blob: 00304968c2bef9eb731c31947a3bea5786a7cfb6 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_OBJECTS_H_
29#define V8_OBJECTS_H_
30
31#include "builtins.h"
32#include "code-stubs.h"
33#include "smart-pointer.h"
34#include "unicode-inl.h"
Steve Block3ce2e202009-11-05 08:53:23 +000035#if V8_TARGET_ARCH_ARM
36#include "arm/constants-arm.h"
Andrei Popescu31002712010-02-23 13:46:05 +000037#elif V8_TARGET_ARCH_MIPS
38#include "mips/constants-mips.h"
Steve Block3ce2e202009-11-05 08:53:23 +000039#endif
Steve Blocka7e24c12009-10-30 11:49:00 +000040
41//
42// All object types in the V8 JavaScript are described in this file.
43//
44// Inheritance hierarchy:
45// - Object
46// - Smi (immediate small integer)
47// - Failure (immediate for marking failed operation)
48// - HeapObject (superclass for everything allocated in the heap)
49// - JSObject
50// - JSArray
51// - JSRegExp
52// - JSFunction
53// - GlobalObject
54// - JSGlobalObject
55// - JSBuiltinsObject
56// - JSGlobalProxy
57// - JSValue
58// - Array
59// - ByteArray
60// - PixelArray
Steve Block3ce2e202009-11-05 08:53:23 +000061// - ExternalArray
62// - ExternalByteArray
63// - ExternalUnsignedByteArray
64// - ExternalShortArray
65// - ExternalUnsignedShortArray
66// - ExternalIntArray
67// - ExternalUnsignedIntArray
68// - ExternalFloatArray
Steve Blocka7e24c12009-10-30 11:49:00 +000069// - FixedArray
70// - DescriptorArray
71// - HashTable
72// - Dictionary
73// - SymbolTable
74// - CompilationCacheTable
75// - MapCache
76// - Context
77// - GlobalContext
78// - String
79// - SeqString
80// - SeqAsciiString
81// - SeqTwoByteString
82// - ConsString
Steve Blocka7e24c12009-10-30 11:49:00 +000083// - ExternalString
84// - ExternalAsciiString
85// - ExternalTwoByteString
86// - HeapNumber
87// - Code
88// - Map
89// - Oddball
90// - Proxy
91// - SharedFunctionInfo
92// - Struct
93// - AccessorInfo
94// - AccessCheckInfo
95// - InterceptorInfo
96// - CallHandlerInfo
97// - TemplateInfo
98// - FunctionTemplateInfo
99// - ObjectTemplateInfo
100// - Script
101// - SignatureInfo
102// - TypeSwitchInfo
103// - DebugInfo
104// - BreakPointInfo
105//
106// Formats of Object*:
107// Smi: [31 bit signed int] 0
108// HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
109// Failure: [30 bit signed int] 11
110
111// Ecma-262 3rd 8.6.1
112enum PropertyAttributes {
113 NONE = v8::None,
114 READ_ONLY = v8::ReadOnly,
115 DONT_ENUM = v8::DontEnum,
116 DONT_DELETE = v8::DontDelete,
117 ABSENT = 16 // Used in runtime to indicate a property is absent.
118 // ABSENT can never be stored in or returned from a descriptor's attributes
119 // bitfield. It is only used as a return value meaning the attributes of
120 // a non-existent property.
121};
122
123namespace v8 {
124namespace internal {
125
126
127// PropertyDetails captures type and attributes for a property.
128// They are used both in property dictionaries and instance descriptors.
129class PropertyDetails BASE_EMBEDDED {
130 public:
131
132 PropertyDetails(PropertyAttributes attributes,
133 PropertyType type,
134 int index = 0) {
135 ASSERT(TypeField::is_valid(type));
136 ASSERT(AttributesField::is_valid(attributes));
137 ASSERT(IndexField::is_valid(index));
138
139 value_ = TypeField::encode(type)
140 | AttributesField::encode(attributes)
141 | IndexField::encode(index);
142
143 ASSERT(type == this->type());
144 ASSERT(attributes == this->attributes());
145 ASSERT(index == this->index());
146 }
147
148 // Conversion for storing details as Object*.
149 inline PropertyDetails(Smi* smi);
150 inline Smi* AsSmi();
151
152 PropertyType type() { return TypeField::decode(value_); }
153
154 bool IsTransition() {
155 PropertyType t = type();
156 ASSERT(t != INTERCEPTOR);
157 return t == MAP_TRANSITION || t == CONSTANT_TRANSITION;
158 }
159
160 bool IsProperty() {
161 return type() < FIRST_PHANTOM_PROPERTY_TYPE;
162 }
163
164 PropertyAttributes attributes() { return AttributesField::decode(value_); }
165
166 int index() { return IndexField::decode(value_); }
167
168 inline PropertyDetails AsDeleted();
169
170 static bool IsValidIndex(int index) { return IndexField::is_valid(index); }
171
172 bool IsReadOnly() { return (attributes() & READ_ONLY) != 0; }
173 bool IsDontDelete() { return (attributes() & DONT_DELETE) != 0; }
174 bool IsDontEnum() { return (attributes() & DONT_ENUM) != 0; }
175 bool IsDeleted() { return DeletedField::decode(value_) != 0;}
176
177 // Bit fields in value_ (type, shift, size). Must be public so the
178 // constants can be embedded in generated code.
179 class TypeField: public BitField<PropertyType, 0, 3> {};
180 class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
181 class DeletedField: public BitField<uint32_t, 6, 1> {};
Andrei Popescu402d9372010-02-26 13:31:12 +0000182 class IndexField: public BitField<uint32_t, 7, 32-7> {};
Steve Blocka7e24c12009-10-30 11:49:00 +0000183
184 static const int kInitialIndex = 1;
185 private:
186 uint32_t value_;
187};
188
189
190// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
191enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
192
193
194// PropertyNormalizationMode is used to specify whether to keep
195// inobject properties when normalizing properties of a JSObject.
196enum PropertyNormalizationMode {
197 CLEAR_INOBJECT_PROPERTIES,
198 KEEP_INOBJECT_PROPERTIES
199};
200
201
202// All Maps have a field instance_type containing a InstanceType.
203// It describes the type of the instances.
204//
205// As an example, a JavaScript object is a heap object and its map
206// instance_type is JS_OBJECT_TYPE.
207//
208// The names of the string instance types are intended to systematically
Leon Clarkee46be812010-01-19 14:06:41 +0000209// mirror their encoding in the instance_type field of the map. The default
210// encoding is considered TWO_BYTE. It is not mentioned in the name. ASCII
211// encoding is mentioned explicitly in the name. Likewise, the default
212// representation is considered sequential. It is not mentioned in the
213// name. The other representations (eg, CONS, EXTERNAL) are explicitly
214// mentioned. Finally, the string is either a SYMBOL_TYPE (if it is a
215// symbol) or a STRING_TYPE (if it is not a symbol).
Steve Blocka7e24c12009-10-30 11:49:00 +0000216//
217// NOTE: The following things are some that depend on the string types having
218// instance_types that are less than those of all other types:
219// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
220// Object::IsString.
221//
222// NOTE: Everything following JS_VALUE_TYPE is considered a
223// JSObject for GC purposes. The first four entries here have typeof
224// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
Steve Blockd0582a62009-12-15 09:54:21 +0000225#define INSTANCE_TYPE_LIST_ALL(V) \
226 V(SYMBOL_TYPE) \
227 V(ASCII_SYMBOL_TYPE) \
228 V(CONS_SYMBOL_TYPE) \
229 V(CONS_ASCII_SYMBOL_TYPE) \
230 V(EXTERNAL_SYMBOL_TYPE) \
231 V(EXTERNAL_ASCII_SYMBOL_TYPE) \
232 V(STRING_TYPE) \
233 V(ASCII_STRING_TYPE) \
234 V(CONS_STRING_TYPE) \
235 V(CONS_ASCII_STRING_TYPE) \
236 V(EXTERNAL_STRING_TYPE) \
237 V(EXTERNAL_ASCII_STRING_TYPE) \
238 V(PRIVATE_EXTERNAL_ASCII_STRING_TYPE) \
239 \
240 V(MAP_TYPE) \
Steve Blockd0582a62009-12-15 09:54:21 +0000241 V(CODE_TYPE) \
242 V(JS_GLOBAL_PROPERTY_CELL_TYPE) \
243 V(ODDBALL_TYPE) \
Leon Clarkee46be812010-01-19 14:06:41 +0000244 \
245 V(HEAP_NUMBER_TYPE) \
Steve Blockd0582a62009-12-15 09:54:21 +0000246 V(PROXY_TYPE) \
247 V(BYTE_ARRAY_TYPE) \
248 V(PIXEL_ARRAY_TYPE) \
249 /* Note: the order of these external array */ \
250 /* types is relied upon in */ \
251 /* Object::IsExternalArray(). */ \
252 V(EXTERNAL_BYTE_ARRAY_TYPE) \
253 V(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE) \
254 V(EXTERNAL_SHORT_ARRAY_TYPE) \
255 V(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE) \
256 V(EXTERNAL_INT_ARRAY_TYPE) \
257 V(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE) \
258 V(EXTERNAL_FLOAT_ARRAY_TYPE) \
259 V(FILLER_TYPE) \
260 \
Leon Clarkee46be812010-01-19 14:06:41 +0000261 V(FIXED_ARRAY_TYPE) \
Steve Blockd0582a62009-12-15 09:54:21 +0000262 V(ACCESSOR_INFO_TYPE) \
263 V(ACCESS_CHECK_INFO_TYPE) \
264 V(INTERCEPTOR_INFO_TYPE) \
265 V(SHARED_FUNCTION_INFO_TYPE) \
266 V(CALL_HANDLER_INFO_TYPE) \
267 V(FUNCTION_TEMPLATE_INFO_TYPE) \
268 V(OBJECT_TEMPLATE_INFO_TYPE) \
269 V(SIGNATURE_INFO_TYPE) \
270 V(TYPE_SWITCH_INFO_TYPE) \
271 V(SCRIPT_TYPE) \
272 \
273 V(JS_VALUE_TYPE) \
274 V(JS_OBJECT_TYPE) \
275 V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \
276 V(JS_GLOBAL_OBJECT_TYPE) \
277 V(JS_BUILTINS_OBJECT_TYPE) \
278 V(JS_GLOBAL_PROXY_TYPE) \
279 V(JS_ARRAY_TYPE) \
280 V(JS_REGEXP_TYPE) \
281 \
282 V(JS_FUNCTION_TYPE) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000283
284#ifdef ENABLE_DEBUGGER_SUPPORT
Steve Blockd0582a62009-12-15 09:54:21 +0000285#define INSTANCE_TYPE_LIST_DEBUGGER(V) \
286 V(DEBUG_INFO_TYPE) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000287 V(BREAK_POINT_INFO_TYPE)
288#else
289#define INSTANCE_TYPE_LIST_DEBUGGER(V)
290#endif
291
Steve Blockd0582a62009-12-15 09:54:21 +0000292#define INSTANCE_TYPE_LIST(V) \
293 INSTANCE_TYPE_LIST_ALL(V) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000294 INSTANCE_TYPE_LIST_DEBUGGER(V)
295
296
297// Since string types are not consecutive, this macro is used to
298// iterate over them.
299#define STRING_TYPE_LIST(V) \
Steve Blockd0582a62009-12-15 09:54:21 +0000300 V(SYMBOL_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000301 SeqTwoByteString::kAlignedSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000302 symbol, \
303 Symbol) \
304 V(ASCII_SYMBOL_TYPE, \
305 SeqAsciiString::kAlignedSize, \
306 ascii_symbol, \
307 AsciiSymbol) \
308 V(CONS_SYMBOL_TYPE, \
309 ConsString::kSize, \
310 cons_symbol, \
311 ConsSymbol) \
312 V(CONS_ASCII_SYMBOL_TYPE, \
313 ConsString::kSize, \
314 cons_ascii_symbol, \
315 ConsAsciiSymbol) \
316 V(EXTERNAL_SYMBOL_TYPE, \
317 ExternalTwoByteString::kSize, \
318 external_symbol, \
319 ExternalSymbol) \
320 V(EXTERNAL_ASCII_SYMBOL_TYPE, \
321 ExternalAsciiString::kSize, \
322 external_ascii_symbol, \
323 ExternalAsciiSymbol) \
324 V(STRING_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000325 SeqTwoByteString::kAlignedSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000326 string, \
327 String) \
328 V(ASCII_STRING_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000329 SeqAsciiString::kAlignedSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000330 ascii_string, \
331 AsciiString) \
332 V(CONS_STRING_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000333 ConsString::kSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000334 cons_string, \
335 ConsString) \
336 V(CONS_ASCII_STRING_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000337 ConsString::kSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000338 cons_ascii_string, \
339 ConsAsciiString) \
340 V(EXTERNAL_STRING_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000341 ExternalTwoByteString::kSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000342 external_string, \
343 ExternalString) \
344 V(EXTERNAL_ASCII_STRING_TYPE, \
Steve Blocka7e24c12009-10-30 11:49:00 +0000345 ExternalAsciiString::kSize, \
Steve Blockd0582a62009-12-15 09:54:21 +0000346 external_ascii_string, \
347 ExternalAsciiString) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000348
349// A struct is a simple object a set of object-valued fields. Including an
350// object type in this causes the compiler to generate most of the boilerplate
351// code for the class including allocation and garbage collection routines,
352// casts and predicates. All you need to define is the class, methods and
353// object verification routines. Easy, no?
354//
355// Note that for subtle reasons related to the ordering or numerical values of
356// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
357// manually.
Steve Blockd0582a62009-12-15 09:54:21 +0000358#define STRUCT_LIST_ALL(V) \
359 V(ACCESSOR_INFO, AccessorInfo, accessor_info) \
360 V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \
361 V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \
362 V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \
363 V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
364 V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \
365 V(SIGNATURE_INFO, SignatureInfo, signature_info) \
366 V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000367 V(SCRIPT, Script, script)
368
369#ifdef ENABLE_DEBUGGER_SUPPORT
Steve Blockd0582a62009-12-15 09:54:21 +0000370#define STRUCT_LIST_DEBUGGER(V) \
371 V(DEBUG_INFO, DebugInfo, debug_info) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000372 V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
373#else
374#define STRUCT_LIST_DEBUGGER(V)
375#endif
376
Steve Blockd0582a62009-12-15 09:54:21 +0000377#define STRUCT_LIST(V) \
378 STRUCT_LIST_ALL(V) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000379 STRUCT_LIST_DEBUGGER(V)
380
381// We use the full 8 bits of the instance_type field to encode heap object
382// instance types. The high-order bit (bit 7) is set if the object is not a
383// string, and cleared if it is a string.
384const uint32_t kIsNotStringMask = 0x80;
385const uint32_t kStringTag = 0x0;
386const uint32_t kNotStringTag = 0x80;
387
Leon Clarkee46be812010-01-19 14:06:41 +0000388// Bit 6 indicates that the object is a symbol (if set) or not (if cleared).
389// There are not enough types that the non-string types (with bit 7 set) can
390// have bit 6 set too.
391const uint32_t kIsSymbolMask = 0x40;
Steve Blocka7e24c12009-10-30 11:49:00 +0000392const uint32_t kNotSymbolTag = 0x0;
Leon Clarkee46be812010-01-19 14:06:41 +0000393const uint32_t kSymbolTag = 0x40;
Steve Blocka7e24c12009-10-30 11:49:00 +0000394
Steve Blocka7e24c12009-10-30 11:49:00 +0000395// If bit 7 is clear then bit 2 indicates whether the string consists of
396// two-byte characters or one-byte characters.
397const uint32_t kStringEncodingMask = 0x4;
398const uint32_t kTwoByteStringTag = 0x0;
399const uint32_t kAsciiStringTag = 0x4;
400
401// If bit 7 is clear, the low-order 2 bits indicate the representation
402// of the string.
403const uint32_t kStringRepresentationMask = 0x03;
404enum StringRepresentationTag {
405 kSeqStringTag = 0x0,
406 kConsStringTag = 0x1,
Steve Blocka7e24c12009-10-30 11:49:00 +0000407 kExternalStringTag = 0x3
408};
409
410
411// A ConsString with an empty string as the right side is a candidate
412// for being shortcut by the garbage collector unless it is a
413// symbol. It's not common to have non-flat symbols, so we do not
414// shortcut them thereby avoiding turning symbols into strings. See
415// heap.cc and mark-compact.cc.
416const uint32_t kShortcutTypeMask =
417 kIsNotStringMask |
418 kIsSymbolMask |
419 kStringRepresentationMask;
420const uint32_t kShortcutTypeTag = kConsStringTag;
421
422
423enum InstanceType {
Leon Clarkee46be812010-01-19 14:06:41 +0000424 // String types.
Steve Blockd0582a62009-12-15 09:54:21 +0000425 SYMBOL_TYPE = kSymbolTag | kSeqStringTag,
426 ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kSeqStringTag,
427 CONS_SYMBOL_TYPE = kSymbolTag | kConsStringTag,
428 CONS_ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kConsStringTag,
429 EXTERNAL_SYMBOL_TYPE = kSymbolTag | kExternalStringTag,
430 EXTERNAL_ASCII_SYMBOL_TYPE =
431 kAsciiStringTag | kSymbolTag | kExternalStringTag,
432 STRING_TYPE = kSeqStringTag,
433 ASCII_STRING_TYPE = kAsciiStringTag | kSeqStringTag,
434 CONS_STRING_TYPE = kConsStringTag,
435 CONS_ASCII_STRING_TYPE = kAsciiStringTag | kConsStringTag,
436 EXTERNAL_STRING_TYPE = kExternalStringTag,
437 EXTERNAL_ASCII_STRING_TYPE = kAsciiStringTag | kExternalStringTag,
438 PRIVATE_EXTERNAL_ASCII_STRING_TYPE = EXTERNAL_ASCII_STRING_TYPE,
Steve Blocka7e24c12009-10-30 11:49:00 +0000439
Leon Clarkee46be812010-01-19 14:06:41 +0000440 // Objects allocated in their own spaces (never in new space).
441 MAP_TYPE = kNotStringTag, // FIRST_NONSTRING_TYPE
Steve Blocka7e24c12009-10-30 11:49:00 +0000442 CODE_TYPE,
443 ODDBALL_TYPE,
444 JS_GLOBAL_PROPERTY_CELL_TYPE,
Leon Clarkee46be812010-01-19 14:06:41 +0000445
446 // "Data", objects that cannot contain non-map-word pointers to heap
447 // objects.
448 HEAP_NUMBER_TYPE,
Steve Blocka7e24c12009-10-30 11:49:00 +0000449 PROXY_TYPE,
450 BYTE_ARRAY_TYPE,
451 PIXEL_ARRAY_TYPE,
Leon Clarkee46be812010-01-19 14:06:41 +0000452 EXTERNAL_BYTE_ARRAY_TYPE, // FIRST_EXTERNAL_ARRAY_TYPE
Steve Block3ce2e202009-11-05 08:53:23 +0000453 EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
454 EXTERNAL_SHORT_ARRAY_TYPE,
455 EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
456 EXTERNAL_INT_ARRAY_TYPE,
457 EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
Leon Clarkee46be812010-01-19 14:06:41 +0000458 EXTERNAL_FLOAT_ARRAY_TYPE, // LAST_EXTERNAL_ARRAY_TYPE
459 FILLER_TYPE, // LAST_DATA_TYPE
Steve Blocka7e24c12009-10-30 11:49:00 +0000460
Leon Clarkee46be812010-01-19 14:06:41 +0000461 // Structs.
Steve Blocka7e24c12009-10-30 11:49:00 +0000462 ACCESSOR_INFO_TYPE,
463 ACCESS_CHECK_INFO_TYPE,
464 INTERCEPTOR_INFO_TYPE,
Steve Blocka7e24c12009-10-30 11:49:00 +0000465 CALL_HANDLER_INFO_TYPE,
466 FUNCTION_TEMPLATE_INFO_TYPE,
467 OBJECT_TEMPLATE_INFO_TYPE,
468 SIGNATURE_INFO_TYPE,
469 TYPE_SWITCH_INFO_TYPE,
Leon Clarkee46be812010-01-19 14:06:41 +0000470 SCRIPT_TYPE,
Steve Blocka7e24c12009-10-30 11:49:00 +0000471#ifdef ENABLE_DEBUGGER_SUPPORT
472 DEBUG_INFO_TYPE,
473 BREAK_POINT_INFO_TYPE,
474#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000475
Leon Clarkee46be812010-01-19 14:06:41 +0000476 FIXED_ARRAY_TYPE,
477 SHARED_FUNCTION_INFO_TYPE,
478
479 JS_VALUE_TYPE, // FIRST_JS_OBJECT_TYPE
Steve Blocka7e24c12009-10-30 11:49:00 +0000480 JS_OBJECT_TYPE,
481 JS_CONTEXT_EXTENSION_OBJECT_TYPE,
482 JS_GLOBAL_OBJECT_TYPE,
483 JS_BUILTINS_OBJECT_TYPE,
484 JS_GLOBAL_PROXY_TYPE,
485 JS_ARRAY_TYPE,
Leon Clarkee46be812010-01-19 14:06:41 +0000486 JS_REGEXP_TYPE, // LAST_JS_OBJECT_TYPE
Steve Blocka7e24c12009-10-30 11:49:00 +0000487
488 JS_FUNCTION_TYPE,
489
490 // Pseudo-types
Steve Blocka7e24c12009-10-30 11:49:00 +0000491 FIRST_TYPE = 0x0,
Steve Blocka7e24c12009-10-30 11:49:00 +0000492 LAST_TYPE = JS_FUNCTION_TYPE,
Leon Clarkee46be812010-01-19 14:06:41 +0000493 INVALID_TYPE = FIRST_TYPE - 1,
494 FIRST_NONSTRING_TYPE = MAP_TYPE,
495 // Boundaries for testing for an external array.
496 FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_BYTE_ARRAY_TYPE,
497 LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_FLOAT_ARRAY_TYPE,
498 // Boundary for promotion to old data space/old pointer space.
499 LAST_DATA_TYPE = FILLER_TYPE,
Steve Blocka7e24c12009-10-30 11:49:00 +0000500 // Boundaries for testing the type is a JavaScript "object". Note that
501 // function objects are not counted as objects, even though they are
502 // implemented as such; only values whose typeof is "object" are included.
503 FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
504 LAST_JS_OBJECT_TYPE = JS_REGEXP_TYPE
505};
506
507
508enum CompareResult {
509 LESS = -1,
510 EQUAL = 0,
511 GREATER = 1,
512
513 NOT_EQUAL = GREATER
514};
515
516
517#define DECL_BOOLEAN_ACCESSORS(name) \
518 inline bool name(); \
519 inline void set_##name(bool value); \
520
521
522#define DECL_ACCESSORS(name, type) \
523 inline type* name(); \
524 inline void set_##name(type* value, \
525 WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
526
527
528class StringStream;
529class ObjectVisitor;
530
531struct ValueInfo : public Malloced {
532 ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
533 InstanceType type;
534 Object* ptr;
535 const char* str;
536 double number;
537};
538
539
540// A template-ized version of the IsXXX functions.
541template <class C> static inline bool Is(Object* obj);
542
543
544// Object is the abstract superclass for all classes in the
545// object hierarchy.
546// Object does not use any virtual functions to avoid the
547// allocation of the C++ vtable.
548// Since Smi and Failure are subclasses of Object no
549// data members can be present in Object.
550class Object BASE_EMBEDDED {
551 public:
552 // Type testing.
553 inline bool IsSmi();
554 inline bool IsHeapObject();
555 inline bool IsHeapNumber();
556 inline bool IsString();
557 inline bool IsSymbol();
Steve Blocka7e24c12009-10-30 11:49:00 +0000558 // See objects-inl.h for more details
559 inline bool IsSeqString();
Steve Blocka7e24c12009-10-30 11:49:00 +0000560 inline bool IsExternalString();
561 inline bool IsExternalTwoByteString();
562 inline bool IsExternalAsciiString();
563 inline bool IsSeqTwoByteString();
564 inline bool IsSeqAsciiString();
Steve Blocka7e24c12009-10-30 11:49:00 +0000565 inline bool IsConsString();
566
567 inline bool IsNumber();
568 inline bool IsByteArray();
569 inline bool IsPixelArray();
Steve Block3ce2e202009-11-05 08:53:23 +0000570 inline bool IsExternalArray();
571 inline bool IsExternalByteArray();
572 inline bool IsExternalUnsignedByteArray();
573 inline bool IsExternalShortArray();
574 inline bool IsExternalUnsignedShortArray();
575 inline bool IsExternalIntArray();
576 inline bool IsExternalUnsignedIntArray();
577 inline bool IsExternalFloatArray();
Steve Blocka7e24c12009-10-30 11:49:00 +0000578 inline bool IsFailure();
579 inline bool IsRetryAfterGC();
580 inline bool IsOutOfMemoryFailure();
581 inline bool IsException();
582 inline bool IsJSObject();
583 inline bool IsJSContextExtensionObject();
584 inline bool IsMap();
585 inline bool IsFixedArray();
586 inline bool IsDescriptorArray();
587 inline bool IsContext();
588 inline bool IsCatchContext();
589 inline bool IsGlobalContext();
590 inline bool IsJSFunction();
591 inline bool IsCode();
592 inline bool IsOddball();
593 inline bool IsSharedFunctionInfo();
594 inline bool IsJSValue();
595 inline bool IsStringWrapper();
596 inline bool IsProxy();
597 inline bool IsBoolean();
598 inline bool IsJSArray();
599 inline bool IsJSRegExp();
600 inline bool IsHashTable();
601 inline bool IsDictionary();
602 inline bool IsSymbolTable();
603 inline bool IsCompilationCacheTable();
604 inline bool IsMapCache();
605 inline bool IsPrimitive();
606 inline bool IsGlobalObject();
607 inline bool IsJSGlobalObject();
608 inline bool IsJSBuiltinsObject();
609 inline bool IsJSGlobalProxy();
610 inline bool IsUndetectableObject();
611 inline bool IsAccessCheckNeeded();
612 inline bool IsJSGlobalPropertyCell();
613
614 // Returns true if this object is an instance of the specified
615 // function template.
616 inline bool IsInstanceOf(FunctionTemplateInfo* type);
617
618 inline bool IsStruct();
619#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
620 STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
621#undef DECLARE_STRUCT_PREDICATE
622
623 // Oddball testing.
624 INLINE(bool IsUndefined());
625 INLINE(bool IsTheHole());
626 INLINE(bool IsNull());
627 INLINE(bool IsTrue());
628 INLINE(bool IsFalse());
629
630 // Extract the number.
631 inline double Number();
632
633 inline bool HasSpecificClassOf(String* name);
634
635 Object* ToObject(); // ECMA-262 9.9.
636 Object* ToBoolean(); // ECMA-262 9.2.
637
638 // Convert to a JSObject if needed.
639 // global_context is used when creating wrapper object.
640 Object* ToObject(Context* global_context);
641
642 // Converts this to a Smi if possible.
643 // Failure is returned otherwise.
644 inline Object* ToSmi();
645
646 void Lookup(String* name, LookupResult* result);
647
648 // Property access.
649 inline Object* GetProperty(String* key);
650 inline Object* GetProperty(String* key, PropertyAttributes* attributes);
651 Object* GetPropertyWithReceiver(Object* receiver,
652 String* key,
653 PropertyAttributes* attributes);
654 Object* GetProperty(Object* receiver,
655 LookupResult* result,
656 String* key,
657 PropertyAttributes* attributes);
658 Object* GetPropertyWithCallback(Object* receiver,
659 Object* structure,
660 String* name,
661 Object* holder);
662 Object* GetPropertyWithDefinedGetter(Object* receiver,
663 JSFunction* getter);
664
665 inline Object* GetElement(uint32_t index);
666 Object* GetElementWithReceiver(Object* receiver, uint32_t index);
667
668 // Return the object's prototype (might be Heap::null_value()).
669 Object* GetPrototype();
670
671 // Returns true if this is a JSValue containing a string and the index is
672 // < the length of the string. Used to implement [] on strings.
673 inline bool IsStringObjectWithCharacterAt(uint32_t index);
674
675#ifdef DEBUG
676 // Prints this object with details.
677 void Print();
678 void PrintLn();
679 // Verifies the object.
680 void Verify();
681
682 // Verify a pointer is a valid object pointer.
683 static void VerifyPointer(Object* p);
684#endif
685
686 // Prints this object without details.
687 void ShortPrint();
688
689 // Prints this object without details to a message accumulator.
690 void ShortPrint(StringStream* accumulator);
691
692 // Casting: This cast is only needed to satisfy macros in objects-inl.h.
693 static Object* cast(Object* value) { return value; }
694
695 // Layout description.
696 static const int kHeaderSize = 0; // Object does not take up any space.
697
698 private:
699 DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
700};
701
702
703// Smi represents integer Numbers that can be stored in 31 bits.
704// Smis are immediate which means they are NOT allocated in the heap.
Steve Blocka7e24c12009-10-30 11:49:00 +0000705// The this pointer has the following format: [31 bit signed int] 0
Steve Block3ce2e202009-11-05 08:53:23 +0000706// For long smis it has the following format:
707// [32 bit signed int] [31 bits zero padding] 0
708// Smi stands for small integer.
Steve Blocka7e24c12009-10-30 11:49:00 +0000709class Smi: public Object {
710 public:
711 // Returns the integer value.
712 inline int value();
713
714 // Convert a value to a Smi object.
715 static inline Smi* FromInt(int value);
716
717 static inline Smi* FromIntptr(intptr_t value);
718
719 // Returns whether value can be represented in a Smi.
720 static inline bool IsValid(intptr_t value);
721
Steve Blocka7e24c12009-10-30 11:49:00 +0000722 // Casting.
723 static inline Smi* cast(Object* object);
724
725 // Dispatched behavior.
726 void SmiPrint();
727 void SmiPrint(StringStream* accumulator);
728#ifdef DEBUG
729 void SmiVerify();
730#endif
731
Steve Block3ce2e202009-11-05 08:53:23 +0000732 static const int kMinValue = (-1 << (kSmiValueSize - 1));
733 static const int kMaxValue = -(kMinValue + 1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000734
735 private:
736 DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
737};
738
739
740// Failure is used for reporting out of memory situations and
741// propagating exceptions through the runtime system. Failure objects
742// are transient and cannot occur as part of the object graph.
743//
744// Failures are a single word, encoded as follows:
745// +-------------------------+---+--+--+
Steve Block3ce2e202009-11-05 08:53:23 +0000746// |...rrrrrrrrrrrrrrrrrrrrrr|sss|tt|11|
Steve Blocka7e24c12009-10-30 11:49:00 +0000747// +-------------------------+---+--+--+
Steve Block3ce2e202009-11-05 08:53:23 +0000748// 7 6 4 32 10
749//
Steve Blocka7e24c12009-10-30 11:49:00 +0000750//
751// The low two bits, 0-1, are the failure tag, 11. The next two bits,
752// 2-3, are a failure type tag 'tt' with possible values:
753// 00 RETRY_AFTER_GC
754// 01 EXCEPTION
755// 10 INTERNAL_ERROR
756// 11 OUT_OF_MEMORY_EXCEPTION
757//
758// The next three bits, 4-6, are an allocation space tag 'sss'. The
759// allocation space tag is 000 for all failure types except
760// RETRY_AFTER_GC. For RETRY_AFTER_GC, the possible values are the
761// allocation spaces (the encoding is found in globals.h).
762//
763// The remaining bits is the size of the allocation request in units
764// of the pointer size, and is zeroed except for RETRY_AFTER_GC
765// failures. The 25 bits (on a 32 bit platform) gives a representable
766// range of 2^27 bytes (128MB).
767
768// Failure type tag info.
769const int kFailureTypeTagSize = 2;
770const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
771
772class Failure: public Object {
773 public:
774 // RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
775 enum Type {
776 RETRY_AFTER_GC = 0,
777 EXCEPTION = 1, // Returning this marker tells the real exception
778 // is in Top::pending_exception.
779 INTERNAL_ERROR = 2,
780 OUT_OF_MEMORY_EXCEPTION = 3
781 };
782
783 inline Type type() const;
784
785 // Returns the space that needs to be collected for RetryAfterGC failures.
786 inline AllocationSpace allocation_space() const;
787
788 // Returns the number of bytes requested (up to the representable maximum)
789 // for RetryAfterGC failures.
790 inline int requested() const;
791
792 inline bool IsInternalError() const;
793 inline bool IsOutOfMemoryException() const;
794
795 static Failure* RetryAfterGC(int requested_bytes, AllocationSpace space);
796 static inline Failure* RetryAfterGC(int requested_bytes); // NEW_SPACE
797 static inline Failure* Exception();
798 static inline Failure* InternalError();
799 static inline Failure* OutOfMemoryException();
800 // Casting.
801 static inline Failure* cast(Object* object);
802
803 // Dispatched behavior.
804 void FailurePrint();
805 void FailurePrint(StringStream* accumulator);
806#ifdef DEBUG
807 void FailureVerify();
808#endif
809
810 private:
Steve Block3ce2e202009-11-05 08:53:23 +0000811 inline intptr_t value() const;
812 static inline Failure* Construct(Type type, intptr_t value = 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000813
814 DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
815};
816
817
818// Heap objects typically have a map pointer in their first word. However,
819// during GC other data (eg, mark bits, forwarding addresses) is sometimes
820// encoded in the first word. The class MapWord is an abstraction of the
821// value in a heap object's first word.
822class MapWord BASE_EMBEDDED {
823 public:
824 // Normal state: the map word contains a map pointer.
825
826 // Create a map word from a map pointer.
827 static inline MapWord FromMap(Map* map);
828
829 // View this map word as a map pointer.
830 inline Map* ToMap();
831
832
833 // Scavenge collection: the map word of live objects in the from space
834 // contains a forwarding address (a heap object pointer in the to space).
835
836 // True if this map word is a forwarding address for a scavenge
837 // collection. Only valid during a scavenge collection (specifically,
838 // when all map words are heap object pointers, ie. not during a full GC).
839 inline bool IsForwardingAddress();
840
841 // Create a map word from a forwarding address.
842 static inline MapWord FromForwardingAddress(HeapObject* object);
843
844 // View this map word as a forwarding address.
845 inline HeapObject* ToForwardingAddress();
846
Steve Blocka7e24c12009-10-30 11:49:00 +0000847 // Marking phase of full collection: the map word of live objects is
848 // marked, and may be marked as overflowed (eg, the object is live, its
849 // children have not been visited, and it does not fit in the marking
850 // stack).
851
852 // True if this map word's mark bit is set.
853 inline bool IsMarked();
854
855 // Return this map word but with its mark bit set.
856 inline void SetMark();
857
858 // Return this map word but with its mark bit cleared.
859 inline void ClearMark();
860
861 // True if this map word's overflow bit is set.
862 inline bool IsOverflowed();
863
864 // Return this map word but with its overflow bit set.
865 inline void SetOverflow();
866
867 // Return this map word but with its overflow bit cleared.
868 inline void ClearOverflow();
869
870
871 // Compacting phase of a full compacting collection: the map word of live
872 // objects contains an encoding of the original map address along with the
873 // forwarding address (represented as an offset from the first live object
874 // in the same page as the (old) object address).
875
876 // Create a map word from a map address and a forwarding address offset.
877 static inline MapWord EncodeAddress(Address map_address, int offset);
878
879 // Return the map address encoded in this map word.
880 inline Address DecodeMapAddress(MapSpace* map_space);
881
882 // Return the forwarding offset encoded in this map word.
883 inline int DecodeOffset();
884
885
886 // During serialization: the map word is used to hold an encoded
887 // address, and possibly a mark bit (set and cleared with SetMark
888 // and ClearMark).
889
890 // Create a map word from an encoded address.
891 static inline MapWord FromEncodedAddress(Address address);
892
893 inline Address ToEncodedAddress();
894
895 // Bits used by the marking phase of the garbage collector.
896 //
897 // The first word of a heap object is normally a map pointer. The last two
898 // bits are tagged as '01' (kHeapObjectTag). We reuse the last two bits to
899 // mark an object as live and/or overflowed:
900 // last bit = 0, marked as alive
901 // second bit = 1, overflowed
902 // An object is only marked as overflowed when it is marked as live while
903 // the marking stack is overflowed.
904 static const int kMarkingBit = 0; // marking bit
905 static const int kMarkingMask = (1 << kMarkingBit); // marking mask
906 static const int kOverflowBit = 1; // overflow bit
907 static const int kOverflowMask = (1 << kOverflowBit); // overflow mask
908
Leon Clarkee46be812010-01-19 14:06:41 +0000909 // Forwarding pointers and map pointer encoding. On 32 bit all the bits are
910 // used.
Steve Blocka7e24c12009-10-30 11:49:00 +0000911 // +-----------------+------------------+-----------------+
912 // |forwarding offset|page offset of map|page index of map|
913 // +-----------------+------------------+-----------------+
Leon Clarkee46be812010-01-19 14:06:41 +0000914 // ^ ^ ^
915 // | | |
916 // | | kMapPageIndexBits
917 // | kMapPageOffsetBits
918 // kForwardingOffsetBits
919 static const int kMapPageOffsetBits = kPageSizeBits - kMapAlignmentBits;
920 static const int kForwardingOffsetBits = kPageSizeBits - kObjectAlignmentBits;
921#ifdef V8_HOST_ARCH_64_BIT
922 static const int kMapPageIndexBits = 16;
923#else
924 // Use all the 32-bits to encode on a 32-bit platform.
925 static const int kMapPageIndexBits =
926 32 - (kMapPageOffsetBits + kForwardingOffsetBits);
927#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000928
929 static const int kMapPageIndexShift = 0;
930 static const int kMapPageOffsetShift =
931 kMapPageIndexShift + kMapPageIndexBits;
932 static const int kForwardingOffsetShift =
933 kMapPageOffsetShift + kMapPageOffsetBits;
934
Leon Clarkee46be812010-01-19 14:06:41 +0000935 // Bit masks covering the different parts the encoding.
936 static const uintptr_t kMapPageIndexMask =
Steve Blocka7e24c12009-10-30 11:49:00 +0000937 (1 << kMapPageOffsetShift) - 1;
Leon Clarkee46be812010-01-19 14:06:41 +0000938 static const uintptr_t kMapPageOffsetMask =
Steve Blocka7e24c12009-10-30 11:49:00 +0000939 ((1 << kForwardingOffsetShift) - 1) & ~kMapPageIndexMask;
Leon Clarkee46be812010-01-19 14:06:41 +0000940 static const uintptr_t kForwardingOffsetMask =
Steve Blocka7e24c12009-10-30 11:49:00 +0000941 ~(kMapPageIndexMask | kMapPageOffsetMask);
942
943 private:
944 // HeapObject calls the private constructor and directly reads the value.
945 friend class HeapObject;
946
947 explicit MapWord(uintptr_t value) : value_(value) {}
948
949 uintptr_t value_;
950};
951
952
953// HeapObject is the superclass for all classes describing heap allocated
954// objects.
955class HeapObject: public Object {
956 public:
957 // [map]: Contains a map which contains the object's reflective
958 // information.
959 inline Map* map();
960 inline void set_map(Map* value);
961
962 // During garbage collection, the map word of a heap object does not
963 // necessarily contain a map pointer.
964 inline MapWord map_word();
965 inline void set_map_word(MapWord map_word);
966
967 // Converts an address to a HeapObject pointer.
968 static inline HeapObject* FromAddress(Address address);
969
970 // Returns the address of this HeapObject.
971 inline Address address();
972
973 // Iterates over pointers contained in the object (including the Map)
974 void Iterate(ObjectVisitor* v);
975
976 // Iterates over all pointers contained in the object except the
977 // first map pointer. The object type is given in the first
978 // parameter. This function does not access the map pointer in the
979 // object, and so is safe to call while the map pointer is modified.
980 void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
981
982 // This method only applies to struct objects. Iterates over all the fields
983 // of this struct.
984 void IterateStructBody(int object_size, ObjectVisitor* v);
985
986 // Returns the heap object's size in bytes
987 inline int Size();
988
989 // Given a heap object's map pointer, returns the heap size in bytes
990 // Useful when the map pointer field is used for other purposes.
991 // GC internal.
992 inline int SizeFromMap(Map* map);
993
994 // Support for the marking heap objects during the marking phase of GC.
995 // True if the object is marked live.
996 inline bool IsMarked();
997
998 // Mutate this object's map pointer to indicate that the object is live.
999 inline void SetMark();
1000
1001 // Mutate this object's map pointer to remove the indication that the
1002 // object is live (ie, partially restore the map pointer).
1003 inline void ClearMark();
1004
1005 // True if this object is marked as overflowed. Overflowed objects have
1006 // been reached and marked during marking of the heap, but their children
1007 // have not necessarily been marked and they have not been pushed on the
1008 // marking stack.
1009 inline bool IsOverflowed();
1010
1011 // Mutate this object's map pointer to indicate that the object is
1012 // overflowed.
1013 inline void SetOverflow();
1014
1015 // Mutate this object's map pointer to remove the indication that the
1016 // object is overflowed (ie, partially restore the map pointer).
1017 inline void ClearOverflow();
1018
1019 // Returns the field at offset in obj, as a read/write Object* reference.
1020 // Does no checking, and is safe to use during GC, while maps are invalid.
1021 // Does not update remembered sets, so should only be assigned to
1022 // during marking GC.
1023 static inline Object** RawField(HeapObject* obj, int offset);
1024
1025 // Casting.
1026 static inline HeapObject* cast(Object* obj);
1027
Leon Clarke4515c472010-02-03 11:58:03 +00001028 // Return the write barrier mode for this. Callers of this function
1029 // must be able to present a reference to an AssertNoAllocation
1030 // object as a sign that they are not going to use this function
1031 // from code that allocates and thus invalidates the returned write
1032 // barrier mode.
1033 inline WriteBarrierMode GetWriteBarrierMode(const AssertNoAllocation&);
Steve Blocka7e24c12009-10-30 11:49:00 +00001034
1035 // Dispatched behavior.
1036 void HeapObjectShortPrint(StringStream* accumulator);
1037#ifdef DEBUG
1038 void HeapObjectPrint();
1039 void HeapObjectVerify();
1040 inline void VerifyObjectField(int offset);
1041
1042 void PrintHeader(const char* id);
1043
1044 // Verify a pointer is a valid HeapObject pointer that points to object
1045 // areas in the heap.
1046 static void VerifyHeapPointer(Object* p);
1047#endif
1048
1049 // Layout description.
1050 // First field in a heap object is map.
1051 static const int kMapOffset = Object::kHeaderSize;
1052 static const int kHeaderSize = kMapOffset + kPointerSize;
1053
1054 STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
1055
1056 protected:
1057 // helpers for calling an ObjectVisitor to iterate over pointers in the
1058 // half-open range [start, end) specified as integer offsets
1059 inline void IteratePointers(ObjectVisitor* v, int start, int end);
1060 // as above, for the single element at "offset"
1061 inline void IteratePointer(ObjectVisitor* v, int offset);
1062
1063 // Computes the object size from the map.
1064 // Should only be used from SizeFromMap.
1065 int SlowSizeFromMap(Map* map);
1066
1067 private:
1068 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1069};
1070
1071
1072// The HeapNumber class describes heap allocated numbers that cannot be
1073// represented in a Smi (small integer)
1074class HeapNumber: public HeapObject {
1075 public:
1076 // [value]: number value.
1077 inline double value();
1078 inline void set_value(double value);
1079
1080 // Casting.
1081 static inline HeapNumber* cast(Object* obj);
1082
1083 // Dispatched behavior.
1084 Object* HeapNumberToBoolean();
1085 void HeapNumberPrint();
1086 void HeapNumberPrint(StringStream* accumulator);
1087#ifdef DEBUG
1088 void HeapNumberVerify();
1089#endif
1090
1091 // Layout description.
1092 static const int kValueOffset = HeapObject::kHeaderSize;
1093 // IEEE doubles are two 32 bit words. The first is just mantissa, the second
1094 // is a mixture of sign, exponent and mantissa. Our current platforms are all
1095 // little endian apart from non-EABI arm which is little endian with big
1096 // endian floating point word ordering!
Steve Block3ce2e202009-11-05 08:53:23 +00001097#if !defined(V8_HOST_ARCH_ARM) || defined(USE_ARM_EABI)
Steve Blocka7e24c12009-10-30 11:49:00 +00001098 static const int kMantissaOffset = kValueOffset;
1099 static const int kExponentOffset = kValueOffset + 4;
1100#else
1101 static const int kMantissaOffset = kValueOffset + 4;
1102 static const int kExponentOffset = kValueOffset;
1103# define BIG_ENDIAN_FLOATING_POINT 1
1104#endif
1105 static const int kSize = kValueOffset + kDoubleSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00001106 static const uint32_t kSignMask = 0x80000000u;
1107 static const uint32_t kExponentMask = 0x7ff00000u;
1108 static const uint32_t kMantissaMask = 0xfffffu;
1109 static const int kExponentBias = 1023;
1110 static const int kExponentShift = 20;
1111 static const int kMantissaBitsInTopWord = 20;
1112 static const int kNonMantissaBitsInTopWord = 12;
1113
1114 private:
1115 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1116};
1117
1118
1119// The JSObject describes real heap allocated JavaScript objects with
1120// properties.
1121// Note that the map of JSObject changes during execution to enable inline
1122// caching.
1123class JSObject: public HeapObject {
1124 public:
1125 enum DeleteMode { NORMAL_DELETION, FORCE_DELETION };
1126 enum ElementsKind {
1127 FAST_ELEMENTS,
1128 DICTIONARY_ELEMENTS,
Steve Block3ce2e202009-11-05 08:53:23 +00001129 PIXEL_ELEMENTS,
1130 EXTERNAL_BYTE_ELEMENTS,
1131 EXTERNAL_UNSIGNED_BYTE_ELEMENTS,
1132 EXTERNAL_SHORT_ELEMENTS,
1133 EXTERNAL_UNSIGNED_SHORT_ELEMENTS,
1134 EXTERNAL_INT_ELEMENTS,
1135 EXTERNAL_UNSIGNED_INT_ELEMENTS,
1136 EXTERNAL_FLOAT_ELEMENTS
Steve Blocka7e24c12009-10-30 11:49:00 +00001137 };
1138
1139 // [properties]: Backing storage for properties.
1140 // properties is a FixedArray in the fast case, and a Dictionary in the
1141 // slow case.
1142 DECL_ACCESSORS(properties, FixedArray) // Get and set fast properties.
1143 inline void initialize_properties();
1144 inline bool HasFastProperties();
1145 inline StringDictionary* property_dictionary(); // Gets slow properties.
1146
1147 // [elements]: The elements (properties with names that are integers).
1148 // elements is a FixedArray in the fast case, and a Dictionary in the slow
1149 // case or a PixelArray in a special case.
1150 DECL_ACCESSORS(elements, Array) // Get and set fast elements.
1151 inline void initialize_elements();
1152 inline ElementsKind GetElementsKind();
1153 inline bool HasFastElements();
1154 inline bool HasDictionaryElements();
1155 inline bool HasPixelElements();
Steve Block3ce2e202009-11-05 08:53:23 +00001156 inline bool HasExternalArrayElements();
1157 inline bool HasExternalByteElements();
1158 inline bool HasExternalUnsignedByteElements();
1159 inline bool HasExternalShortElements();
1160 inline bool HasExternalUnsignedShortElements();
1161 inline bool HasExternalIntElements();
1162 inline bool HasExternalUnsignedIntElements();
1163 inline bool HasExternalFloatElements();
Steve Blocka7e24c12009-10-30 11:49:00 +00001164 inline NumberDictionary* element_dictionary(); // Gets slow elements.
1165
1166 // Collects elements starting at index 0.
1167 // Undefined values are placed after non-undefined values.
1168 // Returns the number of non-undefined values.
1169 Object* PrepareElementsForSort(uint32_t limit);
1170 // As PrepareElementsForSort, but only on objects where elements is
1171 // a dictionary, and it will stay a dictionary.
1172 Object* PrepareSlowElementsForSort(uint32_t limit);
1173
1174 Object* SetProperty(String* key,
1175 Object* value,
1176 PropertyAttributes attributes);
1177 Object* SetProperty(LookupResult* result,
1178 String* key,
1179 Object* value,
1180 PropertyAttributes attributes);
1181 Object* SetPropertyWithFailedAccessCheck(LookupResult* result,
1182 String* name,
1183 Object* value);
1184 Object* SetPropertyWithCallback(Object* structure,
1185 String* name,
1186 Object* value,
1187 JSObject* holder);
1188 Object* SetPropertyWithDefinedSetter(JSFunction* setter,
1189 Object* value);
1190 Object* SetPropertyWithInterceptor(String* name,
1191 Object* value,
1192 PropertyAttributes attributes);
1193 Object* SetPropertyPostInterceptor(String* name,
1194 Object* value,
1195 PropertyAttributes attributes);
1196 Object* IgnoreAttributesAndSetLocalProperty(String* key,
1197 Object* value,
1198 PropertyAttributes attributes);
1199
1200 // Retrieve a value in a normalized object given a lookup result.
1201 // Handles the special representation of JS global objects.
1202 Object* GetNormalizedProperty(LookupResult* result);
1203
1204 // Sets the property value in a normalized object given a lookup result.
1205 // Handles the special representation of JS global objects.
1206 Object* SetNormalizedProperty(LookupResult* result, Object* value);
1207
1208 // Sets the property value in a normalized object given (key, value, details).
1209 // Handles the special representation of JS global objects.
1210 Object* SetNormalizedProperty(String* name,
1211 Object* value,
1212 PropertyDetails details);
1213
1214 // Deletes the named property in a normalized object.
1215 Object* DeleteNormalizedProperty(String* name, DeleteMode mode);
1216
Steve Blocka7e24c12009-10-30 11:49:00 +00001217 // Returns the class name ([[Class]] property in the specification).
1218 String* class_name();
1219
1220 // Returns the constructor name (the name (possibly, inferred name) of the
1221 // function that was used to instantiate the object).
1222 String* constructor_name();
1223
1224 // Retrieve interceptors.
1225 InterceptorInfo* GetNamedInterceptor();
1226 InterceptorInfo* GetIndexedInterceptor();
1227
1228 inline PropertyAttributes GetPropertyAttribute(String* name);
1229 PropertyAttributes GetPropertyAttributeWithReceiver(JSObject* receiver,
1230 String* name);
1231 PropertyAttributes GetLocalPropertyAttribute(String* name);
1232
1233 Object* DefineAccessor(String* name, bool is_getter, JSFunction* fun,
1234 PropertyAttributes attributes);
1235 Object* LookupAccessor(String* name, bool is_getter);
1236
1237 // Used from Object::GetProperty().
1238 Object* GetPropertyWithFailedAccessCheck(Object* receiver,
1239 LookupResult* result,
1240 String* name,
1241 PropertyAttributes* attributes);
1242 Object* GetPropertyWithInterceptor(JSObject* receiver,
1243 String* name,
1244 PropertyAttributes* attributes);
1245 Object* GetPropertyPostInterceptor(JSObject* receiver,
1246 String* name,
1247 PropertyAttributes* attributes);
Steve Blockd0582a62009-12-15 09:54:21 +00001248 Object* GetLocalPropertyPostInterceptor(JSObject* receiver,
1249 String* name,
1250 PropertyAttributes* attributes);
Steve Blocka7e24c12009-10-30 11:49:00 +00001251
1252 // Returns true if this is an instance of an api function and has
1253 // been modified since it was created. May give false positives.
1254 bool IsDirty();
1255
1256 bool HasProperty(String* name) {
1257 return GetPropertyAttribute(name) != ABSENT;
1258 }
1259
1260 // Can cause a GC if it hits an interceptor.
1261 bool HasLocalProperty(String* name) {
1262 return GetLocalPropertyAttribute(name) != ABSENT;
1263 }
1264
Steve Blockd0582a62009-12-15 09:54:21 +00001265 // If the receiver is a JSGlobalProxy this method will return its prototype,
1266 // otherwise the result is the receiver itself.
1267 inline Object* BypassGlobalProxy();
1268
1269 // Accessors for hidden properties object.
1270 //
1271 // Hidden properties are not local properties of the object itself.
1272 // Instead they are stored on an auxiliary JSObject stored as a local
1273 // property with a special name Heap::hidden_symbol(). But if the
1274 // receiver is a JSGlobalProxy then the auxiliary object is a property
1275 // of its prototype.
1276 //
1277 // Has/Get/SetHiddenPropertiesObject methods don't allow the holder to be
1278 // a JSGlobalProxy. Use BypassGlobalProxy method above to get to the real
1279 // holder.
1280 //
1281 // These accessors do not touch interceptors or accessors.
1282 inline bool HasHiddenPropertiesObject();
1283 inline Object* GetHiddenPropertiesObject();
1284 inline Object* SetHiddenPropertiesObject(Object* hidden_obj);
1285
Steve Blocka7e24c12009-10-30 11:49:00 +00001286 Object* DeleteProperty(String* name, DeleteMode mode);
1287 Object* DeleteElement(uint32_t index, DeleteMode mode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001288
1289 // Tests for the fast common case for property enumeration.
1290 bool IsSimpleEnum();
1291
1292 // Do we want to keep the elements in fast case when increasing the
1293 // capacity?
1294 bool ShouldConvertToSlowElements(int new_capacity);
1295 // Returns true if the backing storage for the slow-case elements of
1296 // this object takes up nearly as much space as a fast-case backing
1297 // storage would. In that case the JSObject should have fast
1298 // elements.
1299 bool ShouldConvertToFastElements();
1300
1301 // Return the object's prototype (might be Heap::null_value()).
1302 inline Object* GetPrototype();
1303
Andrei Popescu402d9372010-02-26 13:31:12 +00001304 // Set the object's prototype (only JSObject and null are allowed).
1305 Object* SetPrototype(Object* value, bool skip_hidden_prototypes);
1306
Steve Blocka7e24c12009-10-30 11:49:00 +00001307 // Tells whether the index'th element is present.
1308 inline bool HasElement(uint32_t index);
1309 bool HasElementWithReceiver(JSObject* receiver, uint32_t index);
1310 bool HasLocalElement(uint32_t index);
1311
1312 bool HasElementWithInterceptor(JSObject* receiver, uint32_t index);
1313 bool HasElementPostInterceptor(JSObject* receiver, uint32_t index);
1314
1315 Object* SetFastElement(uint32_t index, Object* value);
1316
1317 // Set the index'th array element.
1318 // A Failure object is returned if GC is needed.
1319 Object* SetElement(uint32_t index, Object* value);
1320
1321 // Returns the index'th element.
1322 // The undefined object if index is out of bounds.
1323 Object* GetElementWithReceiver(JSObject* receiver, uint32_t index);
1324
1325 void SetFastElements(FixedArray* elements);
1326 Object* SetSlowElements(Object* length);
1327
1328 // Lookup interceptors are used for handling properties controlled by host
1329 // objects.
1330 inline bool HasNamedInterceptor();
1331 inline bool HasIndexedInterceptor();
1332
1333 // Support functions for v8 api (needed for correct interceptor behavior).
1334 bool HasRealNamedProperty(String* key);
1335 bool HasRealElementProperty(uint32_t index);
1336 bool HasRealNamedCallbackProperty(String* key);
1337
1338 // Initializes the array to a certain length
1339 Object* SetElementsLength(Object* length);
1340
1341 // Get the header size for a JSObject. Used to compute the index of
1342 // internal fields as well as the number of internal fields.
1343 inline int GetHeaderSize();
1344
1345 inline int GetInternalFieldCount();
1346 inline Object* GetInternalField(int index);
1347 inline void SetInternalField(int index, Object* value);
1348
1349 // Lookup a property. If found, the result is valid and has
1350 // detailed information.
1351 void LocalLookup(String* name, LookupResult* result);
1352 void Lookup(String* name, LookupResult* result);
1353
1354 // The following lookup functions skip interceptors.
1355 void LocalLookupRealNamedProperty(String* name, LookupResult* result);
1356 void LookupRealNamedProperty(String* name, LookupResult* result);
1357 void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result);
1358 void LookupCallbackSetterInPrototypes(String* name, LookupResult* result);
1359 Object* LookupCallbackSetterInPrototypes(uint32_t index);
1360 void LookupCallback(String* name, LookupResult* result);
1361
1362 // Returns the number of properties on this object filtering out properties
1363 // with the specified attributes (ignoring interceptors).
1364 int NumberOfLocalProperties(PropertyAttributes filter);
1365 // Returns the number of enumerable properties (ignoring interceptors).
1366 int NumberOfEnumProperties();
1367 // Fill in details for properties into storage starting at the specified
1368 // index.
1369 void GetLocalPropertyNames(FixedArray* storage, int index);
1370
1371 // Returns the number of properties on this object filtering out properties
1372 // with the specified attributes (ignoring interceptors).
1373 int NumberOfLocalElements(PropertyAttributes filter);
1374 // Returns the number of enumerable elements (ignoring interceptors).
1375 int NumberOfEnumElements();
1376 // Returns the number of elements on this object filtering out elements
1377 // with the specified attributes (ignoring interceptors).
1378 int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
1379 // Count and fill in the enumerable elements into storage.
1380 // (storage->length() == NumberOfEnumElements()).
1381 // If storage is NULL, will count the elements without adding
1382 // them to any storage.
1383 // Returns the number of enumerable elements.
1384 int GetEnumElementKeys(FixedArray* storage);
1385
1386 // Add a property to a fast-case object using a map transition to
1387 // new_map.
1388 Object* AddFastPropertyUsingMap(Map* new_map,
1389 String* name,
1390 Object* value);
1391
1392 // Add a constant function property to a fast-case object.
1393 // This leaves a CONSTANT_TRANSITION in the old map, and
1394 // if it is called on a second object with this map, a
1395 // normal property is added instead, with a map transition.
1396 // This avoids the creation of many maps with the same constant
1397 // function, all orphaned.
1398 Object* AddConstantFunctionProperty(String* name,
1399 JSFunction* function,
1400 PropertyAttributes attributes);
1401
1402 Object* ReplaceSlowProperty(String* name,
1403 Object* value,
1404 PropertyAttributes attributes);
1405
1406 // Converts a descriptor of any other type to a real field,
1407 // backed by the properties array. Descriptors of visible
1408 // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1409 // Converts the descriptor on the original object's map to a
1410 // map transition, and the the new field is on the object's new map.
1411 Object* ConvertDescriptorToFieldAndMapTransition(
1412 String* name,
1413 Object* new_value,
1414 PropertyAttributes attributes);
1415
1416 // Converts a descriptor of any other type to a real field,
1417 // backed by the properties array. Descriptors of visible
1418 // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1419 Object* ConvertDescriptorToField(String* name,
1420 Object* new_value,
1421 PropertyAttributes attributes);
1422
1423 // Add a property to a fast-case object.
1424 Object* AddFastProperty(String* name,
1425 Object* value,
1426 PropertyAttributes attributes);
1427
1428 // Add a property to a slow-case object.
1429 Object* AddSlowProperty(String* name,
1430 Object* value,
1431 PropertyAttributes attributes);
1432
1433 // Add a property to an object.
1434 Object* AddProperty(String* name,
1435 Object* value,
1436 PropertyAttributes attributes);
1437
1438 // Convert the object to use the canonical dictionary
1439 // representation. If the object is expected to have additional properties
1440 // added this number can be indicated to have the backing store allocated to
1441 // an initial capacity for holding these properties.
1442 Object* NormalizeProperties(PropertyNormalizationMode mode,
1443 int expected_additional_properties);
1444 Object* NormalizeElements();
1445
1446 // Transform slow named properties to fast variants.
1447 // Returns failure if allocation failed.
1448 Object* TransformToFastProperties(int unused_property_fields);
1449
1450 // Access fast-case object properties at index.
1451 inline Object* FastPropertyAt(int index);
1452 inline Object* FastPropertyAtPut(int index, Object* value);
1453
1454 // Access to in object properties.
1455 inline Object* InObjectPropertyAt(int index);
1456 inline Object* InObjectPropertyAtPut(int index,
1457 Object* value,
1458 WriteBarrierMode mode
1459 = UPDATE_WRITE_BARRIER);
1460
1461 // initializes the body after properties slot, properties slot is
1462 // initialized by set_properties
1463 // Note: this call does not update write barrier, it is caller's
1464 // reponsibility to ensure that *v* can be collected without WB here.
1465 inline void InitializeBody(int object_size);
1466
1467 // Check whether this object references another object
1468 bool ReferencesObject(Object* obj);
1469
1470 // Casting.
1471 static inline JSObject* cast(Object* obj);
1472
1473 // Dispatched behavior.
1474 void JSObjectIterateBody(int object_size, ObjectVisitor* v);
1475 void JSObjectShortPrint(StringStream* accumulator);
1476#ifdef DEBUG
1477 void JSObjectPrint();
1478 void JSObjectVerify();
1479 void PrintProperties();
1480 void PrintElements();
1481
1482 // Structure for collecting spill information about JSObjects.
1483 class SpillInformation {
1484 public:
1485 void Clear();
1486 void Print();
1487 int number_of_objects_;
1488 int number_of_objects_with_fast_properties_;
1489 int number_of_objects_with_fast_elements_;
1490 int number_of_fast_used_fields_;
1491 int number_of_fast_unused_fields_;
1492 int number_of_slow_used_properties_;
1493 int number_of_slow_unused_properties_;
1494 int number_of_fast_used_elements_;
1495 int number_of_fast_unused_elements_;
1496 int number_of_slow_used_elements_;
1497 int number_of_slow_unused_elements_;
1498 };
1499
1500 void IncrementSpillStatistics(SpillInformation* info);
1501#endif
1502 Object* SlowReverseLookup(Object* value);
1503
Leon Clarkee46be812010-01-19 14:06:41 +00001504 // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
1505 // Also maximal value of JSArray's length property.
1506 static const uint32_t kMaxElementCount = 0xffffffffu;
1507
Steve Blocka7e24c12009-10-30 11:49:00 +00001508 static const uint32_t kMaxGap = 1024;
1509 static const int kMaxFastElementsLength = 5000;
1510 static const int kInitialMaxFastElementArray = 100000;
1511 static const int kMaxFastProperties = 8;
1512 static const int kMaxInstanceSize = 255 * kPointerSize;
1513 // When extending the backing storage for property values, we increase
1514 // its size by more than the 1 entry necessary, so sequentially adding fields
1515 // to the same object requires fewer allocations and copies.
1516 static const int kFieldsAdded = 3;
1517
1518 // Layout description.
1519 static const int kPropertiesOffset = HeapObject::kHeaderSize;
1520 static const int kElementsOffset = kPropertiesOffset + kPointerSize;
1521 static const int kHeaderSize = kElementsOffset + kPointerSize;
1522
1523 STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
1524
1525 Object* GetElementWithInterceptor(JSObject* receiver, uint32_t index);
1526
1527 private:
1528 Object* SetElementWithInterceptor(uint32_t index, Object* value);
1529 Object* SetElementWithoutInterceptor(uint32_t index, Object* value);
1530
1531 Object* GetElementPostInterceptor(JSObject* receiver, uint32_t index);
1532
1533 Object* DeletePropertyPostInterceptor(String* name, DeleteMode mode);
1534 Object* DeletePropertyWithInterceptor(String* name);
1535
1536 Object* DeleteElementPostInterceptor(uint32_t index, DeleteMode mode);
1537 Object* DeleteElementWithInterceptor(uint32_t index);
1538
1539 PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
1540 String* name,
1541 bool continue_search);
1542 PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
1543 String* name,
1544 bool continue_search);
1545 PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
1546 Object* receiver,
1547 LookupResult* result,
1548 String* name,
1549 bool continue_search);
1550 PropertyAttributes GetPropertyAttribute(JSObject* receiver,
1551 LookupResult* result,
1552 String* name,
1553 bool continue_search);
1554
1555 // Returns true if most of the elements backing storage is used.
1556 bool HasDenseElements();
1557
1558 Object* DefineGetterSetter(String* name, PropertyAttributes attributes);
1559
1560 void LookupInDescriptor(String* name, LookupResult* result);
1561
1562 DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
1563};
1564
1565
1566// Abstract super class arrays. It provides length behavior.
1567class Array: public HeapObject {
1568 public:
1569 // [length]: length of the array.
1570 inline int length();
1571 inline void set_length(int value);
1572
1573 // Convert an object to an array index.
1574 // Returns true if the conversion succeeded.
1575 static inline bool IndexFromObject(Object* object, uint32_t* index);
1576
1577 // Layout descriptor.
1578 static const int kLengthOffset = HeapObject::kHeaderSize;
1579
1580 protected:
1581 // No code should use the Array class directly, only its subclasses.
1582 // Use the kHeaderSize of the appropriate subclass, which may be aligned.
1583 static const int kHeaderSize = kLengthOffset + kIntSize;
1584 static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
1585
1586 private:
1587 DISALLOW_IMPLICIT_CONSTRUCTORS(Array);
1588};
1589
1590
1591// FixedArray describes fixed sized arrays where element
1592// type is Object*.
1593
1594class FixedArray: public Array {
1595 public:
1596
1597 // Setter and getter for elements.
1598 inline Object* get(int index);
1599 // Setter that uses write barrier.
1600 inline void set(int index, Object* value);
1601
1602 // Setter that doesn't need write barrier).
1603 inline void set(int index, Smi* value);
1604 // Setter with explicit barrier mode.
1605 inline void set(int index, Object* value, WriteBarrierMode mode);
1606
1607 // Setters for frequently used oddballs located in old space.
1608 inline void set_undefined(int index);
1609 inline void set_null(int index);
1610 inline void set_the_hole(int index);
1611
1612 // Copy operations.
1613 inline Object* Copy();
1614 Object* CopySize(int new_length);
1615
1616 // Add the elements of a JSArray to this FixedArray.
1617 Object* AddKeysFromJSArray(JSArray* array);
1618
1619 // Compute the union of this and other.
1620 Object* UnionOfKeys(FixedArray* other);
1621
1622 // Copy a sub array from the receiver to dest.
1623 void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
1624
1625 // Garbage collection support.
1626 static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
1627
1628 // Code Generation support.
1629 static int OffsetOfElementAt(int index) { return SizeFor(index); }
1630
1631 // Casting.
1632 static inline FixedArray* cast(Object* obj);
1633
Leon Clarkee46be812010-01-19 14:06:41 +00001634 static const int kHeaderSize = Array::kAlignedSize;
1635
1636 // Maximal allowed size, in bytes, of a single FixedArray.
1637 // Prevents overflowing size computations, as well as extreme memory
1638 // consumption.
1639 static const int kMaxSize = 512 * MB;
1640 // Maximally allowed length of a FixedArray.
1641 static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00001642
1643 // Dispatched behavior.
1644 int FixedArraySize() { return SizeFor(length()); }
1645 void FixedArrayIterateBody(ObjectVisitor* v);
1646#ifdef DEBUG
1647 void FixedArrayPrint();
1648 void FixedArrayVerify();
1649 // Checks if two FixedArrays have identical contents.
1650 bool IsEqualTo(FixedArray* other);
1651#endif
1652
1653 // Swap two elements in a pair of arrays. If this array and the
1654 // numbers array are the same object, the elements are only swapped
1655 // once.
1656 void SwapPairs(FixedArray* numbers, int i, int j);
1657
1658 // Sort prefix of this array and the numbers array as pairs wrt. the
1659 // numbers. If the numbers array and the this array are the same
1660 // object, the prefix of this array is sorted.
1661 void SortPairs(FixedArray* numbers, uint32_t len);
1662
1663 protected:
Leon Clarke4515c472010-02-03 11:58:03 +00001664 // Set operation on FixedArray without using write barriers. Can
1665 // only be used for storing old space objects or smis.
Steve Blocka7e24c12009-10-30 11:49:00 +00001666 static inline void fast_set(FixedArray* array, int index, Object* value);
1667
1668 private:
1669 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
1670};
1671
1672
1673// DescriptorArrays are fixed arrays used to hold instance descriptors.
1674// The format of the these objects is:
1675// [0]: point to a fixed array with (value, detail) pairs.
1676// [1]: next enumeration index (Smi), or pointer to small fixed array:
1677// [0]: next enumeration index (Smi)
1678// [1]: pointer to fixed array with enum cache
1679// [2]: first key
1680// [length() - 1]: last key
1681//
1682class DescriptorArray: public FixedArray {
1683 public:
1684 // Is this the singleton empty_descriptor_array?
1685 inline bool IsEmpty();
Leon Clarkee46be812010-01-19 14:06:41 +00001686
Steve Blocka7e24c12009-10-30 11:49:00 +00001687 // Returns the number of descriptors in the array.
1688 int number_of_descriptors() {
1689 return IsEmpty() ? 0 : length() - kFirstIndex;
1690 }
1691
1692 int NextEnumerationIndex() {
1693 if (IsEmpty()) return PropertyDetails::kInitialIndex;
1694 Object* obj = get(kEnumerationIndexIndex);
1695 if (obj->IsSmi()) {
1696 return Smi::cast(obj)->value();
1697 } else {
1698 Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex);
1699 return Smi::cast(index)->value();
1700 }
1701 }
1702
1703 // Set next enumeration index and flush any enum cache.
1704 void SetNextEnumerationIndex(int value) {
1705 if (!IsEmpty()) {
1706 fast_set(this, kEnumerationIndexIndex, Smi::FromInt(value));
1707 }
1708 }
1709 bool HasEnumCache() {
1710 return !IsEmpty() && !get(kEnumerationIndexIndex)->IsSmi();
1711 }
1712
1713 Object* GetEnumCache() {
1714 ASSERT(HasEnumCache());
1715 FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex));
1716 return bridge->get(kEnumCacheBridgeCacheIndex);
1717 }
1718
1719 // Initialize or change the enum cache,
1720 // using the supplied storage for the small "bridge".
1721 void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache);
1722
1723 // Accessors for fetching instance descriptor at descriptor number.
1724 inline String* GetKey(int descriptor_number);
1725 inline Object* GetValue(int descriptor_number);
1726 inline Smi* GetDetails(int descriptor_number);
1727 inline PropertyType GetType(int descriptor_number);
1728 inline int GetFieldIndex(int descriptor_number);
1729 inline JSFunction* GetConstantFunction(int descriptor_number);
1730 inline Object* GetCallbacksObject(int descriptor_number);
1731 inline AccessorDescriptor* GetCallbacks(int descriptor_number);
1732 inline bool IsProperty(int descriptor_number);
1733 inline bool IsTransition(int descriptor_number);
1734 inline bool IsNullDescriptor(int descriptor_number);
1735 inline bool IsDontEnum(int descriptor_number);
1736
1737 // Accessor for complete descriptor.
1738 inline void Get(int descriptor_number, Descriptor* desc);
1739 inline void Set(int descriptor_number, Descriptor* desc);
1740
1741 // Transfer complete descriptor from another descriptor array to
1742 // this one.
1743 inline void CopyFrom(int index, DescriptorArray* src, int src_index);
1744
1745 // Copy the descriptor array, insert a new descriptor and optionally
1746 // remove map transitions. If the descriptor is already present, it is
1747 // replaced. If a replaced descriptor is a real property (not a transition
1748 // or null), its enumeration index is kept as is.
1749 // If adding a real property, map transitions must be removed. If adding
1750 // a transition, they must not be removed. All null descriptors are removed.
1751 Object* CopyInsert(Descriptor* descriptor, TransitionFlag transition_flag);
1752
1753 // Remove all transitions. Return a copy of the array with all transitions
1754 // removed, or a Failure object if the new array could not be allocated.
1755 Object* RemoveTransitions();
1756
1757 // Sort the instance descriptors by the hash codes of their keys.
1758 void Sort();
1759
1760 // Search the instance descriptors for given name.
1761 inline int Search(String* name);
1762
1763 // Tells whether the name is present int the array.
1764 bool Contains(String* name) { return kNotFound != Search(name); }
1765
1766 // Perform a binary search in the instance descriptors represented
1767 // by this fixed array. low and high are descriptor indices. If there
1768 // are three instance descriptors in this array it should be called
1769 // with low=0 and high=2.
1770 int BinarySearch(String* name, int low, int high);
1771
1772 // Perform a linear search in the instance descriptors represented
1773 // by this fixed array. len is the number of descriptor indices that are
1774 // valid. Does not require the descriptors to be sorted.
1775 int LinearSearch(String* name, int len);
1776
1777 // Allocates a DescriptorArray, but returns the singleton
1778 // empty descriptor array object if number_of_descriptors is 0.
1779 static Object* Allocate(int number_of_descriptors);
1780
1781 // Casting.
1782 static inline DescriptorArray* cast(Object* obj);
1783
1784 // Constant for denoting key was not found.
1785 static const int kNotFound = -1;
1786
1787 static const int kContentArrayIndex = 0;
1788 static const int kEnumerationIndexIndex = 1;
1789 static const int kFirstIndex = 2;
1790
1791 // The length of the "bridge" to the enum cache.
1792 static const int kEnumCacheBridgeLength = 2;
1793 static const int kEnumCacheBridgeEnumIndex = 0;
1794 static const int kEnumCacheBridgeCacheIndex = 1;
1795
1796 // Layout description.
1797 static const int kContentArrayOffset = FixedArray::kHeaderSize;
1798 static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize;
1799 static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize;
1800
1801 // Layout description for the bridge array.
1802 static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize;
1803 static const int kEnumCacheBridgeCacheOffset =
1804 kEnumCacheBridgeEnumOffset + kPointerSize;
1805
1806#ifdef DEBUG
1807 // Print all the descriptors.
1808 void PrintDescriptors();
1809
1810 // Is the descriptor array sorted and without duplicates?
1811 bool IsSortedNoDuplicates();
1812
1813 // Are two DescriptorArrays equal?
1814 bool IsEqualTo(DescriptorArray* other);
1815#endif
1816
1817 // The maximum number of descriptors we want in a descriptor array (should
1818 // fit in a page).
1819 static const int kMaxNumberOfDescriptors = 1024 + 512;
1820
1821 private:
1822 // Conversion from descriptor number to array indices.
1823 static int ToKeyIndex(int descriptor_number) {
1824 return descriptor_number+kFirstIndex;
1825 }
Leon Clarkee46be812010-01-19 14:06:41 +00001826
1827 static int ToDetailsIndex(int descriptor_number) {
1828 return (descriptor_number << 1) + 1;
1829 }
1830
Steve Blocka7e24c12009-10-30 11:49:00 +00001831 static int ToValueIndex(int descriptor_number) {
1832 return descriptor_number << 1;
1833 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001834
1835 bool is_null_descriptor(int descriptor_number) {
1836 return PropertyDetails(GetDetails(descriptor_number)).type() ==
1837 NULL_DESCRIPTOR;
1838 }
1839 // Swap operation on FixedArray without using write barriers.
1840 static inline void fast_swap(FixedArray* array, int first, int second);
1841
1842 // Swap descriptor first and second.
1843 inline void Swap(int first, int second);
1844
1845 FixedArray* GetContentArray() {
1846 return FixedArray::cast(get(kContentArrayIndex));
1847 }
1848 DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
1849};
1850
1851
1852// HashTable is a subclass of FixedArray that implements a hash table
1853// that uses open addressing and quadratic probing.
1854//
1855// In order for the quadratic probing to work, elements that have not
1856// yet been used and elements that have been deleted are
1857// distinguished. Probing continues when deleted elements are
1858// encountered and stops when unused elements are encountered.
1859//
1860// - Elements with key == undefined have not been used yet.
1861// - Elements with key == null have been deleted.
1862//
1863// The hash table class is parameterized with a Shape and a Key.
1864// Shape must be a class with the following interface:
1865// class ExampleShape {
1866// public:
1867// // Tells whether key matches other.
1868// static bool IsMatch(Key key, Object* other);
1869// // Returns the hash value for key.
1870// static uint32_t Hash(Key key);
1871// // Returns the hash value for object.
1872// static uint32_t HashForObject(Key key, Object* object);
1873// // Convert key to an object.
1874// static inline Object* AsObject(Key key);
1875// // The prefix size indicates number of elements in the beginning
1876// // of the backing storage.
1877// static const int kPrefixSize = ..;
1878// // The Element size indicates number of elements per entry.
1879// static const int kEntrySize = ..;
1880// };
Steve Block3ce2e202009-11-05 08:53:23 +00001881// The prefix size indicates an amount of memory in the
Steve Blocka7e24c12009-10-30 11:49:00 +00001882// beginning of the backing storage that can be used for non-element
1883// information by subclasses.
1884
1885template<typename Shape, typename Key>
1886class HashTable: public FixedArray {
1887 public:
Steve Block3ce2e202009-11-05 08:53:23 +00001888 // Returns the number of elements in the hash table.
Steve Blocka7e24c12009-10-30 11:49:00 +00001889 int NumberOfElements() {
1890 return Smi::cast(get(kNumberOfElementsIndex))->value();
1891 }
1892
Leon Clarkee46be812010-01-19 14:06:41 +00001893 // Returns the number of deleted elements in the hash table.
1894 int NumberOfDeletedElements() {
1895 return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
1896 }
1897
Steve Block3ce2e202009-11-05 08:53:23 +00001898 // Returns the capacity of the hash table.
Steve Blocka7e24c12009-10-30 11:49:00 +00001899 int Capacity() {
1900 return Smi::cast(get(kCapacityIndex))->value();
1901 }
1902
1903 // ElementAdded should be called whenever an element is added to a
Steve Block3ce2e202009-11-05 08:53:23 +00001904 // hash table.
Steve Blocka7e24c12009-10-30 11:49:00 +00001905 void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
1906
1907 // ElementRemoved should be called whenever an element is removed from
Steve Block3ce2e202009-11-05 08:53:23 +00001908 // a hash table.
Leon Clarkee46be812010-01-19 14:06:41 +00001909 void ElementRemoved() {
1910 SetNumberOfElements(NumberOfElements() - 1);
1911 SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
1912 }
1913 void ElementsRemoved(int n) {
1914 SetNumberOfElements(NumberOfElements() - n);
1915 SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
1916 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001917
Steve Block3ce2e202009-11-05 08:53:23 +00001918 // Returns a new HashTable object. Might return Failure.
Steve Blocka7e24c12009-10-30 11:49:00 +00001919 static Object* Allocate(int at_least_space_for);
1920
1921 // Returns the key at entry.
1922 Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
1923
1924 // Tells whether k is a real key. Null and undefined are not allowed
1925 // as keys and can be used to indicate missing or deleted elements.
1926 bool IsKey(Object* k) {
1927 return !k->IsNull() && !k->IsUndefined();
1928 }
1929
1930 // Garbage collection support.
1931 void IteratePrefix(ObjectVisitor* visitor);
1932 void IterateElements(ObjectVisitor* visitor);
1933
1934 // Casting.
1935 static inline HashTable* cast(Object* obj);
1936
1937 // Compute the probe offset (quadratic probing).
1938 INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
1939 return (n + n * n) >> 1;
1940 }
1941
1942 static const int kNumberOfElementsIndex = 0;
Leon Clarkee46be812010-01-19 14:06:41 +00001943 static const int kNumberOfDeletedElementsIndex = 1;
1944 static const int kCapacityIndex = 2;
1945 static const int kPrefixStartIndex = 3;
1946 static const int kElementsStartIndex =
Steve Blocka7e24c12009-10-30 11:49:00 +00001947 kPrefixStartIndex + Shape::kPrefixSize;
Leon Clarkee46be812010-01-19 14:06:41 +00001948 static const int kEntrySize = Shape::kEntrySize;
1949 static const int kElementsStartOffset =
Steve Blocka7e24c12009-10-30 11:49:00 +00001950 kHeaderSize + kElementsStartIndex * kPointerSize;
1951
1952 // Constant used for denoting a absent entry.
1953 static const int kNotFound = -1;
1954
Leon Clarkee46be812010-01-19 14:06:41 +00001955 // Maximal capacity of HashTable. Based on maximal length of underlying
1956 // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
1957 // cannot overflow.
1958 static const int kMaxCapacity =
1959 (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
1960
Steve Blocka7e24c12009-10-30 11:49:00 +00001961 // Find entry for key otherwise return -1.
1962 int FindEntry(Key key);
1963
1964 protected:
1965
1966 // Find the entry at which to insert element with the given key that
1967 // has the given hash value.
1968 uint32_t FindInsertionEntry(uint32_t hash);
1969
1970 // Returns the index for an entry (of the key)
1971 static inline int EntryToIndex(int entry) {
1972 return (entry * kEntrySize) + kElementsStartIndex;
1973 }
1974
Steve Block3ce2e202009-11-05 08:53:23 +00001975 // Update the number of elements in the hash table.
Steve Blocka7e24c12009-10-30 11:49:00 +00001976 void SetNumberOfElements(int nof) {
1977 fast_set(this, kNumberOfElementsIndex, Smi::FromInt(nof));
1978 }
1979
Leon Clarkee46be812010-01-19 14:06:41 +00001980 // Update the number of deleted elements in the hash table.
1981 void SetNumberOfDeletedElements(int nod) {
1982 fast_set(this, kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
1983 }
1984
Steve Blocka7e24c12009-10-30 11:49:00 +00001985 // Sets the capacity of the hash table.
1986 void SetCapacity(int capacity) {
1987 // To scale a computed hash code to fit within the hash table, we
1988 // use bit-wise AND with a mask, so the capacity must be positive
1989 // and non-zero.
1990 ASSERT(capacity > 0);
Leon Clarkee46be812010-01-19 14:06:41 +00001991 ASSERT(capacity <= kMaxCapacity);
Steve Blocka7e24c12009-10-30 11:49:00 +00001992 fast_set(this, kCapacityIndex, Smi::FromInt(capacity));
1993 }
1994
1995
1996 // Returns probe entry.
1997 static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
1998 ASSERT(IsPowerOf2(size));
1999 return (hash + GetProbeOffset(number)) & (size - 1);
2000 }
2001
Leon Clarkee46be812010-01-19 14:06:41 +00002002 static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
2003 return hash & (size - 1);
2004 }
2005
2006 static uint32_t NextProbe(uint32_t last, uint32_t number, uint32_t size) {
2007 return (last + number) & (size - 1);
2008 }
2009
Steve Blocka7e24c12009-10-30 11:49:00 +00002010 // Ensure enough space for n additional elements.
2011 Object* EnsureCapacity(int n, Key key);
2012};
2013
2014
2015
2016// HashTableKey is an abstract superclass for virtual key behavior.
2017class HashTableKey {
2018 public:
2019 // Returns whether the other object matches this key.
2020 virtual bool IsMatch(Object* other) = 0;
2021 // Returns the hash value for this key.
2022 virtual uint32_t Hash() = 0;
2023 // Returns the hash value for object.
2024 virtual uint32_t HashForObject(Object* key) = 0;
Steve Block3ce2e202009-11-05 08:53:23 +00002025 // Returns the key object for storing into the hash table.
Steve Blocka7e24c12009-10-30 11:49:00 +00002026 // If allocations fails a failure object is returned.
2027 virtual Object* AsObject() = 0;
2028 // Required.
2029 virtual ~HashTableKey() {}
2030};
2031
2032class SymbolTableShape {
2033 public:
2034 static bool IsMatch(HashTableKey* key, Object* value) {
2035 return key->IsMatch(value);
2036 }
2037 static uint32_t Hash(HashTableKey* key) {
2038 return key->Hash();
2039 }
2040 static uint32_t HashForObject(HashTableKey* key, Object* object) {
2041 return key->HashForObject(object);
2042 }
2043 static Object* AsObject(HashTableKey* key) {
2044 return key->AsObject();
2045 }
2046
2047 static const int kPrefixSize = 0;
2048 static const int kEntrySize = 1;
2049};
2050
2051// SymbolTable.
2052//
2053// No special elements in the prefix and the element size is 1
2054// because only the symbol itself (the key) needs to be stored.
2055class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> {
2056 public:
2057 // Find symbol in the symbol table. If it is not there yet, it is
2058 // added. The return value is the symbol table which might have
2059 // been enlarged. If the return value is not a failure, the symbol
2060 // pointer *s is set to the symbol found.
2061 Object* LookupSymbol(Vector<const char> str, Object** s);
2062 Object* LookupString(String* key, Object** s);
2063
2064 // Looks up a symbol that is equal to the given string and returns
2065 // true if it is found, assigning the symbol to the given output
2066 // parameter.
2067 bool LookupSymbolIfExists(String* str, String** symbol);
Steve Blockd0582a62009-12-15 09:54:21 +00002068 bool LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol);
Steve Blocka7e24c12009-10-30 11:49:00 +00002069
2070 // Casting.
2071 static inline SymbolTable* cast(Object* obj);
2072
2073 private:
2074 Object* LookupKey(HashTableKey* key, Object** s);
2075
2076 DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable);
2077};
2078
2079
2080class MapCacheShape {
2081 public:
2082 static bool IsMatch(HashTableKey* key, Object* value) {
2083 return key->IsMatch(value);
2084 }
2085 static uint32_t Hash(HashTableKey* key) {
2086 return key->Hash();
2087 }
2088
2089 static uint32_t HashForObject(HashTableKey* key, Object* object) {
2090 return key->HashForObject(object);
2091 }
2092
2093 static Object* AsObject(HashTableKey* key) {
2094 return key->AsObject();
2095 }
2096
2097 static const int kPrefixSize = 0;
2098 static const int kEntrySize = 2;
2099};
2100
2101
2102// MapCache.
2103//
2104// Maps keys that are a fixed array of symbols to a map.
2105// Used for canonicalize maps for object literals.
2106class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
2107 public:
2108 // Find cached value for a string key, otherwise return null.
2109 Object* Lookup(FixedArray* key);
2110 Object* Put(FixedArray* key, Map* value);
2111 static inline MapCache* cast(Object* obj);
2112
2113 private:
2114 DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
2115};
2116
2117
2118template <typename Shape, typename Key>
2119class Dictionary: public HashTable<Shape, Key> {
2120 public:
2121
2122 static inline Dictionary<Shape, Key>* cast(Object* obj) {
2123 return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
2124 }
2125
2126 // Returns the value at entry.
2127 Object* ValueAt(int entry) {
2128 return get(HashTable<Shape, Key>::EntryToIndex(entry)+1);
2129 }
2130
2131 // Set the value for entry.
2132 void ValueAtPut(int entry, Object* value) {
2133 set(HashTable<Shape, Key>::EntryToIndex(entry)+1, value);
2134 }
2135
2136 // Returns the property details for the property at entry.
2137 PropertyDetails DetailsAt(int entry) {
2138 ASSERT(entry >= 0); // Not found is -1, which is not caught by get().
2139 return PropertyDetails(
2140 Smi::cast(get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
2141 }
2142
2143 // Set the details for entry.
2144 void DetailsAtPut(int entry, PropertyDetails value) {
2145 set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
2146 }
2147
2148 // Sorting support
2149 void CopyValuesTo(FixedArray* elements);
2150
2151 // Delete a property from the dictionary.
2152 Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
2153
2154 // Returns the number of elements in the dictionary filtering out properties
2155 // with the specified attributes.
2156 int NumberOfElementsFilterAttributes(PropertyAttributes filter);
2157
2158 // Returns the number of enumerable elements in the dictionary.
2159 int NumberOfEnumElements();
2160
2161 // Copies keys to preallocated fixed array.
2162 void CopyKeysTo(FixedArray* storage, PropertyAttributes filter);
2163 // Fill in details for properties into storage.
2164 void CopyKeysTo(FixedArray* storage);
2165
2166 // Accessors for next enumeration index.
2167 void SetNextEnumerationIndex(int index) {
2168 fast_set(this, kNextEnumerationIndexIndex, Smi::FromInt(index));
2169 }
2170
2171 int NextEnumerationIndex() {
2172 return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
2173 }
2174
2175 // Returns a new array for dictionary usage. Might return Failure.
2176 static Object* Allocate(int at_least_space_for);
2177
2178 // Ensure enough space for n additional elements.
2179 Object* EnsureCapacity(int n, Key key);
2180
2181#ifdef DEBUG
2182 void Print();
2183#endif
2184 // Returns the key (slow).
2185 Object* SlowReverseLookup(Object* value);
2186
2187 // Sets the entry to (key, value) pair.
2188 inline void SetEntry(int entry,
2189 Object* key,
2190 Object* value,
2191 PropertyDetails details);
2192
2193 Object* Add(Key key, Object* value, PropertyDetails details);
2194
2195 protected:
2196 // Generic at put operation.
2197 Object* AtPut(Key key, Object* value);
2198
2199 // Add entry to dictionary.
2200 Object* AddEntry(Key key,
2201 Object* value,
2202 PropertyDetails details,
2203 uint32_t hash);
2204
2205 // Generate new enumeration indices to avoid enumeration index overflow.
2206 Object* GenerateNewEnumerationIndices();
2207 static const int kMaxNumberKeyIndex =
2208 HashTable<Shape, Key>::kPrefixStartIndex;
2209 static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
2210};
2211
2212
2213class StringDictionaryShape {
2214 public:
2215 static inline bool IsMatch(String* key, Object* other);
2216 static inline uint32_t Hash(String* key);
2217 static inline uint32_t HashForObject(String* key, Object* object);
2218 static inline Object* AsObject(String* key);
2219 static const int kPrefixSize = 2;
2220 static const int kEntrySize = 3;
2221 static const bool kIsEnumerable = true;
2222};
2223
2224
2225class StringDictionary: public Dictionary<StringDictionaryShape, String*> {
2226 public:
2227 static inline StringDictionary* cast(Object* obj) {
2228 ASSERT(obj->IsDictionary());
2229 return reinterpret_cast<StringDictionary*>(obj);
2230 }
2231
2232 // Copies enumerable keys to preallocated fixed array.
2233 void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array);
2234
2235 // For transforming properties of a JSObject.
2236 Object* TransformPropertiesToFastFor(JSObject* obj,
2237 int unused_property_fields);
2238};
2239
2240
2241class NumberDictionaryShape {
2242 public:
2243 static inline bool IsMatch(uint32_t key, Object* other);
2244 static inline uint32_t Hash(uint32_t key);
2245 static inline uint32_t HashForObject(uint32_t key, Object* object);
2246 static inline Object* AsObject(uint32_t key);
2247 static const int kPrefixSize = 2;
2248 static const int kEntrySize = 3;
2249 static const bool kIsEnumerable = false;
2250};
2251
2252
2253class NumberDictionary: public Dictionary<NumberDictionaryShape, uint32_t> {
2254 public:
2255 static NumberDictionary* cast(Object* obj) {
2256 ASSERT(obj->IsDictionary());
2257 return reinterpret_cast<NumberDictionary*>(obj);
2258 }
2259
2260 // Type specific at put (default NONE attributes is used when adding).
2261 Object* AtNumberPut(uint32_t key, Object* value);
2262 Object* AddNumberEntry(uint32_t key,
2263 Object* value,
2264 PropertyDetails details);
2265
2266 // Set an existing entry or add a new one if needed.
2267 Object* Set(uint32_t key, Object* value, PropertyDetails details);
2268
2269 void UpdateMaxNumberKey(uint32_t key);
2270
2271 // If slow elements are required we will never go back to fast-case
2272 // for the elements kept in this dictionary. We require slow
2273 // elements if an element has been added at an index larger than
2274 // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
2275 // when defining a getter or setter with a number key.
2276 inline bool requires_slow_elements();
2277 inline void set_requires_slow_elements();
2278
2279 // Get the value of the max number key that has been added to this
2280 // dictionary. max_number_key can only be called if
2281 // requires_slow_elements returns false.
2282 inline uint32_t max_number_key();
2283
2284 // Remove all entries were key is a number and (from <= key && key < to).
2285 void RemoveNumberEntries(uint32_t from, uint32_t to);
2286
2287 // Bit masks.
2288 static const int kRequiresSlowElementsMask = 1;
2289 static const int kRequiresSlowElementsTagSize = 1;
2290 static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
2291};
2292
2293
2294// ByteArray represents fixed sized byte arrays. Used by the outside world,
2295// such as PCRE, and also by the memory allocator and garbage collector to
2296// fill in free blocks in the heap.
2297class ByteArray: public Array {
2298 public:
2299 // Setter and getter.
2300 inline byte get(int index);
2301 inline void set(int index, byte value);
2302
2303 // Treat contents as an int array.
2304 inline int get_int(int index);
2305
2306 static int SizeFor(int length) {
2307 return OBJECT_SIZE_ALIGN(kHeaderSize + length);
2308 }
2309 // We use byte arrays for free blocks in the heap. Given a desired size in
2310 // bytes that is a multiple of the word size and big enough to hold a byte
2311 // array, this function returns the number of elements a byte array should
2312 // have.
2313 static int LengthFor(int size_in_bytes) {
2314 ASSERT(IsAligned(size_in_bytes, kPointerSize));
2315 ASSERT(size_in_bytes >= kHeaderSize);
2316 return size_in_bytes - kHeaderSize;
2317 }
2318
2319 // Returns data start address.
2320 inline Address GetDataStartAddress();
2321
2322 // Returns a pointer to the ByteArray object for a given data start address.
2323 static inline ByteArray* FromDataStartAddress(Address address);
2324
2325 // Casting.
2326 static inline ByteArray* cast(Object* obj);
2327
2328 // Dispatched behavior.
2329 int ByteArraySize() { return SizeFor(length()); }
2330#ifdef DEBUG
2331 void ByteArrayPrint();
2332 void ByteArrayVerify();
2333#endif
2334
2335 // ByteArray headers are not quadword aligned.
2336 static const int kHeaderSize = Array::kHeaderSize;
2337 static const int kAlignedSize = Array::kAlignedSize;
2338
Leon Clarkee46be812010-01-19 14:06:41 +00002339 // Maximal memory consumption for a single ByteArray.
2340 static const int kMaxSize = 512 * MB;
2341 // Maximal length of a single ByteArray.
2342 static const int kMaxLength = kMaxSize - kHeaderSize;
2343
Steve Blocka7e24c12009-10-30 11:49:00 +00002344 private:
2345 DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
2346};
2347
2348
2349// A PixelArray represents a fixed-size byte array with special semantics
2350// used for implementing the CanvasPixelArray object. Please see the
2351// specification at:
2352// http://www.whatwg.org/specs/web-apps/current-work/
2353// multipage/the-canvas-element.html#canvaspixelarray
2354// In particular, write access clamps the value written to 0 or 255 if the
2355// value written is outside this range.
2356class PixelArray: public Array {
2357 public:
2358 // [external_pointer]: The pointer to the external memory area backing this
2359 // pixel array.
2360 DECL_ACCESSORS(external_pointer, uint8_t) // Pointer to the data store.
2361
2362 // Setter and getter.
2363 inline uint8_t get(int index);
2364 inline void set(int index, uint8_t value);
2365
2366 // This accessor applies the correct conversion from Smi, HeapNumber and
2367 // undefined and clamps the converted value between 0 and 255.
2368 Object* SetValue(uint32_t index, Object* value);
2369
2370 // Casting.
2371 static inline PixelArray* cast(Object* obj);
2372
2373#ifdef DEBUG
2374 void PixelArrayPrint();
2375 void PixelArrayVerify();
2376#endif // DEBUG
2377
Steve Block3ce2e202009-11-05 08:53:23 +00002378 // Maximal acceptable length for a pixel array.
2379 static const int kMaxLength = 0x3fffffff;
2380
Steve Blocka7e24c12009-10-30 11:49:00 +00002381 // PixelArray headers are not quadword aligned.
2382 static const int kExternalPointerOffset = Array::kAlignedSize;
2383 static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2384 static const int kAlignedSize = OBJECT_SIZE_ALIGN(kHeaderSize);
2385
2386 private:
2387 DISALLOW_IMPLICIT_CONSTRUCTORS(PixelArray);
2388};
2389
2390
Steve Block3ce2e202009-11-05 08:53:23 +00002391// An ExternalArray represents a fixed-size array of primitive values
2392// which live outside the JavaScript heap. Its subclasses are used to
2393// implement the CanvasArray types being defined in the WebGL
2394// specification. As of this writing the first public draft is not yet
2395// available, but Khronos members can access the draft at:
2396// https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
2397//
2398// The semantics of these arrays differ from CanvasPixelArray.
2399// Out-of-range values passed to the setter are converted via a C
2400// cast, not clamping. Out-of-range indices cause exceptions to be
2401// raised rather than being silently ignored.
2402class ExternalArray: public Array {
2403 public:
2404 // [external_pointer]: The pointer to the external memory area backing this
2405 // external array.
2406 DECL_ACCESSORS(external_pointer, void) // Pointer to the data store.
2407
2408 // Casting.
2409 static inline ExternalArray* cast(Object* obj);
2410
2411 // Maximal acceptable length for an external array.
2412 static const int kMaxLength = 0x3fffffff;
2413
2414 // ExternalArray headers are not quadword aligned.
2415 static const int kExternalPointerOffset = Array::kAlignedSize;
2416 static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2417 static const int kAlignedSize = OBJECT_SIZE_ALIGN(kHeaderSize);
2418
2419 private:
2420 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
2421};
2422
2423
2424class ExternalByteArray: public ExternalArray {
2425 public:
2426 // Setter and getter.
2427 inline int8_t get(int index);
2428 inline void set(int index, int8_t value);
2429
2430 // This accessor applies the correct conversion from Smi, HeapNumber
2431 // and undefined.
2432 Object* SetValue(uint32_t index, Object* value);
2433
2434 // Casting.
2435 static inline ExternalByteArray* cast(Object* obj);
2436
2437#ifdef DEBUG
2438 void ExternalByteArrayPrint();
2439 void ExternalByteArrayVerify();
2440#endif // DEBUG
2441
2442 private:
2443 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalByteArray);
2444};
2445
2446
2447class ExternalUnsignedByteArray: public ExternalArray {
2448 public:
2449 // Setter and getter.
2450 inline uint8_t get(int index);
2451 inline void set(int index, uint8_t value);
2452
2453 // This accessor applies the correct conversion from Smi, HeapNumber
2454 // and undefined.
2455 Object* SetValue(uint32_t index, Object* value);
2456
2457 // Casting.
2458 static inline ExternalUnsignedByteArray* cast(Object* obj);
2459
2460#ifdef DEBUG
2461 void ExternalUnsignedByteArrayPrint();
2462 void ExternalUnsignedByteArrayVerify();
2463#endif // DEBUG
2464
2465 private:
2466 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedByteArray);
2467};
2468
2469
2470class ExternalShortArray: public ExternalArray {
2471 public:
2472 // Setter and getter.
2473 inline int16_t get(int index);
2474 inline void set(int index, int16_t value);
2475
2476 // This accessor applies the correct conversion from Smi, HeapNumber
2477 // and undefined.
2478 Object* SetValue(uint32_t index, Object* value);
2479
2480 // Casting.
2481 static inline ExternalShortArray* cast(Object* obj);
2482
2483#ifdef DEBUG
2484 void ExternalShortArrayPrint();
2485 void ExternalShortArrayVerify();
2486#endif // DEBUG
2487
2488 private:
2489 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalShortArray);
2490};
2491
2492
2493class ExternalUnsignedShortArray: public ExternalArray {
2494 public:
2495 // Setter and getter.
2496 inline uint16_t get(int index);
2497 inline void set(int index, uint16_t value);
2498
2499 // This accessor applies the correct conversion from Smi, HeapNumber
2500 // and undefined.
2501 Object* SetValue(uint32_t index, Object* value);
2502
2503 // Casting.
2504 static inline ExternalUnsignedShortArray* cast(Object* obj);
2505
2506#ifdef DEBUG
2507 void ExternalUnsignedShortArrayPrint();
2508 void ExternalUnsignedShortArrayVerify();
2509#endif // DEBUG
2510
2511 private:
2512 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedShortArray);
2513};
2514
2515
2516class ExternalIntArray: public ExternalArray {
2517 public:
2518 // Setter and getter.
2519 inline int32_t get(int index);
2520 inline void set(int index, int32_t value);
2521
2522 // This accessor applies the correct conversion from Smi, HeapNumber
2523 // and undefined.
2524 Object* SetValue(uint32_t index, Object* value);
2525
2526 // Casting.
2527 static inline ExternalIntArray* cast(Object* obj);
2528
2529#ifdef DEBUG
2530 void ExternalIntArrayPrint();
2531 void ExternalIntArrayVerify();
2532#endif // DEBUG
2533
2534 private:
2535 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalIntArray);
2536};
2537
2538
2539class ExternalUnsignedIntArray: public ExternalArray {
2540 public:
2541 // Setter and getter.
2542 inline uint32_t get(int index);
2543 inline void set(int index, uint32_t value);
2544
2545 // This accessor applies the correct conversion from Smi, HeapNumber
2546 // and undefined.
2547 Object* SetValue(uint32_t index, Object* value);
2548
2549 // Casting.
2550 static inline ExternalUnsignedIntArray* cast(Object* obj);
2551
2552#ifdef DEBUG
2553 void ExternalUnsignedIntArrayPrint();
2554 void ExternalUnsignedIntArrayVerify();
2555#endif // DEBUG
2556
2557 private:
2558 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedIntArray);
2559};
2560
2561
2562class ExternalFloatArray: public ExternalArray {
2563 public:
2564 // Setter and getter.
2565 inline float get(int index);
2566 inline void set(int index, float value);
2567
2568 // This accessor applies the correct conversion from Smi, HeapNumber
2569 // and undefined.
2570 Object* SetValue(uint32_t index, Object* value);
2571
2572 // Casting.
2573 static inline ExternalFloatArray* cast(Object* obj);
2574
2575#ifdef DEBUG
2576 void ExternalFloatArrayPrint();
2577 void ExternalFloatArrayVerify();
2578#endif // DEBUG
2579
2580 private:
2581 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloatArray);
2582};
2583
2584
Steve Blocka7e24c12009-10-30 11:49:00 +00002585// Code describes objects with on-the-fly generated machine code.
2586class Code: public HeapObject {
2587 public:
2588 // Opaque data type for encapsulating code flags like kind, inline
2589 // cache state, and arguments count.
2590 enum Flags { };
2591
2592 enum Kind {
2593 FUNCTION,
2594 STUB,
2595 BUILTIN,
2596 LOAD_IC,
2597 KEYED_LOAD_IC,
2598 CALL_IC,
2599 STORE_IC,
2600 KEYED_STORE_IC,
2601 // No more than eight kinds. The value currently encoded in three bits in
2602 // Flags.
2603
2604 // Pseudo-kinds.
2605 REGEXP = BUILTIN,
2606 FIRST_IC_KIND = LOAD_IC,
2607 LAST_IC_KIND = KEYED_STORE_IC
2608 };
2609
2610 enum {
2611 NUMBER_OF_KINDS = KEYED_STORE_IC + 1
2612 };
2613
2614#ifdef ENABLE_DISASSEMBLER
2615 // Printing
2616 static const char* Kind2String(Kind kind);
2617 static const char* ICState2String(InlineCacheState state);
2618 static const char* PropertyType2String(PropertyType type);
2619 void Disassemble(const char* name);
2620#endif // ENABLE_DISASSEMBLER
2621
2622 // [instruction_size]: Size of the native instructions
2623 inline int instruction_size();
2624 inline void set_instruction_size(int value);
2625
2626 // [relocation_size]: Size of relocation information.
2627 inline int relocation_size();
2628 inline void set_relocation_size(int value);
2629
2630 // [sinfo_size]: Size of scope information.
2631 inline int sinfo_size();
2632 inline void set_sinfo_size(int value);
2633
2634 // [flags]: Various code flags.
2635 inline Flags flags();
2636 inline void set_flags(Flags flags);
2637
2638 // [flags]: Access to specific code flags.
2639 inline Kind kind();
2640 inline InlineCacheState ic_state(); // Only valid for IC stubs.
2641 inline InLoopFlag ic_in_loop(); // Only valid for IC stubs.
2642 inline PropertyType type(); // Only valid for monomorphic IC stubs.
2643 inline int arguments_count(); // Only valid for call IC stubs.
2644
2645 // Testers for IC stub kinds.
2646 inline bool is_inline_cache_stub();
2647 inline bool is_load_stub() { return kind() == LOAD_IC; }
2648 inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
2649 inline bool is_store_stub() { return kind() == STORE_IC; }
2650 inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
2651 inline bool is_call_stub() { return kind() == CALL_IC; }
2652
2653 // [major_key]: For kind STUB, the major key.
2654 inline CodeStub::Major major_key();
2655 inline void set_major_key(CodeStub::Major major);
2656
2657 // Flags operations.
2658 static inline Flags ComputeFlags(Kind kind,
2659 InLoopFlag in_loop = NOT_IN_LOOP,
2660 InlineCacheState ic_state = UNINITIALIZED,
2661 PropertyType type = NORMAL,
2662 int argc = -1);
2663
2664 static inline Flags ComputeMonomorphicFlags(
2665 Kind kind,
2666 PropertyType type,
2667 InLoopFlag in_loop = NOT_IN_LOOP,
2668 int argc = -1);
2669
2670 static inline Kind ExtractKindFromFlags(Flags flags);
2671 static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
2672 static inline InLoopFlag ExtractICInLoopFromFlags(Flags flags);
2673 static inline PropertyType ExtractTypeFromFlags(Flags flags);
2674 static inline int ExtractArgumentsCountFromFlags(Flags flags);
2675 static inline Flags RemoveTypeFromFlags(Flags flags);
2676
2677 // Convert a target address into a code object.
2678 static inline Code* GetCodeFromTargetAddress(Address address);
2679
2680 // Returns the address of the first instruction.
2681 inline byte* instruction_start();
2682
2683 // Returns the size of the instructions, padding, and relocation information.
2684 inline int body_size();
2685
2686 // Returns the address of the first relocation info (read backwards!).
2687 inline byte* relocation_start();
2688
2689 // Code entry point.
2690 inline byte* entry();
2691
2692 // Returns true if pc is inside this object's instructions.
2693 inline bool contains(byte* pc);
2694
2695 // Returns the address of the scope information.
2696 inline byte* sinfo_start();
2697
2698 // Relocate the code by delta bytes. Called to signal that this code
2699 // object has been moved by delta bytes.
Steve Blockd0582a62009-12-15 09:54:21 +00002700 void Relocate(intptr_t delta);
Steve Blocka7e24c12009-10-30 11:49:00 +00002701
2702 // Migrate code described by desc.
2703 void CopyFrom(const CodeDesc& desc);
2704
2705 // Returns the object size for a given body and sinfo size (Used for
2706 // allocation).
2707 static int SizeFor(int body_size, int sinfo_size) {
2708 ASSERT_SIZE_TAG_ALIGNED(body_size);
2709 ASSERT_SIZE_TAG_ALIGNED(sinfo_size);
2710 return RoundUp(kHeaderSize + body_size + sinfo_size, kCodeAlignment);
2711 }
2712
2713 // Calculate the size of the code object to report for log events. This takes
2714 // the layout of the code object into account.
2715 int ExecutableSize() {
2716 // Check that the assumptions about the layout of the code object holds.
2717 ASSERT_EQ(static_cast<int>(instruction_start() - address()),
2718 Code::kHeaderSize);
2719 return instruction_size() + Code::kHeaderSize;
2720 }
2721
2722 // Locating source position.
2723 int SourcePosition(Address pc);
2724 int SourceStatementPosition(Address pc);
2725
2726 // Casting.
2727 static inline Code* cast(Object* obj);
2728
2729 // Dispatched behavior.
2730 int CodeSize() { return SizeFor(body_size(), sinfo_size()); }
2731 void CodeIterateBody(ObjectVisitor* v);
2732#ifdef DEBUG
2733 void CodePrint();
2734 void CodeVerify();
2735#endif
2736 // Code entry points are aligned to 32 bytes.
Steve Blockd0582a62009-12-15 09:54:21 +00002737 static const int kCodeAlignmentBits = 5;
2738 static const int kCodeAlignment = 1 << kCodeAlignmentBits;
Steve Blocka7e24c12009-10-30 11:49:00 +00002739 static const int kCodeAlignmentMask = kCodeAlignment - 1;
2740
2741 // Layout description.
2742 static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
2743 static const int kRelocationSizeOffset = kInstructionSizeOffset + kIntSize;
2744 static const int kSInfoSizeOffset = kRelocationSizeOffset + kIntSize;
2745 static const int kFlagsOffset = kSInfoSizeOffset + kIntSize;
2746 static const int kKindSpecificFlagsOffset = kFlagsOffset + kIntSize;
2747 // Add padding to align the instruction start following right after
2748 // the Code object header.
2749 static const int kHeaderSize =
2750 (kKindSpecificFlagsOffset + kIntSize + kCodeAlignmentMask) &
2751 ~kCodeAlignmentMask;
2752
2753 // Byte offsets within kKindSpecificFlagsOffset.
2754 static const int kStubMajorKeyOffset = kKindSpecificFlagsOffset + 1;
2755
2756 // Flags layout.
2757 static const int kFlagsICStateShift = 0;
2758 static const int kFlagsICInLoopShift = 3;
2759 static const int kFlagsKindShift = 4;
2760 static const int kFlagsTypeShift = 7;
2761 static const int kFlagsArgumentsCountShift = 10;
2762
2763 static const int kFlagsICStateMask = 0x00000007; // 0000000111
2764 static const int kFlagsICInLoopMask = 0x00000008; // 0000001000
2765 static const int kFlagsKindMask = 0x00000070; // 0001110000
2766 static const int kFlagsTypeMask = 0x00000380; // 1110000000
2767 static const int kFlagsArgumentsCountMask = 0xFFFFFC00;
2768
2769 static const int kFlagsNotUsedInLookup =
2770 (kFlagsICInLoopMask | kFlagsTypeMask);
2771
2772 private:
2773 DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
2774};
2775
2776
2777// All heap objects have a Map that describes their structure.
2778// A Map contains information about:
2779// - Size information about the object
2780// - How to iterate over an object (for garbage collection)
2781class Map: public HeapObject {
2782 public:
2783 // Instance size.
2784 inline int instance_size();
2785 inline void set_instance_size(int value);
2786
2787 // Count of properties allocated in the object.
2788 inline int inobject_properties();
2789 inline void set_inobject_properties(int value);
2790
2791 // Count of property fields pre-allocated in the object when first allocated.
2792 inline int pre_allocated_property_fields();
2793 inline void set_pre_allocated_property_fields(int value);
2794
2795 // Instance type.
2796 inline InstanceType instance_type();
2797 inline void set_instance_type(InstanceType value);
2798
2799 // Tells how many unused property fields are available in the
2800 // instance (only used for JSObject in fast mode).
2801 inline int unused_property_fields();
2802 inline void set_unused_property_fields(int value);
2803
2804 // Bit field.
2805 inline byte bit_field();
2806 inline void set_bit_field(byte value);
2807
2808 // Bit field 2.
2809 inline byte bit_field2();
2810 inline void set_bit_field2(byte value);
2811
2812 // Tells whether the object in the prototype property will be used
2813 // for instances created from this function. If the prototype
2814 // property is set to a value that is not a JSObject, the prototype
2815 // property will not be used to create instances of the function.
2816 // See ECMA-262, 13.2.2.
2817 inline void set_non_instance_prototype(bool value);
2818 inline bool has_non_instance_prototype();
2819
2820 // Tells whether the instance with this map should be ignored by the
2821 // __proto__ accessor.
2822 inline void set_is_hidden_prototype() {
2823 set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
2824 }
2825
2826 inline bool is_hidden_prototype() {
2827 return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
2828 }
2829
2830 // Records and queries whether the instance has a named interceptor.
2831 inline void set_has_named_interceptor() {
2832 set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
2833 }
2834
2835 inline bool has_named_interceptor() {
2836 return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
2837 }
2838
2839 // Records and queries whether the instance has an indexed interceptor.
2840 inline void set_has_indexed_interceptor() {
2841 set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
2842 }
2843
2844 inline bool has_indexed_interceptor() {
2845 return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
2846 }
2847
2848 // Tells whether the instance is undetectable.
2849 // An undetectable object is a special class of JSObject: 'typeof' operator
2850 // returns undefined, ToBoolean returns false. Otherwise it behaves like
2851 // a normal JS object. It is useful for implementing undetectable
2852 // document.all in Firefox & Safari.
2853 // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
2854 inline void set_is_undetectable() {
2855 set_bit_field(bit_field() | (1 << kIsUndetectable));
2856 }
2857
2858 inline bool is_undetectable() {
2859 return ((1 << kIsUndetectable) & bit_field()) != 0;
2860 }
2861
Steve Blocka7e24c12009-10-30 11:49:00 +00002862 // Tells whether the instance has a call-as-function handler.
2863 inline void set_has_instance_call_handler() {
2864 set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
2865 }
2866
2867 inline bool has_instance_call_handler() {
2868 return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
2869 }
2870
Leon Clarkee46be812010-01-19 14:06:41 +00002871 inline void set_is_extensible() {
2872 set_bit_field2(bit_field2() | (1 << kIsExtensible));
2873 }
2874
2875 inline bool is_extensible() {
2876 return ((1 << kIsExtensible) & bit_field2()) != 0;
2877 }
2878
Steve Blocka7e24c12009-10-30 11:49:00 +00002879 // Tells whether the instance needs security checks when accessing its
2880 // properties.
2881 inline void set_is_access_check_needed(bool access_check_needed);
2882 inline bool is_access_check_needed();
2883
2884 // [prototype]: implicit prototype object.
2885 DECL_ACCESSORS(prototype, Object)
2886
2887 // [constructor]: points back to the function responsible for this map.
2888 DECL_ACCESSORS(constructor, Object)
2889
2890 // [instance descriptors]: describes the object.
2891 DECL_ACCESSORS(instance_descriptors, DescriptorArray)
2892
2893 // [stub cache]: contains stubs compiled for this map.
2894 DECL_ACCESSORS(code_cache, FixedArray)
2895
Steve Blocka7e24c12009-10-30 11:49:00 +00002896 Object* CopyDropDescriptors();
2897
2898 // Returns a copy of the map, with all transitions dropped from the
2899 // instance descriptors.
2900 Object* CopyDropTransitions();
2901
2902 // Returns the property index for name (only valid for FAST MODE).
2903 int PropertyIndexFor(String* name);
2904
2905 // Returns the next free property index (only valid for FAST MODE).
2906 int NextFreePropertyIndex();
2907
2908 // Returns the number of properties described in instance_descriptors.
2909 int NumberOfDescribedProperties();
2910
2911 // Casting.
2912 static inline Map* cast(Object* obj);
2913
2914 // Locate an accessor in the instance descriptor.
2915 AccessorDescriptor* FindAccessor(String* name);
2916
2917 // Code cache operations.
2918
2919 // Clears the code cache.
2920 inline void ClearCodeCache();
2921
2922 // Update code cache.
2923 Object* UpdateCodeCache(String* name, Code* code);
2924
2925 // Returns the found code or undefined if absent.
2926 Object* FindInCodeCache(String* name, Code::Flags flags);
2927
2928 // Returns the non-negative index of the code object if it is in the
2929 // cache and -1 otherwise.
2930 int IndexInCodeCache(Code* code);
2931
2932 // Removes a code object from the code cache at the given index.
2933 void RemoveFromCodeCache(int index);
2934
2935 // For every transition in this map, makes the transition's
2936 // target's prototype pointer point back to this map.
2937 // This is undone in MarkCompactCollector::ClearNonLiveTransitions().
2938 void CreateBackPointers();
2939
2940 // Set all map transitions from this map to dead maps to null.
2941 // Also, restore the original prototype on the targets of these
2942 // transitions, so that we do not process this map again while
2943 // following back pointers.
2944 void ClearNonLiveTransitions(Object* real_prototype);
2945
2946 // Dispatched behavior.
2947 void MapIterateBody(ObjectVisitor* v);
2948#ifdef DEBUG
2949 void MapPrint();
2950 void MapVerify();
2951#endif
2952
2953 static const int kMaxPreAllocatedPropertyFields = 255;
2954
2955 // Layout description.
2956 static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
2957 static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
2958 static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
2959 static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
2960 static const int kInstanceDescriptorsOffset =
2961 kConstructorOffset + kPointerSize;
2962 static const int kCodeCacheOffset = kInstanceDescriptorsOffset + kPointerSize;
Leon Clarkee46be812010-01-19 14:06:41 +00002963 static const int kPadStart = kCodeCacheOffset + kPointerSize;
2964 static const int kSize = MAP_SIZE_ALIGN(kPadStart);
Steve Blocka7e24c12009-10-30 11:49:00 +00002965
2966 // Byte offsets within kInstanceSizesOffset.
2967 static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
2968 static const int kInObjectPropertiesByte = 1;
2969 static const int kInObjectPropertiesOffset =
2970 kInstanceSizesOffset + kInObjectPropertiesByte;
2971 static const int kPreAllocatedPropertyFieldsByte = 2;
2972 static const int kPreAllocatedPropertyFieldsOffset =
2973 kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
2974 // The byte at position 3 is not in use at the moment.
2975
2976 // Byte offsets within kInstanceAttributesOffset attributes.
2977 static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
2978 static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
2979 static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
2980 static const int kBitField2Offset = kInstanceAttributesOffset + 3;
2981
2982 STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
2983
2984 // Bit positions for bit field.
2985 static const int kUnused = 0; // To be used for marking recently used maps.
2986 static const int kHasNonInstancePrototype = 1;
2987 static const int kIsHiddenPrototype = 2;
2988 static const int kHasNamedInterceptor = 3;
2989 static const int kHasIndexedInterceptor = 4;
2990 static const int kIsUndetectable = 5;
2991 static const int kHasInstanceCallHandler = 6;
2992 static const int kIsAccessCheckNeeded = 7;
2993
2994 // Bit positions for bit field 2
Andrei Popescu31002712010-02-23 13:46:05 +00002995 static const int kIsExtensible = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +00002996
2997 private:
2998 DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
2999};
3000
3001
3002// An abstract superclass, a marker class really, for simple structure classes.
3003// It doesn't carry much functionality but allows struct classes to me
3004// identified in the type system.
3005class Struct: public HeapObject {
3006 public:
3007 inline void InitializeBody(int object_size);
3008 static inline Struct* cast(Object* that);
3009};
3010
3011
3012// Script describes a script which has been added to the VM.
3013class Script: public Struct {
3014 public:
3015 // Script types.
3016 enum Type {
3017 TYPE_NATIVE = 0,
3018 TYPE_EXTENSION = 1,
3019 TYPE_NORMAL = 2
3020 };
3021
3022 // Script compilation types.
3023 enum CompilationType {
3024 COMPILATION_TYPE_HOST = 0,
3025 COMPILATION_TYPE_EVAL = 1,
3026 COMPILATION_TYPE_JSON = 2
3027 };
3028
3029 // [source]: the script source.
3030 DECL_ACCESSORS(source, Object)
3031
3032 // [name]: the script name.
3033 DECL_ACCESSORS(name, Object)
3034
3035 // [id]: the script id.
3036 DECL_ACCESSORS(id, Object)
3037
3038 // [line_offset]: script line offset in resource from where it was extracted.
3039 DECL_ACCESSORS(line_offset, Smi)
3040
3041 // [column_offset]: script column offset in resource from where it was
3042 // extracted.
3043 DECL_ACCESSORS(column_offset, Smi)
3044
3045 // [data]: additional data associated with this script.
3046 DECL_ACCESSORS(data, Object)
3047
3048 // [context_data]: context data for the context this script was compiled in.
3049 DECL_ACCESSORS(context_data, Object)
3050
3051 // [wrapper]: the wrapper cache.
3052 DECL_ACCESSORS(wrapper, Proxy)
3053
3054 // [type]: the script type.
3055 DECL_ACCESSORS(type, Smi)
3056
3057 // [compilation]: how the the script was compiled.
3058 DECL_ACCESSORS(compilation_type, Smi)
3059
Steve Blockd0582a62009-12-15 09:54:21 +00003060 // [line_ends]: FixedArray of line ends positions.
Steve Blocka7e24c12009-10-30 11:49:00 +00003061 DECL_ACCESSORS(line_ends, Object)
3062
Steve Blockd0582a62009-12-15 09:54:21 +00003063 // [eval_from_shared]: for eval scripts the shared funcion info for the
3064 // function from which eval was called.
3065 DECL_ACCESSORS(eval_from_shared, Object)
Steve Blocka7e24c12009-10-30 11:49:00 +00003066
3067 // [eval_from_instructions_offset]: the instruction offset in the code for the
3068 // function from which eval was called where eval was called.
3069 DECL_ACCESSORS(eval_from_instructions_offset, Smi)
3070
3071 static inline Script* cast(Object* obj);
3072
Steve Block3ce2e202009-11-05 08:53:23 +00003073 // If script source is an external string, check that the underlying
3074 // resource is accessible. Otherwise, always return true.
3075 inline bool HasValidSource();
3076
Steve Blocka7e24c12009-10-30 11:49:00 +00003077#ifdef DEBUG
3078 void ScriptPrint();
3079 void ScriptVerify();
3080#endif
3081
3082 static const int kSourceOffset = HeapObject::kHeaderSize;
3083 static const int kNameOffset = kSourceOffset + kPointerSize;
3084 static const int kLineOffsetOffset = kNameOffset + kPointerSize;
3085 static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
3086 static const int kDataOffset = kColumnOffsetOffset + kPointerSize;
3087 static const int kContextOffset = kDataOffset + kPointerSize;
3088 static const int kWrapperOffset = kContextOffset + kPointerSize;
3089 static const int kTypeOffset = kWrapperOffset + kPointerSize;
3090 static const int kCompilationTypeOffset = kTypeOffset + kPointerSize;
3091 static const int kLineEndsOffset = kCompilationTypeOffset + kPointerSize;
3092 static const int kIdOffset = kLineEndsOffset + kPointerSize;
Steve Blockd0582a62009-12-15 09:54:21 +00003093 static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00003094 static const int kEvalFrominstructionsOffsetOffset =
Steve Blockd0582a62009-12-15 09:54:21 +00003095 kEvalFromSharedOffset + kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00003096 static const int kSize = kEvalFrominstructionsOffsetOffset + kPointerSize;
3097
3098 private:
3099 DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
3100};
3101
3102
3103// SharedFunctionInfo describes the JSFunction information that can be
3104// shared by multiple instances of the function.
3105class SharedFunctionInfo: public HeapObject {
3106 public:
3107 // [name]: Function name.
3108 DECL_ACCESSORS(name, Object)
3109
3110 // [code]: Function code.
3111 DECL_ACCESSORS(code, Code)
3112
3113 // [construct stub]: Code stub for constructing instances of this function.
3114 DECL_ACCESSORS(construct_stub, Code)
3115
3116 // Returns if this function has been compiled to native code yet.
3117 inline bool is_compiled();
3118
3119 // [length]: The function length - usually the number of declared parameters.
3120 // Use up to 2^30 parameters.
3121 inline int length();
3122 inline void set_length(int value);
3123
3124 // [formal parameter count]: The declared number of parameters.
3125 inline int formal_parameter_count();
3126 inline void set_formal_parameter_count(int value);
3127
3128 // Set the formal parameter count so the function code will be
3129 // called without using argument adaptor frames.
3130 inline void DontAdaptArguments();
3131
3132 // [expected_nof_properties]: Expected number of properties for the function.
3133 inline int expected_nof_properties();
3134 inline void set_expected_nof_properties(int value);
3135
3136 // [instance class name]: class name for instances.
3137 DECL_ACCESSORS(instance_class_name, Object)
3138
3139 // [function data]: This field has been added for make benefit the API.
3140 // In the long run we don't want all functions to have this field but
3141 // we can fix that when we have a better model for storing hidden data
3142 // on objects.
3143 DECL_ACCESSORS(function_data, Object)
3144
3145 // [script info]: Script from which the function originates.
3146 DECL_ACCESSORS(script, Object)
3147
3148 // [start_position_and_type]: Field used to store both the source code
3149 // position, whether or not the function is a function expression,
3150 // and whether or not the function is a toplevel function. The two
3151 // least significants bit indicates whether the function is an
3152 // expression and the rest contains the source code position.
3153 inline int start_position_and_type();
3154 inline void set_start_position_and_type(int value);
3155
3156 // [debug info]: Debug information.
3157 DECL_ACCESSORS(debug_info, Object)
3158
3159 // [inferred name]: Name inferred from variable or property
3160 // assignment of this function. Used to facilitate debugging and
3161 // profiling of JavaScript code written in OO style, where almost
3162 // all functions are anonymous but are assigned to object
3163 // properties.
3164 DECL_ACCESSORS(inferred_name, String)
3165
3166 // Position of the 'function' token in the script source.
3167 inline int function_token_position();
3168 inline void set_function_token_position(int function_token_position);
3169
3170 // Position of this function in the script source.
3171 inline int start_position();
3172 inline void set_start_position(int start_position);
3173
3174 // End position of this function in the script source.
3175 inline int end_position();
3176 inline void set_end_position(int end_position);
3177
3178 // Is this function a function expression in the source code.
3179 inline bool is_expression();
3180 inline void set_is_expression(bool value);
3181
3182 // Is this function a top-level function (scripts, evals).
3183 inline bool is_toplevel();
3184 inline void set_is_toplevel(bool value);
3185
3186 // Bit field containing various information collected by the compiler to
3187 // drive optimization.
3188 inline int compiler_hints();
3189 inline void set_compiler_hints(int value);
3190
3191 // Add information on assignments of the form this.x = ...;
3192 void SetThisPropertyAssignmentsInfo(
Steve Blocka7e24c12009-10-30 11:49:00 +00003193 bool has_only_simple_this_property_assignments,
3194 FixedArray* this_property_assignments);
3195
3196 // Clear information on assignments of the form this.x = ...;
3197 void ClearThisPropertyAssignmentsInfo();
3198
3199 // Indicate that this function only consists of assignments of the form
Steve Blocka7e24c12009-10-30 11:49:00 +00003200 // this.x = y; where y is either a constant or refers to an argument.
3201 inline bool has_only_simple_this_property_assignments();
3202
Leon Clarked91b9f72010-01-27 17:25:45 +00003203 inline bool try_full_codegen();
3204 inline void set_try_full_codegen(bool flag);
Steve Blockd0582a62009-12-15 09:54:21 +00003205
Andrei Popescu402d9372010-02-26 13:31:12 +00003206 // Check whether a inlined constructor can be generated with the given
3207 // prototype.
3208 bool CanGenerateInlineConstructor(Object* prototype);
3209
Steve Blocka7e24c12009-10-30 11:49:00 +00003210 // For functions which only contains this property assignments this provides
3211 // access to the names for the properties assigned.
3212 DECL_ACCESSORS(this_property_assignments, Object)
3213 inline int this_property_assignments_count();
3214 inline void set_this_property_assignments_count(int value);
3215 String* GetThisPropertyAssignmentName(int index);
3216 bool IsThisPropertyAssignmentArgument(int index);
3217 int GetThisPropertyAssignmentArgument(int index);
3218 Object* GetThisPropertyAssignmentConstant(int index);
3219
3220 // [source code]: Source code for the function.
3221 bool HasSourceCode();
3222 Object* GetSourceCode();
3223
3224 // Calculate the instance size.
3225 int CalculateInstanceSize();
3226
3227 // Calculate the number of in-object properties.
3228 int CalculateInObjectProperties();
3229
3230 // Dispatched behavior.
3231 void SharedFunctionInfoIterateBody(ObjectVisitor* v);
3232 // Set max_length to -1 for unlimited length.
3233 void SourceCodePrint(StringStream* accumulator, int max_length);
3234#ifdef DEBUG
3235 void SharedFunctionInfoPrint();
3236 void SharedFunctionInfoVerify();
3237#endif
3238
3239 // Casting.
3240 static inline SharedFunctionInfo* cast(Object* obj);
3241
3242 // Constants.
3243 static const int kDontAdaptArgumentsSentinel = -1;
3244
3245 // Layout description.
3246 // (An even number of integers has a size that is a multiple of a pointer.)
3247 static const int kNameOffset = HeapObject::kHeaderSize;
3248 static const int kCodeOffset = kNameOffset + kPointerSize;
3249 static const int kConstructStubOffset = kCodeOffset + kPointerSize;
3250 static const int kLengthOffset = kConstructStubOffset + kPointerSize;
3251 static const int kFormalParameterCountOffset = kLengthOffset + kIntSize;
3252 static const int kExpectedNofPropertiesOffset =
3253 kFormalParameterCountOffset + kIntSize;
3254 static const int kStartPositionAndTypeOffset =
3255 kExpectedNofPropertiesOffset + kIntSize;
3256 static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
3257 static const int kFunctionTokenPositionOffset = kEndPositionOffset + kIntSize;
3258 static const int kInstanceClassNameOffset =
3259 kFunctionTokenPositionOffset + kIntSize;
3260 static const int kExternalReferenceDataOffset =
3261 kInstanceClassNameOffset + kPointerSize;
3262 static const int kScriptOffset = kExternalReferenceDataOffset + kPointerSize;
3263 static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
3264 static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
3265 static const int kCompilerHintsOffset = kInferredNameOffset + kPointerSize;
3266 static const int kThisPropertyAssignmentsOffset =
3267 kCompilerHintsOffset + kPointerSize;
3268 static const int kThisPropertyAssignmentsCountOffset =
3269 kThisPropertyAssignmentsOffset + kPointerSize;
3270 static const int kSize = kThisPropertyAssignmentsCountOffset + kPointerSize;
3271
3272 private:
3273 // Bit positions in length_and_flg.
3274 // The least significant bit is used as the flag.
3275 static const int kFlagBit = 0;
3276 static const int kLengthShift = 1;
3277 static const int kLengthMask = ~((1 << kLengthShift) - 1);
3278
3279 // Bit positions in start_position_and_type.
3280 // The source code start position is in the 30 most significant bits of
3281 // the start_position_and_type field.
3282 static const int kIsExpressionBit = 0;
3283 static const int kIsTopLevelBit = 1;
3284 static const int kStartPositionShift = 2;
3285 static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
3286
3287 // Bit positions in compiler_hints.
Steve Blockd0582a62009-12-15 09:54:21 +00003288 static const int kHasOnlySimpleThisPropertyAssignments = 0;
Leon Clarked91b9f72010-01-27 17:25:45 +00003289 static const int kTryFullCodegen = 1;
Steve Blocka7e24c12009-10-30 11:49:00 +00003290
3291 DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
3292};
3293
3294
3295// JSFunction describes JavaScript functions.
3296class JSFunction: public JSObject {
3297 public:
3298 // [prototype_or_initial_map]:
3299 DECL_ACCESSORS(prototype_or_initial_map, Object)
3300
3301 // [shared_function_info]: The information about the function that
3302 // can be shared by instances.
3303 DECL_ACCESSORS(shared, SharedFunctionInfo)
3304
3305 // [context]: The context for this function.
3306 inline Context* context();
3307 inline Object* unchecked_context();
3308 inline void set_context(Object* context);
3309
3310 // [code]: The generated code object for this function. Executed
3311 // when the function is invoked, e.g. foo() or new foo(). See
3312 // [[Call]] and [[Construct]] description in ECMA-262, section
3313 // 8.6.2, page 27.
3314 inline Code* code();
3315 inline void set_code(Code* value);
3316
3317 // Tells whether this function is a context-independent boilerplate
3318 // function.
3319 inline bool IsBoilerplate();
3320
3321 // Tells whether this function is builtin.
3322 inline bool IsBuiltin();
3323
3324 // [literals]: Fixed array holding the materialized literals.
3325 //
3326 // If the function contains object, regexp or array literals, the
3327 // literals array prefix contains the object, regexp, and array
3328 // function to be used when creating these literals. This is
3329 // necessary so that we do not dynamically lookup the object, regexp
3330 // or array functions. Performing a dynamic lookup, we might end up
3331 // using the functions from a new context that we should not have
3332 // access to.
3333 DECL_ACCESSORS(literals, FixedArray)
3334
3335 // The initial map for an object created by this constructor.
3336 inline Map* initial_map();
3337 inline void set_initial_map(Map* value);
3338 inline bool has_initial_map();
3339
3340 // Get and set the prototype property on a JSFunction. If the
3341 // function has an initial map the prototype is set on the initial
3342 // map. Otherwise, the prototype is put in the initial map field
3343 // until an initial map is needed.
3344 inline bool has_prototype();
3345 inline bool has_instance_prototype();
3346 inline Object* prototype();
3347 inline Object* instance_prototype();
3348 Object* SetInstancePrototype(Object* value);
3349 Object* SetPrototype(Object* value);
3350
3351 // Accessor for this function's initial map's [[class]]
3352 // property. This is primarily used by ECMA native functions. This
3353 // method sets the class_name field of this function's initial map
3354 // to a given value. It creates an initial map if this function does
3355 // not have one. Note that this method does not copy the initial map
3356 // if it has one already, but simply replaces it with the new value.
3357 // Instances created afterwards will have a map whose [[class]] is
3358 // set to 'value', but there is no guarantees on instances created
3359 // before.
3360 Object* SetInstanceClassName(String* name);
3361
3362 // Returns if this function has been compiled to native code yet.
3363 inline bool is_compiled();
3364
3365 // Casting.
3366 static inline JSFunction* cast(Object* obj);
3367
3368 // Dispatched behavior.
3369#ifdef DEBUG
3370 void JSFunctionPrint();
3371 void JSFunctionVerify();
3372#endif
3373
3374 // Returns the number of allocated literals.
3375 inline int NumberOfLiterals();
3376
3377 // Retrieve the global context from a function's literal array.
3378 static Context* GlobalContextFromLiterals(FixedArray* literals);
3379
3380 // Layout descriptors.
3381 static const int kPrototypeOrInitialMapOffset = JSObject::kHeaderSize;
3382 static const int kSharedFunctionInfoOffset =
3383 kPrototypeOrInitialMapOffset + kPointerSize;
3384 static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
3385 static const int kLiteralsOffset = kContextOffset + kPointerSize;
3386 static const int kSize = kLiteralsOffset + kPointerSize;
3387
3388 // Layout of the literals array.
3389 static const int kLiteralsPrefixSize = 1;
3390 static const int kLiteralGlobalContextIndex = 0;
3391 private:
3392 DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
3393};
3394
3395
3396// JSGlobalProxy's prototype must be a JSGlobalObject or null,
3397// and the prototype is hidden. JSGlobalProxy always delegates
3398// property accesses to its prototype if the prototype is not null.
3399//
3400// A JSGlobalProxy can be reinitialized which will preserve its identity.
3401//
3402// Accessing a JSGlobalProxy requires security check.
3403
3404class JSGlobalProxy : public JSObject {
3405 public:
3406 // [context]: the owner global context of this proxy object.
3407 // It is null value if this object is not used by any context.
3408 DECL_ACCESSORS(context, Object)
3409
3410 // Casting.
3411 static inline JSGlobalProxy* cast(Object* obj);
3412
3413 // Dispatched behavior.
3414#ifdef DEBUG
3415 void JSGlobalProxyPrint();
3416 void JSGlobalProxyVerify();
3417#endif
3418
3419 // Layout description.
3420 static const int kContextOffset = JSObject::kHeaderSize;
3421 static const int kSize = kContextOffset + kPointerSize;
3422
3423 private:
3424
3425 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
3426};
3427
3428
3429// Forward declaration.
3430class JSBuiltinsObject;
3431
3432// Common super class for JavaScript global objects and the special
3433// builtins global objects.
3434class GlobalObject: public JSObject {
3435 public:
3436 // [builtins]: the object holding the runtime routines written in JS.
3437 DECL_ACCESSORS(builtins, JSBuiltinsObject)
3438
3439 // [global context]: the global context corresponding to this global object.
3440 DECL_ACCESSORS(global_context, Context)
3441
3442 // [global receiver]: the global receiver object of the context
3443 DECL_ACCESSORS(global_receiver, JSObject)
3444
3445 // Retrieve the property cell used to store a property.
3446 Object* GetPropertyCell(LookupResult* result);
3447
3448 // Ensure that the global object has a cell for the given property name.
3449 Object* EnsurePropertyCell(String* name);
3450
3451 // Casting.
3452 static inline GlobalObject* cast(Object* obj);
3453
3454 // Layout description.
3455 static const int kBuiltinsOffset = JSObject::kHeaderSize;
3456 static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize;
3457 static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
3458 static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
3459
3460 private:
3461 friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
3462
3463 DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
3464};
3465
3466
3467// JavaScript global object.
3468class JSGlobalObject: public GlobalObject {
3469 public:
3470
3471 // Casting.
3472 static inline JSGlobalObject* cast(Object* obj);
3473
3474 // Dispatched behavior.
3475#ifdef DEBUG
3476 void JSGlobalObjectPrint();
3477 void JSGlobalObjectVerify();
3478#endif
3479
3480 // Layout description.
3481 static const int kSize = GlobalObject::kHeaderSize;
3482
3483 private:
3484 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
3485};
3486
3487
3488// Builtins global object which holds the runtime routines written in
3489// JavaScript.
3490class JSBuiltinsObject: public GlobalObject {
3491 public:
3492 // Accessors for the runtime routines written in JavaScript.
3493 inline Object* javascript_builtin(Builtins::JavaScript id);
3494 inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
3495
3496 // Casting.
3497 static inline JSBuiltinsObject* cast(Object* obj);
3498
3499 // Dispatched behavior.
3500#ifdef DEBUG
3501 void JSBuiltinsObjectPrint();
3502 void JSBuiltinsObjectVerify();
3503#endif
3504
3505 // Layout description. The size of the builtins object includes
3506 // room for one pointer per runtime routine written in javascript.
3507 static const int kJSBuiltinsCount = Builtins::id_count;
3508 static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
3509 static const int kSize =
3510 kJSBuiltinsOffset + (kJSBuiltinsCount * kPointerSize);
3511 private:
3512 DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
3513};
3514
3515
3516// Representation for JS Wrapper objects, String, Number, Boolean, Date, etc.
3517class JSValue: public JSObject {
3518 public:
3519 // [value]: the object being wrapped.
3520 DECL_ACCESSORS(value, Object)
3521
3522 // Casting.
3523 static inline JSValue* cast(Object* obj);
3524
3525 // Dispatched behavior.
3526#ifdef DEBUG
3527 void JSValuePrint();
3528 void JSValueVerify();
3529#endif
3530
3531 // Layout description.
3532 static const int kValueOffset = JSObject::kHeaderSize;
3533 static const int kSize = kValueOffset + kPointerSize;
3534
3535 private:
3536 DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
3537};
3538
3539// Regular expressions
3540// The regular expression holds a single reference to a FixedArray in
3541// the kDataOffset field.
3542// The FixedArray contains the following data:
3543// - tag : type of regexp implementation (not compiled yet, atom or irregexp)
3544// - reference to the original source string
3545// - reference to the original flag string
3546// If it is an atom regexp
3547// - a reference to a literal string to search for
3548// If it is an irregexp regexp:
3549// - a reference to code for ASCII inputs (bytecode or compiled).
3550// - a reference to code for UC16 inputs (bytecode or compiled).
3551// - max number of registers used by irregexp implementations.
3552// - number of capture registers (output values) of the regexp.
3553class JSRegExp: public JSObject {
3554 public:
3555 // Meaning of Type:
3556 // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
3557 // ATOM: A simple string to match against using an indexOf operation.
3558 // IRREGEXP: Compiled with Irregexp.
3559 // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
3560 enum Type { NOT_COMPILED, ATOM, IRREGEXP };
3561 enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
3562
3563 class Flags {
3564 public:
3565 explicit Flags(uint32_t value) : value_(value) { }
3566 bool is_global() { return (value_ & GLOBAL) != 0; }
3567 bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
3568 bool is_multiline() { return (value_ & MULTILINE) != 0; }
3569 uint32_t value() { return value_; }
3570 private:
3571 uint32_t value_;
3572 };
3573
3574 DECL_ACCESSORS(data, Object)
3575
3576 inline Type TypeTag();
3577 inline int CaptureCount();
3578 inline Flags GetFlags();
3579 inline String* Pattern();
3580 inline Object* DataAt(int index);
3581 // Set implementation data after the object has been prepared.
3582 inline void SetDataAt(int index, Object* value);
3583 static int code_index(bool is_ascii) {
3584 if (is_ascii) {
3585 return kIrregexpASCIICodeIndex;
3586 } else {
3587 return kIrregexpUC16CodeIndex;
3588 }
3589 }
3590
3591 static inline JSRegExp* cast(Object* obj);
3592
3593 // Dispatched behavior.
3594#ifdef DEBUG
3595 void JSRegExpVerify();
3596#endif
3597
3598 static const int kDataOffset = JSObject::kHeaderSize;
3599 static const int kSize = kDataOffset + kPointerSize;
3600
3601 // Indices in the data array.
3602 static const int kTagIndex = 0;
3603 static const int kSourceIndex = kTagIndex + 1;
3604 static const int kFlagsIndex = kSourceIndex + 1;
3605 static const int kDataIndex = kFlagsIndex + 1;
3606 // The data fields are used in different ways depending on the
3607 // value of the tag.
3608 // Atom regexps (literal strings).
3609 static const int kAtomPatternIndex = kDataIndex;
3610
3611 static const int kAtomDataSize = kAtomPatternIndex + 1;
3612
3613 // Irregexp compiled code or bytecode for ASCII. If compilation
3614 // fails, this fields hold an exception object that should be
3615 // thrown if the regexp is used again.
3616 static const int kIrregexpASCIICodeIndex = kDataIndex;
3617 // Irregexp compiled code or bytecode for UC16. If compilation
3618 // fails, this fields hold an exception object that should be
3619 // thrown if the regexp is used again.
3620 static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
3621 // Maximal number of registers used by either ASCII or UC16.
3622 // Only used to check that there is enough stack space
3623 static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 2;
3624 // Number of captures in the compiled regexp.
3625 static const int kIrregexpCaptureCountIndex = kDataIndex + 3;
3626
3627 static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
Leon Clarkee46be812010-01-19 14:06:41 +00003628
3629 // Offsets directly into the data fixed array.
3630 static const int kDataTagOffset =
3631 FixedArray::kHeaderSize + kTagIndex * kPointerSize;
3632 static const int kDataAsciiCodeOffset =
3633 FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize;
Leon Clarked91b9f72010-01-27 17:25:45 +00003634 static const int kDataUC16CodeOffset =
3635 FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
Leon Clarkee46be812010-01-19 14:06:41 +00003636 static const int kIrregexpCaptureCountOffset =
3637 FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00003638};
3639
3640
3641class CompilationCacheShape {
3642 public:
3643 static inline bool IsMatch(HashTableKey* key, Object* value) {
3644 return key->IsMatch(value);
3645 }
3646
3647 static inline uint32_t Hash(HashTableKey* key) {
3648 return key->Hash();
3649 }
3650
3651 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3652 return key->HashForObject(object);
3653 }
3654
3655 static Object* AsObject(HashTableKey* key) {
3656 return key->AsObject();
3657 }
3658
3659 static const int kPrefixSize = 0;
3660 static const int kEntrySize = 2;
3661};
3662
Steve Block3ce2e202009-11-05 08:53:23 +00003663
Steve Blocka7e24c12009-10-30 11:49:00 +00003664class CompilationCacheTable: public HashTable<CompilationCacheShape,
3665 HashTableKey*> {
3666 public:
3667 // Find cached value for a string key, otherwise return null.
3668 Object* Lookup(String* src);
3669 Object* LookupEval(String* src, Context* context);
3670 Object* LookupRegExp(String* source, JSRegExp::Flags flags);
3671 Object* Put(String* src, Object* value);
3672 Object* PutEval(String* src, Context* context, Object* value);
3673 Object* PutRegExp(String* src, JSRegExp::Flags flags, FixedArray* value);
3674
3675 static inline CompilationCacheTable* cast(Object* obj);
3676
3677 private:
3678 DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
3679};
3680
3681
3682enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
3683enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
3684
3685
3686class StringHasher {
3687 public:
3688 inline StringHasher(int length);
3689
3690 // Returns true if the hash of this string can be computed without
3691 // looking at the contents.
3692 inline bool has_trivial_hash();
3693
3694 // Add a character to the hash and update the array index calculation.
3695 inline void AddCharacter(uc32 c);
3696
3697 // Adds a character to the hash but does not update the array index
3698 // calculation. This can only be called when it has been verified
3699 // that the input is not an array index.
3700 inline void AddCharacterNoIndex(uc32 c);
3701
3702 // Returns the value to store in the hash field of a string with
3703 // the given length and contents.
3704 uint32_t GetHashField();
3705
3706 // Returns true if the characters seen so far make up a legal array
3707 // index.
3708 bool is_array_index() { return is_array_index_; }
3709
3710 bool is_valid() { return is_valid_; }
3711
3712 void invalidate() { is_valid_ = false; }
3713
3714 private:
3715
3716 uint32_t array_index() {
3717 ASSERT(is_array_index());
3718 return array_index_;
3719 }
3720
3721 inline uint32_t GetHash();
3722
3723 int length_;
3724 uint32_t raw_running_hash_;
3725 uint32_t array_index_;
3726 bool is_array_index_;
3727 bool is_first_char_;
3728 bool is_valid_;
Steve Blockd0582a62009-12-15 09:54:21 +00003729 friend class TwoCharHashTableKey;
Steve Blocka7e24c12009-10-30 11:49:00 +00003730};
3731
3732
3733// The characteristics of a string are stored in its map. Retrieving these
3734// few bits of information is moderately expensive, involving two memory
3735// loads where the second is dependent on the first. To improve efficiency
3736// the shape of the string is given its own class so that it can be retrieved
3737// once and used for several string operations. A StringShape is small enough
3738// to be passed by value and is immutable, but be aware that flattening a
3739// string can potentially alter its shape. Also be aware that a GC caused by
3740// something else can alter the shape of a string due to ConsString
3741// shortcutting. Keeping these restrictions in mind has proven to be error-
3742// prone and so we no longer put StringShapes in variables unless there is a
3743// concrete performance benefit at that particular point in the code.
3744class StringShape BASE_EMBEDDED {
3745 public:
3746 inline explicit StringShape(String* s);
3747 inline explicit StringShape(Map* s);
3748 inline explicit StringShape(InstanceType t);
3749 inline bool IsSequential();
3750 inline bool IsExternal();
3751 inline bool IsCons();
Steve Blocka7e24c12009-10-30 11:49:00 +00003752 inline bool IsExternalAscii();
3753 inline bool IsExternalTwoByte();
3754 inline bool IsSequentialAscii();
3755 inline bool IsSequentialTwoByte();
3756 inline bool IsSymbol();
3757 inline StringRepresentationTag representation_tag();
3758 inline uint32_t full_representation_tag();
3759 inline uint32_t size_tag();
3760#ifdef DEBUG
3761 inline uint32_t type() { return type_; }
3762 inline void invalidate() { valid_ = false; }
3763 inline bool valid() { return valid_; }
3764#else
3765 inline void invalidate() { }
3766#endif
3767 private:
3768 uint32_t type_;
3769#ifdef DEBUG
3770 inline void set_valid() { valid_ = true; }
3771 bool valid_;
3772#else
3773 inline void set_valid() { }
3774#endif
3775};
3776
3777
3778// The String abstract class captures JavaScript string values:
3779//
3780// Ecma-262:
3781// 4.3.16 String Value
3782// A string value is a member of the type String and is a finite
3783// ordered sequence of zero or more 16-bit unsigned integer values.
3784//
3785// All string values have a length field.
3786class String: public HeapObject {
3787 public:
3788 // Get and set the length of the string.
3789 inline int length();
3790 inline void set_length(int value);
3791
Steve Blockd0582a62009-12-15 09:54:21 +00003792 // Get and set the hash field of the string.
3793 inline uint32_t hash_field();
3794 inline void set_hash_field(uint32_t value);
Steve Blocka7e24c12009-10-30 11:49:00 +00003795
3796 inline bool IsAsciiRepresentation();
3797 inline bool IsTwoByteRepresentation();
3798
3799 // Get and set individual two byte chars in the string.
3800 inline void Set(int index, uint16_t value);
3801 // Get individual two byte char in the string. Repeated calls
3802 // to this method are not efficient unless the string is flat.
3803 inline uint16_t Get(int index);
3804
3805 // Try to flatten the top level ConsString that is hiding behind this
Steve Blockd0582a62009-12-15 09:54:21 +00003806 // string. This is a no-op unless the string is a ConsString. Flatten
3807 // mutates the ConsString and might return a failure.
Steve Blocka7e24c12009-10-30 11:49:00 +00003808 Object* TryFlatten();
3809
3810 // Try to flatten the string. Checks first inline to see if it is necessary.
3811 // Do not handle allocation failures. After calling TryFlattenIfNotFlat, the
3812 // string could still be a ConsString, in which case a failure is returned.
3813 // Use FlattenString from Handles.cc to be sure to flatten.
3814 inline Object* TryFlattenIfNotFlat();
3815
3816 Vector<const char> ToAsciiVector();
3817 Vector<const uc16> ToUC16Vector();
3818
3819 // Mark the string as an undetectable object. It only applies to
3820 // ascii and two byte string types.
3821 bool MarkAsUndetectable();
3822
Steve Blockd0582a62009-12-15 09:54:21 +00003823 // Return a substring.
3824 Object* SubString(int from, int to);
Steve Blocka7e24c12009-10-30 11:49:00 +00003825
3826 // String equality operations.
3827 inline bool Equals(String* other);
3828 bool IsEqualTo(Vector<const char> str);
3829
3830 // Return a UTF8 representation of the string. The string is null
3831 // terminated but may optionally contain nulls. Length is returned
3832 // in length_output if length_output is not a null pointer The string
3833 // should be nearly flat, otherwise the performance of this method may
3834 // be very slow (quadratic in the length). Setting robustness_flag to
3835 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
3836 // handles unexpected data without causing assert failures and it does not
3837 // do any heap allocations. This is useful when printing stack traces.
3838 SmartPointer<char> ToCString(AllowNullsFlag allow_nulls,
3839 RobustnessFlag robustness_flag,
3840 int offset,
3841 int length,
3842 int* length_output = 0);
3843 SmartPointer<char> ToCString(
3844 AllowNullsFlag allow_nulls = DISALLOW_NULLS,
3845 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
3846 int* length_output = 0);
3847
3848 int Utf8Length();
3849
3850 // Return a 16 bit Unicode representation of the string.
3851 // The string should be nearly flat, otherwise the performance of
3852 // of this method may be very bad. Setting robustness_flag to
3853 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
3854 // handles unexpected data without causing assert failures and it does not
3855 // do any heap allocations. This is useful when printing stack traces.
3856 SmartPointer<uc16> ToWideCString(
3857 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
3858
3859 // Tells whether the hash code has been computed.
3860 inline bool HasHashCode();
3861
3862 // Returns a hash value used for the property table
3863 inline uint32_t Hash();
3864
Steve Blockd0582a62009-12-15 09:54:21 +00003865 static uint32_t ComputeHashField(unibrow::CharacterStream* buffer,
3866 int length);
Steve Blocka7e24c12009-10-30 11:49:00 +00003867
3868 static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
3869 uint32_t* index,
3870 int length);
3871
3872 // Externalization.
3873 bool MakeExternal(v8::String::ExternalStringResource* resource);
3874 bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
3875
3876 // Conversion.
3877 inline bool AsArrayIndex(uint32_t* index);
3878
3879 // Casting.
3880 static inline String* cast(Object* obj);
3881
3882 void PrintOn(FILE* out);
3883
3884 // For use during stack traces. Performs rudimentary sanity check.
3885 bool LooksValid();
3886
3887 // Dispatched behavior.
3888 void StringShortPrint(StringStream* accumulator);
3889#ifdef DEBUG
3890 void StringPrint();
3891 void StringVerify();
3892#endif
3893 inline bool IsFlat();
3894
3895 // Layout description.
3896 static const int kLengthOffset = HeapObject::kHeaderSize;
Steve Blockd0582a62009-12-15 09:54:21 +00003897 static const int kHashFieldOffset = kLengthOffset + kIntSize;
3898 static const int kSize = kHashFieldOffset + kIntSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00003899 // Notice: kSize is not pointer-size aligned if pointers are 64-bit.
3900
Steve Blockd0582a62009-12-15 09:54:21 +00003901 // Maximum number of characters to consider when trying to convert a string
3902 // value into an array index.
Steve Blocka7e24c12009-10-30 11:49:00 +00003903 static const int kMaxArrayIndexSize = 10;
3904
3905 // Max ascii char code.
3906 static const int kMaxAsciiCharCode = unibrow::Utf8::kMaxOneByteChar;
3907 static const unsigned kMaxAsciiCharCodeU = unibrow::Utf8::kMaxOneByteChar;
3908 static const int kMaxUC16CharCode = 0xffff;
3909
Steve Blockd0582a62009-12-15 09:54:21 +00003910 // Minimum length for a cons string.
Steve Blocka7e24c12009-10-30 11:49:00 +00003911 static const int kMinNonFlatLength = 13;
3912
3913 // Mask constant for checking if a string has a computed hash code
3914 // and if it is an array index. The least significant bit indicates
3915 // whether a hash code has been computed. If the hash code has been
3916 // computed the 2nd bit tells whether the string can be used as an
3917 // array index.
3918 static const int kHashComputedMask = 1;
3919 static const int kIsArrayIndexMask = 1 << 1;
3920 static const int kNofLengthBitFields = 2;
3921
Steve Blockd0582a62009-12-15 09:54:21 +00003922 // Shift constant retrieving hash code from hash field.
3923 static const int kHashShift = kNofLengthBitFields;
3924
Steve Blocka7e24c12009-10-30 11:49:00 +00003925 // Array index strings this short can keep their index in the hash
3926 // field.
3927 static const int kMaxCachedArrayIndexLength = 7;
3928
Steve Blockd0582a62009-12-15 09:54:21 +00003929 // For strings which are array indexes the hash value has the string length
3930 // mixed into the hash, mainly to avoid a hash value of zero which would be
3931 // the case for the string '0'. 24 bits are used for the array index value.
3932 static const int kArrayIndexHashLengthShift = 24 + kNofLengthBitFields;
3933 static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1;
3934 static const int kArrayIndexValueBits =
3935 kArrayIndexHashLengthShift - kHashShift;
3936
3937 // Value of empty hash field indicating that the hash is not computed.
3938 static const int kEmptyHashField = 0;
3939
3940 // Maximal string length.
3941 static const int kMaxLength = (1 << (32 - 2)) - 1;
3942
3943 // Max length for computing hash. For strings longer than this limit the
3944 // string length is used as the hash value.
3945 static const int kMaxHashCalcLength = 16383;
Steve Blocka7e24c12009-10-30 11:49:00 +00003946
3947 // Limit for truncation in short printing.
3948 static const int kMaxShortPrintLength = 1024;
3949
3950 // Support for regular expressions.
3951 const uc16* GetTwoByteData();
3952 const uc16* GetTwoByteData(unsigned start);
3953
3954 // Support for StringInputBuffer
3955 static const unibrow::byte* ReadBlock(String* input,
3956 unibrow::byte* util_buffer,
3957 unsigned capacity,
3958 unsigned* remaining,
3959 unsigned* offset);
3960 static const unibrow::byte* ReadBlock(String** input,
3961 unibrow::byte* util_buffer,
3962 unsigned capacity,
3963 unsigned* remaining,
3964 unsigned* offset);
3965
3966 // Helper function for flattening strings.
3967 template <typename sinkchar>
3968 static void WriteToFlat(String* source,
3969 sinkchar* sink,
3970 int from,
3971 int to);
3972
3973 protected:
3974 class ReadBlockBuffer {
3975 public:
3976 ReadBlockBuffer(unibrow::byte* util_buffer_,
3977 unsigned cursor_,
3978 unsigned capacity_,
3979 unsigned remaining_) :
3980 util_buffer(util_buffer_),
3981 cursor(cursor_),
3982 capacity(capacity_),
3983 remaining(remaining_) {
3984 }
3985 unibrow::byte* util_buffer;
3986 unsigned cursor;
3987 unsigned capacity;
3988 unsigned remaining;
3989 };
3990
Steve Blocka7e24c12009-10-30 11:49:00 +00003991 static inline const unibrow::byte* ReadBlock(String* input,
3992 ReadBlockBuffer* buffer,
3993 unsigned* offset,
3994 unsigned max_chars);
3995 static void ReadBlockIntoBuffer(String* input,
3996 ReadBlockBuffer* buffer,
3997 unsigned* offset_ptr,
3998 unsigned max_chars);
3999
4000 private:
4001 // Slow case of String::Equals. This implementation works on any strings
4002 // but it is most efficient on strings that are almost flat.
4003 bool SlowEquals(String* other);
4004
4005 // Slow case of AsArrayIndex.
4006 bool SlowAsArrayIndex(uint32_t* index);
4007
4008 // Compute and set the hash code.
4009 uint32_t ComputeAndSetHash();
4010
4011 DISALLOW_IMPLICIT_CONSTRUCTORS(String);
4012};
4013
4014
4015// The SeqString abstract class captures sequential string values.
4016class SeqString: public String {
4017 public:
4018
4019 // Casting.
4020 static inline SeqString* cast(Object* obj);
4021
4022 // Dispatched behaviour.
4023 // For regexp code.
4024 uint16_t* SeqStringGetTwoByteAddress();
4025
4026 private:
4027 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
4028};
4029
4030
4031// The AsciiString class captures sequential ascii string objects.
4032// Each character in the AsciiString is an ascii character.
4033class SeqAsciiString: public SeqString {
4034 public:
4035 // Dispatched behavior.
4036 inline uint16_t SeqAsciiStringGet(int index);
4037 inline void SeqAsciiStringSet(int index, uint16_t value);
4038
4039 // Get the address of the characters in this string.
4040 inline Address GetCharsAddress();
4041
4042 inline char* GetChars();
4043
4044 // Casting
4045 static inline SeqAsciiString* cast(Object* obj);
4046
4047 // Garbage collection support. This method is called by the
4048 // garbage collector to compute the actual size of an AsciiString
4049 // instance.
4050 inline int SeqAsciiStringSize(InstanceType instance_type);
4051
4052 // Computes the size for an AsciiString instance of a given length.
4053 static int SizeFor(int length) {
4054 return OBJECT_SIZE_ALIGN(kHeaderSize + length * kCharSize);
4055 }
4056
4057 // Layout description.
4058 static const int kHeaderSize = String::kSize;
4059 static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4060
Leon Clarkee46be812010-01-19 14:06:41 +00004061 // Maximal memory usage for a single sequential ASCII string.
4062 static const int kMaxSize = 512 * MB;
4063 // Maximal length of a single sequential ASCII string.
4064 // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
4065 static const int kMaxLength = (kMaxSize - kHeaderSize);
4066
Steve Blocka7e24c12009-10-30 11:49:00 +00004067 // Support for StringInputBuffer.
4068 inline void SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4069 unsigned* offset,
4070 unsigned chars);
4071 inline const unibrow::byte* SeqAsciiStringReadBlock(unsigned* remaining,
4072 unsigned* offset,
4073 unsigned chars);
4074
4075 private:
4076 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqAsciiString);
4077};
4078
4079
4080// The TwoByteString class captures sequential unicode string objects.
4081// Each character in the TwoByteString is a two-byte uint16_t.
4082class SeqTwoByteString: public SeqString {
4083 public:
4084 // Dispatched behavior.
4085 inline uint16_t SeqTwoByteStringGet(int index);
4086 inline void SeqTwoByteStringSet(int index, uint16_t value);
4087
4088 // Get the address of the characters in this string.
4089 inline Address GetCharsAddress();
4090
4091 inline uc16* GetChars();
4092
4093 // For regexp code.
4094 const uint16_t* SeqTwoByteStringGetData(unsigned start);
4095
4096 // Casting
4097 static inline SeqTwoByteString* cast(Object* obj);
4098
4099 // Garbage collection support. This method is called by the
4100 // garbage collector to compute the actual size of a TwoByteString
4101 // instance.
4102 inline int SeqTwoByteStringSize(InstanceType instance_type);
4103
4104 // Computes the size for a TwoByteString instance of a given length.
4105 static int SizeFor(int length) {
4106 return OBJECT_SIZE_ALIGN(kHeaderSize + length * kShortSize);
4107 }
4108
4109 // Layout description.
4110 static const int kHeaderSize = String::kSize;
4111 static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4112
Leon Clarkee46be812010-01-19 14:06:41 +00004113 // Maximal memory usage for a single sequential two-byte string.
4114 static const int kMaxSize = 512 * MB;
4115 // Maximal length of a single sequential two-byte string.
4116 // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
4117 static const int kMaxLength = (kMaxSize - kHeaderSize) / sizeof(uint16_t);
4118
Steve Blocka7e24c12009-10-30 11:49:00 +00004119 // Support for StringInputBuffer.
4120 inline void SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4121 unsigned* offset_ptr,
4122 unsigned chars);
4123
4124 private:
4125 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
4126};
4127
4128
4129// The ConsString class describes string values built by using the
4130// addition operator on strings. A ConsString is a pair where the
4131// first and second components are pointers to other string values.
4132// One or both components of a ConsString can be pointers to other
4133// ConsStrings, creating a binary tree of ConsStrings where the leaves
4134// are non-ConsString string values. The string value represented by
4135// a ConsString can be obtained by concatenating the leaf string
4136// values in a left-to-right depth-first traversal of the tree.
4137class ConsString: public String {
4138 public:
4139 // First string of the cons cell.
4140 inline String* first();
4141 // Doesn't check that the result is a string, even in debug mode. This is
4142 // useful during GC where the mark bits confuse the checks.
4143 inline Object* unchecked_first();
4144 inline void set_first(String* first,
4145 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4146
4147 // Second string of the cons cell.
4148 inline String* second();
4149 // Doesn't check that the result is a string, even in debug mode. This is
4150 // useful during GC where the mark bits confuse the checks.
4151 inline Object* unchecked_second();
4152 inline void set_second(String* second,
4153 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4154
4155 // Dispatched behavior.
4156 uint16_t ConsStringGet(int index);
4157
4158 // Casting.
4159 static inline ConsString* cast(Object* obj);
4160
4161 // Garbage collection support. This method is called during garbage
4162 // collection to iterate through the heap pointers in the body of
4163 // the ConsString.
4164 void ConsStringIterateBody(ObjectVisitor* v);
4165
4166 // Layout description.
4167 static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
4168 static const int kSecondOffset = kFirstOffset + kPointerSize;
4169 static const int kSize = kSecondOffset + kPointerSize;
4170
4171 // Support for StringInputBuffer.
4172 inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer,
4173 unsigned* offset_ptr,
4174 unsigned chars);
4175 inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4176 unsigned* offset_ptr,
4177 unsigned chars);
4178
4179 // Minimum length for a cons string.
4180 static const int kMinLength = 13;
4181
4182 private:
4183 DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
4184};
4185
4186
Steve Blocka7e24c12009-10-30 11:49:00 +00004187// The ExternalString class describes string values that are backed by
4188// a string resource that lies outside the V8 heap. ExternalStrings
4189// consist of the length field common to all strings, a pointer to the
4190// external resource. It is important to ensure (externally) that the
4191// resource is not deallocated while the ExternalString is live in the
4192// V8 heap.
4193//
4194// The API expects that all ExternalStrings are created through the
4195// API. Therefore, ExternalStrings should not be used internally.
4196class ExternalString: public String {
4197 public:
4198 // Casting
4199 static inline ExternalString* cast(Object* obj);
4200
4201 // Layout description.
4202 static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
4203 static const int kSize = kResourceOffset + kPointerSize;
4204
4205 STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
4206
4207 private:
4208 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
4209};
4210
4211
4212// The ExternalAsciiString class is an external string backed by an
4213// ASCII string.
4214class ExternalAsciiString: public ExternalString {
4215 public:
4216 typedef v8::String::ExternalAsciiStringResource Resource;
4217
4218 // The underlying resource.
4219 inline Resource* resource();
4220 inline void set_resource(Resource* buffer);
4221
4222 // Dispatched behavior.
4223 uint16_t ExternalAsciiStringGet(int index);
4224
4225 // Casting.
4226 static inline ExternalAsciiString* cast(Object* obj);
4227
Steve Blockd0582a62009-12-15 09:54:21 +00004228 // Garbage collection support.
4229 void ExternalAsciiStringIterateBody(ObjectVisitor* v);
4230
Steve Blocka7e24c12009-10-30 11:49:00 +00004231 // Support for StringInputBuffer.
4232 const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining,
4233 unsigned* offset,
4234 unsigned chars);
4235 inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4236 unsigned* offset,
4237 unsigned chars);
4238
Steve Blocka7e24c12009-10-30 11:49:00 +00004239 private:
4240 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
4241};
4242
4243
4244// The ExternalTwoByteString class is an external string backed by a UTF-16
4245// encoded string.
4246class ExternalTwoByteString: public ExternalString {
4247 public:
4248 typedef v8::String::ExternalStringResource Resource;
4249
4250 // The underlying string resource.
4251 inline Resource* resource();
4252 inline void set_resource(Resource* buffer);
4253
4254 // Dispatched behavior.
4255 uint16_t ExternalTwoByteStringGet(int index);
4256
4257 // For regexp code.
4258 const uint16_t* ExternalTwoByteStringGetData(unsigned start);
4259
4260 // Casting.
4261 static inline ExternalTwoByteString* cast(Object* obj);
4262
Steve Blockd0582a62009-12-15 09:54:21 +00004263 // Garbage collection support.
4264 void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
4265
Steve Blocka7e24c12009-10-30 11:49:00 +00004266 // Support for StringInputBuffer.
4267 void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4268 unsigned* offset_ptr,
4269 unsigned chars);
4270
Steve Blocka7e24c12009-10-30 11:49:00 +00004271 private:
4272 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
4273};
4274
4275
4276// Utility superclass for stack-allocated objects that must be updated
4277// on gc. It provides two ways for the gc to update instances, either
4278// iterating or updating after gc.
4279class Relocatable BASE_EMBEDDED {
4280 public:
4281 inline Relocatable() : prev_(top_) { top_ = this; }
4282 virtual ~Relocatable() {
4283 ASSERT_EQ(top_, this);
4284 top_ = prev_;
4285 }
4286 virtual void IterateInstance(ObjectVisitor* v) { }
4287 virtual void PostGarbageCollection() { }
4288
4289 static void PostGarbageCollectionProcessing();
4290 static int ArchiveSpacePerThread();
4291 static char* ArchiveState(char* to);
4292 static char* RestoreState(char* from);
4293 static void Iterate(ObjectVisitor* v);
4294 static void Iterate(ObjectVisitor* v, Relocatable* top);
4295 static char* Iterate(ObjectVisitor* v, char* t);
4296 private:
4297 static Relocatable* top_;
4298 Relocatable* prev_;
4299};
4300
4301
4302// A flat string reader provides random access to the contents of a
4303// string independent of the character width of the string. The handle
4304// must be valid as long as the reader is being used.
4305class FlatStringReader : public Relocatable {
4306 public:
4307 explicit FlatStringReader(Handle<String> str);
4308 explicit FlatStringReader(Vector<const char> input);
4309 void PostGarbageCollection();
4310 inline uc32 Get(int index);
4311 int length() { return length_; }
4312 private:
4313 String** str_;
4314 bool is_ascii_;
4315 int length_;
4316 const void* start_;
4317};
4318
4319
4320// Note that StringInputBuffers are not valid across a GC! To fix this
4321// it would have to store a String Handle instead of a String* and
4322// AsciiStringReadBlock would have to be modified to use memcpy.
4323//
4324// StringInputBuffer is able to traverse any string regardless of how
4325// deeply nested a sequence of ConsStrings it is made of. However,
4326// performance will be better if deep strings are flattened before they
4327// are traversed. Since flattening requires memory allocation this is
4328// not always desirable, however (esp. in debugging situations).
4329class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
4330 public:
4331 virtual void Seek(unsigned pos);
4332 inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {}
4333 inline StringInputBuffer(String* backing):
4334 unibrow::InputBuffer<String, String*, 1024>(backing) {}
4335};
4336
4337
4338class SafeStringInputBuffer
4339 : public unibrow::InputBuffer<String, String**, 256> {
4340 public:
4341 virtual void Seek(unsigned pos);
4342 inline SafeStringInputBuffer()
4343 : unibrow::InputBuffer<String, String**, 256>() {}
4344 inline SafeStringInputBuffer(String** backing)
4345 : unibrow::InputBuffer<String, String**, 256>(backing) {}
4346};
4347
4348
4349template <typename T>
4350class VectorIterator {
4351 public:
4352 VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
4353 explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
4354 T GetNext() { return data_[index_++]; }
4355 bool has_more() { return index_ < data_.length(); }
4356 private:
4357 Vector<const T> data_;
4358 int index_;
4359};
4360
4361
4362// The Oddball describes objects null, undefined, true, and false.
4363class Oddball: public HeapObject {
4364 public:
4365 // [to_string]: Cached to_string computed at startup.
4366 DECL_ACCESSORS(to_string, String)
4367
4368 // [to_number]: Cached to_number computed at startup.
4369 DECL_ACCESSORS(to_number, Object)
4370
4371 // Casting.
4372 static inline Oddball* cast(Object* obj);
4373
4374 // Dispatched behavior.
4375 void OddballIterateBody(ObjectVisitor* v);
4376#ifdef DEBUG
4377 void OddballVerify();
4378#endif
4379
4380 // Initialize the fields.
4381 Object* Initialize(const char* to_string, Object* to_number);
4382
4383 // Layout description.
4384 static const int kToStringOffset = HeapObject::kHeaderSize;
4385 static const int kToNumberOffset = kToStringOffset + kPointerSize;
4386 static const int kSize = kToNumberOffset + kPointerSize;
4387
4388 private:
4389 DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
4390};
4391
4392
4393class JSGlobalPropertyCell: public HeapObject {
4394 public:
4395 // [value]: value of the global property.
4396 DECL_ACCESSORS(value, Object)
4397
4398 // Casting.
4399 static inline JSGlobalPropertyCell* cast(Object* obj);
4400
4401 // Dispatched behavior.
4402 void JSGlobalPropertyCellIterateBody(ObjectVisitor* v);
4403#ifdef DEBUG
4404 void JSGlobalPropertyCellVerify();
4405 void JSGlobalPropertyCellPrint();
4406#endif
4407
4408 // Layout description.
4409 static const int kValueOffset = HeapObject::kHeaderSize;
4410 static const int kSize = kValueOffset + kPointerSize;
4411
4412 private:
4413 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalPropertyCell);
4414};
4415
4416
4417
4418// Proxy describes objects pointing from JavaScript to C structures.
4419// Since they cannot contain references to JS HeapObjects they can be
4420// placed in old_data_space.
4421class Proxy: public HeapObject {
4422 public:
4423 // [proxy]: field containing the address.
4424 inline Address proxy();
4425 inline void set_proxy(Address value);
4426
4427 // Casting.
4428 static inline Proxy* cast(Object* obj);
4429
4430 // Dispatched behavior.
4431 inline void ProxyIterateBody(ObjectVisitor* v);
4432#ifdef DEBUG
4433 void ProxyPrint();
4434 void ProxyVerify();
4435#endif
4436
4437 // Layout description.
4438
4439 static const int kProxyOffset = HeapObject::kHeaderSize;
4440 static const int kSize = kProxyOffset + kPointerSize;
4441
4442 STATIC_CHECK(kProxyOffset == Internals::kProxyProxyOffset);
4443
4444 private:
4445 DISALLOW_IMPLICIT_CONSTRUCTORS(Proxy);
4446};
4447
4448
4449// The JSArray describes JavaScript Arrays
4450// Such an array can be in one of two modes:
4451// - fast, backing storage is a FixedArray and length <= elements.length();
4452// Please note: push and pop can be used to grow and shrink the array.
4453// - slow, backing storage is a HashTable with numbers as keys.
4454class JSArray: public JSObject {
4455 public:
4456 // [length]: The length property.
4457 DECL_ACCESSORS(length, Object)
4458
Leon Clarke4515c472010-02-03 11:58:03 +00004459 // Overload the length setter to skip write barrier when the length
4460 // is set to a smi. This matches the set function on FixedArray.
4461 inline void set_length(Smi* length);
4462
Steve Blocka7e24c12009-10-30 11:49:00 +00004463 Object* JSArrayUpdateLengthFromIndex(uint32_t index, Object* value);
4464
4465 // Initialize the array with the given capacity. The function may
4466 // fail due to out-of-memory situations, but only if the requested
4467 // capacity is non-zero.
4468 Object* Initialize(int capacity);
4469
4470 // Set the content of the array to the content of storage.
4471 inline void SetContent(FixedArray* storage);
4472
4473 // Casting.
4474 static inline JSArray* cast(Object* obj);
4475
4476 // Uses handles. Ensures that the fixed array backing the JSArray has at
4477 // least the stated size.
4478 inline void EnsureSize(int minimum_size_of_backing_fixed_array);
4479
4480 // Dispatched behavior.
4481#ifdef DEBUG
4482 void JSArrayPrint();
4483 void JSArrayVerify();
4484#endif
4485
4486 // Number of element slots to pre-allocate for an empty array.
4487 static const int kPreallocatedArrayElements = 4;
4488
4489 // Layout description.
4490 static const int kLengthOffset = JSObject::kHeaderSize;
4491 static const int kSize = kLengthOffset + kPointerSize;
4492
4493 private:
4494 // Expand the fixed array backing of a fast-case JSArray to at least
4495 // the requested size.
4496 void Expand(int minimum_size_of_backing_fixed_array);
4497
4498 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
4499};
4500
4501
4502// An accessor must have a getter, but can have no setter.
4503//
4504// When setting a property, V8 searches accessors in prototypes.
4505// If an accessor was found and it does not have a setter,
4506// the request is ignored.
4507//
4508// If the accessor in the prototype has the READ_ONLY property attribute, then
4509// a new value is added to the local object when the property is set.
4510// This shadows the accessor in the prototype.
4511class AccessorInfo: public Struct {
4512 public:
4513 DECL_ACCESSORS(getter, Object)
4514 DECL_ACCESSORS(setter, Object)
4515 DECL_ACCESSORS(data, Object)
4516 DECL_ACCESSORS(name, Object)
4517 DECL_ACCESSORS(flag, Smi)
Steve Blockd0582a62009-12-15 09:54:21 +00004518 DECL_ACCESSORS(load_stub_cache, Object)
Steve Blocka7e24c12009-10-30 11:49:00 +00004519
4520 inline bool all_can_read();
4521 inline void set_all_can_read(bool value);
4522
4523 inline bool all_can_write();
4524 inline void set_all_can_write(bool value);
4525
4526 inline bool prohibits_overwriting();
4527 inline void set_prohibits_overwriting(bool value);
4528
4529 inline PropertyAttributes property_attributes();
4530 inline void set_property_attributes(PropertyAttributes attributes);
4531
4532 static inline AccessorInfo* cast(Object* obj);
4533
4534#ifdef DEBUG
4535 void AccessorInfoPrint();
4536 void AccessorInfoVerify();
4537#endif
4538
4539 static const int kGetterOffset = HeapObject::kHeaderSize;
4540 static const int kSetterOffset = kGetterOffset + kPointerSize;
4541 static const int kDataOffset = kSetterOffset + kPointerSize;
4542 static const int kNameOffset = kDataOffset + kPointerSize;
4543 static const int kFlagOffset = kNameOffset + kPointerSize;
Steve Blockd0582a62009-12-15 09:54:21 +00004544 static const int kLoadStubCacheOffset = kFlagOffset + kPointerSize;
4545 static const int kSize = kLoadStubCacheOffset + kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00004546
4547 private:
4548 // Bit positions in flag.
4549 static const int kAllCanReadBit = 0;
4550 static const int kAllCanWriteBit = 1;
4551 static const int kProhibitsOverwritingBit = 2;
4552 class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
4553
4554 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
4555};
4556
4557
4558class AccessCheckInfo: public Struct {
4559 public:
4560 DECL_ACCESSORS(named_callback, Object)
4561 DECL_ACCESSORS(indexed_callback, Object)
4562 DECL_ACCESSORS(data, Object)
4563
4564 static inline AccessCheckInfo* cast(Object* obj);
4565
4566#ifdef DEBUG
4567 void AccessCheckInfoPrint();
4568 void AccessCheckInfoVerify();
4569#endif
4570
4571 static const int kNamedCallbackOffset = HeapObject::kHeaderSize;
4572 static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
4573 static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
4574 static const int kSize = kDataOffset + kPointerSize;
4575
4576 private:
4577 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
4578};
4579
4580
4581class InterceptorInfo: public Struct {
4582 public:
4583 DECL_ACCESSORS(getter, Object)
4584 DECL_ACCESSORS(setter, Object)
4585 DECL_ACCESSORS(query, Object)
4586 DECL_ACCESSORS(deleter, Object)
4587 DECL_ACCESSORS(enumerator, Object)
4588 DECL_ACCESSORS(data, Object)
4589
4590 static inline InterceptorInfo* cast(Object* obj);
4591
4592#ifdef DEBUG
4593 void InterceptorInfoPrint();
4594 void InterceptorInfoVerify();
4595#endif
4596
4597 static const int kGetterOffset = HeapObject::kHeaderSize;
4598 static const int kSetterOffset = kGetterOffset + kPointerSize;
4599 static const int kQueryOffset = kSetterOffset + kPointerSize;
4600 static const int kDeleterOffset = kQueryOffset + kPointerSize;
4601 static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
4602 static const int kDataOffset = kEnumeratorOffset + kPointerSize;
4603 static const int kSize = kDataOffset + kPointerSize;
4604
4605 private:
4606 DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
4607};
4608
4609
4610class CallHandlerInfo: public Struct {
4611 public:
4612 DECL_ACCESSORS(callback, Object)
4613 DECL_ACCESSORS(data, Object)
4614
4615 static inline CallHandlerInfo* cast(Object* obj);
4616
4617#ifdef DEBUG
4618 void CallHandlerInfoPrint();
4619 void CallHandlerInfoVerify();
4620#endif
4621
4622 static const int kCallbackOffset = HeapObject::kHeaderSize;
4623 static const int kDataOffset = kCallbackOffset + kPointerSize;
4624 static const int kSize = kDataOffset + kPointerSize;
4625
4626 private:
4627 DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
4628};
4629
4630
4631class TemplateInfo: public Struct {
4632 public:
4633 DECL_ACCESSORS(tag, Object)
4634 DECL_ACCESSORS(property_list, Object)
4635
4636#ifdef DEBUG
4637 void TemplateInfoVerify();
4638#endif
4639
4640 static const int kTagOffset = HeapObject::kHeaderSize;
4641 static const int kPropertyListOffset = kTagOffset + kPointerSize;
4642 static const int kHeaderSize = kPropertyListOffset + kPointerSize;
4643 protected:
4644 friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
4645 DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
4646};
4647
4648
4649class FunctionTemplateInfo: public TemplateInfo {
4650 public:
4651 DECL_ACCESSORS(serial_number, Object)
4652 DECL_ACCESSORS(call_code, Object)
4653 DECL_ACCESSORS(property_accessors, Object)
4654 DECL_ACCESSORS(prototype_template, Object)
4655 DECL_ACCESSORS(parent_template, Object)
4656 DECL_ACCESSORS(named_property_handler, Object)
4657 DECL_ACCESSORS(indexed_property_handler, Object)
4658 DECL_ACCESSORS(instance_template, Object)
4659 DECL_ACCESSORS(class_name, Object)
4660 DECL_ACCESSORS(signature, Object)
4661 DECL_ACCESSORS(instance_call_handler, Object)
4662 DECL_ACCESSORS(access_check_info, Object)
4663 DECL_ACCESSORS(flag, Smi)
4664
4665 // Following properties use flag bits.
4666 DECL_BOOLEAN_ACCESSORS(hidden_prototype)
4667 DECL_BOOLEAN_ACCESSORS(undetectable)
4668 // If the bit is set, object instances created by this function
4669 // requires access check.
4670 DECL_BOOLEAN_ACCESSORS(needs_access_check)
4671
4672 static inline FunctionTemplateInfo* cast(Object* obj);
4673
4674#ifdef DEBUG
4675 void FunctionTemplateInfoPrint();
4676 void FunctionTemplateInfoVerify();
4677#endif
4678
4679 static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
4680 static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
4681 static const int kPropertyAccessorsOffset = kCallCodeOffset + kPointerSize;
4682 static const int kPrototypeTemplateOffset =
4683 kPropertyAccessorsOffset + kPointerSize;
4684 static const int kParentTemplateOffset =
4685 kPrototypeTemplateOffset + kPointerSize;
4686 static const int kNamedPropertyHandlerOffset =
4687 kParentTemplateOffset + kPointerSize;
4688 static const int kIndexedPropertyHandlerOffset =
4689 kNamedPropertyHandlerOffset + kPointerSize;
4690 static const int kInstanceTemplateOffset =
4691 kIndexedPropertyHandlerOffset + kPointerSize;
4692 static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
4693 static const int kSignatureOffset = kClassNameOffset + kPointerSize;
4694 static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
4695 static const int kAccessCheckInfoOffset =
4696 kInstanceCallHandlerOffset + kPointerSize;
4697 static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
4698 static const int kSize = kFlagOffset + kPointerSize;
4699
4700 private:
4701 // Bit position in the flag, from least significant bit position.
4702 static const int kHiddenPrototypeBit = 0;
4703 static const int kUndetectableBit = 1;
4704 static const int kNeedsAccessCheckBit = 2;
4705
4706 DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
4707};
4708
4709
4710class ObjectTemplateInfo: public TemplateInfo {
4711 public:
4712 DECL_ACCESSORS(constructor, Object)
4713 DECL_ACCESSORS(internal_field_count, Object)
4714
4715 static inline ObjectTemplateInfo* cast(Object* obj);
4716
4717#ifdef DEBUG
4718 void ObjectTemplateInfoPrint();
4719 void ObjectTemplateInfoVerify();
4720#endif
4721
4722 static const int kConstructorOffset = TemplateInfo::kHeaderSize;
4723 static const int kInternalFieldCountOffset =
4724 kConstructorOffset + kPointerSize;
4725 static const int kSize = kInternalFieldCountOffset + kPointerSize;
4726};
4727
4728
4729class SignatureInfo: public Struct {
4730 public:
4731 DECL_ACCESSORS(receiver, Object)
4732 DECL_ACCESSORS(args, Object)
4733
4734 static inline SignatureInfo* cast(Object* obj);
4735
4736#ifdef DEBUG
4737 void SignatureInfoPrint();
4738 void SignatureInfoVerify();
4739#endif
4740
4741 static const int kReceiverOffset = Struct::kHeaderSize;
4742 static const int kArgsOffset = kReceiverOffset + kPointerSize;
4743 static const int kSize = kArgsOffset + kPointerSize;
4744
4745 private:
4746 DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
4747};
4748
4749
4750class TypeSwitchInfo: public Struct {
4751 public:
4752 DECL_ACCESSORS(types, Object)
4753
4754 static inline TypeSwitchInfo* cast(Object* obj);
4755
4756#ifdef DEBUG
4757 void TypeSwitchInfoPrint();
4758 void TypeSwitchInfoVerify();
4759#endif
4760
4761 static const int kTypesOffset = Struct::kHeaderSize;
4762 static const int kSize = kTypesOffset + kPointerSize;
4763};
4764
4765
4766#ifdef ENABLE_DEBUGGER_SUPPORT
4767// The DebugInfo class holds additional information for a function being
4768// debugged.
4769class DebugInfo: public Struct {
4770 public:
4771 // The shared function info for the source being debugged.
4772 DECL_ACCESSORS(shared, SharedFunctionInfo)
4773 // Code object for the original code.
4774 DECL_ACCESSORS(original_code, Code)
4775 // Code object for the patched code. This code object is the code object
4776 // currently active for the function.
4777 DECL_ACCESSORS(code, Code)
4778 // Fixed array holding status information for each active break point.
4779 DECL_ACCESSORS(break_points, FixedArray)
4780
4781 // Check if there is a break point at a code position.
4782 bool HasBreakPoint(int code_position);
4783 // Get the break point info object for a code position.
4784 Object* GetBreakPointInfo(int code_position);
4785 // Clear a break point.
4786 static void ClearBreakPoint(Handle<DebugInfo> debug_info,
4787 int code_position,
4788 Handle<Object> break_point_object);
4789 // Set a break point.
4790 static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
4791 int source_position, int statement_position,
4792 Handle<Object> break_point_object);
4793 // Get the break point objects for a code position.
4794 Object* GetBreakPointObjects(int code_position);
4795 // Find the break point info holding this break point object.
4796 static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
4797 Handle<Object> break_point_object);
4798 // Get the number of break points for this function.
4799 int GetBreakPointCount();
4800
4801 static inline DebugInfo* cast(Object* obj);
4802
4803#ifdef DEBUG
4804 void DebugInfoPrint();
4805 void DebugInfoVerify();
4806#endif
4807
4808 static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
4809 static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
4810 static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
4811 static const int kActiveBreakPointsCountIndex =
4812 kPatchedCodeIndex + kPointerSize;
4813 static const int kBreakPointsStateIndex =
4814 kActiveBreakPointsCountIndex + kPointerSize;
4815 static const int kSize = kBreakPointsStateIndex + kPointerSize;
4816
4817 private:
4818 static const int kNoBreakPointInfo = -1;
4819
4820 // Lookup the index in the break_points array for a code position.
4821 int GetBreakPointInfoIndex(int code_position);
4822
4823 DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
4824};
4825
4826
4827// The BreakPointInfo class holds information for break points set in a
4828// function. The DebugInfo object holds a BreakPointInfo object for each code
4829// position with one or more break points.
4830class BreakPointInfo: public Struct {
4831 public:
4832 // The position in the code for the break point.
4833 DECL_ACCESSORS(code_position, Smi)
4834 // The position in the source for the break position.
4835 DECL_ACCESSORS(source_position, Smi)
4836 // The position in the source for the last statement before this break
4837 // position.
4838 DECL_ACCESSORS(statement_position, Smi)
4839 // List of related JavaScript break points.
4840 DECL_ACCESSORS(break_point_objects, Object)
4841
4842 // Removes a break point.
4843 static void ClearBreakPoint(Handle<BreakPointInfo> info,
4844 Handle<Object> break_point_object);
4845 // Set a break point.
4846 static void SetBreakPoint(Handle<BreakPointInfo> info,
4847 Handle<Object> break_point_object);
4848 // Check if break point info has this break point object.
4849 static bool HasBreakPointObject(Handle<BreakPointInfo> info,
4850 Handle<Object> break_point_object);
4851 // Get the number of break points for this code position.
4852 int GetBreakPointCount();
4853
4854 static inline BreakPointInfo* cast(Object* obj);
4855
4856#ifdef DEBUG
4857 void BreakPointInfoPrint();
4858 void BreakPointInfoVerify();
4859#endif
4860
4861 static const int kCodePositionIndex = Struct::kHeaderSize;
4862 static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
4863 static const int kStatementPositionIndex =
4864 kSourcePositionIndex + kPointerSize;
4865 static const int kBreakPointObjectsIndex =
4866 kStatementPositionIndex + kPointerSize;
4867 static const int kSize = kBreakPointObjectsIndex + kPointerSize;
4868
4869 private:
4870 DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
4871};
4872#endif // ENABLE_DEBUGGER_SUPPORT
4873
4874
4875#undef DECL_BOOLEAN_ACCESSORS
4876#undef DECL_ACCESSORS
4877
4878
4879// Abstract base class for visiting, and optionally modifying, the
4880// pointers contained in Objects. Used in GC and serialization/deserialization.
4881class ObjectVisitor BASE_EMBEDDED {
4882 public:
4883 virtual ~ObjectVisitor() {}
4884
4885 // Visits a contiguous arrays of pointers in the half-open range
4886 // [start, end). Any or all of the values may be modified on return.
4887 virtual void VisitPointers(Object** start, Object** end) = 0;
4888
4889 // To allow lazy clearing of inline caches the visitor has
4890 // a rich interface for iterating over Code objects..
4891
4892 // Visits a code target in the instruction stream.
4893 virtual void VisitCodeTarget(RelocInfo* rinfo);
4894
4895 // Visits a runtime entry in the instruction stream.
4896 virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
4897
Steve Blockd0582a62009-12-15 09:54:21 +00004898 // Visits the resource of an ASCII or two-byte string.
4899 virtual void VisitExternalAsciiString(
4900 v8::String::ExternalAsciiStringResource** resource) {}
4901 virtual void VisitExternalTwoByteString(
4902 v8::String::ExternalStringResource** resource) {}
4903
Steve Blocka7e24c12009-10-30 11:49:00 +00004904 // Visits a debug call target in the instruction stream.
4905 virtual void VisitDebugTarget(RelocInfo* rinfo);
4906
4907 // Handy shorthand for visiting a single pointer.
4908 virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
4909
4910 // Visits a contiguous arrays of external references (references to the C++
4911 // heap) in the half-open range [start, end). Any or all of the values
4912 // may be modified on return.
4913 virtual void VisitExternalReferences(Address* start, Address* end) {}
4914
4915 inline void VisitExternalReference(Address* p) {
4916 VisitExternalReferences(p, p + 1);
4917 }
4918
4919#ifdef DEBUG
4920 // Intended for serialization/deserialization checking: insert, or
4921 // check for the presence of, a tag at this position in the stream.
4922 virtual void Synchronize(const char* tag) {}
Steve Blockd0582a62009-12-15 09:54:21 +00004923#else
4924 inline void Synchronize(const char* tag) {}
Steve Blocka7e24c12009-10-30 11:49:00 +00004925#endif
4926};
4927
4928
4929// BooleanBit is a helper class for setting and getting a bit in an
4930// integer or Smi.
4931class BooleanBit : public AllStatic {
4932 public:
4933 static inline bool get(Smi* smi, int bit_position) {
4934 return get(smi->value(), bit_position);
4935 }
4936
4937 static inline bool get(int value, int bit_position) {
4938 return (value & (1 << bit_position)) != 0;
4939 }
4940
4941 static inline Smi* set(Smi* smi, int bit_position, bool v) {
4942 return Smi::FromInt(set(smi->value(), bit_position, v));
4943 }
4944
4945 static inline int set(int value, int bit_position, bool v) {
4946 if (v) {
4947 value |= (1 << bit_position);
4948 } else {
4949 value &= ~(1 << bit_position);
4950 }
4951 return value;
4952 }
4953};
4954
4955} } // namespace v8::internal
4956
4957#endif // V8_OBJECTS_H_