOffset));
483 __ j(zero, &false_result, Label::kNear);
484 // argument contains the correct return value already.
485 if (!tos_.is(argument)) {
486 __ Set(tos_, 1);
487 }
488 __ ret(1 * kPointerSize);
489 __ bind(&false_result);
490 __ Set(tos_, 0);
491 __ ret(1 * kPointerSize);
492 __ bind(&not_heap_number);
493 }
494
495 __ bind(&patch);
496 GenerateTypeTransition(masm);
497}
498
499
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100500void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
501 __ PushCallerSaved(save_doubles_);
502 const int argument_count = 1;
503 __ PrepareCallCFunction(argument_count);
504#ifdef _WIN64
505 __ LoadAddress(rcx, ExternalReference::isolate_address());
506#else
507 __ LoadAddress(rdi, ExternalReference::isolate_address());
508#endif
509
510 AllowExternalCallThatCantCauseGC scope(masm);
511 __ CallCFunction(
512 ExternalReference::store_buffer_overflow_function(masm->isolate()),
513 argument_count);
514 __ PopCallerSaved(save_doubles_);
515 __ ret(0);
516}
517
518
Ben Murdoch69a99ed2011-11-30 16:03:39 +0000519void ToBooleanStub::CheckOddball(MacroAssembler* masm,
520 Type type,
521 Heap::RootListIndex value,
522 bool result) {
523 const Register argument = rax;
524 if (types_.Contains(type)) {
525 // If we see an expected oddball, return its ToBoolean value tos_.
526 Label different_value;
527 __ CompareRoot(argument, value);
528 __ j(not_equal, &different_value, Label::kNear);
529 if (!result) {
530 // If we have to return zero, there is no way around clearing tos_.
531 __ Set(tos_, 0);
532 } else if (!tos_.is(argument)) {
533 // If we have to return non-zero, we can re-use the argument if it is the
534 // same register as the result, because we never see Smi-zero here.
535 __ Set(tos_, 1);
536 }
537 __ ret(1 * kPointerSize);
538 __ bind(&different_value);
539 }
540}
541
542
543void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
544 __ pop(rcx); // Get return address, operand is now on top of stack.
545 __ Push(Smi::FromInt(tos_.code()));
546 __ Push(Smi::FromInt(types_.ToByte()));
547 __ push(rcx); // Push return address.
548 // Patch the caller to an appropriate specialized stub and return the
549 // operation result to the caller of the stub.
550 __ TailCallExternalReference(
551 ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
552 3,
553 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100554}
555
556
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100557class FloatingPointHelper : public AllStatic {
558 public:
559 // Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
560 // If the operands are not both numbers, jump to not_numbers.
561 // Leaves rdx and rax unchanged. SmiOperands assumes both are smis.
562 // NumberOperands assumes both are smis or heap numbers.
563 static void LoadSSE2SmiOperands(MacroAssembler* masm);
564 static void LoadSSE2NumberOperands(MacroAssembler* masm);
565 static void LoadSSE2UnknownOperands(MacroAssembler* masm,
566 Label* not_numbers);
567
568 // Takes the operands in rdx and rax and loads them as integers in rax
569 // and rcx.
570 static void LoadAsIntegers(MacroAssembler* masm,
571 Label* operand_conversion_failure,
572 Register heap_number_map);
573 // As above, but we know the operands to be numbers. In that case,
574 // conversion can't fail.
575 static void LoadNumbersAsIntegers(MacroAssembler* masm);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100576
577 // Tries to convert two values to smis losslessly.
578 // This fails if either argument is not a Smi nor a HeapNumber,
579 // or if it's a HeapNumber with a value that can't be converted
580 // losslessly to a Smi. In that case, control transitions to the
581 // on_not_smis label.
582 // On success, either control goes to the on_success label (if one is
583 // provided), or it falls through at the end of the code (if on_success
584 // is NULL).
585 // On success, both first and second holds Smi tagged values.
586 // One of first or second must be non-Smi when entering.
587 static void NumbersToSmis(MacroAssembler* masm,
588 Register first,
589 Register second,
590 Register scratch1,
591 Register scratch2,
592 Register scratch3,
593 Label* on_success,
594 Label* on_not_smis);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100595};
596
597
Ben Murdoch257744e2011-11-30 15:57:28 +0000598// Get the integer part of a heap number.
599// Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx.
600void IntegerConvert(MacroAssembler* masm,
601 Register result,
602 Register source) {
603 // Result may be rcx. If result and source are the same register, source will
604 // be overwritten.
605 ASSERT(!result.is(rdi) && !result.is(rbx));
606 // TODO(lrn): When type info reaches here, if value is a 32-bit integer, use
607 // cvttsd2si (32-bit version) directly.
608 Register double_exponent = rbx;
609 Register double_value = rdi;
610 Label done, exponent_63_plus;
611 // Get double and extract exponent.
612 __ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset));
613 // Clear result preemptively, in case we need to return zero.
614 __ xorl(result, result);
615 __ movq(xmm0, double_value); // Save copy in xmm0 in case we need it there.
616 // Double to remove sign bit, shift exponent down to least significant bits.
617 // and subtract bias to get the unshifted, unbiased exponent.
618 __ lea(double_exponent, Operand(double_value, double_value, times_1, 0));
619 __ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits));
620 __ subl(double_exponent, Immediate(HeapNumber::kExponentBias));
621 // Check whether the exponent is too big for a 63 bit unsigned integer.
622 __ cmpl(double_exponent, Immediate(63));
623 __ j(above_equal, &exponent_63_plus, Label::kNear);
624 // Handle exponent range 0..62.
625 __ cvttsd2siq(result, xmm0);
626 __ jmp(&done, Label::kNear);
627
628 __ bind(&exponent_63_plus);
629 // Exponent negative or 63+.
630 __ cmpl(double_exponent, Immediate(83));
631 // If exponent negative or above 83, number contains no significant bits in
632 // the range 0..2^31, so result is zero, and rcx already holds zero.
633 __ j(above, &done, Label::kNear);
634
635 // Exponent in rage 63..83.
636 // Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely
637 // the least significant exponent-52 bits.
638
639 // Negate low bits of mantissa if value is negative.
640 __ addq(double_value, double_value); // Move sign bit to carry.
641 __ sbbl(result, result); // And convert carry to -1 in result register.
642 // if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0.
643 __ addl(double_value, result);
644 // Do xor in opposite directions depending on where we want the result
645 // (depending on whether result is rcx or not).
646
647 if (result.is(rcx)) {
648 __ xorl(double_value, result);
649 // Left shift mantissa by (exponent - mantissabits - 1) to save the
650 // bits that have positional values below 2^32 (the extra -1 comes from the
651 // doubling done above to move the sign bit into the carry flag).
652 __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
653 __ shll_cl(double_value);
654 __ movl(result, double_value);
655 } else {
656 // As the then-branch, but move double-value to result before shifting.
657 __ xorl(result, double_value);
658 __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
659 __ shll_cl(result);
660 }
661
662 __ bind(&done);
663}
664
665
Ben Murdoch257744e2011-11-30 15:57:28 +0000666void UnaryOpStub::Generate(MacroAssembler* masm) {
667 switch (operand_type_) {
668 case UnaryOpIC::UNINITIALIZED:
669 GenerateTypeTransition(masm);
670 break;
671 case UnaryOpIC::SMI:
672 GenerateSmiStub(masm);
673 break;
674 case UnaryOpIC::HEAP_NUMBER:
675 GenerateHeapNumberStub(masm);
676 break;
677 case UnaryOpIC::GENERIC:
678 GenerateGenericStub(masm);
679 break;
680 }
681}
682
683
684void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
685 __ pop(rcx); // Save return address.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000686
687 __ push(rax); // the operand
Ben Murdoch257744e2011-11-30 15:57:28 +0000688 __ Push(Smi::FromInt(op_));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000689 __ Push(Smi::FromInt(mode_));
Ben Murdoch257744e2011-11-30 15:57:28 +0000690 __ Push(Smi::FromInt(operand_type_));
691
692 __ push(rcx); // Push return address.
693
694 // Patch the caller to an appropriate specialized stub and return the
695 // operation result to the caller of the stub.
696 __ TailCallExternalReference(
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000697 ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
Ben Murdoch257744e2011-11-30 15:57:28 +0000698}
699
700
701// TODO(svenpanne): Use virtual functions instead of switch.
702void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
703 switch (op_) {
704 case Token::SUB:
705 GenerateSmiStubSub(masm);
706 break;
707 case Token::BIT_NOT:
708 GenerateSmiStubBitNot(masm);
709 break;
710 default:
711 UNREACHABLE();
712 }
713}
714
715
716void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
717 Label slow;
718 GenerateSmiCodeSub(masm, &slow, &slow, Label::kNear, Label::kNear);
719 __ bind(&slow);
720 GenerateTypeTransition(masm);
721}
722
723
724void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
725 Label non_smi;
726 GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear);
727 __ bind(&non_smi);
728 GenerateTypeTransition(masm);
729}
730
731
732void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
733 Label* non_smi,
734 Label* slow,
735 Label::Distance non_smi_near,
736 Label::Distance slow_near) {
737 Label done;
738 __ JumpIfNotSmi(rax, non_smi, non_smi_near);
739 __ SmiNeg(rax, rax, &done, Label::kNear);
740 __ jmp(slow, slow_near);
741 __ bind(&done);
742 __ ret(0);
743}
744
745
746void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
747 Label* non_smi,
748 Label::Distance non_smi_near) {
749 __ JumpIfNotSmi(rax, non_smi, non_smi_near);
750 __ SmiNot(rax, rax);
751 __ ret(0);
752}
753
754
755// TODO(svenpanne): Use virtual functions instead of switch.
756void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
757 switch (op_) {
758 case Token::SUB:
759 GenerateHeapNumberStubSub(masm);
760 break;
761 case Token::BIT_NOT:
762 GenerateHeapNumberStubBitNot(masm);
763 break;
764 default:
765 UNREACHABLE();
766 }
767}
768
769
770void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
771 Label non_smi, slow, call_builtin;
772 GenerateSmiCodeSub(masm, &non_smi, &call_builtin, Label::kNear);
773 __ bind(&non_smi);
774 GenerateHeapNumberCodeSub(masm, &slow);
775 __ bind(&slow);
776 GenerateTypeTransition(masm);
777 __ bind(&call_builtin);
778 GenerateGenericCodeFallback(masm);
779}
780
781
782void UnaryOpStub::GenerateHeapNumberStubBitNot(
783 MacroAssembler* masm) {
784 Label non_smi, slow;
785 GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear);
786 __ bind(&non_smi);
787 GenerateHeapNumberCodeBitNot(masm, &slow);
788 __ bind(&slow);
789 GenerateTypeTransition(masm);
790}
791
792
793void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
794 Label* slow) {
795 // Check if the operand is a heap number.
796 __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
797 Heap::kHeapNumberMapRootIndex);
798 __ j(not_equal, slow);
799
800 // Operand is a float, negate its value by flipping the sign bit.
801 if (mode_ == UNARY_OVERWRITE) {
802 __ Set(kScratchRegister, 0x01);
803 __ shl(kScratchRegister, Immediate(63));
804 __ xor_(FieldOperand(rax, HeapNumber::kValueOffset), kScratchRegister);
805 } else {
806 // Allocate a heap number before calculating the answer,
807 // so we don't have an untagged double around during GC.
808 Label slow_allocate_heapnumber, heapnumber_allocated;
809 __ AllocateHeapNumber(rcx, rbx, &slow_allocate_heapnumber);
810 __ jmp(&heapnumber_allocated);
811
812 __ bind(&slow_allocate_heapnumber);
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100813 {
814 FrameScope scope(masm, StackFrame::INTERNAL);
815 __ push(rax);
816 __ CallRuntime(Runtime::kNumberAlloc, 0);
817 __ movq(rcx, rax);
818 __ pop(rax);
819 }
Ben Murdoch257744e2011-11-30 15:57:28 +0000820 __ bind(&heapnumber_allocated);
821 // rcx: allocated 'empty' number
822
823 // Copy the double value to the new heap number, flipping the sign.
824 __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset));
825 __ Set(kScratchRegister, 0x01);
826 __ shl(kScratchRegister, Immediate(63));
827 __ xor_(rdx, kScratchRegister); // Flip sign.
828 __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx);
829 __ movq(rax, rcx);
830 }
831 __ ret(0);
832}
833
834
835void UnaryOpStub::GenerateHeapNumberCodeBitNot(MacroAssembler* masm,
836 Label* slow) {
837 // Check if the operand is a heap number.
838 __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
839 Heap::kHeapNumberMapRootIndex);
840 __ j(not_equal, slow);
841
842 // Convert the heap number in rax to an untagged integer in rcx.
843 IntegerConvert(masm, rax, rax);
844
845 // Do the bitwise operation and smi tag the result.
846 __ notl(rax);
847 __ Integer32ToSmi(rax, rax);
848 __ ret(0);
849}
850
851
852// TODO(svenpanne): Use virtual functions instead of switch.
853void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
854 switch (op_) {
855 case Token::SUB:
856 GenerateGenericStubSub(masm);
857 break;
858 case Token::BIT_NOT:
859 GenerateGenericStubBitNot(masm);
860 break;
861 default:
862 UNREACHABLE();
863 }
864}
865
866
867void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
868 Label non_smi, slow;
869 GenerateSmiCodeSub(masm, &non_smi, &slow, Label::kNear);
870 __ bind(&non_smi);
871 GenerateHeapNumberCodeSub(masm, &slow);
872 __ bind(&slow);
873 GenerateGenericCodeFallback(masm);
874}
875
876
877void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
878 Label non_smi, slow;
879 GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear);
880 __ bind(&non_smi);
881 GenerateHeapNumberCodeBitNot(masm, &slow);
882 __ bind(&slow);
883 GenerateGenericCodeFallback(masm);
884}
885
886
887void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) {
888 // Handle the slow case by jumping to the JavaScript builtin.
889 __ pop(rcx); // pop return address
890 __ push(rax);
891 __ push(rcx); // push return address
892 switch (op_) {
893 case Token::SUB:
894 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
895 break;
896 case Token::BIT_NOT:
897 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
898 break;
899 default:
900 UNREACHABLE();
901 }
902}
903
904
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000905void UnaryOpStub::PrintName(StringStream* stream) {
Ben Murdoch257744e2011-11-30 15:57:28 +0000906 const char* op_name = Token::Name(op_);
907 const char* overwrite_name = NULL; // Make g++ happy.
908 switch (mode_) {
909 case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
910 case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
911 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000912 stream->Add("UnaryOpStub_%s_%s_%s",
913 op_name,
914 overwrite_name,
915 UnaryOpIC::GetName(operand_type_));
Ben Murdoch257744e2011-11-30 15:57:28 +0000916}
917
918
919void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Ben Murdoch086aeea2011-05-13 15:57:08 +0100920 __ pop(rcx); // Save return address.
921 __ push(rdx);
922 __ push(rax);
923 // Left and right arguments are now on top.
924 // Push this stub's key. Although the operation and the type info are
925 // encoded into the key, the encoding is opaque, so push them too.
926 __ Push(Smi::FromInt(MinorKey()));
927 __ Push(Smi::FromInt(op_));
928 __ Push(Smi::FromInt(operands_type_));
929
930 __ push(rcx); // Push return address.
931
932 // Patch the caller to an appropriate specialized stub and return the
933 // operation result to the caller of the stub.
934 __ TailCallExternalReference(
Ben Murdoch257744e2011-11-30 15:57:28 +0000935 ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
Steve Block44f0eee2011-05-26 01:26:41 +0100936 masm->isolate()),
Ben Murdoch086aeea2011-05-13 15:57:08 +0100937 5,
938 1);
939}
940
941
Ben Murdoch257744e2011-11-30 15:57:28 +0000942void BinaryOpStub::Generate(MacroAssembler* masm) {
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100943 // Explicitly allow generation of nested stubs. It is safe here because
944 // generation code does not use any raw pointers.
945 AllowStubCallsScope allow_stub_calls(masm, true);
946
Ben Murdoch086aeea2011-05-13 15:57:08 +0100947 switch (operands_type_) {
Ben Murdoch257744e2011-11-30 15:57:28 +0000948 case BinaryOpIC::UNINITIALIZED:
Ben Murdoch086aeea2011-05-13 15:57:08 +0100949 GenerateTypeTransition(masm);
950 break;
Ben Murdoch257744e2011-11-30 15:57:28 +0000951 case BinaryOpIC::SMI:
Ben Murdoch086aeea2011-05-13 15:57:08 +0100952 GenerateSmiStub(masm);
953 break;
Ben Murdoch257744e2011-11-30 15:57:28 +0000954 case BinaryOpIC::INT32:
Steve Block1e0659c2011-05-24 12:43:12 +0100955 UNREACHABLE();
956 // The int32 case is identical to the Smi case. We avoid creating this
957 // ic state on x64.
Ben Murdoch086aeea2011-05-13 15:57:08 +0100958 break;
Ben Murdoch257744e2011-11-30 15:57:28 +0000959 case BinaryOpIC::HEAP_NUMBER:
Ben Murdoch086aeea2011-05-13 15:57:08 +0100960 GenerateHeapNumberStub(masm);
961 break;
Ben Murdoch257744e2011-11-30 15:57:28 +0000962 case BinaryOpIC::ODDBALL:
Steve Block44f0eee2011-05-26 01:26:41 +0100963 GenerateOddballStub(masm);
964 break;
Ben Murdoch257744e2011-11-30 15:57:28 +0000965 case BinaryOpIC::BOTH_STRING:
966 GenerateBothStringStub(masm);
967 break;
968 case BinaryOpIC::STRING:
Ben Murdoch086aeea2011-05-13 15:57:08 +0100969 GenerateStringStub(masm);
970 break;
Ben Murdoch257744e2011-11-30 15:57:28 +0000971 case BinaryOpIC::GENERIC:
Ben Murdoch086aeea2011-05-13 15:57:08 +0100972 GenerateGeneric(masm);
973 break;
974 default:
975 UNREACHABLE();
976 }
977}
978
979
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000980void BinaryOpStub::PrintName(StringStream* stream) {
Ben Murdoch086aeea2011-05-13 15:57:08 +0100981 const char* op_name = Token::Name(op_);
982 const char* overwrite_name;
983 switch (mode_) {
984 case NO_OVERWRITE: overwrite_name = "Alloc"; break;
985 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
986 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
987 default: overwrite_name = "UnknownOverwrite"; break;
988 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000989 stream->Add("BinaryOpStub_%s_%s_%s",
990 op_name,
991 overwrite_name,
992 BinaryOpIC::GetName(operands_type_));
Ben Murdoch086aeea2011-05-13 15:57:08 +0100993}
994
995
Ben Murdoch257744e2011-11-30 15:57:28 +0000996void BinaryOpStub::GenerateSmiCode(
997 MacroAssembler* masm,
Ben Murdoch086aeea2011-05-13 15:57:08 +0100998 Label* slow,
999 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
Steve Block1e0659c2011-05-24 12:43:12 +01001000
Ben Murdoch257744e2011-11-30 15:57:28 +00001001 // Arguments to BinaryOpStub are in rdx and rax.
Steve Block1e0659c2011-05-24 12:43:12 +01001002 Register left = rdx;
1003 Register right = rax;
1004
Ben Murdoch8b112d22011-06-08 16:22:53 +01001005 // We only generate heapnumber answers for overflowing calculations
1006 // for the four basic arithmetic operations and logical right shift by 0.
1007 bool generate_inline_heapnumber_results =
1008 (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) &&
1009 (op_ == Token::ADD || op_ == Token::SUB ||
1010 op_ == Token::MUL || op_ == Token::DIV || op_ == Token::SHR);
Steve Block1e0659c2011-05-24 12:43:12 +01001011
1012 // Smi check of both operands. If op is BIT_OR, the check is delayed
1013 // until after the OR operation.
1014 Label not_smis;
1015 Label use_fp_on_smis;
Ben Murdoch8b112d22011-06-08 16:22:53 +01001016 Label fail;
Steve Block1e0659c2011-05-24 12:43:12 +01001017
1018 if (op_ != Token::BIT_OR) {
1019 Comment smi_check_comment(masm, "-- Smi check arguments");
1020 __ JumpIfNotBothSmi(left, right, &not_smis);
1021 }
1022
Ben Murdoch8b112d22011-06-08 16:22:53 +01001023 Label smi_values;
1024 __ bind(&smi_values);
Steve Block1e0659c2011-05-24 12:43:12 +01001025 // Perform the operation.
1026 Comment perform_smi(masm, "-- Perform smi operation");
1027 switch (op_) {
1028 case Token::ADD:
1029 ASSERT(right.is(rax));
1030 __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative.
1031 break;
1032
1033 case Token::SUB:
1034 __ SmiSub(left, left, right, &use_fp_on_smis);
1035 __ movq(rax, left);
1036 break;
1037
1038 case Token::MUL:
1039 ASSERT(right.is(rax));
1040 __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative.
1041 break;
1042
1043 case Token::DIV:
1044 // SmiDiv will not accept left in rdx or right in rax.
1045 left = rcx;
1046 right = rbx;
1047 __ movq(rbx, rax);
1048 __ movq(rcx, rdx);
1049 __ SmiDiv(rax, left, right, &use_fp_on_smis);
1050 break;
1051
1052 case Token::MOD:
1053 // SmiMod will not accept left in rdx or right in rax.
1054 left = rcx;
1055 right = rbx;
1056 __ movq(rbx, rax);
1057 __ movq(rcx, rdx);
1058 __ SmiMod(rax, left, right, &use_fp_on_smis);
1059 break;
1060
1061 case Token::BIT_OR: {
1062 ASSERT(right.is(rax));
Ben Murdoch8b112d22011-06-08 16:22:53 +01001063 __ SmiOrIfSmis(right, right, left, &not_smis); // BIT_OR is commutative.
Steve Block1e0659c2011-05-24 12:43:12 +01001064 break;
1065 }
1066 case Token::BIT_XOR:
1067 ASSERT(right.is(rax));
1068 __ SmiXor(right, right, left); // BIT_XOR is commutative.
1069 break;
1070
1071 case Token::BIT_AND:
1072 ASSERT(right.is(rax));
1073 __ SmiAnd(right, right, left); // BIT_AND is commutative.
1074 break;
1075
1076 case Token::SHL:
1077 __ SmiShiftLeft(left, left, right);
1078 __ movq(rax, left);
1079 break;
1080
1081 case Token::SAR:
1082 __ SmiShiftArithmeticRight(left, left, right);
1083 __ movq(rax, left);
1084 break;
1085
1086 case Token::SHR:
Ben Murdoch8b112d22011-06-08 16:22:53 +01001087 __ SmiShiftLogicalRight(left, left, right, &use_fp_on_smis);
Steve Block1e0659c2011-05-24 12:43:12 +01001088 __ movq(rax, left);
1089 break;
1090
1091 default:
1092 UNREACHABLE();
1093 }
1094
1095 // 5. Emit return of result in rax. Some operations have registers pushed.
1096 __ ret(0);
1097
Ben Murdoch8b112d22011-06-08 16:22:53 +01001098 if (use_fp_on_smis.is_linked()) {
1099 // 6. For some operations emit inline code to perform floating point
1100 // operations on known smis (e.g., if the result of the operation
1101 // overflowed the smi range).
1102 __ bind(&use_fp_on_smis);
1103 if (op_ == Token::DIV || op_ == Token::MOD) {
1104 // Restore left and right to rdx and rax.
1105 __ movq(rdx, rcx);
1106 __ movq(rax, rbx);
Steve Block1e0659c2011-05-24 12:43:12 +01001107 }
Ben Murdoch8b112d22011-06-08 16:22:53 +01001108
1109 if (generate_inline_heapnumber_results) {
1110 __ AllocateHeapNumber(rcx, rbx, slow);
1111 Comment perform_float(masm, "-- Perform float operation on smis");
1112 if (op_ == Token::SHR) {
1113 __ SmiToInteger32(left, left);
1114 __ cvtqsi2sd(xmm0, left);
1115 } else {
1116 FloatingPointHelper::LoadSSE2SmiOperands(masm);
1117 switch (op_) {
1118 case Token::ADD: __ addsd(xmm0, xmm1); break;
1119 case Token::SUB: __ subsd(xmm0, xmm1); break;
1120 case Token::MUL: __ mulsd(xmm0, xmm1); break;
1121 case Token::DIV: __ divsd(xmm0, xmm1); break;
1122 default: UNREACHABLE();
1123 }
1124 }
1125 __ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0);
1126 __ movq(rax, rcx);
1127 __ ret(0);
1128 } else {
1129 __ jmp(&fail);
1130 }
Steve Block1e0659c2011-05-24 12:43:12 +01001131 }
1132
1133 // 7. Non-smi operands reach the end of the code generated by
1134 // GenerateSmiCode, and fall through to subsequent code,
1135 // with the operands in rdx and rax.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001136 // But first we check if non-smi values are HeapNumbers holding
1137 // values that could be smi.
Steve Block1e0659c2011-05-24 12:43:12 +01001138 __ bind(&not_smis);
Ben Murdoch8b112d22011-06-08 16:22:53 +01001139 Comment done_comment(masm, "-- Enter non-smi code");
1140 FloatingPointHelper::NumbersToSmis(masm, left, right, rbx, rdi, rcx,
1141 &smi_values, &fail);
1142 __ jmp(&smi_values);
1143 __ bind(&fail);
Steve Block1e0659c2011-05-24 12:43:12 +01001144}
1145
1146
Ben Murdoch257744e2011-11-30 15:57:28 +00001147void BinaryOpStub::GenerateFloatingPointCode(MacroAssembler* masm,
1148 Label* allocation_failure,
1149 Label* non_numeric_failure) {
Steve Block1e0659c2011-05-24 12:43:12 +01001150 switch (op_) {
1151 case Token::ADD:
1152 case Token::SUB:
1153 case Token::MUL:
1154 case Token::DIV: {
1155 FloatingPointHelper::LoadSSE2UnknownOperands(masm, non_numeric_failure);
1156
1157 switch (op_) {
1158 case Token::ADD: __ addsd(xmm0, xmm1); break;
1159 case Token::SUB: __ subsd(xmm0, xmm1); break;
1160 case Token::MUL: __ mulsd(xmm0, xmm1); break;
1161 case Token::DIV: __ divsd(xmm0, xmm1); break;
1162 default: UNREACHABLE();
1163 }
1164 GenerateHeapResultAllocation(masm, allocation_failure);
1165 __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
1166 __ ret(0);
1167 break;
1168 }
1169 case Token::MOD: {
1170 // For MOD we jump to the allocation_failure label, to call runtime.
1171 __ jmp(allocation_failure);
1172 break;
1173 }
1174 case Token::BIT_OR:
1175 case Token::BIT_AND:
1176 case Token::BIT_XOR:
1177 case Token::SAR:
1178 case Token::SHL:
1179 case Token::SHR: {
1180 Label non_smi_shr_result;
1181 Register heap_number_map = r9;
1182 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
1183 FloatingPointHelper::LoadAsIntegers(masm, non_numeric_failure,
1184 heap_number_map);
1185 switch (op_) {
1186 case Token::BIT_OR: __ orl(rax, rcx); break;
1187 case Token::BIT_AND: __ andl(rax, rcx); break;
1188 case Token::BIT_XOR: __ xorl(rax, rcx); break;
1189 case Token::SAR: __ sarl_cl(rax); break;
1190 case Token::SHL: __ shll_cl(rax); break;
1191 case Token::SHR: {
1192 __ shrl_cl(rax);
1193 // Check if result is negative. This can only happen for a shift
1194 // by zero.
1195 __ testl(rax, rax);
1196 __ j(negative, &non_smi_shr_result);
1197 break;
1198 }
1199 default: UNREACHABLE();
1200 }
1201 STATIC_ASSERT(kSmiValueSize == 32);
1202 // Tag smi result and return.
1203 __ Integer32ToSmi(rax, rax);
1204 __ Ret();
1205
1206 // Logical shift right can produce an unsigned int32 that is not
1207 // an int32, and so is not in the smi range. Allocate a heap number
1208 // in that case.
1209 if (op_ == Token::SHR) {
1210 __ bind(&non_smi_shr_result);
1211 Label allocation_failed;
1212 __ movl(rbx, rax); // rbx holds result value (uint32 value as int64).
1213 // Allocate heap number in new space.
1214 // Not using AllocateHeapNumber macro in order to reuse
1215 // already loaded heap_number_map.
1216 __ AllocateInNewSpace(HeapNumber::kSize,
1217 rax,
Steve Block053d10c2011-06-13 19:13:29 +01001218 rdx,
Steve Block1e0659c2011-05-24 12:43:12 +01001219 no_reg,
1220 &allocation_failed,
1221 TAG_OBJECT);
1222 // Set the map.
1223 if (FLAG_debug_code) {
1224 __ AbortIfNotRootValue(heap_number_map,
1225 Heap::kHeapNumberMapRootIndex,
1226 "HeapNumberMap register clobbered.");
1227 }
1228 __ movq(FieldOperand(rax, HeapObject::kMapOffset),
1229 heap_number_map);
1230 __ cvtqsi2sd(xmm0, rbx);
1231 __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
1232 __ Ret();
1233
1234 __ bind(&allocation_failed);
1235 // We need tagged values in rdx and rax for the following code,
1236 // not int32 in rax and rcx.
1237 __ Integer32ToSmi(rax, rcx);
Steve Block053d10c2011-06-13 19:13:29 +01001238 __ Integer32ToSmi(rdx, rbx);
Steve Block1e0659c2011-05-24 12:43:12 +01001239 __ jmp(allocation_failure);
1240 }
1241 break;
1242 }
1243 default: UNREACHABLE(); break;
1244 }
1245 // No fall-through from this generated code.
1246 if (FLAG_debug_code) {
1247 __ Abort("Unexpected fall-through in "
Ben Murdoch257744e2011-11-30 15:57:28 +00001248 "BinaryStub::GenerateFloatingPointCode.");
Steve Block1e0659c2011-05-24 12:43:12 +01001249 }
1250}
1251
1252
Ben Murdoch257744e2011-11-30 15:57:28 +00001253void BinaryOpStub::GenerateStringAddCode(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001254 ASSERT(op_ == Token::ADD);
Ben Murdoch257744e2011-11-30 15:57:28 +00001255 Label left_not_string, call_runtime;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001256
Steve Block1e0659c2011-05-24 12:43:12 +01001257 // Registers containing left and right operands respectively.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001258 Register left = rdx;
1259 Register right = rax;
Steve Block1e0659c2011-05-24 12:43:12 +01001260
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001261 // Test if left operand is a string.
Ben Murdoch257744e2011-11-30 15:57:28 +00001262 __ JumpIfSmi(left, &left_not_string, Label::kNear);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001263 __ CmpObjectType(left, FIRST_NONSTRING_TYPE, rcx);
Ben Murdoch257744e2011-11-30 15:57:28 +00001264 __ j(above_equal, &left_not_string, Label::kNear);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001265 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
1266 GenerateRegisterArgsPush(masm);
1267 __ TailCallStub(&string_add_left_stub);
Steve Block1e0659c2011-05-24 12:43:12 +01001268
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001269 // Left operand is not a string, test right.
1270 __ bind(&left_not_string);
Ben Murdoch257744e2011-11-30 15:57:28 +00001271 __ JumpIfSmi(right, &call_runtime, Label::kNear);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001272 __ CmpObjectType(right, FIRST_NONSTRING_TYPE, rcx);
Ben Murdoch257744e2011-11-30 15:57:28 +00001273 __ j(above_equal, &call_runtime, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01001274
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001275 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
1276 GenerateRegisterArgsPush(masm);
1277 __ TailCallStub(&string_add_right_stub);
Steve Block1e0659c2011-05-24 12:43:12 +01001278
Steve Block1e0659c2011-05-24 12:43:12 +01001279 // Neither argument is a string.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001280 __ bind(&call_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01001281}
1282
1283
Ben Murdoch257744e2011-11-30 15:57:28 +00001284void BinaryOpStub::GenerateCallRuntimeCode(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01001285 GenerateRegisterArgsPush(masm);
1286 switch (op_) {
1287 case Token::ADD:
1288 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
1289 break;
1290 case Token::SUB:
1291 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
1292 break;
1293 case Token::MUL:
1294 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
1295 break;
1296 case Token::DIV:
1297 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
1298 break;
1299 case Token::MOD:
1300 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
1301 break;
1302 case Token::BIT_OR:
1303 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
1304 break;
1305 case Token::BIT_AND:
1306 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
1307 break;
1308 case Token::BIT_XOR:
1309 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
1310 break;
1311 case Token::SAR:
1312 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
1313 break;
1314 case Token::SHL:
1315 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
1316 break;
1317 case Token::SHR:
1318 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
1319 break;
1320 default:
1321 UNREACHABLE();
1322 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01001323}
1324
1325
Ben Murdoch257744e2011-11-30 15:57:28 +00001326void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01001327 Label call_runtime;
Ben Murdoch257744e2011-11-30 15:57:28 +00001328 if (result_type_ == BinaryOpIC::UNINITIALIZED ||
1329 result_type_ == BinaryOpIC::SMI) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01001330 // Only allow smi results.
1331 GenerateSmiCode(masm, NULL, NO_HEAPNUMBER_RESULTS);
1332 } else {
1333 // Allow heap number result and don't make a transition if a heap number
1334 // cannot be allocated.
1335 GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
1336 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01001337
Ben Murdoch8b112d22011-06-08 16:22:53 +01001338 // Code falls through if the result is not returned as either a smi or heap
1339 // number.
Steve Block1e0659c2011-05-24 12:43:12 +01001340 GenerateTypeTransition(masm);
Ben Murdoch8b112d22011-06-08 16:22:53 +01001341
1342 if (call_runtime.is_linked()) {
1343 __ bind(&call_runtime);
1344 GenerateCallRuntimeCode(masm);
1345 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01001346}
1347
1348
Ben Murdoch257744e2011-11-30 15:57:28 +00001349void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
1350 ASSERT(operands_type_ == BinaryOpIC::STRING);
Steve Block1e0659c2011-05-24 12:43:12 +01001351 ASSERT(op_ == Token::ADD);
1352 GenerateStringAddCode(masm);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001353 // Try to add arguments as strings, otherwise, transition to the generic
Ben Murdoch257744e2011-11-30 15:57:28 +00001354 // BinaryOpIC type.
Steve Block1e0659c2011-05-24 12:43:12 +01001355 GenerateTypeTransition(masm);
Ben Murdoch086aeea2011-05-13 15:57:08 +01001356}
1357
1358
Ben Murdoch257744e2011-11-30 15:57:28 +00001359void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
1360 Label call_runtime;
1361 ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
1362 ASSERT(op_ == Token::ADD);
1363 // If both arguments are strings, call the string add stub.
1364 // Otherwise, do a transition.
1365
1366 // Registers containing left and right operands respectively.
1367 Register left = rdx;
1368 Register right = rax;
1369
1370 // Test if left operand is a string.
1371 __ JumpIfSmi(left, &call_runtime);
1372 __ CmpObjectType(left, FIRST_NONSTRING_TYPE, rcx);
1373 __ j(above_equal, &call_runtime);
1374
1375 // Test if right operand is a string.
1376 __ JumpIfSmi(right, &call_runtime);
1377 __ CmpObjectType(right, FIRST_NONSTRING_TYPE, rcx);
1378 __ j(above_equal, &call_runtime);
1379
1380 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
1381 GenerateRegisterArgsPush(masm);
1382 __ TailCallStub(&string_add_stub);
1383
1384 __ bind(&call_runtime);
1385 GenerateTypeTransition(masm);
1386}
1387
1388
1389void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
Steve Block44f0eee2011-05-26 01:26:41 +01001390 Label call_runtime;
1391
1392 if (op_ == Token::ADD) {
1393 // Handle string addition here, because it is the only operation
1394 // that does not do a ToNumber conversion on the operands.
1395 GenerateStringAddCode(masm);
1396 }
1397
1398 // Convert oddball arguments to numbers.
Ben Murdoch257744e2011-11-30 15:57:28 +00001399 Label check, done;
Steve Block44f0eee2011-05-26 01:26:41 +01001400 __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
Ben Murdoch257744e2011-11-30 15:57:28 +00001401 __ j(not_equal, &check, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01001402 if (Token::IsBitOp(op_)) {
1403 __ xor_(rdx, rdx);
1404 } else {
1405 __ LoadRoot(rdx, Heap::kNanValueRootIndex);
1406 }
Ben Murdoch257744e2011-11-30 15:57:28 +00001407 __ jmp(&done, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01001408 __ bind(&check);
1409 __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
Ben Murdoch257744e2011-11-30 15:57:28 +00001410 __ j(not_equal, &done, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01001411 if (Token::IsBitOp(op_)) {
1412 __ xor_(rax, rax);
1413 } else {
1414 __ LoadRoot(rax, Heap::kNanValueRootIndex);
1415 }
1416 __ bind(&done);
1417
1418 GenerateHeapNumberStub(masm);
1419}
1420
1421
Ben Murdoch257744e2011-11-30 15:57:28 +00001422void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01001423 Label gc_required, not_number;
1424 GenerateFloatingPointCode(masm, &gc_required, &not_number);
1425
1426 __ bind(&not_number);
1427 GenerateTypeTransition(masm);
1428
1429 __ bind(&gc_required);
1430 GenerateCallRuntimeCode(masm);
Ben Murdoch086aeea2011-05-13 15:57:08 +01001431}
1432
1433
Ben Murdoch257744e2011-11-30 15:57:28 +00001434void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01001435 Label call_runtime, call_string_add_or_runtime;
1436
1437 GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
1438
1439 GenerateFloatingPointCode(masm, &call_runtime, &call_string_add_or_runtime);
1440
1441 __ bind(&call_string_add_or_runtime);
1442 if (op_ == Token::ADD) {
1443 GenerateStringAddCode(masm);
1444 }
1445
1446 __ bind(&call_runtime);
1447 GenerateCallRuntimeCode(masm);
Ben Murdoch086aeea2011-05-13 15:57:08 +01001448}
1449
1450
Ben Murdoch257744e2011-11-30 15:57:28 +00001451void BinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm,
1452 Label* alloc_failure) {
Steve Block1e0659c2011-05-24 12:43:12 +01001453 Label skip_allocation;
1454 OverwriteMode mode = mode_;
1455 switch (mode) {
1456 case OVERWRITE_LEFT: {
1457 // If the argument in rdx is already an object, we skip the
1458 // allocation of a heap number.
1459 __ JumpIfNotSmi(rdx, &skip_allocation);
1460 // Allocate a heap number for the result. Keep eax and edx intact
1461 // for the possible runtime call.
1462 __ AllocateHeapNumber(rbx, rcx, alloc_failure);
1463 // Now rdx can be overwritten losing one of the arguments as we are
1464 // now done and will not need it any more.
1465 __ movq(rdx, rbx);
1466 __ bind(&skip_allocation);
1467 // Use object in rdx as a result holder
1468 __ movq(rax, rdx);
1469 break;
1470 }
1471 case OVERWRITE_RIGHT:
1472 // If the argument in rax is already an object, we skip the
1473 // allocation of a heap number.
1474 __ JumpIfNotSmi(rax, &skip_allocation);
1475 // Fall through!
1476 case NO_OVERWRITE:
1477 // Allocate a heap number for the result. Keep rax and rdx intact
1478 // for the possible runtime call.
1479 __ AllocateHeapNumber(rbx, rcx, alloc_failure);
1480 // Now rax can be overwritten losing one of the arguments as we are
1481 // now done and will not need it any more.
1482 __ movq(rax, rbx);
1483 __ bind(&skip_allocation);
1484 break;
1485 default: UNREACHABLE();
1486 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01001487}
1488
1489
Ben Murdoch257744e2011-11-30 15:57:28 +00001490void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
Ben Murdoch086aeea2011-05-13 15:57:08 +01001491 __ pop(rcx);
1492 __ push(rdx);
1493 __ push(rax);
1494 __ push(rcx);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001495}
1496
1497
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001498void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001499 // TAGGED case:
1500 // Input:
1501 // rsp[8]: argument (should be number).
1502 // rsp[0]: return address.
1503 // Output:
1504 // rax: tagged double result.
1505 // UNTAGGED case:
1506 // Input::
1507 // rsp[0]: return address.
1508 // xmm1: untagged double input argument
1509 // Output:
1510 // xmm1: untagged double result.
1511
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001512 Label runtime_call;
1513 Label runtime_call_clear_stack;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001514 Label skip_cache;
1515 const bool tagged = (argument_type_ == TAGGED);
1516 if (tagged) {
Ben Murdoch257744e2011-11-30 15:57:28 +00001517 Label input_not_smi, loaded;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001518 // Test that rax is a number.
1519 __ movq(rax, Operand(rsp, kPointerSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00001520 __ JumpIfNotSmi(rax, &input_not_smi, Label::kNear);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001521 // Input is a smi. Untag and load it onto the FPU stack.
1522 // Then load the bits of the double into rbx.
1523 __ SmiToInteger32(rax, rax);
1524 __ subq(rsp, Immediate(kDoubleSize));
1525 __ cvtlsi2sd(xmm1, rax);
1526 __ movsd(Operand(rsp, 0), xmm1);
1527 __ movq(rbx, xmm1);
1528 __ movq(rdx, xmm1);
1529 __ fld_d(Operand(rsp, 0));
1530 __ addq(rsp, Immediate(kDoubleSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00001531 __ jmp(&loaded, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001532
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001533 __ bind(&input_not_smi);
1534 // Check if input is a HeapNumber.
1535 __ LoadRoot(rbx, Heap::kHeapNumberMapRootIndex);
1536 __ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
1537 __ j(not_equal, &runtime_call);
1538 // Input is a HeapNumber. Push it on the FPU stack and load its
1539 // bits into rbx.
1540 __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
1541 __ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
1542 __ movq(rdx, rbx);
1543
1544 __ bind(&loaded);
1545 } else { // UNTAGGED.
1546 __ movq(rbx, xmm1);
1547 __ movq(rdx, xmm1);
1548 }
1549
1550 // ST[0] == double value, if TAGGED.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001551 // rbx = bits of double value.
1552 // rdx = also bits of double value.
1553 // Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic):
1554 // h = h0 = bits ^ (bits >> 32);
1555 // h ^= h >> 16;
1556 // h ^= h >> 8;
1557 // h = h & (cacheSize - 1);
1558 // or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1)
1559 __ sar(rdx, Immediate(32));
1560 __ xorl(rdx, rbx);
1561 __ movl(rcx, rdx);
1562 __ movl(rax, rdx);
1563 __ movl(rdi, rdx);
1564 __ sarl(rdx, Immediate(8));
1565 __ sarl(rcx, Immediate(16));
1566 __ sarl(rax, Immediate(24));
1567 __ xorl(rcx, rdx);
1568 __ xorl(rax, rdi);
1569 __ xorl(rcx, rax);
Steve Block44f0eee2011-05-26 01:26:41 +01001570 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
1571 __ andl(rcx, Immediate(TranscendentalCache::SubCache::kCacheSize - 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001572
1573 // ST[0] == double value.
1574 // rbx = bits of double value.
1575 // rcx = TranscendentalCache::hash(double value).
Steve Block44f0eee2011-05-26 01:26:41 +01001576 ExternalReference cache_array =
1577 ExternalReference::transcendental_cache_array_address(masm->isolate());
1578 __ movq(rax, cache_array);
1579 int cache_array_index =
1580 type_ * sizeof(Isolate::Current()->transcendental_cache()->caches_[0]);
1581 __ movq(rax, Operand(rax, cache_array_index));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001582 // rax points to the cache for the type type_.
1583 // If NULL, the cache hasn't been initialized yet, so go through runtime.
1584 __ testq(rax, rax);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001585 __ j(zero, &runtime_call_clear_stack); // Only clears stack if TAGGED.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001586#ifdef DEBUG
1587 // Check that the layout of cache elements match expectations.
1588 { // NOLINT - doesn't like a single brace on a line.
Steve Block44f0eee2011-05-26 01:26:41 +01001589 TranscendentalCache::SubCache::Element test_elem[2];
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001590 char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
1591 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
1592 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
1593 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
1594 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
1595 // Two uint_32's and a pointer per element.
1596 CHECK_EQ(16, static_cast<int>(elem2_start - elem_start));
1597 CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start));
1598 CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start));
1599 CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start));
1600 }
1601#endif
1602 // Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16].
1603 __ addl(rcx, rcx);
1604 __ lea(rcx, Operand(rax, rcx, times_8, 0));
1605 // Check if cache matches: Double value is stored in uint32_t[2] array.
Ben Murdoch257744e2011-11-30 15:57:28 +00001606 Label cache_miss;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001607 __ cmpq(rbx, Operand(rcx, 0));
Ben Murdoch257744e2011-11-30 15:57:28 +00001608 __ j(not_equal, &cache_miss, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001609 // Cache hit!
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001610 Counters* counters = masm->isolate()->counters();
1611 __ IncrementCounter(counters->transcendental_cache_hit(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001612 __ movq(rax, Operand(rcx, 2 * kIntSize));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001613 if (tagged) {
1614 __ fstp(0); // Clear FPU stack.
1615 __ ret(kPointerSize);
1616 } else { // UNTAGGED.
1617 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
1618 __ Ret();
1619 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001620
1621 __ bind(&cache_miss);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001622 __ IncrementCounter(counters->transcendental_cache_miss(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001623 // Update cache with new value.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001624 if (tagged) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001625 __ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001626 } else { // UNTAGGED.
1627 __ AllocateHeapNumber(rax, rdi, &skip_cache);
1628 __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm1);
1629 __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
1630 }
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001631 GenerateOperation(masm, type_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001632 __ movq(Operand(rcx, 0), rbx);
1633 __ movq(Operand(rcx, 2 * kIntSize), rax);
1634 __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001635 if (tagged) {
1636 __ ret(kPointerSize);
1637 } else { // UNTAGGED.
1638 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
1639 __ Ret();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001640
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001641 // Skip cache and return answer directly, only in untagged case.
1642 __ bind(&skip_cache);
1643 __ subq(rsp, Immediate(kDoubleSize));
1644 __ movsd(Operand(rsp, 0), xmm1);
1645 __ fld_d(Operand(rsp, 0));
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001646 GenerateOperation(masm, type_);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001647 __ fstp_d(Operand(rsp, 0));
1648 __ movsd(xmm1, Operand(rsp, 0));
1649 __ addq(rsp, Immediate(kDoubleSize));
1650 // We return the value in xmm1 without adding it to the cache, but
1651 // we cause a scavenging GC so that future allocations will succeed.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001652 {
1653 FrameScope scope(masm, StackFrame::INTERNAL);
1654 // Allocate an unused object bigger than a HeapNumber.
1655 __ Push(Smi::FromInt(2 * kDoubleSize));
1656 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
1657 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001658 __ Ret();
1659 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001660
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001661 // Call runtime, doing whatever allocation and cleanup is necessary.
1662 if (tagged) {
1663 __ bind(&runtime_call_clear_stack);
1664 __ fstp(0);
1665 __ bind(&runtime_call);
Steve Block44f0eee2011-05-26 01:26:41 +01001666 __ TailCallExternalReference(
1667 ExternalReference(RuntimeFunction(), masm->isolate()), 1, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001668 } else { // UNTAGGED.
1669 __ bind(&runtime_call_clear_stack);
1670 __ bind(&runtime_call);
1671 __ AllocateHeapNumber(rax, rdi, &skip_cache);
1672 __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm1);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001673 {
1674 FrameScope scope(masm, StackFrame::INTERNAL);
1675 __ push(rax);
1676 __ CallRuntime(RuntimeFunction(), 1);
1677 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001678 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
1679 __ Ret();
1680 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001681}
1682
1683
1684Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
1685 switch (type_) {
1686 // Add more cases when necessary.
1687 case TranscendentalCache::SIN: return Runtime::kMath_sin;
1688 case TranscendentalCache::COS: return Runtime::kMath_cos;
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001689 case TranscendentalCache::TAN: return Runtime::kMath_tan;
Ben Murdochb0fe1622011-05-05 13:52:32 +01001690 case TranscendentalCache::LOG: return Runtime::kMath_log;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001691 default:
1692 UNIMPLEMENTED();
1693 return Runtime::kAbort;
1694 }
1695}
1696
1697
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001698void TranscendentalCacheStub::GenerateOperation(
1699 MacroAssembler* masm, TranscendentalCache::Type type) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001700 // Registers:
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001701 // rax: Newly allocated HeapNumber, which must be preserved.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001702 // rbx: Bits of input double. Must be preserved.
1703 // rcx: Pointer to cache entry. Must be preserved.
1704 // st(0): Input double
1705 Label done;
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001706 if (type == TranscendentalCache::SIN ||
1707 type == TranscendentalCache::COS ||
1708 type == TranscendentalCache::TAN) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001709 // Both fsin and fcos require arguments in the range +/-2^63 and
1710 // return NaN for infinities and NaN. They can share all code except
1711 // the actual fsin/fcos operation.
1712 Label in_range;
1713 // If argument is outside the range -2^63..2^63, fsin/cos doesn't
1714 // work. We must reduce it to the appropriate range.
1715 __ movq(rdi, rbx);
1716 // Move exponent and sign bits to low bits.
1717 __ shr(rdi, Immediate(HeapNumber::kMantissaBits));
1718 // Remove sign bit.
1719 __ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1));
1720 int supported_exponent_limit = (63 + HeapNumber::kExponentBias);
1721 __ cmpl(rdi, Immediate(supported_exponent_limit));
1722 __ j(below, &in_range);
1723 // Check for infinity and NaN. Both return NaN for sin.
1724 __ cmpl(rdi, Immediate(0x7ff));
Ben Murdoch257744e2011-11-30 15:57:28 +00001725 Label non_nan_result;
1726 __ j(not_equal, &non_nan_result, Label::kNear);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001727 // Input is +/-Infinity or NaN. Result is NaN.
1728 __ fstp(0);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001729 // NaN is represented by 0x7ff8000000000000.
1730 __ subq(rsp, Immediate(kPointerSize));
1731 __ movl(Operand(rsp, 4), Immediate(0x7ff80000));
1732 __ movl(Operand(rsp, 0), Immediate(0x00000000));
1733 __ fld_d(Operand(rsp, 0));
1734 __ addq(rsp, Immediate(kPointerSize));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001735 __ jmp(&done);
1736
1737 __ bind(&non_nan_result);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001738
Ben Murdochb0fe1622011-05-05 13:52:32 +01001739 // Use fpmod to restrict argument to the range +/-2*PI.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001740 __ movq(rdi, rax); // Save rax before using fnstsw_ax.
Ben Murdochb0fe1622011-05-05 13:52:32 +01001741 __ fldpi();
1742 __ fadd(0);
1743 __ fld(1);
1744 // FPU Stack: input, 2*pi, input.
1745 {
1746 Label no_exceptions;
1747 __ fwait();
1748 __ fnstsw_ax();
1749 // Clear if Illegal Operand or Zero Division exceptions are set.
1750 __ testl(rax, Immediate(5)); // #IO and #ZD flags of FPU status word.
1751 __ j(zero, &no_exceptions);
1752 __ fnclex();
1753 __ bind(&no_exceptions);
1754 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001755
Ben Murdochb0fe1622011-05-05 13:52:32 +01001756 // Compute st(0) % st(1)
1757 {
Ben Murdoch257744e2011-11-30 15:57:28 +00001758 Label partial_remainder_loop;
Ben Murdochb0fe1622011-05-05 13:52:32 +01001759 __ bind(&partial_remainder_loop);
1760 __ fprem1();
1761 __ fwait();
1762 __ fnstsw_ax();
1763 __ testl(rax, Immediate(0x400)); // Check C2 bit of FPU status word.
1764 // If C2 is set, computation only has partial result. Loop to
1765 // continue computation.
1766 __ j(not_zero, &partial_remainder_loop);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001767 }
Ben Murdochb0fe1622011-05-05 13:52:32 +01001768 // FPU Stack: input, 2*pi, input % 2*pi
1769 __ fstp(2);
1770 // FPU Stack: input % 2*pi, 2*pi,
1771 __ fstp(0);
1772 // FPU Stack: input % 2*pi
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001773 __ movq(rax, rdi); // Restore rax, pointer to the new HeapNumber.
Ben Murdochb0fe1622011-05-05 13:52:32 +01001774 __ bind(&in_range);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001775 switch (type) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001776 case TranscendentalCache::SIN:
1777 __ fsin();
1778 break;
1779 case TranscendentalCache::COS:
1780 __ fcos();
1781 break;
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001782 case TranscendentalCache::TAN:
1783 // FPTAN calculates tangent onto st(0) and pushes 1.0 onto the
1784 // FP register stack.
1785 __ fptan();
1786 __ fstp(0); // Pop FP register stack.
1787 break;
Ben Murdochb0fe1622011-05-05 13:52:32 +01001788 default:
1789 UNREACHABLE();
1790 }
1791 __ bind(&done);
1792 } else {
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001793 ASSERT(type == TranscendentalCache::LOG);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001794 __ fldln2();
1795 __ fxch();
1796 __ fyl2x();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001797 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001798}
1799
1800
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001801// Input: rdx, rax are the left and right objects of a bit op.
1802// Output: rax, rcx are left and right integers for a bit op.
1803void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) {
1804 // Check float operands.
1805 Label done;
1806 Label rax_is_smi;
1807 Label rax_is_object;
1808 Label rdx_is_object;
1809
1810 __ JumpIfNotSmi(rdx, &rdx_is_object);
1811 __ SmiToInteger32(rdx, rdx);
1812 __ JumpIfSmi(rax, &rax_is_smi);
1813
1814 __ bind(&rax_is_object);
1815 IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx.
1816 __ jmp(&done);
1817
1818 __ bind(&rdx_is_object);
1819 IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx.
1820 __ JumpIfNotSmi(rax, &rax_is_object);
1821 __ bind(&rax_is_smi);
1822 __ SmiToInteger32(rcx, rax);
1823
1824 __ bind(&done);
1825 __ movl(rax, rdx);
1826}
1827
1828
1829// Input: rdx, rax are the left and right objects of a bit op.
1830// Output: rax, rcx are left and right integers for a bit op.
Steve Block1e0659c2011-05-24 12:43:12 +01001831// Jump to conversion_failure: rdx and rax are unchanged.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001832void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
1833 Label* conversion_failure,
1834 Register heap_number_map) {
1835 // Check float operands.
1836 Label arg1_is_object, check_undefined_arg1;
1837 Label arg2_is_object, check_undefined_arg2;
1838 Label load_arg2, done;
1839
1840 __ JumpIfNotSmi(rdx, &arg1_is_object);
Steve Block1e0659c2011-05-24 12:43:12 +01001841 __ SmiToInteger32(r8, rdx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001842 __ jmp(&load_arg2);
1843
1844 // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
1845 __ bind(&check_undefined_arg1);
1846 __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
1847 __ j(not_equal, conversion_failure);
Ben Murdoch8b112d22011-06-08 16:22:53 +01001848 __ Set(r8, 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001849 __ jmp(&load_arg2);
1850
1851 __ bind(&arg1_is_object);
1852 __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map);
1853 __ j(not_equal, &check_undefined_arg1);
Steve Block1e0659c2011-05-24 12:43:12 +01001854 // Get the untagged integer version of the rdx heap number in rcx.
1855 IntegerConvert(masm, r8, rdx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001856
Steve Block1e0659c2011-05-24 12:43:12 +01001857 // Here r8 has the untagged integer, rax has a Smi or a heap number.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001858 __ bind(&load_arg2);
1859 // Test if arg2 is a Smi.
1860 __ JumpIfNotSmi(rax, &arg2_is_object);
Steve Block1e0659c2011-05-24 12:43:12 +01001861 __ SmiToInteger32(rcx, rax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001862 __ jmp(&done);
1863
1864 // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
1865 __ bind(&check_undefined_arg2);
1866 __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
1867 __ j(not_equal, conversion_failure);
Ben Murdoch8b112d22011-06-08 16:22:53 +01001868 __ Set(rcx, 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001869 __ jmp(&done);
1870
1871 __ bind(&arg2_is_object);
1872 __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map);
1873 __ j(not_equal, &check_undefined_arg2);
1874 // Get the untagged integer version of the rax heap number in rcx.
1875 IntegerConvert(masm, rcx, rax);
1876 __ bind(&done);
Steve Block1e0659c2011-05-24 12:43:12 +01001877 __ movl(rax, r8);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001878}
1879
1880
1881void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) {
1882 __ SmiToInteger32(kScratchRegister, rdx);
1883 __ cvtlsi2sd(xmm0, kScratchRegister);
1884 __ SmiToInteger32(kScratchRegister, rax);
1885 __ cvtlsi2sd(xmm1, kScratchRegister);
1886}
1887
1888
1889void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) {
1890 Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done;
1891 // Load operand in rdx into xmm0.
1892 __ JumpIfSmi(rdx, &load_smi_rdx);
1893 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
1894 // Load operand in rax into xmm1.
1895 __ JumpIfSmi(rax, &load_smi_rax);
1896 __ bind(&load_nonsmi_rax);
1897 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
1898 __ jmp(&done);
1899
1900 __ bind(&load_smi_rdx);
1901 __ SmiToInteger32(kScratchRegister, rdx);
1902 __ cvtlsi2sd(xmm0, kScratchRegister);
1903 __ JumpIfNotSmi(rax, &load_nonsmi_rax);
1904
1905 __ bind(&load_smi_rax);
1906 __ SmiToInteger32(kScratchRegister, rax);
1907 __ cvtlsi2sd(xmm1, kScratchRegister);
1908
1909 __ bind(&done);
1910}
1911
1912
1913void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
1914 Label* not_numbers) {
1915 Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
1916 // Load operand in rdx into xmm0, or branch to not_numbers.
1917 __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
1918 __ JumpIfSmi(rdx, &load_smi_rdx);
1919 __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
1920 __ j(not_equal, not_numbers); // Argument in rdx is not a number.
1921 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
1922 // Load operand in rax into xmm1, or branch to not_numbers.
1923 __ JumpIfSmi(rax, &load_smi_rax);
1924
1925 __ bind(&load_nonsmi_rax);
1926 __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx);
1927 __ j(not_equal, not_numbers);
1928 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
1929 __ jmp(&done);
1930
1931 __ bind(&load_smi_rdx);
1932 __ SmiToInteger32(kScratchRegister, rdx);
1933 __ cvtlsi2sd(xmm0, kScratchRegister);
1934 __ JumpIfNotSmi(rax, &load_nonsmi_rax);
1935
1936 __ bind(&load_smi_rax);
1937 __ SmiToInteger32(kScratchRegister, rax);
1938 __ cvtlsi2sd(xmm1, kScratchRegister);
1939 __ bind(&done);
1940}
1941
1942
Ben Murdoch8b112d22011-06-08 16:22:53 +01001943void FloatingPointHelper::NumbersToSmis(MacroAssembler* masm,
1944 Register first,
1945 Register second,
1946 Register scratch1,
1947 Register scratch2,
1948 Register scratch3,
1949 Label* on_success,
1950 Label* on_not_smis) {
1951 Register heap_number_map = scratch3;
1952 Register smi_result = scratch1;
1953 Label done;
1954
1955 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
1956
Ben Murdoch257744e2011-11-30 15:57:28 +00001957 Label first_smi;
1958 __ JumpIfSmi(first, &first_smi, Label::kNear);
Ben Murdoch8b112d22011-06-08 16:22:53 +01001959 __ cmpq(FieldOperand(first, HeapObject::kMapOffset), heap_number_map);
1960 __ j(not_equal, on_not_smis);
1961 // Convert HeapNumber to smi if possible.
1962 __ movsd(xmm0, FieldOperand(first, HeapNumber::kValueOffset));
1963 __ movq(scratch2, xmm0);
1964 __ cvttsd2siq(smi_result, xmm0);
1965 // Check if conversion was successful by converting back and
1966 // comparing to the original double's bits.
1967 __ cvtlsi2sd(xmm1, smi_result);
1968 __ movq(kScratchRegister, xmm1);
1969 __ cmpq(scratch2, kScratchRegister);
1970 __ j(not_equal, on_not_smis);
1971 __ Integer32ToSmi(first, smi_result);
1972
Ben Murdoch8b112d22011-06-08 16:22:53 +01001973 __ JumpIfSmi(second, (on_success != NULL) ? on_success : &done);
1974 __ bind(&first_smi);
1975 if (FLAG_debug_code) {
1976 // Second should be non-smi if we get here.
1977 __ AbortIfSmi(second);
1978 }
1979 __ cmpq(FieldOperand(second, HeapObject::kMapOffset), heap_number_map);
1980 __ j(not_equal, on_not_smis);
1981 // Convert second to smi, if possible.
1982 __ movsd(xmm0, FieldOperand(second, HeapNumber::kValueOffset));
1983 __ movq(scratch2, xmm0);
1984 __ cvttsd2siq(smi_result, xmm0);
1985 __ cvtlsi2sd(xmm1, smi_result);
1986 __ movq(kScratchRegister, xmm1);
1987 __ cmpq(scratch2, kScratchRegister);
1988 __ j(not_equal, on_not_smis);
1989 __ Integer32ToSmi(second, smi_result);
1990 if (on_success != NULL) {
1991 __ jmp(on_success);
1992 } else {
1993 __ bind(&done);
1994 }
1995}
1996
1997
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001998void MathPowStub::Generate(MacroAssembler* masm) {
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001999 // Choose register conforming to calling convention (when bailing out).
2000#ifdef _WIN64
2001 const Register exponent = rdx;
2002#else
2003 const Register exponent = rdi;
2004#endif
2005 const Register base = rax;
2006 const Register scratch = rcx;
2007 const XMMRegister double_result = xmm3;
2008 const XMMRegister double_base = xmm2;
2009 const XMMRegister double_exponent = xmm1;
2010 const XMMRegister double_scratch = xmm4;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002011
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002012 Label call_runtime, done, exponent_not_smi, int_exponent;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002013
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002014 // Save 1 in double_result - we need this several times later on.
2015 __ movq(scratch, Immediate(1));
2016 __ cvtlsi2sd(double_result, scratch);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002017
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002018 if (exponent_type_ == ON_STACK) {
2019 Label base_is_smi, unpack_exponent;
2020 // The exponent and base are supplied as arguments on the stack.
2021 // This can only happen if the stub is called from non-optimized code.
2022 // Load input parameters from stack.
2023 __ movq(base, Operand(rsp, 2 * kPointerSize));
2024 __ movq(exponent, Operand(rsp, 1 * kPointerSize));
2025 __ JumpIfSmi(base, &base_is_smi, Label::kNear);
2026 __ CompareRoot(FieldOperand(base, HeapObject::kMapOffset),
2027 Heap::kHeapNumberMapRootIndex);
2028 __ j(not_equal, &call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002029
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002030 __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
2031 __ jmp(&unpack_exponent, Label::kNear);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002032
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002033 __ bind(&base_is_smi);
2034 __ SmiToInteger32(base, base);
2035 __ cvtlsi2sd(double_base, base);
2036 __ bind(&unpack_exponent);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002037
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002038 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
2039 __ SmiToInteger32(exponent, exponent);
2040 __ jmp(&int_exponent);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002041
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002042 __ bind(&exponent_not_smi);
2043 __ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset),
2044 Heap::kHeapNumberMapRootIndex);
2045 __ j(not_equal, &call_runtime);
2046 __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
2047 } else if (exponent_type_ == TAGGED) {
2048 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
2049 __ SmiToInteger32(exponent, exponent);
2050 __ jmp(&int_exponent);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002051
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002052 __ bind(&exponent_not_smi);
2053 __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
2054 }
2055
2056 if (exponent_type_ != INTEGER) {
2057 Label fast_power;
2058 // Detect integer exponents stored as double.
2059 __ cvttsd2si(exponent, double_exponent);
2060 // Skip to runtime if possibly NaN (indicated by the indefinite integer).
2061 __ cmpl(exponent, Immediate(0x80000000u));
2062 __ j(equal, &call_runtime);
2063 __ cvtlsi2sd(double_scratch, exponent);
2064 // Already ruled out NaNs for exponent.
2065 __ ucomisd(double_exponent, double_scratch);
2066 __ j(equal, &int_exponent);
2067
2068 if (exponent_type_ == ON_STACK) {
2069 // Detect square root case. Crankshaft detects constant +/-0.5 at
2070 // compile time and uses DoMathPowHalf instead. We then skip this check
2071 // for non-constant cases of +/-0.5 as these hardly occur.
2072 Label continue_sqrt, continue_rsqrt, not_plus_half;
2073 // Test for 0.5.
2074 // Load double_scratch with 0.5.
2075 __ movq(scratch, V8_UINT64_C(0x3FE0000000000000), RelocInfo::NONE);
2076 __ movq(double_scratch, scratch);
2077 // Already ruled out NaNs for exponent.
2078 __ ucomisd(double_scratch, double_exponent);
2079 __ j(not_equal, &not_plus_half, Label::kNear);
2080
2081 // Calculates square root of base. Check for the special case of
2082 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
2083 // According to IEEE-754, double-precision -Infinity has the highest
2084 // 12 bits set and the lowest 52 bits cleared.
2085 __ movq(scratch, V8_UINT64_C(0xFFF0000000000000), RelocInfo::NONE);
2086 __ movq(double_scratch, scratch);
2087 __ ucomisd(double_scratch, double_base);
2088 // Comparing -Infinity with NaN results in "unordered", which sets the
2089 // zero flag as if both were equal. However, it also sets the carry flag.
2090 __ j(not_equal, &continue_sqrt, Label::kNear);
2091 __ j(carry, &continue_sqrt, Label::kNear);
2092
2093 // Set result to Infinity in the special case.
2094 __ xorps(double_result, double_result);
2095 __ subsd(double_result, double_scratch);
2096 __ jmp(&done);
2097
2098 __ bind(&continue_sqrt);
2099 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
2100 __ xorps(double_scratch, double_scratch);
2101 __ addsd(double_scratch, double_base); // Convert -0 to 0.
2102 __ sqrtsd(double_result, double_scratch);
2103 __ jmp(&done);
2104
2105 // Test for -0.5.
2106 __ bind(&not_plus_half);
2107 // Load double_scratch with -0.5 by substracting 1.
2108 __ subsd(double_scratch, double_result);
2109 // Already ruled out NaNs for exponent.
2110 __ ucomisd(double_scratch, double_exponent);
2111 __ j(not_equal, &fast_power, Label::kNear);
2112
2113 // Calculates reciprocal of square root of base. Check for the special
2114 // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
2115 // According to IEEE-754, double-precision -Infinity has the highest
2116 // 12 bits set and the lowest 52 bits cleared.
2117 __ movq(scratch, V8_UINT64_C(0xFFF0000000000000), RelocInfo::NONE);
2118 __ movq(double_scratch, scratch);
2119 __ ucomisd(double_scratch, double_base);
2120 // Comparing -Infinity with NaN results in "unordered", which sets the
2121 // zero flag as if both were equal. However, it also sets the carry flag.
2122 __ j(not_equal, &continue_rsqrt, Label::kNear);
2123 __ j(carry, &continue_rsqrt, Label::kNear);
2124
2125 // Set result to 0 in the special case.
2126 __ xorps(double_result, double_result);
2127 __ jmp(&done);
2128
2129 __ bind(&continue_rsqrt);
2130 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
2131 __ xorps(double_exponent, double_exponent);
2132 __ addsd(double_exponent, double_base); // Convert -0 to +0.
2133 __ sqrtsd(double_exponent, double_exponent);
2134 __ divsd(double_result, double_exponent);
2135 __ jmp(&done);
2136 }
2137
2138 // Using FPU instructions to calculate power.
2139 Label fast_power_failed;
2140 __ bind(&fast_power);
2141 __ fnclex(); // Clear flags to catch exceptions later.
2142 // Transfer (B)ase and (E)xponent onto the FPU register stack.
2143 __ subq(rsp, Immediate(kDoubleSize));
2144 __ movsd(Operand(rsp, 0), double_exponent);
2145 __ fld_d(Operand(rsp, 0)); // E
2146 __ movsd(Operand(rsp, 0), double_base);
2147 __ fld_d(Operand(rsp, 0)); // B, E
2148
2149 // Exponent is in st(1) and base is in st(0)
2150 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
2151 // FYL2X calculates st(1) * log2(st(0))
2152 __ fyl2x(); // X
2153 __ fld(0); // X, X
2154 __ frndint(); // rnd(X), X
2155 __ fsub(1); // rnd(X), X-rnd(X)
2156 __ fxch(1); // X - rnd(X), rnd(X)
2157 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
2158 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
2159 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
2160 __ faddp(1); // 1, 2^(X-rnd(X)), rnd(X)
2161 // FSCALE calculates st(0) * 2^st(1)
2162 __ fscale(); // 2^X, rnd(X)
2163 __ fstp(1);
2164 // Bail out to runtime in case of exceptions in the status word.
2165 __ fnstsw_ax();
2166 __ testb(rax, Immediate(0x5F)); // Check for all but precision exception.
2167 __ j(not_zero, &fast_power_failed, Label::kNear);
2168 __ fstp_d(Operand(rsp, 0));
2169 __ movsd(double_result, Operand(rsp, 0));
2170 __ addq(rsp, Immediate(kDoubleSize));
2171 __ jmp(&done);
2172
2173 __ bind(&fast_power_failed);
2174 __ fninit();
2175 __ addq(rsp, Immediate(kDoubleSize));
2176 __ jmp(&call_runtime);
2177 }
2178
2179 // Calculate power with integer exponent.
2180 __ bind(&int_exponent);
2181 const XMMRegister double_scratch2 = double_exponent;
2182 // Back up exponent as we need to check if exponent is negative later.
2183 __ movq(scratch, exponent); // Back up exponent.
2184 __ movsd(double_scratch, double_base); // Back up base.
2185 __ movsd(double_scratch2, double_result); // Load double_exponent with 1.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002186
2187 // Get absolute value of exponent.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002188 Label no_neg, while_true, no_multiply;
2189 __ testl(scratch, scratch);
2190 __ j(positive, &no_neg, Label::kNear);
2191 __ negl(scratch);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002192 __ bind(&no_neg);
2193
Ben Murdoch85b71792012-04-11 18:30:58 +01002194 __ bind(&while_true);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002195 __ shrl(scratch, Immediate(1));
Ben Murdoch85b71792012-04-11 18:30:58 +01002196 __ j(not_carry, &no_multiply, Label::kNear);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002197 __ mulsd(double_result, double_scratch);
Ben Murdoch85b71792012-04-11 18:30:58 +01002198 __ bind(&no_multiply);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002199
2200 __ mulsd(double_scratch, double_scratch);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002201 __ j(not_zero, &while_true);
2202
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002203 // If the exponent is negative, return 1/result.
2204 __ testl(exponent, exponent);
2205 __ j(greater, &done);
2206 __ divsd(double_scratch2, double_result);
2207 __ movsd(double_result, double_scratch2);
2208 // Test whether result is zero. Bail out to check for subnormal result.
2209 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
2210 __ xorps(double_scratch2, double_scratch2);
2211 __ ucomisd(double_scratch2, double_result);
2212 // double_exponent aliased as double_scratch2 has already been overwritten
2213 // and may not have contained the exponent value in the first place when the
2214 // input was a smi. We reset it with exponent value before bailing out.
2215 __ j(not_equal, &done);
2216 __ cvtlsi2sd(double_exponent, exponent);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002217
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002218 // Returning or bailing out.
2219 Counters* counters = masm->isolate()->counters();
2220 if (exponent_type_ == ON_STACK) {
2221 // The arguments are still on the stack.
2222 __ bind(&call_runtime);
2223 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002224
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002225 // The stub is called from non-optimized code, which expects the result
2226 // as heap number in eax.
2227 __ bind(&done);
2228 __ AllocateHeapNumber(rax, rcx, &call_runtime);
2229 __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result);
2230 __ IncrementCounter(counters->math_pow(), 1);
2231 __ ret(2 * kPointerSize);
2232 } else {
2233 __ bind(&call_runtime);
2234 // Move base to the correct argument register. Exponent is already in xmm1.
2235 __ movsd(xmm0, double_base);
2236 ASSERT(double_exponent.is(xmm1));
2237 {
2238 AllowExternalCallThatCantCauseGC scope(masm);
2239 __ PrepareCallCFunction(2);
2240 __ CallCFunction(
2241 ExternalReference::power_double_double_function(masm->isolate()), 2);
2242 }
2243 // Return value is in xmm0.
2244 __ movsd(double_result, xmm0);
2245 // Restore context register.
2246 __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002247
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002248 __ bind(&done);
2249 __ IncrementCounter(counters->math_pow(), 1);
2250 __ ret(0);
2251 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002252}
2253
2254
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002255void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
2256 // The key is in rdx and the parameter count is in rax.
2257
2258 // The displacement is used for skipping the frame pointer on the
2259 // stack. It is the offset of the last parameter (if any) relative
2260 // to the frame pointer.
2261 static const int kDisplacement = 1 * kPointerSize;
2262
2263 // Check that the key is a smi.
2264 Label slow;
2265 __ JumpIfNotSmi(rdx, &slow);
2266
Steve Block44f0eee2011-05-26 01:26:41 +01002267 // Check if the calling frame is an arguments adaptor frame. We look at the
2268 // context offset, and if the frame is not a regular one, then we find a
2269 // Smi instead of the context. We can't use SmiCompare here, because that
2270 // only works for comparing two smis.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002271 Label adaptor;
2272 __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002273 __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset),
2274 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002275 __ j(equal, &adaptor);
2276
2277 // Check index against formal parameters count limit passed in
2278 // through register rax. Use unsigned comparison to get negative
2279 // check for free.
2280 __ cmpq(rdx, rax);
2281 __ j(above_equal, &slow);
2282
2283 // Read the argument from the stack and return it.
2284 SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
2285 __ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
2286 index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
2287 __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
2288 __ Ret();
2289
2290 // Arguments adaptor case: Check index against actual arguments
2291 // limit found in the arguments adaptor frame. Use unsigned
2292 // comparison to get negative check for free.
2293 __ bind(&adaptor);
2294 __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
2295 __ cmpq(rdx, rcx);
2296 __ j(above_equal, &slow);
2297
2298 // Read the argument from the stack and return it.
2299 index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
2300 __ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
2301 index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
2302 __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
2303 __ Ret();
2304
2305 // Slow-case: Handle non-smi or out-of-bounds access to arguments
2306 // by calling the runtime system.
2307 __ bind(&slow);
2308 __ pop(rbx); // Return address.
2309 __ push(rdx);
2310 __ push(rbx);
2311 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
2312}
2313
2314
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002315void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
2316 // Stack layout:
2317 // rsp[0] : return address
2318 // rsp[8] : number of parameters (tagged)
2319 // rsp[16] : receiver displacement
2320 // rsp[24] : function
2321 // Registers used over the whole function:
2322 // rbx: the mapped parameter count (untagged)
2323 // rax: the allocated object (tagged).
2324
2325 Factory* factory = masm->isolate()->factory();
2326
2327 __ SmiToInteger64(rbx, Operand(rsp, 1 * kPointerSize));
2328 // rbx = parameter count (untagged)
2329
2330 // Check if the calling frame is an arguments adaptor frame.
2331 Label runtime;
2332 Label adaptor_frame, try_allocate;
2333 __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2334 __ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
2335 __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2336 __ j(equal, &adaptor_frame);
2337
2338 // No adaptor, parameter count = argument count.
2339 __ movq(rcx, rbx);
2340 __ jmp(&try_allocate, Label::kNear);
2341
2342 // We have an adaptor frame. Patch the parameters pointer.
2343 __ bind(&adaptor_frame);
2344 __ SmiToInteger64(rcx,
2345 Operand(rdx,
2346 ArgumentsAdaptorFrameConstants::kLengthOffset));
2347 __ lea(rdx, Operand(rdx, rcx, times_pointer_size,
2348 StandardFrameConstants::kCallerSPOffset));
2349 __ movq(Operand(rsp, 2 * kPointerSize), rdx);
2350
2351 // rbx = parameter count (untagged)
2352 // rcx = argument count (untagged)
2353 // Compute the mapped parameter count = min(rbx, rcx) in rbx.
2354 __ cmpq(rbx, rcx);
2355 __ j(less_equal, &try_allocate, Label::kNear);
2356 __ movq(rbx, rcx);
2357
2358 __ bind(&try_allocate);
2359
2360 // Compute the sizes of backing store, parameter map, and arguments object.
2361 // 1. Parameter map, has 2 extra words containing context and backing store.
2362 const int kParameterMapHeaderSize =
2363 FixedArray::kHeaderSize + 2 * kPointerSize;
2364 Label no_parameter_map;
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002365 __ xor_(r8, r8);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002366 __ testq(rbx, rbx);
2367 __ j(zero, &no_parameter_map, Label::kNear);
2368 __ lea(r8, Operand(rbx, times_pointer_size, kParameterMapHeaderSize));
2369 __ bind(&no_parameter_map);
2370
2371 // 2. Backing store.
2372 __ lea(r8, Operand(r8, rcx, times_pointer_size, FixedArray::kHeaderSize));
2373
2374 // 3. Arguments object.
2375 __ addq(r8, Immediate(Heap::kArgumentsObjectSize));
2376
2377 // Do the allocation of all three objects in one go.
2378 __ AllocateInNewSpace(r8, rax, rdx, rdi, &runtime, TAG_OBJECT);
2379
2380 // rax = address of new object(s) (tagged)
2381 // rcx = argument count (untagged)
2382 // Get the arguments boilerplate from the current (global) context into rdi.
2383 Label has_mapped_parameters, copy;
2384 __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
2385 __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
2386 __ testq(rbx, rbx);
2387 __ j(not_zero, &has_mapped_parameters, Label::kNear);
2388
2389 const int kIndex = Context::ARGUMENTS_BOILERPLATE_INDEX;
2390 __ movq(rdi, Operand(rdi, Context::SlotOffset(kIndex)));
2391 __ jmp(&copy, Label::kNear);
2392
2393 const int kAliasedIndex = Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX;
2394 __ bind(&has_mapped_parameters);
2395 __ movq(rdi, Operand(rdi, Context::SlotOffset(kAliasedIndex)));
2396 __ bind(&copy);
2397
2398 // rax = address of new object (tagged)
2399 // rbx = mapped parameter count (untagged)
2400 // rcx = argument count (untagged)
2401 // rdi = address of boilerplate object (tagged)
2402 // Copy the JS object part.
2403 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
2404 __ movq(rdx, FieldOperand(rdi, i));
2405 __ movq(FieldOperand(rax, i), rdx);
2406 }
2407
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002408 // Set up the callee in-object property.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002409 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
2410 __ movq(rdx, Operand(rsp, 3 * kPointerSize));
2411 __ movq(FieldOperand(rax, JSObject::kHeaderSize +
2412 Heap::kArgumentsCalleeIndex * kPointerSize),
2413 rdx);
2414
2415 // Use the length (smi tagged) and set that as an in-object property too.
2416 // Note: rcx is tagged from here on.
2417 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
2418 __ Integer32ToSmi(rcx, rcx);
2419 __ movq(FieldOperand(rax, JSObject::kHeaderSize +
2420 Heap::kArgumentsLengthIndex * kPointerSize),
2421 rcx);
2422
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002423 // Set up the elements pointer in the allocated arguments object.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002424 // If we allocated a parameter map, edi will point there, otherwise to the
2425 // backing store.
2426 __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize));
2427 __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
2428
2429 // rax = address of new object (tagged)
2430 // rbx = mapped parameter count (untagged)
2431 // rcx = argument count (tagged)
2432 // rdi = address of parameter map or backing store (tagged)
2433
2434 // Initialize parameter map. If there are no mapped arguments, we're done.
2435 Label skip_parameter_map;
2436 __ testq(rbx, rbx);
2437 __ j(zero, &skip_parameter_map);
2438
2439 __ LoadRoot(kScratchRegister, Heap::kNonStrictArgumentsElementsMapRootIndex);
2440 // rbx contains the untagged argument count. Add 2 and tag to write.
2441 __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
2442 __ Integer64PlusConstantToSmi(r9, rbx, 2);
2443 __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), r9);
2444 __ movq(FieldOperand(rdi, FixedArray::kHeaderSize + 0 * kPointerSize), rsi);
2445 __ lea(r9, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
2446 __ movq(FieldOperand(rdi, FixedArray::kHeaderSize + 1 * kPointerSize), r9);
2447
2448 // Copy the parameter slots and the holes in the arguments.
2449 // We need to fill in mapped_parameter_count slots. They index the context,
2450 // where parameters are stored in reverse order, at
2451 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
2452 // The mapped parameter thus need to get indices
2453 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
2454 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
2455 // We loop from right to left.
2456 Label parameters_loop, parameters_test;
2457
2458 // Load tagged parameter count into r9.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002459 __ Integer32ToSmi(r9, rbx);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002460 __ Move(r8, Smi::FromInt(Context::MIN_CONTEXT_SLOTS));
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002461 __ addq(r8, Operand(rsp, 1 * kPointerSize));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002462 __ subq(r8, r9);
2463 __ Move(r11, factory->the_hole_value());
2464 __ movq(rdx, rdi);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002465 __ lea(rdi, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002466 // r9 = loop variable (tagged)
2467 // r8 = mapping index (tagged)
2468 // r11 = the hole value
2469 // rdx = address of parameter map (tagged)
2470 // rdi = address of backing store (tagged)
2471 __ jmp(&parameters_test, Label::kNear);
2472
2473 __ bind(&parameters_loop);
2474 __ SmiSubConstant(r9, r9, Smi::FromInt(1));
2475 __ SmiToInteger64(kScratchRegister, r9);
2476 __ movq(FieldOperand(rdx, kScratchRegister,
2477 times_pointer_size,
2478 kParameterMapHeaderSize),
2479 r8);
2480 __ movq(FieldOperand(rdi, kScratchRegister,
2481 times_pointer_size,
2482 FixedArray::kHeaderSize),
2483 r11);
2484 __ SmiAddConstant(r8, r8, Smi::FromInt(1));
2485 __ bind(&parameters_test);
2486 __ SmiTest(r9);
2487 __ j(not_zero, &parameters_loop, Label::kNear);
2488
2489 __ bind(&skip_parameter_map);
2490
2491 // rcx = argument count (tagged)
2492 // rdi = address of backing store (tagged)
2493 // Copy arguments header and remaining slots (if there are any).
2494 __ Move(FieldOperand(rdi, FixedArray::kMapOffset),
2495 factory->fixed_array_map());
2496 __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
2497
2498 Label arguments_loop, arguments_test;
2499 __ movq(r8, rbx);
2500 __ movq(rdx, Operand(rsp, 2 * kPointerSize));
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002501 // Untag rcx for the loop below.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002502 __ SmiToInteger64(rcx, rcx);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002503 __ lea(kScratchRegister, Operand(r8, times_pointer_size, 0));
2504 __ subq(rdx, kScratchRegister);
2505 __ jmp(&arguments_test, Label::kNear);
2506
2507 __ bind(&arguments_loop);
2508 __ subq(rdx, Immediate(kPointerSize));
2509 __ movq(r9, Operand(rdx, 0));
2510 __ movq(FieldOperand(rdi, r8,
2511 times_pointer_size,
2512 FixedArray::kHeaderSize),
2513 r9);
2514 __ addq(r8, Immediate(1));
2515
2516 __ bind(&arguments_test);
2517 __ cmpq(r8, rcx);
2518 __ j(less, &arguments_loop, Label::kNear);
2519
2520 // Return and remove the on-stack parameters.
2521 __ ret(3 * kPointerSize);
2522
2523 // Do the runtime call to allocate the arguments object.
2524 // rcx = argument count (untagged)
2525 __ bind(&runtime);
2526 __ Integer32ToSmi(rcx, rcx);
2527 __ movq(Operand(rsp, 1 * kPointerSize), rcx); // Patch argument count.
2528 __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
2529}
2530
2531
2532void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
2533 // esp[0] : return address
2534 // esp[8] : number of parameters
2535 // esp[16] : receiver displacement
2536 // esp[24] : function
2537
2538 // Check if the calling frame is an arguments adaptor frame.
2539 Label runtime;
2540 __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2541 __ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
2542 __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2543 __ j(not_equal, &runtime);
2544
2545 // Patch the arguments.length and the parameters pointer.
2546 __ movq(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
2547 __ movq(Operand(rsp, 1 * kPointerSize), rcx);
2548 __ SmiToInteger64(rcx, rcx);
2549 __ lea(rdx, Operand(rdx, rcx, times_pointer_size,
2550 StandardFrameConstants::kCallerSPOffset));
2551 __ movq(Operand(rsp, 2 * kPointerSize), rdx);
2552
2553 __ bind(&runtime);
2554 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
2555}
2556
2557
2558void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002559 // rsp[0] : return address
2560 // rsp[8] : number of parameters
2561 // rsp[16] : receiver displacement
2562 // rsp[24] : function
2563
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002564 // Check if the calling frame is an arguments adaptor frame.
2565 Label adaptor_frame, try_allocate, runtime;
2566 __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002567 __ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
2568 __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002569 __ j(equal, &adaptor_frame);
2570
2571 // Get the length from the frame.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002572 __ movq(rcx, Operand(rsp, 1 * kPointerSize));
2573 __ SmiToInteger64(rcx, rcx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002574 __ jmp(&try_allocate);
2575
2576 // Patch the arguments.length and the parameters pointer.
2577 __ bind(&adaptor_frame);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002578 __ movq(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
2579 __ movq(Operand(rsp, 1 * kPointerSize), rcx);
2580 __ SmiToInteger64(rcx, rcx);
2581 __ lea(rdx, Operand(rdx, rcx, times_pointer_size,
2582 StandardFrameConstants::kCallerSPOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002583 __ movq(Operand(rsp, 2 * kPointerSize), rdx);
2584
2585 // Try the new space allocation. Start out with computing the size of
2586 // the arguments object and the elements array.
2587 Label add_arguments_object;
2588 __ bind(&try_allocate);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002589 __ testq(rcx, rcx);
2590 __ j(zero, &add_arguments_object, Label::kNear);
2591 __ lea(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002592 __ bind(&add_arguments_object);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002593 __ addq(rcx, Immediate(Heap::kArgumentsObjectSizeStrict));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002594
2595 // Do the allocation of both objects in one go.
2596 __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
2597
2598 // Get the arguments boilerplate from the current (global) context.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002599 __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
2600 __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002601 const int offset =
2602 Context::SlotOffset(Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX);
2603 __ movq(rdi, Operand(rdi, offset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002604
2605 // Copy the JS object part.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002606 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
2607 __ movq(rbx, FieldOperand(rdi, i));
2608 __ movq(FieldOperand(rax, i), rbx);
Steve Block44f0eee2011-05-26 01:26:41 +01002609 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002610
2611 // Get the length (smi tagged) and set that as an in-object property too.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002612 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002613 __ movq(rcx, Operand(rsp, 1 * kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01002614 __ movq(FieldOperand(rax, JSObject::kHeaderSize +
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002615 Heap::kArgumentsLengthIndex * kPointerSize),
Steve Block44f0eee2011-05-26 01:26:41 +01002616 rcx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002617
2618 // If there are no actual arguments, we're done.
2619 Label done;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002620 __ testq(rcx, rcx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002621 __ j(zero, &done);
2622
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002623 // Get the parameters pointer from the stack.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002624 __ movq(rdx, Operand(rsp, 2 * kPointerSize));
2625
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002626 // Set up the elements pointer in the allocated arguments object and
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002627 // initialize the header in the elements fixed array.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002628 __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSizeStrict));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002629 __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
2630 __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
2631 __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002632
2633
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002634 __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002635 // Untag the length for the loop below.
2636 __ SmiToInteger64(rcx, rcx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002637
2638 // Copy the fixed array slots.
2639 Label loop;
2640 __ bind(&loop);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002641 __ movq(rbx, Operand(rdx, -1 * kPointerSize)); // Skip receiver.
2642 __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), rbx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002643 __ addq(rdi, Immediate(kPointerSize));
2644 __ subq(rdx, Immediate(kPointerSize));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002645 __ decq(rcx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002646 __ j(not_zero, &loop);
2647
2648 // Return and remove the on-stack parameters.
2649 __ bind(&done);
2650 __ ret(3 * kPointerSize);
2651
2652 // Do the runtime call to allocate the arguments object.
2653 __ bind(&runtime);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002654 __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002655}
2656
2657
2658void RegExpExecStub::Generate(MacroAssembler* masm) {
2659 // Just jump directly to runtime if native RegExp is not selected at compile
2660 // time or if regexp entry in generated code is turned off runtime switch or
2661 // at compilation.
2662#ifdef V8_INTERPRETED_REGEXP
2663 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
2664#else // V8_INTERPRETED_REGEXP
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002665
2666 // Stack frame on entry.
Steve Block1e0659c2011-05-24 12:43:12 +01002667 // rsp[0]: return address
2668 // rsp[8]: last_match_info (expected JSArray)
2669 // rsp[16]: previous index
2670 // rsp[24]: subject string
2671 // rsp[32]: JSRegExp object
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002672
2673 static const int kLastMatchInfoOffset = 1 * kPointerSize;
2674 static const int kPreviousIndexOffset = 2 * kPointerSize;
2675 static const int kSubjectOffset = 3 * kPointerSize;
2676 static const int kJSRegExpOffset = 4 * kPointerSize;
2677
2678 Label runtime;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002679 // Ensure that a RegExp stack is allocated.
Steve Block44f0eee2011-05-26 01:26:41 +01002680 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002681 ExternalReference address_of_regexp_stack_memory_address =
Steve Block44f0eee2011-05-26 01:26:41 +01002682 ExternalReference::address_of_regexp_stack_memory_address(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002683 ExternalReference address_of_regexp_stack_memory_size =
Steve Block44f0eee2011-05-26 01:26:41 +01002684 ExternalReference::address_of_regexp_stack_memory_size(isolate);
2685 __ Load(kScratchRegister, address_of_regexp_stack_memory_size);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002686 __ testq(kScratchRegister, kScratchRegister);
2687 __ j(zero, &runtime);
2688
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002689 // Check that the first argument is a JSRegExp object.
2690 __ movq(rax, Operand(rsp, kJSRegExpOffset));
2691 __ JumpIfSmi(rax, &runtime);
2692 __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
2693 __ j(not_equal, &runtime);
2694 // Check that the RegExp has been compiled (data contains a fixed array).
Steve Block44f0eee2011-05-26 01:26:41 +01002695 __ movq(rax, FieldOperand(rax, JSRegExp::kDataOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002696 if (FLAG_debug_code) {
Steve Block44f0eee2011-05-26 01:26:41 +01002697 Condition is_smi = masm->CheckSmi(rax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002698 __ Check(NegateCondition(is_smi),
2699 "Unexpected type for RegExp data, FixedArray expected");
Steve Block44f0eee2011-05-26 01:26:41 +01002700 __ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002701 __ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
2702 }
2703
Steve Block44f0eee2011-05-26 01:26:41 +01002704 // rax: RegExp data (FixedArray)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002705 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
Steve Block44f0eee2011-05-26 01:26:41 +01002706 __ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002707 __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
2708 __ j(not_equal, &runtime);
2709
Steve Block44f0eee2011-05-26 01:26:41 +01002710 // rax: RegExp data (FixedArray)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002711 // Check that the number of captures fit in the static offsets vector buffer.
2712 __ SmiToInteger32(rdx,
Steve Block44f0eee2011-05-26 01:26:41 +01002713 FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002714 // Calculate number of capture registers (number_of_captures + 1) * 2.
2715 __ leal(rdx, Operand(rdx, rdx, times_1, 2));
2716 // Check that the static offsets vector buffer is large enough.
2717 __ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize));
2718 __ j(above, &runtime);
2719
Steve Block44f0eee2011-05-26 01:26:41 +01002720 // rax: RegExp data (FixedArray)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002721 // rdx: Number of capture registers
2722 // Check that the second argument is a string.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002723 __ movq(rdi, Operand(rsp, kSubjectOffset));
2724 __ JumpIfSmi(rdi, &runtime);
2725 Condition is_string = masm->IsObjectStringType(rdi, rbx, rbx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002726 __ j(NegateCondition(is_string), &runtime);
2727
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002728 // rdi: Subject string.
2729 // rax: RegExp data (FixedArray).
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002730 // rdx: Number of capture registers.
2731 // Check that the third argument is a positive smi less than the string
2732 // length. A negative value will be greater (unsigned comparison).
2733 __ movq(rbx, Operand(rsp, kPreviousIndexOffset));
2734 __ JumpIfNotSmi(rbx, &runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002735 __ SmiCompare(rbx, FieldOperand(rdi, String::kLengthOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002736 __ j(above_equal, &runtime);
2737
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002738 // rax: RegExp data (FixedArray)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002739 // rdx: Number of capture registers
2740 // Check that the fourth object is a JSArray object.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002741 __ movq(rdi, Operand(rsp, kLastMatchInfoOffset));
2742 __ JumpIfSmi(rdi, &runtime);
2743 __ CmpObjectType(rdi, JS_ARRAY_TYPE, kScratchRegister);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002744 __ j(not_equal, &runtime);
2745 // Check that the JSArray is in fast case.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002746 __ movq(rbx, FieldOperand(rdi, JSArray::kElementsOffset));
2747 __ movq(rdi, FieldOperand(rbx, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002748 __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
2749 Heap::kFixedArrayMapRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002750 __ j(not_equal, &runtime);
2751 // Check that the last match info has space for the capture registers and the
2752 // additional information. Ensure no overflow in add.
2753 STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002754 __ SmiToInteger32(rdi, FieldOperand(rbx, FixedArray::kLengthOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002755 __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002756 __ cmpl(rdx, rdi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002757 __ j(greater, &runtime);
2758
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002759 // Reset offset for possibly sliced string.
2760 __ Set(r14, 0);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002761 // rax: RegExp data (FixedArray)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002762 // Check the representation and encoding of the subject string.
Ben Murdoch257744e2011-11-30 15:57:28 +00002763 Label seq_ascii_string, seq_two_byte_string, check_code;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002764 __ movq(rdi, Operand(rsp, kSubjectOffset));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002765 // Make a copy of the original subject string.
2766 __ movq(r15, rdi);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002767 __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002768 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
2769 // First check for flat two byte string.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002770 __ andb(rbx, Immediate(kIsNotStringMask |
2771 kStringRepresentationMask |
2772 kStringEncodingMask |
2773 kShortExternalStringMask));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002774 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
Ben Murdoch257744e2011-11-30 15:57:28 +00002775 __ j(zero, &seq_two_byte_string, Label::kNear);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002776 // Any other flat string must be a flat ASCII string. None of the following
2777 // string type tests will succeed if subject is not a string or a short
2778 // external string.
2779 __ andb(rbx, Immediate(kIsNotStringMask |
2780 kStringRepresentationMask |
2781 kShortExternalStringMask));
Ben Murdoch257744e2011-11-30 15:57:28 +00002782 __ j(zero, &seq_ascii_string, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002783
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002784 // rbx: whether subject is a string and if yes, its string representation
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002785 // Check for flat cons string or sliced string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002786 // A flat cons string is a cons string where the second part is the empty
2787 // string. In that case the subject string is just the first part of the cons
2788 // string. Also in this case the first part of the cons string is known to be
2789 // a sequential string or an external string.
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002790 // In the case of a sliced string its offset has to be taken into account.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002791 Label cons_string, external_string, check_encoding;
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002792 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2793 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002794 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2795 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002796 __ cmpq(rbx, Immediate(kExternalStringTag));
2797 __ j(less, &cons_string, Label::kNear);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002798 __ j(equal, &external_string);
2799
2800 // Catch non-string subject or short external string.
2801 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
2802 __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask));
2803 __ j(not_zero, &runtime);
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002804
2805 // String is sliced.
2806 __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset));
2807 __ movq(rdi, FieldOperand(rdi, SlicedString::kParentOffset));
2808 // r14: slice offset
2809 // r15: original subject string
2810 // rdi: parent string
2811 __ jmp(&check_encoding, Label::kNear);
2812 // String is a cons string, check whether it is flat.
2813 __ bind(&cons_string);
Steve Block44f0eee2011-05-26 01:26:41 +01002814 __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset),
2815 Heap::kEmptyStringRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002816 __ j(not_equal, &runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002817 __ movq(rdi, FieldOperand(rdi, ConsString::kFirstOffset));
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002818 // rdi: first part of cons string or parent of sliced string.
2819 // rbx: map of first part of cons string or map of parent of sliced string.
2820 // Is first part of cons or parent of slice a flat two byte string?
2821 __ bind(&check_encoding);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002822 __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002823 __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
2824 Immediate(kStringRepresentationMask | kStringEncodingMask));
2825 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
Ben Murdoch257744e2011-11-30 15:57:28 +00002826 __ j(zero, &seq_two_byte_string, Label::kNear);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002827 // Any other flat string must be sequential ASCII or external.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002828 __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
2829 Immediate(kStringRepresentationMask));
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002830 __ j(not_zero, &external_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002831
2832 __ bind(&seq_ascii_string);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002833 // rdi: subject string (sequential ASCII)
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002834 // rax: RegExp data (FixedArray)
2835 __ movq(r11, FieldOperand(rax, JSRegExp::kDataAsciiCodeOffset));
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002836 __ Set(rcx, 1); // Type is ASCII.
Ben Murdoch257744e2011-11-30 15:57:28 +00002837 __ jmp(&check_code, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002838
2839 __ bind(&seq_two_byte_string);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002840 // rdi: subject string (flat two-byte)
2841 // rax: RegExp data (FixedArray)
2842 __ movq(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset));
2843 __ Set(rcx, 0); // Type is two byte.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002844
2845 __ bind(&check_code);
2846 // Check that the irregexp code has been generated for the actual string
2847 // encoding. If it has, the field contains a code object otherwise it contains
Ben Murdoch257744e2011-11-30 15:57:28 +00002848 // smi (code flushing support)
2849 __ JumpIfSmi(r11, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002850
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002851 // rdi: subject string
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002852 // rcx: encoding of subject string (1 if ASCII, 0 if two_byte);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002853 // r11: code
2854 // Load used arguments before starting to push arguments for call to native
2855 // RegExp code to avoid handling changing stack height.
2856 __ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset));
2857
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002858 // rdi: subject string
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002859 // rbx: previous index
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002860 // rcx: encoding of subject string (1 if ASCII 0 if two_byte);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002861 // r11: code
2862 // All checks done. Now push arguments for native regexp code.
Steve Block44f0eee2011-05-26 01:26:41 +01002863 Counters* counters = masm->isolate()->counters();
2864 __ IncrementCounter(counters->regexp_entry_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002865
Steve Block44f0eee2011-05-26 01:26:41 +01002866 // Isolates: note we add an additional parameter here (isolate pointer).
2867 static const int kRegExpExecuteArguments = 8;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002868 int argument_slots_on_stack =
2869 masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
Steve Block44f0eee2011-05-26 01:26:41 +01002870 __ EnterApiExitFrame(argument_slots_on_stack);
2871
2872 // Argument 8: Pass current isolate address.
2873 // __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize),
2874 // Immediate(ExternalReference::isolate_address()));
2875 __ LoadAddress(kScratchRegister, ExternalReference::isolate_address());
2876 __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize),
2877 kScratchRegister);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002878
2879 // Argument 7: Indicate that this is a direct call from JavaScript.
Steve Block44f0eee2011-05-26 01:26:41 +01002880 __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002881 Immediate(1));
2882
2883 // Argument 6: Start (high end) of backtracking stack memory area.
2884 __ movq(kScratchRegister, address_of_regexp_stack_memory_address);
2885 __ movq(r9, Operand(kScratchRegister, 0));
2886 __ movq(kScratchRegister, address_of_regexp_stack_memory_size);
2887 __ addq(r9, Operand(kScratchRegister, 0));
2888 // Argument 6 passed in r9 on Linux and on the stack on Windows.
2889#ifdef _WIN64
Steve Block44f0eee2011-05-26 01:26:41 +01002890 __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r9);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002891#endif
2892
2893 // Argument 5: static offsets vector buffer.
Steve Block44f0eee2011-05-26 01:26:41 +01002894 __ LoadAddress(r8,
2895 ExternalReference::address_of_static_offsets_vector(isolate));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002896 // Argument 5 passed in r8 on Linux and on the stack on Windows.
2897#ifdef _WIN64
Steve Block44f0eee2011-05-26 01:26:41 +01002898 __ movq(Operand(rsp, (argument_slots_on_stack - 4) * kPointerSize), r8);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002899#endif
2900
2901 // First four arguments are passed in registers on both Linux and Windows.
2902#ifdef _WIN64
2903 Register arg4 = r9;
2904 Register arg3 = r8;
2905 Register arg2 = rdx;
2906 Register arg1 = rcx;
2907#else
2908 Register arg4 = rcx;
2909 Register arg3 = rdx;
2910 Register arg2 = rsi;
2911 Register arg1 = rdi;
2912#endif
2913
2914 // Keep track on aliasing between argX defined above and the registers used.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002915 // rdi: subject string
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002916 // rbx: previous index
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002917 // rcx: encoding of subject string (1 if ASCII 0 if two_byte);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002918 // r11: code
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002919 // r14: slice offset
2920 // r15: original subject string
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002921
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002922 // Argument 2: Previous index.
2923 __ movq(arg2, rbx);
2924
Ben Murdoch69a99ed2011-11-30 16:03:39 +00002925 // Argument 4: End of string data
2926 // Argument 3: Start of string data
2927 Label setup_two_byte, setup_rest, got_length, length_not_from_slice;
2928 // Prepare start and end index of the input.
2929 // Load the length from the original sliced string if that is the case.
2930 __ addq(rbx, r14);
2931 __ SmiToInteger32(arg3, FieldOperand(r15, String::kLengthOffset));
2932 __ addq(r14, arg3); // Using arg3 as scratch.
2933
2934 // rbx: start index of the input
2935 // r14: end index of the input
2936 // r15: original subject string
2937 __ testb(rcx, rcx); // Last use of rcx as encoding of subject string.
2938 __ j(zero, &setup_two_byte, Label::kNear);
2939 __ lea(arg4, FieldOperand(rdi, r14, times_1, SeqAsciiString::kHeaderSize));
2940 __ lea(arg3, FieldOperand(rdi, rbx, times_1, SeqAsciiString::kHeaderSize));
2941 __ jmp(&setup_rest, Label::kNear);
2942 __ bind(&setup_two_byte);
2943 __ lea(arg4, FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize));
2944 __ lea(arg3, FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize));
2945 __ bind(&setup_rest);
2946
2947 // Argument 1: Original subject string.
2948 // The original subject is in the previous stack frame. Therefore we have to
2949 // use rbp, which points exactly to one pointer size below the previous rsp.
2950 // (Because creating a new stack frame pushes the previous rbp onto the stack
2951 // and thereby moves up rsp by one kPointerSize.)
2952 __ movq(arg1, r15);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002953
2954 // Locate the code entry and call it.
2955 __ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002956 __ call(r11);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002957
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002958 __ LeaveApiExitFrame();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002959
2960 // Check the result.
Ben Murdoch257744e2011-11-30 15:57:28 +00002961 Label success;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002962 Label exception;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002963 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS));
Ben Murdoch257744e2011-11-30 15:57:28 +00002964 __ j(equal, &success, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002965 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002966 __ j(equal, &exception);
2967 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
2968 // If none of the above, it can only be retry.
2969 // Handle that in the runtime system.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002970 __ j(not_equal, &runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002971
2972 // For failure return null.
2973 __ LoadRoot(rax, Heap::kNullValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002974 __ ret(4 * kPointerSize);
2975
2976 // Load RegExp data.
2977 __ bind(&success);
2978 __ movq(rax, Operand(rsp, kJSRegExpOffset));
2979 __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
2980 __ SmiToInteger32(rax,
2981 FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
2982 // Calculate number of capture registers (number_of_captures + 1) * 2.
2983 __ leal(rdx, Operand(rax, rax, times_1, 2));
2984
2985 // rdx: Number of capture registers
2986 // Load last_match_info which is still known to be a fast case JSArray.
2987 __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
2988 __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
2989
2990 // rbx: last_match_info backing store (FixedArray)
2991 // rdx: number of capture registers
2992 // Store the capture count.
2993 __ Integer32ToSmi(kScratchRegister, rdx);
2994 __ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
2995 kScratchRegister);
2996 // Store last subject and last input.
2997 __ movq(rax, Operand(rsp, kSubjectOffset));
2998 __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01002999 __ RecordWriteField(rbx,
3000 RegExpImpl::kLastSubjectOffset,
3001 rax,
3002 rdi,
3003 kDontSaveFPRegs);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003004 __ movq(rax, Operand(rsp, kSubjectOffset));
3005 __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01003006 __ RecordWriteField(rbx,
3007 RegExpImpl::kLastInputOffset,
3008 rax,
3009 rdi,
3010 kDontSaveFPRegs);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003011
3012 // Get the static offsets vector filled by the native regexp code.
Steve Block44f0eee2011-05-26 01:26:41 +01003013 __ LoadAddress(rcx,
3014 ExternalReference::address_of_static_offsets_vector(isolate));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003015
3016 // rbx: last_match_info backing store (FixedArray)
3017 // rcx: offsets vector
3018 // rdx: number of capture registers
Ben Murdoch257744e2011-11-30 15:57:28 +00003019 Label next_capture, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003020 // Capture register counter starts from number of capture registers and
3021 // counts down until wraping after zero.
3022 __ bind(&next_capture);
3023 __ subq(rdx, Immediate(1));
Ben Murdoch257744e2011-11-30 15:57:28 +00003024 __ j(negative, &done, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003025 // Read the value from the static offsets vector buffer and make it a smi.
3026 __ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003027 __ Integer32ToSmi(rdi, rdi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003028 // Store the smi value in the last match info.
3029 __ movq(FieldOperand(rbx,
3030 rdx,
3031 times_pointer_size,
3032 RegExpImpl::kFirstCaptureOffset),
3033 rdi);
3034 __ jmp(&next_capture);
3035 __ bind(&done);
3036
3037 // Return last match info.
3038 __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
3039 __ ret(4 * kPointerSize);
3040
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003041 __ bind(&exception);
3042 // Result must now be exception. If there is no pending exception already a
3043 // stack overflow (on the backtrack stack) was detected in RegExp code but
3044 // haven't created the exception yet. Handle that in the runtime system.
3045 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
Steve Block44f0eee2011-05-26 01:26:41 +01003046 ExternalReference pending_exception_address(
Ben Murdoch589d6972011-11-30 16:04:58 +00003047 Isolate::kPendingExceptionAddress, isolate);
Steve Block44f0eee2011-05-26 01:26:41 +01003048 Operand pending_exception_operand =
3049 masm->ExternalOperand(pending_exception_address, rbx);
3050 __ movq(rax, pending_exception_operand);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003051 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
3052 __ cmpq(rax, rdx);
3053 __ j(equal, &runtime);
Steve Block44f0eee2011-05-26 01:26:41 +01003054 __ movq(pending_exception_operand, rdx);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003055
3056 __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
Ben Murdoch257744e2011-11-30 15:57:28 +00003057 Label termination_exception;
3058 __ j(equal, &termination_exception, Label::kNear);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003059 __ Throw(rax);
3060
3061 __ bind(&termination_exception);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01003062 __ ThrowUncatchable(rax);
3063
3064 // External string. Short external strings have already been ruled out.
3065 // rdi: subject string (expected to be external)
3066 // rbx: scratch
3067 __ bind(&external_string);
3068 __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
3069 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
3070 if (FLAG_debug_code) {
3071 // Assert that we do not have a cons or slice (indirect strings) here.
3072 // Sequential strings have already been ruled out.
3073 __ testb(rbx, Immediate(kIsIndirectStringMask));
3074 __ Assert(zero, "external string expected, but not found");
3075 }
3076 __ movq(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
3077 // Move the pointer so that offset-wise, it looks like a sequential string.
3078 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
3079 __ subq(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3080 STATIC_ASSERT(kTwoByteStringTag == 0);
3081 __ testb(rbx, Immediate(kStringEncodingMask));
3082 __ j(not_zero, &seq_ascii_string);
3083 __ jmp(&seq_two_byte_string);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003084
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003085 // Do the runtime call to execute the regexp.
3086 __ bind(&runtime);
3087 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
3088#endif // V8_INTERPRETED_REGEXP
3089}
3090
3091
Ben Murdochb0fe1622011-05-05 13:52:32 +01003092void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
3093 const int kMaxInlineLength = 100;
3094 Label slowcase;
3095 Label done;
3096 __ movq(r8, Operand(rsp, kPointerSize * 3));
3097 __ JumpIfNotSmi(r8, &slowcase);
3098 __ SmiToInteger32(rbx, r8);
3099 __ cmpl(rbx, Immediate(kMaxInlineLength));
3100 __ j(above, &slowcase);
3101 // Smi-tagging is equivalent to multiplying by 2.
3102 STATIC_ASSERT(kSmiTag == 0);
3103 STATIC_ASSERT(kSmiTagSize == 1);
Steve Block1e0659c2011-05-24 12:43:12 +01003104 // Allocate RegExpResult followed by FixedArray with size in rbx.
Ben Murdochb0fe1622011-05-05 13:52:32 +01003105 // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
3106 // Elements: [Map][Length][..elements..]
3107 __ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize,
3108 times_pointer_size,
3109 rbx, // In: Number of elements.
3110 rax, // Out: Start of allocation (tagged).
3111 rcx, // Out: End of allocation.
3112 rdx, // Scratch register
3113 &slowcase,
3114 TAG_OBJECT);
3115 // rax: Start of allocated area, object-tagged.
3116 // rbx: Number of array elements as int32.
3117 // r8: Number of array elements as smi.
3118
3119 // Set JSArray map to global.regexp_result_map().
3120 __ movq(rdx, ContextOperand(rsi, Context::GLOBAL_INDEX));
3121 __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalContextOffset));
3122 __ movq(rdx, ContextOperand(rdx, Context::REGEXP_RESULT_MAP_INDEX));
3123 __ movq(FieldOperand(rax, HeapObject::kMapOffset), rdx);
3124
3125 // Set empty properties FixedArray.
Steve Block44f0eee2011-05-26 01:26:41 +01003126 __ LoadRoot(kScratchRegister, Heap::kEmptyFixedArrayRootIndex);
3127 __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), kScratchRegister);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003128
3129 // Set elements to point to FixedArray allocated right after the JSArray.
3130 __ lea(rcx, Operand(rax, JSRegExpResult::kSize));
3131 __ movq(FieldOperand(rax, JSObject::kElementsOffset), rcx);
3132
3133 // Set input, index and length fields from arguments.
3134 __ movq(r8, Operand(rsp, kPointerSize * 1));
3135 __ movq(FieldOperand(rax, JSRegExpResult::kInputOffset), r8);
3136 __ movq(r8, Operand(rsp, kPointerSize * 2));
3137 __ movq(FieldOperand(rax, JSRegExpResult::kIndexOffset), r8);
3138 __ movq(r8, Operand(rsp, kPointerSize * 3));
3139 __ movq(FieldOperand(rax, JSArray::kLengthOffset), r8);
3140
3141 // Fill out the elements FixedArray.
3142 // rax: JSArray.
3143 // rcx: FixedArray.
3144 // rbx: Number of elements in array as int32.
3145
3146 // Set map.
Steve Block44f0eee2011-05-26 01:26:41 +01003147 __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
3148 __ movq(FieldOperand(rcx, HeapObject::kMapOffset), kScratchRegister);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003149 // Set length.
3150 __ Integer32ToSmi(rdx, rbx);
3151 __ movq(FieldOperand(rcx, FixedArray::kLengthOffset), rdx);
3152 // Fill contents of fixed-array with the-hole.
Steve Block44f0eee2011-05-26 01:26:41 +01003153 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003154 __ lea(rcx, FieldOperand(rcx, FixedArray::kHeaderSize));
3155 // Fill fixed array elements with hole.
3156 // rax: JSArray.
3157 // rbx: Number of elements in array that remains to be filled, as int32.
3158 // rcx: Start of elements in FixedArray.
3159 // rdx: the hole.
3160 Label loop;
3161 __ testl(rbx, rbx);
3162 __ bind(&loop);
Steve Block1e0659c2011-05-24 12:43:12 +01003163 __ j(less_equal, &done); // Jump if rcx is negative or zero.
Ben Murdochb0fe1622011-05-05 13:52:32 +01003164 __ subl(rbx, Immediate(1));
3165 __ movq(Operand(rcx, rbx, times_pointer_size, 0), rdx);
3166 __ jmp(&loop);
3167
3168 __ bind(&done);
3169 __ ret(3 * kPointerSize);
3170
3171 __ bind(&slowcase);
3172 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
3173}
3174
3175
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003176void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
3177 Register object,
3178 Register result,
3179 Register scratch1,
3180 Register scratch2,
3181 bool object_is_smi,
3182 Label* not_found) {
3183 // Use of registers. Register result is used as a temporary.
3184 Register number_string_cache = result;
3185 Register mask = scratch1;
3186 Register scratch = scratch2;
3187
3188 // Load the number string cache.
3189 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
3190
3191 // Make the hash mask from the length of the number string cache. It
3192 // contains two elements (number and string) for each cache entry.
3193 __ SmiToInteger32(
3194 mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
3195 __ shrl(mask, Immediate(1));
3196 __ subq(mask, Immediate(1)); // Make mask.
3197
3198 // Calculate the entry in the number string cache. The hash value in the
3199 // number string cache for smis is just the smi value, and the hash for
3200 // doubles is the xor of the upper and lower words. See
3201 // Heap::GetNumberStringCache.
3202 Label is_smi;
3203 Label load_result_from_cache;
Ben Murdoch257744e2011-11-30 15:57:28 +00003204 Factory* factory = masm->isolate()->factory();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003205 if (!object_is_smi) {
3206 __ JumpIfSmi(object, &is_smi);
Ben Murdoch257744e2011-11-30 15:57:28 +00003207 __ CheckMap(object,
3208 factory->heap_number_map(),
3209 not_found,
3210 DONT_DO_SMI_CHECK);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003211
3212 STATIC_ASSERT(8 == kDoubleSize);
3213 __ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
3214 __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset));
3215 GenerateConvertHashCodeToIndex(masm, scratch, mask);
3216
3217 Register index = scratch;
3218 Register probe = mask;
3219 __ movq(probe,
3220 FieldOperand(number_string_cache,
3221 index,
3222 times_1,
3223 FixedArray::kHeaderSize));
3224 __ JumpIfSmi(probe, not_found);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003225 __ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
3226 __ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
3227 __ ucomisd(xmm0, xmm1);
3228 __ j(parity_even, not_found); // Bail out if NaN is involved.
3229 __ j(not_equal, not_found); // The cache did not contain this value.
3230 __ jmp(&load_result_from_cache);
3231 }
3232
3233 __ bind(&is_smi);
3234 __ SmiToInteger32(scratch, object);
3235 GenerateConvertHashCodeToIndex(masm, scratch, mask);
3236
3237 Register index = scratch;
3238 // Check if the entry is the smi we are looking for.
3239 __ cmpq(object,
3240 FieldOperand(number_string_cache,
3241 index,
3242 times_1,
3243 FixedArray::kHeaderSize));
3244 __ j(not_equal, not_found);
3245
3246 // Get the result from the cache.
3247 __ bind(&load_result_from_cache);
3248 __ movq(result,
3249 FieldOperand(number_string_cache,
3250 index,
3251 times_1,
3252 FixedArray::kHeaderSize + kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01003253 Counters* counters = masm->isolate()->counters();
3254 __ IncrementCounter(counters->number_to_string_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003255}
3256
3257
3258void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm,
3259 Register hash,
3260 Register mask) {
3261 __ and_(hash, mask);
3262 // Each entry in string cache consists of two pointer sized fields,
3263 // but times_twice_pointer_size (multiplication by 16) scale factor
3264 // is not supported by addrmode on x64 platform.
3265 // So we have to premultiply entry index before lookup.
3266 __ shl(hash, Immediate(kPointerSizeLog2 + 1));
3267}
3268
3269
3270void NumberToStringStub::Generate(MacroAssembler* masm) {
3271 Label runtime;
3272
3273 __ movq(rbx, Operand(rsp, kPointerSize));
3274
3275 // Generate code to lookup number in the number string cache.
3276 GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime);
3277 __ ret(1 * kPointerSize);
3278
3279 __ bind(&runtime);
3280 // Handle number to string in the runtime system if not found in the cache.
3281 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
3282}
3283
3284
3285static int NegativeComparisonResult(Condition cc) {
3286 ASSERT(cc != equal);
3287 ASSERT((cc == less) || (cc == less_equal)
3288 || (cc == greater) || (cc == greater_equal));
3289 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
3290}
3291
3292
3293void CompareStub::Generate(MacroAssembler* masm) {
3294 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
3295
3296 Label check_unequal_objects, done;
Ben Murdoch257744e2011-11-30 15:57:28 +00003297 Factory* factory = masm->isolate()->factory();
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003298
3299 // Compare two smis if required.
3300 if (include_smi_compare_) {
3301 Label non_smi, smi_done;
3302 __ JumpIfNotBothSmi(rax, rdx, &non_smi);
3303 __ subq(rdx, rax);
3304 __ j(no_overflow, &smi_done);
Ben Murdochf87a2032010-10-22 12:50:53 +01003305 __ not_(rdx); // Correct sign in case of overflow. rdx cannot be 0 here.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003306 __ bind(&smi_done);
3307 __ movq(rax, rdx);
3308 __ ret(0);
3309 __ bind(&non_smi);
3310 } else if (FLAG_debug_code) {
3311 Label ok;
3312 __ JumpIfNotSmi(rdx, &ok);
3313 __ JumpIfNotSmi(rax, &ok);
3314 __ Abort("CompareStub: smi operands");
3315 __ bind(&ok);
3316 }
3317
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003318 // The compare stub returns a positive, negative, or zero 64-bit integer
3319 // value in rax, corresponding to result of comparing the two inputs.
3320 // NOTICE! This code is only reached after a smi-fast-case check, so
3321 // it is certain that at least one operand isn't a smi.
3322
3323 // Two identical objects are equal unless they are both NaN or undefined.
3324 {
Ben Murdoch257744e2011-11-30 15:57:28 +00003325 Label not_identical;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003326 __ cmpq(rax, rdx);
Ben Murdoch257744e2011-11-30 15:57:28 +00003327 __ j(not_equal, &not_identical, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003328
3329 if (cc_ != equal) {
3330 // Check for undefined. undefined OP undefined is false even though
3331 // undefined == undefined.
Ben Murdoch257744e2011-11-30 15:57:28 +00003332 Label check_for_nan;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003333 __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
Ben Murdoch257744e2011-11-30 15:57:28 +00003334 __ j(not_equal, &check_for_nan, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003335 __ Set(rax, NegativeComparisonResult(cc_));
3336 __ ret(0);
3337 __ bind(&check_for_nan);
3338 }
3339
Steve Block44f0eee2011-05-26 01:26:41 +01003340 // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003341 // so we do the second best thing - test it ourselves.
3342 // Note: if cc_ != equal, never_nan_nan_ is not used.
3343 // We cannot set rax to EQUAL until just before return because
3344 // rax must be unchanged on jump to not_identical.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003345 if (never_nan_nan_ && (cc_ == equal)) {
3346 __ Set(rax, EQUAL);
3347 __ ret(0);
3348 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00003349 Label heap_number;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003350 // If it's not a heap number, then return equal for (in)equality operator.
3351 __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
Ben Murdoch257744e2011-11-30 15:57:28 +00003352 factory->heap_number_map());
3353 __ j(equal, &heap_number, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003354 if (cc_ != equal) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003355 // Call runtime on identical objects. Otherwise return equal.
3356 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
Ben Murdoch257744e2011-11-30 15:57:28 +00003357 __ j(above_equal, &not_identical, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003358 }
3359 __ Set(rax, EQUAL);
3360 __ ret(0);
3361
3362 __ bind(&heap_number);
3363 // It is a heap number, so return equal if it's not NaN.
3364 // For NaN, return 1 for every condition except greater and
3365 // greater-equal. Return -1 for them, so the comparison yields
3366 // false for all conditions except not-equal.
3367 __ Set(rax, EQUAL);
3368 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
3369 __ ucomisd(xmm0, xmm0);
3370 __ setcc(parity_even, rax);
3371 // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
3372 if (cc_ == greater_equal || cc_ == greater) {
3373 __ neg(rax);
3374 }
3375 __ ret(0);
3376 }
3377
3378 __ bind(&not_identical);
3379 }
3380
3381 if (cc_ == equal) { // Both strict and non-strict.
3382 Label slow; // Fallthrough label.
3383
3384 // If we're doing a strict equality comparison, we don't have to do
3385 // type conversion, so we generate code to do fast comparison for objects
3386 // and oddballs. Non-smi numbers and strings still go through the usual
3387 // slow-case code.
3388 if (strict_) {
3389 // If either is a Smi (we know that not both are), then they can only
3390 // be equal if the other is a HeapNumber. If so, use the slow case.
3391 {
3392 Label not_smis;
3393 __ SelectNonSmi(rbx, rax, rdx, &not_smis);
3394
3395 // Check if the non-smi operand is a heap number.
3396 __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
Ben Murdoch257744e2011-11-30 15:57:28 +00003397 factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003398 // If heap number, handle it in the slow case.
3399 __ j(equal, &slow);
3400 // Return non-equal. ebx (the lower half of rbx) is not zero.
3401 __ movq(rax, rbx);
3402 __ ret(0);
3403
3404 __ bind(&not_smis);
3405 }
3406
3407 // If either operand is a JSObject or an oddball value, then they are not
3408 // equal since their pointers are different
3409 // There is no test for undetectability in strict equality.
3410
3411 // If the first object is a JS object, we have done pointer comparison.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003412 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
Ben Murdoch257744e2011-11-30 15:57:28 +00003413 Label first_non_object;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003414 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
Ben Murdoch257744e2011-11-30 15:57:28 +00003415 __ j(below, &first_non_object, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003416 // Return non-zero (eax (not rax) is not zero)
3417 Label return_not_equal;
3418 STATIC_ASSERT(kHeapObjectTag != 0);
3419 __ bind(&return_not_equal);
3420 __ ret(0);
3421
3422 __ bind(&first_non_object);
3423 // Check for oddballs: true, false, null, undefined.
3424 __ CmpInstanceType(rcx, ODDBALL_TYPE);
3425 __ j(equal, &return_not_equal);
3426
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003427 __ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003428 __ j(above_equal, &return_not_equal);
3429
3430 // Check for oddballs: true, false, null, undefined.
3431 __ CmpInstanceType(rcx, ODDBALL_TYPE);
3432 __ j(equal, &return_not_equal);
3433
3434 // Fall through to the general case.
3435 }
3436 __ bind(&slow);
3437 }
3438
3439 // Generate the number comparison code.
3440 if (include_number_compare_) {
3441 Label non_number_comparison;
Ben Murdoch257744e2011-11-30 15:57:28 +00003442 Label unordered;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003443 FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
3444 __ xorl(rax, rax);
3445 __ xorl(rcx, rcx);
3446 __ ucomisd(xmm0, xmm1);
3447
3448 // Don't base result on EFLAGS when a NaN is involved.
Ben Murdoch257744e2011-11-30 15:57:28 +00003449 __ j(parity_even, &unordered, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003450 // Return a result of -1, 0, or 1, based on EFLAGS.
3451 __ setcc(above, rax);
3452 __ setcc(below, rcx);
3453 __ subq(rax, rcx);
3454 __ ret(0);
3455
3456 // If one of the numbers was NaN, then the result is always false.
3457 // The cc is never not-equal.
3458 __ bind(&unordered);
3459 ASSERT(cc_ != not_equal);
3460 if (cc_ == less || cc_ == less_equal) {
3461 __ Set(rax, 1);
3462 } else {
3463 __ Set(rax, -1);
3464 }
3465 __ ret(0);
3466
3467 // The number comparison code did not provide a valid result.
3468 __ bind(&non_number_comparison);
3469 }
3470
3471 // Fast negative check for symbol-to-symbol equality.
3472 Label check_for_strings;
3473 if (cc_ == equal) {
3474 BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister);
3475 BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister);
3476
3477 // We've already checked for object identity, so if both operands
3478 // are symbols they aren't equal. Register eax (not rax) already holds a
3479 // non-zero value, which indicates not equal, so just return.
3480 __ ret(0);
3481 }
3482
3483 __ bind(&check_for_strings);
3484
3485 __ JumpIfNotBothSequentialAsciiStrings(
3486 rdx, rax, rcx, rbx, &check_unequal_objects);
3487
Ben Murdoch3ef787d2012-04-12 10:51:47 +01003488 // Inline comparison of ASCII strings.
Ben Murdoch257744e2011-11-30 15:57:28 +00003489 if (cc_ == equal) {
3490 StringCompareStub::GenerateFlatAsciiStringEquals(masm,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003491 rdx,
3492 rax,
3493 rcx,
Ben Murdoch257744e2011-11-30 15:57:28 +00003494 rbx);
3495 } else {
3496 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
3497 rdx,
3498 rax,
3499 rcx,
3500 rbx,
3501 rdi,
3502 r8);
3503 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003504
3505#ifdef DEBUG
3506 __ Abort("Unexpected fall-through from string comparison");
3507#endif
3508
3509 __ bind(&check_unequal_objects);
3510 if (cc_ == equal && !strict_) {
3511 // Not strict equality. Objects are unequal if
3512 // they are both JSObjects and not undetectable,
3513 // and their pointers are different.
Ben Murdoch257744e2011-11-30 15:57:28 +00003514 Label not_both_objects, return_unequal;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003515 // At most one is a smi, so we can test for smi by adding the two.
3516 // A smi plus a heap object has the low bit set, a heap object plus
3517 // a heap object has the low bit clear.
3518 STATIC_ASSERT(kSmiTag == 0);
3519 STATIC_ASSERT(kSmiTagMask == 1);
3520 __ lea(rcx, Operand(rax, rdx, times_1, 0));
3521 __ testb(rcx, Immediate(kSmiTagMask));
Ben Murdoch257744e2011-11-30 15:57:28 +00003522 __ j(not_zero, &not_both_objects, Label::kNear);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003523 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rbx);
Ben Murdoch257744e2011-11-30 15:57:28 +00003524 __ j(below, &not_both_objects, Label::kNear);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003525 __ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx);
Ben Murdoch257744e2011-11-30 15:57:28 +00003526 __ j(below, &not_both_objects, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003527 __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
3528 Immediate(1 << Map::kIsUndetectable));
Ben Murdoch257744e2011-11-30 15:57:28 +00003529 __ j(zero, &return_unequal, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003530 __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
3531 Immediate(1 << Map::kIsUndetectable));
Ben Murdoch257744e2011-11-30 15:57:28 +00003532 __ j(zero, &return_unequal, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003533 // The objects are both undetectable, so they both compare as the value
3534 // undefined, and are equal.
3535 __ Set(rax, EQUAL);
3536 __ bind(&return_unequal);
Steve Block1e0659c2011-05-24 12:43:12 +01003537 // Return non-equal by returning the non-zero object pointer in rax,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003538 // or return equal if we fell through to here.
3539 __ ret(0);
3540 __ bind(&not_both_objects);
3541 }
3542
3543 // Push arguments below the return address to prepare jump to builtin.
3544 __ pop(rcx);
3545 __ push(rdx);
3546 __ push(rax);
3547
3548 // Figure out which native to call and setup the arguments.
3549 Builtins::JavaScript builtin;
3550 if (cc_ == equal) {
3551 builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
3552 } else {
3553 builtin = Builtins::COMPARE;
3554 __ Push(Smi::FromInt(NegativeComparisonResult(cc_)));
3555 }
3556
3557 // Restore return address on the stack.
3558 __ push(rcx);
3559
3560 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
3561 // tagged as a small integer.
3562 __ InvokeBuiltin(builtin, JUMP_FUNCTION);
3563}
3564
3565
3566void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
3567 Label* label,
3568 Register object,
3569 Register scratch) {
3570 __ JumpIfSmi(object, label);
3571 __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset));
3572 __ movzxbq(scratch,
3573 FieldOperand(scratch, Map::kInstanceTypeOffset));
3574 // Ensure that no non-strings have the symbol bit set.
3575 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
3576 STATIC_ASSERT(kSymbolTag != 0);
3577 __ testb(scratch, Immediate(kIsSymbolMask));
3578 __ j(zero, label);
3579}
3580
3581
3582void StackCheckStub::Generate(MacroAssembler* masm) {
Ben Murdochf87a2032010-10-22 12:50:53 +01003583 __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003584}
3585
3586
Ben Murdoch3ef787d2012-04-12 10:51:47 +01003587void InterruptStub::Generate(MacroAssembler* masm) {
3588 __ TailCallRuntime(Runtime::kInterrupt, 0, 1);
3589}
3590
3591
3592static void GenerateRecordCallTarget(MacroAssembler* masm) {
3593 // Cache the called function in a global property cell. Cache states
3594 // are uninitialized, monomorphic (indicated by a JSFunction), and
3595 // megamorphic.
3596 // rbx : cache cell for call target
3597 // rdi : the function to call
3598 Isolate* isolate = masm->isolate();
3599 Label initialize, done;
3600
3601 // Load the cache state into rcx.
3602 __ movq(rcx, FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset));
3603
3604 // A monomorphic cache hit or an already megamorphic state: invoke the
3605 // function without changing the state.
3606 __ cmpq(rcx, rdi);
3607 __ j(equal, &done, Label::kNear);
3608 __ Cmp(rcx, TypeFeedbackCells::MegamorphicSentinel(isolate));
3609 __ j(equal, &done, Label::kNear);
3610
3611 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
3612 // megamorphic.
3613 __ Cmp(rcx, TypeFeedbackCells::UninitializedSentinel(isolate));
3614 __ j(equal, &initialize, Label::kNear);
3615 // MegamorphicSentinel is an immortal immovable object (undefined) so no
3616 // write-barrier is needed.
3617 __ Move(FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset),
3618 TypeFeedbackCells::MegamorphicSentinel(isolate));
3619 __ jmp(&done, Label::kNear);
3620
3621 // An uninitialized cache is patched with the function.
3622 __ bind(&initialize);
3623 __ movq(FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset), rdi);
3624 // No need for a write barrier here - cells are rescanned.
3625
3626 __ bind(&done);
3627}
3628
3629
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003630void CallFunctionStub::Generate(MacroAssembler* masm) {
Ben Murdoch3ef787d2012-04-12 10:51:47 +01003631 // rdi : the function to call
3632 // rbx : cache cell for call target
Ben Murdoch589d6972011-11-30 16:04:58 +00003633 Label slow, non_function;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003634
Ben Murdoch257744e2011-11-30 15:57:28 +00003635 // The receiver might implicitly be the global object. This is
3636 // indicated by passing the hole as the receiver to the call
3637 // function stub.
3638 if (ReceiverMightBeImplicit()) {
3639 Label call;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003640 // Get the receiver from the stack.
3641 // +1 ~ return address
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003642 __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00003643 // Call as function is indicated with the hole.
3644 __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
3645 __ j(not_equal, &call, Label::kNear);
3646 // Patch the receiver on the stack with the global receiver object.
3647 __ movq(rbx, GlobalObjectOperand());
3648 __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
3649 __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rbx);
3650 __ bind(&call);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003651 }
3652
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003653 // Check that the function really is a JavaScript function.
Ben Murdoch589d6972011-11-30 16:04:58 +00003654 __ JumpIfSmi(rdi, &non_function);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003655 // Goto slow case if we do not have a function.
3656 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
3657 __ j(not_equal, &slow);
3658
3659 // Fast-case: Just invoke the function.
3660 ParameterCount actual(argc_);
Ben Murdoch257744e2011-11-30 15:57:28 +00003661
3662 if (ReceiverMightBeImplicit()) {
3663 Label call_as_function;
3664 __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
3665 __ j(equal, &call_as_function);
3666 __ InvokeFunction(rdi,
3667 actual,
3668 JUMP_FUNCTION,
3669 NullCallWrapper(),
3670 CALL_AS_METHOD);
3671 __ bind(&call_as_function);
3672 }
3673 __ InvokeFunction(rdi,
3674 actual,
3675 JUMP_FUNCTION,
3676 NullCallWrapper(),
3677 CALL_AS_FUNCTION);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003678
3679 // Slow-case: Non-function called.
3680 __ bind(&slow);
Ben Murdoch589d6972011-11-30 16:04:58 +00003681 // Check for function proxy.
3682 __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
3683 __ j(not_equal, &non_function);
3684 __ pop(rcx);
3685 __ push(rdi); // put proxy as additional argument under return address
3686 __ push(rcx);
3687 __ Set(rax, argc_ + 1);
3688 __ Set(rbx, 0);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01003689 __ SetCallKind(rcx, CALL_AS_METHOD);
Ben Murdoch589d6972011-11-30 16:04:58 +00003690 __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
3691 {
3692 Handle<Code> adaptor =
3693 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
3694 __ jmp(adaptor, RelocInfo::CODE_TARGET);
3695 }
3696
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003697 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
3698 // of the original receiver from the call site).
Ben Murdoch589d6972011-11-30 16:04:58 +00003699 __ bind(&non_function);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003700 __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi);
3701 __ Set(rax, argc_);
3702 __ Set(rbx, 0);
Ben Murdoch589d6972011-11-30 16:04:58 +00003703 __ SetCallKind(rcx, CALL_AS_METHOD);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003704 __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
Steve Block44f0eee2011-05-26 01:26:41 +01003705 Handle<Code> adaptor =
3706 Isolate::Current()->builtins()->ArgumentsAdaptorTrampoline();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003707 __ Jump(adaptor, RelocInfo::CODE_TARGET);
3708}
3709
3710
Ben Murdoch3ef787d2012-04-12 10:51:47 +01003711void CallConstructStub::Generate(MacroAssembler* masm) {
3712 // rax : number of arguments
3713 // rbx : cache cell for call target
3714 // rdi : constructor function
3715 Label slow, non_function_call;
3716
3717 // Check that function is not a smi.
3718 __ JumpIfSmi(rdi, &non_function_call);
3719 // Check that function is a JSFunction.
3720 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
3721 __ j(not_equal, &slow);
3722
3723 if (RecordCallTarget()) {
3724 GenerateRecordCallTarget(masm);
3725 }
3726
3727 // Jump to the function-specific construct stub.
3728 __ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
3729 __ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kConstructStubOffset));
3730 __ lea(rbx, FieldOperand(rbx, Code::kHeaderSize));
3731 __ jmp(rbx);
3732
3733 // rdi: called object
3734 // rax: number of arguments
3735 // rcx: object map
3736 Label do_call;
3737 __ bind(&slow);
3738 __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
3739 __ j(not_equal, &non_function_call);
3740 __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
3741 __ jmp(&do_call);
3742
3743 __ bind(&non_function_call);
3744 __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
3745 __ bind(&do_call);
3746 // Set expected number of arguments to zero (not changing rax).
3747 __ Set(rbx, 0);
3748 __ SetCallKind(rcx, CALL_AS_METHOD);
3749 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
3750 RelocInfo::CODE_TARGET);
3751}
3752
3753
Steve Block44f0eee2011-05-26 01:26:41 +01003754bool CEntryStub::NeedsImmovableCode() {
3755 return false;
3756}
3757
3758
Ben Murdoch3ef787d2012-04-12 10:51:47 +01003759bool CEntryStub::IsPregenerated() {
3760#ifdef _WIN64
3761 return result_size_ == 1;
3762#else
3763 return true;
3764#endif
3765}
3766
3767
3768void CodeStub::GenerateStubsAheadOfTime() {
3769 CEntryStub::GenerateAheadOfTime();
3770 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime();
3771 // It is important that the store buffer overflow stubs are generated first.
3772 RecordWriteStub::GenerateFixedRegStubsAheadOfTime();
3773}
3774
3775
3776void CodeStub::GenerateFPStubs() {
3777}
3778
3779
3780void CEntryStub::GenerateAheadOfTime() {
3781 CEntryStub stub(1, kDontSaveFPRegs);
3782 stub.GetCode()->set_is_pregenerated(true);
3783 CEntryStub save_doubles(1, kSaveFPRegs);
3784 save_doubles.GetCode()->set_is_pregenerated(true);
Ben Murdoch592a9fc2012-03-05 11:04:45 +00003785}
3786
3787
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003788void CEntryStub::GenerateCore(MacroAssembler* masm,
3789 Label* throw_normal_exception,
3790 Label* throw_termination_exception,
3791 Label* throw_out_of_memory_exception,
3792 bool do_gc,
Steve Block1e0659c2011-05-24 12:43:12 +01003793 bool always_allocate_scope) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003794 // rax: result parameter for PerformGC, if any.
3795 // rbx: pointer to C function (C callee-saved).
3796 // rbp: frame pointer (restored after C call).
3797 // rsp: stack pointer (restored after C call).
3798 // r14: number of arguments including receiver (C callee-saved).
Steve Block44f0eee2011-05-26 01:26:41 +01003799 // r15: pointer to the first argument (C callee-saved).
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003800 // This pointer is reused in LeaveExitFrame(), so it is stored in a
3801 // callee-saved register.
3802
3803 // Simple results returned in rax (both AMD64 and Win64 calling conventions).
3804 // Complex results must be written to address passed as first argument.
3805 // AMD64 calling convention: a struct of two pointers in rax+rdx
3806
3807 // Check stack alignment.
3808 if (FLAG_debug_code) {
3809 __ CheckStackAlignment();
3810 }
3811
3812 if (do_gc) {
3813 // Pass failure code returned from last attempt as first argument to
3814 // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
3815 // stack is known to be aligned. This function takes one argument which is
3816 // passed in register.
3817#ifdef _WIN64
3818 __ movq(rcx, rax);
3819#else // _WIN64
3820 __ movq(rdi, rax);
3821#endif
3822 __ movq(kScratchRegister,
3823 FUNCTION_ADDR(Runtime::PerformGC),
3824 RelocInfo::RUNTIME_ENTRY);
3825 __ call(kScratchRegister);
3826 }
3827
3828 ExternalReference scope_depth =
Steve Block44f0eee2011-05-26 01:26:41 +01003829 ExternalReference::heap_always_allocate_scope_depth(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003830 if (always_allocate_scope) {
Steve Block44f0eee2011-05-26 01:26:41 +01003831 Operand scope_depth_operand = masm->ExternalOperand(scope_depth);
3832 __ incl(scope_depth_operand);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003833 }
3834
3835 // Call C function.
3836#ifdef _WIN64
3837 // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9
3838 // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots.
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08003839 __ movq(StackSpaceOperand(0), r14); // argc.
Steve Block44f0eee2011-05-26 01:26:41 +01003840 __ movq(StackSpaceOperand(1), r15); // argv.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003841 if (result_size_ < 2) {
3842 // Pass a pointer to the Arguments object as the first argument.
3843 // Return result in single register (rax).
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08003844 __ lea(rcx, StackSpaceOperand(0));
Steve Block44f0eee2011-05-26 01:26:41 +01003845 __ LoadAddress(rdx, ExternalReference::isolate_address());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003846 } else {
3847 ASSERT_EQ(2, result_size_);
3848 // Pass a pointer to the result location as the first argument.
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08003849 __ lea(rcx, StackSpaceOperand(2));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003850 // Pass a pointer to the Arguments object as the second argument.
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08003851 __ lea(rdx, StackSpaceOperand(0));
Steve Block44f0eee2011-05-26 01:26:41 +01003852 __ LoadAddress(r8, ExternalReference::isolate_address());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003853 }
3854
3855#else // _WIN64
3856 // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
3857 __ movq(rdi, r14); // argc.
Steve Block44f0eee2011-05-26 01:26:41 +01003858 __ movq(rsi, r15); // argv.
3859 __ movq(rdx, ExternalReference::isolate_address());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003860#endif
3861 __ call(rbx);
3862 // Result is in rax - do not destroy this register!
3863
3864 if (always_allocate_scope) {
Steve Block44f0eee2011-05-26 01:26:41 +01003865 Operand scope_depth_operand = masm->ExternalOperand(scope_depth);
3866 __ decl(scope_depth_operand);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003867 }
3868
3869 // Check for failure result.
3870 Label failure_returned;
3871 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
3872#ifdef _WIN64
3873 // If return value is on the stack, pop it to registers.
3874 if (result_size_ > 1) {
3875 ASSERT_EQ(2, result_size_);
3876 // Read result values stored on stack. Result is stored
3877 // above the four argument mirror slots and the two
3878 // Arguments object slots.
3879 __ movq(rax, Operand(rsp, 6 * kPointerSize));
3880 __ movq(rdx, Operand(rsp, 7 * kPointerSize));
3881 }
3882#endif
3883 __ lea(rcx, Operand(rax, 1));
3884 // Lower 2 bits of rcx are 0 iff rax has failure tag.
3885 __ testl(rcx, Immediate(kFailureTagMask));
3886 __ j(zero, &failure_returned);
3887
3888 // Exit the JavaScript to C++ exit frame.
Steve Block1e0659c2011-05-24 12:43:12 +01003889 __ LeaveExitFrame(save_doubles_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003890 __ ret(0);
3891
3892 // Handling of failure.
3893 __ bind(&failure_returned);
3894
Ben Murdoch257744e2011-11-30 15:57:28 +00003895 Label retry;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003896 // If the returned exception is RETRY_AFTER_GC continue at retry label
3897 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
3898 __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00003899 __ j(zero, &retry, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003900
3901 // Special handling of out of memory exceptions.
3902 __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE);
3903 __ cmpq(rax, kScratchRegister);
3904 __ j(equal, throw_out_of_memory_exception);
3905
3906 // Retrieve the pending exception and clear the variable.
Steve Block44f0eee2011-05-26 01:26:41 +01003907 ExternalReference pending_exception_address(
Ben Murdoch589d6972011-11-30 16:04:58 +00003908 Isolate::kPendingExceptionAddress, masm->isolate());
Steve Block44f0eee2011-05-26 01:26:41 +01003909 Operand pending_exception_operand =
3910 masm->ExternalOperand(pending_exception_address);
3911 __ movq(rax, pending_exception_operand);
3912 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
3913 __ movq(pending_exception_operand, rdx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003914
3915 // Special handling of termination exceptions which are uncatchable
3916 // by javascript code.
3917 __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
3918 __ j(equal, throw_termination_exception);
3919
3920 // Handle normal exception.
3921 __ jmp(throw_normal_exception);
3922
3923 // Retry.
3924 __ bind(&retry);
3925}
3926
3927
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003928void CEntryStub::Generate(MacroAssembler* masm) {
3929 // rax: number of arguments including receiver
3930 // rbx: pointer to C function (C callee-saved)
3931 // rbp: frame pointer of calling JS frame (restored after C call)
3932 // rsp: stack pointer (restored after C call)
3933 // rsi: current context (restored)
3934
3935 // NOTE: Invocations of builtins may return failure objects
3936 // instead of a proper result. The builtin entry handles
3937 // this by performing a garbage collection and retrying the
3938 // builtin once.
3939
3940 // Enter the exit frame that transitions from JavaScript to C++.
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08003941#ifdef _WIN64
3942 int arg_stack_space = (result_size_ < 2 ? 2 : 4);
3943#else
3944 int arg_stack_space = 0;
3945#endif
Steve Block1e0659c2011-05-24 12:43:12 +01003946 __ EnterExitFrame(arg_stack_space, save_doubles_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003947
3948 // rax: Holds the context at this point, but should not be used.
3949 // On entry to code generated by GenerateCore, it must hold
3950 // a failure result if the collect_garbage argument to GenerateCore
3951 // is true. This failure result can be the result of code
3952 // generated by a previous call to GenerateCore. The value
3953 // of rax is then passed to Runtime::PerformGC.
3954 // rbx: pointer to builtin function (C callee-saved).
3955 // rbp: frame pointer of exit frame (restored after C call).
3956 // rsp: stack pointer (restored after C call).
3957 // r14: number of arguments including receiver (C callee-saved).
Steve Block44f0eee2011-05-26 01:26:41 +01003958 // r15: argv pointer (C callee-saved).
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003959
3960 Label throw_normal_exception;
3961 Label throw_termination_exception;
3962 Label throw_out_of_memory_exception;
3963
3964 // Call into the runtime system.
3965 GenerateCore(masm,
3966 &throw_normal_exception,
3967 &throw_termination_exception,
3968 &throw_out_of_memory_exception,
3969 false,
3970 false);
3971
3972 // Do space-specific GC and retry runtime call.
3973 GenerateCore(masm,
3974 &throw_normal_exception,
3975 &throw_termination_exception,
3976 &throw_out_of_memory_exception,
3977 true,
3978 false);
3979
3980 // Do full GC and retry runtime call one final time.
3981 Failure* failure = Failure::InternalError();
3982 __ movq(rax, failure, RelocInfo::NONE);
3983 GenerateCore(masm,
3984 &throw_normal_exception,
3985 &throw_termination_exception,
3986 &throw_out_of_memory_exception,
3987 true,
3988 true);
3989
3990 __ bind(&throw_out_of_memory_exception);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01003991 // Set external caught exception to false.
3992 Isolate* isolate = masm->isolate();
3993 ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
3994 isolate);
3995 __ Set(rax, static_cast<int64_t>(false));
3996 __ Store(external_caught, rax);
3997
3998 // Set pending exception and rax to out of memory exception.
3999 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
4000 isolate);
4001 __ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
4002 __ Store(pending_exception, rax);
4003 // Fall through to the next label.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004004
4005 __ bind(&throw_termination_exception);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004006 __ ThrowUncatchable(rax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004007
4008 __ bind(&throw_normal_exception);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004009 __ Throw(rax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004010}
4011
4012
4013void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004014 Label invoke, handler_entry, exit;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004015 Label not_outermost_js, not_outermost_js_2;
Steve Block44f0eee2011-05-26 01:26:41 +01004016 { // NOLINT. Scope block confuses linter.
4017 MacroAssembler::NoRootArrayScope uninitialized_root_register(masm);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004018 // Set up frame.
Steve Block44f0eee2011-05-26 01:26:41 +01004019 __ push(rbp);
4020 __ movq(rbp, rsp);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004021
Steve Block44f0eee2011-05-26 01:26:41 +01004022 // Push the stack frame type marker twice.
4023 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
4024 // Scratch register is neither callee-save, nor an argument register on any
4025 // platform. It's free to use at this point.
4026 // Cannot use smi-register for loading yet.
4027 __ movq(kScratchRegister,
4028 reinterpret_cast<uint64_t>(Smi::FromInt(marker)),
4029 RelocInfo::NONE);
4030 __ push(kScratchRegister); // context slot
4031 __ push(kScratchRegister); // function slot
4032 // Save callee-saved registers (X64/Win64 calling conventions).
4033 __ push(r12);
4034 __ push(r13);
4035 __ push(r14);
4036 __ push(r15);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004037#ifdef _WIN64
Steve Block44f0eee2011-05-26 01:26:41 +01004038 __ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
4039 __ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004040#endif
Steve Block44f0eee2011-05-26 01:26:41 +01004041 __ push(rbx);
4042 // TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are
4043 // callee save as well.
4044
4045 // Set up the roots and smi constant registers.
4046 // Needs to be done before any further smi loads.
4047 __ InitializeSmiConstantRegister();
4048 __ InitializeRootRegister();
4049 }
4050
4051 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004052
4053 // Save copies of the top frame descriptor on the stack.
Ben Murdoch589d6972011-11-30 16:04:58 +00004054 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
Steve Block44f0eee2011-05-26 01:26:41 +01004055 {
4056 Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
4057 __ push(c_entry_fp_operand);
4058 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004059
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004060 // If this is the outermost JS call, set js_entry_sp value.
Ben Murdoch589d6972011-11-30 16:04:58 +00004061 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
Steve Block44f0eee2011-05-26 01:26:41 +01004062 __ Load(rax, js_entry_sp);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004063 __ testq(rax, rax);
4064 __ j(not_zero, &not_outermost_js);
Steve Block053d10c2011-06-13 19:13:29 +01004065 __ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004066 __ movq(rax, rbp);
Steve Block44f0eee2011-05-26 01:26:41 +01004067 __ Store(js_entry_sp, rax);
Steve Block053d10c2011-06-13 19:13:29 +01004068 Label cont;
4069 __ jmp(&cont);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004070 __ bind(&not_outermost_js);
Steve Block053d10c2011-06-13 19:13:29 +01004071 __ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
4072 __ bind(&cont);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004073
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004074 // Jump to a faked try block that does the invoke, with a faked catch
4075 // block that sets the pending exception.
4076 __ jmp(&invoke);
4077 __ bind(&handler_entry);
4078 handler_offset_ = handler_entry.pos();
4079 // Caught exception: Store result (exception) in the pending exception
4080 // field in the JSEnv and return a failure sentinel.
Ben Murdoch589d6972011-11-30 16:04:58 +00004081 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
Steve Block44f0eee2011-05-26 01:26:41 +01004082 isolate);
4083 __ Store(pending_exception, rax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004084 __ movq(rax, Failure::Exception(), RelocInfo::NONE);
4085 __ jmp(&exit);
4086
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004087 // Invoke: Link this frame into the handler chain. There's only one
4088 // handler block in this code object, so its index is 0.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004089 __ bind(&invoke);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004090 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004091
4092 // Clear any pending exceptions.
Steve Block44f0eee2011-05-26 01:26:41 +01004093 __ LoadRoot(rax, Heap::kTheHoleValueRootIndex);
4094 __ Store(pending_exception, rax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004095
4096 // Fake a receiver (NULL).
4097 __ push(Immediate(0)); // receiver
4098
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004099 // Invoke the function by calling through JS entry trampoline builtin and
4100 // pop the faked function when we return. We load the address from an
4101 // external reference instead of inlining the call target address directly
4102 // in the code, because the builtin stubs may not have been generated yet
4103 // at the time this code is generated.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004104 if (is_construct) {
Steve Block44f0eee2011-05-26 01:26:41 +01004105 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
4106 isolate);
4107 __ Load(rax, construct_entry);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004108 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01004109 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
4110 __ Load(rax, entry);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004111 }
4112 __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
4113 __ call(kScratchRegister);
4114
4115 // Unlink this frame from the handler chain.
Steve Block053d10c2011-06-13 19:13:29 +01004116 __ PopTryHandler();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004117
Steve Block053d10c2011-06-13 19:13:29 +01004118 __ bind(&exit);
Steve Block053d10c2011-06-13 19:13:29 +01004119 // Check if the current stack frame is marked as the outermost JS frame.
4120 __ pop(rbx);
4121 __ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004122 __ j(not_equal, &not_outermost_js_2);
Steve Block053d10c2011-06-13 19:13:29 +01004123 __ movq(kScratchRegister, js_entry_sp);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004124 __ movq(Operand(kScratchRegister, 0), Immediate(0));
4125 __ bind(&not_outermost_js_2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004126
4127 // Restore the top frame descriptor from the stack.
Steve Block053d10c2011-06-13 19:13:29 +01004128 { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
Steve Block44f0eee2011-05-26 01:26:41 +01004129 __ pop(c_entry_fp_operand);
4130 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004131
4132 // Restore callee-saved registers (X64 conventions).
4133 __ pop(rbx);
4134#ifdef _WIN64
4135 // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
4136 __ pop(rsi);
4137 __ pop(rdi);
4138#endif
4139 __ pop(r15);
4140 __ pop(r14);
4141 __ pop(r13);
4142 __ pop(r12);
4143 __ addq(rsp, Immediate(2 * kPointerSize)); // remove markers
4144
4145 // Restore frame pointer and return.
4146 __ pop(rbp);
4147 __ ret(0);
4148}
4149
4150
4151void InstanceofStub::Generate(MacroAssembler* masm) {
4152 // Implements "value instanceof function" operator.
Steve Block44f0eee2011-05-26 01:26:41 +01004153 // Expected input state with no inline cache:
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004154 // rsp[0] : return address
4155 // rsp[1] : function pointer
4156 // rsp[2] : value
Steve Block44f0eee2011-05-26 01:26:41 +01004157 // Expected input state with an inline one-element cache:
4158 // rsp[0] : return address
4159 // rsp[1] : offset from return address to location of inline cache
4160 // rsp[2] : function pointer
4161 // rsp[3] : value
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004162 // Returns a bitwise zero to indicate that the value
4163 // is and instance of the function and anything else to
4164 // indicate that the value is not an instance.
4165
Ben Murdoch8b112d22011-06-08 16:22:53 +01004166 static const int kOffsetToMapCheckValue = 2;
4167 static const int kOffsetToResultValue = 18;
Steve Block44f0eee2011-05-26 01:26:41 +01004168 // The last 4 bytes of the instruction sequence
Ben Murdoch8b112d22011-06-08 16:22:53 +01004169 // movq(rdi, FieldOperand(rax, HeapObject::kMapOffset))
Steve Block44f0eee2011-05-26 01:26:41 +01004170 // Move(kScratchRegister, FACTORY->the_hole_value())
4171 // in front of the hole value address.
4172 static const unsigned int kWordBeforeMapCheckValue = 0xBA49FF78;
4173 // The last 4 bytes of the instruction sequence
4174 // __ j(not_equal, &cache_miss);
4175 // __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex);
4176 // before the offset of the hole value in the root array.
4177 static const unsigned int kWordBeforeResultValue = 0x458B4909;
4178 // Only the inline check flag is supported on X64.
4179 ASSERT(flags_ == kNoFlags || HasCallSiteInlineCheck());
4180 int extra_stack_space = HasCallSiteInlineCheck() ? kPointerSize : 0;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004181
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004182 // Get the object - go slow case if it's a smi.
4183 Label slow;
Steve Block44f0eee2011-05-26 01:26:41 +01004184
4185 __ movq(rax, Operand(rsp, 2 * kPointerSize + extra_stack_space));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004186 __ JumpIfSmi(rax, &slow);
4187
4188 // Check that the left hand is a JS object. Leave its map in rax.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004189 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004190 __ j(below, &slow);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004191 __ CmpInstanceType(rax, LAST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004192 __ j(above, &slow);
4193
4194 // Get the prototype of the function.
Steve Block44f0eee2011-05-26 01:26:41 +01004195 __ movq(rdx, Operand(rsp, 1 * kPointerSize + extra_stack_space));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004196 // rdx is function, rax is map.
4197
Steve Block44f0eee2011-05-26 01:26:41 +01004198 // If there is a call site cache don't look in the global cache, but do the
4199 // real lookup and update the call site cache.
4200 if (!HasCallSiteInlineCheck()) {
4201 // Look up the function and the map in the instanceof cache.
Ben Murdoch257744e2011-11-30 15:57:28 +00004202 Label miss;
Steve Block44f0eee2011-05-26 01:26:41 +01004203 __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
Ben Murdoch257744e2011-11-30 15:57:28 +00004204 __ j(not_equal, &miss, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01004205 __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
Ben Murdoch257744e2011-11-30 15:57:28 +00004206 __ j(not_equal, &miss, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01004207 __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
4208 __ ret(2 * kPointerSize);
4209 __ bind(&miss);
4210 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004211
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004212 __ TryGetFunctionPrototype(rdx, rbx, &slow, true);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004213
4214 // Check that the function prototype is a JS object.
4215 __ JumpIfSmi(rbx, &slow);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004216 __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, kScratchRegister);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004217 __ j(below, &slow);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004218 __ CmpInstanceType(kScratchRegister, LAST_SPEC_OBJECT_TYPE);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004219 __ j(above, &slow);
4220
4221 // Register mapping:
4222 // rax is object map.
4223 // rdx is function.
4224 // rbx is function prototype.
Steve Block44f0eee2011-05-26 01:26:41 +01004225 if (!HasCallSiteInlineCheck()) {
4226 __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
4227 __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);
4228 } else {
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004229 // Get return address and delta to inlined map check.
Steve Block44f0eee2011-05-26 01:26:41 +01004230 __ movq(kScratchRegister, Operand(rsp, 0 * kPointerSize));
4231 __ subq(kScratchRegister, Operand(rsp, 1 * kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01004232 if (FLAG_debug_code) {
4233 __ movl(rdi, Immediate(kWordBeforeMapCheckValue));
4234 __ cmpl(Operand(kScratchRegister, kOffsetToMapCheckValue - 4), rdi);
Ben Murdoch8b112d22011-06-08 16:22:53 +01004235 __ Assert(equal, "InstanceofStub unexpected call site cache (check).");
Steve Block44f0eee2011-05-26 01:26:41 +01004236 }
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004237 __ movq(kScratchRegister,
4238 Operand(kScratchRegister, kOffsetToMapCheckValue));
4239 __ movq(Operand(kScratchRegister, 0), rax);
Steve Block44f0eee2011-05-26 01:26:41 +01004240 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004241
4242 __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));
4243
4244 // Loop through the prototype chain looking for the function prototype.
Ben Murdoch257744e2011-11-30 15:57:28 +00004245 Label loop, is_instance, is_not_instance;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004246 __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
4247 __ bind(&loop);
4248 __ cmpq(rcx, rbx);
Ben Murdoch257744e2011-11-30 15:57:28 +00004249 __ j(equal, &is_instance, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004250 __ cmpq(rcx, kScratchRegister);
4251 // The code at is_not_instance assumes that kScratchRegister contains a
4252 // non-zero GCable value (the null object in this case).
Ben Murdoch257744e2011-11-30 15:57:28 +00004253 __ j(equal, &is_not_instance, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004254 __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
4255 __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
4256 __ jmp(&loop);
4257
4258 __ bind(&is_instance);
Steve Block44f0eee2011-05-26 01:26:41 +01004259 if (!HasCallSiteInlineCheck()) {
4260 __ xorl(rax, rax);
4261 // Store bitwise zero in the cache. This is a Smi in GC terms.
4262 STATIC_ASSERT(kSmiTag == 0);
4263 __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
4264 } else {
4265 // Store offset of true in the root array at the inline check site.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004266 int true_offset = 0x100 +
4267 (Heap::kTrueValueRootIndex << kPointerSizeLog2) - kRootRegisterBias;
4268 // Assert it is a 1-byte signed value.
4269 ASSERT(true_offset >= 0 && true_offset < 0x100);
4270 __ movl(rax, Immediate(true_offset));
Steve Block44f0eee2011-05-26 01:26:41 +01004271 __ movq(kScratchRegister, Operand(rsp, 0 * kPointerSize));
4272 __ subq(kScratchRegister, Operand(rsp, 1 * kPointerSize));
4273 __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax);
4274 if (FLAG_debug_code) {
4275 __ movl(rax, Immediate(kWordBeforeResultValue));
4276 __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax);
Ben Murdoch8b112d22011-06-08 16:22:53 +01004277 __ Assert(equal, "InstanceofStub unexpected call site cache (mov).");
Steve Block44f0eee2011-05-26 01:26:41 +01004278 }
Ben Murdoch8b112d22011-06-08 16:22:53 +01004279 __ Set(rax, 0);
Steve Block44f0eee2011-05-26 01:26:41 +01004280 }
4281 __ ret(2 * kPointerSize + extra_stack_space);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004282
4283 __ bind(&is_not_instance);
Steve Block44f0eee2011-05-26 01:26:41 +01004284 if (!HasCallSiteInlineCheck()) {
4285 // We have to store a non-zero value in the cache.
4286 __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
4287 } else {
4288 // Store offset of false in the root array at the inline check site.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004289 int false_offset = 0x100 +
4290 (Heap::kFalseValueRootIndex << kPointerSizeLog2) - kRootRegisterBias;
4291 // Assert it is a 1-byte signed value.
4292 ASSERT(false_offset >= 0 && false_offset < 0x100);
4293 __ movl(rax, Immediate(false_offset));
Steve Block44f0eee2011-05-26 01:26:41 +01004294 __ movq(kScratchRegister, Operand(rsp, 0 * kPointerSize));
4295 __ subq(kScratchRegister, Operand(rsp, 1 * kPointerSize));
4296 __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax);
4297 if (FLAG_debug_code) {
4298 __ movl(rax, Immediate(kWordBeforeResultValue));
4299 __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax);
4300 __ Assert(equal, "InstanceofStub unexpected call site cache (mov)");
4301 }
4302 }
4303 __ ret(2 * kPointerSize + extra_stack_space);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004304
4305 // Slow-case: Go through the JavaScript implementation.
4306 __ bind(&slow);
Steve Block44f0eee2011-05-26 01:26:41 +01004307 if (HasCallSiteInlineCheck()) {
4308 // Remove extra value from the stack.
4309 __ pop(rcx);
4310 __ pop(rax);
4311 __ push(rcx);
4312 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004313 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
4314}
4315
4316
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004317// Passing arguments in registers is not supported.
4318Register InstanceofStub::left() { return no_reg; }
Steve Block1e0659c2011-05-24 12:43:12 +01004319
4320
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004321Register InstanceofStub::right() { return no_reg; }
Steve Block1e0659c2011-05-24 12:43:12 +01004322
4323
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004324int CompareStub::MinorKey() {
4325 // Encode the three parameters in a unique 16 bit value. To avoid duplicate
4326 // stubs the never NaN NaN condition is only taken into account if the
4327 // condition is equals.
4328 ASSERT(static_cast<unsigned>(cc_) < (1 << 12));
4329 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
4330 return ConditionField::encode(static_cast<unsigned>(cc_))
4331 | RegisterField::encode(false) // lhs_ and rhs_ are not used
4332 | StrictField::encode(strict_)
4333 | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004334 | IncludeNumberCompareField::encode(include_number_compare_)
4335 | IncludeSmiCompareField::encode(include_smi_compare_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004336}
4337
4338
4339// Unfortunately you have to run without snapshots to see most of these
4340// names in the profile since most compare stubs end up in the snapshot.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004341void CompareStub::PrintName(StringStream* stream) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004342 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004343 const char* cc_name;
4344 switch (cc_) {
4345 case less: cc_name = "LT"; break;
4346 case greater: cc_name = "GT"; break;
4347 case less_equal: cc_name = "LE"; break;
4348 case greater_equal: cc_name = "GE"; break;
4349 case equal: cc_name = "EQ"; break;
4350 case not_equal: cc_name = "NE"; break;
4351 default: cc_name = "UnknownCondition"; break;
4352 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004353 bool is_equality = cc_ == equal || cc_ == not_equal;
4354 stream->Add("CompareStub_%s", cc_name);
4355 if (strict_ && is_equality) stream->Add("_STRICT");
4356 if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
4357 if (!include_number_compare_) stream->Add("_NO_NUMBER");
4358 if (!include_smi_compare_) stream->Add("_NO_SMI");
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004359}
4360
4361
4362// -------------------------------------------------------------------------
4363// StringCharCodeAtGenerator
4364
4365void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
4366 Label flat_string;
4367 Label ascii_string;
4368 Label got_char_code;
Ben Murdoch69a99ed2011-11-30 16:03:39 +00004369 Label sliced_string;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004370
4371 // If the receiver is a smi trigger the non-string case.
4372 __ JumpIfSmi(object_, receiver_not_string_);
4373
4374 // Fetch the instance type of the receiver into result register.
4375 __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
4376 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
4377 // If the receiver is not a string trigger the non-string case.
4378 __ testb(result_, Immediate(kIsNotStringMask));
4379 __ j(not_zero, receiver_not_string_);
4380
4381 // If the index is non-smi trigger the non-smi case.
4382 __ JumpIfNotSmi(index_, &index_not_smi_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004383 __ bind(&got_smi_index_);
4384
4385 // Check for index out of range.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004386 __ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004387 __ j(above_equal, index_out_of_range_);
4388
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004389 __ SmiToInteger32(index_, index_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004390
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004391 StringCharLoadGenerator::Generate(
4392 masm, object_, index_, result_, &call_runtime_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004393
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004394 __ Integer32ToSmi(result_, result_);
4395 __ bind(&exit_);
4396}
4397
4398
4399void StringCharCodeAtGenerator::GenerateSlow(
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004400 MacroAssembler* masm,
4401 const RuntimeCallHelper& call_helper) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004402 __ Abort("Unexpected fallthrough to CharCodeAt slow case");
4403
Ben Murdoch257744e2011-11-30 15:57:28 +00004404 Factory* factory = masm->isolate()->factory();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004405 // Index is not a smi.
4406 __ bind(&index_not_smi_);
4407 // If index is a heap number, try converting it to an integer.
Ben Murdoch257744e2011-11-30 15:57:28 +00004408 __ CheckMap(index_,
4409 factory->heap_number_map(),
4410 index_not_number_,
4411 DONT_DO_SMI_CHECK);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004412 call_helper.BeforeCall(masm);
4413 __ push(object_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004414 __ push(index_); // Consumed by runtime conversion function.
4415 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
4416 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
4417 } else {
4418 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
4419 // NumberToSmi discards numbers that are not exact integers.
4420 __ CallRuntime(Runtime::kNumberToSmi, 1);
4421 }
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004422 if (!index_.is(rax)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004423 // Save the conversion result before the pop instructions below
4424 // have a chance to overwrite it.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004425 __ movq(index_, rax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004426 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004427 __ pop(object_);
4428 // Reload the instance type.
4429 __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
4430 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
4431 call_helper.AfterCall(masm);
4432 // If index is still not a smi, it must be out of range.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004433 __ JumpIfNotSmi(index_, index_out_of_range_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004434 // Otherwise, return to the fast path.
4435 __ jmp(&got_smi_index_);
4436
4437 // Call runtime. We get here when the receiver is a string and the
4438 // index is a number, but the code of getting the actual character
4439 // is too complex (e.g., when the string needs to be flattened).
4440 __ bind(&call_runtime_);
4441 call_helper.BeforeCall(masm);
4442 __ push(object_);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004443 __ Integer32ToSmi(index_, index_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004444 __ push(index_);
4445 __ CallRuntime(Runtime::kStringCharCodeAt, 2);
4446 if (!result_.is(rax)) {
4447 __ movq(result_, rax);
4448 }
4449 call_helper.AfterCall(masm);
4450 __ jmp(&exit_);
4451
4452 __ Abort("Unexpected fallthrough from CharCodeAt slow case");
4453}
4454
4455
4456// -------------------------------------------------------------------------
4457// StringCharFromCodeGenerator
4458
4459void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
4460 // Fast case of Heap::LookupSingleCharacterStringFromCode.
4461 __ JumpIfNotSmi(code_, &slow_case_);
4462 __ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode));
4463 __ j(above, &slow_case_);
4464
4465 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
4466 SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
4467 __ movq(result_, FieldOperand(result_, index.reg, index.scale,
4468 FixedArray::kHeaderSize));
4469 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
4470 __ j(equal, &slow_case_);
4471 __ bind(&exit_);
4472}
4473
4474
4475void StringCharFromCodeGenerator::GenerateSlow(
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004476 MacroAssembler* masm,
4477 const RuntimeCallHelper& call_helper) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004478 __ Abort("Unexpected fallthrough to CharFromCode slow case");
4479
4480 __ bind(&slow_case_);
4481 call_helper.BeforeCall(masm);
4482 __ push(code_);
4483 __ CallRuntime(Runtime::kCharFromCode, 1);
4484 if (!result_.is(rax)) {
4485 __ movq(result_, rax);
4486 }
4487 call_helper.AfterCall(masm);
4488 __ jmp(&exit_);
4489
4490 __ Abort("Unexpected fallthrough from CharFromCode slow case");
4491}
4492
4493
4494// -------------------------------------------------------------------------
4495// StringCharAtGenerator
4496
4497void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
4498 char_code_at_generator_.GenerateFast(masm);
4499 char_from_code_generator_.GenerateFast(masm);
4500}
4501
4502
4503void StringCharAtGenerator::GenerateSlow(
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004504 MacroAssembler* masm,
4505 const RuntimeCallHelper& call_helper) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004506 char_code_at_generator_.GenerateSlow(masm, call_helper);
4507 char_from_code_generator_.GenerateSlow(masm, call_helper);
4508}
4509
4510
4511void StringAddStub::Generate(MacroAssembler* masm) {
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004512 Label call_runtime, call_builtin;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004513 Builtins::JavaScript builtin_id = Builtins::ADD;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004514
4515 // Load the two arguments.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004516 __ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument (left).
4517 __ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument (right).
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004518
4519 // Make sure that both arguments are strings if not known in advance.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004520 if (flags_ == NO_STRING_ADD_FLAGS) {
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004521 __ JumpIfSmi(rax, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004522 __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004523 __ j(above_equal, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004524
4525 // First argument is a a string, test second.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004526 __ JumpIfSmi(rdx, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004527 __ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004528 __ j(above_equal, &call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004529 } else {
4530 // Here at least one of the arguments is definitely a string.
4531 // We convert the one that is not known to be a string.
4532 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
4533 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
4534 GenerateConvertArgument(masm, 2 * kPointerSize, rax, rbx, rcx, rdi,
4535 &call_builtin);
4536 builtin_id = Builtins::STRING_ADD_RIGHT;
4537 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
4538 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
4539 GenerateConvertArgument(masm, 1 * kPointerSize, rdx, rbx, rcx, rdi,
4540 &call_builtin);
4541 builtin_id = Builtins::STRING_ADD_LEFT;
4542 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004543 }
4544
4545 // Both arguments are strings.
4546 // rax: first string
4547 // rdx: second string
4548 // Check if either of the strings are empty. In that case return the other.
Ben Murdoch257744e2011-11-30 15:57:28 +00004549 Label second_not_zero_length, both_not_zero_length;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004550 __ movq(rcx, FieldOperand(rdx, String::kLengthOffset));
4551 __ SmiTest(rcx);
Ben Murdoch257744e2011-11-30 15:57:28 +00004552 __ j(not_zero, &second_not_zero_length, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004553 // Second string is empty, result is first string which is already in rax.
Steve Block44f0eee2011-05-26 01:26:41 +01004554 Counters* counters = masm->isolate()->counters();
4555 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004556 __ ret(2 * kPointerSize);
4557 __ bind(&second_not_zero_length);
4558 __ movq(rbx, FieldOperand(rax, String::kLengthOffset));
4559 __ SmiTest(rbx);
Ben Murdoch257744e2011-11-30 15:57:28 +00004560 __ j(not_zero, &both_not_zero_length, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004561 // First string is empty, result is second string which is in rdx.
4562 __ movq(rax, rdx);
Steve Block44f0eee2011-05-26 01:26:41 +01004563 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004564 __ ret(2 * kPointerSize);
4565
4566 // Both strings are non-empty.
4567 // rax: first string
4568 // rbx: length of first string
4569 // rcx: length of second string
4570 // rdx: second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004571 // r8: map of first string (if flags_ == NO_STRING_ADD_FLAGS)
4572 // r9: map of second string (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004573 Label string_add_flat_result, longer_than_two;
4574 __ bind(&both_not_zero_length);
4575
4576 // If arguments where known to be strings, maps are not loaded to r8 and r9
4577 // by the code above.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004578 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004579 __ movq(r8, FieldOperand(rax, HeapObject::kMapOffset));
4580 __ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset));
4581 }
4582 // Get the instance types of the two strings as they will be needed soon.
4583 __ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset));
4584 __ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset));
4585
4586 // Look at the length of the result of adding the two strings.
4587 STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004588 __ SmiAdd(rbx, rbx, rcx);
Steve Block44f0eee2011-05-26 01:26:41 +01004589 // Use the symbol table when adding two one character strings, as it
4590 // helps later optimizations to return a symbol here.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004591 __ SmiCompare(rbx, Smi::FromInt(2));
4592 __ j(not_equal, &longer_than_two);
4593
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004594 // Check that both strings are non-external ASCII strings.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004595 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx,
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004596 &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004597
4598 // Get the two characters forming the sub string.
4599 __ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize));
4600 __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize));
4601
4602 // Try to lookup two character string in symbol table. If it is not found
4603 // just allocate a new one.
4604 Label make_two_character_string, make_flat_ascii_string;
4605 StringHelper::GenerateTwoCharacterSymbolTableProbe(
Steve Block44f0eee2011-05-26 01:26:41 +01004606 masm, rbx, rcx, r14, r11, rdi, r15, &make_two_character_string);
4607 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004608 __ ret(2 * kPointerSize);
4609
4610 __ bind(&make_two_character_string);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004611 __ Set(rdi, 2);
4612 __ AllocateAsciiString(rax, rdi, r8, r9, r11, &call_runtime);
4613 // rbx - first byte: first character
4614 // rbx - second byte: *maybe* second character
4615 // Make sure that the second byte of rbx contains the second character.
4616 __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize));
4617 __ shll(rcx, Immediate(kBitsPerByte));
4618 __ orl(rbx, rcx);
4619 // Write both characters to the new string.
4620 __ movw(FieldOperand(rax, SeqAsciiString::kHeaderSize), rbx);
4621 __ IncrementCounter(counters->string_add_native(), 1);
4622 __ ret(2 * kPointerSize);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004623
4624 __ bind(&longer_than_two);
4625 // Check if resulting string will be flat.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004626 __ SmiCompare(rbx, Smi::FromInt(ConsString::kMinLength));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004627 __ j(below, &string_add_flat_result);
4628 // Handle exceptionally long strings in the runtime system.
4629 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
4630 __ SmiCompare(rbx, Smi::FromInt(String::kMaxLength));
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004631 __ j(above, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004632
4633 // If result is not supposed to be flat, allocate a cons string object. If
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004634 // both strings are ASCII the result is an ASCII cons string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004635 // rax: first string
4636 // rbx: length of resulting flat string
4637 // rdx: second string
4638 // r8: instance type of first string
4639 // r9: instance type of second string
4640 Label non_ascii, allocated, ascii_data;
4641 __ movl(rcx, r8);
4642 __ and_(rcx, r9);
Ben Murdoch589d6972011-11-30 16:04:58 +00004643 STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
4644 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
4645 __ testl(rcx, Immediate(kStringEncodingMask));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004646 __ j(zero, &non_ascii);
4647 __ bind(&ascii_data);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004648 // Allocate an ASCII cons string.
4649 __ AllocateAsciiConsString(rcx, rdi, no_reg, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004650 __ bind(&allocated);
4651 // Fill the fields of the cons string.
4652 __ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx);
4653 __ movq(FieldOperand(rcx, ConsString::kHashFieldOffset),
4654 Immediate(String::kEmptyHashField));
4655 __ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax);
4656 __ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx);
4657 __ movq(rax, rcx);
Steve Block44f0eee2011-05-26 01:26:41 +01004658 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004659 __ ret(2 * kPointerSize);
4660 __ bind(&non_ascii);
4661 // At least one of the strings is two-byte. Check whether it happens
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004662 // to contain only ASCII characters.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004663 // rcx: first instance type AND second instance type.
4664 // r8: first instance type.
4665 // r9: second instance type.
4666 __ testb(rcx, Immediate(kAsciiDataHintMask));
4667 __ j(not_zero, &ascii_data);
4668 __ xor_(r8, r9);
4669 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
4670 __ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
4671 __ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
4672 __ j(equal, &ascii_data);
4673 // Allocate a two byte cons string.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004674 __ AllocateTwoByteConsString(rcx, rdi, no_reg, &call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004675 __ jmp(&allocated);
4676
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004677 // We cannot encounter sliced strings or cons strings here since:
4678 STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
4679 // Handle creating a flat result from either external or sequential strings.
4680 // Locate the first characters' locations.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004681 // rax: first string
4682 // rbx: length of resulting flat string as smi
4683 // rdx: second string
4684 // r8: instance type of first string
4685 // r9: instance type of first string
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004686 Label first_prepared, second_prepared;
4687 Label first_is_sequential, second_is_sequential;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004688 __ bind(&string_add_flat_result);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004689
4690 __ SmiToInteger32(r14, FieldOperand(rax, SeqString::kLengthOffset));
4691 // r14: length of first string
4692 STATIC_ASSERT(kSeqStringTag == 0);
4693 __ testb(r8, Immediate(kStringRepresentationMask));
4694 __ j(zero, &first_is_sequential, Label::kNear);
4695 // Rule out short external string and load string resource.
4696 STATIC_ASSERT(kShortExternalStringTag != 0);
4697 __ testb(r8, Immediate(kShortExternalStringMask));
4698 __ j(not_zero, &call_runtime);
4699 __ movq(rcx, FieldOperand(rax, ExternalString::kResourceDataOffset));
4700 __ jmp(&first_prepared, Label::kNear);
4701 __ bind(&first_is_sequential);
4702 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
4703 __ lea(rcx, FieldOperand(rax, SeqAsciiString::kHeaderSize));
4704 __ bind(&first_prepared);
4705
4706 // Check whether both strings have same encoding.
4707 __ xorl(r8, r9);
4708 __ testb(r8, Immediate(kStringEncodingMask));
4709 __ j(not_zero, &call_runtime);
4710
4711 __ SmiToInteger32(r15, FieldOperand(rdx, SeqString::kLengthOffset));
4712 // r15: length of second string
4713 STATIC_ASSERT(kSeqStringTag == 0);
4714 __ testb(r9, Immediate(kStringRepresentationMask));
4715 __ j(zero, &second_is_sequential, Label::kNear);
4716 // Rule out short external string and load string resource.
4717 STATIC_ASSERT(kShortExternalStringTag != 0);
4718 __ testb(r9, Immediate(kShortExternalStringMask));
4719 __ j(not_zero, &call_runtime);
4720 __ movq(rdx, FieldOperand(rdx, ExternalString::kResourceDataOffset));
4721 __ jmp(&second_prepared, Label::kNear);
4722 __ bind(&second_is_sequential);
4723 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
4724 __ lea(rdx, FieldOperand(rdx, SeqAsciiString::kHeaderSize));
4725 __ bind(&second_prepared);
4726
Ben Murdoch85b71792012-04-11 18:30:58 +01004727 Label non_ascii_string_add_flat_result;
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004728 // r9: instance type of second string
4729 // First string and second string have the same encoding.
4730 STATIC_ASSERT(kTwoByteStringTag == 0);
4731 __ SmiToInteger32(rbx, rbx);
4732 __ testb(r9, Immediate(kStringEncodingMask));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004733 __ j(zero, &non_ascii_string_add_flat_result);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004734
4735 __ bind(&make_flat_ascii_string);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004736 // Both strings are ASCII strings. As they are short they are both flat.
4737 __ AllocateAsciiString(rax, rbx, rdi, r8, r9, &call_runtime);
4738 // rax: result string
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004739 // Locate first character of result.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004740 __ lea(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize));
4741 // rcx: first char of first string
4742 // rbx: first character of result
4743 // r14: length of first string
4744 StringHelper::GenerateCopyCharacters(masm, rbx, rcx, r14, true);
4745 // rbx: next character of result
4746 // rdx: first char of second string
4747 // r15: length of second string
4748 StringHelper::GenerateCopyCharacters(masm, rbx, rdx, r15, true);
Steve Block44f0eee2011-05-26 01:26:41 +01004749 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004750 __ ret(2 * kPointerSize);
4751
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004752 __ bind(&non_ascii_string_add_flat_result);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004753 // Both strings are ASCII strings. As they are short they are both flat.
4754 __ AllocateTwoByteString(rax, rbx, rdi, r8, r9, &call_runtime);
4755 // rax: result string
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004756 // Locate first character of result.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004757 __ lea(rbx, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
4758 // rcx: first char of first string
4759 // rbx: first character of result
4760 // r14: length of first string
4761 StringHelper::GenerateCopyCharacters(masm, rbx, rcx, r14, false);
4762 // rbx: next character of result
4763 // rdx: first char of second string
4764 // r15: length of second string
4765 StringHelper::GenerateCopyCharacters(masm, rbx, rdx, r15, false);
Steve Block44f0eee2011-05-26 01:26:41 +01004766 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004767 __ ret(2 * kPointerSize);
4768
4769 // Just jump to runtime to add the two strings.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004770 __ bind(&call_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004771 __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004772
4773 if (call_builtin.is_linked()) {
4774 __ bind(&call_builtin);
4775 __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
4776 }
4777}
4778
4779
4780void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
4781 int stack_offset,
4782 Register arg,
4783 Register scratch1,
4784 Register scratch2,
4785 Register scratch3,
4786 Label* slow) {
4787 // First check if the argument is already a string.
4788 Label not_string, done;
4789 __ JumpIfSmi(arg, &not_string);
4790 __ CmpObjectType(arg, FIRST_NONSTRING_TYPE, scratch1);
4791 __ j(below, &done);
4792
4793 // Check the number to string cache.
4794 Label not_cached;
4795 __ bind(&not_string);
4796 // Puts the cached result into scratch1.
4797 NumberToStringStub::GenerateLookupNumberStringCache(masm,
4798 arg,
4799 scratch1,
4800 scratch2,
4801 scratch3,
4802 false,
4803 &not_cached);
4804 __ movq(arg, scratch1);
4805 __ movq(Operand(rsp, stack_offset), arg);
4806 __ jmp(&done);
4807
4808 // Check if the argument is a safe string wrapper.
4809 __ bind(&not_cached);
4810 __ JumpIfSmi(arg, slow);
4811 __ CmpObjectType(arg, JS_VALUE_TYPE, scratch1); // map -> scratch1.
4812 __ j(not_equal, slow);
4813 __ testb(FieldOperand(scratch1, Map::kBitField2Offset),
4814 Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
4815 __ j(zero, slow);
4816 __ movq(arg, FieldOperand(arg, JSValue::kValueOffset));
4817 __ movq(Operand(rsp, stack_offset), arg);
4818
4819 __ bind(&done);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004820}
4821
4822
4823void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
4824 Register dest,
4825 Register src,
4826 Register count,
4827 bool ascii) {
4828 Label loop;
4829 __ bind(&loop);
4830 // This loop just copies one character at a time, as it is only used for very
4831 // short strings.
4832 if (ascii) {
4833 __ movb(kScratchRegister, Operand(src, 0));
4834 __ movb(Operand(dest, 0), kScratchRegister);
4835 __ incq(src);
4836 __ incq(dest);
4837 } else {
4838 __ movzxwl(kScratchRegister, Operand(src, 0));
4839 __ movw(Operand(dest, 0), kScratchRegister);
4840 __ addq(src, Immediate(2));
4841 __ addq(dest, Immediate(2));
4842 }
4843 __ decl(count);
4844 __ j(not_zero, &loop);
4845}
4846
4847
4848void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
4849 Register dest,
4850 Register src,
4851 Register count,
4852 bool ascii) {
4853 // Copy characters using rep movs of doublewords. Align destination on 4 byte
4854 // boundary before starting rep movs. Copy remaining characters after running
4855 // rep movs.
4856 // Count is positive int32, dest and src are character pointers.
4857 ASSERT(dest.is(rdi)); // rep movs destination
4858 ASSERT(src.is(rsi)); // rep movs source
4859 ASSERT(count.is(rcx)); // rep movs count
4860
4861 // Nothing to do for zero characters.
Ben Murdoch257744e2011-11-30 15:57:28 +00004862 Label done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004863 __ testl(count, count);
Ben Murdoch257744e2011-11-30 15:57:28 +00004864 __ j(zero, &done, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004865
4866 // Make count the number of bytes to copy.
4867 if (!ascii) {
4868 STATIC_ASSERT(2 == sizeof(uc16));
4869 __ addl(count, count);
4870 }
4871
4872 // Don't enter the rep movs if there are less than 4 bytes to copy.
Ben Murdoch257744e2011-11-30 15:57:28 +00004873 Label last_bytes;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004874 __ testl(count, Immediate(~7));
Ben Murdoch257744e2011-11-30 15:57:28 +00004875 __ j(zero, &last_bytes, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004876
4877 // Copy from edi to esi using rep movs instruction.
4878 __ movl(kScratchRegister, count);
4879 __ shr(count, Immediate(3)); // Number of doublewords to copy.
4880 __ repmovsq();
4881
4882 // Find number of bytes left.
4883 __ movl(count, kScratchRegister);
4884 __ and_(count, Immediate(7));
4885
4886 // Check if there are more bytes to copy.
4887 __ bind(&last_bytes);
4888 __ testl(count, count);
Ben Murdoch257744e2011-11-30 15:57:28 +00004889 __ j(zero, &done, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004890
4891 // Copy remaining characters.
4892 Label loop;
4893 __ bind(&loop);
4894 __ movb(kScratchRegister, Operand(src, 0));
4895 __ movb(Operand(dest, 0), kScratchRegister);
4896 __ incq(src);
4897 __ incq(dest);
4898 __ decl(count);
4899 __ j(not_zero, &loop);
4900
4901 __ bind(&done);
4902}
4903
4904void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
4905 Register c1,
4906 Register c2,
4907 Register scratch1,
4908 Register scratch2,
4909 Register scratch3,
4910 Register scratch4,
4911 Label* not_found) {
4912 // Register scratch3 is the general scratch register in this function.
4913 Register scratch = scratch3;
4914
4915 // Make sure that both characters are not digits as such strings has a
4916 // different hash algorithm. Don't try to look for these in the symbol table.
Ben Murdoch257744e2011-11-30 15:57:28 +00004917 Label not_array_index;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004918 __ leal(scratch, Operand(c1, -'0'));
4919 __ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
Ben Murdoch257744e2011-11-30 15:57:28 +00004920 __ j(above, &not_array_index, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004921 __ leal(scratch, Operand(c2, -'0'));
4922 __ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
4923 __ j(below_equal, not_found);
4924
4925 __ bind(&not_array_index);
4926 // Calculate the two character string hash.
4927 Register hash = scratch1;
4928 GenerateHashInit(masm, hash, c1, scratch);
4929 GenerateHashAddCharacter(masm, hash, c2, scratch);
4930 GenerateHashGetHash(masm, hash, scratch);
4931
4932 // Collect the two characters in a register.
4933 Register chars = c1;
4934 __ shl(c2, Immediate(kBitsPerByte));
4935 __ orl(chars, c2);
4936
4937 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
4938 // hash: hash of two character string.
4939
4940 // Load the symbol table.
4941 Register symbol_table = c2;
4942 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
4943
4944 // Calculate capacity mask from the symbol table capacity.
4945 Register mask = scratch2;
4946 __ SmiToInteger32(mask,
4947 FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
4948 __ decl(mask);
4949
Steve Block44f0eee2011-05-26 01:26:41 +01004950 Register map = scratch4;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004951
4952 // Registers
4953 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
4954 // hash: hash of two character string (32-bit int)
4955 // symbol_table: symbol table
4956 // mask: capacity mask (32-bit int)
Steve Block44f0eee2011-05-26 01:26:41 +01004957 // map: -
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004958 // scratch: -
4959
4960 // Perform a number of probes in the symbol table.
4961 static const int kProbes = 4;
4962 Label found_in_symbol_table;
4963 Label next_probe[kProbes];
Ben Murdoch692be652012-01-10 18:47:50 +00004964 Register candidate = scratch; // Scratch register contains candidate.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004965 for (int i = 0; i < kProbes; i++) {
4966 // Calculate entry in symbol table.
4967 __ movl(scratch, hash);
4968 if (i > 0) {
4969 __ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i)));
4970 }
4971 __ andl(scratch, mask);
4972
Steve Block44f0eee2011-05-26 01:26:41 +01004973 // Load the entry from the symbol table.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004974 STATIC_ASSERT(SymbolTable::kEntrySize == 1);
4975 __ movq(candidate,
4976 FieldOperand(symbol_table,
4977 scratch,
4978 times_pointer_size,
4979 SymbolTable::kElementsStartOffset));
4980
4981 // If entry is undefined no string with this hash can be found.
Ben Murdoch257744e2011-11-30 15:57:28 +00004982 Label is_string;
Steve Block44f0eee2011-05-26 01:26:41 +01004983 __ CmpObjectType(candidate, ODDBALL_TYPE, map);
Ben Murdoch257744e2011-11-30 15:57:28 +00004984 __ j(not_equal, &is_string, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01004985
4986 __ CompareRoot(candidate, Heap::kUndefinedValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004987 __ j(equal, not_found);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01004988 // Must be the hole (deleted entry).
4989 if (FLAG_debug_code) {
4990 __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
4991 __ cmpq(kScratchRegister, candidate);
4992 __ Assert(equal, "oddball in symbol table is not undefined or the hole");
4993 }
Steve Block44f0eee2011-05-26 01:26:41 +01004994 __ jmp(&next_probe[i]);
4995
4996 __ bind(&is_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004997
4998 // If length is not 2 the string is not a candidate.
4999 __ SmiCompare(FieldOperand(candidate, String::kLengthOffset),
5000 Smi::FromInt(2));
5001 __ j(not_equal, &next_probe[i]);
5002
5003 // We use kScratchRegister as a temporary register in assumption that
5004 // JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly
5005 Register temp = kScratchRegister;
5006
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005007 // Check that the candidate is a non-external ASCII string.
Steve Block44f0eee2011-05-26 01:26:41 +01005008 __ movzxbl(temp, FieldOperand(map, Map::kInstanceTypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005009 __ JumpIfInstanceTypeIsNotSequentialAscii(
5010 temp, temp, &next_probe[i]);
5011
5012 // Check if the two characters match.
5013 __ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
5014 __ andl(temp, Immediate(0x0000ffff));
5015 __ cmpl(chars, temp);
5016 __ j(equal, &found_in_symbol_table);
5017 __ bind(&next_probe[i]);
5018 }
5019
5020 // No matching 2 character string found by probing.
5021 __ jmp(not_found);
5022
5023 // Scratch register contains result when we fall through to here.
Ben Murdoch692be652012-01-10 18:47:50 +00005024 Register result = candidate;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005025 __ bind(&found_in_symbol_table);
5026 if (!result.is(rax)) {
5027 __ movq(rax, result);
5028 }
5029}
5030
5031
5032void StringHelper::GenerateHashInit(MacroAssembler* masm,
5033 Register hash,
5034 Register character,
5035 Register scratch) {
Ben Murdochc7cc0282012-03-05 14:35:55 +00005036 // hash = (seed + character) + ((seed + character) << 10);
5037 __ LoadRoot(scratch, Heap::kHashSeedRootIndex);
5038 __ SmiToInteger32(scratch, scratch);
5039 __ addl(scratch, character);
5040 __ movl(hash, scratch);
5041 __ shll(scratch, Immediate(10));
5042 __ addl(hash, scratch);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005043 // hash ^= hash >> 6;
5044 __ movl(scratch, hash);
Ben Murdoch692be652012-01-10 18:47:50 +00005045 __ shrl(scratch, Immediate(6));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005046 __ xorl(hash, scratch);
5047}
5048
5049
5050void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
5051 Register hash,
5052 Register character,
5053 Register scratch) {
5054 // hash += character;
5055 __ addl(hash, character);
5056 // hash += hash << 10;
5057 __ movl(scratch, hash);
5058 __ shll(scratch, Immediate(10));
5059 __ addl(hash, scratch);
5060 // hash ^= hash >> 6;
5061 __ movl(scratch, hash);
Ben Murdoch692be652012-01-10 18:47:50 +00005062 __ shrl(scratch, Immediate(6));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005063 __ xorl(hash, scratch);
5064}
5065
5066
5067void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
5068 Register hash,
5069 Register scratch) {
5070 // hash += hash << 3;
5071 __ leal(hash, Operand(hash, hash, times_8, 0));
5072 // hash ^= hash >> 11;
5073 __ movl(scratch, hash);
Ben Murdoch692be652012-01-10 18:47:50 +00005074 __ shrl(scratch, Immediate(11));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005075 __ xorl(hash, scratch);
5076 // hash += hash << 15;
5077 __ movl(scratch, hash);
5078 __ shll(scratch, Immediate(15));
5079 __ addl(hash, scratch);
5080
Ben Murdochc7cc0282012-03-05 14:35:55 +00005081 __ andl(hash, Immediate(String::kHashBitMask));
Ben Murdoch692be652012-01-10 18:47:50 +00005082
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005083 // if (hash == 0) hash = 27;
5084 Label hash_not_zero;
5085 __ j(not_zero, &hash_not_zero);
Ben Murdochc7cc0282012-03-05 14:35:55 +00005086 __ Set(hash, StringHasher::kZeroHash);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005087 __ bind(&hash_not_zero);
5088}
5089
5090void SubStringStub::Generate(MacroAssembler* masm) {
5091 Label runtime;
5092
5093 // Stack frame on entry.
5094 // rsp[0]: return address
5095 // rsp[8]: to
5096 // rsp[16]: from
5097 // rsp[24]: string
5098
5099 const int kToOffset = 1 * kPointerSize;
5100 const int kFromOffset = kToOffset + kPointerSize;
5101 const int kStringOffset = kFromOffset + kPointerSize;
5102 const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset;
5103
5104 // Make sure first argument is a string.
5105 __ movq(rax, Operand(rsp, kStringOffset));
5106 STATIC_ASSERT(kSmiTag == 0);
5107 __ testl(rax, Immediate(kSmiTagMask));
5108 __ j(zero, &runtime);
5109 Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
5110 __ j(NegateCondition(is_string), &runtime);
5111
5112 // rax: string
5113 // rbx: instance type
5114 // Calculate length of sub string using the smi values.
5115 Label result_longer_than_two;
5116 __ movq(rcx, Operand(rsp, kToOffset));
5117 __ movq(rdx, Operand(rsp, kFromOffset));
Ben Murdochf87a2032010-10-22 12:50:53 +01005118 __ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005119
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005120 __ SmiSub(rcx, rcx, rdx); // Overflow doesn't happen.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005121 __ cmpq(FieldOperand(rax, String::kLengthOffset), rcx);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005122 Label not_original_string;
5123 __ j(not_equal, &not_original_string, Label::kNear);
5124 Counters* counters = masm->isolate()->counters();
5125 __ IncrementCounter(counters->sub_string_native(), 1);
5126 __ ret(kArgumentsSize);
5127 __ bind(&not_original_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005128 // Special handling of sub-strings of length 1 and 2. One character strings
5129 // are handled in the runtime system (looked up in the single character
5130 // cache). Two character strings are looked for in the symbol cache.
5131 __ SmiToInteger32(rcx, rcx);
5132 __ cmpl(rcx, Immediate(2));
5133 __ j(greater, &result_longer_than_two);
5134 __ j(less, &runtime);
5135
5136 // Sub string of length 2 requested.
5137 // rax: string
5138 // rbx: instance type
5139 // rcx: sub string length (value is 2)
5140 // rdx: from index (smi)
5141 __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime);
5142
5143 // Get the two characters forming the sub string.
5144 __ SmiToInteger32(rdx, rdx); // From index is no longer smi.
5145 __ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize));
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005146 __ movzxbq(rdi,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005147 FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1));
5148
5149 // Try to lookup two character string in symbol table.
5150 Label make_two_character_string;
5151 StringHelper::GenerateTwoCharacterSymbolTableProbe(
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005152 masm, rbx, rdi, r9, r11, r14, r15, &make_two_character_string);
5153 __ IncrementCounter(counters->sub_string_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005154 __ ret(3 * kPointerSize);
5155
5156 __ bind(&make_two_character_string);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005157 // Set up registers for allocating the two character string.
5158 __ movzxwq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize));
5159 __ AllocateAsciiString(rax, rcx, r11, r14, r15, &runtime);
5160 __ movw(FieldOperand(rax, SeqAsciiString::kHeaderSize), rbx);
5161 __ IncrementCounter(counters->sub_string_native(), 1);
5162 __ ret(3 * kPointerSize);
5163
5164 __ bind(&result_longer_than_two);
5165 // rax: string
5166 // rbx: instance type
5167 // rcx: sub string length
5168 // rdx: from index (smi)
5169 // Deal with different string types: update the index if necessary
5170 // and put the underlying string into edi.
5171 Label underlying_unpacked, sliced_string, seq_or_external_string;
5172 // If the string is not indirect, it can only be sequential or external.
5173 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
5174 STATIC_ASSERT(kIsIndirectStringMask != 0);
5175 __ testb(rbx, Immediate(kIsIndirectStringMask));
5176 __ j(zero, &seq_or_external_string, Label::kNear);
5177
5178 __ testb(rbx, Immediate(kSlicedNotConsMask));
5179 __ j(not_zero, &sliced_string, Label::kNear);
5180 // Cons string. Check whether it is flat, then fetch first part.
5181 // Flat cons strings have an empty second part.
5182 __ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset),
5183 Heap::kEmptyStringRootIndex);
5184 __ j(not_equal, &runtime);
5185 __ movq(rdi, FieldOperand(rax, ConsString::kFirstOffset));
5186 // Update instance type.
5187 __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005188 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005189 __ jmp(&underlying_unpacked, Label::kNear);
5190
5191 __ bind(&sliced_string);
5192 // Sliced string. Fetch parent and correct start index by offset.
5193 __ addq(rdx, FieldOperand(rax, SlicedString::kOffsetOffset));
5194 __ movq(rdi, FieldOperand(rax, SlicedString::kParentOffset));
5195 // Update instance type.
5196 __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
5197 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
5198 __ jmp(&underlying_unpacked, Label::kNear);
5199
5200 __ bind(&seq_or_external_string);
5201 // Sequential or external string. Just move string to the correct register.
5202 __ movq(rdi, rax);
5203
5204 __ bind(&underlying_unpacked);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005205
Ben Murdoch589d6972011-11-30 16:04:58 +00005206 if (FLAG_string_slices) {
5207 Label copy_routine;
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005208 // rdi: underlying subject string
5209 // rbx: instance type of underlying subject string
5210 // rdx: adjusted start index (smi)
5211 // rcx: length
Ben Murdoch589d6972011-11-30 16:04:58 +00005212 // If coming from the make_two_character_string path, the string
5213 // is too short to be sliced anyways.
Ben Murdoch589d6972011-11-30 16:04:58 +00005214 __ cmpq(rcx, Immediate(SlicedString::kMinLength));
5215 // Short slice. Copy instead of slicing.
5216 __ j(less, &copy_routine);
Ben Murdoch589d6972011-11-30 16:04:58 +00005217 // Allocate new sliced string. At this point we do not reload the instance
5218 // type including the string encoding because we simply rely on the info
5219 // provided by the original string. It does not matter if the original
5220 // string's encoding is wrong because we always have to recheck encoding of
5221 // the newly created string's parent anyways due to externalized strings.
5222 Label two_byte_slice, set_slice_header;
5223 STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
5224 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
5225 __ testb(rbx, Immediate(kStringEncodingMask));
5226 __ j(zero, &two_byte_slice, Label::kNear);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005227 __ AllocateAsciiSlicedString(rax, rbx, r14, &runtime);
Ben Murdoch589d6972011-11-30 16:04:58 +00005228 __ jmp(&set_slice_header, Label::kNear);
5229 __ bind(&two_byte_slice);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005230 __ AllocateTwoByteSlicedString(rax, rbx, r14, &runtime);
Ben Murdoch589d6972011-11-30 16:04:58 +00005231 __ bind(&set_slice_header);
Ben Murdoch589d6972011-11-30 16:04:58 +00005232 __ Integer32ToSmi(rcx, rcx);
5233 __ movq(FieldOperand(rax, SlicedString::kLengthOffset), rcx);
Ben Murdoch589d6972011-11-30 16:04:58 +00005234 __ movq(FieldOperand(rax, SlicedString::kHashFieldOffset),
5235 Immediate(String::kEmptyHashField));
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005236 __ movq(FieldOperand(rax, SlicedString::kParentOffset), rdi);
5237 __ movq(FieldOperand(rax, SlicedString::kOffsetOffset), rdx);
5238 __ IncrementCounter(counters->sub_string_native(), 1);
5239 __ ret(kArgumentsSize);
Ben Murdoch589d6972011-11-30 16:04:58 +00005240
5241 __ bind(&copy_routine);
Ben Murdoch589d6972011-11-30 16:04:58 +00005242 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005243
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005244 // rdi: underlying subject string
5245 // rbx: instance type of underlying subject string
5246 // rdx: adjusted start index (smi)
5247 // rcx: length
5248 // The subject string can only be external or sequential string of either
5249 // encoding at this point.
5250 Label two_byte_sequential, sequential_string;
5251 STATIC_ASSERT(kExternalStringTag != 0);
5252 STATIC_ASSERT(kSeqStringTag == 0);
5253 __ testb(rbx, Immediate(kExternalStringTag));
5254 __ j(zero, &sequential_string);
5255
5256 // Handle external string.
5257 // Rule out short external strings.
5258 STATIC_CHECK(kShortExternalStringTag != 0);
5259 __ testb(rbx, Immediate(kShortExternalStringMask));
5260 __ j(not_zero, &runtime);
5261 __ movq(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
5262 // Move the pointer so that offset-wise, it looks like a sequential string.
5263 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
5264 __ subq(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5265
5266 __ bind(&sequential_string);
5267 STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0);
5268 __ testb(rbx, Immediate(kStringEncodingMask));
5269 __ j(zero, &two_byte_sequential);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005270
5271 // Allocate the result.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005272 __ AllocateAsciiString(rax, rcx, r11, r14, r15, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005273
5274 // rax: result string
5275 // rcx: result string length
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005276 __ movq(r14, rsi); // esi used by following code.
5277 { // Locate character of sub string start.
5278 SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_1);
5279 __ lea(rsi, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
Ben Murdoch85b71792012-04-11 18:30:58 +01005280 SeqAsciiString::kHeaderSize - kHeapObjectTag));
5281 }
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005282 // Locate first character of result.
5283 __ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005284
5285 // rax: result string
5286 // rcx: result length
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005287 // rdi: first character of result
5288 // rsi: character of sub string start
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005289 // r14: original value of rsi
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005290 StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005291 __ movq(rsi, r14); // Restore rsi.
Steve Block44f0eee2011-05-26 01:26:41 +01005292 __ IncrementCounter(counters->sub_string_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005293 __ ret(kArgumentsSize);
5294
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005295 __ bind(&two_byte_sequential);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005296 // Allocate the result.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005297 __ AllocateTwoByteString(rax, rcx, r11, r14, r15, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005298
5299 // rax: result string
5300 // rcx: result string length
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005301 __ movq(r14, rsi); // esi used by following code.
5302 { // Locate character of sub string start.
5303 SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_2);
5304 __ lea(rsi, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
Ben Murdoch85b71792012-04-11 18:30:58 +01005305 SeqAsciiString::kHeaderSize - kHeapObjectTag));
5306 }
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005307 // Locate first character of result.
5308 __ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005309
5310 // rax: result string
5311 // rcx: result length
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005312 // rdi: first character of result
5313 // rsi: character of sub string start
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005314 // r14: original value of rsi
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005315 StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005316 __ movq(rsi, r14); // Restore esi.
Steve Block44f0eee2011-05-26 01:26:41 +01005317 __ IncrementCounter(counters->sub_string_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005318 __ ret(kArgumentsSize);
5319
5320 // Just jump to runtime to create the sub string.
5321 __ bind(&runtime);
5322 __ TailCallRuntime(Runtime::kSubString, 3, 1);
5323}
5324
5325
Ben Murdoch257744e2011-11-30 15:57:28 +00005326void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
5327 Register left,
5328 Register right,
5329 Register scratch1,
5330 Register scratch2) {
5331 Register length = scratch1;
5332
5333 // Compare lengths.
5334 Label check_zero_length;
5335 __ movq(length, FieldOperand(left, String::kLengthOffset));
5336 __ SmiCompare(length, FieldOperand(right, String::kLengthOffset));
5337 __ j(equal, &check_zero_length, Label::kNear);
5338 __ Move(rax, Smi::FromInt(NOT_EQUAL));
5339 __ ret(0);
5340
5341 // Check if the length is zero.
5342 Label compare_chars;
5343 __ bind(&check_zero_length);
5344 STATIC_ASSERT(kSmiTag == 0);
5345 __ SmiTest(length);
5346 __ j(not_zero, &compare_chars, Label::kNear);
5347 __ Move(rax, Smi::FromInt(EQUAL));
5348 __ ret(0);
5349
5350 // Compare characters.
5351 __ bind(&compare_chars);
5352 Label strings_not_equal;
5353 GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2,
5354 &strings_not_equal, Label::kNear);
5355
5356 // Characters are equal.
5357 __ Move(rax, Smi::FromInt(EQUAL));
5358 __ ret(0);
5359
5360 // Characters are not equal.
5361 __ bind(&strings_not_equal);
5362 __ Move(rax, Smi::FromInt(NOT_EQUAL));
5363 __ ret(0);
5364}
5365
5366
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005367void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
5368 Register left,
5369 Register right,
5370 Register scratch1,
5371 Register scratch2,
5372 Register scratch3,
5373 Register scratch4) {
5374 // Ensure that you can always subtract a string length from a non-negative
5375 // number (e.g. another length).
5376 STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
5377
5378 // Find minimum length and length difference.
5379 __ movq(scratch1, FieldOperand(left, String::kLengthOffset));
5380 __ movq(scratch4, scratch1);
5381 __ SmiSub(scratch4,
5382 scratch4,
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005383 FieldOperand(right, String::kLengthOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005384 // Register scratch4 now holds left.length - right.length.
5385 const Register length_difference = scratch4;
Ben Murdoch257744e2011-11-30 15:57:28 +00005386 Label left_shorter;
5387 __ j(less, &left_shorter, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005388 // The right string isn't longer that the left one.
5389 // Get the right string's length by subtracting the (non-negative) difference
5390 // from the left string's length.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005391 __ SmiSub(scratch1, scratch1, length_difference);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005392 __ bind(&left_shorter);
5393 // Register scratch1 now holds Min(left.length, right.length).
5394 const Register min_length = scratch1;
5395
Ben Murdoch257744e2011-11-30 15:57:28 +00005396 Label compare_lengths;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005397 // If min-length is zero, go directly to comparing lengths.
5398 __ SmiTest(min_length);
Ben Murdoch257744e2011-11-30 15:57:28 +00005399 __ j(zero, &compare_lengths, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005400
Ben Murdoch257744e2011-11-30 15:57:28 +00005401 // Compare loop.
5402 Label result_not_equal;
5403 GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2,
5404 &result_not_equal, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005405
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005406 // Completed loop without finding different characters.
5407 // Compare lengths (precomputed).
5408 __ bind(&compare_lengths);
5409 __ SmiTest(length_difference);
Ben Murdoch257744e2011-11-30 15:57:28 +00005410 __ j(not_zero, &result_not_equal, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005411
5412 // Result is EQUAL.
5413 __ Move(rax, Smi::FromInt(EQUAL));
5414 __ ret(0);
5415
Ben Murdoch257744e2011-11-30 15:57:28 +00005416 Label result_greater;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005417 __ bind(&result_not_equal);
5418 // Unequal comparison of left to right, either character or length.
Ben Murdoch257744e2011-11-30 15:57:28 +00005419 __ j(greater, &result_greater, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005420
5421 // Result is LESS.
5422 __ Move(rax, Smi::FromInt(LESS));
5423 __ ret(0);
5424
5425 // Result is GREATER.
5426 __ bind(&result_greater);
5427 __ Move(rax, Smi::FromInt(GREATER));
5428 __ ret(0);
5429}
5430
5431
Ben Murdoch257744e2011-11-30 15:57:28 +00005432void StringCompareStub::GenerateAsciiCharsCompareLoop(
5433 MacroAssembler* masm,
5434 Register left,
5435 Register right,
5436 Register length,
5437 Register scratch,
5438 Label* chars_not_equal,
5439 Label::Distance near_jump) {
5440 // Change index to run from -length to -1 by adding length to string
5441 // start. This means that loop ends when index reaches zero, which
5442 // doesn't need an additional compare.
5443 __ SmiToInteger32(length, length);
5444 __ lea(left,
5445 FieldOperand(left, length, times_1, SeqAsciiString::kHeaderSize));
5446 __ lea(right,
5447 FieldOperand(right, length, times_1, SeqAsciiString::kHeaderSize));
5448 __ neg(length);
5449 Register index = length; // index = -length;
5450
5451 // Compare loop.
5452 Label loop;
5453 __ bind(&loop);
5454 __ movb(scratch, Operand(left, index, times_1, 0));
5455 __ cmpb(scratch, Operand(right, index, times_1, 0));
5456 __ j(not_equal, chars_not_equal, near_jump);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005457 __ incq(index);
Ben Murdoch257744e2011-11-30 15:57:28 +00005458 __ j(not_zero, &loop);
5459}
5460
5461
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005462void StringCompareStub::Generate(MacroAssembler* masm) {
5463 Label runtime;
5464
5465 // Stack frame on entry.
5466 // rsp[0]: return address
5467 // rsp[8]: right string
5468 // rsp[16]: left string
5469
5470 __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left
5471 __ movq(rax, Operand(rsp, 1 * kPointerSize)); // right
5472
5473 // Check for identity.
Ben Murdoch257744e2011-11-30 15:57:28 +00005474 Label not_same;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005475 __ cmpq(rdx, rax);
Ben Murdoch257744e2011-11-30 15:57:28 +00005476 __ j(not_equal, &not_same, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005477 __ Move(rax, Smi::FromInt(EQUAL));
Steve Block44f0eee2011-05-26 01:26:41 +01005478 Counters* counters = masm->isolate()->counters();
5479 __ IncrementCounter(counters->string_compare_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005480 __ ret(2 * kPointerSize);
5481
5482 __ bind(&not_same);
5483
5484 // Check that both are sequential ASCII strings.
5485 __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime);
5486
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005487 // Inline comparison of ASCII strings.
Steve Block44f0eee2011-05-26 01:26:41 +01005488 __ IncrementCounter(counters->string_compare_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005489 // Drop arguments from the stack
5490 __ pop(rcx);
5491 __ addq(rsp, Immediate(2 * kPointerSize));
5492 __ push(rcx);
5493 GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8);
5494
5495 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
5496 // tagged as a small integer.
5497 __ bind(&runtime);
5498 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
5499}
5500
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005501
Ben Murdochb0fe1622011-05-05 13:52:32 +01005502void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01005503 ASSERT(state_ == CompareIC::SMIS);
Ben Murdoch257744e2011-11-30 15:57:28 +00005504 Label miss;
5505 __ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01005506
5507 if (GetCondition() == equal) {
5508 // For equality we do not care about the sign of the result.
5509 __ subq(rax, rdx);
5510 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00005511 Label done;
Steve Block1e0659c2011-05-24 12:43:12 +01005512 __ subq(rdx, rax);
Ben Murdoch257744e2011-11-30 15:57:28 +00005513 __ j(no_overflow, &done, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01005514 // Correct sign of result in case of overflow.
5515 __ SmiNot(rdx, rdx);
5516 __ bind(&done);
5517 __ movq(rax, rdx);
5518 }
5519 __ ret(0);
5520
5521 __ bind(&miss);
5522 GenerateMiss(masm);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005523}
5524
5525
5526void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01005527 ASSERT(state_ == CompareIC::HEAP_NUMBERS);
5528
Ben Murdoch257744e2011-11-30 15:57:28 +00005529 Label generic_stub;
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005530 Label unordered, maybe_undefined1, maybe_undefined2;
Ben Murdoch257744e2011-11-30 15:57:28 +00005531 Label miss;
Steve Block1e0659c2011-05-24 12:43:12 +01005532 Condition either_smi = masm->CheckEitherSmi(rax, rdx);
Ben Murdoch257744e2011-11-30 15:57:28 +00005533 __ j(either_smi, &generic_stub, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01005534
5535 __ CmpObjectType(rax, HEAP_NUMBER_TYPE, rcx);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005536 __ j(not_equal, &maybe_undefined1, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01005537 __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005538 __ j(not_equal, &maybe_undefined2, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01005539
5540 // Load left and right operand
5541 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
5542 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
5543
5544 // Compare operands
5545 __ ucomisd(xmm0, xmm1);
5546
5547 // Don't base result on EFLAGS when a NaN is involved.
Ben Murdoch257744e2011-11-30 15:57:28 +00005548 __ j(parity_even, &unordered, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01005549
5550 // Return a result of -1, 0, or 1, based on EFLAGS.
5551 // Performing mov, because xor would destroy the flag register.
5552 __ movl(rax, Immediate(0));
5553 __ movl(rcx, Immediate(0));
5554 __ setcc(above, rax); // Add one to zero if carry clear and not equal.
5555 __ sbbq(rax, rcx); // Subtract one if below (aka. carry set).
5556 __ ret(0);
5557
5558 __ bind(&unordered);
Steve Block1e0659c2011-05-24 12:43:12 +01005559 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS);
5560 __ bind(&generic_stub);
5561 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
5562
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005563 __ bind(&maybe_undefined1);
5564 if (Token::IsOrderedRelationalCompareOp(op_)) {
5565 __ Cmp(rax, masm->isolate()->factory()->undefined_value());
5566 __ j(not_equal, &miss);
5567 __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx);
5568 __ j(not_equal, &maybe_undefined2, Label::kNear);
5569 __ jmp(&unordered);
5570 }
5571
5572 __ bind(&maybe_undefined2);
5573 if (Token::IsOrderedRelationalCompareOp(op_)) {
5574 __ Cmp(rdx, masm->isolate()->factory()->undefined_value());
5575 __ j(equal, &unordered);
5576 }
5577
Steve Block1e0659c2011-05-24 12:43:12 +01005578 __ bind(&miss);
5579 GenerateMiss(masm);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005580}
5581
5582
Ben Murdoch257744e2011-11-30 15:57:28 +00005583void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
5584 ASSERT(state_ == CompareIC::SYMBOLS);
5585 ASSERT(GetCondition() == equal);
5586
5587 // Registers containing left and right operands respectively.
5588 Register left = rdx;
5589 Register right = rax;
5590 Register tmp1 = rcx;
5591 Register tmp2 = rbx;
5592
5593 // Check that both operands are heap objects.
5594 Label miss;
5595 Condition cond = masm->CheckEitherSmi(left, right, tmp1);
5596 __ j(cond, &miss, Label::kNear);
5597
5598 // Check that both operands are symbols.
5599 __ movq(tmp1, FieldOperand(left, HeapObject::kMapOffset));
5600 __ movq(tmp2, FieldOperand(right, HeapObject::kMapOffset));
5601 __ movzxbq(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
5602 __ movzxbq(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
5603 STATIC_ASSERT(kSymbolTag != 0);
5604 __ and_(tmp1, tmp2);
5605 __ testb(tmp1, Immediate(kIsSymbolMask));
5606 __ j(zero, &miss, Label::kNear);
5607
5608 // Symbols are compared by identity.
5609 Label done;
5610 __ cmpq(left, right);
5611 // Make sure rax is non-zero. At this point input operands are
5612 // guaranteed to be non-zero.
5613 ASSERT(right.is(rax));
5614 __ j(not_equal, &done, Label::kNear);
5615 STATIC_ASSERT(EQUAL == 0);
5616 STATIC_ASSERT(kSmiTag == 0);
5617 __ Move(rax, Smi::FromInt(EQUAL));
5618 __ bind(&done);
5619 __ ret(0);
5620
5621 __ bind(&miss);
5622 GenerateMiss(masm);
5623}
5624
5625
5626void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
5627 ASSERT(state_ == CompareIC::STRINGS);
Ben Murdoch257744e2011-11-30 15:57:28 +00005628 Label miss;
5629
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005630 bool equality = Token::IsEqualityOp(op_);
5631
Ben Murdoch257744e2011-11-30 15:57:28 +00005632 // Registers containing left and right operands respectively.
5633 Register left = rdx;
5634 Register right = rax;
5635 Register tmp1 = rcx;
5636 Register tmp2 = rbx;
5637 Register tmp3 = rdi;
5638
5639 // Check that both operands are heap objects.
5640 Condition cond = masm->CheckEitherSmi(left, right, tmp1);
5641 __ j(cond, &miss);
5642
5643 // Check that both operands are strings. This leaves the instance
5644 // types loaded in tmp1 and tmp2.
5645 __ movq(tmp1, FieldOperand(left, HeapObject::kMapOffset));
5646 __ movq(tmp2, FieldOperand(right, HeapObject::kMapOffset));
5647 __ movzxbq(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
5648 __ movzxbq(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
5649 __ movq(tmp3, tmp1);
5650 STATIC_ASSERT(kNotStringTag != 0);
5651 __ or_(tmp3, tmp2);
5652 __ testb(tmp3, Immediate(kIsNotStringMask));
5653 __ j(not_zero, &miss);
5654
5655 // Fast check for identical strings.
5656 Label not_same;
5657 __ cmpq(left, right);
5658 __ j(not_equal, &not_same, Label::kNear);
5659 STATIC_ASSERT(EQUAL == 0);
5660 STATIC_ASSERT(kSmiTag == 0);
5661 __ Move(rax, Smi::FromInt(EQUAL));
5662 __ ret(0);
5663
5664 // Handle not identical strings.
5665 __ bind(&not_same);
5666
5667 // Check that both strings are symbols. If they are, we're done
5668 // because we already know they are not identical.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005669 if (equality) {
5670 Label do_compare;
5671 STATIC_ASSERT(kSymbolTag != 0);
5672 __ and_(tmp1, tmp2);
5673 __ testb(tmp1, Immediate(kIsSymbolMask));
5674 __ j(zero, &do_compare, Label::kNear);
5675 // Make sure rax is non-zero. At this point input operands are
5676 // guaranteed to be non-zero.
5677 ASSERT(right.is(rax));
5678 __ ret(0);
5679 __ bind(&do_compare);
5680 }
Ben Murdoch257744e2011-11-30 15:57:28 +00005681
5682 // Check that both strings are sequential ASCII.
5683 Label runtime;
Ben Murdoch257744e2011-11-30 15:57:28 +00005684 __ JumpIfNotBothSequentialAsciiStrings(left, right, tmp1, tmp2, &runtime);
5685
5686 // Compare flat ASCII strings. Returns when done.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005687 if (equality) {
5688 StringCompareStub::GenerateFlatAsciiStringEquals(
5689 masm, left, right, tmp1, tmp2);
5690 } else {
5691 StringCompareStub::GenerateCompareFlatAsciiStrings(
5692 masm, left, right, tmp1, tmp2, tmp3, kScratchRegister);
5693 }
Ben Murdoch257744e2011-11-30 15:57:28 +00005694
5695 // Handle more complex cases in runtime.
5696 __ bind(&runtime);
5697 __ pop(tmp1); // Return address.
5698 __ push(left);
5699 __ push(right);
5700 __ push(tmp1);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005701 if (equality) {
5702 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
5703 } else {
5704 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
5705 }
Ben Murdoch257744e2011-11-30 15:57:28 +00005706
5707 __ bind(&miss);
5708 GenerateMiss(masm);
5709}
5710
5711
Ben Murdochb0fe1622011-05-05 13:52:32 +01005712void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01005713 ASSERT(state_ == CompareIC::OBJECTS);
Ben Murdoch257744e2011-11-30 15:57:28 +00005714 Label miss;
Steve Block1e0659c2011-05-24 12:43:12 +01005715 Condition either_smi = masm->CheckEitherSmi(rdx, rax);
Ben Murdoch257744e2011-11-30 15:57:28 +00005716 __ j(either_smi, &miss, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01005717
5718 __ CmpObjectType(rax, JS_OBJECT_TYPE, rcx);
Ben Murdoch257744e2011-11-30 15:57:28 +00005719 __ j(not_equal, &miss, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01005720 __ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx);
Ben Murdoch257744e2011-11-30 15:57:28 +00005721 __ j(not_equal, &miss, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01005722
5723 ASSERT(GetCondition() == equal);
5724 __ subq(rax, rdx);
5725 __ ret(0);
5726
5727 __ bind(&miss);
5728 GenerateMiss(masm);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005729}
5730
5731
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005732void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
5733 Label miss;
5734 Condition either_smi = masm->CheckEitherSmi(rdx, rax);
5735 __ j(either_smi, &miss, Label::kNear);
5736
5737 __ movq(rcx, FieldOperand(rax, HeapObject::kMapOffset));
5738 __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
5739 __ Cmp(rcx, known_map_);
5740 __ j(not_equal, &miss, Label::kNear);
5741 __ Cmp(rbx, known_map_);
5742 __ j(not_equal, &miss, Label::kNear);
5743
5744 __ subq(rax, rdx);
5745 __ ret(0);
5746
5747 __ bind(&miss);
5748 GenerateMiss(masm);
5749}
5750
5751
Ben Murdochc7cc0282012-03-05 14:35:55 +00005752void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005753 {
5754 // Call the runtime system in a fresh internal frame.
5755 ExternalReference miss =
5756 ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
Ben Murdochc7cc0282012-03-05 14:35:55 +00005757
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005758 FrameScope scope(masm, StackFrame::INTERNAL);
5759 __ push(rdx);
5760 __ push(rax);
5761 __ push(rdx);
5762 __ push(rax);
5763 __ Push(Smi::FromInt(op_));
5764 __ CallExternalReference(miss, 3);
Ben Murdochc7cc0282012-03-05 14:35:55 +00005765
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005766 // Compute the entry point of the rewritten stub.
5767 __ lea(rdi, FieldOperand(rax, Code::kHeaderSize));
5768 __ pop(rax);
5769 __ pop(rdx);
5770 }
Steve Block1e0659c2011-05-24 12:43:12 +01005771
Steve Block1e0659c2011-05-24 12:43:12 +01005772 // Do a tail call to the rewritten stub.
5773 __ jmp(rdi);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005774}
5775
Steve Block1e0659c2011-05-24 12:43:12 +01005776
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005777void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
5778 Label* miss,
5779 Label* done,
5780 Register properties,
5781 Handle<String> name,
5782 Register r0) {
Ben Murdoch257744e2011-11-30 15:57:28 +00005783 // If names of slots in range from 1 to kProbes - 1 for the hash value are
5784 // not equal to the name and kProbes-th slot is not used (its name is the
5785 // undefined value), it guarantees the hash table doesn't contain the
5786 // property. It's true even if some slots represent deleted properties
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005787 // (their names are the hole value).
Ben Murdoch257744e2011-11-30 15:57:28 +00005788 for (int i = 0; i < kInlinedProbes; i++) {
5789 // r0 points to properties hash.
5790 // Compute the masked index: (hash + i + i * i) & mask.
5791 Register index = r0;
5792 // Capacity is smi 2^n.
5793 __ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset));
5794 __ decl(index);
5795 __ and_(index,
5796 Immediate(name->Hash() + StringDictionary::GetProbeOffset(i)));
5797
5798 // Scale the index by multiplying by the entry size.
5799 ASSERT(StringDictionary::kEntrySize == 3);
5800 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
5801
5802 Register entity_name = r0;
5803 // Having undefined at this place means the name is not contained.
5804 ASSERT_EQ(kSmiTagSize, 1);
5805 __ movq(entity_name, Operand(properties,
5806 index,
5807 times_pointer_size,
5808 kElementsStartOffset - kHeapObjectTag));
5809 __ Cmp(entity_name, masm->isolate()->factory()->undefined_value());
5810 __ j(equal, done);
5811
5812 // Stop if found the property.
5813 __ Cmp(entity_name, Handle<String>(name));
5814 __ j(equal, miss);
5815
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005816 Label the_hole;
5817 // Check for the hole and skip.
5818 __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex);
5819 __ j(equal, &the_hole, Label::kNear);
5820
Ben Murdoch257744e2011-11-30 15:57:28 +00005821 // Check if the entry name is not a symbol.
5822 __ movq(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
5823 __ testb(FieldOperand(entity_name, Map::kInstanceTypeOffset),
5824 Immediate(kIsSymbolMask));
5825 __ j(zero, miss);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005826
5827 __ bind(&the_hole);
Ben Murdoch257744e2011-11-30 15:57:28 +00005828 }
5829
5830 StringDictionaryLookupStub stub(properties,
5831 r0,
5832 r0,
5833 StringDictionaryLookupStub::NEGATIVE_LOOKUP);
5834 __ Push(Handle<Object>(name));
5835 __ push(Immediate(name->Hash()));
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005836 __ CallStub(&stub);
Ben Murdoch257744e2011-11-30 15:57:28 +00005837 __ testq(r0, r0);
5838 __ j(not_zero, miss);
5839 __ jmp(done);
Ben Murdoch257744e2011-11-30 15:57:28 +00005840}
5841
5842
5843// Probe the string dictionary in the |elements| register. Jump to the
5844// |done| label if a property with the given name is found leaving the
5845// index into the dictionary in |r1|. Jump to the |miss| label
5846// otherwise.
5847void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
5848 Label* miss,
5849 Label* done,
5850 Register elements,
5851 Register name,
5852 Register r0,
5853 Register r1) {
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005854 ASSERT(!elements.is(r0));
5855 ASSERT(!elements.is(r1));
5856 ASSERT(!name.is(r0));
5857 ASSERT(!name.is(r1));
5858
Ben Murdoch257744e2011-11-30 15:57:28 +00005859 // Assert that name contains a string.
5860 if (FLAG_debug_code) __ AbortIfNotString(name);
5861
5862 __ SmiToInteger32(r0, FieldOperand(elements, kCapacityOffset));
5863 __ decl(r0);
5864
5865 for (int i = 0; i < kInlinedProbes; i++) {
5866 // Compute the masked index: (hash + i + i * i) & mask.
5867 __ movl(r1, FieldOperand(name, String::kHashFieldOffset));
5868 __ shrl(r1, Immediate(String::kHashShift));
5869 if (i > 0) {
5870 __ addl(r1, Immediate(StringDictionary::GetProbeOffset(i)));
5871 }
5872 __ and_(r1, r0);
5873
5874 // Scale the index by multiplying by the entry size.
5875 ASSERT(StringDictionary::kEntrySize == 3);
5876 __ lea(r1, Operand(r1, r1, times_2, 0)); // r1 = r1 * 3
5877
5878 // Check if the key is identical to the name.
5879 __ cmpq(name, Operand(elements, r1, times_pointer_size,
5880 kElementsStartOffset - kHeapObjectTag));
5881 __ j(equal, done);
5882 }
5883
5884 StringDictionaryLookupStub stub(elements,
5885 r0,
5886 r1,
5887 POSITIVE_LOOKUP);
5888 __ push(name);
5889 __ movl(r0, FieldOperand(name, String::kHashFieldOffset));
5890 __ shrl(r0, Immediate(String::kHashShift));
5891 __ push(r0);
5892 __ CallStub(&stub);
5893
5894 __ testq(r0, r0);
5895 __ j(zero, miss);
5896 __ jmp(done);
5897}
5898
5899
5900void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005901 // This stub overrides SometimesSetsUpAFrame() to return false. That means
5902 // we cannot call anything that could cause a GC from this stub.
Ben Murdoch257744e2011-11-30 15:57:28 +00005903 // Stack frame on entry:
5904 // esp[0 * kPointerSize]: return address.
5905 // esp[1 * kPointerSize]: key's hash.
5906 // esp[2 * kPointerSize]: key.
5907 // Registers:
5908 // dictionary_: StringDictionary to probe.
5909 // result_: used as scratch.
5910 // index_: will hold an index of entry if lookup is successful.
5911 // might alias with result_.
5912 // Returns:
5913 // result_ is zero if lookup failed, non zero otherwise.
5914
5915 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
5916
5917 Register scratch = result_;
5918
5919 __ SmiToInteger32(scratch, FieldOperand(dictionary_, kCapacityOffset));
5920 __ decl(scratch);
5921 __ push(scratch);
5922
5923 // If names of slots in range from 1 to kProbes - 1 for the hash value are
5924 // not equal to the name and kProbes-th slot is not used (its name is the
5925 // undefined value), it guarantees the hash table doesn't contain the
5926 // property. It's true even if some slots represent deleted properties
5927 // (their names are the null value).
5928 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
5929 // Compute the masked index: (hash + i + i * i) & mask.
5930 __ movq(scratch, Operand(rsp, 2 * kPointerSize));
5931 if (i > 0) {
5932 __ addl(scratch, Immediate(StringDictionary::GetProbeOffset(i)));
5933 }
5934 __ and_(scratch, Operand(rsp, 0));
5935
5936 // Scale the index by multiplying by the entry size.
5937 ASSERT(StringDictionary::kEntrySize == 3);
5938 __ lea(index_, Operand(scratch, scratch, times_2, 0)); // index *= 3.
5939
5940 // Having undefined at this place means the name is not contained.
5941 __ movq(scratch, Operand(dictionary_,
5942 index_,
5943 times_pointer_size,
5944 kElementsStartOffset - kHeapObjectTag));
5945
5946 __ Cmp(scratch, masm->isolate()->factory()->undefined_value());
5947 __ j(equal, &not_in_dictionary);
5948
5949 // Stop if found the property.
5950 __ cmpq(scratch, Operand(rsp, 3 * kPointerSize));
5951 __ j(equal, &in_dictionary);
5952
5953 if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
5954 // If we hit a non symbol key during negative lookup
5955 // we have to bailout as this key might be equal to the
5956 // key we are looking for.
5957
5958 // Check if the entry name is not a symbol.
5959 __ movq(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
5960 __ testb(FieldOperand(scratch, Map::kInstanceTypeOffset),
5961 Immediate(kIsSymbolMask));
5962 __ j(zero, &maybe_in_dictionary);
5963 }
5964 }
5965
5966 __ bind(&maybe_in_dictionary);
5967 // If we are doing negative lookup then probing failure should be
5968 // treated as a lookup success. For positive lookup probing failure
5969 // should be treated as lookup failure.
5970 if (mode_ == POSITIVE_LOOKUP) {
5971 __ movq(scratch, Immediate(0));
5972 __ Drop(1);
5973 __ ret(2 * kPointerSize);
5974 }
5975
5976 __ bind(&in_dictionary);
5977 __ movq(scratch, Immediate(1));
5978 __ Drop(1);
5979 __ ret(2 * kPointerSize);
5980
5981 __ bind(&not_in_dictionary);
5982 __ movq(scratch, Immediate(0));
5983 __ Drop(1);
5984 __ ret(2 * kPointerSize);
5985}
5986
5987
Ben Murdoch3ef787d2012-04-12 10:51:47 +01005988struct AheadOfTimeWriteBarrierStubList {
5989 Register object, value, address;
5990 RememberedSetAction action;
5991};
5992
5993
5994#define REG(Name) { kRegister_ ## Name ## _Code }
5995
5996struct AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
5997 // Used in RegExpExecStub.
5998 { REG(rbx), REG(rax), REG(rdi), EMIT_REMEMBERED_SET },
5999 // Used in CompileArrayPushCall.
6000 { REG(rbx), REG(rcx), REG(rdx), EMIT_REMEMBERED_SET },
6001 // Used in CompileStoreGlobal.
6002 { REG(rbx), REG(rcx), REG(rdx), OMIT_REMEMBERED_SET },
6003 // Used in StoreStubCompiler::CompileStoreField and
6004 // KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
6005 { REG(rdx), REG(rcx), REG(rbx), EMIT_REMEMBERED_SET },
6006 // GenerateStoreField calls the stub with two different permutations of
6007 // registers. This is the second.
6008 { REG(rbx), REG(rcx), REG(rdx), EMIT_REMEMBERED_SET },
6009 // StoreIC::GenerateNormal via GenerateDictionaryStore.
6010 { REG(rbx), REG(r8), REG(r9), EMIT_REMEMBERED_SET },
6011 // KeyedStoreIC::GenerateGeneric.
6012 { REG(rbx), REG(rdx), REG(rcx), EMIT_REMEMBERED_SET},
6013 // KeyedStoreStubCompiler::GenerateStoreFastElement.
6014 { REG(rdi), REG(rbx), REG(rcx), EMIT_REMEMBERED_SET},
6015 { REG(rdx), REG(rdi), REG(rbx), EMIT_REMEMBERED_SET},
6016 // ElementsTransitionGenerator::GenerateSmiOnlyToObject
6017 // and ElementsTransitionGenerator::GenerateSmiOnlyToObject
6018 // and ElementsTransitionGenerator::GenerateDoubleToObject
6019 { REG(rdx), REG(rbx), REG(rdi), EMIT_REMEMBERED_SET},
6020 { REG(rdx), REG(rbx), REG(rdi), OMIT_REMEMBERED_SET},
6021 // ElementsTransitionGenerator::GenerateSmiOnlyToDouble
6022 // and ElementsTransitionGenerator::GenerateDoubleToObject
6023 { REG(rdx), REG(r11), REG(r15), EMIT_REMEMBERED_SET},
6024 // ElementsTransitionGenerator::GenerateDoubleToObject
6025 { REG(r11), REG(rax), REG(r15), EMIT_REMEMBERED_SET},
6026 // StoreArrayLiteralElementStub::Generate
6027 { REG(rbx), REG(rax), REG(rcx), EMIT_REMEMBERED_SET},
6028 // Null termination.
6029 { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET}
6030};
6031
6032#undef REG
6033
6034bool RecordWriteStub::IsPregenerated() {
6035 for (AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
6036 !entry->object.is(no_reg);
6037 entry++) {
6038 if (object_.is(entry->object) &&
6039 value_.is(entry->value) &&
6040 address_.is(entry->address) &&
6041 remembered_set_action_ == entry->action &&
6042 save_fp_regs_mode_ == kDontSaveFPRegs) {
6043 return true;
6044 }
6045 }
6046 return false;
6047}
6048
6049
6050void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
6051 StoreBufferOverflowStub stub1(kDontSaveFPRegs);
6052 stub1.GetCode()->set_is_pregenerated(true);
6053 StoreBufferOverflowStub stub2(kSaveFPRegs);
6054 stub2.GetCode()->set_is_pregenerated(true);
6055}
6056
6057
6058void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
6059 for (AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
6060 !entry->object.is(no_reg);
6061 entry++) {
6062 RecordWriteStub stub(entry->object,
6063 entry->value,
6064 entry->address,
6065 entry->action,
6066 kDontSaveFPRegs);
6067 stub.GetCode()->set_is_pregenerated(true);
6068 }
6069}
6070
6071
6072// Takes the input in 3 registers: address_ value_ and object_. A pointer to
6073// the value has just been written into the object, now this stub makes sure
6074// we keep the GC informed. The word in the object where the value has been
6075// written is in the address register.
6076void RecordWriteStub::Generate(MacroAssembler* masm) {
6077 Label skip_to_incremental_noncompacting;
6078 Label skip_to_incremental_compacting;
6079
6080 // The first two instructions are generated with labels so as to get the
6081 // offset fixed up correctly by the bind(Label*) call. We patch it back and
6082 // forth between a compare instructions (a nop in this position) and the
6083 // real branch when we start and stop incremental heap marking.
6084 // See RecordWriteStub::Patch for details.
6085 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
6086 __ jmp(&skip_to_incremental_compacting, Label::kFar);
6087
6088 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
6089 __ RememberedSetHelper(object_,
6090 address_,
6091 value_,
6092 save_fp_regs_mode_,
6093 MacroAssembler::kReturnAtEnd);
6094 } else {
6095 __ ret(0);
6096 }
6097
6098 __ bind(&skip_to_incremental_noncompacting);
6099 GenerateIncremental(masm, INCREMENTAL);
6100
6101 __ bind(&skip_to_incremental_compacting);
6102 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
6103
6104 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
6105 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
6106 masm->set_byte_at(0, kTwoByteNopInstruction);
6107 masm->set_byte_at(2, kFiveByteNopInstruction);
6108}
6109
6110
6111void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
6112 regs_.Save(masm);
6113
6114 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
6115 Label dont_need_remembered_set;
6116
6117 __ movq(regs_.scratch0(), Operand(regs_.address(), 0));
6118 __ JumpIfNotInNewSpace(regs_.scratch0(),
6119 regs_.scratch0(),
6120 &dont_need_remembered_set);
6121
6122 __ CheckPageFlag(regs_.object(),
6123 regs_.scratch0(),
6124 1 << MemoryChunk::SCAN_ON_SCAVENGE,
6125 not_zero,
6126 &dont_need_remembered_set);
6127
6128 // First notify the incremental marker if necessary, then update the
6129 // remembered set.
6130 CheckNeedsToInformIncrementalMarker(
6131 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
6132 InformIncrementalMarker(masm, mode);
6133 regs_.Restore(masm);
6134 __ RememberedSetHelper(object_,
6135 address_,
6136 value_,
6137 save_fp_regs_mode_,
6138 MacroAssembler::kReturnAtEnd);
6139
6140 __ bind(&dont_need_remembered_set);
6141 }
6142
6143 CheckNeedsToInformIncrementalMarker(
6144 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
6145 InformIncrementalMarker(masm, mode);
6146 regs_.Restore(masm);
6147 __ ret(0);
6148}
6149
6150
6151void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
6152 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
6153#ifdef _WIN64
6154 Register arg3 = r8;
6155 Register arg2 = rdx;
6156 Register arg1 = rcx;
6157#else
6158 Register arg3 = rdx;
6159 Register arg2 = rsi;
6160 Register arg1 = rdi;
6161#endif
6162 Register address =
6163 arg1.is(regs_.address()) ? kScratchRegister : regs_.address();
6164 ASSERT(!address.is(regs_.object()));
6165 ASSERT(!address.is(arg1));
6166 __ Move(address, regs_.address());
6167 __ Move(arg1, regs_.object());
6168 if (mode == INCREMENTAL_COMPACTION) {
6169 // TODO(gc) Can we just set address arg2 in the beginning?
6170 __ Move(arg2, address);
6171 } else {
6172 ASSERT(mode == INCREMENTAL);
6173 __ movq(arg2, Operand(address, 0));
6174 }
6175 __ LoadAddress(arg3, ExternalReference::isolate_address());
6176 int argument_count = 3;
6177
6178 AllowExternalCallThatCantCauseGC scope(masm);
6179 __ PrepareCallCFunction(argument_count);
6180 if (mode == INCREMENTAL_COMPACTION) {
6181 __ CallCFunction(
6182 ExternalReference::incremental_evacuation_record_write_function(
6183 masm->isolate()),
6184 argument_count);
6185 } else {
6186 ASSERT(mode == INCREMENTAL);
6187 __ CallCFunction(
6188 ExternalReference::incremental_marking_record_write_function(
6189 masm->isolate()),
6190 argument_count);
6191 }
6192 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
6193}
6194
6195
6196void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
6197 MacroAssembler* masm,
6198 OnNoNeedToInformIncrementalMarker on_no_need,
6199 Mode mode) {
6200 Label on_black;
6201 Label need_incremental;
6202 Label need_incremental_pop_object;
6203
6204 // Let's look at the color of the object: If it is not black we don't have
6205 // to inform the incremental marker.
6206 __ JumpIfBlack(regs_.object(),
6207 regs_.scratch0(),
6208 regs_.scratch1(),
6209 &on_black,
6210 Label::kNear);
6211
6212 regs_.Restore(masm);
6213 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
6214 __ RememberedSetHelper(object_,
6215 address_,
6216 value_,
6217 save_fp_regs_mode_,
6218 MacroAssembler::kReturnAtEnd);
6219 } else {
6220 __ ret(0);
6221 }
6222
6223 __ bind(&on_black);
6224
6225 // Get the value from the slot.
6226 __ movq(regs_.scratch0(), Operand(regs_.address(), 0));
6227
6228 if (mode == INCREMENTAL_COMPACTION) {
6229 Label ensure_not_white;
6230
6231 __ CheckPageFlag(regs_.scratch0(), // Contains value.
6232 regs_.scratch1(), // Scratch.
6233 MemoryChunk::kEvacuationCandidateMask,
6234 zero,
6235 &ensure_not_white,
6236 Label::kNear);
6237
6238 __ CheckPageFlag(regs_.object(),
6239 regs_.scratch1(), // Scratch.
6240 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
6241 zero,
6242 &need_incremental);
6243
6244 __ bind(&ensure_not_white);
6245 }
6246
6247 // We need an extra register for this, so we push the object register
6248 // temporarily.
6249 __ push(regs_.object());
6250 __ EnsureNotWhite(regs_.scratch0(), // The value.
6251 regs_.scratch1(), // Scratch.
6252 regs_.object(), // Scratch.
6253 &need_incremental_pop_object,
6254 Label::kNear);
6255 __ pop(regs_.object());
6256
6257 regs_.Restore(masm);
6258 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
6259 __ RememberedSetHelper(object_,
6260 address_,
6261 value_,
6262 save_fp_regs_mode_,
6263 MacroAssembler::kReturnAtEnd);
6264 } else {
6265 __ ret(0);
6266 }
6267
6268 __ bind(&need_incremental_pop_object);
6269 __ pop(regs_.object());
6270
6271 __ bind(&need_incremental);
6272
6273 // Fall through when we need to inform the incremental marker.
6274}
6275
6276
6277void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
6278 // ----------- S t a t e -------------
6279 // -- rax : element value to store
6280 // -- rbx : array literal
6281 // -- rdi : map of array literal
6282 // -- rcx : element index as smi
6283 // -- rdx : array literal index in function
6284 // -- rsp[0] : return address
6285 // -----------------------------------
6286
6287 Label element_done;
6288 Label double_elements;
6289 Label smi_element;
6290 Label slow_elements;
6291 Label fast_elements;
6292
6293 __ CheckFastElements(rdi, &double_elements);
6294
6295 // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS
6296 __ JumpIfSmi(rax, &smi_element);
6297 __ CheckFastSmiOnlyElements(rdi, &fast_elements);
6298
6299 // Store into the array literal requires a elements transition. Call into
6300 // the runtime.
6301
6302 __ bind(&slow_elements);
6303 __ pop(rdi); // Pop return address and remember to put back later for tail
6304 // call.
6305 __ push(rbx);
6306 __ push(rcx);
6307 __ push(rax);
6308 __ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
6309 __ push(FieldOperand(rbx, JSFunction::kLiteralsOffset));
6310 __ push(rdx);
6311 __ push(rdi); // Return return address so that tail call returns to right
6312 // place.
6313 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
6314
6315 // Array literal has ElementsKind of FAST_ELEMENTS and value is an object.
6316 __ bind(&fast_elements);
6317 __ SmiToInteger32(kScratchRegister, rcx);
6318 __ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
6319 __ lea(rcx, FieldOperand(rbx, kScratchRegister, times_pointer_size,
6320 FixedArrayBase::kHeaderSize));
6321 __ movq(Operand(rcx, 0), rax);
6322 // Update the write barrier for the array store.
6323 __ RecordWrite(rbx, rcx, rax,
6324 kDontSaveFPRegs,
6325 EMIT_REMEMBERED_SET,
6326 OMIT_SMI_CHECK);
6327 __ ret(0);
6328
6329 // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or
6330 // FAST_ELEMENTS, and value is Smi.
6331 __ bind(&smi_element);
6332 __ SmiToInteger32(kScratchRegister, rcx);
6333 __ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
6334 __ movq(FieldOperand(rbx, kScratchRegister, times_pointer_size,
6335 FixedArrayBase::kHeaderSize), rax);
6336 __ ret(0);
6337
6338 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
6339 __ bind(&double_elements);
6340
6341 __ movq(r9, FieldOperand(rbx, JSObject::kElementsOffset));
6342 __ SmiToInteger32(r11, rcx);
6343 __ StoreNumberToDoubleElements(rax,
6344 r9,
6345 r11,
6346 xmm0,
6347 &slow_elements);
6348 __ ret(0);
6349}
6350
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006351#undef __
6352
6353} } // namespace v8::internal
6354
6355#endif // V8_TARGET_ARCH_X64