blob: 7f00955a644fcaeeeca1be192c67a5afa7ec0b70 [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_AST_AST_H_
6#define V8_AST_AST_H_
7
8#include "src/assembler.h"
9#include "src/ast/ast-value-factory.h"
10#include "src/ast/modules.h"
11#include "src/ast/variables.h"
12#include "src/bailout-reason.h"
13#include "src/base/flags.h"
14#include "src/base/smart-pointers.h"
15#include "src/factory.h"
16#include "src/isolate.h"
17#include "src/list.h"
18#include "src/parsing/token.h"
19#include "src/runtime/runtime.h"
20#include "src/small-pointer-list.h"
21#include "src/types.h"
22#include "src/utils.h"
23
24namespace v8 {
25namespace internal {
26
27// The abstract syntax tree is an intermediate, light-weight
28// representation of the parsed JavaScript code suitable for
29// compilation to native code.
30
31// Nodes are allocated in a separate zone, which allows faster
32// allocation and constant-time deallocation of the entire syntax
33// tree.
34
35
36// ----------------------------------------------------------------------------
37// Nodes of the abstract syntax tree. Only concrete classes are
38// enumerated here.
39
40#define DECLARATION_NODE_LIST(V) \
41 V(VariableDeclaration) \
42 V(FunctionDeclaration) \
43 V(ImportDeclaration) \
44 V(ExportDeclaration)
45
46#define STATEMENT_NODE_LIST(V) \
47 V(Block) \
48 V(ExpressionStatement) \
49 V(EmptyStatement) \
50 V(SloppyBlockFunctionStatement) \
51 V(IfStatement) \
52 V(ContinueStatement) \
53 V(BreakStatement) \
54 V(ReturnStatement) \
55 V(WithStatement) \
56 V(SwitchStatement) \
57 V(DoWhileStatement) \
58 V(WhileStatement) \
59 V(ForStatement) \
60 V(ForInStatement) \
61 V(ForOfStatement) \
62 V(TryCatchStatement) \
63 V(TryFinallyStatement) \
64 V(DebuggerStatement)
65
66#define EXPRESSION_NODE_LIST(V) \
67 V(FunctionLiteral) \
68 V(ClassLiteral) \
69 V(NativeFunctionLiteral) \
70 V(Conditional) \
71 V(VariableProxy) \
72 V(Literal) \
73 V(RegExpLiteral) \
74 V(ObjectLiteral) \
75 V(ArrayLiteral) \
76 V(Assignment) \
77 V(Yield) \
78 V(Throw) \
79 V(Property) \
80 V(Call) \
81 V(CallNew) \
82 V(CallRuntime) \
83 V(UnaryOperation) \
84 V(CountOperation) \
85 V(BinaryOperation) \
86 V(CompareOperation) \
87 V(Spread) \
88 V(ThisFunction) \
89 V(SuperPropertyReference) \
90 V(SuperCallReference) \
91 V(CaseClause) \
92 V(EmptyParentheses) \
93 V(DoExpression) \
94 V(RewritableAssignmentExpression)
95
96#define AST_NODE_LIST(V) \
97 DECLARATION_NODE_LIST(V) \
98 STATEMENT_NODE_LIST(V) \
99 EXPRESSION_NODE_LIST(V)
100
101// Forward declarations
102class AstNodeFactory;
103class AstVisitor;
104class Declaration;
105class Module;
106class BreakableStatement;
107class Expression;
108class IterationStatement;
109class MaterializedLiteral;
110class Statement;
111class TypeFeedbackOracle;
112
113#define DEF_FORWARD_DECLARATION(type) class type;
114AST_NODE_LIST(DEF_FORWARD_DECLARATION)
115#undef DEF_FORWARD_DECLARATION
116
117
118// Typedef only introduced to avoid unreadable code.
119typedef ZoneList<Handle<String>> ZoneStringList;
120typedef ZoneList<Handle<Object>> ZoneObjectList;
121
122
123#define DECLARE_NODE_TYPE(type) \
124 void Accept(AstVisitor* v) override; \
125 AstNode::NodeType node_type() const final { return AstNode::k##type; } \
126 friend class AstNodeFactory;
127
128
129class FeedbackVectorSlotCache {
130 public:
131 explicit FeedbackVectorSlotCache(Zone* zone)
132 : zone_(zone),
133 hash_map_(HashMap::PointersMatch, ZoneHashMap::kDefaultHashMapCapacity,
134 ZoneAllocationPolicy(zone)) {}
135
136 void Put(Variable* variable, FeedbackVectorSlot slot) {
137 ZoneHashMap::Entry* entry = hash_map_.LookupOrInsert(
138 variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone_));
139 entry->value = reinterpret_cast<void*>(slot.ToInt());
140 }
141
142 ZoneHashMap::Entry* Get(Variable* variable) const {
143 return hash_map_.Lookup(variable, ComputePointerHash(variable));
144 }
145
146 private:
147 Zone* zone_;
148 ZoneHashMap hash_map_;
149};
150
151
152class AstProperties final BASE_EMBEDDED {
153 public:
154 enum Flag {
155 kNoFlags = 0,
156 kDontSelfOptimize = 1 << 0,
157 kDontCrankshaft = 1 << 1
158 };
159
160 typedef base::Flags<Flag> Flags;
161
162 explicit AstProperties(Zone* zone) : node_count_(0), spec_(zone) {}
163
164 Flags& flags() { return flags_; }
165 Flags flags() const { return flags_; }
166 int node_count() { return node_count_; }
167 void add_node_count(int count) { node_count_ += count; }
168
169 const FeedbackVectorSpec* get_spec() const { return &spec_; }
170 FeedbackVectorSpec* get_spec() { return &spec_; }
171
172 private:
173 Flags flags_;
174 int node_count_;
175 FeedbackVectorSpec spec_;
176};
177
178DEFINE_OPERATORS_FOR_FLAGS(AstProperties::Flags)
179
180
181class AstNode: public ZoneObject {
182 public:
183#define DECLARE_TYPE_ENUM(type) k##type,
184 enum NodeType {
185 AST_NODE_LIST(DECLARE_TYPE_ENUM)
186 kInvalid = -1
187 };
188#undef DECLARE_TYPE_ENUM
189
190 void* operator new(size_t size, Zone* zone) { return zone->New(size); }
191
192 explicit AstNode(int position): position_(position) {}
193 virtual ~AstNode() {}
194
195 virtual void Accept(AstVisitor* v) = 0;
196 virtual NodeType node_type() const = 0;
197 int position() const { return position_; }
198
199 // Type testing & conversion functions overridden by concrete subclasses.
200#define DECLARE_NODE_FUNCTIONS(type) \
201 bool Is##type() const { return node_type() == AstNode::k##type; } \
202 type* As##type() { \
203 return Is##type() ? reinterpret_cast<type*>(this) : NULL; \
204 } \
205 const type* As##type() const { \
206 return Is##type() ? reinterpret_cast<const type*>(this) : NULL; \
207 }
208 AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
209#undef DECLARE_NODE_FUNCTIONS
210
211 virtual BreakableStatement* AsBreakableStatement() { return NULL; }
212 virtual IterationStatement* AsIterationStatement() { return NULL; }
213 virtual MaterializedLiteral* AsMaterializedLiteral() { return NULL; }
214
215 // The interface for feedback slots, with default no-op implementations for
216 // node types which don't actually have this. Note that this is conceptually
217 // not really nice, but multiple inheritance would introduce yet another
218 // vtable entry per node, something we don't want for space reasons.
219 virtual void AssignFeedbackVectorSlots(Isolate* isolate,
220 FeedbackVectorSpec* spec,
221 FeedbackVectorSlotCache* cache) {}
222
223 private:
224 // Hidden to prevent accidental usage. It would have to load the
225 // current zone from the TLS.
226 void* operator new(size_t size);
227
228 friend class CaseClause; // Generates AST IDs.
229
230 int position_;
231};
232
233
234class Statement : public AstNode {
235 public:
236 explicit Statement(Zone* zone, int position) : AstNode(position) {}
237
238 bool IsEmpty() { return AsEmptyStatement() != NULL; }
239 virtual bool IsJump() const { return false; }
240 virtual void MarkTail() {}
241};
242
243
244class SmallMapList final {
245 public:
246 SmallMapList() {}
247 SmallMapList(int capacity, Zone* zone) : list_(capacity, zone) {}
248
249 void Reserve(int capacity, Zone* zone) { list_.Reserve(capacity, zone); }
250 void Clear() { list_.Clear(); }
251 void Sort() { list_.Sort(); }
252
253 bool is_empty() const { return list_.is_empty(); }
254 int length() const { return list_.length(); }
255
256 void AddMapIfMissing(Handle<Map> map, Zone* zone) {
257 if (!Map::TryUpdate(map).ToHandle(&map)) return;
258 for (int i = 0; i < length(); ++i) {
259 if (at(i).is_identical_to(map)) return;
260 }
261 Add(map, zone);
262 }
263
264 void FilterForPossibleTransitions(Map* root_map) {
265 for (int i = list_.length() - 1; i >= 0; i--) {
266 if (at(i)->FindRootMap() != root_map) {
267 list_.RemoveElement(list_.at(i));
268 }
269 }
270 }
271
272 void Add(Handle<Map> handle, Zone* zone) {
273 list_.Add(handle.location(), zone);
274 }
275
276 Handle<Map> at(int i) const {
277 return Handle<Map>(list_.at(i));
278 }
279
280 Handle<Map> first() const { return at(0); }
281 Handle<Map> last() const { return at(length() - 1); }
282
283 private:
284 // The list stores pointers to Map*, that is Map**, so it's GC safe.
285 SmallPointerList<Map*> list_;
286
287 DISALLOW_COPY_AND_ASSIGN(SmallMapList);
288};
289
290
291class Expression : public AstNode {
292 public:
293 enum Context {
294 // Not assigned a context yet, or else will not be visited during
295 // code generation.
296 kUninitialized,
297 // Evaluated for its side effects.
298 kEffect,
299 // Evaluated for its value (and side effects).
300 kValue,
301 // Evaluated for control flow (and side effects).
302 kTest
303 };
304
305 // Mark this expression as being in tail position.
306 virtual void MarkTail() {}
307
308 // True iff the expression is a valid reference expression.
309 virtual bool IsValidReferenceExpression() const { return false; }
310
311 // Helpers for ToBoolean conversion.
312 virtual bool ToBooleanIsTrue() const { return false; }
313 virtual bool ToBooleanIsFalse() const { return false; }
314
315 // Symbols that cannot be parsed as array indices are considered property
316 // names. We do not treat symbols that can be array indexes as property
317 // names because [] for string objects is handled only by keyed ICs.
318 virtual bool IsPropertyName() const { return false; }
319
320 // True iff the expression is a literal represented as a smi.
321 bool IsSmiLiteral() const;
322
323 // True iff the expression is a string literal.
324 bool IsStringLiteral() const;
325
326 // True iff the expression is the null literal.
327 bool IsNullLiteral() const;
328
329 // True if we can prove that the expression is the undefined literal.
330 bool IsUndefinedLiteral(Isolate* isolate) const;
331
332 // True iff the expression is a valid target for an assignment.
333 bool IsValidReferenceExpressionOrThis() const;
334
335 // Expression type bounds
336 Bounds bounds() const { return bounds_; }
337 void set_bounds(Bounds bounds) { bounds_ = bounds; }
338
339 // Type feedback information for assignments and properties.
340 virtual bool IsMonomorphic() {
341 UNREACHABLE();
342 return false;
343 }
344 virtual SmallMapList* GetReceiverTypes() {
345 UNREACHABLE();
346 return NULL;
347 }
348 virtual KeyedAccessStoreMode GetStoreMode() const {
349 UNREACHABLE();
350 return STANDARD_STORE;
351 }
352 virtual IcCheckType GetKeyType() const {
353 UNREACHABLE();
354 return ELEMENT;
355 }
356
357 // TODO(rossberg): this should move to its own AST node eventually.
358 virtual void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle);
359 uint16_t to_boolean_types() const {
360 return ToBooleanTypesField::decode(bit_field_);
361 }
362
363 void set_base_id(int id) { base_id_ = id; }
364 static int num_ids() { return parent_num_ids() + 2; }
365 BailoutId id() const { return BailoutId(local_id(0)); }
366 TypeFeedbackId test_id() const { return TypeFeedbackId(local_id(1)); }
367
368 // Parenthesized expressions in the form `( Expression )`.
369 void set_is_parenthesized() {
370 bit_field_ = ParenthesizedField::update(bit_field_, true);
371 }
372 bool is_parenthesized() const {
373 return ParenthesizedField::decode(bit_field_);
374 }
375
376 protected:
377 Expression(Zone* zone, int pos)
378 : AstNode(pos),
379 base_id_(BailoutId::None().ToInt()),
380 bounds_(Bounds::Unbounded()),
381 bit_field_(0) {}
382 static int parent_num_ids() { return 0; }
383 void set_to_boolean_types(uint16_t types) {
384 bit_field_ = ToBooleanTypesField::update(bit_field_, types);
385 }
386
387 int base_id() const {
388 DCHECK(!BailoutId(base_id_).IsNone());
389 return base_id_;
390 }
391
392 private:
393 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
394
395 int base_id_;
396 Bounds bounds_;
397 class ToBooleanTypesField : public BitField16<uint16_t, 0, 9> {};
398 class ParenthesizedField
399 : public BitField16<bool, ToBooleanTypesField::kNext, 1> {};
400 uint16_t bit_field_;
401 // Ends with 16-bit field; deriving classes in turn begin with
402 // 16-bit fields for optimum packing efficiency.
403};
404
405
406class BreakableStatement : public Statement {
407 public:
408 enum BreakableType {
409 TARGET_FOR_ANONYMOUS,
410 TARGET_FOR_NAMED_ONLY
411 };
412
413 // The labels associated with this statement. May be NULL;
414 // if it is != NULL, guaranteed to contain at least one entry.
415 ZoneList<const AstRawString*>* labels() const { return labels_; }
416
417 // Type testing & conversion.
418 BreakableStatement* AsBreakableStatement() final { return this; }
419
420 // Code generation
421 Label* break_target() { return &break_target_; }
422
423 // Testers.
424 bool is_target_for_anonymous() const {
425 return breakable_type_ == TARGET_FOR_ANONYMOUS;
426 }
427
428 void set_base_id(int id) { base_id_ = id; }
429 static int num_ids() { return parent_num_ids() + 2; }
430 BailoutId EntryId() const { return BailoutId(local_id(0)); }
431 BailoutId ExitId() const { return BailoutId(local_id(1)); }
432
433 protected:
434 BreakableStatement(Zone* zone, ZoneList<const AstRawString*>* labels,
435 BreakableType breakable_type, int position)
436 : Statement(zone, position),
437 labels_(labels),
438 breakable_type_(breakable_type),
439 base_id_(BailoutId::None().ToInt()) {
440 DCHECK(labels == NULL || labels->length() > 0);
441 }
442 static int parent_num_ids() { return 0; }
443
444 int base_id() const {
445 DCHECK(!BailoutId(base_id_).IsNone());
446 return base_id_;
447 }
448
449 private:
450 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
451
452 ZoneList<const AstRawString*>* labels_;
453 BreakableType breakable_type_;
454 Label break_target_;
455 int base_id_;
456};
457
458
459class Block final : public BreakableStatement {
460 public:
461 DECLARE_NODE_TYPE(Block)
462
463 ZoneList<Statement*>* statements() { return &statements_; }
464 bool ignore_completion_value() const { return ignore_completion_value_; }
465
466 static int num_ids() { return parent_num_ids() + 1; }
467 BailoutId DeclsId() const { return BailoutId(local_id(0)); }
468
469 bool IsJump() const override {
470 return !statements_.is_empty() && statements_.last()->IsJump()
471 && labels() == NULL; // Good enough as an approximation...
472 }
473
474 void MarkTail() override {
475 if (!statements_.is_empty()) statements_.last()->MarkTail();
476 }
477
478 Scope* scope() const { return scope_; }
479 void set_scope(Scope* scope) { scope_ = scope; }
480
481 protected:
482 Block(Zone* zone, ZoneList<const AstRawString*>* labels, int capacity,
483 bool ignore_completion_value, int pos)
484 : BreakableStatement(zone, labels, TARGET_FOR_NAMED_ONLY, pos),
485 statements_(capacity, zone),
486 ignore_completion_value_(ignore_completion_value),
487 scope_(NULL) {}
488 static int parent_num_ids() { return BreakableStatement::num_ids(); }
489
490 private:
491 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
492
493 ZoneList<Statement*> statements_;
494 bool ignore_completion_value_;
495 Scope* scope_;
496};
497
498
499class DoExpression final : public Expression {
500 public:
501 DECLARE_NODE_TYPE(DoExpression)
502
503 Block* block() { return block_; }
504 void set_block(Block* b) { block_ = b; }
505 VariableProxy* result() { return result_; }
506 void set_result(VariableProxy* v) { result_ = v; }
507
508 void MarkTail() override { block_->MarkTail(); }
509
510 protected:
511 DoExpression(Zone* zone, Block* block, VariableProxy* result, int pos)
512 : Expression(zone, pos), block_(block), result_(result) {
513 DCHECK_NOT_NULL(block_);
514 DCHECK_NOT_NULL(result_);
515 }
516 static int parent_num_ids() { return Expression::num_ids(); }
517
518 private:
519 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
520
521 Block* block_;
522 VariableProxy* result_;
523};
524
525
526class Declaration : public AstNode {
527 public:
528 VariableProxy* proxy() const { return proxy_; }
529 VariableMode mode() const { return mode_; }
530 Scope* scope() const { return scope_; }
531 virtual InitializationFlag initialization() const = 0;
532 virtual bool IsInlineable() const;
533
534 protected:
535 Declaration(Zone* zone, VariableProxy* proxy, VariableMode mode, Scope* scope,
536 int pos)
537 : AstNode(pos), mode_(mode), proxy_(proxy), scope_(scope) {
538 DCHECK(IsDeclaredVariableMode(mode));
539 }
540
541 private:
542 VariableMode mode_;
543 VariableProxy* proxy_;
544
545 // Nested scope from which the declaration originated.
546 Scope* scope_;
547};
548
549
550class VariableDeclaration final : public Declaration {
551 public:
552 DECLARE_NODE_TYPE(VariableDeclaration)
553
554 InitializationFlag initialization() const override {
555 return mode() == VAR ? kCreatedInitialized : kNeedsInitialization;
556 }
557
558 bool is_class_declaration() const { return is_class_declaration_; }
559
560 // VariableDeclarations can be grouped into consecutive declaration
561 // groups. Each VariableDeclaration is associated with the start position of
562 // the group it belongs to. The positions are used for strong mode scope
563 // checks for classes and functions.
564 int declaration_group_start() const { return declaration_group_start_; }
565
566 protected:
567 VariableDeclaration(Zone* zone, VariableProxy* proxy, VariableMode mode,
568 Scope* scope, int pos, bool is_class_declaration = false,
569 int declaration_group_start = -1)
570 : Declaration(zone, proxy, mode, scope, pos),
571 is_class_declaration_(is_class_declaration),
572 declaration_group_start_(declaration_group_start) {}
573
574 bool is_class_declaration_;
575 int declaration_group_start_;
576};
577
578
579class FunctionDeclaration final : public Declaration {
580 public:
581 DECLARE_NODE_TYPE(FunctionDeclaration)
582
583 FunctionLiteral* fun() const { return fun_; }
584 void set_fun(FunctionLiteral* f) { fun_ = f; }
585 InitializationFlag initialization() const override {
586 return kCreatedInitialized;
587 }
588 bool IsInlineable() const override;
589
590 protected:
591 FunctionDeclaration(Zone* zone,
592 VariableProxy* proxy,
593 VariableMode mode,
594 FunctionLiteral* fun,
595 Scope* scope,
596 int pos)
597 : Declaration(zone, proxy, mode, scope, pos),
598 fun_(fun) {
599 DCHECK(mode == VAR || mode == LET || mode == CONST);
600 DCHECK(fun != NULL);
601 }
602
603 private:
604 FunctionLiteral* fun_;
605};
606
607
608class ImportDeclaration final : public Declaration {
609 public:
610 DECLARE_NODE_TYPE(ImportDeclaration)
611
612 const AstRawString* import_name() const { return import_name_; }
613 const AstRawString* module_specifier() const { return module_specifier_; }
614 void set_module_specifier(const AstRawString* module_specifier) {
615 DCHECK(module_specifier_ == NULL);
616 module_specifier_ = module_specifier;
617 }
618 InitializationFlag initialization() const override {
619 return kNeedsInitialization;
620 }
621
622 protected:
623 ImportDeclaration(Zone* zone, VariableProxy* proxy,
624 const AstRawString* import_name,
625 const AstRawString* module_specifier, Scope* scope, int pos)
626 : Declaration(zone, proxy, IMPORT, scope, pos),
627 import_name_(import_name),
628 module_specifier_(module_specifier) {}
629
630 private:
631 const AstRawString* import_name_;
632 const AstRawString* module_specifier_;
633};
634
635
636class ExportDeclaration final : public Declaration {
637 public:
638 DECLARE_NODE_TYPE(ExportDeclaration)
639
640 InitializationFlag initialization() const override {
641 return kCreatedInitialized;
642 }
643
644 protected:
645 ExportDeclaration(Zone* zone, VariableProxy* proxy, Scope* scope, int pos)
646 : Declaration(zone, proxy, LET, scope, pos) {}
647};
648
649
650class Module : public AstNode {
651 public:
652 ModuleDescriptor* descriptor() const { return descriptor_; }
653 Block* body() const { return body_; }
654
655 protected:
656 Module(Zone* zone, int pos)
657 : AstNode(pos), descriptor_(ModuleDescriptor::New(zone)), body_(NULL) {}
658 Module(Zone* zone, ModuleDescriptor* descriptor, int pos, Block* body = NULL)
659 : AstNode(pos), descriptor_(descriptor), body_(body) {}
660
661 private:
662 ModuleDescriptor* descriptor_;
663 Block* body_;
664};
665
666
667class IterationStatement : public BreakableStatement {
668 public:
669 // Type testing & conversion.
670 IterationStatement* AsIterationStatement() final { return this; }
671
672 Statement* body() const { return body_; }
673 void set_body(Statement* s) { body_ = s; }
674
675 static int num_ids() { return parent_num_ids() + 1; }
676 BailoutId OsrEntryId() const { return BailoutId(local_id(0)); }
677 virtual BailoutId ContinueId() const = 0;
678 virtual BailoutId StackCheckId() const = 0;
679
680 // Code generation
681 Label* continue_target() { return &continue_target_; }
682
683 protected:
684 IterationStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
685 : BreakableStatement(zone, labels, TARGET_FOR_ANONYMOUS, pos),
686 body_(NULL) {}
687 static int parent_num_ids() { return BreakableStatement::num_ids(); }
688 void Initialize(Statement* body) { body_ = body; }
689
690 private:
691 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
692
693 Statement* body_;
694 Label continue_target_;
695};
696
697
698class DoWhileStatement final : public IterationStatement {
699 public:
700 DECLARE_NODE_TYPE(DoWhileStatement)
701
702 void Initialize(Expression* cond, Statement* body) {
703 IterationStatement::Initialize(body);
704 cond_ = cond;
705 }
706
707 Expression* cond() const { return cond_; }
708 void set_cond(Expression* e) { cond_ = e; }
709
710 static int num_ids() { return parent_num_ids() + 2; }
711 BailoutId ContinueId() const override { return BailoutId(local_id(0)); }
712 BailoutId StackCheckId() const override { return BackEdgeId(); }
713 BailoutId BackEdgeId() const { return BailoutId(local_id(1)); }
714
715 protected:
716 DoWhileStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
717 : IterationStatement(zone, labels, pos), cond_(NULL) {}
718 static int parent_num_ids() { return IterationStatement::num_ids(); }
719
720 private:
721 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
722
723 Expression* cond_;
724};
725
726
727class WhileStatement final : public IterationStatement {
728 public:
729 DECLARE_NODE_TYPE(WhileStatement)
730
731 void Initialize(Expression* cond, Statement* body) {
732 IterationStatement::Initialize(body);
733 cond_ = cond;
734 }
735
736 Expression* cond() const { return cond_; }
737 void set_cond(Expression* e) { cond_ = e; }
738
739 static int num_ids() { return parent_num_ids() + 1; }
740 BailoutId ContinueId() const override { return EntryId(); }
741 BailoutId StackCheckId() const override { return BodyId(); }
742 BailoutId BodyId() const { return BailoutId(local_id(0)); }
743
744 protected:
745 WhileStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
746 : IterationStatement(zone, labels, pos), cond_(NULL) {}
747 static int parent_num_ids() { return IterationStatement::num_ids(); }
748
749 private:
750 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
751
752 Expression* cond_;
753};
754
755
756class ForStatement final : public IterationStatement {
757 public:
758 DECLARE_NODE_TYPE(ForStatement)
759
760 void Initialize(Statement* init,
761 Expression* cond,
762 Statement* next,
763 Statement* body) {
764 IterationStatement::Initialize(body);
765 init_ = init;
766 cond_ = cond;
767 next_ = next;
768 }
769
770 Statement* init() const { return init_; }
771 Expression* cond() const { return cond_; }
772 Statement* next() const { return next_; }
773
774 void set_init(Statement* s) { init_ = s; }
775 void set_cond(Expression* e) { cond_ = e; }
776 void set_next(Statement* s) { next_ = s; }
777
778 static int num_ids() { return parent_num_ids() + 2; }
779 BailoutId ContinueId() const override { return BailoutId(local_id(0)); }
780 BailoutId StackCheckId() const override { return BodyId(); }
781 BailoutId BodyId() const { return BailoutId(local_id(1)); }
782
783 protected:
784 ForStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
785 : IterationStatement(zone, labels, pos),
786 init_(NULL),
787 cond_(NULL),
788 next_(NULL) {}
789 static int parent_num_ids() { return IterationStatement::num_ids(); }
790
791 private:
792 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
793
794 Statement* init_;
795 Expression* cond_;
796 Statement* next_;
797};
798
799
800class ForEachStatement : public IterationStatement {
801 public:
802 enum VisitMode {
803 ENUMERATE, // for (each in subject) body;
804 ITERATE // for (each of subject) body;
805 };
806
807 void Initialize(Expression* each, Expression* subject, Statement* body) {
808 IterationStatement::Initialize(body);
809 each_ = each;
810 subject_ = subject;
811 }
812
813 Expression* each() const { return each_; }
814 Expression* subject() const { return subject_; }
815
816 void set_each(Expression* e) { each_ = e; }
817 void set_subject(Expression* e) { subject_ = e; }
818
819 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
820 FeedbackVectorSlotCache* cache) override;
821 FeedbackVectorSlot EachFeedbackSlot() const { return each_slot_; }
822
823 protected:
824 ForEachStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
825 : IterationStatement(zone, labels, pos), each_(NULL), subject_(NULL) {}
826
827 private:
828 Expression* each_;
829 Expression* subject_;
830 FeedbackVectorSlot each_slot_;
831};
832
833
834class ForInStatement final : public ForEachStatement {
835 public:
836 DECLARE_NODE_TYPE(ForInStatement)
837
838 Expression* enumerable() const {
839 return subject();
840 }
841
842 // Type feedback information.
843 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
844 FeedbackVectorSlotCache* cache) override {
845 ForEachStatement::AssignFeedbackVectorSlots(isolate, spec, cache);
846 for_in_feedback_slot_ = spec->AddGeneralSlot();
847 }
848
849 FeedbackVectorSlot ForInFeedbackSlot() {
850 DCHECK(!for_in_feedback_slot_.IsInvalid());
851 return for_in_feedback_slot_;
852 }
853
854 enum ForInType { FAST_FOR_IN, SLOW_FOR_IN };
855 ForInType for_in_type() const { return for_in_type_; }
856 void set_for_in_type(ForInType type) { for_in_type_ = type; }
857
858 static int num_ids() { return parent_num_ids() + 6; }
859 BailoutId BodyId() const { return BailoutId(local_id(0)); }
860 BailoutId PrepareId() const { return BailoutId(local_id(1)); }
861 BailoutId EnumId() const { return BailoutId(local_id(2)); }
862 BailoutId ToObjectId() const { return BailoutId(local_id(3)); }
863 BailoutId FilterId() const { return BailoutId(local_id(4)); }
864 BailoutId AssignmentId() const { return BailoutId(local_id(5)); }
865 BailoutId ContinueId() const override { return EntryId(); }
866 BailoutId StackCheckId() const override { return BodyId(); }
867
868 protected:
869 ForInStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
870 : ForEachStatement(zone, labels, pos), for_in_type_(SLOW_FOR_IN) {}
871 static int parent_num_ids() { return ForEachStatement::num_ids(); }
872
873 private:
874 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
875
876 ForInType for_in_type_;
877 FeedbackVectorSlot for_in_feedback_slot_;
878};
879
880
881class ForOfStatement final : public ForEachStatement {
882 public:
883 DECLARE_NODE_TYPE(ForOfStatement)
884
885 void Initialize(Expression* each,
886 Expression* subject,
887 Statement* body,
888 Expression* assign_iterator,
889 Expression* next_result,
890 Expression* result_done,
891 Expression* assign_each) {
892 ForEachStatement::Initialize(each, subject, body);
893 assign_iterator_ = assign_iterator;
894 next_result_ = next_result;
895 result_done_ = result_done;
896 assign_each_ = assign_each;
897 }
898
899 Expression* iterable() const {
900 return subject();
901 }
902
903 // iterator = subject[Symbol.iterator]()
904 Expression* assign_iterator() const {
905 return assign_iterator_;
906 }
907
908 // result = iterator.next() // with type check
909 Expression* next_result() const {
910 return next_result_;
911 }
912
913 // result.done
914 Expression* result_done() const {
915 return result_done_;
916 }
917
918 // each = result.value
919 Expression* assign_each() const {
920 return assign_each_;
921 }
922
923 void set_assign_iterator(Expression* e) { assign_iterator_ = e; }
924 void set_next_result(Expression* e) { next_result_ = e; }
925 void set_result_done(Expression* e) { result_done_ = e; }
926 void set_assign_each(Expression* e) { assign_each_ = e; }
927
928 BailoutId ContinueId() const override { return EntryId(); }
929 BailoutId StackCheckId() const override { return BackEdgeId(); }
930
931 static int num_ids() { return parent_num_ids() + 1; }
932 BailoutId BackEdgeId() const { return BailoutId(local_id(0)); }
933
934 protected:
935 ForOfStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
936 : ForEachStatement(zone, labels, pos),
937 assign_iterator_(NULL),
938 next_result_(NULL),
939 result_done_(NULL),
940 assign_each_(NULL) {}
941 static int parent_num_ids() { return ForEachStatement::num_ids(); }
942
943 private:
944 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
945
946 Expression* assign_iterator_;
947 Expression* next_result_;
948 Expression* result_done_;
949 Expression* assign_each_;
950};
951
952
953class ExpressionStatement final : public Statement {
954 public:
955 DECLARE_NODE_TYPE(ExpressionStatement)
956
957 void set_expression(Expression* e) { expression_ = e; }
958 Expression* expression() const { return expression_; }
959 bool IsJump() const override { return expression_->IsThrow(); }
960 void MarkTail() override { expression_->MarkTail(); }
961
962 protected:
963 ExpressionStatement(Zone* zone, Expression* expression, int pos)
964 : Statement(zone, pos), expression_(expression) { }
965
966 private:
967 Expression* expression_;
968};
969
970
971class JumpStatement : public Statement {
972 public:
973 bool IsJump() const final { return true; }
974
975 protected:
976 explicit JumpStatement(Zone* zone, int pos) : Statement(zone, pos) {}
977};
978
979
980class ContinueStatement final : public JumpStatement {
981 public:
982 DECLARE_NODE_TYPE(ContinueStatement)
983
984 IterationStatement* target() const { return target_; }
985
986 protected:
987 explicit ContinueStatement(Zone* zone, IterationStatement* target, int pos)
988 : JumpStatement(zone, pos), target_(target) { }
989
990 private:
991 IterationStatement* target_;
992};
993
994
995class BreakStatement final : public JumpStatement {
996 public:
997 DECLARE_NODE_TYPE(BreakStatement)
998
999 BreakableStatement* target() const { return target_; }
1000
1001 protected:
1002 explicit BreakStatement(Zone* zone, BreakableStatement* target, int pos)
1003 : JumpStatement(zone, pos), target_(target) { }
1004
1005 private:
1006 BreakableStatement* target_;
1007};
1008
1009
1010class ReturnStatement final : public JumpStatement {
1011 public:
1012 DECLARE_NODE_TYPE(ReturnStatement)
1013
1014 Expression* expression() const { return expression_; }
1015
1016 void set_expression(Expression* e) { expression_ = e; }
1017
1018 protected:
1019 explicit ReturnStatement(Zone* zone, Expression* expression, int pos)
1020 : JumpStatement(zone, pos), expression_(expression) { }
1021
1022 private:
1023 Expression* expression_;
1024};
1025
1026
1027class WithStatement final : public Statement {
1028 public:
1029 DECLARE_NODE_TYPE(WithStatement)
1030
1031 Scope* scope() { return scope_; }
1032 Expression* expression() const { return expression_; }
1033 void set_expression(Expression* e) { expression_ = e; }
1034 Statement* statement() const { return statement_; }
1035 void set_statement(Statement* s) { statement_ = s; }
1036
1037 void set_base_id(int id) { base_id_ = id; }
1038 static int num_ids() { return parent_num_ids() + 2; }
1039 BailoutId ToObjectId() const { return BailoutId(local_id(0)); }
1040 BailoutId EntryId() const { return BailoutId(local_id(1)); }
1041
1042 void MarkTail() override { statement_->MarkTail(); }
1043
1044 protected:
1045 WithStatement(Zone* zone, Scope* scope, Expression* expression,
1046 Statement* statement, int pos)
1047 : Statement(zone, pos),
1048 scope_(scope),
1049 expression_(expression),
1050 statement_(statement),
1051 base_id_(BailoutId::None().ToInt()) {}
1052 static int parent_num_ids() { return 0; }
1053
1054 int base_id() const {
1055 DCHECK(!BailoutId(base_id_).IsNone());
1056 return base_id_;
1057 }
1058
1059 private:
1060 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1061
1062 Scope* scope_;
1063 Expression* expression_;
1064 Statement* statement_;
1065 int base_id_;
1066};
1067
1068
1069class CaseClause final : public Expression {
1070 public:
1071 DECLARE_NODE_TYPE(CaseClause)
1072
1073 bool is_default() const { return label_ == NULL; }
1074 Expression* label() const {
1075 CHECK(!is_default());
1076 return label_;
1077 }
1078 void set_label(Expression* e) { label_ = e; }
1079 Label* body_target() { return &body_target_; }
1080 ZoneList<Statement*>* statements() const { return statements_; }
1081
1082 static int num_ids() { return parent_num_ids() + 2; }
1083 BailoutId EntryId() const { return BailoutId(local_id(0)); }
1084 TypeFeedbackId CompareId() { return TypeFeedbackId(local_id(1)); }
1085
1086 void MarkTail() override {
1087 if (!statements_->is_empty()) statements_->last()->MarkTail();
1088 }
1089
1090 Type* compare_type() { return compare_type_; }
1091 void set_compare_type(Type* type) { compare_type_ = type; }
1092
1093 protected:
1094 static int parent_num_ids() { return Expression::num_ids(); }
1095
1096 private:
1097 CaseClause(Zone* zone, Expression* label, ZoneList<Statement*>* statements,
1098 int pos);
1099 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1100
1101 Expression* label_;
1102 Label body_target_;
1103 ZoneList<Statement*>* statements_;
1104 Type* compare_type_;
1105};
1106
1107
1108class SwitchStatement final : public BreakableStatement {
1109 public:
1110 DECLARE_NODE_TYPE(SwitchStatement)
1111
1112 void Initialize(Expression* tag, ZoneList<CaseClause*>* cases) {
1113 tag_ = tag;
1114 cases_ = cases;
1115 }
1116
1117 Expression* tag() const { return tag_; }
1118 ZoneList<CaseClause*>* cases() const { return cases_; }
1119
1120 void set_tag(Expression* t) { tag_ = t; }
1121
1122 void MarkTail() override {
1123 if (!cases_->is_empty()) cases_->last()->MarkTail();
1124 }
1125
1126 protected:
1127 SwitchStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
1128 : BreakableStatement(zone, labels, TARGET_FOR_ANONYMOUS, pos),
1129 tag_(NULL),
1130 cases_(NULL) {}
1131
1132 private:
1133 Expression* tag_;
1134 ZoneList<CaseClause*>* cases_;
1135};
1136
1137
1138// If-statements always have non-null references to their then- and
1139// else-parts. When parsing if-statements with no explicit else-part,
1140// the parser implicitly creates an empty statement. Use the
1141// HasThenStatement() and HasElseStatement() functions to check if a
1142// given if-statement has a then- or an else-part containing code.
1143class IfStatement final : public Statement {
1144 public:
1145 DECLARE_NODE_TYPE(IfStatement)
1146
1147 bool HasThenStatement() const { return !then_statement()->IsEmpty(); }
1148 bool HasElseStatement() const { return !else_statement()->IsEmpty(); }
1149
1150 Expression* condition() const { return condition_; }
1151 Statement* then_statement() const { return then_statement_; }
1152 Statement* else_statement() const { return else_statement_; }
1153
1154 void set_condition(Expression* e) { condition_ = e; }
1155 void set_then_statement(Statement* s) { then_statement_ = s; }
1156 void set_else_statement(Statement* s) { else_statement_ = s; }
1157
1158 bool IsJump() const override {
1159 return HasThenStatement() && then_statement()->IsJump()
1160 && HasElseStatement() && else_statement()->IsJump();
1161 }
1162
1163 void MarkTail() override {
1164 then_statement_->MarkTail();
1165 else_statement_->MarkTail();
1166 }
1167
1168 void set_base_id(int id) { base_id_ = id; }
1169 static int num_ids() { return parent_num_ids() + 3; }
1170 BailoutId IfId() const { return BailoutId(local_id(0)); }
1171 BailoutId ThenId() const { return BailoutId(local_id(1)); }
1172 BailoutId ElseId() const { return BailoutId(local_id(2)); }
1173
1174 protected:
1175 IfStatement(Zone* zone, Expression* condition, Statement* then_statement,
1176 Statement* else_statement, int pos)
1177 : Statement(zone, pos),
1178 condition_(condition),
1179 then_statement_(then_statement),
1180 else_statement_(else_statement),
1181 base_id_(BailoutId::None().ToInt()) {}
1182 static int parent_num_ids() { return 0; }
1183
1184 int base_id() const {
1185 DCHECK(!BailoutId(base_id_).IsNone());
1186 return base_id_;
1187 }
1188
1189 private:
1190 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1191
1192 Expression* condition_;
1193 Statement* then_statement_;
1194 Statement* else_statement_;
1195 int base_id_;
1196};
1197
1198
1199class TryStatement : public Statement {
1200 public:
1201 Block* try_block() const { return try_block_; }
1202 void set_try_block(Block* b) { try_block_ = b; }
1203
1204 void set_base_id(int id) { base_id_ = id; }
1205 static int num_ids() { return parent_num_ids() + 1; }
1206 BailoutId HandlerId() const { return BailoutId(local_id(0)); }
1207
1208 protected:
1209 TryStatement(Zone* zone, Block* try_block, int pos)
1210 : Statement(zone, pos),
1211 try_block_(try_block),
1212 base_id_(BailoutId::None().ToInt()) {}
1213 static int parent_num_ids() { return 0; }
1214
1215 int base_id() const {
1216 DCHECK(!BailoutId(base_id_).IsNone());
1217 return base_id_;
1218 }
1219
1220 private:
1221 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1222
1223 Block* try_block_;
1224 int base_id_;
1225};
1226
1227
1228class TryCatchStatement final : public TryStatement {
1229 public:
1230 DECLARE_NODE_TYPE(TryCatchStatement)
1231
1232 Scope* scope() { return scope_; }
1233 Variable* variable() { return variable_; }
1234 Block* catch_block() const { return catch_block_; }
1235 void set_catch_block(Block* b) { catch_block_ = b; }
1236
1237 void MarkTail() override { catch_block_->MarkTail(); }
1238
1239 protected:
1240 TryCatchStatement(Zone* zone, Block* try_block, Scope* scope,
1241 Variable* variable, Block* catch_block, int pos)
1242 : TryStatement(zone, try_block, pos),
1243 scope_(scope),
1244 variable_(variable),
1245 catch_block_(catch_block) {}
1246
1247 private:
1248 Scope* scope_;
1249 Variable* variable_;
1250 Block* catch_block_;
1251};
1252
1253
1254class TryFinallyStatement final : public TryStatement {
1255 public:
1256 DECLARE_NODE_TYPE(TryFinallyStatement)
1257
1258 Block* finally_block() const { return finally_block_; }
1259 void set_finally_block(Block* b) { finally_block_ = b; }
1260
1261 void MarkTail() override { finally_block_->MarkTail(); }
1262
1263 protected:
1264 TryFinallyStatement(Zone* zone, Block* try_block, Block* finally_block,
1265 int pos)
1266 : TryStatement(zone, try_block, pos), finally_block_(finally_block) {}
1267
1268 private:
1269 Block* finally_block_;
1270};
1271
1272
1273class DebuggerStatement final : public Statement {
1274 public:
1275 DECLARE_NODE_TYPE(DebuggerStatement)
1276
1277 void set_base_id(int id) { base_id_ = id; }
1278 static int num_ids() { return parent_num_ids() + 1; }
1279 BailoutId DebugBreakId() const { return BailoutId(local_id(0)); }
1280
1281 protected:
1282 explicit DebuggerStatement(Zone* zone, int pos)
1283 : Statement(zone, pos), base_id_(BailoutId::None().ToInt()) {}
1284 static int parent_num_ids() { return 0; }
1285
1286 int base_id() const {
1287 DCHECK(!BailoutId(base_id_).IsNone());
1288 return base_id_;
1289 }
1290
1291 private:
1292 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1293
1294 int base_id_;
1295};
1296
1297
1298class EmptyStatement final : public Statement {
1299 public:
1300 DECLARE_NODE_TYPE(EmptyStatement)
1301
1302 protected:
1303 explicit EmptyStatement(Zone* zone, int pos): Statement(zone, pos) {}
1304};
1305
1306
1307// Delegates to another statement, which may be overwritten.
1308// This was introduced to implement ES2015 Annex B3.3 for conditionally making
1309// sloppy-mode block-scoped functions have a var binding, which is changed
1310// from one statement to another during parsing.
1311class SloppyBlockFunctionStatement final : public Statement {
1312 public:
1313 DECLARE_NODE_TYPE(SloppyBlockFunctionStatement)
1314
1315 Statement* statement() const { return statement_; }
1316 void set_statement(Statement* statement) { statement_ = statement; }
1317 Scope* scope() const { return scope_; }
1318
1319 private:
1320 SloppyBlockFunctionStatement(Zone* zone, Statement* statement, Scope* scope)
1321 : Statement(zone, RelocInfo::kNoPosition),
1322 statement_(statement),
1323 scope_(scope) {}
1324
1325 Statement* statement_;
1326 Scope* const scope_;
1327};
1328
1329
1330class Literal final : public Expression {
1331 public:
1332 DECLARE_NODE_TYPE(Literal)
1333
1334 bool IsPropertyName() const override { return value_->IsPropertyName(); }
1335
1336 Handle<String> AsPropertyName() {
1337 DCHECK(IsPropertyName());
1338 return Handle<String>::cast(value());
1339 }
1340
1341 const AstRawString* AsRawPropertyName() {
1342 DCHECK(IsPropertyName());
1343 return value_->AsString();
1344 }
1345
1346 bool ToBooleanIsTrue() const override { return value()->BooleanValue(); }
1347 bool ToBooleanIsFalse() const override { return !value()->BooleanValue(); }
1348
1349 Handle<Object> value() const { return value_->value(); }
1350 const AstValue* raw_value() const { return value_; }
1351
1352 // Support for using Literal as a HashMap key. NOTE: Currently, this works
1353 // only for string and number literals!
1354 uint32_t Hash();
1355 static bool Match(void* literal1, void* literal2);
1356
1357 static int num_ids() { return parent_num_ids() + 1; }
1358 TypeFeedbackId LiteralFeedbackId() const {
1359 return TypeFeedbackId(local_id(0));
1360 }
1361
1362 protected:
1363 Literal(Zone* zone, const AstValue* value, int position)
1364 : Expression(zone, position), value_(value) {}
1365 static int parent_num_ids() { return Expression::num_ids(); }
1366
1367 private:
1368 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1369
1370 const AstValue* value_;
1371};
1372
1373
1374class AstLiteralReindexer;
1375
1376// Base class for literals that needs space in the corresponding JSFunction.
1377class MaterializedLiteral : public Expression {
1378 public:
1379 MaterializedLiteral* AsMaterializedLiteral() final { return this; }
1380
1381 int literal_index() { return literal_index_; }
1382
1383 int depth() const {
1384 // only callable after initialization.
1385 DCHECK(depth_ >= 1);
1386 return depth_;
1387 }
1388
1389 bool is_strong() const { return is_strong_; }
1390
1391 protected:
1392 MaterializedLiteral(Zone* zone, int literal_index, bool is_strong, int pos)
1393 : Expression(zone, pos),
1394 literal_index_(literal_index),
1395 is_simple_(false),
1396 is_strong_(is_strong),
1397 depth_(0) {}
1398
1399 // A materialized literal is simple if the values consist of only
1400 // constants and simple object and array literals.
1401 bool is_simple() const { return is_simple_; }
1402 void set_is_simple(bool is_simple) { is_simple_ = is_simple; }
1403 friend class CompileTimeValue;
1404
1405 void set_depth(int depth) {
1406 DCHECK(depth >= 1);
1407 depth_ = depth;
1408 }
1409
1410 // Populate the constant properties/elements fixed array.
1411 void BuildConstants(Isolate* isolate);
1412 friend class ArrayLiteral;
1413 friend class ObjectLiteral;
1414
1415 // If the expression is a literal, return the literal value;
1416 // if the expression is a materialized literal and is simple return a
1417 // compile time value as encoded by CompileTimeValue::GetValue().
1418 // Otherwise, return undefined literal as the placeholder
1419 // in the object literal boilerplate.
1420 Handle<Object> GetBoilerplateValue(Expression* expression, Isolate* isolate);
1421
1422 private:
1423 int literal_index_;
1424 bool is_simple_;
1425 bool is_strong_;
1426 int depth_;
1427
1428 friend class AstLiteralReindexer;
1429};
1430
1431
1432// Property is used for passing information
1433// about an object literal's properties from the parser
1434// to the code generator.
1435class ObjectLiteralProperty final : public ZoneObject {
1436 public:
1437 enum Kind {
1438 CONSTANT, // Property with constant value (compile time).
1439 COMPUTED, // Property with computed value (execution time).
1440 MATERIALIZED_LITERAL, // Property value is a materialized literal.
1441 GETTER, SETTER, // Property is an accessor function.
1442 PROTOTYPE // Property is __proto__.
1443 };
1444
1445 Expression* key() { return key_; }
1446 Expression* value() { return value_; }
1447 Kind kind() { return kind_; }
1448
1449 void set_key(Expression* e) { key_ = e; }
1450 void set_value(Expression* e) { value_ = e; }
1451
1452 // Type feedback information.
1453 bool IsMonomorphic() { return !receiver_type_.is_null(); }
1454 Handle<Map> GetReceiverType() { return receiver_type_; }
1455
1456 bool IsCompileTimeValue();
1457
1458 void set_emit_store(bool emit_store);
1459 bool emit_store();
1460
1461 bool is_static() const { return is_static_; }
1462 bool is_computed_name() const { return is_computed_name_; }
1463
1464 FeedbackVectorSlot GetSlot(int offset = 0) const {
1465 DCHECK_LT(offset, static_cast<int>(arraysize(slots_)));
1466 return slots_[offset];
1467 }
1468 void SetSlot(FeedbackVectorSlot slot, int offset = 0) {
1469 DCHECK_LT(offset, static_cast<int>(arraysize(slots_)));
1470 slots_[offset] = slot;
1471 }
1472
1473 void set_receiver_type(Handle<Map> map) { receiver_type_ = map; }
1474
1475 protected:
1476 friend class AstNodeFactory;
1477
1478 ObjectLiteralProperty(Expression* key, Expression* value, Kind kind,
1479 bool is_static, bool is_computed_name);
1480 ObjectLiteralProperty(AstValueFactory* ast_value_factory, Expression* key,
1481 Expression* value, bool is_static,
1482 bool is_computed_name);
1483
1484 private:
1485 Expression* key_;
1486 Expression* value_;
1487 FeedbackVectorSlot slots_[2];
1488 Kind kind_;
1489 bool emit_store_;
1490 bool is_static_;
1491 bool is_computed_name_;
1492 Handle<Map> receiver_type_;
1493};
1494
1495
1496// An object literal has a boilerplate object that is used
1497// for minimizing the work when constructing it at runtime.
1498class ObjectLiteral final : public MaterializedLiteral {
1499 public:
1500 typedef ObjectLiteralProperty Property;
1501
1502 DECLARE_NODE_TYPE(ObjectLiteral)
1503
1504 Handle<FixedArray> constant_properties() const {
1505 return constant_properties_;
1506 }
1507 int properties_count() const { return constant_properties_->length() / 2; }
1508 ZoneList<Property*>* properties() const { return properties_; }
1509 bool fast_elements() const { return fast_elements_; }
1510 bool may_store_doubles() const { return may_store_doubles_; }
1511 bool has_function() const { return has_function_; }
1512 bool has_elements() const { return has_elements_; }
1513
1514 // Decide if a property should be in the object boilerplate.
1515 static bool IsBoilerplateProperty(Property* property);
1516
1517 // Populate the constant properties fixed array.
1518 void BuildConstantProperties(Isolate* isolate);
1519
1520 // Mark all computed expressions that are bound to a key that
1521 // is shadowed by a later occurrence of the same key. For the
1522 // marked expressions, no store code is emitted.
1523 void CalculateEmitStore(Zone* zone);
1524
1525 // Assemble bitfield of flags for the CreateObjectLiteral helper.
1526 int ComputeFlags(bool disable_mementos = false) const {
1527 int flags = fast_elements() ? kFastElements : kNoFlags;
1528 flags |= has_function() ? kHasFunction : kNoFlags;
1529 if (depth() == 1 && !has_elements() && !may_store_doubles()) {
1530 flags |= kShallowProperties;
1531 }
1532 if (disable_mementos) {
1533 flags |= kDisableMementos;
1534 }
1535 if (is_strong()) {
1536 flags |= kIsStrong;
1537 }
1538 return flags;
1539 }
1540
1541 enum Flags {
1542 kNoFlags = 0,
1543 kFastElements = 1,
1544 kHasFunction = 1 << 1,
1545 kShallowProperties = 1 << 2,
1546 kDisableMementos = 1 << 3,
1547 kIsStrong = 1 << 4
1548 };
1549
1550 struct Accessors: public ZoneObject {
1551 Accessors() : getter(NULL), setter(NULL) {}
1552 ObjectLiteralProperty* getter;
1553 ObjectLiteralProperty* setter;
1554 };
1555
1556 BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
1557
1558 // Return an AST id for a property that is used in simulate instructions.
1559 BailoutId GetIdForPropertyName(int i) {
1560 return BailoutId(local_id(2 * i + 1));
1561 }
1562 BailoutId GetIdForPropertySet(int i) {
1563 return BailoutId(local_id(2 * i + 2));
1564 }
1565
1566 // Unlike other AST nodes, this number of bailout IDs allocated for an
1567 // ObjectLiteral can vary, so num_ids() is not a static method.
1568 int num_ids() const {
1569 return parent_num_ids() + 1 + 2 * properties()->length();
1570 }
1571
1572 // Object literals need one feedback slot for each non-trivial value, as well
1573 // as some slots for home objects.
1574 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
1575 FeedbackVectorSlotCache* cache) override;
1576
1577 protected:
1578 ObjectLiteral(Zone* zone, ZoneList<Property*>* properties, int literal_index,
1579 int boilerplate_properties, bool has_function, bool is_strong,
1580 int pos)
1581 : MaterializedLiteral(zone, literal_index, is_strong, pos),
1582 properties_(properties),
1583 boilerplate_properties_(boilerplate_properties),
1584 fast_elements_(false),
1585 has_elements_(false),
1586 may_store_doubles_(false),
1587 has_function_(has_function) {}
1588 static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
1589
1590 private:
1591 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1592 Handle<FixedArray> constant_properties_;
1593 ZoneList<Property*>* properties_;
1594 int boilerplate_properties_;
1595 bool fast_elements_;
1596 bool has_elements_;
1597 bool may_store_doubles_;
1598 bool has_function_;
1599 FeedbackVectorSlot slot_;
1600};
1601
1602
1603// A map from property names to getter/setter pairs allocated in the zone.
1604class AccessorTable : public TemplateHashMap<Literal, ObjectLiteral::Accessors,
1605 ZoneAllocationPolicy> {
1606 public:
1607 explicit AccessorTable(Zone* zone)
1608 : TemplateHashMap<Literal, ObjectLiteral::Accessors,
1609 ZoneAllocationPolicy>(Literal::Match,
1610 ZoneAllocationPolicy(zone)),
1611 zone_(zone) {}
1612
1613 Iterator lookup(Literal* literal) {
1614 Iterator it = find(literal, true, ZoneAllocationPolicy(zone_));
1615 if (it->second == NULL) it->second = new (zone_) ObjectLiteral::Accessors();
1616 return it;
1617 }
1618
1619 private:
1620 Zone* zone_;
1621};
1622
1623
1624// Node for capturing a regexp literal.
1625class RegExpLiteral final : public MaterializedLiteral {
1626 public:
1627 DECLARE_NODE_TYPE(RegExpLiteral)
1628
1629 Handle<String> pattern() const { return pattern_->string(); }
1630 int flags() const { return flags_; }
1631
1632 protected:
1633 RegExpLiteral(Zone* zone, const AstRawString* pattern, int flags,
1634 int literal_index, bool is_strong, int pos)
1635 : MaterializedLiteral(zone, literal_index, is_strong, pos),
1636 pattern_(pattern),
1637 flags_(flags) {
1638 set_depth(1);
1639 }
1640
1641 private:
1642 const AstRawString* const pattern_;
1643 int const flags_;
1644};
1645
1646
1647// An array literal has a literals object that is used
1648// for minimizing the work when constructing it at runtime.
1649class ArrayLiteral final : public MaterializedLiteral {
1650 public:
1651 DECLARE_NODE_TYPE(ArrayLiteral)
1652
1653 Handle<FixedArray> constant_elements() const { return constant_elements_; }
1654 ElementsKind constant_elements_kind() const {
1655 DCHECK_EQ(2, constant_elements_->length());
1656 return static_cast<ElementsKind>(
1657 Smi::cast(constant_elements_->get(0))->value());
1658 }
1659
1660 ZoneList<Expression*>* values() const { return values_; }
1661
1662 BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
1663
1664 // Return an AST id for an element that is used in simulate instructions.
1665 BailoutId GetIdForElement(int i) { return BailoutId(local_id(i + 1)); }
1666
1667 // Unlike other AST nodes, this number of bailout IDs allocated for an
1668 // ArrayLiteral can vary, so num_ids() is not a static method.
1669 int num_ids() const { return parent_num_ids() + 1 + values()->length(); }
1670
1671 // Populate the constant elements fixed array.
1672 void BuildConstantElements(Isolate* isolate);
1673
1674 // Assemble bitfield of flags for the CreateArrayLiteral helper.
1675 int ComputeFlags(bool disable_mementos = false) const {
1676 int flags = depth() == 1 ? kShallowElements : kNoFlags;
1677 if (disable_mementos) {
1678 flags |= kDisableMementos;
1679 }
1680 if (is_strong()) {
1681 flags |= kIsStrong;
1682 }
1683 return flags;
1684 }
1685
1686 enum Flags {
1687 kNoFlags = 0,
1688 kShallowElements = 1,
1689 kDisableMementos = 1 << 1,
1690 kIsStrong = 1 << 2
1691 };
1692
1693 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
1694 FeedbackVectorSlotCache* cache) override;
1695 FeedbackVectorSlot LiteralFeedbackSlot() const { return literal_slot_; }
1696
1697 protected:
1698 ArrayLiteral(Zone* zone, ZoneList<Expression*>* values,
1699 int first_spread_index, int literal_index, bool is_strong,
1700 int pos)
1701 : MaterializedLiteral(zone, literal_index, is_strong, pos),
1702 values_(values),
1703 first_spread_index_(first_spread_index) {}
1704 static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
1705
1706 private:
1707 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1708
1709 Handle<FixedArray> constant_elements_;
1710 ZoneList<Expression*>* values_;
1711 int first_spread_index_;
1712 FeedbackVectorSlot literal_slot_;
1713};
1714
1715
1716class VariableProxy final : public Expression {
1717 public:
1718 DECLARE_NODE_TYPE(VariableProxy)
1719
1720 bool IsValidReferenceExpression() const override {
1721 return !is_this() && !is_new_target();
1722 }
1723
1724 bool IsArguments() const { return is_resolved() && var()->is_arguments(); }
1725
1726 Handle<String> name() const { return raw_name()->string(); }
1727 const AstRawString* raw_name() const {
1728 return is_resolved() ? var_->raw_name() : raw_name_;
1729 }
1730
1731 Variable* var() const {
1732 DCHECK(is_resolved());
1733 return var_;
1734 }
1735 void set_var(Variable* v) {
1736 DCHECK(!is_resolved());
1737 DCHECK_NOT_NULL(v);
1738 var_ = v;
1739 }
1740
1741 bool is_this() const { return IsThisField::decode(bit_field_); }
1742
1743 bool is_assigned() const { return IsAssignedField::decode(bit_field_); }
1744 void set_is_assigned() {
1745 bit_field_ = IsAssignedField::update(bit_field_, true);
1746 }
1747
1748 bool is_resolved() const { return IsResolvedField::decode(bit_field_); }
1749 void set_is_resolved() {
1750 bit_field_ = IsResolvedField::update(bit_field_, true);
1751 }
1752
1753 bool is_new_target() const { return IsNewTargetField::decode(bit_field_); }
1754 void set_is_new_target() {
1755 bit_field_ = IsNewTargetField::update(bit_field_, true);
1756 }
1757
1758 int end_position() const { return end_position_; }
1759
1760 // Bind this proxy to the variable var.
1761 void BindTo(Variable* var);
1762
1763 bool UsesVariableFeedbackSlot() const {
1764 return var()->IsUnallocated() || var()->IsLookupSlot();
1765 }
1766
1767 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
1768 FeedbackVectorSlotCache* cache) override;
1769
1770 FeedbackVectorSlot VariableFeedbackSlot() { return variable_feedback_slot_; }
1771
1772 static int num_ids() { return parent_num_ids() + 1; }
1773 BailoutId BeforeId() const { return BailoutId(local_id(0)); }
1774
1775 protected:
1776 VariableProxy(Zone* zone, Variable* var, int start_position,
1777 int end_position);
1778
1779 VariableProxy(Zone* zone, const AstRawString* name,
1780 Variable::Kind variable_kind, int start_position,
1781 int end_position);
1782 static int parent_num_ids() { return Expression::num_ids(); }
1783 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1784
1785 class IsThisField : public BitField8<bool, 0, 1> {};
1786 class IsAssignedField : public BitField8<bool, 1, 1> {};
1787 class IsResolvedField : public BitField8<bool, 2, 1> {};
1788 class IsNewTargetField : public BitField8<bool, 3, 1> {};
1789
1790 // Start with 16-bit (or smaller) field, which should get packed together
1791 // with Expression's trailing 16-bit field.
1792 uint8_t bit_field_;
1793 FeedbackVectorSlot variable_feedback_slot_;
1794 union {
1795 const AstRawString* raw_name_; // if !is_resolved_
1796 Variable* var_; // if is_resolved_
1797 };
1798 // Position is stored in the AstNode superclass, but VariableProxy needs to
1799 // know its end position too (for error messages). It cannot be inferred from
1800 // the variable name length because it can contain escapes.
1801 int end_position_;
1802};
1803
1804
1805// Left-hand side can only be a property, a global or a (parameter or local)
1806// slot.
1807enum LhsKind {
1808 VARIABLE,
1809 NAMED_PROPERTY,
1810 KEYED_PROPERTY,
1811 NAMED_SUPER_PROPERTY,
1812 KEYED_SUPER_PROPERTY
1813};
1814
1815
1816class Property final : public Expression {
1817 public:
1818 DECLARE_NODE_TYPE(Property)
1819
1820 bool IsValidReferenceExpression() const override { return true; }
1821
1822 Expression* obj() const { return obj_; }
1823 Expression* key() const { return key_; }
1824
1825 void set_obj(Expression* e) { obj_ = e; }
1826 void set_key(Expression* e) { key_ = e; }
1827
1828 static int num_ids() { return parent_num_ids() + 1; }
1829 BailoutId LoadId() const { return BailoutId(local_id(0)); }
1830
1831 bool IsStringAccess() const {
1832 return IsStringAccessField::decode(bit_field_);
1833 }
1834
1835 // Type feedback information.
1836 bool IsMonomorphic() override { return receiver_types_.length() == 1; }
1837 SmallMapList* GetReceiverTypes() override { return &receiver_types_; }
1838 KeyedAccessStoreMode GetStoreMode() const override { return STANDARD_STORE; }
1839 IcCheckType GetKeyType() const override {
1840 return KeyTypeField::decode(bit_field_);
1841 }
1842 bool IsUninitialized() const {
1843 return !is_for_call() && HasNoTypeInformation();
1844 }
1845 bool HasNoTypeInformation() const {
1846 return GetInlineCacheState() == UNINITIALIZED;
1847 }
1848 InlineCacheState GetInlineCacheState() const {
1849 return InlineCacheStateField::decode(bit_field_);
1850 }
1851 void set_is_string_access(bool b) {
1852 bit_field_ = IsStringAccessField::update(bit_field_, b);
1853 }
1854 void set_key_type(IcCheckType key_type) {
1855 bit_field_ = KeyTypeField::update(bit_field_, key_type);
1856 }
1857 void set_inline_cache_state(InlineCacheState state) {
1858 bit_field_ = InlineCacheStateField::update(bit_field_, state);
1859 }
1860 void mark_for_call() {
1861 bit_field_ = IsForCallField::update(bit_field_, true);
1862 }
1863 bool is_for_call() const { return IsForCallField::decode(bit_field_); }
1864
1865 bool IsSuperAccess() { return obj()->IsSuperPropertyReference(); }
1866
1867 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
1868 FeedbackVectorSlotCache* cache) override {
1869 FeedbackVectorSlotKind kind = key()->IsPropertyName()
1870 ? FeedbackVectorSlotKind::LOAD_IC
1871 : FeedbackVectorSlotKind::KEYED_LOAD_IC;
1872 property_feedback_slot_ = spec->AddSlot(kind);
1873 }
1874
1875 FeedbackVectorSlot PropertyFeedbackSlot() const {
1876 return property_feedback_slot_;
1877 }
1878
1879 static LhsKind GetAssignType(Property* property) {
1880 if (property == NULL) return VARIABLE;
1881 bool super_access = property->IsSuperAccess();
1882 return (property->key()->IsPropertyName())
1883 ? (super_access ? NAMED_SUPER_PROPERTY : NAMED_PROPERTY)
1884 : (super_access ? KEYED_SUPER_PROPERTY : KEYED_PROPERTY);
1885 }
1886
1887 protected:
1888 Property(Zone* zone, Expression* obj, Expression* key, int pos)
1889 : Expression(zone, pos),
1890 bit_field_(IsForCallField::encode(false) |
1891 IsStringAccessField::encode(false) |
1892 InlineCacheStateField::encode(UNINITIALIZED)),
1893 obj_(obj),
1894 key_(key) {}
1895 static int parent_num_ids() { return Expression::num_ids(); }
1896
1897 private:
1898 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1899
1900 class IsForCallField : public BitField8<bool, 0, 1> {};
1901 class IsStringAccessField : public BitField8<bool, 1, 1> {};
1902 class KeyTypeField : public BitField8<IcCheckType, 2, 1> {};
1903 class InlineCacheStateField : public BitField8<InlineCacheState, 3, 4> {};
1904 uint8_t bit_field_;
1905 FeedbackVectorSlot property_feedback_slot_;
1906 Expression* obj_;
1907 Expression* key_;
1908 SmallMapList receiver_types_;
1909};
1910
1911
1912class Call final : public Expression {
1913 public:
1914 DECLARE_NODE_TYPE(Call)
1915
1916 Expression* expression() const { return expression_; }
1917 ZoneList<Expression*>* arguments() const { return arguments_; }
1918
1919 void set_expression(Expression* e) { expression_ = e; }
1920
1921 // Type feedback information.
1922 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
1923 FeedbackVectorSlotCache* cache) override;
1924
1925 FeedbackVectorSlot CallFeedbackSlot() const { return stub_slot_; }
1926
1927 FeedbackVectorSlot CallFeedbackICSlot() const { return ic_slot_; }
1928
1929 SmallMapList* GetReceiverTypes() override {
1930 if (expression()->IsProperty()) {
1931 return expression()->AsProperty()->GetReceiverTypes();
1932 }
1933 return NULL;
1934 }
1935
1936 bool IsMonomorphic() override {
1937 if (expression()->IsProperty()) {
1938 return expression()->AsProperty()->IsMonomorphic();
1939 }
1940 return !target_.is_null();
1941 }
1942
1943 bool global_call() const {
1944 VariableProxy* proxy = expression_->AsVariableProxy();
1945 return proxy != NULL && proxy->var()->IsUnallocatedOrGlobalSlot();
1946 }
1947
1948 bool known_global_function() const {
1949 return global_call() && !target_.is_null();
1950 }
1951
1952 Handle<JSFunction> target() { return target_; }
1953
1954 Handle<AllocationSite> allocation_site() { return allocation_site_; }
1955
1956 void SetKnownGlobalTarget(Handle<JSFunction> target) {
1957 target_ = target;
1958 set_is_uninitialized(false);
1959 }
1960 void set_target(Handle<JSFunction> target) { target_ = target; }
1961 void set_allocation_site(Handle<AllocationSite> site) {
1962 allocation_site_ = site;
1963 }
1964
1965 static int num_ids() { return parent_num_ids() + 4; }
1966 BailoutId ReturnId() const { return BailoutId(local_id(0)); }
1967 BailoutId EvalId() const { return BailoutId(local_id(1)); }
1968 BailoutId LookupId() const { return BailoutId(local_id(2)); }
1969 BailoutId CallId() const { return BailoutId(local_id(3)); }
1970
1971 bool is_uninitialized() const {
1972 return IsUninitializedField::decode(bit_field_);
1973 }
1974 void set_is_uninitialized(bool b) {
1975 bit_field_ = IsUninitializedField::update(bit_field_, b);
1976 }
1977
1978 bool is_tail() const { return IsTailField::decode(bit_field_); }
1979 void MarkTail() override {
1980 bit_field_ = IsTailField::update(bit_field_, true);
1981 }
1982
1983 enum CallType {
1984 POSSIBLY_EVAL_CALL,
1985 GLOBAL_CALL,
1986 LOOKUP_SLOT_CALL,
1987 NAMED_PROPERTY_CALL,
1988 KEYED_PROPERTY_CALL,
1989 NAMED_SUPER_PROPERTY_CALL,
1990 KEYED_SUPER_PROPERTY_CALL,
1991 SUPER_CALL,
1992 OTHER_CALL
1993 };
1994
1995 // Helpers to determine how to handle the call.
1996 CallType GetCallType(Isolate* isolate) const;
1997 bool IsUsingCallFeedbackSlot(Isolate* isolate) const;
1998 bool IsUsingCallFeedbackICSlot(Isolate* isolate) const;
1999
2000#ifdef DEBUG
2001 // Used to assert that the FullCodeGenerator records the return site.
2002 bool return_is_recorded_;
2003#endif
2004
2005 protected:
2006 Call(Zone* zone, Expression* expression, ZoneList<Expression*>* arguments,
2007 int pos)
2008 : Expression(zone, pos),
2009 expression_(expression),
2010 arguments_(arguments),
2011 bit_field_(IsUninitializedField::encode(false)) {
2012 if (expression->IsProperty()) {
2013 expression->AsProperty()->mark_for_call();
2014 }
2015 }
2016 static int parent_num_ids() { return Expression::num_ids(); }
2017
2018 private:
2019 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2020
2021 FeedbackVectorSlot ic_slot_;
2022 FeedbackVectorSlot stub_slot_;
2023 Expression* expression_;
2024 ZoneList<Expression*>* arguments_;
2025 Handle<JSFunction> target_;
2026 Handle<AllocationSite> allocation_site_;
2027 class IsUninitializedField : public BitField8<bool, 0, 1> {};
2028 class IsTailField : public BitField8<bool, 1, 1> {};
2029 uint8_t bit_field_;
2030};
2031
2032
2033class CallNew final : public Expression {
2034 public:
2035 DECLARE_NODE_TYPE(CallNew)
2036
2037 Expression* expression() const { return expression_; }
2038 ZoneList<Expression*>* arguments() const { return arguments_; }
2039
2040 void set_expression(Expression* e) { expression_ = e; }
2041
2042 // Type feedback information.
2043 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
2044 FeedbackVectorSlotCache* cache) override {
2045 callnew_feedback_slot_ = spec->AddGeneralSlot();
2046 }
2047
2048 FeedbackVectorSlot CallNewFeedbackSlot() {
2049 DCHECK(!callnew_feedback_slot_.IsInvalid());
2050 return callnew_feedback_slot_;
2051 }
2052
2053 bool IsMonomorphic() override { return is_monomorphic_; }
2054 Handle<JSFunction> target() const { return target_; }
2055 Handle<AllocationSite> allocation_site() const {
2056 return allocation_site_;
2057 }
2058
2059 static int num_ids() { return parent_num_ids() + 1; }
2060 static int feedback_slots() { return 1; }
2061 BailoutId ReturnId() const { return BailoutId(local_id(0)); }
2062
2063 void set_allocation_site(Handle<AllocationSite> site) {
2064 allocation_site_ = site;
2065 }
2066 void set_is_monomorphic(bool monomorphic) { is_monomorphic_ = monomorphic; }
2067 void set_target(Handle<JSFunction> target) { target_ = target; }
2068 void SetKnownGlobalTarget(Handle<JSFunction> target) {
2069 target_ = target;
2070 is_monomorphic_ = true;
2071 }
2072
2073 protected:
2074 CallNew(Zone* zone, Expression* expression, ZoneList<Expression*>* arguments,
2075 int pos)
2076 : Expression(zone, pos),
2077 expression_(expression),
2078 arguments_(arguments),
2079 is_monomorphic_(false) {}
2080
2081 static int parent_num_ids() { return Expression::num_ids(); }
2082
2083 private:
2084 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2085
2086 Expression* expression_;
2087 ZoneList<Expression*>* arguments_;
2088 bool is_monomorphic_;
2089 Handle<JSFunction> target_;
2090 Handle<AllocationSite> allocation_site_;
2091 FeedbackVectorSlot callnew_feedback_slot_;
2092};
2093
2094
2095// The CallRuntime class does not represent any official JavaScript
2096// language construct. Instead it is used to call a C or JS function
2097// with a set of arguments. This is used from the builtins that are
2098// implemented in JavaScript (see "v8natives.js").
2099class CallRuntime final : public Expression {
2100 public:
2101 DECLARE_NODE_TYPE(CallRuntime)
2102
2103 ZoneList<Expression*>* arguments() const { return arguments_; }
2104 bool is_jsruntime() const { return function_ == NULL; }
2105
2106 int context_index() const {
2107 DCHECK(is_jsruntime());
2108 return context_index_;
2109 }
2110 const Runtime::Function* function() const {
2111 DCHECK(!is_jsruntime());
2112 return function_;
2113 }
2114
2115 static int num_ids() { return parent_num_ids() + 1; }
2116 BailoutId CallId() { return BailoutId(local_id(0)); }
2117
2118 const char* debug_name() {
2119 return is_jsruntime() ? "(context function)" : function_->name;
2120 }
2121
2122 protected:
2123 CallRuntime(Zone* zone, const Runtime::Function* function,
2124 ZoneList<Expression*>* arguments, int pos)
2125 : Expression(zone, pos), function_(function), arguments_(arguments) {}
2126
2127 CallRuntime(Zone* zone, int context_index, ZoneList<Expression*>* arguments,
2128 int pos)
2129 : Expression(zone, pos),
2130 function_(NULL),
2131 context_index_(context_index),
2132 arguments_(arguments) {}
2133
2134 static int parent_num_ids() { return Expression::num_ids(); }
2135
2136 private:
2137 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2138
2139 const Runtime::Function* function_;
2140 int context_index_;
2141 ZoneList<Expression*>* arguments_;
2142};
2143
2144
2145class UnaryOperation final : public Expression {
2146 public:
2147 DECLARE_NODE_TYPE(UnaryOperation)
2148
2149 Token::Value op() const { return op_; }
2150 Expression* expression() const { return expression_; }
2151 void set_expression(Expression* e) { expression_ = e; }
2152
2153 // For unary not (Token::NOT), the AST ids where true and false will
2154 // actually be materialized, respectively.
2155 static int num_ids() { return parent_num_ids() + 2; }
2156 BailoutId MaterializeTrueId() const { return BailoutId(local_id(0)); }
2157 BailoutId MaterializeFalseId() const { return BailoutId(local_id(1)); }
2158
2159 void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) override;
2160
2161 protected:
2162 UnaryOperation(Zone* zone, Token::Value op, Expression* expression, int pos)
2163 : Expression(zone, pos), op_(op), expression_(expression) {
2164 DCHECK(Token::IsUnaryOp(op));
2165 }
2166 static int parent_num_ids() { return Expression::num_ids(); }
2167
2168 private:
2169 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2170
2171 Token::Value op_;
2172 Expression* expression_;
2173};
2174
2175
2176class BinaryOperation final : public Expression {
2177 public:
2178 DECLARE_NODE_TYPE(BinaryOperation)
2179
2180 Token::Value op() const { return static_cast<Token::Value>(op_); }
2181 Expression* left() const { return left_; }
2182 void set_left(Expression* e) { left_ = e; }
2183 Expression* right() const { return right_; }
2184 void set_right(Expression* e) { right_ = e; }
2185 Handle<AllocationSite> allocation_site() const { return allocation_site_; }
2186 void set_allocation_site(Handle<AllocationSite> allocation_site) {
2187 allocation_site_ = allocation_site;
2188 }
2189
2190 void MarkTail() override {
2191 switch (op()) {
2192 case Token::COMMA:
2193 case Token::AND:
2194 case Token::OR:
2195 right_->MarkTail();
2196 default:
2197 break;
2198 }
2199 }
2200
2201 // The short-circuit logical operations need an AST ID for their
2202 // right-hand subexpression.
2203 static int num_ids() { return parent_num_ids() + 2; }
2204 BailoutId RightId() const { return BailoutId(local_id(0)); }
2205
2206 TypeFeedbackId BinaryOperationFeedbackId() const {
2207 return TypeFeedbackId(local_id(1));
2208 }
2209 Maybe<int> fixed_right_arg() const {
2210 return has_fixed_right_arg_ ? Just(fixed_right_arg_value_) : Nothing<int>();
2211 }
2212 void set_fixed_right_arg(Maybe<int> arg) {
2213 has_fixed_right_arg_ = arg.IsJust();
2214 if (arg.IsJust()) fixed_right_arg_value_ = arg.FromJust();
2215 }
2216
2217 void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) override;
2218
2219 protected:
2220 BinaryOperation(Zone* zone, Token::Value op, Expression* left,
2221 Expression* right, int pos)
2222 : Expression(zone, pos),
2223 op_(static_cast<byte>(op)),
2224 has_fixed_right_arg_(false),
2225 fixed_right_arg_value_(0),
2226 left_(left),
2227 right_(right) {
2228 DCHECK(Token::IsBinaryOp(op));
2229 }
2230 static int parent_num_ids() { return Expression::num_ids(); }
2231
2232 private:
2233 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2234
2235 const byte op_; // actually Token::Value
2236 // TODO(rossberg): the fixed arg should probably be represented as a Constant
2237 // type for the RHS. Currenty it's actually a Maybe<int>
2238 bool has_fixed_right_arg_;
2239 int fixed_right_arg_value_;
2240 Expression* left_;
2241 Expression* right_;
2242 Handle<AllocationSite> allocation_site_;
2243};
2244
2245
2246class CountOperation final : public Expression {
2247 public:
2248 DECLARE_NODE_TYPE(CountOperation)
2249
2250 bool is_prefix() const { return IsPrefixField::decode(bit_field_); }
2251 bool is_postfix() const { return !is_prefix(); }
2252
2253 Token::Value op() const { return TokenField::decode(bit_field_); }
2254 Token::Value binary_op() {
2255 return (op() == Token::INC) ? Token::ADD : Token::SUB;
2256 }
2257
2258 Expression* expression() const { return expression_; }
2259 void set_expression(Expression* e) { expression_ = e; }
2260
2261 bool IsMonomorphic() override { return receiver_types_.length() == 1; }
2262 SmallMapList* GetReceiverTypes() override { return &receiver_types_; }
2263 IcCheckType GetKeyType() const override {
2264 return KeyTypeField::decode(bit_field_);
2265 }
2266 KeyedAccessStoreMode GetStoreMode() const override {
2267 return StoreModeField::decode(bit_field_);
2268 }
2269 Type* type() const { return type_; }
2270 void set_key_type(IcCheckType type) {
2271 bit_field_ = KeyTypeField::update(bit_field_, type);
2272 }
2273 void set_store_mode(KeyedAccessStoreMode mode) {
2274 bit_field_ = StoreModeField::update(bit_field_, mode);
2275 }
2276 void set_type(Type* type) { type_ = type; }
2277
2278 static int num_ids() { return parent_num_ids() + 4; }
2279 BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
2280 BailoutId ToNumberId() const { return BailoutId(local_id(1)); }
2281 TypeFeedbackId CountBinOpFeedbackId() const {
2282 return TypeFeedbackId(local_id(2));
2283 }
2284 TypeFeedbackId CountStoreFeedbackId() const {
2285 return TypeFeedbackId(local_id(3));
2286 }
2287
2288 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
2289 FeedbackVectorSlotCache* cache) override;
2290 FeedbackVectorSlot CountSlot() const { return slot_; }
2291
2292 protected:
2293 CountOperation(Zone* zone, Token::Value op, bool is_prefix, Expression* expr,
2294 int pos)
2295 : Expression(zone, pos),
2296 bit_field_(
2297 IsPrefixField::encode(is_prefix) | KeyTypeField::encode(ELEMENT) |
2298 StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op)),
2299 type_(NULL),
2300 expression_(expr) {}
2301 static int parent_num_ids() { return Expression::num_ids(); }
2302
2303 private:
2304 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2305
2306 class IsPrefixField : public BitField16<bool, 0, 1> {};
2307 class KeyTypeField : public BitField16<IcCheckType, 1, 1> {};
2308 class StoreModeField : public BitField16<KeyedAccessStoreMode, 2, 3> {};
2309 class TokenField : public BitField16<Token::Value, 5, 8> {};
2310
2311 // Starts with 16-bit field, which should get packed together with
2312 // Expression's trailing 16-bit field.
2313 uint16_t bit_field_;
2314 Type* type_;
2315 Expression* expression_;
2316 SmallMapList receiver_types_;
2317 FeedbackVectorSlot slot_;
2318};
2319
2320
2321class CompareOperation final : public Expression {
2322 public:
2323 DECLARE_NODE_TYPE(CompareOperation)
2324
2325 Token::Value op() const { return op_; }
2326 Expression* left() const { return left_; }
2327 Expression* right() const { return right_; }
2328
2329 void set_left(Expression* e) { left_ = e; }
2330 void set_right(Expression* e) { right_ = e; }
2331
2332 // Type feedback information.
2333 static int num_ids() { return parent_num_ids() + 1; }
2334 TypeFeedbackId CompareOperationFeedbackId() const {
2335 return TypeFeedbackId(local_id(0));
2336 }
2337 Type* combined_type() const { return combined_type_; }
2338 void set_combined_type(Type* type) { combined_type_ = type; }
2339
2340 // Match special cases.
2341 bool IsLiteralCompareTypeof(Expression** expr, Handle<String>* check);
2342 bool IsLiteralCompareUndefined(Expression** expr, Isolate* isolate);
2343 bool IsLiteralCompareNull(Expression** expr);
2344
2345 protected:
2346 CompareOperation(Zone* zone, Token::Value op, Expression* left,
2347 Expression* right, int pos)
2348 : Expression(zone, pos),
2349 op_(op),
2350 left_(left),
2351 right_(right),
2352 combined_type_(Type::None(zone)) {
2353 DCHECK(Token::IsCompareOp(op));
2354 }
2355 static int parent_num_ids() { return Expression::num_ids(); }
2356
2357 private:
2358 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2359
2360 Token::Value op_;
2361 Expression* left_;
2362 Expression* right_;
2363
2364 Type* combined_type_;
2365};
2366
2367
2368class Spread final : public Expression {
2369 public:
2370 DECLARE_NODE_TYPE(Spread)
2371
2372 Expression* expression() const { return expression_; }
2373 void set_expression(Expression* e) { expression_ = e; }
2374
2375 static int num_ids() { return parent_num_ids(); }
2376
2377 protected:
2378 Spread(Zone* zone, Expression* expression, int pos)
2379 : Expression(zone, pos), expression_(expression) {}
2380 static int parent_num_ids() { return Expression::num_ids(); }
2381
2382 private:
2383 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2384
2385 Expression* expression_;
2386};
2387
2388
2389class Conditional final : public Expression {
2390 public:
2391 DECLARE_NODE_TYPE(Conditional)
2392
2393 Expression* condition() const { return condition_; }
2394 Expression* then_expression() const { return then_expression_; }
2395 Expression* else_expression() const { return else_expression_; }
2396
2397 void set_condition(Expression* e) { condition_ = e; }
2398 void set_then_expression(Expression* e) { then_expression_ = e; }
2399 void set_else_expression(Expression* e) { else_expression_ = e; }
2400
2401 void MarkTail() override {
2402 then_expression_->MarkTail();
2403 else_expression_->MarkTail();
2404 }
2405
2406 static int num_ids() { return parent_num_ids() + 2; }
2407 BailoutId ThenId() const { return BailoutId(local_id(0)); }
2408 BailoutId ElseId() const { return BailoutId(local_id(1)); }
2409
2410 protected:
2411 Conditional(Zone* zone, Expression* condition, Expression* then_expression,
2412 Expression* else_expression, int position)
2413 : Expression(zone, position),
2414 condition_(condition),
2415 then_expression_(then_expression),
2416 else_expression_(else_expression) {}
2417 static int parent_num_ids() { return Expression::num_ids(); }
2418
2419 private:
2420 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2421
2422 Expression* condition_;
2423 Expression* then_expression_;
2424 Expression* else_expression_;
2425};
2426
2427
2428class Assignment final : public Expression {
2429 public:
2430 DECLARE_NODE_TYPE(Assignment)
2431
2432 Assignment* AsSimpleAssignment() { return !is_compound() ? this : NULL; }
2433
2434 Token::Value binary_op() const;
2435
2436 Token::Value op() const { return TokenField::decode(bit_field_); }
2437 Expression* target() const { return target_; }
2438 Expression* value() const { return value_; }
2439
2440 void set_target(Expression* e) { target_ = e; }
2441 void set_value(Expression* e) { value_ = e; }
2442
2443 BinaryOperation* binary_operation() const { return binary_operation_; }
2444
2445 // This check relies on the definition order of token in token.h.
2446 bool is_compound() const { return op() > Token::ASSIGN; }
2447
2448 static int num_ids() { return parent_num_ids() + 2; }
2449 BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
2450
2451 // Type feedback information.
2452 TypeFeedbackId AssignmentFeedbackId() { return TypeFeedbackId(local_id(1)); }
2453 bool IsMonomorphic() override { return receiver_types_.length() == 1; }
2454 bool IsUninitialized() const {
2455 return IsUninitializedField::decode(bit_field_);
2456 }
2457 bool HasNoTypeInformation() {
2458 return IsUninitializedField::decode(bit_field_);
2459 }
2460 SmallMapList* GetReceiverTypes() override { return &receiver_types_; }
2461 IcCheckType GetKeyType() const override {
2462 return KeyTypeField::decode(bit_field_);
2463 }
2464 KeyedAccessStoreMode GetStoreMode() const override {
2465 return StoreModeField::decode(bit_field_);
2466 }
2467 void set_is_uninitialized(bool b) {
2468 bit_field_ = IsUninitializedField::update(bit_field_, b);
2469 }
2470 void set_key_type(IcCheckType key_type) {
2471 bit_field_ = KeyTypeField::update(bit_field_, key_type);
2472 }
2473 void set_store_mode(KeyedAccessStoreMode mode) {
2474 bit_field_ = StoreModeField::update(bit_field_, mode);
2475 }
2476
2477 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
2478 FeedbackVectorSlotCache* cache) override;
2479 FeedbackVectorSlot AssignmentSlot() const { return slot_; }
2480
2481 protected:
2482 Assignment(Zone* zone, Token::Value op, Expression* target, Expression* value,
2483 int pos);
2484 static int parent_num_ids() { return Expression::num_ids(); }
2485
2486 private:
2487 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2488
2489 class IsUninitializedField : public BitField16<bool, 0, 1> {};
2490 class KeyTypeField
2491 : public BitField16<IcCheckType, IsUninitializedField::kNext, 1> {};
2492 class StoreModeField
2493 : public BitField16<KeyedAccessStoreMode, KeyTypeField::kNext, 3> {};
2494 class TokenField : public BitField16<Token::Value, StoreModeField::kNext, 8> {
2495 };
2496
2497 // Starts with 16-bit field, which should get packed together with
2498 // Expression's trailing 16-bit field.
2499 uint16_t bit_field_;
2500 Expression* target_;
2501 Expression* value_;
2502 BinaryOperation* binary_operation_;
2503 SmallMapList receiver_types_;
2504 FeedbackVectorSlot slot_;
2505};
2506
2507
2508class RewritableAssignmentExpression : public Expression {
2509 public:
2510 DECLARE_NODE_TYPE(RewritableAssignmentExpression)
2511
2512 Expression* expression() { return expr_; }
2513 bool is_rewritten() const { return is_rewritten_; }
2514
2515 void set_expression(Expression* e) { expr_ = e; }
2516
2517 void Rewrite(Expression* new_expression) {
2518 DCHECK(!is_rewritten());
2519 DCHECK_NOT_NULL(new_expression);
2520 expr_ = new_expression;
2521 is_rewritten_ = true;
2522 }
2523
2524 static int num_ids() { return parent_num_ids(); }
2525
2526 protected:
2527 RewritableAssignmentExpression(Zone* zone, Expression* expression)
2528 : Expression(zone, expression->position()),
2529 is_rewritten_(false),
2530 expr_(expression) {}
2531
2532 private:
2533 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2534
2535 bool is_rewritten_;
2536 Expression* expr_;
2537};
2538
2539
2540class Yield final : public Expression {
2541 public:
2542 DECLARE_NODE_TYPE(Yield)
2543
2544 enum Kind {
2545 kInitial, // The initial yield that returns the unboxed generator object.
2546 kSuspend, // A normal yield: { value: EXPRESSION, done: false }
2547 kDelegating, // A yield*.
2548 kFinal // A return: { value: EXPRESSION, done: true }
2549 };
2550
2551 Expression* generator_object() const { return generator_object_; }
2552 Expression* expression() const { return expression_; }
2553 Kind yield_kind() const { return yield_kind_; }
2554
2555 void set_generator_object(Expression* e) { generator_object_ = e; }
2556 void set_expression(Expression* e) { expression_ = e; }
2557
2558 // Type feedback information.
2559 bool HasFeedbackSlots() const { return yield_kind() == kDelegating; }
2560 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
2561 FeedbackVectorSlotCache* cache) override {
2562 if (HasFeedbackSlots()) {
2563 yield_first_feedback_slot_ = spec->AddKeyedLoadICSlot();
2564 keyed_load_feedback_slot_ = spec->AddLoadICSlot();
2565 done_feedback_slot_ = spec->AddLoadICSlot();
2566 }
2567 }
2568
2569 FeedbackVectorSlot KeyedLoadFeedbackSlot() {
2570 DCHECK(!HasFeedbackSlots() || !yield_first_feedback_slot_.IsInvalid());
2571 return yield_first_feedback_slot_;
2572 }
2573
2574 FeedbackVectorSlot DoneFeedbackSlot() { return keyed_load_feedback_slot_; }
2575
2576 FeedbackVectorSlot ValueFeedbackSlot() { return done_feedback_slot_; }
2577
2578 protected:
2579 Yield(Zone* zone, Expression* generator_object, Expression* expression,
2580 Kind yield_kind, int pos)
2581 : Expression(zone, pos),
2582 generator_object_(generator_object),
2583 expression_(expression),
2584 yield_kind_(yield_kind) {}
2585
2586 private:
2587 Expression* generator_object_;
2588 Expression* expression_;
2589 Kind yield_kind_;
2590 FeedbackVectorSlot yield_first_feedback_slot_;
2591 FeedbackVectorSlot keyed_load_feedback_slot_;
2592 FeedbackVectorSlot done_feedback_slot_;
2593};
2594
2595
2596class Throw final : public Expression {
2597 public:
2598 DECLARE_NODE_TYPE(Throw)
2599
2600 Expression* exception() const { return exception_; }
2601 void set_exception(Expression* e) { exception_ = e; }
2602
2603 protected:
2604 Throw(Zone* zone, Expression* exception, int pos)
2605 : Expression(zone, pos), exception_(exception) {}
2606
2607 private:
2608 Expression* exception_;
2609};
2610
2611
2612class FunctionLiteral final : public Expression {
2613 public:
2614 enum FunctionType {
2615 kAnonymousExpression,
2616 kNamedExpression,
2617 kDeclaration,
2618 kGlobalOrEval
2619 };
2620
2621 enum ParameterFlag { kNoDuplicateParameters, kHasDuplicateParameters };
2622
2623 enum EagerCompileHint { kShouldEagerCompile, kShouldLazyCompile };
2624
2625 enum ArityRestriction { kNormalArity, kGetterArity, kSetterArity };
2626
2627 DECLARE_NODE_TYPE(FunctionLiteral)
2628
2629 Handle<String> name() const { return raw_name_->string(); }
2630 const AstString* raw_name() const { return raw_name_; }
2631 void set_raw_name(const AstString* name) { raw_name_ = name; }
2632 Scope* scope() const { return scope_; }
2633 ZoneList<Statement*>* body() const { return body_; }
2634 void set_function_token_position(int pos) { function_token_position_ = pos; }
2635 int function_token_position() const { return function_token_position_; }
2636 int start_position() const;
2637 int end_position() const;
2638 int SourceSize() const { return end_position() - start_position(); }
2639 bool is_expression() const { return IsExpression::decode(bitfield_); }
2640 bool is_anonymous() const { return IsAnonymous::decode(bitfield_); }
2641 LanguageMode language_mode() const;
2642
2643 static bool NeedsHomeObject(Expression* expr);
2644
2645 int materialized_literal_count() { return materialized_literal_count_; }
2646 int expected_property_count() { return expected_property_count_; }
2647 int parameter_count() { return parameter_count_; }
2648
2649 bool AllowsLazyCompilation();
2650 bool AllowsLazyCompilationWithoutContext();
2651
2652 Handle<String> debug_name() const {
2653 if (raw_name_ != NULL && !raw_name_->IsEmpty()) {
2654 return raw_name_->string();
2655 }
2656 return inferred_name();
2657 }
2658
2659 Handle<String> inferred_name() const {
2660 if (!inferred_name_.is_null()) {
2661 DCHECK(raw_inferred_name_ == NULL);
2662 return inferred_name_;
2663 }
2664 if (raw_inferred_name_ != NULL) {
2665 return raw_inferred_name_->string();
2666 }
2667 UNREACHABLE();
2668 return Handle<String>();
2669 }
2670
2671 // Only one of {set_inferred_name, set_raw_inferred_name} should be called.
2672 void set_inferred_name(Handle<String> inferred_name) {
2673 DCHECK(!inferred_name.is_null());
2674 inferred_name_ = inferred_name;
2675 DCHECK(raw_inferred_name_== NULL || raw_inferred_name_->IsEmpty());
2676 raw_inferred_name_ = NULL;
2677 }
2678
2679 void set_raw_inferred_name(const AstString* raw_inferred_name) {
2680 DCHECK(raw_inferred_name != NULL);
2681 raw_inferred_name_ = raw_inferred_name;
2682 DCHECK(inferred_name_.is_null());
2683 inferred_name_ = Handle<String>();
2684 }
2685
2686 bool pretenure() const { return Pretenure::decode(bitfield_); }
2687 void set_pretenure() { bitfield_ = Pretenure::update(bitfield_, true); }
2688
2689 bool has_duplicate_parameters() const {
2690 return HasDuplicateParameters::decode(bitfield_);
2691 }
2692
2693 bool is_function() const { return IsFunction::decode(bitfield_); }
2694
2695 // This is used as a heuristic on when to eagerly compile a function
2696 // literal. We consider the following constructs as hints that the
2697 // function will be called immediately:
2698 // - (function() { ... })();
2699 // - var x = function() { ... }();
2700 bool should_eager_compile() const {
2701 return ShouldEagerCompile::decode(bitfield_);
2702 }
2703 void set_should_eager_compile() {
2704 bitfield_ = ShouldEagerCompile::update(bitfield_, true);
2705 }
2706
2707 // A hint that we expect this function to be called (exactly) once,
2708 // i.e. we suspect it's an initialization function.
2709 bool should_be_used_once_hint() const {
2710 return ShouldBeUsedOnceHint::decode(bitfield_);
2711 }
2712 void set_should_be_used_once_hint() {
2713 bitfield_ = ShouldBeUsedOnceHint::update(bitfield_, true);
2714 }
2715
2716 FunctionKind kind() const { return FunctionKindBits::decode(bitfield_); }
2717
2718 int ast_node_count() { return ast_properties_.node_count(); }
2719 AstProperties::Flags flags() const { return ast_properties_.flags(); }
2720 void set_ast_properties(AstProperties* ast_properties) {
2721 ast_properties_ = *ast_properties;
2722 }
2723 const FeedbackVectorSpec* feedback_vector_spec() const {
2724 return ast_properties_.get_spec();
2725 }
2726 bool dont_optimize() { return dont_optimize_reason_ != kNoReason; }
2727 BailoutReason dont_optimize_reason() { return dont_optimize_reason_; }
2728 void set_dont_optimize_reason(BailoutReason reason) {
2729 dont_optimize_reason_ = reason;
2730 }
2731
2732 protected:
2733 FunctionLiteral(Zone* zone, const AstString* name,
2734 AstValueFactory* ast_value_factory, Scope* scope,
2735 ZoneList<Statement*>* body, int materialized_literal_count,
2736 int expected_property_count, int parameter_count,
2737 FunctionType function_type,
2738 ParameterFlag has_duplicate_parameters,
2739 EagerCompileHint eager_compile_hint, FunctionKind kind,
2740 int position)
2741 : Expression(zone, position),
2742 raw_name_(name),
2743 scope_(scope),
2744 body_(body),
2745 raw_inferred_name_(ast_value_factory->empty_string()),
2746 ast_properties_(zone),
2747 dont_optimize_reason_(kNoReason),
2748 materialized_literal_count_(materialized_literal_count),
2749 expected_property_count_(expected_property_count),
2750 parameter_count_(parameter_count),
2751 function_token_position_(RelocInfo::kNoPosition) {
2752 bitfield_ =
2753 IsExpression::encode(function_type != kDeclaration) |
2754 IsAnonymous::encode(function_type == kAnonymousExpression) |
2755 Pretenure::encode(false) |
2756 HasDuplicateParameters::encode(has_duplicate_parameters ==
2757 kHasDuplicateParameters) |
2758 IsFunction::encode(function_type != kGlobalOrEval) |
2759 ShouldEagerCompile::encode(eager_compile_hint == kShouldEagerCompile) |
2760 FunctionKindBits::encode(kind) | ShouldBeUsedOnceHint::encode(false);
2761 DCHECK(IsValidFunctionKind(kind));
2762 }
2763
2764 private:
2765 class IsExpression : public BitField16<bool, 0, 1> {};
2766 class IsAnonymous : public BitField16<bool, 1, 1> {};
2767 class Pretenure : public BitField16<bool, 2, 1> {};
2768 class HasDuplicateParameters : public BitField16<bool, 3, 1> {};
2769 class IsFunction : public BitField16<bool, 4, 1> {};
2770 class ShouldEagerCompile : public BitField16<bool, 5, 1> {};
2771 class FunctionKindBits : public BitField16<FunctionKind, 6, 8> {};
2772 class ShouldBeUsedOnceHint : public BitField16<bool, 15, 1> {};
2773
2774 // Start with 16-bit field, which should get packed together
2775 // with Expression's trailing 16-bit field.
2776 uint16_t bitfield_;
2777
2778 const AstString* raw_name_;
2779 Scope* scope_;
2780 ZoneList<Statement*>* body_;
2781 const AstString* raw_inferred_name_;
2782 Handle<String> inferred_name_;
2783 AstProperties ast_properties_;
2784 BailoutReason dont_optimize_reason_;
2785
2786 int materialized_literal_count_;
2787 int expected_property_count_;
2788 int parameter_count_;
2789 int function_token_position_;
2790};
2791
2792
2793class ClassLiteral final : public Expression {
2794 public:
2795 typedef ObjectLiteralProperty Property;
2796
2797 DECLARE_NODE_TYPE(ClassLiteral)
2798
2799 Handle<String> name() const { return raw_name_->string(); }
2800 const AstRawString* raw_name() const { return raw_name_; }
2801 void set_raw_name(const AstRawString* name) {
2802 DCHECK_NULL(raw_name_);
2803 raw_name_ = name;
2804 }
2805
2806 Scope* scope() const { return scope_; }
2807 VariableProxy* class_variable_proxy() const { return class_variable_proxy_; }
2808 Expression* extends() const { return extends_; }
2809 void set_extends(Expression* e) { extends_ = e; }
2810 FunctionLiteral* constructor() const { return constructor_; }
2811 void set_constructor(FunctionLiteral* f) { constructor_ = f; }
2812 ZoneList<Property*>* properties() const { return properties_; }
2813 int start_position() const { return position(); }
2814 int end_position() const { return end_position_; }
2815
2816 BailoutId EntryId() const { return BailoutId(local_id(0)); }
2817 BailoutId DeclsId() const { return BailoutId(local_id(1)); }
2818 BailoutId ExitId() { return BailoutId(local_id(2)); }
2819 BailoutId CreateLiteralId() const { return BailoutId(local_id(3)); }
2820
2821 // Return an AST id for a property that is used in simulate instructions.
2822 BailoutId GetIdForProperty(int i) { return BailoutId(local_id(i + 4)); }
2823
2824 // Unlike other AST nodes, this number of bailout IDs allocated for an
2825 // ClassLiteral can vary, so num_ids() is not a static method.
2826 int num_ids() const { return parent_num_ids() + 4 + properties()->length(); }
2827
2828 // Object literals need one feedback slot for each non-trivial value, as well
2829 // as some slots for home objects.
2830 void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
2831 FeedbackVectorSlotCache* cache) override;
2832
2833 bool NeedsProxySlot() const {
2834 return class_variable_proxy() != nullptr &&
2835 class_variable_proxy()->var()->IsUnallocated();
2836 }
2837
2838 FeedbackVectorSlot ProxySlot() const { return slot_; }
2839
2840 protected:
2841 ClassLiteral(Zone* zone, const AstRawString* name, Scope* scope,
2842 VariableProxy* class_variable_proxy, Expression* extends,
2843 FunctionLiteral* constructor, ZoneList<Property*>* properties,
2844 int start_position, int end_position)
2845 : Expression(zone, start_position),
2846 raw_name_(name),
2847 scope_(scope),
2848 class_variable_proxy_(class_variable_proxy),
2849 extends_(extends),
2850 constructor_(constructor),
2851 properties_(properties),
2852 end_position_(end_position) {}
2853
2854 static int parent_num_ids() { return Expression::num_ids(); }
2855
2856 private:
2857 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2858
2859 const AstRawString* raw_name_;
2860 Scope* scope_;
2861 VariableProxy* class_variable_proxy_;
2862 Expression* extends_;
2863 FunctionLiteral* constructor_;
2864 ZoneList<Property*>* properties_;
2865 int end_position_;
2866 FeedbackVectorSlot slot_;
2867};
2868
2869
2870class NativeFunctionLiteral final : public Expression {
2871 public:
2872 DECLARE_NODE_TYPE(NativeFunctionLiteral)
2873
2874 Handle<String> name() const { return name_->string(); }
2875 v8::Extension* extension() const { return extension_; }
2876
2877 protected:
2878 NativeFunctionLiteral(Zone* zone, const AstRawString* name,
2879 v8::Extension* extension, int pos)
2880 : Expression(zone, pos), name_(name), extension_(extension) {}
2881
2882 private:
2883 const AstRawString* name_;
2884 v8::Extension* extension_;
2885};
2886
2887
2888class ThisFunction final : public Expression {
2889 public:
2890 DECLARE_NODE_TYPE(ThisFunction)
2891
2892 protected:
2893 ThisFunction(Zone* zone, int pos) : Expression(zone, pos) {}
2894};
2895
2896
2897class SuperPropertyReference final : public Expression {
2898 public:
2899 DECLARE_NODE_TYPE(SuperPropertyReference)
2900
2901 VariableProxy* this_var() const { return this_var_; }
2902 void set_this_var(VariableProxy* v) { this_var_ = v; }
2903 Expression* home_object() const { return home_object_; }
2904 void set_home_object(Expression* e) { home_object_ = e; }
2905
2906 protected:
2907 SuperPropertyReference(Zone* zone, VariableProxy* this_var,
2908 Expression* home_object, int pos)
2909 : Expression(zone, pos), this_var_(this_var), home_object_(home_object) {
2910 DCHECK(this_var->is_this());
2911 DCHECK(home_object->IsProperty());
2912 }
2913
2914 private:
2915 VariableProxy* this_var_;
2916 Expression* home_object_;
2917};
2918
2919
2920class SuperCallReference final : public Expression {
2921 public:
2922 DECLARE_NODE_TYPE(SuperCallReference)
2923
2924 VariableProxy* this_var() const { return this_var_; }
2925 void set_this_var(VariableProxy* v) { this_var_ = v; }
2926 VariableProxy* new_target_var() const { return new_target_var_; }
2927 void set_new_target_var(VariableProxy* v) { new_target_var_ = v; }
2928 VariableProxy* this_function_var() const { return this_function_var_; }
2929 void set_this_function_var(VariableProxy* v) { this_function_var_ = v; }
2930
2931 protected:
2932 SuperCallReference(Zone* zone, VariableProxy* this_var,
2933 VariableProxy* new_target_var,
2934 VariableProxy* this_function_var, int pos)
2935 : Expression(zone, pos),
2936 this_var_(this_var),
2937 new_target_var_(new_target_var),
2938 this_function_var_(this_function_var) {
2939 DCHECK(this_var->is_this());
2940 DCHECK(new_target_var->raw_name()->IsOneByteEqualTo(".new.target"));
2941 DCHECK(this_function_var->raw_name()->IsOneByteEqualTo(".this_function"));
2942 }
2943
2944 private:
2945 VariableProxy* this_var_;
2946 VariableProxy* new_target_var_;
2947 VariableProxy* this_function_var_;
2948};
2949
2950
2951// This class is produced when parsing the () in arrow functions without any
2952// arguments and is not actually a valid expression.
2953class EmptyParentheses final : public Expression {
2954 public:
2955 DECLARE_NODE_TYPE(EmptyParentheses)
2956
2957 private:
2958 EmptyParentheses(Zone* zone, int pos) : Expression(zone, pos) {}
2959};
2960
2961
2962#undef DECLARE_NODE_TYPE
2963
2964
2965// ----------------------------------------------------------------------------
2966// Basic visitor
2967// - leaf node visitors are abstract.
2968
2969class AstVisitor BASE_EMBEDDED {
2970 public:
2971 AstVisitor() {}
2972 virtual ~AstVisitor() {}
2973
2974 // Stack overflow check and dynamic dispatch.
2975 virtual void Visit(AstNode* node) = 0;
2976
2977 // Iteration left-to-right.
2978 virtual void VisitDeclarations(ZoneList<Declaration*>* declarations);
2979 virtual void VisitStatements(ZoneList<Statement*>* statements);
2980 virtual void VisitExpressions(ZoneList<Expression*>* expressions);
2981
2982 // Individual AST nodes.
2983#define DEF_VISIT(type) \
2984 virtual void Visit##type(type* node) = 0;
2985 AST_NODE_LIST(DEF_VISIT)
2986#undef DEF_VISIT
2987};
2988
2989#define DEFINE_AST_VISITOR_SUBCLASS_MEMBERS() \
2990 public: \
2991 void Visit(AstNode* node) final { \
2992 if (!CheckStackOverflow()) node->Accept(this); \
2993 } \
2994 \
2995 void SetStackOverflow() { stack_overflow_ = true; } \
2996 void ClearStackOverflow() { stack_overflow_ = false; } \
2997 bool HasStackOverflow() const { return stack_overflow_; } \
2998 \
2999 bool CheckStackOverflow() { \
3000 if (stack_overflow_) return true; \
3001 if (GetCurrentStackPosition() < stack_limit_) { \
3002 stack_overflow_ = true; \
3003 return true; \
3004 } \
3005 return false; \
3006 } \
3007 \
3008 private: \
3009 void InitializeAstVisitor(Isolate* isolate) { \
3010 stack_limit_ = isolate->stack_guard()->real_climit(); \
3011 stack_overflow_ = false; \
3012 } \
3013 \
3014 void InitializeAstVisitor(uintptr_t stack_limit) { \
3015 stack_limit_ = stack_limit; \
3016 stack_overflow_ = false; \
3017 } \
3018 \
3019 uintptr_t stack_limit_; \
3020 bool stack_overflow_
3021
3022#define DEFINE_AST_REWRITER_SUBCLASS_MEMBERS() \
3023 public: \
3024 AstNode* Rewrite(AstNode* node) { \
3025 DCHECK_NULL(replacement_); \
3026 DCHECK_NOT_NULL(node); \
3027 Visit(node); \
3028 if (HasStackOverflow()) return node; \
3029 if (replacement_ == nullptr) return node; \
3030 AstNode* result = replacement_; \
3031 replacement_ = nullptr; \
3032 return result; \
3033 } \
3034 \
3035 private: \
3036 void InitializeAstRewriter(Isolate* isolate) { \
3037 InitializeAstVisitor(isolate); \
3038 replacement_ = nullptr; \
3039 } \
3040 \
3041 void InitializeAstRewriter(uintptr_t stack_limit) { \
3042 InitializeAstVisitor(stack_limit); \
3043 replacement_ = nullptr; \
3044 } \
3045 \
3046 DEFINE_AST_VISITOR_SUBCLASS_MEMBERS(); \
3047 \
3048 protected: \
3049 AstNode* replacement_
3050
3051// Generic macro for rewriting things; `GET` is the expression to be
3052// rewritten; `SET` is a command that should do the rewriting, i.e.
3053// something sensible with the variable called `replacement`.
3054#define AST_REWRITE(Type, GET, SET) \
3055 do { \
3056 DCHECK(!HasStackOverflow()); \
3057 DCHECK_NULL(replacement_); \
3058 Visit(GET); \
3059 if (HasStackOverflow()) return; \
3060 if (replacement_ == nullptr) break; \
3061 Type* replacement = reinterpret_cast<Type*>(replacement_); \
3062 do { \
3063 SET; \
3064 } while (false); \
3065 replacement_ = nullptr; \
3066 } while (false)
3067
3068// Macro for rewriting object properties; it assumes that `object` has
3069// `property` with a public getter and setter.
3070#define AST_REWRITE_PROPERTY(Type, object, property) \
3071 do { \
3072 auto _obj = (object); \
3073 AST_REWRITE(Type, _obj->property(), _obj->set_##property(replacement)); \
3074 } while (false)
3075
3076// Macro for rewriting list elements; it assumes that `list` has methods
3077// `at` and `Set`.
3078#define AST_REWRITE_LIST_ELEMENT(Type, list, index) \
3079 do { \
3080 auto _list = (list); \
3081 auto _index = (index); \
3082 AST_REWRITE(Type, _list->at(_index), _list->Set(_index, replacement)); \
3083 } while (false)
3084
3085
3086// ----------------------------------------------------------------------------
3087// AstNode factory
3088
3089class AstNodeFactory final BASE_EMBEDDED {
3090 public:
3091 explicit AstNodeFactory(AstValueFactory* ast_value_factory)
3092 : local_zone_(ast_value_factory->zone()),
3093 parser_zone_(ast_value_factory->zone()),
3094 ast_value_factory_(ast_value_factory) {}
3095
3096 AstValueFactory* ast_value_factory() const { return ast_value_factory_; }
3097
3098 VariableDeclaration* NewVariableDeclaration(
3099 VariableProxy* proxy, VariableMode mode, Scope* scope, int pos,
3100 bool is_class_declaration = false, int declaration_group_start = -1) {
3101 return new (parser_zone_)
3102 VariableDeclaration(parser_zone_, proxy, mode, scope, pos,
3103 is_class_declaration, declaration_group_start);
3104 }
3105
3106 FunctionDeclaration* NewFunctionDeclaration(VariableProxy* proxy,
3107 VariableMode mode,
3108 FunctionLiteral* fun,
3109 Scope* scope,
3110 int pos) {
3111 return new (parser_zone_)
3112 FunctionDeclaration(parser_zone_, proxy, mode, fun, scope, pos);
3113 }
3114
3115 ImportDeclaration* NewImportDeclaration(VariableProxy* proxy,
3116 const AstRawString* import_name,
3117 const AstRawString* module_specifier,
3118 Scope* scope, int pos) {
3119 return new (parser_zone_) ImportDeclaration(
3120 parser_zone_, proxy, import_name, module_specifier, scope, pos);
3121 }
3122
3123 ExportDeclaration* NewExportDeclaration(VariableProxy* proxy,
3124 Scope* scope,
3125 int pos) {
3126 return new (parser_zone_)
3127 ExportDeclaration(parser_zone_, proxy, scope, pos);
3128 }
3129
3130 Block* NewBlock(ZoneList<const AstRawString*>* labels, int capacity,
3131 bool ignore_completion_value, int pos) {
3132 return new (local_zone_)
3133 Block(local_zone_, labels, capacity, ignore_completion_value, pos);
3134 }
3135
3136#define STATEMENT_WITH_LABELS(NodeType) \
3137 NodeType* New##NodeType(ZoneList<const AstRawString*>* labels, int pos) { \
3138 return new (local_zone_) NodeType(local_zone_, labels, pos); \
3139 }
3140 STATEMENT_WITH_LABELS(DoWhileStatement)
3141 STATEMENT_WITH_LABELS(WhileStatement)
3142 STATEMENT_WITH_LABELS(ForStatement)
3143 STATEMENT_WITH_LABELS(SwitchStatement)
3144#undef STATEMENT_WITH_LABELS
3145
3146 ForEachStatement* NewForEachStatement(ForEachStatement::VisitMode visit_mode,
3147 ZoneList<const AstRawString*>* labels,
3148 int pos) {
3149 switch (visit_mode) {
3150 case ForEachStatement::ENUMERATE: {
3151 return new (local_zone_) ForInStatement(local_zone_, labels, pos);
3152 }
3153 case ForEachStatement::ITERATE: {
3154 return new (local_zone_) ForOfStatement(local_zone_, labels, pos);
3155 }
3156 }
3157 UNREACHABLE();
3158 return NULL;
3159 }
3160
3161 ExpressionStatement* NewExpressionStatement(Expression* expression, int pos) {
3162 return new (local_zone_) ExpressionStatement(local_zone_, expression, pos);
3163 }
3164
3165 ContinueStatement* NewContinueStatement(IterationStatement* target, int pos) {
3166 return new (local_zone_) ContinueStatement(local_zone_, target, pos);
3167 }
3168
3169 BreakStatement* NewBreakStatement(BreakableStatement* target, int pos) {
3170 return new (local_zone_) BreakStatement(local_zone_, target, pos);
3171 }
3172
3173 ReturnStatement* NewReturnStatement(Expression* expression, int pos) {
3174 return new (local_zone_) ReturnStatement(local_zone_, expression, pos);
3175 }
3176
3177 WithStatement* NewWithStatement(Scope* scope,
3178 Expression* expression,
3179 Statement* statement,
3180 int pos) {
3181 return new (local_zone_)
3182 WithStatement(local_zone_, scope, expression, statement, pos);
3183 }
3184
3185 IfStatement* NewIfStatement(Expression* condition,
3186 Statement* then_statement,
3187 Statement* else_statement,
3188 int pos) {
3189 return new (local_zone_) IfStatement(local_zone_, condition, then_statement,
3190 else_statement, pos);
3191 }
3192
3193 TryCatchStatement* NewTryCatchStatement(Block* try_block, Scope* scope,
3194 Variable* variable,
3195 Block* catch_block, int pos) {
3196 return new (local_zone_) TryCatchStatement(local_zone_, try_block, scope,
3197 variable, catch_block, pos);
3198 }
3199
3200 TryFinallyStatement* NewTryFinallyStatement(Block* try_block,
3201 Block* finally_block, int pos) {
3202 return new (local_zone_)
3203 TryFinallyStatement(local_zone_, try_block, finally_block, pos);
3204 }
3205
3206 DebuggerStatement* NewDebuggerStatement(int pos) {
3207 return new (local_zone_) DebuggerStatement(local_zone_, pos);
3208 }
3209
3210 EmptyStatement* NewEmptyStatement(int pos) {
3211 return new (local_zone_) EmptyStatement(local_zone_, pos);
3212 }
3213
3214 SloppyBlockFunctionStatement* NewSloppyBlockFunctionStatement(
3215 Statement* statement, Scope* scope) {
3216 return new (parser_zone_)
3217 SloppyBlockFunctionStatement(parser_zone_, statement, scope);
3218 }
3219
3220 CaseClause* NewCaseClause(
3221 Expression* label, ZoneList<Statement*>* statements, int pos) {
3222 return new (local_zone_) CaseClause(local_zone_, label, statements, pos);
3223 }
3224
3225 Literal* NewStringLiteral(const AstRawString* string, int pos) {
3226 return new (local_zone_)
3227 Literal(local_zone_, ast_value_factory_->NewString(string), pos);
3228 }
3229
3230 // A JavaScript symbol (ECMA-262 edition 6).
3231 Literal* NewSymbolLiteral(const char* name, int pos) {
3232 return new (local_zone_)
3233 Literal(local_zone_, ast_value_factory_->NewSymbol(name), pos);
3234 }
3235
3236 Literal* NewNumberLiteral(double number, int pos, bool with_dot = false) {
3237 return new (local_zone_) Literal(
3238 local_zone_, ast_value_factory_->NewNumber(number, with_dot), pos);
3239 }
3240
3241 Literal* NewSmiLiteral(int number, int pos) {
3242 return new (local_zone_)
3243 Literal(local_zone_, ast_value_factory_->NewSmi(number), pos);
3244 }
3245
3246 Literal* NewBooleanLiteral(bool b, int pos) {
3247 return new (local_zone_)
3248 Literal(local_zone_, ast_value_factory_->NewBoolean(b), pos);
3249 }
3250
3251 Literal* NewNullLiteral(int pos) {
3252 return new (local_zone_)
3253 Literal(local_zone_, ast_value_factory_->NewNull(), pos);
3254 }
3255
3256 Literal* NewUndefinedLiteral(int pos) {
3257 return new (local_zone_)
3258 Literal(local_zone_, ast_value_factory_->NewUndefined(), pos);
3259 }
3260
3261 Literal* NewTheHoleLiteral(int pos) {
3262 return new (local_zone_)
3263 Literal(local_zone_, ast_value_factory_->NewTheHole(), pos);
3264 }
3265
3266 ObjectLiteral* NewObjectLiteral(
3267 ZoneList<ObjectLiteral::Property*>* properties,
3268 int literal_index,
3269 int boilerplate_properties,
3270 bool has_function,
3271 bool is_strong,
3272 int pos) {
3273 return new (local_zone_)
3274 ObjectLiteral(local_zone_, properties, literal_index,
3275 boilerplate_properties, has_function, is_strong, pos);
3276 }
3277
3278 ObjectLiteral::Property* NewObjectLiteralProperty(
3279 Expression* key, Expression* value, ObjectLiteralProperty::Kind kind,
3280 bool is_static, bool is_computed_name) {
3281 return new (local_zone_)
3282 ObjectLiteral::Property(key, value, kind, is_static, is_computed_name);
3283 }
3284
3285 ObjectLiteral::Property* NewObjectLiteralProperty(Expression* key,
3286 Expression* value,
3287 bool is_static,
3288 bool is_computed_name) {
3289 return new (local_zone_) ObjectLiteral::Property(
3290 ast_value_factory_, key, value, is_static, is_computed_name);
3291 }
3292
3293 RegExpLiteral* NewRegExpLiteral(const AstRawString* pattern, int flags,
3294 int literal_index, bool is_strong, int pos) {
3295 return new (local_zone_) RegExpLiteral(local_zone_, pattern, flags,
3296 literal_index, is_strong, pos);
3297 }
3298
3299 ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values,
3300 int literal_index,
3301 bool is_strong,
3302 int pos) {
3303 return new (local_zone_)
3304 ArrayLiteral(local_zone_, values, -1, literal_index, is_strong, pos);
3305 }
3306
3307 ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values,
3308 int first_spread_index, int literal_index,
3309 bool is_strong, int pos) {
3310 return new (local_zone_) ArrayLiteral(
3311 local_zone_, values, first_spread_index, literal_index, is_strong, pos);
3312 }
3313
3314 VariableProxy* NewVariableProxy(Variable* var,
3315 int start_position = RelocInfo::kNoPosition,
3316 int end_position = RelocInfo::kNoPosition) {
3317 return new (parser_zone_)
3318 VariableProxy(parser_zone_, var, start_position, end_position);
3319 }
3320
3321 VariableProxy* NewVariableProxy(const AstRawString* name,
3322 Variable::Kind variable_kind,
3323 int start_position = RelocInfo::kNoPosition,
3324 int end_position = RelocInfo::kNoPosition) {
3325 DCHECK_NOT_NULL(name);
3326 return new (parser_zone_) VariableProxy(parser_zone_, name, variable_kind,
3327 start_position, end_position);
3328 }
3329
3330 Property* NewProperty(Expression* obj, Expression* key, int pos) {
3331 return new (local_zone_) Property(local_zone_, obj, key, pos);
3332 }
3333
3334 Call* NewCall(Expression* expression,
3335 ZoneList<Expression*>* arguments,
3336 int pos) {
3337 return new (local_zone_) Call(local_zone_, expression, arguments, pos);
3338 }
3339
3340 CallNew* NewCallNew(Expression* expression,
3341 ZoneList<Expression*>* arguments,
3342 int pos) {
3343 return new (local_zone_) CallNew(local_zone_, expression, arguments, pos);
3344 }
3345
3346 CallRuntime* NewCallRuntime(Runtime::FunctionId id,
3347 ZoneList<Expression*>* arguments, int pos) {
3348 return new (local_zone_)
3349 CallRuntime(local_zone_, Runtime::FunctionForId(id), arguments, pos);
3350 }
3351
3352 CallRuntime* NewCallRuntime(const Runtime::Function* function,
3353 ZoneList<Expression*>* arguments, int pos) {
3354 return new (local_zone_) CallRuntime(local_zone_, function, arguments, pos);
3355 }
3356
3357 CallRuntime* NewCallRuntime(int context_index,
3358 ZoneList<Expression*>* arguments, int pos) {
3359 return new (local_zone_)
3360 CallRuntime(local_zone_, context_index, arguments, pos);
3361 }
3362
3363 UnaryOperation* NewUnaryOperation(Token::Value op,
3364 Expression* expression,
3365 int pos) {
3366 return new (local_zone_) UnaryOperation(local_zone_, op, expression, pos);
3367 }
3368
3369 BinaryOperation* NewBinaryOperation(Token::Value op,
3370 Expression* left,
3371 Expression* right,
3372 int pos) {
3373 return new (local_zone_) BinaryOperation(local_zone_, op, left, right, pos);
3374 }
3375
3376 CountOperation* NewCountOperation(Token::Value op,
3377 bool is_prefix,
3378 Expression* expr,
3379 int pos) {
3380 return new (local_zone_)
3381 CountOperation(local_zone_, op, is_prefix, expr, pos);
3382 }
3383
3384 CompareOperation* NewCompareOperation(Token::Value op,
3385 Expression* left,
3386 Expression* right,
3387 int pos) {
3388 return new (local_zone_)
3389 CompareOperation(local_zone_, op, left, right, pos);
3390 }
3391
3392 Spread* NewSpread(Expression* expression, int pos) {
3393 return new (local_zone_) Spread(local_zone_, expression, pos);
3394 }
3395
3396 Conditional* NewConditional(Expression* condition,
3397 Expression* then_expression,
3398 Expression* else_expression,
3399 int position) {
3400 return new (local_zone_) Conditional(
3401 local_zone_, condition, then_expression, else_expression, position);
3402 }
3403
3404 RewritableAssignmentExpression* NewRewritableAssignmentExpression(
3405 Expression* expression) {
3406 DCHECK_NOT_NULL(expression);
3407 DCHECK(expression->IsAssignment());
3408 return new (local_zone_)
3409 RewritableAssignmentExpression(local_zone_, expression);
3410 }
3411
3412 Assignment* NewAssignment(Token::Value op,
3413 Expression* target,
3414 Expression* value,
3415 int pos) {
3416 DCHECK(Token::IsAssignmentOp(op));
3417 Assignment* assign =
3418 new (local_zone_) Assignment(local_zone_, op, target, value, pos);
3419 if (assign->is_compound()) {
3420 DCHECK(Token::IsAssignmentOp(op));
3421 assign->binary_operation_ =
3422 NewBinaryOperation(assign->binary_op(), target, value, pos + 1);
3423 }
3424 return assign;
3425 }
3426
3427 Yield* NewYield(Expression *generator_object,
3428 Expression* expression,
3429 Yield::Kind yield_kind,
3430 int pos) {
3431 if (!expression) expression = NewUndefinedLiteral(pos);
3432 return new (local_zone_)
3433 Yield(local_zone_, generator_object, expression, yield_kind, pos);
3434 }
3435
3436 Throw* NewThrow(Expression* exception, int pos) {
3437 return new (local_zone_) Throw(local_zone_, exception, pos);
3438 }
3439
3440 FunctionLiteral* NewFunctionLiteral(
3441 const AstRawString* name, Scope* scope, ZoneList<Statement*>* body,
3442 int materialized_literal_count, int expected_property_count,
3443 int parameter_count,
3444 FunctionLiteral::ParameterFlag has_duplicate_parameters,
3445 FunctionLiteral::FunctionType function_type,
3446 FunctionLiteral::EagerCompileHint eager_compile_hint, FunctionKind kind,
3447 int position) {
3448 return new (parser_zone_) FunctionLiteral(
3449 parser_zone_, name, ast_value_factory_, scope, body,
3450 materialized_literal_count, expected_property_count, parameter_count,
3451 function_type, has_duplicate_parameters, eager_compile_hint, kind,
3452 position);
3453 }
3454
3455 ClassLiteral* NewClassLiteral(const AstRawString* name, Scope* scope,
3456 VariableProxy* proxy, Expression* extends,
3457 FunctionLiteral* constructor,
3458 ZoneList<ObjectLiteral::Property*>* properties,
3459 int start_position, int end_position) {
3460 return new (parser_zone_)
3461 ClassLiteral(parser_zone_, name, scope, proxy, extends, constructor,
3462 properties, start_position, end_position);
3463 }
3464
3465 NativeFunctionLiteral* NewNativeFunctionLiteral(const AstRawString* name,
3466 v8::Extension* extension,
3467 int pos) {
3468 return new (parser_zone_)
3469 NativeFunctionLiteral(parser_zone_, name, extension, pos);
3470 }
3471
3472 DoExpression* NewDoExpression(Block* block, Variable* result_var, int pos) {
3473 VariableProxy* result = NewVariableProxy(result_var, pos);
3474 return new (parser_zone_) DoExpression(parser_zone_, block, result, pos);
3475 }
3476
3477 ThisFunction* NewThisFunction(int pos) {
3478 return new (local_zone_) ThisFunction(local_zone_, pos);
3479 }
3480
3481 SuperPropertyReference* NewSuperPropertyReference(VariableProxy* this_var,
3482 Expression* home_object,
3483 int pos) {
3484 return new (parser_zone_)
3485 SuperPropertyReference(parser_zone_, this_var, home_object, pos);
3486 }
3487
3488 SuperCallReference* NewSuperCallReference(VariableProxy* this_var,
3489 VariableProxy* new_target_var,
3490 VariableProxy* this_function_var,
3491 int pos) {
3492 return new (parser_zone_) SuperCallReference(
3493 parser_zone_, this_var, new_target_var, this_function_var, pos);
3494 }
3495
3496 EmptyParentheses* NewEmptyParentheses(int pos) {
3497 return new (local_zone_) EmptyParentheses(local_zone_, pos);
3498 }
3499
3500 Zone* zone() const { return local_zone_; }
3501
3502 // Handles use of temporary zones when parsing inner function bodies.
3503 class BodyScope {
3504 public:
3505 BodyScope(AstNodeFactory* factory, Zone* temp_zone, bool use_temp_zone)
3506 : factory_(factory), prev_zone_(factory->local_zone_) {
3507 if (use_temp_zone) {
3508 factory->local_zone_ = temp_zone;
3509 }
3510 }
3511
3512 ~BodyScope() { factory_->local_zone_ = prev_zone_; }
3513
3514 private:
3515 AstNodeFactory* factory_;
3516 Zone* prev_zone_;
3517 };
3518
3519 private:
3520 // This zone may be deallocated upon returning from parsing a function body
3521 // which we can guarantee is not going to be compiled or have its AST
3522 // inspected.
3523 // See ParseFunctionLiteral in parser.cc for preconditions.
3524 Zone* local_zone_;
3525 // ZoneObjects which need to persist until scope analysis must be allocated in
3526 // the parser-level zone.
3527 Zone* parser_zone_;
3528 AstValueFactory* ast_value_factory_;
3529};
3530
3531
3532} // namespace internal
3533} // namespace v8
3534
3535#endif // V8_AST_AST_H_