blob: 20700e1ddb3f5aa5d4bf40f629a8277efcf5a797 [file] [log] [blame]
Ben Murdochb0fe1622011-05-05 13:52:32 +01001// Copyright 2006-2010 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
Steve Block1e0659c2011-05-24 12:43:12 +010030#include "liveobjectlist-inl.h"
Steve Blocka7e24c12009-10-30 11:49:00 +000031#include "macro-assembler.h"
32#include "mark-compact.h"
33#include "platform.h"
34
35namespace v8 {
36namespace internal {
37
38// For contiguous spaces, top should be in the space (or at the end) and limit
39// should be the end of the space.
40#define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \
41 ASSERT((space).low() <= (info).top \
42 && (info).top <= (space).high() \
43 && (info).limit == (space).high())
44
Steve Blocka7e24c12009-10-30 11:49:00 +000045// ----------------------------------------------------------------------------
46// HeapObjectIterator
47
48HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
49 Initialize(space->bottom(), space->top(), NULL);
50}
51
52
53HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
54 HeapObjectCallback size_func) {
55 Initialize(space->bottom(), space->top(), size_func);
56}
57
58
59HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start) {
60 Initialize(start, space->top(), NULL);
61}
62
63
64HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start,
65 HeapObjectCallback size_func) {
66 Initialize(start, space->top(), size_func);
67}
68
69
Kristian Monsen80d68ea2010-09-08 11:05:35 +010070HeapObjectIterator::HeapObjectIterator(Page* page,
71 HeapObjectCallback size_func) {
72 Initialize(page->ObjectAreaStart(), page->AllocationTop(), size_func);
73}
74
75
Steve Blocka7e24c12009-10-30 11:49:00 +000076void HeapObjectIterator::Initialize(Address cur, Address end,
77 HeapObjectCallback size_f) {
78 cur_addr_ = cur;
79 end_addr_ = end;
80 end_page_ = Page::FromAllocationTop(end);
81 size_func_ = size_f;
82 Page* p = Page::FromAllocationTop(cur_addr_);
83 cur_limit_ = (p == end_page_) ? end_addr_ : p->AllocationTop();
84
85#ifdef DEBUG
86 Verify();
87#endif
88}
89
90
Leon Clarked91b9f72010-01-27 17:25:45 +000091HeapObject* HeapObjectIterator::FromNextPage() {
92 if (cur_addr_ == end_addr_) return NULL;
Steve Blocka7e24c12009-10-30 11:49:00 +000093
94 Page* cur_page = Page::FromAllocationTop(cur_addr_);
95 cur_page = cur_page->next_page();
96 ASSERT(cur_page->is_valid());
97
98 cur_addr_ = cur_page->ObjectAreaStart();
99 cur_limit_ = (cur_page == end_page_) ? end_addr_ : cur_page->AllocationTop();
100
Leon Clarked91b9f72010-01-27 17:25:45 +0000101 if (cur_addr_ == end_addr_) return NULL;
Steve Blocka7e24c12009-10-30 11:49:00 +0000102 ASSERT(cur_addr_ < cur_limit_);
103#ifdef DEBUG
104 Verify();
105#endif
Leon Clarked91b9f72010-01-27 17:25:45 +0000106 return FromCurrentPage();
Steve Blocka7e24c12009-10-30 11:49:00 +0000107}
108
109
110#ifdef DEBUG
111void HeapObjectIterator::Verify() {
112 Page* p = Page::FromAllocationTop(cur_addr_);
113 ASSERT(p == Page::FromAllocationTop(cur_limit_));
114 ASSERT(p->Offset(cur_addr_) <= p->Offset(cur_limit_));
115}
116#endif
117
118
119// -----------------------------------------------------------------------------
120// PageIterator
121
122PageIterator::PageIterator(PagedSpace* space, Mode mode) : space_(space) {
123 prev_page_ = NULL;
124 switch (mode) {
125 case PAGES_IN_USE:
126 stop_page_ = space->AllocationTopPage();
127 break;
128 case PAGES_USED_BY_MC:
129 stop_page_ = space->MCRelocationTopPage();
130 break;
131 case ALL_PAGES:
132#ifdef DEBUG
133 // Verify that the cached last page in the space is actually the
134 // last page.
135 for (Page* p = space->first_page_; p->is_valid(); p = p->next_page()) {
136 if (!p->next_page()->is_valid()) {
137 ASSERT(space->last_page_ == p);
138 }
139 }
140#endif
141 stop_page_ = space->last_page_;
142 break;
143 }
144}
145
146
147// -----------------------------------------------------------------------------
Steve Blocka7e24c12009-10-30 11:49:00 +0000148// CodeRange
149
Steve Block44f0eee2011-05-26 01:26:41 +0100150
151CodeRange::CodeRange()
152 : code_range_(NULL),
153 free_list_(0),
154 allocation_list_(0),
155 current_allocation_block_index_(0),
156 isolate_(NULL) {
157}
Steve Blocka7e24c12009-10-30 11:49:00 +0000158
159
160bool CodeRange::Setup(const size_t requested) {
161 ASSERT(code_range_ == NULL);
162
163 code_range_ = new VirtualMemory(requested);
164 CHECK(code_range_ != NULL);
165 if (!code_range_->IsReserved()) {
166 delete code_range_;
167 code_range_ = NULL;
168 return false;
169 }
170
171 // We are sure that we have mapped a block of requested addresses.
172 ASSERT(code_range_->size() == requested);
Steve Block44f0eee2011-05-26 01:26:41 +0100173 LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested));
Steve Blocka7e24c12009-10-30 11:49:00 +0000174 allocation_list_.Add(FreeBlock(code_range_->address(), code_range_->size()));
175 current_allocation_block_index_ = 0;
176 return true;
177}
178
179
180int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
181 const FreeBlock* right) {
182 // The entire point of CodeRange is that the difference between two
183 // addresses in the range can be represented as a signed 32-bit int,
184 // so the cast is semantically correct.
185 return static_cast<int>(left->start - right->start);
186}
187
188
189void CodeRange::GetNextAllocationBlock(size_t requested) {
190 for (current_allocation_block_index_++;
191 current_allocation_block_index_ < allocation_list_.length();
192 current_allocation_block_index_++) {
193 if (requested <= allocation_list_[current_allocation_block_index_].size) {
194 return; // Found a large enough allocation block.
195 }
196 }
197
198 // Sort and merge the free blocks on the free list and the allocation list.
199 free_list_.AddAll(allocation_list_);
200 allocation_list_.Clear();
201 free_list_.Sort(&CompareFreeBlockAddress);
202 for (int i = 0; i < free_list_.length();) {
203 FreeBlock merged = free_list_[i];
204 i++;
205 // Add adjacent free blocks to the current merged block.
206 while (i < free_list_.length() &&
207 free_list_[i].start == merged.start + merged.size) {
208 merged.size += free_list_[i].size;
209 i++;
210 }
211 if (merged.size > 0) {
212 allocation_list_.Add(merged);
213 }
214 }
215 free_list_.Clear();
216
217 for (current_allocation_block_index_ = 0;
218 current_allocation_block_index_ < allocation_list_.length();
219 current_allocation_block_index_++) {
220 if (requested <= allocation_list_[current_allocation_block_index_].size) {
221 return; // Found a large enough allocation block.
222 }
223 }
224
225 // Code range is full or too fragmented.
226 V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock");
227}
228
229
230
231void* CodeRange::AllocateRawMemory(const size_t requested, size_t* allocated) {
232 ASSERT(current_allocation_block_index_ < allocation_list_.length());
233 if (requested > allocation_list_[current_allocation_block_index_].size) {
234 // Find an allocation block large enough. This function call may
235 // call V8::FatalProcessOutOfMemory if it cannot find a large enough block.
236 GetNextAllocationBlock(requested);
237 }
238 // Commit the requested memory at the start of the current allocation block.
239 *allocated = RoundUp(requested, Page::kPageSize);
240 FreeBlock current = allocation_list_[current_allocation_block_index_];
241 if (*allocated >= current.size - Page::kPageSize) {
242 // Don't leave a small free block, useless for a large object or chunk.
243 *allocated = current.size;
244 }
245 ASSERT(*allocated <= current.size);
246 if (!code_range_->Commit(current.start, *allocated, true)) {
247 *allocated = 0;
248 return NULL;
249 }
250 allocation_list_[current_allocation_block_index_].start += *allocated;
251 allocation_list_[current_allocation_block_index_].size -= *allocated;
252 if (*allocated == current.size) {
253 GetNextAllocationBlock(0); // This block is used up, get the next one.
254 }
255 return current.start;
256}
257
258
259void CodeRange::FreeRawMemory(void* address, size_t length) {
260 free_list_.Add(FreeBlock(address, length));
261 code_range_->Uncommit(address, length);
262}
263
264
265void CodeRange::TearDown() {
266 delete code_range_; // Frees all memory in the virtual memory range.
267 code_range_ = NULL;
268 free_list_.Free();
269 allocation_list_.Free();
270}
271
272
273// -----------------------------------------------------------------------------
274// MemoryAllocator
275//
Steve Blocka7e24c12009-10-30 11:49:00 +0000276
277// 270 is an estimate based on the static default heap size of a pair of 256K
278// semispaces and a 64M old generation.
279const int kEstimatedNumberOfChunks = 270;
Steve Block44f0eee2011-05-26 01:26:41 +0100280
281
282MemoryAllocator::MemoryAllocator()
283 : capacity_(0),
284 capacity_executable_(0),
285 size_(0),
286 size_executable_(0),
287 initial_chunk_(NULL),
288 chunks_(kEstimatedNumberOfChunks),
289 free_chunk_ids_(kEstimatedNumberOfChunks),
290 max_nof_chunks_(0),
291 top_(0),
292 isolate_(NULL) {
293}
Steve Blocka7e24c12009-10-30 11:49:00 +0000294
295
296void MemoryAllocator::Push(int free_chunk_id) {
297 ASSERT(max_nof_chunks_ > 0);
298 ASSERT(top_ < max_nof_chunks_);
299 free_chunk_ids_[top_++] = free_chunk_id;
300}
301
302
303int MemoryAllocator::Pop() {
304 ASSERT(top_ > 0);
305 return free_chunk_ids_[--top_];
306}
307
308
Russell Brenner90bac252010-11-18 13:33:46 -0800309bool MemoryAllocator::Setup(intptr_t capacity, intptr_t capacity_executable) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000310 capacity_ = RoundUp(capacity, Page::kPageSize);
Russell Brenner90bac252010-11-18 13:33:46 -0800311 capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
312 ASSERT_GE(capacity_, capacity_executable_);
Steve Blocka7e24c12009-10-30 11:49:00 +0000313
314 // Over-estimate the size of chunks_ array. It assumes the expansion of old
315 // space is always in the unit of a chunk (kChunkSize) except the last
316 // expansion.
317 //
318 // Due to alignment, allocated space might be one page less than required
319 // number (kPagesPerChunk) of pages for old spaces.
320 //
321 // Reserve two chunk ids for semispaces, one for map space, one for old
322 // space, and one for code space.
Ben Murdochf87a2032010-10-22 12:50:53 +0100323 max_nof_chunks_ =
324 static_cast<int>((capacity_ / (kChunkSize - Page::kPageSize))) + 5;
Steve Blocka7e24c12009-10-30 11:49:00 +0000325 if (max_nof_chunks_ > kMaxNofChunks) return false;
326
327 size_ = 0;
Steve Block791712a2010-08-27 10:21:07 +0100328 size_executable_ = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +0000329 ChunkInfo info; // uninitialized element.
330 for (int i = max_nof_chunks_ - 1; i >= 0; i--) {
331 chunks_.Add(info);
332 free_chunk_ids_.Add(i);
333 }
334 top_ = max_nof_chunks_;
335 return true;
336}
337
338
339void MemoryAllocator::TearDown() {
340 for (int i = 0; i < max_nof_chunks_; i++) {
341 if (chunks_[i].address() != NULL) DeleteChunk(i);
342 }
343 chunks_.Clear();
344 free_chunk_ids_.Clear();
345
346 if (initial_chunk_ != NULL) {
Steve Block44f0eee2011-05-26 01:26:41 +0100347 LOG(isolate_, DeleteEvent("InitialChunk", initial_chunk_->address()));
Steve Blocka7e24c12009-10-30 11:49:00 +0000348 delete initial_chunk_;
349 initial_chunk_ = NULL;
350 }
351
352 ASSERT(top_ == max_nof_chunks_); // all chunks are free
353 top_ = 0;
354 capacity_ = 0;
Russell Brenner90bac252010-11-18 13:33:46 -0800355 capacity_executable_ = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +0000356 size_ = 0;
357 max_nof_chunks_ = 0;
358}
359
360
361void* MemoryAllocator::AllocateRawMemory(const size_t requested,
362 size_t* allocated,
363 Executability executable) {
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100364 if (size_ + static_cast<size_t>(requested) > static_cast<size_t>(capacity_)) {
365 return NULL;
366 }
Russell Brenner90bac252010-11-18 13:33:46 -0800367
Steve Blocka7e24c12009-10-30 11:49:00 +0000368 void* mem;
Russell Brenner90bac252010-11-18 13:33:46 -0800369 if (executable == EXECUTABLE) {
370 // Check executable memory limit.
371 if (size_executable_ + requested >
372 static_cast<size_t>(capacity_executable_)) {
Steve Block44f0eee2011-05-26 01:26:41 +0100373 LOG(isolate_,
374 StringEvent("MemoryAllocator::AllocateRawMemory",
Russell Brenner90bac252010-11-18 13:33:46 -0800375 "V8 Executable Allocation capacity exceeded"));
376 return NULL;
377 }
378 // Allocate executable memory either from code range or from the
379 // OS.
Steve Block44f0eee2011-05-26 01:26:41 +0100380 if (isolate_->code_range()->exists()) {
381 mem = isolate_->code_range()->AllocateRawMemory(requested, allocated);
Russell Brenner90bac252010-11-18 13:33:46 -0800382 } else {
383 mem = OS::Allocate(requested, allocated, true);
384 }
385 // Update executable memory size.
386 size_executable_ += static_cast<int>(*allocated);
Steve Blocka7e24c12009-10-30 11:49:00 +0000387 } else {
Russell Brenner90bac252010-11-18 13:33:46 -0800388 mem = OS::Allocate(requested, allocated, false);
Steve Blocka7e24c12009-10-30 11:49:00 +0000389 }
Steve Blockd0582a62009-12-15 09:54:21 +0000390 int alloced = static_cast<int>(*allocated);
Steve Blocka7e24c12009-10-30 11:49:00 +0000391 size_ += alloced;
Steve Block791712a2010-08-27 10:21:07 +0100392
Leon Clarke4515c472010-02-03 11:58:03 +0000393#ifdef DEBUG
394 ZapBlock(reinterpret_cast<Address>(mem), alloced);
395#endif
Steve Block44f0eee2011-05-26 01:26:41 +0100396 isolate_->counters()->memory_allocated()->Increment(alloced);
Steve Blocka7e24c12009-10-30 11:49:00 +0000397 return mem;
398}
399
400
Steve Block791712a2010-08-27 10:21:07 +0100401void MemoryAllocator::FreeRawMemory(void* mem,
402 size_t length,
403 Executability executable) {
Leon Clarke4515c472010-02-03 11:58:03 +0000404#ifdef DEBUG
405 ZapBlock(reinterpret_cast<Address>(mem), length);
406#endif
Steve Block44f0eee2011-05-26 01:26:41 +0100407 if (isolate_->code_range()->contains(static_cast<Address>(mem))) {
408 isolate_->code_range()->FreeRawMemory(mem, length);
Steve Blocka7e24c12009-10-30 11:49:00 +0000409 } else {
410 OS::Free(mem, length);
411 }
Steve Block44f0eee2011-05-26 01:26:41 +0100412 isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(length));
Steve Blockd0582a62009-12-15 09:54:21 +0000413 size_ -= static_cast<int>(length);
Steve Block791712a2010-08-27 10:21:07 +0100414 if (executable == EXECUTABLE) size_executable_ -= static_cast<int>(length);
Iain Merrick9ac36c92010-09-13 15:29:50 +0100415
Steve Blocka7e24c12009-10-30 11:49:00 +0000416 ASSERT(size_ >= 0);
Russell Brenner90bac252010-11-18 13:33:46 -0800417 ASSERT(size_executable_ >= 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000418}
419
420
Iain Merrick9ac36c92010-09-13 15:29:50 +0100421void MemoryAllocator::PerformAllocationCallback(ObjectSpace space,
422 AllocationAction action,
423 size_t size) {
424 for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
425 MemoryAllocationCallbackRegistration registration =
426 memory_allocation_callbacks_[i];
427 if ((registration.space & space) == space &&
428 (registration.action & action) == action)
429 registration.callback(space, action, static_cast<int>(size));
430 }
431}
432
433
434bool MemoryAllocator::MemoryAllocationCallbackRegistered(
435 MemoryAllocationCallback callback) {
436 for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
437 if (memory_allocation_callbacks_[i].callback == callback) return true;
438 }
439 return false;
440}
441
442
443void MemoryAllocator::AddMemoryAllocationCallback(
444 MemoryAllocationCallback callback,
445 ObjectSpace space,
446 AllocationAction action) {
447 ASSERT(callback != NULL);
448 MemoryAllocationCallbackRegistration registration(callback, space, action);
449 ASSERT(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback));
450 return memory_allocation_callbacks_.Add(registration);
451}
452
453
454void MemoryAllocator::RemoveMemoryAllocationCallback(
455 MemoryAllocationCallback callback) {
456 ASSERT(callback != NULL);
457 for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
458 if (memory_allocation_callbacks_[i].callback == callback) {
459 memory_allocation_callbacks_.Remove(i);
460 return;
461 }
462 }
463 UNREACHABLE();
464}
465
Steve Blocka7e24c12009-10-30 11:49:00 +0000466void* MemoryAllocator::ReserveInitialChunk(const size_t requested) {
467 ASSERT(initial_chunk_ == NULL);
468
469 initial_chunk_ = new VirtualMemory(requested);
470 CHECK(initial_chunk_ != NULL);
471 if (!initial_chunk_->IsReserved()) {
472 delete initial_chunk_;
473 initial_chunk_ = NULL;
474 return NULL;
475 }
476
477 // We are sure that we have mapped a block of requested addresses.
478 ASSERT(initial_chunk_->size() == requested);
Steve Block44f0eee2011-05-26 01:26:41 +0100479 LOG(isolate_,
480 NewEvent("InitialChunk", initial_chunk_->address(), requested));
Steve Blockd0582a62009-12-15 09:54:21 +0000481 size_ += static_cast<int>(requested);
Steve Blocka7e24c12009-10-30 11:49:00 +0000482 return initial_chunk_->address();
483}
484
485
486static int PagesInChunk(Address start, size_t size) {
487 // The first page starts on the first page-aligned address from start onward
488 // and the last page ends on the last page-aligned address before
489 // start+size. Page::kPageSize is a power of two so we can divide by
490 // shifting.
Steve Blockd0582a62009-12-15 09:54:21 +0000491 return static_cast<int>((RoundDown(start + size, Page::kPageSize)
Leon Clarkee46be812010-01-19 14:06:41 +0000492 - RoundUp(start, Page::kPageSize)) >> kPageSizeBits);
Steve Blocka7e24c12009-10-30 11:49:00 +0000493}
494
495
Ben Murdochb0fe1622011-05-05 13:52:32 +0100496Page* MemoryAllocator::AllocatePages(int requested_pages,
497 int* allocated_pages,
Steve Blocka7e24c12009-10-30 11:49:00 +0000498 PagedSpace* owner) {
499 if (requested_pages <= 0) return Page::FromAddress(NULL);
500 size_t chunk_size = requested_pages * Page::kPageSize;
501
Steve Blocka7e24c12009-10-30 11:49:00 +0000502 void* chunk = AllocateRawMemory(chunk_size, &chunk_size, owner->executable());
503 if (chunk == NULL) return Page::FromAddress(NULL);
Steve Block44f0eee2011-05-26 01:26:41 +0100504 LOG(isolate_, NewEvent("PagedChunk", chunk, chunk_size));
Steve Blocka7e24c12009-10-30 11:49:00 +0000505
506 *allocated_pages = PagesInChunk(static_cast<Address>(chunk), chunk_size);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100507 // We may 'lose' a page due to alignment.
508 ASSERT(*allocated_pages >= kPagesPerChunk - 1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000509 if (*allocated_pages == 0) {
Steve Block791712a2010-08-27 10:21:07 +0100510 FreeRawMemory(chunk, chunk_size, owner->executable());
Steve Block44f0eee2011-05-26 01:26:41 +0100511 LOG(isolate_, DeleteEvent("PagedChunk", chunk));
Steve Blocka7e24c12009-10-30 11:49:00 +0000512 return Page::FromAddress(NULL);
513 }
514
515 int chunk_id = Pop();
516 chunks_[chunk_id].init(static_cast<Address>(chunk), chunk_size, owner);
517
Iain Merrick9ac36c92010-09-13 15:29:50 +0100518 ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
519 PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100520 Page* new_pages = InitializePagesInChunk(chunk_id, *allocated_pages, owner);
521
Ben Murdochb0fe1622011-05-05 13:52:32 +0100522 return new_pages;
Steve Blocka7e24c12009-10-30 11:49:00 +0000523}
524
525
526Page* MemoryAllocator::CommitPages(Address start, size_t size,
527 PagedSpace* owner, int* num_pages) {
528 ASSERT(start != NULL);
529 *num_pages = PagesInChunk(start, size);
530 ASSERT(*num_pages > 0);
531 ASSERT(initial_chunk_ != NULL);
532 ASSERT(InInitialChunk(start));
533 ASSERT(InInitialChunk(start + size - 1));
534 if (!initial_chunk_->Commit(start, size, owner->executable() == EXECUTABLE)) {
535 return Page::FromAddress(NULL);
536 }
Leon Clarke4515c472010-02-03 11:58:03 +0000537#ifdef DEBUG
538 ZapBlock(start, size);
539#endif
Steve Block44f0eee2011-05-26 01:26:41 +0100540 isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
Steve Blocka7e24c12009-10-30 11:49:00 +0000541
542 // So long as we correctly overestimated the number of chunks we should not
543 // run out of chunk ids.
544 CHECK(!OutOfChunkIds());
545 int chunk_id = Pop();
546 chunks_[chunk_id].init(start, size, owner);
547 return InitializePagesInChunk(chunk_id, *num_pages, owner);
548}
549
550
551bool MemoryAllocator::CommitBlock(Address start,
552 size_t size,
553 Executability executable) {
554 ASSERT(start != NULL);
555 ASSERT(size > 0);
556 ASSERT(initial_chunk_ != NULL);
557 ASSERT(InInitialChunk(start));
558 ASSERT(InInitialChunk(start + size - 1));
559
560 if (!initial_chunk_->Commit(start, size, executable)) return false;
Leon Clarke4515c472010-02-03 11:58:03 +0000561#ifdef DEBUG
562 ZapBlock(start, size);
563#endif
Steve Block44f0eee2011-05-26 01:26:41 +0100564 isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
Steve Blocka7e24c12009-10-30 11:49:00 +0000565 return true;
566}
567
Leon Clarke4515c472010-02-03 11:58:03 +0000568
Steve Blocka7e24c12009-10-30 11:49:00 +0000569bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
570 ASSERT(start != NULL);
571 ASSERT(size > 0);
572 ASSERT(initial_chunk_ != NULL);
573 ASSERT(InInitialChunk(start));
574 ASSERT(InInitialChunk(start + size - 1));
575
576 if (!initial_chunk_->Uncommit(start, size)) return false;
Steve Block44f0eee2011-05-26 01:26:41 +0100577 isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
Steve Blocka7e24c12009-10-30 11:49:00 +0000578 return true;
579}
580
Leon Clarke4515c472010-02-03 11:58:03 +0000581
582void MemoryAllocator::ZapBlock(Address start, size_t size) {
583 for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
584 Memory::Address_at(start + s) = kZapValue;
585 }
586}
587
588
Steve Blocka7e24c12009-10-30 11:49:00 +0000589Page* MemoryAllocator::InitializePagesInChunk(int chunk_id, int pages_in_chunk,
590 PagedSpace* owner) {
591 ASSERT(IsValidChunk(chunk_id));
592 ASSERT(pages_in_chunk > 0);
593
594 Address chunk_start = chunks_[chunk_id].address();
595
596 Address low = RoundUp(chunk_start, Page::kPageSize);
597
598#ifdef DEBUG
599 size_t chunk_size = chunks_[chunk_id].size();
600 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
601 ASSERT(pages_in_chunk <=
602 ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize));
603#endif
604
605 Address page_addr = low;
606 for (int i = 0; i < pages_in_chunk; i++) {
607 Page* p = Page::FromAddress(page_addr);
Steve Block44f0eee2011-05-26 01:26:41 +0100608 p->heap_ = owner->heap();
Steve Blocka7e24c12009-10-30 11:49:00 +0000609 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100610 p->InvalidateWatermark(true);
Steve Block6ded16b2010-05-10 14:33:55 +0100611 p->SetIsLargeObjectPage(false);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100612 p->SetAllocationWatermark(p->ObjectAreaStart());
613 p->SetCachedAllocationWatermark(p->ObjectAreaStart());
Steve Blocka7e24c12009-10-30 11:49:00 +0000614 page_addr += Page::kPageSize;
615 }
616
617 // Set the next page of the last page to 0.
618 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
619 last_page->opaque_header = OffsetFrom(0) | chunk_id;
620
621 return Page::FromAddress(low);
622}
623
624
625Page* MemoryAllocator::FreePages(Page* p) {
626 if (!p->is_valid()) return p;
627
628 // Find the first page in the same chunk as 'p'
629 Page* first_page = FindFirstPageInSameChunk(p);
630 Page* page_to_return = Page::FromAddress(NULL);
631
632 if (p != first_page) {
633 // Find the last page in the same chunk as 'prev'.
634 Page* last_page = FindLastPageInSameChunk(p);
635 first_page = GetNextPage(last_page); // first page in next chunk
636
637 // set the next_page of last_page to NULL
638 SetNextPage(last_page, Page::FromAddress(NULL));
639 page_to_return = p; // return 'p' when exiting
640 }
641
642 while (first_page->is_valid()) {
643 int chunk_id = GetChunkId(first_page);
644 ASSERT(IsValidChunk(chunk_id));
645
646 // Find the first page of the next chunk before deleting this chunk.
647 first_page = GetNextPage(FindLastPageInSameChunk(first_page));
648
649 // Free the current chunk.
650 DeleteChunk(chunk_id);
651 }
652
653 return page_to_return;
654}
655
656
Steve Block6ded16b2010-05-10 14:33:55 +0100657void MemoryAllocator::FreeAllPages(PagedSpace* space) {
658 for (int i = 0, length = chunks_.length(); i < length; i++) {
659 if (chunks_[i].owner() == space) {
660 DeleteChunk(i);
661 }
662 }
663}
664
665
Steve Blocka7e24c12009-10-30 11:49:00 +0000666void MemoryAllocator::DeleteChunk(int chunk_id) {
667 ASSERT(IsValidChunk(chunk_id));
668
669 ChunkInfo& c = chunks_[chunk_id];
670
671 // We cannot free a chunk contained in the initial chunk because it was not
672 // allocated with AllocateRawMemory. Instead we uncommit the virtual
673 // memory.
674 if (InInitialChunk(c.address())) {
675 // TODO(1240712): VirtualMemory::Uncommit has a return value which
676 // is ignored here.
677 initial_chunk_->Uncommit(c.address(), c.size());
Steve Block44f0eee2011-05-26 01:26:41 +0100678 Counters* counters = isolate_->counters();
679 counters->memory_allocated()->Decrement(static_cast<int>(c.size()));
Steve Blocka7e24c12009-10-30 11:49:00 +0000680 } else {
Steve Block44f0eee2011-05-26 01:26:41 +0100681 LOG(isolate_, DeleteEvent("PagedChunk", c.address()));
682 ObjectSpace space = static_cast<ObjectSpace>(1 << c.owner_identity());
Iain Merrick9ac36c92010-09-13 15:29:50 +0100683 size_t size = c.size();
684 FreeRawMemory(c.address(), size, c.executable());
685 PerformAllocationCallback(space, kAllocationActionFree, size);
Steve Blocka7e24c12009-10-30 11:49:00 +0000686 }
687 c.init(NULL, 0, NULL);
688 Push(chunk_id);
689}
690
691
692Page* MemoryAllocator::FindFirstPageInSameChunk(Page* p) {
693 int chunk_id = GetChunkId(p);
694 ASSERT(IsValidChunk(chunk_id));
695
696 Address low = RoundUp(chunks_[chunk_id].address(), Page::kPageSize);
697 return Page::FromAddress(low);
698}
699
700
701Page* MemoryAllocator::FindLastPageInSameChunk(Page* p) {
702 int chunk_id = GetChunkId(p);
703 ASSERT(IsValidChunk(chunk_id));
704
705 Address chunk_start = chunks_[chunk_id].address();
706 size_t chunk_size = chunks_[chunk_id].size();
707
708 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
709 ASSERT(chunk_start <= p->address() && p->address() < high);
710
711 return Page::FromAddress(high - Page::kPageSize);
712}
713
714
715#ifdef DEBUG
716void MemoryAllocator::ReportStatistics() {
717 float pct = static_cast<float>(capacity_ - size_) / capacity_;
Ben Murdochf87a2032010-10-22 12:50:53 +0100718 PrintF(" capacity: %" V8_PTR_PREFIX "d"
719 ", used: %" V8_PTR_PREFIX "d"
720 ", available: %%%d\n\n",
Steve Blocka7e24c12009-10-30 11:49:00 +0000721 capacity_, size_, static_cast<int>(pct*100));
722}
723#endif
724
725
Steve Block6ded16b2010-05-10 14:33:55 +0100726void MemoryAllocator::RelinkPageListInChunkOrder(PagedSpace* space,
727 Page** first_page,
728 Page** last_page,
729 Page** last_page_in_use) {
730 Page* first = NULL;
731 Page* last = NULL;
732
733 for (int i = 0, length = chunks_.length(); i < length; i++) {
734 ChunkInfo& chunk = chunks_[i];
735
736 if (chunk.owner() == space) {
737 if (first == NULL) {
738 Address low = RoundUp(chunk.address(), Page::kPageSize);
739 first = Page::FromAddress(low);
740 }
741 last = RelinkPagesInChunk(i,
742 chunk.address(),
743 chunk.size(),
744 last,
745 last_page_in_use);
746 }
747 }
748
749 if (first_page != NULL) {
750 *first_page = first;
751 }
752
753 if (last_page != NULL) {
754 *last_page = last;
755 }
756}
757
758
759Page* MemoryAllocator::RelinkPagesInChunk(int chunk_id,
760 Address chunk_start,
761 size_t chunk_size,
762 Page* prev,
763 Page** last_page_in_use) {
764 Address page_addr = RoundUp(chunk_start, Page::kPageSize);
765 int pages_in_chunk = PagesInChunk(chunk_start, chunk_size);
766
767 if (prev->is_valid()) {
768 SetNextPage(prev, Page::FromAddress(page_addr));
769 }
770
771 for (int i = 0; i < pages_in_chunk; i++) {
772 Page* p = Page::FromAddress(page_addr);
773 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
774 page_addr += Page::kPageSize;
775
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100776 p->InvalidateWatermark(true);
Steve Block6ded16b2010-05-10 14:33:55 +0100777 if (p->WasInUseBeforeMC()) {
778 *last_page_in_use = p;
779 }
780 }
781
782 // Set the next page of the last page to 0.
783 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
784 last_page->opaque_header = OffsetFrom(0) | chunk_id;
785
786 if (last_page->WasInUseBeforeMC()) {
787 *last_page_in_use = last_page;
788 }
789
790 return last_page;
791}
792
793
Steve Blocka7e24c12009-10-30 11:49:00 +0000794// -----------------------------------------------------------------------------
795// PagedSpace implementation
796
Steve Block44f0eee2011-05-26 01:26:41 +0100797PagedSpace::PagedSpace(Heap* heap,
798 intptr_t max_capacity,
Steve Blocka7e24c12009-10-30 11:49:00 +0000799 AllocationSpace id,
800 Executability executable)
Steve Block44f0eee2011-05-26 01:26:41 +0100801 : Space(heap, id, executable) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000802 max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
803 * Page::kObjectAreaSize;
804 accounting_stats_.Clear();
805
806 allocation_info_.top = NULL;
807 allocation_info_.limit = NULL;
808
809 mc_forwarding_info_.top = NULL;
810 mc_forwarding_info_.limit = NULL;
811}
812
813
814bool PagedSpace::Setup(Address start, size_t size) {
815 if (HasBeenSetup()) return false;
816
817 int num_pages = 0;
818 // Try to use the virtual memory range passed to us. If it is too small to
819 // contain at least one page, ignore it and allocate instead.
820 int pages_in_chunk = PagesInChunk(start, size);
821 if (pages_in_chunk > 0) {
Steve Block44f0eee2011-05-26 01:26:41 +0100822 first_page_ = Isolate::Current()->memory_allocator()->CommitPages(
823 RoundUp(start, Page::kPageSize),
824 Page::kPageSize * pages_in_chunk,
825 this, &num_pages);
Steve Blocka7e24c12009-10-30 11:49:00 +0000826 } else {
Ben Murdochf87a2032010-10-22 12:50:53 +0100827 int requested_pages =
828 Min(MemoryAllocator::kPagesPerChunk,
829 static_cast<int>(max_capacity_ / Page::kObjectAreaSize));
Steve Blocka7e24c12009-10-30 11:49:00 +0000830 first_page_ =
Steve Block44f0eee2011-05-26 01:26:41 +0100831 Isolate::Current()->memory_allocator()->AllocatePages(
832 requested_pages, &num_pages, this);
Steve Blocka7e24c12009-10-30 11:49:00 +0000833 if (!first_page_->is_valid()) return false;
834 }
835
836 // We are sure that the first page is valid and that we have at least one
837 // page.
838 ASSERT(first_page_->is_valid());
839 ASSERT(num_pages > 0);
840 accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize);
841 ASSERT(Capacity() <= max_capacity_);
842
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100843 // Sequentially clear region marks in the newly allocated
Steve Blocka7e24c12009-10-30 11:49:00 +0000844 // pages and cache the current last page in the space.
845 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100846 p->SetRegionMarks(Page::kAllRegionsCleanMarks);
Steve Blocka7e24c12009-10-30 11:49:00 +0000847 last_page_ = p;
848 }
849
850 // Use first_page_ for allocation.
851 SetAllocationInfo(&allocation_info_, first_page_);
852
Steve Block6ded16b2010-05-10 14:33:55 +0100853 page_list_is_chunk_ordered_ = true;
854
Steve Blocka7e24c12009-10-30 11:49:00 +0000855 return true;
856}
857
858
859bool PagedSpace::HasBeenSetup() {
860 return (Capacity() > 0);
861}
862
863
864void PagedSpace::TearDown() {
Steve Block44f0eee2011-05-26 01:26:41 +0100865 Isolate::Current()->memory_allocator()->FreeAllPages(this);
Steve Block6ded16b2010-05-10 14:33:55 +0100866 first_page_ = NULL;
Steve Blocka7e24c12009-10-30 11:49:00 +0000867 accounting_stats_.Clear();
868}
869
870
871#ifdef ENABLE_HEAP_PROTECTION
872
873void PagedSpace::Protect() {
874 Page* page = first_page_;
875 while (page->is_valid()) {
Steve Block44f0eee2011-05-26 01:26:41 +0100876 Isolate::Current()->memory_allocator()->ProtectChunkFromPage(page);
877 page = Isolate::Current()->memory_allocator()->
878 FindLastPageInSameChunk(page)->next_page();
Steve Blocka7e24c12009-10-30 11:49:00 +0000879 }
880}
881
882
883void PagedSpace::Unprotect() {
884 Page* page = first_page_;
885 while (page->is_valid()) {
Steve Block44f0eee2011-05-26 01:26:41 +0100886 Isolate::Current()->memory_allocator()->UnprotectChunkFromPage(page);
887 page = Isolate::Current()->memory_allocator()->
888 FindLastPageInSameChunk(page)->next_page();
Steve Blocka7e24c12009-10-30 11:49:00 +0000889 }
890}
891
892#endif
893
894
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100895void PagedSpace::MarkAllPagesClean() {
Steve Blocka7e24c12009-10-30 11:49:00 +0000896 PageIterator it(this, PageIterator::ALL_PAGES);
897 while (it.has_next()) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100898 it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks);
Steve Blocka7e24c12009-10-30 11:49:00 +0000899 }
900}
901
902
John Reck59135872010-11-02 12:39:01 -0700903MaybeObject* PagedSpace::FindObject(Address addr) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000904 // Note: this function can only be called before or after mark-compact GC
905 // because it accesses map pointers.
Steve Block44f0eee2011-05-26 01:26:41 +0100906 ASSERT(!heap()->mark_compact_collector()->in_use());
Steve Blocka7e24c12009-10-30 11:49:00 +0000907
908 if (!Contains(addr)) return Failure::Exception();
909
910 Page* p = Page::FromAddress(addr);
911 ASSERT(IsUsed(p));
912 Address cur = p->ObjectAreaStart();
913 Address end = p->AllocationTop();
914 while (cur < end) {
915 HeapObject* obj = HeapObject::FromAddress(cur);
916 Address next = cur + obj->Size();
917 if ((cur <= addr) && (addr < next)) return obj;
918 cur = next;
919 }
920
921 UNREACHABLE();
922 return Failure::Exception();
923}
924
925
926bool PagedSpace::IsUsed(Page* page) {
927 PageIterator it(this, PageIterator::PAGES_IN_USE);
928 while (it.has_next()) {
929 if (page == it.next()) return true;
930 }
931 return false;
932}
933
934
935void PagedSpace::SetAllocationInfo(AllocationInfo* alloc_info, Page* p) {
936 alloc_info->top = p->ObjectAreaStart();
937 alloc_info->limit = p->ObjectAreaEnd();
938 ASSERT(alloc_info->VerifyPagedAllocation());
939}
940
941
942void PagedSpace::MCResetRelocationInfo() {
943 // Set page indexes.
944 int i = 0;
945 PageIterator it(this, PageIterator::ALL_PAGES);
946 while (it.has_next()) {
947 Page* p = it.next();
948 p->mc_page_index = i++;
949 }
950
951 // Set mc_forwarding_info_ to the first page in the space.
952 SetAllocationInfo(&mc_forwarding_info_, first_page_);
953 // All the bytes in the space are 'available'. We will rediscover
954 // allocated and wasted bytes during GC.
955 accounting_stats_.Reset();
956}
957
958
959int PagedSpace::MCSpaceOffsetForAddress(Address addr) {
960#ifdef DEBUG
961 // The Contains function considers the address at the beginning of a
962 // page in the page, MCSpaceOffsetForAddress considers it is in the
963 // previous page.
964 if (Page::IsAlignedToPageSize(addr)) {
965 ASSERT(Contains(addr - kPointerSize));
966 } else {
967 ASSERT(Contains(addr));
968 }
969#endif
970
971 // If addr is at the end of a page, it belongs to previous page
972 Page* p = Page::IsAlignedToPageSize(addr)
973 ? Page::FromAllocationTop(addr)
974 : Page::FromAddress(addr);
975 int index = p->mc_page_index;
976 return (index * Page::kPageSize) + p->Offset(addr);
977}
978
979
980// Slow case for reallocating and promoting objects during a compacting
981// collection. This function is not space-specific.
982HeapObject* PagedSpace::SlowMCAllocateRaw(int size_in_bytes) {
983 Page* current_page = TopPageOf(mc_forwarding_info_);
984 if (!current_page->next_page()->is_valid()) {
985 if (!Expand(current_page)) {
986 return NULL;
987 }
988 }
989
990 // There are surely more pages in the space now.
991 ASSERT(current_page->next_page()->is_valid());
992 // We do not add the top of page block for current page to the space's
993 // free list---the block may contain live objects so we cannot write
994 // bookkeeping information to it. Instead, we will recover top of page
995 // blocks when we move objects to their new locations.
996 //
997 // We do however write the allocation pointer to the page. The encoding
998 // of forwarding addresses is as an offset in terms of live bytes, so we
999 // need quick access to the allocation top of each page to decode
1000 // forwarding addresses.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001001 current_page->SetAllocationWatermark(mc_forwarding_info_.top);
1002 current_page->next_page()->InvalidateWatermark(true);
Steve Blocka7e24c12009-10-30 11:49:00 +00001003 SetAllocationInfo(&mc_forwarding_info_, current_page->next_page());
1004 return AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
1005}
1006
1007
1008bool PagedSpace::Expand(Page* last_page) {
1009 ASSERT(max_capacity_ % Page::kObjectAreaSize == 0);
1010 ASSERT(Capacity() % Page::kObjectAreaSize == 0);
1011
1012 if (Capacity() == max_capacity_) return false;
1013
1014 ASSERT(Capacity() < max_capacity_);
1015 // Last page must be valid and its next page is invalid.
1016 ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid());
1017
Ben Murdochf87a2032010-10-22 12:50:53 +01001018 int available_pages =
1019 static_cast<int>((max_capacity_ - Capacity()) / Page::kObjectAreaSize);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001020 // We don't want to have to handle small chunks near the end so if there are
1021 // not kPagesPerChunk pages available without exceeding the max capacity then
1022 // act as if memory has run out.
1023 if (available_pages < MemoryAllocator::kPagesPerChunk) return false;
Steve Blocka7e24c12009-10-30 11:49:00 +00001024
1025 int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk);
Steve Block44f0eee2011-05-26 01:26:41 +01001026 Page* p = heap()->isolate()->memory_allocator()->AllocatePages(
1027 desired_pages, &desired_pages, this);
Steve Blocka7e24c12009-10-30 11:49:00 +00001028 if (!p->is_valid()) return false;
1029
1030 accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize);
1031 ASSERT(Capacity() <= max_capacity_);
1032
Steve Block44f0eee2011-05-26 01:26:41 +01001033 heap()->isolate()->memory_allocator()->SetNextPage(last_page, p);
Steve Blocka7e24c12009-10-30 11:49:00 +00001034
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001035 // Sequentially clear region marks of new pages and and cache the
Steve Blocka7e24c12009-10-30 11:49:00 +00001036 // new last page in the space.
1037 while (p->is_valid()) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001038 p->SetRegionMarks(Page::kAllRegionsCleanMarks);
Steve Blocka7e24c12009-10-30 11:49:00 +00001039 last_page_ = p;
1040 p = p->next_page();
1041 }
1042
1043 return true;
1044}
1045
1046
1047#ifdef DEBUG
1048int PagedSpace::CountTotalPages() {
1049 int count = 0;
1050 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
1051 count++;
1052 }
1053 return count;
1054}
1055#endif
1056
1057
1058void PagedSpace::Shrink() {
Steve Block6ded16b2010-05-10 14:33:55 +01001059 if (!page_list_is_chunk_ordered_) {
1060 // We can't shrink space if pages is not chunk-ordered
1061 // (see comment for class MemoryAllocator for definition).
1062 return;
1063 }
1064
Steve Blocka7e24c12009-10-30 11:49:00 +00001065 // Release half of free pages.
1066 Page* top_page = AllocationTopPage();
1067 ASSERT(top_page->is_valid());
1068
1069 // Count the number of pages we would like to free.
1070 int pages_to_free = 0;
1071 for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
1072 pages_to_free++;
1073 }
1074
1075 // Free pages after top_page.
Steve Block44f0eee2011-05-26 01:26:41 +01001076 Page* p = heap()->isolate()->memory_allocator()->
1077 FreePages(top_page->next_page());
1078 heap()->isolate()->memory_allocator()->SetNextPage(top_page, p);
Steve Blocka7e24c12009-10-30 11:49:00 +00001079
1080 // Find out how many pages we failed to free and update last_page_.
1081 // Please note pages can only be freed in whole chunks.
1082 last_page_ = top_page;
1083 for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
1084 pages_to_free--;
1085 last_page_ = p;
1086 }
1087
1088 accounting_stats_.ShrinkSpace(pages_to_free * Page::kObjectAreaSize);
1089 ASSERT(Capacity() == CountTotalPages() * Page::kObjectAreaSize);
1090}
1091
1092
1093bool PagedSpace::EnsureCapacity(int capacity) {
1094 if (Capacity() >= capacity) return true;
1095
1096 // Start from the allocation top and loop to the last page in the space.
1097 Page* last_page = AllocationTopPage();
1098 Page* next_page = last_page->next_page();
1099 while (next_page->is_valid()) {
Steve Block44f0eee2011-05-26 01:26:41 +01001100 last_page = heap()->isolate()->memory_allocator()->
1101 FindLastPageInSameChunk(next_page);
Steve Blocka7e24c12009-10-30 11:49:00 +00001102 next_page = last_page->next_page();
1103 }
1104
1105 // Expand the space until it has the required capacity or expansion fails.
1106 do {
1107 if (!Expand(last_page)) return false;
1108 ASSERT(last_page->next_page()->is_valid());
1109 last_page =
Steve Block44f0eee2011-05-26 01:26:41 +01001110 heap()->isolate()->memory_allocator()->FindLastPageInSameChunk(
1111 last_page->next_page());
Steve Blocka7e24c12009-10-30 11:49:00 +00001112 } while (Capacity() < capacity);
1113
1114 return true;
1115}
1116
1117
1118#ifdef DEBUG
1119void PagedSpace::Print() { }
1120#endif
1121
1122
1123#ifdef DEBUG
1124// We do not assume that the PageIterator works, because it depends on the
1125// invariants we are checking during verification.
1126void PagedSpace::Verify(ObjectVisitor* visitor) {
1127 // The allocation pointer should be valid, and it should be in a page in the
1128 // space.
1129 ASSERT(allocation_info_.VerifyPagedAllocation());
1130 Page* top_page = Page::FromAllocationTop(allocation_info_.top);
Steve Block44f0eee2011-05-26 01:26:41 +01001131 ASSERT(heap()->isolate()->memory_allocator()->IsPageInSpace(top_page, this));
Steve Blocka7e24c12009-10-30 11:49:00 +00001132
1133 // Loop over all the pages.
1134 bool above_allocation_top = false;
1135 Page* current_page = first_page_;
1136 while (current_page->is_valid()) {
1137 if (above_allocation_top) {
1138 // We don't care what's above the allocation top.
1139 } else {
Steve Blocka7e24c12009-10-30 11:49:00 +00001140 Address top = current_page->AllocationTop();
1141 if (current_page == top_page) {
1142 ASSERT(top == allocation_info_.top);
1143 // The next page will be above the allocation top.
1144 above_allocation_top = true;
Steve Blocka7e24c12009-10-30 11:49:00 +00001145 }
1146
1147 // It should be packed with objects from the bottom to the top.
1148 Address current = current_page->ObjectAreaStart();
1149 while (current < top) {
1150 HeapObject* object = HeapObject::FromAddress(current);
1151
1152 // The first word should be a map, and we expect all map pointers to
1153 // be in map space.
1154 Map* map = object->map();
1155 ASSERT(map->IsMap());
Steve Block44f0eee2011-05-26 01:26:41 +01001156 ASSERT(heap()->map_space()->Contains(map));
Steve Blocka7e24c12009-10-30 11:49:00 +00001157
1158 // Perform space-specific object verification.
1159 VerifyObject(object);
1160
1161 // The object itself should look OK.
1162 object->Verify();
1163
1164 // All the interior pointers should be contained in the heap and
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001165 // have page regions covering intergenerational references should be
1166 // marked dirty.
Steve Blocka7e24c12009-10-30 11:49:00 +00001167 int size = object->Size();
1168 object->IterateBody(map->instance_type(), size, visitor);
1169
1170 current += size;
1171 }
1172
1173 // The allocation pointer should not be in the middle of an object.
1174 ASSERT(current == top);
1175 }
1176
1177 current_page = current_page->next_page();
1178 }
1179}
1180#endif
1181
1182
1183// -----------------------------------------------------------------------------
1184// NewSpace implementation
1185
1186
1187bool NewSpace::Setup(Address start, int size) {
1188 // Setup new space based on the preallocated memory block defined by
1189 // start and size. The provided space is divided into two semi-spaces.
1190 // To support fast containment testing in the new space, the size of
1191 // this chunk must be a power of two and it must be aligned to its size.
Steve Block44f0eee2011-05-26 01:26:41 +01001192 int initial_semispace_capacity = heap()->InitialSemiSpaceSize();
1193 int maximum_semispace_capacity = heap()->MaxSemiSpaceSize();
Steve Blocka7e24c12009-10-30 11:49:00 +00001194
1195 ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);
1196 ASSERT(IsPowerOf2(maximum_semispace_capacity));
1197
1198 // Allocate and setup the histogram arrays if necessary.
1199#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1200 allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
1201 promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
1202
1203#define SET_NAME(name) allocated_histogram_[name].set_name(#name); \
1204 promoted_histogram_[name].set_name(#name);
1205 INSTANCE_TYPE_LIST(SET_NAME)
1206#undef SET_NAME
1207#endif
1208
Steve Block44f0eee2011-05-26 01:26:41 +01001209 ASSERT(size == 2 * heap()->ReservedSemiSpaceSize());
Steve Blocka7e24c12009-10-30 11:49:00 +00001210 ASSERT(IsAddressAligned(start, size, 0));
1211
1212 if (!to_space_.Setup(start,
1213 initial_semispace_capacity,
1214 maximum_semispace_capacity)) {
1215 return false;
1216 }
1217 if (!from_space_.Setup(start + maximum_semispace_capacity,
1218 initial_semispace_capacity,
1219 maximum_semispace_capacity)) {
1220 return false;
1221 }
1222
1223 start_ = start;
1224 address_mask_ = ~(size - 1);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001225 object_mask_ = address_mask_ | kHeapObjectTagMask;
Steve Blocka7e24c12009-10-30 11:49:00 +00001226 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
1227
1228 allocation_info_.top = to_space_.low();
1229 allocation_info_.limit = to_space_.high();
1230 mc_forwarding_info_.top = NULL;
1231 mc_forwarding_info_.limit = NULL;
1232
1233 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1234 return true;
1235}
1236
1237
1238void NewSpace::TearDown() {
1239#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1240 if (allocated_histogram_) {
1241 DeleteArray(allocated_histogram_);
1242 allocated_histogram_ = NULL;
1243 }
1244 if (promoted_histogram_) {
1245 DeleteArray(promoted_histogram_);
1246 promoted_histogram_ = NULL;
1247 }
1248#endif
1249
1250 start_ = NULL;
1251 allocation_info_.top = NULL;
1252 allocation_info_.limit = NULL;
1253 mc_forwarding_info_.top = NULL;
1254 mc_forwarding_info_.limit = NULL;
1255
1256 to_space_.TearDown();
1257 from_space_.TearDown();
1258}
1259
1260
1261#ifdef ENABLE_HEAP_PROTECTION
1262
1263void NewSpace::Protect() {
Steve Block44f0eee2011-05-26 01:26:41 +01001264 heap()->isolate()->memory_allocator()->Protect(ToSpaceLow(), Capacity());
1265 heap()->isolate()->memory_allocator()->Protect(FromSpaceLow(), Capacity());
Steve Blocka7e24c12009-10-30 11:49:00 +00001266}
1267
1268
1269void NewSpace::Unprotect() {
Steve Block44f0eee2011-05-26 01:26:41 +01001270 heap()->isolate()->memory_allocator()->Unprotect(ToSpaceLow(), Capacity(),
1271 to_space_.executable());
1272 heap()->isolate()->memory_allocator()->Unprotect(FromSpaceLow(), Capacity(),
1273 from_space_.executable());
Steve Blocka7e24c12009-10-30 11:49:00 +00001274}
1275
1276#endif
1277
1278
1279void NewSpace::Flip() {
1280 SemiSpace tmp = from_space_;
1281 from_space_ = to_space_;
1282 to_space_ = tmp;
1283}
1284
1285
1286void NewSpace::Grow() {
1287 ASSERT(Capacity() < MaximumCapacity());
1288 if (to_space_.Grow()) {
1289 // Only grow from space if we managed to grow to space.
1290 if (!from_space_.Grow()) {
1291 // If we managed to grow to space but couldn't grow from space,
1292 // attempt to shrink to space.
1293 if (!to_space_.ShrinkTo(from_space_.Capacity())) {
1294 // We are in an inconsistent state because we could not
1295 // commit/uncommit memory from new space.
1296 V8::FatalProcessOutOfMemory("Failed to grow new space.");
1297 }
1298 }
1299 }
1300 allocation_info_.limit = to_space_.high();
1301 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1302}
1303
1304
1305void NewSpace::Shrink() {
Ben Murdochf87a2032010-10-22 12:50:53 +01001306 int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt());
Steve Blockd0582a62009-12-15 09:54:21 +00001307 int rounded_new_capacity =
1308 RoundUp(new_capacity, static_cast<int>(OS::AllocateAlignment()));
Steve Blocka7e24c12009-10-30 11:49:00 +00001309 if (rounded_new_capacity < Capacity() &&
1310 to_space_.ShrinkTo(rounded_new_capacity)) {
1311 // Only shrink from space if we managed to shrink to space.
1312 if (!from_space_.ShrinkTo(rounded_new_capacity)) {
1313 // If we managed to shrink to space but couldn't shrink from
1314 // space, attempt to grow to space again.
1315 if (!to_space_.GrowTo(from_space_.Capacity())) {
1316 // We are in an inconsistent state because we could not
1317 // commit/uncommit memory from new space.
1318 V8::FatalProcessOutOfMemory("Failed to shrink new space.");
1319 }
1320 }
1321 }
1322 allocation_info_.limit = to_space_.high();
1323 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1324}
1325
1326
1327void NewSpace::ResetAllocationInfo() {
1328 allocation_info_.top = to_space_.low();
1329 allocation_info_.limit = to_space_.high();
1330 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1331}
1332
1333
1334void NewSpace::MCResetRelocationInfo() {
1335 mc_forwarding_info_.top = from_space_.low();
1336 mc_forwarding_info_.limit = from_space_.high();
1337 ASSERT_SEMISPACE_ALLOCATION_INFO(mc_forwarding_info_, from_space_);
1338}
1339
1340
1341void NewSpace::MCCommitRelocationInfo() {
1342 // Assumes that the spaces have been flipped so that mc_forwarding_info_ is
1343 // valid allocation info for the to space.
1344 allocation_info_.top = mc_forwarding_info_.top;
1345 allocation_info_.limit = to_space_.high();
1346 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1347}
1348
1349
1350#ifdef DEBUG
1351// We do not use the SemispaceIterator because verification doesn't assume
1352// that it works (it depends on the invariants we are checking).
1353void NewSpace::Verify() {
1354 // The allocation pointer should be in the space or at the very end.
1355 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1356
1357 // There should be objects packed in from the low address up to the
1358 // allocation pointer.
1359 Address current = to_space_.low();
1360 while (current < top()) {
1361 HeapObject* object = HeapObject::FromAddress(current);
1362
1363 // The first word should be a map, and we expect all map pointers to
1364 // be in map space.
1365 Map* map = object->map();
1366 ASSERT(map->IsMap());
Steve Block44f0eee2011-05-26 01:26:41 +01001367 ASSERT(heap()->map_space()->Contains(map));
Steve Blocka7e24c12009-10-30 11:49:00 +00001368
1369 // The object should not be code or a map.
1370 ASSERT(!object->IsMap());
1371 ASSERT(!object->IsCode());
1372
1373 // The object itself should look OK.
1374 object->Verify();
1375
1376 // All the interior pointers should be contained in the heap.
1377 VerifyPointersVisitor visitor;
1378 int size = object->Size();
1379 object->IterateBody(map->instance_type(), size, &visitor);
1380
1381 current += size;
1382 }
1383
1384 // The allocation pointer should not be in the middle of an object.
1385 ASSERT(current == top());
1386}
1387#endif
1388
1389
1390bool SemiSpace::Commit() {
1391 ASSERT(!is_committed());
Steve Block44f0eee2011-05-26 01:26:41 +01001392 if (!heap()->isolate()->memory_allocator()->CommitBlock(
1393 start_, capacity_, executable())) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001394 return false;
1395 }
1396 committed_ = true;
1397 return true;
1398}
1399
1400
1401bool SemiSpace::Uncommit() {
1402 ASSERT(is_committed());
Steve Block44f0eee2011-05-26 01:26:41 +01001403 if (!heap()->isolate()->memory_allocator()->UncommitBlock(
1404 start_, capacity_)) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001405 return false;
1406 }
1407 committed_ = false;
1408 return true;
1409}
1410
1411
1412// -----------------------------------------------------------------------------
1413// SemiSpace implementation
1414
1415bool SemiSpace::Setup(Address start,
1416 int initial_capacity,
1417 int maximum_capacity) {
1418 // Creates a space in the young generation. The constructor does not
1419 // allocate memory from the OS. A SemiSpace is given a contiguous chunk of
1420 // memory of size 'capacity' when set up, and does not grow or shrink
1421 // otherwise. In the mark-compact collector, the memory region of the from
1422 // space is used as the marking stack. It requires contiguous memory
1423 // addresses.
1424 initial_capacity_ = initial_capacity;
1425 capacity_ = initial_capacity;
1426 maximum_capacity_ = maximum_capacity;
1427 committed_ = false;
1428
1429 start_ = start;
1430 address_mask_ = ~(maximum_capacity - 1);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001431 object_mask_ = address_mask_ | kHeapObjectTagMask;
Steve Blocka7e24c12009-10-30 11:49:00 +00001432 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
1433 age_mark_ = start_;
1434
1435 return Commit();
1436}
1437
1438
1439void SemiSpace::TearDown() {
1440 start_ = NULL;
1441 capacity_ = 0;
1442}
1443
1444
1445bool SemiSpace::Grow() {
1446 // Double the semispace size but only up to maximum capacity.
1447 int maximum_extra = maximum_capacity_ - capacity_;
Steve Blockd0582a62009-12-15 09:54:21 +00001448 int extra = Min(RoundUp(capacity_, static_cast<int>(OS::AllocateAlignment())),
Steve Blocka7e24c12009-10-30 11:49:00 +00001449 maximum_extra);
Steve Block44f0eee2011-05-26 01:26:41 +01001450 if (!heap()->isolate()->memory_allocator()->CommitBlock(
1451 high(), extra, executable())) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001452 return false;
1453 }
1454 capacity_ += extra;
1455 return true;
1456}
1457
1458
1459bool SemiSpace::GrowTo(int new_capacity) {
1460 ASSERT(new_capacity <= maximum_capacity_);
1461 ASSERT(new_capacity > capacity_);
1462 size_t delta = new_capacity - capacity_;
1463 ASSERT(IsAligned(delta, OS::AllocateAlignment()));
Steve Block44f0eee2011-05-26 01:26:41 +01001464 if (!heap()->isolate()->memory_allocator()->CommitBlock(
1465 high(), delta, executable())) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001466 return false;
1467 }
1468 capacity_ = new_capacity;
1469 return true;
1470}
1471
1472
1473bool SemiSpace::ShrinkTo(int new_capacity) {
1474 ASSERT(new_capacity >= initial_capacity_);
1475 ASSERT(new_capacity < capacity_);
1476 size_t delta = capacity_ - new_capacity;
1477 ASSERT(IsAligned(delta, OS::AllocateAlignment()));
Steve Block44f0eee2011-05-26 01:26:41 +01001478 if (!heap()->isolate()->memory_allocator()->UncommitBlock(
1479 high() - delta, delta)) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001480 return false;
1481 }
1482 capacity_ = new_capacity;
1483 return true;
1484}
1485
1486
1487#ifdef DEBUG
1488void SemiSpace::Print() { }
1489
1490
1491void SemiSpace::Verify() { }
1492#endif
1493
1494
1495// -----------------------------------------------------------------------------
1496// SemiSpaceIterator implementation.
1497SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
1498 Initialize(space, space->bottom(), space->top(), NULL);
1499}
1500
1501
1502SemiSpaceIterator::SemiSpaceIterator(NewSpace* space,
1503 HeapObjectCallback size_func) {
1504 Initialize(space, space->bottom(), space->top(), size_func);
1505}
1506
1507
1508SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) {
1509 Initialize(space, start, space->top(), NULL);
1510}
1511
1512
1513void SemiSpaceIterator::Initialize(NewSpace* space, Address start,
1514 Address end,
1515 HeapObjectCallback size_func) {
1516 ASSERT(space->ToSpaceContains(start));
1517 ASSERT(space->ToSpaceLow() <= end
1518 && end <= space->ToSpaceHigh());
1519 space_ = &space->to_space_;
1520 current_ = start;
1521 limit_ = end;
1522 size_func_ = size_func;
1523}
1524
1525
1526#ifdef DEBUG
Steve Blocka7e24c12009-10-30 11:49:00 +00001527// heap_histograms is shared, always clear it before using it.
1528static void ClearHistograms() {
Steve Block44f0eee2011-05-26 01:26:41 +01001529 Isolate* isolate = Isolate::Current();
Steve Blocka7e24c12009-10-30 11:49:00 +00001530 // We reset the name each time, though it hasn't changed.
Steve Block44f0eee2011-05-26 01:26:41 +01001531#define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name);
Steve Blocka7e24c12009-10-30 11:49:00 +00001532 INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
1533#undef DEF_TYPE_NAME
1534
Steve Block44f0eee2011-05-26 01:26:41 +01001535#define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear();
Steve Blocka7e24c12009-10-30 11:49:00 +00001536 INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
1537#undef CLEAR_HISTOGRAM
1538
Steve Block44f0eee2011-05-26 01:26:41 +01001539 isolate->js_spill_information()->Clear();
Steve Blocka7e24c12009-10-30 11:49:00 +00001540}
1541
1542
Steve Blocka7e24c12009-10-30 11:49:00 +00001543static void ClearCodeKindStatistics() {
Steve Block44f0eee2011-05-26 01:26:41 +01001544 Isolate* isolate = Isolate::Current();
Steve Blocka7e24c12009-10-30 11:49:00 +00001545 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
Steve Block44f0eee2011-05-26 01:26:41 +01001546 isolate->code_kind_statistics()[i] = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +00001547 }
1548}
1549
1550
1551static void ReportCodeKindStatistics() {
Steve Block44f0eee2011-05-26 01:26:41 +01001552 Isolate* isolate = Isolate::Current();
Steve Block6ded16b2010-05-10 14:33:55 +01001553 const char* table[Code::NUMBER_OF_KINDS] = { NULL };
Steve Blocka7e24c12009-10-30 11:49:00 +00001554
1555#define CASE(name) \
1556 case Code::name: table[Code::name] = #name; \
1557 break
1558
1559 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1560 switch (static_cast<Code::Kind>(i)) {
1561 CASE(FUNCTION);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001562 CASE(OPTIMIZED_FUNCTION);
Steve Blocka7e24c12009-10-30 11:49:00 +00001563 CASE(STUB);
1564 CASE(BUILTIN);
1565 CASE(LOAD_IC);
1566 CASE(KEYED_LOAD_IC);
Steve Block44f0eee2011-05-26 01:26:41 +01001567 CASE(KEYED_EXTERNAL_ARRAY_LOAD_IC);
Steve Blocka7e24c12009-10-30 11:49:00 +00001568 CASE(STORE_IC);
1569 CASE(KEYED_STORE_IC);
Steve Block44f0eee2011-05-26 01:26:41 +01001570 CASE(KEYED_EXTERNAL_ARRAY_STORE_IC);
Steve Blocka7e24c12009-10-30 11:49:00 +00001571 CASE(CALL_IC);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001572 CASE(KEYED_CALL_IC);
Steve Block6ded16b2010-05-10 14:33:55 +01001573 CASE(BINARY_OP_IC);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001574 CASE(TYPE_RECORDING_BINARY_OP_IC);
1575 CASE(COMPARE_IC);
Steve Blocka7e24c12009-10-30 11:49:00 +00001576 }
1577 }
1578
1579#undef CASE
1580
1581 PrintF("\n Code kind histograms: \n");
1582 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
Steve Block44f0eee2011-05-26 01:26:41 +01001583 if (isolate->code_kind_statistics()[i] > 0) {
1584 PrintF(" %-20s: %10d bytes\n", table[i],
1585 isolate->code_kind_statistics()[i]);
Steve Blocka7e24c12009-10-30 11:49:00 +00001586 }
1587 }
1588 PrintF("\n");
1589}
1590
1591
1592static int CollectHistogramInfo(HeapObject* obj) {
Steve Block44f0eee2011-05-26 01:26:41 +01001593 Isolate* isolate = Isolate::Current();
Steve Blocka7e24c12009-10-30 11:49:00 +00001594 InstanceType type = obj->map()->instance_type();
1595 ASSERT(0 <= type && type <= LAST_TYPE);
Steve Block44f0eee2011-05-26 01:26:41 +01001596 ASSERT(isolate->heap_histograms()[type].name() != NULL);
1597 isolate->heap_histograms()[type].increment_number(1);
1598 isolate->heap_histograms()[type].increment_bytes(obj->Size());
Steve Blocka7e24c12009-10-30 11:49:00 +00001599
1600 if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
Steve Block44f0eee2011-05-26 01:26:41 +01001601 JSObject::cast(obj)->IncrementSpillStatistics(
1602 isolate->js_spill_information());
Steve Blocka7e24c12009-10-30 11:49:00 +00001603 }
1604
1605 return obj->Size();
1606}
1607
1608
1609static void ReportHistogram(bool print_spill) {
Steve Block44f0eee2011-05-26 01:26:41 +01001610 Isolate* isolate = Isolate::Current();
Steve Blocka7e24c12009-10-30 11:49:00 +00001611 PrintF("\n Object Histogram:\n");
1612 for (int i = 0; i <= LAST_TYPE; i++) {
Steve Block44f0eee2011-05-26 01:26:41 +01001613 if (isolate->heap_histograms()[i].number() > 0) {
Steve Block6ded16b2010-05-10 14:33:55 +01001614 PrintF(" %-34s%10d (%10d bytes)\n",
Steve Block44f0eee2011-05-26 01:26:41 +01001615 isolate->heap_histograms()[i].name(),
1616 isolate->heap_histograms()[i].number(),
1617 isolate->heap_histograms()[i].bytes());
Steve Blocka7e24c12009-10-30 11:49:00 +00001618 }
1619 }
1620 PrintF("\n");
1621
1622 // Summarize string types.
1623 int string_number = 0;
1624 int string_bytes = 0;
1625#define INCREMENT(type, size, name, camel_name) \
Steve Block44f0eee2011-05-26 01:26:41 +01001626 string_number += isolate->heap_histograms()[type].number(); \
1627 string_bytes += isolate->heap_histograms()[type].bytes();
Steve Blocka7e24c12009-10-30 11:49:00 +00001628 STRING_TYPE_LIST(INCREMENT)
1629#undef INCREMENT
1630 if (string_number > 0) {
Steve Block6ded16b2010-05-10 14:33:55 +01001631 PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
Steve Blocka7e24c12009-10-30 11:49:00 +00001632 string_bytes);
1633 }
1634
1635 if (FLAG_collect_heap_spill_statistics && print_spill) {
Steve Block44f0eee2011-05-26 01:26:41 +01001636 isolate->js_spill_information()->Print();
Steve Blocka7e24c12009-10-30 11:49:00 +00001637 }
1638}
1639#endif // DEBUG
1640
1641
1642// Support for statistics gathering for --heap-stats and --log-gc.
1643#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1644void NewSpace::ClearHistograms() {
1645 for (int i = 0; i <= LAST_TYPE; i++) {
1646 allocated_histogram_[i].clear();
1647 promoted_histogram_[i].clear();
1648 }
1649}
1650
1651// Because the copying collector does not touch garbage objects, we iterate
1652// the new space before a collection to get a histogram of allocated objects.
1653// This only happens (1) when compiled with DEBUG and the --heap-stats flag is
1654// set, or when compiled with ENABLE_LOGGING_AND_PROFILING and the --log-gc
1655// flag is set.
1656void NewSpace::CollectStatistics() {
1657 ClearHistograms();
1658 SemiSpaceIterator it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00001659 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next())
1660 RecordAllocation(obj);
Steve Blocka7e24c12009-10-30 11:49:00 +00001661}
1662
1663
1664#ifdef ENABLE_LOGGING_AND_PROFILING
Steve Block44f0eee2011-05-26 01:26:41 +01001665static void DoReportStatistics(Isolate* isolate,
1666 HistogramInfo* info, const char* description) {
1667 LOG(isolate, HeapSampleBeginEvent("NewSpace", description));
Steve Blocka7e24c12009-10-30 11:49:00 +00001668 // Lump all the string types together.
1669 int string_number = 0;
1670 int string_bytes = 0;
1671#define INCREMENT(type, size, name, camel_name) \
1672 string_number += info[type].number(); \
1673 string_bytes += info[type].bytes();
1674 STRING_TYPE_LIST(INCREMENT)
1675#undef INCREMENT
1676 if (string_number > 0) {
Steve Block44f0eee2011-05-26 01:26:41 +01001677 LOG(isolate,
1678 HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
Steve Blocka7e24c12009-10-30 11:49:00 +00001679 }
1680
1681 // Then do the other types.
1682 for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
1683 if (info[i].number() > 0) {
Steve Block44f0eee2011-05-26 01:26:41 +01001684 LOG(isolate,
1685 HeapSampleItemEvent(info[i].name(), info[i].number(),
Steve Blocka7e24c12009-10-30 11:49:00 +00001686 info[i].bytes()));
1687 }
1688 }
Steve Block44f0eee2011-05-26 01:26:41 +01001689 LOG(isolate, HeapSampleEndEvent("NewSpace", description));
Steve Blocka7e24c12009-10-30 11:49:00 +00001690}
1691#endif // ENABLE_LOGGING_AND_PROFILING
1692
1693
1694void NewSpace::ReportStatistics() {
1695#ifdef DEBUG
1696 if (FLAG_heap_stats) {
1697 float pct = static_cast<float>(Available()) / Capacity();
Ben Murdochf87a2032010-10-22 12:50:53 +01001698 PrintF(" capacity: %" V8_PTR_PREFIX "d"
1699 ", available: %" V8_PTR_PREFIX "d, %%%d\n",
Steve Blocka7e24c12009-10-30 11:49:00 +00001700 Capacity(), Available(), static_cast<int>(pct*100));
1701 PrintF("\n Object Histogram:\n");
1702 for (int i = 0; i <= LAST_TYPE; i++) {
1703 if (allocated_histogram_[i].number() > 0) {
Steve Block6ded16b2010-05-10 14:33:55 +01001704 PrintF(" %-34s%10d (%10d bytes)\n",
Steve Blocka7e24c12009-10-30 11:49:00 +00001705 allocated_histogram_[i].name(),
1706 allocated_histogram_[i].number(),
1707 allocated_histogram_[i].bytes());
1708 }
1709 }
1710 PrintF("\n");
1711 }
1712#endif // DEBUG
1713
1714#ifdef ENABLE_LOGGING_AND_PROFILING
1715 if (FLAG_log_gc) {
Steve Block44f0eee2011-05-26 01:26:41 +01001716 Isolate* isolate = ISOLATE;
1717 DoReportStatistics(isolate, allocated_histogram_, "allocated");
1718 DoReportStatistics(isolate, promoted_histogram_, "promoted");
Steve Blocka7e24c12009-10-30 11:49:00 +00001719 }
1720#endif // ENABLE_LOGGING_AND_PROFILING
1721}
1722
1723
1724void NewSpace::RecordAllocation(HeapObject* obj) {
1725 InstanceType type = obj->map()->instance_type();
1726 ASSERT(0 <= type && type <= LAST_TYPE);
1727 allocated_histogram_[type].increment_number(1);
1728 allocated_histogram_[type].increment_bytes(obj->Size());
1729}
1730
1731
1732void NewSpace::RecordPromotion(HeapObject* obj) {
1733 InstanceType type = obj->map()->instance_type();
1734 ASSERT(0 <= type && type <= LAST_TYPE);
1735 promoted_histogram_[type].increment_number(1);
1736 promoted_histogram_[type].increment_bytes(obj->Size());
1737}
1738#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1739
1740
1741// -----------------------------------------------------------------------------
1742// Free lists for old object spaces implementation
1743
Steve Block44f0eee2011-05-26 01:26:41 +01001744void FreeListNode::set_size(Heap* heap, int size_in_bytes) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001745 ASSERT(size_in_bytes > 0);
1746 ASSERT(IsAligned(size_in_bytes, kPointerSize));
1747
1748 // We write a map and possibly size information to the block. If the block
1749 // is big enough to be a ByteArray with at least one extra word (the next
1750 // pointer), we set its map to be the byte array map and its size to an
1751 // appropriate array length for the desired size from HeapObject::Size().
1752 // If the block is too small (eg, one or two words), to hold both a size
1753 // field and a next pointer, we give it a filler map that gives it the
1754 // correct size.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001755 if (size_in_bytes > ByteArray::kHeaderSize) {
Steve Block44f0eee2011-05-26 01:26:41 +01001756 set_map(heap->raw_unchecked_byte_array_map());
Steve Blockd0582a62009-12-15 09:54:21 +00001757 // Can't use ByteArray::cast because it fails during deserialization.
1758 ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this);
1759 this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes));
Steve Blocka7e24c12009-10-30 11:49:00 +00001760 } else if (size_in_bytes == kPointerSize) {
Steve Block44f0eee2011-05-26 01:26:41 +01001761 set_map(heap->raw_unchecked_one_pointer_filler_map());
Steve Blocka7e24c12009-10-30 11:49:00 +00001762 } else if (size_in_bytes == 2 * kPointerSize) {
Steve Block44f0eee2011-05-26 01:26:41 +01001763 set_map(heap->raw_unchecked_two_pointer_filler_map());
Steve Blocka7e24c12009-10-30 11:49:00 +00001764 } else {
1765 UNREACHABLE();
1766 }
Steve Blockd0582a62009-12-15 09:54:21 +00001767 // We would like to ASSERT(Size() == size_in_bytes) but this would fail during
1768 // deserialization because the byte array map is not done yet.
Steve Blocka7e24c12009-10-30 11:49:00 +00001769}
1770
1771
Steve Block44f0eee2011-05-26 01:26:41 +01001772Address FreeListNode::next(Heap* heap) {
Steve Block3ce2e202009-11-05 08:53:23 +00001773 ASSERT(IsFreeListNode(this));
Steve Block44f0eee2011-05-26 01:26:41 +01001774 if (map() == heap->raw_unchecked_byte_array_map()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001775 ASSERT(Size() >= kNextOffset + kPointerSize);
1776 return Memory::Address_at(address() + kNextOffset);
1777 } else {
1778 return Memory::Address_at(address() + kPointerSize);
1779 }
1780}
1781
1782
Steve Block44f0eee2011-05-26 01:26:41 +01001783void FreeListNode::set_next(Heap* heap, Address next) {
Steve Block3ce2e202009-11-05 08:53:23 +00001784 ASSERT(IsFreeListNode(this));
Steve Block44f0eee2011-05-26 01:26:41 +01001785 if (map() == heap->raw_unchecked_byte_array_map()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001786 ASSERT(Size() >= kNextOffset + kPointerSize);
1787 Memory::Address_at(address() + kNextOffset) = next;
1788 } else {
1789 Memory::Address_at(address() + kPointerSize) = next;
1790 }
1791}
1792
1793
Steve Block44f0eee2011-05-26 01:26:41 +01001794OldSpaceFreeList::OldSpaceFreeList(Heap* heap, AllocationSpace owner)
1795 : heap_(heap),
1796 owner_(owner) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001797 Reset();
1798}
1799
1800
1801void OldSpaceFreeList::Reset() {
1802 available_ = 0;
1803 for (int i = 0; i < kFreeListsLength; i++) {
1804 free_[i].head_node_ = NULL;
1805 }
1806 needs_rebuild_ = false;
1807 finger_ = kHead;
1808 free_[kHead].next_size_ = kEnd;
1809}
1810
1811
1812void OldSpaceFreeList::RebuildSizeList() {
1813 ASSERT(needs_rebuild_);
1814 int cur = kHead;
1815 for (int i = cur + 1; i < kFreeListsLength; i++) {
1816 if (free_[i].head_node_ != NULL) {
1817 free_[cur].next_size_ = i;
1818 cur = i;
1819 }
1820 }
1821 free_[cur].next_size_ = kEnd;
1822 needs_rebuild_ = false;
1823}
1824
1825
1826int OldSpaceFreeList::Free(Address start, int size_in_bytes) {
1827#ifdef DEBUG
Steve Block44f0eee2011-05-26 01:26:41 +01001828 Isolate::Current()->memory_allocator()->ZapBlock(start, size_in_bytes);
Steve Blocka7e24c12009-10-30 11:49:00 +00001829#endif
1830 FreeListNode* node = FreeListNode::FromAddress(start);
Steve Block44f0eee2011-05-26 01:26:41 +01001831 node->set_size(heap_, size_in_bytes);
Steve Blocka7e24c12009-10-30 11:49:00 +00001832
1833 // We don't use the freelists in compacting mode. This makes it more like a
1834 // GC that only has mark-sweep-compact and doesn't have a mark-sweep
1835 // collector.
1836 if (FLAG_always_compact) {
1837 return size_in_bytes;
1838 }
1839
1840 // Early return to drop too-small blocks on the floor (one or two word
1841 // blocks cannot hold a map pointer, a size field, and a pointer to the
1842 // next block in the free list).
1843 if (size_in_bytes < kMinBlockSize) {
1844 return size_in_bytes;
1845 }
1846
1847 // Insert other blocks at the head of an exact free list.
1848 int index = size_in_bytes >> kPointerSizeLog2;
Steve Block44f0eee2011-05-26 01:26:41 +01001849 node->set_next(heap_, free_[index].head_node_);
Steve Blocka7e24c12009-10-30 11:49:00 +00001850 free_[index].head_node_ = node->address();
1851 available_ += size_in_bytes;
1852 needs_rebuild_ = true;
1853 return 0;
1854}
1855
1856
John Reck59135872010-11-02 12:39:01 -07001857MaybeObject* OldSpaceFreeList::Allocate(int size_in_bytes, int* wasted_bytes) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001858 ASSERT(0 < size_in_bytes);
1859 ASSERT(size_in_bytes <= kMaxBlockSize);
1860 ASSERT(IsAligned(size_in_bytes, kPointerSize));
1861
1862 if (needs_rebuild_) RebuildSizeList();
1863 int index = size_in_bytes >> kPointerSizeLog2;
1864 // Check for a perfect fit.
1865 if (free_[index].head_node_ != NULL) {
1866 FreeListNode* node = FreeListNode::FromAddress(free_[index].head_node_);
1867 // If this was the last block of its size, remove the size.
Steve Block44f0eee2011-05-26 01:26:41 +01001868 if ((free_[index].head_node_ = node->next(heap_)) == NULL)
1869 RemoveSize(index);
Steve Blocka7e24c12009-10-30 11:49:00 +00001870 available_ -= size_in_bytes;
1871 *wasted_bytes = 0;
1872 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
1873 return node;
1874 }
1875 // Search the size list for the best fit.
1876 int prev = finger_ < index ? finger_ : kHead;
1877 int cur = FindSize(index, &prev);
1878 ASSERT(index < cur);
1879 if (cur == kEnd) {
1880 // No large enough size in list.
1881 *wasted_bytes = 0;
Ben Murdochf87a2032010-10-22 12:50:53 +01001882 return Failure::RetryAfterGC(owner_);
Steve Blocka7e24c12009-10-30 11:49:00 +00001883 }
1884 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
1885 int rem = cur - index;
1886 int rem_bytes = rem << kPointerSizeLog2;
1887 FreeListNode* cur_node = FreeListNode::FromAddress(free_[cur].head_node_);
1888 ASSERT(cur_node->Size() == (cur << kPointerSizeLog2));
1889 FreeListNode* rem_node = FreeListNode::FromAddress(free_[cur].head_node_ +
1890 size_in_bytes);
1891 // Distinguish the cases prev < rem < cur and rem <= prev < cur
1892 // to avoid many redundant tests and calls to Insert/RemoveSize.
1893 if (prev < rem) {
1894 // Simple case: insert rem between prev and cur.
1895 finger_ = prev;
1896 free_[prev].next_size_ = rem;
1897 // If this was the last block of size cur, remove the size.
Steve Block44f0eee2011-05-26 01:26:41 +01001898 if ((free_[cur].head_node_ = cur_node->next(heap_)) == NULL) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001899 free_[rem].next_size_ = free_[cur].next_size_;
1900 } else {
1901 free_[rem].next_size_ = cur;
1902 }
1903 // Add the remainder block.
Steve Block44f0eee2011-05-26 01:26:41 +01001904 rem_node->set_size(heap_, rem_bytes);
1905 rem_node->set_next(heap_, free_[rem].head_node_);
Steve Blocka7e24c12009-10-30 11:49:00 +00001906 free_[rem].head_node_ = rem_node->address();
1907 } else {
1908 // If this was the last block of size cur, remove the size.
Steve Block44f0eee2011-05-26 01:26:41 +01001909 if ((free_[cur].head_node_ = cur_node->next(heap_)) == NULL) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001910 finger_ = prev;
1911 free_[prev].next_size_ = free_[cur].next_size_;
1912 }
1913 if (rem_bytes < kMinBlockSize) {
1914 // Too-small remainder is wasted.
Steve Block44f0eee2011-05-26 01:26:41 +01001915 rem_node->set_size(heap_, rem_bytes);
Steve Blocka7e24c12009-10-30 11:49:00 +00001916 available_ -= size_in_bytes + rem_bytes;
1917 *wasted_bytes = rem_bytes;
1918 return cur_node;
1919 }
1920 // Add the remainder block and, if needed, insert its size.
Steve Block44f0eee2011-05-26 01:26:41 +01001921 rem_node->set_size(heap_, rem_bytes);
1922 rem_node->set_next(heap_, free_[rem].head_node_);
Steve Blocka7e24c12009-10-30 11:49:00 +00001923 free_[rem].head_node_ = rem_node->address();
Steve Block44f0eee2011-05-26 01:26:41 +01001924 if (rem_node->next(heap_) == NULL) InsertSize(rem);
Steve Blocka7e24c12009-10-30 11:49:00 +00001925 }
1926 available_ -= size_in_bytes;
1927 *wasted_bytes = 0;
1928 return cur_node;
1929}
1930
1931
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08001932void OldSpaceFreeList::MarkNodes() {
1933 for (int i = 0; i < kFreeListsLength; i++) {
1934 Address cur_addr = free_[i].head_node_;
1935 while (cur_addr != NULL) {
1936 FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
Steve Block44f0eee2011-05-26 01:26:41 +01001937 cur_addr = cur_node->next(heap_);
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08001938 cur_node->SetMark();
1939 }
1940 }
1941}
1942
1943
Steve Blocka7e24c12009-10-30 11:49:00 +00001944#ifdef DEBUG
1945bool OldSpaceFreeList::Contains(FreeListNode* node) {
1946 for (int i = 0; i < kFreeListsLength; i++) {
1947 Address cur_addr = free_[i].head_node_;
1948 while (cur_addr != NULL) {
1949 FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
1950 if (cur_node == node) return true;
Steve Block44f0eee2011-05-26 01:26:41 +01001951 cur_addr = cur_node->next(heap_);
Steve Blocka7e24c12009-10-30 11:49:00 +00001952 }
1953 }
1954 return false;
1955}
1956#endif
1957
1958
Steve Block44f0eee2011-05-26 01:26:41 +01001959FixedSizeFreeList::FixedSizeFreeList(Heap* heap,
1960 AllocationSpace owner,
1961 int object_size)
1962 : heap_(heap), owner_(owner), object_size_(object_size) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001963 Reset();
1964}
1965
1966
1967void FixedSizeFreeList::Reset() {
1968 available_ = 0;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001969 head_ = tail_ = NULL;
Steve Blocka7e24c12009-10-30 11:49:00 +00001970}
1971
1972
1973void FixedSizeFreeList::Free(Address start) {
1974#ifdef DEBUG
Steve Block44f0eee2011-05-26 01:26:41 +01001975 Isolate::Current()->memory_allocator()->ZapBlock(start, object_size_);
Steve Blocka7e24c12009-10-30 11:49:00 +00001976#endif
Leon Clarkee46be812010-01-19 14:06:41 +00001977 // We only use the freelists with mark-sweep.
Steve Block44f0eee2011-05-26 01:26:41 +01001978 ASSERT(!HEAP->mark_compact_collector()->IsCompacting());
Steve Blocka7e24c12009-10-30 11:49:00 +00001979 FreeListNode* node = FreeListNode::FromAddress(start);
Steve Block44f0eee2011-05-26 01:26:41 +01001980 node->set_size(heap_, object_size_);
1981 node->set_next(heap_, NULL);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001982 if (head_ == NULL) {
1983 tail_ = head_ = node->address();
1984 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01001985 FreeListNode::FromAddress(tail_)->set_next(heap_, node->address());
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001986 tail_ = node->address();
1987 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001988 available_ += object_size_;
1989}
1990
1991
John Reck59135872010-11-02 12:39:01 -07001992MaybeObject* FixedSizeFreeList::Allocate() {
Steve Blocka7e24c12009-10-30 11:49:00 +00001993 if (head_ == NULL) {
Ben Murdochf87a2032010-10-22 12:50:53 +01001994 return Failure::RetryAfterGC(owner_);
Steve Blocka7e24c12009-10-30 11:49:00 +00001995 }
1996
1997 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
1998 FreeListNode* node = FreeListNode::FromAddress(head_);
Steve Block44f0eee2011-05-26 01:26:41 +01001999 head_ = node->next(heap_);
Steve Blocka7e24c12009-10-30 11:49:00 +00002000 available_ -= object_size_;
2001 return node;
2002}
2003
2004
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002005void FixedSizeFreeList::MarkNodes() {
2006 Address cur_addr = head_;
2007 while (cur_addr != NULL && cur_addr != tail_) {
2008 FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
Steve Block44f0eee2011-05-26 01:26:41 +01002009 cur_addr = cur_node->next(heap_);
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002010 cur_node->SetMark();
2011 }
2012}
2013
2014
Steve Blocka7e24c12009-10-30 11:49:00 +00002015// -----------------------------------------------------------------------------
2016// OldSpace implementation
2017
2018void OldSpace::PrepareForMarkCompact(bool will_compact) {
Steve Block6ded16b2010-05-10 14:33:55 +01002019 // Call prepare of the super class.
2020 PagedSpace::PrepareForMarkCompact(will_compact);
2021
Steve Blocka7e24c12009-10-30 11:49:00 +00002022 if (will_compact) {
2023 // Reset relocation info. During a compacting collection, everything in
2024 // the space is considered 'available' and we will rediscover live data
2025 // and waste during the collection.
2026 MCResetRelocationInfo();
2027 ASSERT(Available() == Capacity());
2028 } else {
2029 // During a non-compacting collection, everything below the linear
2030 // allocation pointer is considered allocated (everything above is
2031 // available) and we will rediscover available and wasted bytes during
2032 // the collection.
2033 accounting_stats_.AllocateBytes(free_list_.available());
2034 accounting_stats_.FillWastedBytes(Waste());
2035 }
2036
2037 // Clear the free list before a full GC---it will be rebuilt afterward.
2038 free_list_.Reset();
2039}
2040
2041
2042void OldSpace::MCCommitRelocationInfo() {
2043 // Update fast allocation info.
2044 allocation_info_.top = mc_forwarding_info_.top;
2045 allocation_info_.limit = mc_forwarding_info_.limit;
2046 ASSERT(allocation_info_.VerifyPagedAllocation());
2047
2048 // The space is compacted and we haven't yet built free lists or
2049 // wasted any space.
2050 ASSERT(Waste() == 0);
2051 ASSERT(AvailableFree() == 0);
2052
2053 // Build the free list for the space.
2054 int computed_size = 0;
2055 PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
2056 while (it.has_next()) {
2057 Page* p = it.next();
2058 // Space below the relocation pointer is allocated.
Steve Blockd0582a62009-12-15 09:54:21 +00002059 computed_size +=
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002060 static_cast<int>(p->AllocationWatermark() - p->ObjectAreaStart());
Steve Blocka7e24c12009-10-30 11:49:00 +00002061 if (it.has_next()) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002062 // Free the space at the top of the page.
Steve Blockd0582a62009-12-15 09:54:21 +00002063 int extra_size =
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002064 static_cast<int>(p->ObjectAreaEnd() - p->AllocationWatermark());
Steve Blocka7e24c12009-10-30 11:49:00 +00002065 if (extra_size > 0) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002066 int wasted_bytes = free_list_.Free(p->AllocationWatermark(),
2067 extra_size);
Steve Blocka7e24c12009-10-30 11:49:00 +00002068 // The bytes we have just "freed" to add to the free list were
2069 // already accounted as available.
2070 accounting_stats_.WasteBytes(wasted_bytes);
2071 }
2072 }
2073 }
2074
2075 // Make sure the computed size - based on the used portion of the pages in
2076 // use - matches the size obtained while computing forwarding addresses.
2077 ASSERT(computed_size == Size());
2078}
2079
2080
Leon Clarkee46be812010-01-19 14:06:41 +00002081bool NewSpace::ReserveSpace(int bytes) {
2082 // We can't reliably unpack a partial snapshot that needs more new space
2083 // space than the minimum NewSpace size.
2084 ASSERT(bytes <= InitialCapacity());
2085 Address limit = allocation_info_.limit;
2086 Address top = allocation_info_.top;
2087 return limit - top >= bytes;
2088}
2089
2090
Steve Block6ded16b2010-05-10 14:33:55 +01002091void PagedSpace::FreePages(Page* prev, Page* last) {
2092 if (last == AllocationTopPage()) {
2093 // Pages are already at the end of used pages.
2094 return;
2095 }
2096
2097 Page* first = NULL;
2098
2099 // Remove pages from the list.
2100 if (prev == NULL) {
2101 first = first_page_;
2102 first_page_ = last->next_page();
2103 } else {
2104 first = prev->next_page();
Steve Block44f0eee2011-05-26 01:26:41 +01002105 heap()->isolate()->memory_allocator()->SetNextPage(
2106 prev, last->next_page());
Steve Block6ded16b2010-05-10 14:33:55 +01002107 }
2108
2109 // Attach it after the last page.
Steve Block44f0eee2011-05-26 01:26:41 +01002110 heap()->isolate()->memory_allocator()->SetNextPage(last_page_, first);
Steve Block6ded16b2010-05-10 14:33:55 +01002111 last_page_ = last;
Steve Block44f0eee2011-05-26 01:26:41 +01002112 heap()->isolate()->memory_allocator()->SetNextPage(last, NULL);
Steve Block6ded16b2010-05-10 14:33:55 +01002113
2114 // Clean them up.
2115 do {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002116 first->InvalidateWatermark(true);
2117 first->SetAllocationWatermark(first->ObjectAreaStart());
2118 first->SetCachedAllocationWatermark(first->ObjectAreaStart());
2119 first->SetRegionMarks(Page::kAllRegionsCleanMarks);
Steve Block6ded16b2010-05-10 14:33:55 +01002120 first = first->next_page();
2121 } while (first != NULL);
2122
2123 // Order of pages in this space might no longer be consistent with
2124 // order of pages in chunks.
2125 page_list_is_chunk_ordered_ = false;
2126}
2127
2128
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002129void PagedSpace::RelinkPageListInChunkOrder(bool deallocate_blocks) {
2130 const bool add_to_freelist = true;
2131
2132 // Mark used and unused pages to properly fill unused pages
2133 // after reordering.
2134 PageIterator all_pages_iterator(this, PageIterator::ALL_PAGES);
2135 Page* last_in_use = AllocationTopPage();
2136 bool in_use = true;
2137
2138 while (all_pages_iterator.has_next()) {
2139 Page* p = all_pages_iterator.next();
2140 p->SetWasInUseBeforeMC(in_use);
2141 if (p == last_in_use) {
2142 // We passed a page containing allocation top. All consequent
2143 // pages are not used.
2144 in_use = false;
2145 }
2146 }
2147
2148 if (page_list_is_chunk_ordered_) return;
2149
2150 Page* new_last_in_use = Page::FromAddress(NULL);
Steve Block44f0eee2011-05-26 01:26:41 +01002151 heap()->isolate()->memory_allocator()->RelinkPageListInChunkOrder(
2152 this, &first_page_, &last_page_, &new_last_in_use);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002153 ASSERT(new_last_in_use->is_valid());
2154
2155 if (new_last_in_use != last_in_use) {
2156 // Current allocation top points to a page which is now in the middle
2157 // of page list. We should move allocation top forward to the new last
2158 // used page so various object iterators will continue to work properly.
2159 int size_in_bytes = static_cast<int>(PageAllocationLimit(last_in_use) -
2160 last_in_use->AllocationTop());
2161
2162 last_in_use->SetAllocationWatermark(last_in_use->AllocationTop());
2163 if (size_in_bytes > 0) {
2164 Address start = last_in_use->AllocationTop();
2165 if (deallocate_blocks) {
2166 accounting_stats_.AllocateBytes(size_in_bytes);
2167 DeallocateBlock(start, size_in_bytes, add_to_freelist);
2168 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01002169 heap()->CreateFillerObjectAt(start, size_in_bytes);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002170 }
2171 }
2172
2173 // New last in use page was in the middle of the list before
2174 // sorting so it full.
2175 SetTop(new_last_in_use->AllocationTop());
2176
2177 ASSERT(AllocationTopPage() == new_last_in_use);
2178 ASSERT(AllocationTopPage()->WasInUseBeforeMC());
2179 }
2180
2181 PageIterator pages_in_use_iterator(this, PageIterator::PAGES_IN_USE);
2182 while (pages_in_use_iterator.has_next()) {
2183 Page* p = pages_in_use_iterator.next();
2184 if (!p->WasInUseBeforeMC()) {
2185 // Empty page is in the middle of a sequence of used pages.
2186 // Allocate it as a whole and deallocate immediately.
2187 int size_in_bytes = static_cast<int>(PageAllocationLimit(p) -
2188 p->ObjectAreaStart());
2189
2190 p->SetAllocationWatermark(p->ObjectAreaStart());
2191 Address start = p->ObjectAreaStart();
2192 if (deallocate_blocks) {
2193 accounting_stats_.AllocateBytes(size_in_bytes);
2194 DeallocateBlock(start, size_in_bytes, add_to_freelist);
2195 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01002196 heap()->CreateFillerObjectAt(start, size_in_bytes);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002197 }
2198 }
2199 }
2200
2201 page_list_is_chunk_ordered_ = true;
2202}
2203
2204
Steve Block6ded16b2010-05-10 14:33:55 +01002205void PagedSpace::PrepareForMarkCompact(bool will_compact) {
2206 if (will_compact) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002207 RelinkPageListInChunkOrder(false);
Steve Block6ded16b2010-05-10 14:33:55 +01002208 }
2209}
2210
2211
Leon Clarkee46be812010-01-19 14:06:41 +00002212bool PagedSpace::ReserveSpace(int bytes) {
2213 Address limit = allocation_info_.limit;
2214 Address top = allocation_info_.top;
2215 if (limit - top >= bytes) return true;
2216
2217 // There wasn't enough space in the current page. Lets put the rest
2218 // of the page on the free list and start a fresh page.
2219 PutRestOfCurrentPageOnFreeList(TopPageOf(allocation_info_));
2220
2221 Page* reserved_page = TopPageOf(allocation_info_);
2222 int bytes_left_to_reserve = bytes;
2223 while (bytes_left_to_reserve > 0) {
2224 if (!reserved_page->next_page()->is_valid()) {
Steve Block44f0eee2011-05-26 01:26:41 +01002225 if (heap()->OldGenerationAllocationLimitReached()) return false;
Leon Clarkee46be812010-01-19 14:06:41 +00002226 Expand(reserved_page);
2227 }
2228 bytes_left_to_reserve -= Page::kPageSize;
2229 reserved_page = reserved_page->next_page();
2230 if (!reserved_page->is_valid()) return false;
2231 }
2232 ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid());
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002233 TopPageOf(allocation_info_)->next_page()->InvalidateWatermark(true);
Leon Clarkee46be812010-01-19 14:06:41 +00002234 SetAllocationInfo(&allocation_info_,
2235 TopPageOf(allocation_info_)->next_page());
2236 return true;
2237}
2238
2239
2240// You have to call this last, since the implementation from PagedSpace
2241// doesn't know that memory was 'promised' to large object space.
2242bool LargeObjectSpace::ReserveSpace(int bytes) {
Steve Block44f0eee2011-05-26 01:26:41 +01002243 return heap()->OldGenerationSpaceAvailable() >= bytes;
Leon Clarkee46be812010-01-19 14:06:41 +00002244}
2245
2246
Steve Blocka7e24c12009-10-30 11:49:00 +00002247// Slow case for normal allocation. Try in order: (1) allocate in the next
2248// page in the space, (2) allocate off the space's free list, (3) expand the
2249// space, (4) fail.
2250HeapObject* OldSpace::SlowAllocateRaw(int size_in_bytes) {
2251 // Linear allocation in this space has failed. If there is another page
2252 // in the space, move to that page and allocate there. This allocation
2253 // should succeed (size_in_bytes should not be greater than a page's
2254 // object area size).
2255 Page* current_page = TopPageOf(allocation_info_);
2256 if (current_page->next_page()->is_valid()) {
2257 return AllocateInNextPage(current_page, size_in_bytes);
2258 }
2259
Steve Blockd0582a62009-12-15 09:54:21 +00002260 // There is no next page in this space. Try free list allocation unless that
2261 // is currently forbidden.
Steve Block44f0eee2011-05-26 01:26:41 +01002262 if (!heap()->linear_allocation()) {
Steve Blockd0582a62009-12-15 09:54:21 +00002263 int wasted_bytes;
John Reck59135872010-11-02 12:39:01 -07002264 Object* result;
2265 MaybeObject* maybe = free_list_.Allocate(size_in_bytes, &wasted_bytes);
Steve Blockd0582a62009-12-15 09:54:21 +00002266 accounting_stats_.WasteBytes(wasted_bytes);
John Reck59135872010-11-02 12:39:01 -07002267 if (maybe->ToObject(&result)) {
Steve Blockd0582a62009-12-15 09:54:21 +00002268 accounting_stats_.AllocateBytes(size_in_bytes);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002269
2270 HeapObject* obj = HeapObject::cast(result);
2271 Page* p = Page::FromAddress(obj->address());
2272
2273 if (obj->address() >= p->AllocationWatermark()) {
2274 // There should be no hole between the allocation watermark
2275 // and allocated object address.
2276 // Memory above the allocation watermark was not swept and
2277 // might contain garbage pointers to new space.
2278 ASSERT(obj->address() == p->AllocationWatermark());
2279 p->SetAllocationWatermark(obj->address() + size_in_bytes);
2280 }
2281
2282 return obj;
Steve Blockd0582a62009-12-15 09:54:21 +00002283 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002284 }
2285
2286 // Free list allocation failed and there is no next page. Fail if we have
2287 // hit the old generation size limit that should cause a garbage
2288 // collection.
Steve Block44f0eee2011-05-26 01:26:41 +01002289 if (!heap()->always_allocate() &&
2290 heap()->OldGenerationAllocationLimitReached()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002291 return NULL;
2292 }
2293
2294 // Try to expand the space and allocate in the new next page.
2295 ASSERT(!current_page->next_page()->is_valid());
2296 if (Expand(current_page)) {
2297 return AllocateInNextPage(current_page, size_in_bytes);
2298 }
2299
2300 // Finally, fail.
2301 return NULL;
2302}
2303
2304
Leon Clarkee46be812010-01-19 14:06:41 +00002305void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002306 current_page->SetAllocationWatermark(allocation_info_.top);
Steve Blockd0582a62009-12-15 09:54:21 +00002307 int free_size =
2308 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
Steve Blocka7e24c12009-10-30 11:49:00 +00002309 if (free_size > 0) {
2310 int wasted_bytes = free_list_.Free(allocation_info_.top, free_size);
2311 accounting_stats_.WasteBytes(wasted_bytes);
2312 }
Leon Clarkee46be812010-01-19 14:06:41 +00002313}
2314
2315
2316void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002317 current_page->SetAllocationWatermark(allocation_info_.top);
Leon Clarkee46be812010-01-19 14:06:41 +00002318 int free_size =
2319 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
2320 // In the fixed space free list all the free list items have the right size.
2321 // We use up the rest of the page while preserving this invariant.
2322 while (free_size >= object_size_in_bytes_) {
2323 free_list_.Free(allocation_info_.top);
2324 allocation_info_.top += object_size_in_bytes_;
2325 free_size -= object_size_in_bytes_;
2326 accounting_stats_.WasteBytes(object_size_in_bytes_);
2327 }
2328}
2329
2330
2331// Add the block at the top of the page to the space's free list, set the
2332// allocation info to the next page (assumed to be one), and allocate
2333// linearly there.
2334HeapObject* OldSpace::AllocateInNextPage(Page* current_page,
2335 int size_in_bytes) {
2336 ASSERT(current_page->next_page()->is_valid());
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002337 Page* next_page = current_page->next_page();
2338 next_page->ClearGCFields();
Leon Clarkee46be812010-01-19 14:06:41 +00002339 PutRestOfCurrentPageOnFreeList(current_page);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002340 SetAllocationInfo(&allocation_info_, next_page);
Steve Blocka7e24c12009-10-30 11:49:00 +00002341 return AllocateLinearly(&allocation_info_, size_in_bytes);
2342}
2343
2344
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002345void OldSpace::DeallocateBlock(Address start,
2346 int size_in_bytes,
2347 bool add_to_freelist) {
2348 Free(start, size_in_bytes, add_to_freelist);
2349}
2350
2351
Steve Blocka7e24c12009-10-30 11:49:00 +00002352#ifdef DEBUG
Steve Blocka7e24c12009-10-30 11:49:00 +00002353void PagedSpace::ReportCodeStatistics() {
Steve Block44f0eee2011-05-26 01:26:41 +01002354 Isolate* isolate = Isolate::Current();
2355 CommentStatistic* comments_statistics =
2356 isolate->paged_space_comments_statistics();
Steve Blocka7e24c12009-10-30 11:49:00 +00002357 ReportCodeKindStatistics();
2358 PrintF("Code comment statistics (\" [ comment-txt : size/ "
2359 "count (average)\"):\n");
Steve Block44f0eee2011-05-26 01:26:41 +01002360 for (int i = 0; i <= CommentStatistic::kMaxComments; i++) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002361 const CommentStatistic& cs = comments_statistics[i];
2362 if (cs.size > 0) {
2363 PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count,
2364 cs.size/cs.count);
2365 }
2366 }
2367 PrintF("\n");
2368}
2369
2370
2371void PagedSpace::ResetCodeStatistics() {
Steve Block44f0eee2011-05-26 01:26:41 +01002372 Isolate* isolate = Isolate::Current();
2373 CommentStatistic* comments_statistics =
2374 isolate->paged_space_comments_statistics();
Steve Blocka7e24c12009-10-30 11:49:00 +00002375 ClearCodeKindStatistics();
Steve Block44f0eee2011-05-26 01:26:41 +01002376 for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
2377 comments_statistics[i].Clear();
2378 }
2379 comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown";
2380 comments_statistics[CommentStatistic::kMaxComments].size = 0;
2381 comments_statistics[CommentStatistic::kMaxComments].count = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +00002382}
2383
2384
Steve Block44f0eee2011-05-26 01:26:41 +01002385// Adds comment to 'comment_statistics' table. Performance OK as long as
Steve Blocka7e24c12009-10-30 11:49:00 +00002386// 'kMaxComments' is small
Steve Block44f0eee2011-05-26 01:26:41 +01002387static void EnterComment(Isolate* isolate, const char* comment, int delta) {
2388 CommentStatistic* comments_statistics =
2389 isolate->paged_space_comments_statistics();
Steve Blocka7e24c12009-10-30 11:49:00 +00002390 // Do not count empty comments
2391 if (delta <= 0) return;
Steve Block44f0eee2011-05-26 01:26:41 +01002392 CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments];
Steve Blocka7e24c12009-10-30 11:49:00 +00002393 // Search for a free or matching entry in 'comments_statistics': 'cs'
2394 // points to result.
Steve Block44f0eee2011-05-26 01:26:41 +01002395 for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002396 if (comments_statistics[i].comment == NULL) {
2397 cs = &comments_statistics[i];
2398 cs->comment = comment;
2399 break;
2400 } else if (strcmp(comments_statistics[i].comment, comment) == 0) {
2401 cs = &comments_statistics[i];
2402 break;
2403 }
2404 }
2405 // Update entry for 'comment'
2406 cs->size += delta;
2407 cs->count += 1;
2408}
2409
2410
2411// Call for each nested comment start (start marked with '[ xxx', end marked
2412// with ']'. RelocIterator 'it' must point to a comment reloc info.
Steve Block44f0eee2011-05-26 01:26:41 +01002413static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002414 ASSERT(!it->done());
2415 ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT);
2416 const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
2417 if (tmp[0] != '[') {
2418 // Not a nested comment; skip
2419 return;
2420 }
2421
2422 // Search for end of nested comment or a new nested comment
2423 const char* const comment_txt =
2424 reinterpret_cast<const char*>(it->rinfo()->data());
2425 const byte* prev_pc = it->rinfo()->pc();
2426 int flat_delta = 0;
2427 it->next();
2428 while (true) {
2429 // All nested comments must be terminated properly, and therefore exit
2430 // from loop.
2431 ASSERT(!it->done());
2432 if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
2433 const char* const txt =
2434 reinterpret_cast<const char*>(it->rinfo()->data());
Steve Blockd0582a62009-12-15 09:54:21 +00002435 flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc);
Steve Blocka7e24c12009-10-30 11:49:00 +00002436 if (txt[0] == ']') break; // End of nested comment
2437 // A new comment
Steve Block44f0eee2011-05-26 01:26:41 +01002438 CollectCommentStatistics(isolate, it);
Steve Blocka7e24c12009-10-30 11:49:00 +00002439 // Skip code that was covered with previous comment
2440 prev_pc = it->rinfo()->pc();
2441 }
2442 it->next();
2443 }
Steve Block44f0eee2011-05-26 01:26:41 +01002444 EnterComment(isolate, comment_txt, flat_delta);
Steve Blocka7e24c12009-10-30 11:49:00 +00002445}
2446
2447
2448// Collects code size statistics:
2449// - by code kind
2450// - by code comment
2451void PagedSpace::CollectCodeStatistics() {
Steve Block44f0eee2011-05-26 01:26:41 +01002452 Isolate* isolate = heap()->isolate();
Steve Blocka7e24c12009-10-30 11:49:00 +00002453 HeapObjectIterator obj_it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00002454 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002455 if (obj->IsCode()) {
2456 Code* code = Code::cast(obj);
Steve Block44f0eee2011-05-26 01:26:41 +01002457 isolate->code_kind_statistics()[code->kind()] += code->Size();
Steve Blocka7e24c12009-10-30 11:49:00 +00002458 RelocIterator it(code);
2459 int delta = 0;
2460 const byte* prev_pc = code->instruction_start();
2461 while (!it.done()) {
2462 if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
Steve Blockd0582a62009-12-15 09:54:21 +00002463 delta += static_cast<int>(it.rinfo()->pc() - prev_pc);
Steve Block44f0eee2011-05-26 01:26:41 +01002464 CollectCommentStatistics(isolate, &it);
Steve Blocka7e24c12009-10-30 11:49:00 +00002465 prev_pc = it.rinfo()->pc();
2466 }
2467 it.next();
2468 }
2469
2470 ASSERT(code->instruction_start() <= prev_pc &&
Leon Clarkeac952652010-07-15 11:15:24 +01002471 prev_pc <= code->instruction_end());
2472 delta += static_cast<int>(code->instruction_end() - prev_pc);
Steve Block44f0eee2011-05-26 01:26:41 +01002473 EnterComment(isolate, "NoComment", delta);
Steve Blocka7e24c12009-10-30 11:49:00 +00002474 }
2475 }
2476}
2477
2478
2479void OldSpace::ReportStatistics() {
Ben Murdochf87a2032010-10-22 12:50:53 +01002480 int pct = static_cast<int>(Available() * 100 / Capacity());
2481 PrintF(" capacity: %" V8_PTR_PREFIX "d"
2482 ", waste: %" V8_PTR_PREFIX "d"
2483 ", available: %" V8_PTR_PREFIX "d, %%%d\n",
Steve Blocka7e24c12009-10-30 11:49:00 +00002484 Capacity(), Waste(), Available(), pct);
2485
Steve Blocka7e24c12009-10-30 11:49:00 +00002486 ClearHistograms();
2487 HeapObjectIterator obj_it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00002488 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
2489 CollectHistogramInfo(obj);
Steve Blocka7e24c12009-10-30 11:49:00 +00002490 ReportHistogram(true);
2491}
Steve Blocka7e24c12009-10-30 11:49:00 +00002492#endif
2493
2494// -----------------------------------------------------------------------------
2495// FixedSpace implementation
2496
2497void FixedSpace::PrepareForMarkCompact(bool will_compact) {
Steve Block6ded16b2010-05-10 14:33:55 +01002498 // Call prepare of the super class.
2499 PagedSpace::PrepareForMarkCompact(will_compact);
2500
Steve Blocka7e24c12009-10-30 11:49:00 +00002501 if (will_compact) {
2502 // Reset relocation info.
2503 MCResetRelocationInfo();
2504
2505 // During a compacting collection, everything in the space is considered
2506 // 'available' (set by the call to MCResetRelocationInfo) and we will
2507 // rediscover live and wasted bytes during the collection.
2508 ASSERT(Available() == Capacity());
2509 } else {
2510 // During a non-compacting collection, everything below the linear
2511 // allocation pointer except wasted top-of-page blocks is considered
2512 // allocated and we will rediscover available bytes during the
2513 // collection.
2514 accounting_stats_.AllocateBytes(free_list_.available());
2515 }
2516
2517 // Clear the free list before a full GC---it will be rebuilt afterward.
2518 free_list_.Reset();
2519}
2520
2521
2522void FixedSpace::MCCommitRelocationInfo() {
2523 // Update fast allocation info.
2524 allocation_info_.top = mc_forwarding_info_.top;
2525 allocation_info_.limit = mc_forwarding_info_.limit;
2526 ASSERT(allocation_info_.VerifyPagedAllocation());
2527
2528 // The space is compacted and we haven't yet wasted any space.
2529 ASSERT(Waste() == 0);
2530
2531 // Update allocation_top of each page in use and compute waste.
2532 int computed_size = 0;
2533 PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
2534 while (it.has_next()) {
2535 Page* page = it.next();
2536 Address page_top = page->AllocationTop();
Steve Blockd0582a62009-12-15 09:54:21 +00002537 computed_size += static_cast<int>(page_top - page->ObjectAreaStart());
Steve Blocka7e24c12009-10-30 11:49:00 +00002538 if (it.has_next()) {
Steve Blockd0582a62009-12-15 09:54:21 +00002539 accounting_stats_.WasteBytes(
2540 static_cast<int>(page->ObjectAreaEnd() - page_top));
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002541 page->SetAllocationWatermark(page_top);
Steve Blocka7e24c12009-10-30 11:49:00 +00002542 }
2543 }
2544
2545 // Make sure the computed size - based on the used portion of the
2546 // pages in use - matches the size we adjust during allocation.
2547 ASSERT(computed_size == Size());
2548}
2549
2550
2551// Slow case for normal allocation. Try in order: (1) allocate in the next
2552// page in the space, (2) allocate off the space's free list, (3) expand the
2553// space, (4) fail.
2554HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) {
2555 ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
2556 // Linear allocation in this space has failed. If there is another page
2557 // in the space, move to that page and allocate there. This allocation
2558 // should succeed.
2559 Page* current_page = TopPageOf(allocation_info_);
2560 if (current_page->next_page()->is_valid()) {
2561 return AllocateInNextPage(current_page, size_in_bytes);
2562 }
2563
Steve Blockd0582a62009-12-15 09:54:21 +00002564 // There is no next page in this space. Try free list allocation unless
2565 // that is currently forbidden. The fixed space free list implicitly assumes
2566 // that all free blocks are of the fixed size.
Steve Block44f0eee2011-05-26 01:26:41 +01002567 if (!heap()->linear_allocation()) {
John Reck59135872010-11-02 12:39:01 -07002568 Object* result;
2569 MaybeObject* maybe = free_list_.Allocate();
2570 if (maybe->ToObject(&result)) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002571 accounting_stats_.AllocateBytes(size_in_bytes);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002572 HeapObject* obj = HeapObject::cast(result);
2573 Page* p = Page::FromAddress(obj->address());
2574
2575 if (obj->address() >= p->AllocationWatermark()) {
2576 // There should be no hole between the allocation watermark
2577 // and allocated object address.
2578 // Memory above the allocation watermark was not swept and
2579 // might contain garbage pointers to new space.
2580 ASSERT(obj->address() == p->AllocationWatermark());
2581 p->SetAllocationWatermark(obj->address() + size_in_bytes);
2582 }
2583
2584 return obj;
Steve Blocka7e24c12009-10-30 11:49:00 +00002585 }
2586 }
2587
2588 // Free list allocation failed and there is no next page. Fail if we have
2589 // hit the old generation size limit that should cause a garbage
2590 // collection.
Steve Block44f0eee2011-05-26 01:26:41 +01002591 if (!heap()->always_allocate() &&
2592 heap()->OldGenerationAllocationLimitReached()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002593 return NULL;
2594 }
2595
2596 // Try to expand the space and allocate in the new next page.
2597 ASSERT(!current_page->next_page()->is_valid());
2598 if (Expand(current_page)) {
2599 return AllocateInNextPage(current_page, size_in_bytes);
2600 }
2601
2602 // Finally, fail.
2603 return NULL;
2604}
2605
2606
2607// Move to the next page (there is assumed to be one) and allocate there.
2608// The top of page block is always wasted, because it is too small to hold a
2609// map.
2610HeapObject* FixedSpace::AllocateInNextPage(Page* current_page,
2611 int size_in_bytes) {
2612 ASSERT(current_page->next_page()->is_valid());
Steve Block6ded16b2010-05-10 14:33:55 +01002613 ASSERT(allocation_info_.top == PageAllocationLimit(current_page));
Steve Blocka7e24c12009-10-30 11:49:00 +00002614 ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002615 Page* next_page = current_page->next_page();
2616 next_page->ClearGCFields();
2617 current_page->SetAllocationWatermark(allocation_info_.top);
Steve Blocka7e24c12009-10-30 11:49:00 +00002618 accounting_stats_.WasteBytes(page_extra_);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002619 SetAllocationInfo(&allocation_info_, next_page);
Steve Blocka7e24c12009-10-30 11:49:00 +00002620 return AllocateLinearly(&allocation_info_, size_in_bytes);
2621}
2622
2623
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002624void FixedSpace::DeallocateBlock(Address start,
2625 int size_in_bytes,
2626 bool add_to_freelist) {
2627 // Free-list elements in fixed space are assumed to have a fixed size.
2628 // We break the free block into chunks and add them to the free list
2629 // individually.
2630 int size = object_size_in_bytes();
2631 ASSERT(size_in_bytes % size == 0);
2632 Address end = start + size_in_bytes;
2633 for (Address a = start; a < end; a += size) {
2634 Free(a, add_to_freelist);
2635 }
2636}
2637
2638
Steve Blocka7e24c12009-10-30 11:49:00 +00002639#ifdef DEBUG
2640void FixedSpace::ReportStatistics() {
Ben Murdochf87a2032010-10-22 12:50:53 +01002641 int pct = static_cast<int>(Available() * 100 / Capacity());
2642 PrintF(" capacity: %" V8_PTR_PREFIX "d"
2643 ", waste: %" V8_PTR_PREFIX "d"
2644 ", available: %" V8_PTR_PREFIX "d, %%%d\n",
Steve Blocka7e24c12009-10-30 11:49:00 +00002645 Capacity(), Waste(), Available(), pct);
2646
Steve Blocka7e24c12009-10-30 11:49:00 +00002647 ClearHistograms();
2648 HeapObjectIterator obj_it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00002649 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
2650 CollectHistogramInfo(obj);
Steve Blocka7e24c12009-10-30 11:49:00 +00002651 ReportHistogram(false);
2652}
Steve Blocka7e24c12009-10-30 11:49:00 +00002653#endif
2654
2655
2656// -----------------------------------------------------------------------------
2657// MapSpace implementation
2658
2659void MapSpace::PrepareForMarkCompact(bool will_compact) {
2660 // Call prepare of the super class.
2661 FixedSpace::PrepareForMarkCompact(will_compact);
2662
2663 if (will_compact) {
2664 // Initialize map index entry.
2665 int page_count = 0;
2666 PageIterator it(this, PageIterator::ALL_PAGES);
2667 while (it.has_next()) {
2668 ASSERT_MAP_PAGE_INDEX(page_count);
2669
2670 Page* p = it.next();
2671 ASSERT(p->mc_page_index == page_count);
2672
2673 page_addresses_[page_count++] = p->address();
2674 }
2675 }
2676}
2677
2678
2679#ifdef DEBUG
2680void MapSpace::VerifyObject(HeapObject* object) {
2681 // The object should be a map or a free-list node.
2682 ASSERT(object->IsMap() || object->IsByteArray());
2683}
2684#endif
2685
2686
2687// -----------------------------------------------------------------------------
2688// GlobalPropertyCellSpace implementation
2689
2690#ifdef DEBUG
2691void CellSpace::VerifyObject(HeapObject* object) {
2692 // The object should be a global object property cell or a free-list node.
2693 ASSERT(object->IsJSGlobalPropertyCell() ||
Steve Block44f0eee2011-05-26 01:26:41 +01002694 object->map() == heap()->two_pointer_filler_map());
Steve Blocka7e24c12009-10-30 11:49:00 +00002695}
2696#endif
2697
2698
2699// -----------------------------------------------------------------------------
2700// LargeObjectIterator
2701
2702LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
2703 current_ = space->first_chunk_;
2704 size_func_ = NULL;
2705}
2706
2707
2708LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space,
2709 HeapObjectCallback size_func) {
2710 current_ = space->first_chunk_;
2711 size_func_ = size_func;
2712}
2713
2714
2715HeapObject* LargeObjectIterator::next() {
Leon Clarked91b9f72010-01-27 17:25:45 +00002716 if (current_ == NULL) return NULL;
2717
Steve Blocka7e24c12009-10-30 11:49:00 +00002718 HeapObject* object = current_->GetObject();
2719 current_ = current_->next();
2720 return object;
2721}
2722
2723
2724// -----------------------------------------------------------------------------
2725// LargeObjectChunk
2726
2727LargeObjectChunk* LargeObjectChunk::New(int size_in_bytes,
Steve Blocka7e24c12009-10-30 11:49:00 +00002728 Executability executable) {
2729 size_t requested = ChunkSizeFor(size_in_bytes);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002730 size_t size;
Steve Block44f0eee2011-05-26 01:26:41 +01002731 Isolate* isolate = Isolate::Current();
2732 void* mem = isolate->memory_allocator()->AllocateRawMemory(
2733 requested, &size, executable);
Steve Blocka7e24c12009-10-30 11:49:00 +00002734 if (mem == NULL) return NULL;
Ben Murdochb0fe1622011-05-05 13:52:32 +01002735
2736 // The start of the chunk may be overlayed with a page so we have to
2737 // make sure that the page flags fit in the size field.
2738 ASSERT((size & Page::kPageFlagMask) == 0);
2739
Steve Block44f0eee2011-05-26 01:26:41 +01002740 LOG(isolate, NewEvent("LargeObjectChunk", mem, size));
Ben Murdochb0fe1622011-05-05 13:52:32 +01002741 if (size < requested) {
Steve Block44f0eee2011-05-26 01:26:41 +01002742 isolate->memory_allocator()->FreeRawMemory(
2743 mem, size, executable);
2744 LOG(isolate, DeleteEvent("LargeObjectChunk", mem));
Steve Blocka7e24c12009-10-30 11:49:00 +00002745 return NULL;
2746 }
Ben Murdochb0fe1622011-05-05 13:52:32 +01002747
2748 ObjectSpace space = (executable == EXECUTABLE)
2749 ? kObjectSpaceCodeSpace
2750 : kObjectSpaceLoSpace;
Steve Block44f0eee2011-05-26 01:26:41 +01002751 isolate->memory_allocator()->PerformAllocationCallback(
Ben Murdochb0fe1622011-05-05 13:52:32 +01002752 space, kAllocationActionAllocate, size);
2753
2754 LargeObjectChunk* chunk = reinterpret_cast<LargeObjectChunk*>(mem);
2755 chunk->size_ = size;
Steve Block44f0eee2011-05-26 01:26:41 +01002756 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
2757 page->heap_ = isolate->heap();
Ben Murdochb0fe1622011-05-05 13:52:32 +01002758 return chunk;
Steve Blocka7e24c12009-10-30 11:49:00 +00002759}
2760
2761
2762int LargeObjectChunk::ChunkSizeFor(int size_in_bytes) {
Steve Blockd0582a62009-12-15 09:54:21 +00002763 int os_alignment = static_cast<int>(OS::AllocateAlignment());
Ben Murdochb0fe1622011-05-05 13:52:32 +01002764 if (os_alignment < Page::kPageSize) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002765 size_in_bytes += (Page::kPageSize - os_alignment);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002766 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002767 return size_in_bytes + Page::kObjectStartOffset;
2768}
2769
2770// -----------------------------------------------------------------------------
2771// LargeObjectSpace
2772
Steve Block44f0eee2011-05-26 01:26:41 +01002773LargeObjectSpace::LargeObjectSpace(Heap* heap, AllocationSpace id)
2774 : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis
Steve Blocka7e24c12009-10-30 11:49:00 +00002775 first_chunk_(NULL),
2776 size_(0),
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002777 page_count_(0),
2778 objects_size_(0) {}
Steve Blocka7e24c12009-10-30 11:49:00 +00002779
2780
2781bool LargeObjectSpace::Setup() {
2782 first_chunk_ = NULL;
2783 size_ = 0;
2784 page_count_ = 0;
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002785 objects_size_ = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +00002786 return true;
2787}
2788
2789
2790void LargeObjectSpace::TearDown() {
2791 while (first_chunk_ != NULL) {
2792 LargeObjectChunk* chunk = first_chunk_;
2793 first_chunk_ = first_chunk_->next();
Steve Block44f0eee2011-05-26 01:26:41 +01002794 LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", chunk->address()));
Steve Block791712a2010-08-27 10:21:07 +01002795 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
2796 Executability executable =
2797 page->IsPageExecutable() ? EXECUTABLE : NOT_EXECUTABLE;
Iain Merrick9ac36c92010-09-13 15:29:50 +01002798 ObjectSpace space = kObjectSpaceLoSpace;
2799 if (executable == EXECUTABLE) space = kObjectSpaceCodeSpace;
2800 size_t size = chunk->size();
Steve Block44f0eee2011-05-26 01:26:41 +01002801 heap()->isolate()->memory_allocator()->FreeRawMemory(chunk->address(),
2802 size,
2803 executable);
2804 heap()->isolate()->memory_allocator()->PerformAllocationCallback(
Iain Merrick9ac36c92010-09-13 15:29:50 +01002805 space, kAllocationActionFree, size);
Steve Blocka7e24c12009-10-30 11:49:00 +00002806 }
2807
2808 size_ = 0;
2809 page_count_ = 0;
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002810 objects_size_ = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +00002811}
2812
2813
2814#ifdef ENABLE_HEAP_PROTECTION
2815
2816void LargeObjectSpace::Protect() {
2817 LargeObjectChunk* chunk = first_chunk_;
2818 while (chunk != NULL) {
Steve Block44f0eee2011-05-26 01:26:41 +01002819 heap()->isolate()->memory_allocator()->Protect(chunk->address(),
2820 chunk->size());
Steve Blocka7e24c12009-10-30 11:49:00 +00002821 chunk = chunk->next();
2822 }
2823}
2824
2825
2826void LargeObjectSpace::Unprotect() {
2827 LargeObjectChunk* chunk = first_chunk_;
2828 while (chunk != NULL) {
2829 bool is_code = chunk->GetObject()->IsCode();
Steve Block44f0eee2011-05-26 01:26:41 +01002830 heap()->isolate()->memory_allocator()->Unprotect(chunk->address(),
2831 chunk->size(), is_code ? EXECUTABLE : NOT_EXECUTABLE);
Steve Blocka7e24c12009-10-30 11:49:00 +00002832 chunk = chunk->next();
2833 }
2834}
2835
2836#endif
2837
2838
John Reck59135872010-11-02 12:39:01 -07002839MaybeObject* LargeObjectSpace::AllocateRawInternal(int requested_size,
2840 int object_size,
2841 Executability executable) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002842 ASSERT(0 < object_size && object_size <= requested_size);
2843
2844 // Check if we want to force a GC before growing the old space further.
2845 // If so, fail the allocation.
Steve Block44f0eee2011-05-26 01:26:41 +01002846 if (!heap()->always_allocate() &&
2847 heap()->OldGenerationAllocationLimitReached()) {
Ben Murdochf87a2032010-10-22 12:50:53 +01002848 return Failure::RetryAfterGC(identity());
Steve Blocka7e24c12009-10-30 11:49:00 +00002849 }
2850
Ben Murdochb0fe1622011-05-05 13:52:32 +01002851 LargeObjectChunk* chunk = LargeObjectChunk::New(requested_size, executable);
Steve Blocka7e24c12009-10-30 11:49:00 +00002852 if (chunk == NULL) {
Ben Murdochf87a2032010-10-22 12:50:53 +01002853 return Failure::RetryAfterGC(identity());
Steve Blocka7e24c12009-10-30 11:49:00 +00002854 }
2855
Ben Murdochb0fe1622011-05-05 13:52:32 +01002856 size_ += static_cast<int>(chunk->size());
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002857 objects_size_ += requested_size;
Steve Blocka7e24c12009-10-30 11:49:00 +00002858 page_count_++;
2859 chunk->set_next(first_chunk_);
Steve Blocka7e24c12009-10-30 11:49:00 +00002860 first_chunk_ = chunk;
2861
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002862 // Initialize page header.
Steve Blocka7e24c12009-10-30 11:49:00 +00002863 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
2864 Address object_address = page->ObjectAreaStart();
Ben Murdochb0fe1622011-05-05 13:52:32 +01002865
Steve Blocka7e24c12009-10-30 11:49:00 +00002866 // Clear the low order bit of the second word in the page to flag it as a
2867 // large object page. If the chunk_size happened to be written there, its
2868 // low order bit should already be clear.
Steve Block6ded16b2010-05-10 14:33:55 +01002869 page->SetIsLargeObjectPage(true);
Steve Block791712a2010-08-27 10:21:07 +01002870 page->SetIsPageExecutable(executable);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002871 page->SetRegionMarks(Page::kAllRegionsCleanMarks);
Steve Blocka7e24c12009-10-30 11:49:00 +00002872 return HeapObject::FromAddress(object_address);
2873}
2874
2875
John Reck59135872010-11-02 12:39:01 -07002876MaybeObject* LargeObjectSpace::AllocateRawCode(int size_in_bytes) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002877 ASSERT(0 < size_in_bytes);
2878 return AllocateRawInternal(size_in_bytes,
2879 size_in_bytes,
2880 EXECUTABLE);
2881}
2882
2883
John Reck59135872010-11-02 12:39:01 -07002884MaybeObject* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002885 ASSERT(0 < size_in_bytes);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002886 return AllocateRawInternal(size_in_bytes,
Steve Blocka7e24c12009-10-30 11:49:00 +00002887 size_in_bytes,
2888 NOT_EXECUTABLE);
2889}
2890
2891
John Reck59135872010-11-02 12:39:01 -07002892MaybeObject* LargeObjectSpace::AllocateRaw(int size_in_bytes) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002893 ASSERT(0 < size_in_bytes);
2894 return AllocateRawInternal(size_in_bytes,
2895 size_in_bytes,
2896 NOT_EXECUTABLE);
2897}
2898
2899
2900// GC support
John Reck59135872010-11-02 12:39:01 -07002901MaybeObject* LargeObjectSpace::FindObject(Address a) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002902 for (LargeObjectChunk* chunk = first_chunk_;
2903 chunk != NULL;
2904 chunk = chunk->next()) {
2905 Address chunk_address = chunk->address();
2906 if (chunk_address <= a && a < chunk_address + chunk->size()) {
2907 return chunk->GetObject();
2908 }
2909 }
2910 return Failure::Exception();
2911}
2912
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002913
2914LargeObjectChunk* LargeObjectSpace::FindChunkContainingPc(Address pc) {
2915 // TODO(853): Change this implementation to only find executable
2916 // chunks and use some kind of hash-based approach to speed it up.
2917 for (LargeObjectChunk* chunk = first_chunk_;
2918 chunk != NULL;
2919 chunk = chunk->next()) {
2920 Address chunk_address = chunk->address();
2921 if (chunk_address <= pc && pc < chunk_address + chunk->size()) {
2922 return chunk;
2923 }
2924 }
2925 return NULL;
2926}
2927
2928
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002929void LargeObjectSpace::IterateDirtyRegions(ObjectSlotCallback copy_object) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002930 LargeObjectIterator it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00002931 for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002932 // We only have code, sequential strings, or fixed arrays in large
2933 // object space, and only fixed arrays can possibly contain pointers to
2934 // the young generation.
Steve Blocka7e24c12009-10-30 11:49:00 +00002935 if (object->IsFixedArray()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002936 Page* page = Page::FromAddress(object->address());
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002937 uint32_t marks = page->GetRegionMarks();
2938 uint32_t newmarks = Page::kAllRegionsCleanMarks;
Steve Blocka7e24c12009-10-30 11:49:00 +00002939
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002940 if (marks != Page::kAllRegionsCleanMarks) {
2941 // For a large page a single dirty mark corresponds to several
2942 // regions (modulo 32). So we treat a large page as a sequence of
2943 // normal pages of size Page::kPageSize having same dirty marks
2944 // and subsequently iterate dirty regions on each of these pages.
2945 Address start = object->address();
2946 Address end = page->ObjectAreaEnd();
2947 Address object_end = start + object->Size();
2948
2949 // Iterate regions of the first normal page covering object.
2950 uint32_t first_region_number = page->GetRegionNumberForAddress(start);
2951 newmarks |=
Steve Block44f0eee2011-05-26 01:26:41 +01002952 heap()->IterateDirtyRegions(marks >> first_region_number,
2953 start,
2954 end,
2955 &Heap::IteratePointersInDirtyRegion,
2956 copy_object) << first_region_number;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002957
2958 start = end;
2959 end = start + Page::kPageSize;
2960 while (end <= object_end) {
2961 // Iterate next 32 regions.
2962 newmarks |=
Steve Block44f0eee2011-05-26 01:26:41 +01002963 heap()->IterateDirtyRegions(marks,
2964 start,
2965 end,
2966 &Heap::IteratePointersInDirtyRegion,
2967 copy_object);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002968 start = end;
2969 end = start + Page::kPageSize;
2970 }
2971
2972 if (start != object_end) {
2973 // Iterate the last piece of an object which is less than
2974 // Page::kPageSize.
2975 newmarks |=
Steve Block44f0eee2011-05-26 01:26:41 +01002976 heap()->IterateDirtyRegions(marks,
2977 start,
2978 object_end,
2979 &Heap::IteratePointersInDirtyRegion,
2980 copy_object);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002981 }
2982
2983 page->SetRegionMarks(newmarks);
Steve Blocka7e24c12009-10-30 11:49:00 +00002984 }
2985 }
2986 }
2987}
2988
2989
2990void LargeObjectSpace::FreeUnmarkedObjects() {
2991 LargeObjectChunk* previous = NULL;
2992 LargeObjectChunk* current = first_chunk_;
2993 while (current != NULL) {
2994 HeapObject* object = current->GetObject();
2995 if (object->IsMarked()) {
2996 object->ClearMark();
Steve Block44f0eee2011-05-26 01:26:41 +01002997 heap()->mark_compact_collector()->tracer()->decrement_marked_count();
Steve Blocka7e24c12009-10-30 11:49:00 +00002998 previous = current;
2999 current = current->next();
3000 } else {
Steve Block791712a2010-08-27 10:21:07 +01003001 Page* page = Page::FromAddress(RoundUp(current->address(),
3002 Page::kPageSize));
3003 Executability executable =
3004 page->IsPageExecutable() ? EXECUTABLE : NOT_EXECUTABLE;
Steve Blocka7e24c12009-10-30 11:49:00 +00003005 Address chunk_address = current->address();
3006 size_t chunk_size = current->size();
3007
3008 // Cut the chunk out from the chunk list.
3009 current = current->next();
3010 if (previous == NULL) {
3011 first_chunk_ = current;
3012 } else {
3013 previous->set_next(current);
3014 }
3015
3016 // Free the chunk.
Steve Block44f0eee2011-05-26 01:26:41 +01003017 heap()->mark_compact_collector()->ReportDeleteIfNeeded(object);
Steve Block1e0659c2011-05-24 12:43:12 +01003018 LiveObjectList::ProcessNonLive(object);
3019
Steve Blockd0582a62009-12-15 09:54:21 +00003020 size_ -= static_cast<int>(chunk_size);
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08003021 objects_size_ -= object->Size();
Steve Blocka7e24c12009-10-30 11:49:00 +00003022 page_count_--;
Iain Merrick9ac36c92010-09-13 15:29:50 +01003023 ObjectSpace space = kObjectSpaceLoSpace;
3024 if (executable == EXECUTABLE) space = kObjectSpaceCodeSpace;
Steve Block44f0eee2011-05-26 01:26:41 +01003025 heap()->isolate()->memory_allocator()->FreeRawMemory(chunk_address,
3026 chunk_size,
3027 executable);
3028 heap()->isolate()->memory_allocator()->PerformAllocationCallback(
3029 space, kAllocationActionFree, size_);
3030 LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", chunk_address));
Steve Blocka7e24c12009-10-30 11:49:00 +00003031 }
3032 }
3033}
3034
3035
3036bool LargeObjectSpace::Contains(HeapObject* object) {
3037 Address address = object->address();
Steve Block44f0eee2011-05-26 01:26:41 +01003038 if (heap()->new_space()->Contains(address)) {
Steve Block6ded16b2010-05-10 14:33:55 +01003039 return false;
3040 }
Steve Blocka7e24c12009-10-30 11:49:00 +00003041 Page* page = Page::FromAddress(address);
3042
3043 SLOW_ASSERT(!page->IsLargeObjectPage()
3044 || !FindObject(address)->IsFailure());
3045
3046 return page->IsLargeObjectPage();
3047}
3048
3049
3050#ifdef DEBUG
3051// We do not assume that the large object iterator works, because it depends
3052// on the invariants we are checking during verification.
3053void LargeObjectSpace::Verify() {
3054 for (LargeObjectChunk* chunk = first_chunk_;
3055 chunk != NULL;
3056 chunk = chunk->next()) {
3057 // Each chunk contains an object that starts at the large object page's
3058 // object area start.
3059 HeapObject* object = chunk->GetObject();
3060 Page* page = Page::FromAddress(object->address());
3061 ASSERT(object->address() == page->ObjectAreaStart());
3062
3063 // The first word should be a map, and we expect all map pointers to be
3064 // in map space.
3065 Map* map = object->map();
3066 ASSERT(map->IsMap());
Steve Block44f0eee2011-05-26 01:26:41 +01003067 ASSERT(heap()->map_space()->Contains(map));
Steve Blocka7e24c12009-10-30 11:49:00 +00003068
3069 // We have only code, sequential strings, external strings
3070 // (sequential strings that have been morphed into external
3071 // strings), fixed arrays, and byte arrays in large object space.
3072 ASSERT(object->IsCode() || object->IsSeqString() ||
3073 object->IsExternalString() || object->IsFixedArray() ||
3074 object->IsByteArray());
3075
3076 // The object itself should look OK.
3077 object->Verify();
3078
3079 // Byte arrays and strings don't have interior pointers.
3080 if (object->IsCode()) {
3081 VerifyPointersVisitor code_visitor;
3082 object->IterateBody(map->instance_type(),
3083 object->Size(),
3084 &code_visitor);
3085 } else if (object->IsFixedArray()) {
3086 // We loop over fixed arrays ourselves, rather then using the visitor,
3087 // because the visitor doesn't support the start/offset iteration
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01003088 // needed for IsRegionDirty.
Steve Blocka7e24c12009-10-30 11:49:00 +00003089 FixedArray* array = FixedArray::cast(object);
3090 for (int j = 0; j < array->length(); j++) {
3091 Object* element = array->get(j);
3092 if (element->IsHeapObject()) {
3093 HeapObject* element_object = HeapObject::cast(element);
Steve Block44f0eee2011-05-26 01:26:41 +01003094 ASSERT(heap()->Contains(element_object));
Steve Blocka7e24c12009-10-30 11:49:00 +00003095 ASSERT(element_object->map()->IsMap());
Steve Block44f0eee2011-05-26 01:26:41 +01003096 if (heap()->InNewSpace(element_object)) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01003097 Address array_addr = object->address();
3098 Address element_addr = array_addr + FixedArray::kHeaderSize +
3099 j * kPointerSize;
3100
3101 ASSERT(Page::FromAddress(array_addr)->IsRegionDirty(element_addr));
Steve Blocka7e24c12009-10-30 11:49:00 +00003102 }
3103 }
3104 }
3105 }
3106 }
3107}
3108
3109
3110void LargeObjectSpace::Print() {
3111 LargeObjectIterator it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00003112 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
3113 obj->Print();
Steve Blocka7e24c12009-10-30 11:49:00 +00003114 }
3115}
3116
3117
3118void LargeObjectSpace::ReportStatistics() {
Ben Murdochf87a2032010-10-22 12:50:53 +01003119 PrintF(" size: %" V8_PTR_PREFIX "d\n", size_);
Steve Blocka7e24c12009-10-30 11:49:00 +00003120 int num_objects = 0;
3121 ClearHistograms();
3122 LargeObjectIterator it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00003123 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00003124 num_objects++;
Leon Clarked91b9f72010-01-27 17:25:45 +00003125 CollectHistogramInfo(obj);
Steve Blocka7e24c12009-10-30 11:49:00 +00003126 }
3127
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08003128 PrintF(" number of objects %d, "
3129 "size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_);
Steve Blocka7e24c12009-10-30 11:49:00 +00003130 if (num_objects > 0) ReportHistogram(false);
3131}
3132
3133
3134void LargeObjectSpace::CollectCodeStatistics() {
Steve Block44f0eee2011-05-26 01:26:41 +01003135 Isolate* isolate = heap()->isolate();
Steve Blocka7e24c12009-10-30 11:49:00 +00003136 LargeObjectIterator obj_it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00003137 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00003138 if (obj->IsCode()) {
3139 Code* code = Code::cast(obj);
Steve Block44f0eee2011-05-26 01:26:41 +01003140 isolate->code_kind_statistics()[code->kind()] += code->Size();
Steve Blocka7e24c12009-10-30 11:49:00 +00003141 }
3142 }
3143}
Steve Blocka7e24c12009-10-30 11:49:00 +00003144#endif // DEBUG
3145
3146} } // namespace v8::internal