blob: 2531d6b3f1fd3ed676291449c389196f45b0c9cc [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005#if V8_TARGET_ARCH_MIPS64
6
7#include "src/bootstrapper.h"
8#include "src/code-stubs.h"
9#include "src/codegen.h"
10#include "src/ic/handler-compiler.h"
11#include "src/ic/ic.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000012#include "src/ic/stub-cache.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000013#include "src/isolate.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000014#include "src/mips64/code-stubs-mips64.h"
15#include "src/regexp/jsregexp.h"
16#include "src/regexp/regexp-macro-assembler.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040017#include "src/runtime/runtime.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000018
19namespace v8 {
20namespace internal {
21
22
23static void InitializeArrayConstructorDescriptor(
24 Isolate* isolate, CodeStubDescriptor* descriptor,
25 int constant_stack_parameter_count) {
26 Address deopt_handler = Runtime::FunctionForId(
27 Runtime::kArrayConstructor)->entry;
28
29 if (constant_stack_parameter_count == 0) {
30 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
31 JS_FUNCTION_STUB_MODE);
32 } else {
33 descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000034 JS_FUNCTION_STUB_MODE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +000035 }
36}
37
38
39static void InitializeInternalArrayConstructorDescriptor(
40 Isolate* isolate, CodeStubDescriptor* descriptor,
41 int constant_stack_parameter_count) {
42 Address deopt_handler = Runtime::FunctionForId(
43 Runtime::kInternalArrayConstructor)->entry;
44
45 if (constant_stack_parameter_count == 0) {
46 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
47 JS_FUNCTION_STUB_MODE);
48 } else {
49 descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000050 JS_FUNCTION_STUB_MODE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +000051 }
52}
53
54
55void ArrayNoArgumentConstructorStub::InitializeDescriptor(
56 CodeStubDescriptor* descriptor) {
57 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
58}
59
60
61void ArraySingleArgumentConstructorStub::InitializeDescriptor(
62 CodeStubDescriptor* descriptor) {
63 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
64}
65
66
67void ArrayNArgumentsConstructorStub::InitializeDescriptor(
68 CodeStubDescriptor* descriptor) {
69 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
70}
71
72
73void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
74 CodeStubDescriptor* descriptor) {
75 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
76}
77
78
79void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
80 CodeStubDescriptor* descriptor) {
81 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
82}
83
84
85void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
86 CodeStubDescriptor* descriptor) {
87 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
88}
89
90
91#define __ ACCESS_MASM(masm)
92
93
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000094static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
95 Condition cc, Strength strength);
Ben Murdochb8a8cc12014-11-26 15:28:44 +000096static void EmitSmiNonsmiComparison(MacroAssembler* masm,
97 Register lhs,
98 Register rhs,
99 Label* rhs_not_nan,
100 Label* slow,
101 bool strict);
102static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
103 Register lhs,
104 Register rhs);
105
106
107void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
108 ExternalReference miss) {
109 // Update the static counter each time a new code stub is generated.
110 isolate()->counters()->code_stubs()->Increment();
111
112 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000113 int param_count = descriptor.GetRegisterParameterCount();
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000114 {
115 // Call the runtime system in a fresh internal frame.
116 FrameScope scope(masm, StackFrame::INTERNAL);
117 DCHECK((param_count == 0) ||
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000118 a0.is(descriptor.GetRegisterParameter(param_count - 1)));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000119 // Push arguments, adjust sp.
120 __ Dsubu(sp, sp, Operand(param_count * kPointerSize));
121 for (int i = 0; i < param_count; ++i) {
122 // Store argument to stack.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000123 __ sd(descriptor.GetRegisterParameter(i),
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000124 MemOperand(sp, (param_count - 1 - i) * kPointerSize));
125 }
126 __ CallExternalReference(miss, param_count);
127 }
128
129 __ Ret();
130}
131
132
133void DoubleToIStub::Generate(MacroAssembler* masm) {
134 Label out_of_range, only_low, negate, done;
135 Register input_reg = source();
136 Register result_reg = destination();
137
138 int double_offset = offset();
139 // Account for saved regs if input is sp.
140 if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
141
142 Register scratch =
143 GetRegisterThatIsNotOneOf(input_reg, result_reg);
144 Register scratch2 =
145 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
146 Register scratch3 =
147 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
148 DoubleRegister double_scratch = kLithiumScratchDouble;
149
150 __ Push(scratch, scratch2, scratch3);
151 if (!skip_fastpath()) {
152 // Load double input.
153 __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
154
155 // Clear cumulative exception flags and save the FCSR.
156 __ cfc1(scratch2, FCSR);
157 __ ctc1(zero_reg, FCSR);
158
159 // Try a conversion to a signed integer.
160 __ Trunc_w_d(double_scratch, double_scratch);
161 // Move the converted value into the result register.
162 __ mfc1(scratch3, double_scratch);
163
164 // Retrieve and restore the FCSR.
165 __ cfc1(scratch, FCSR);
166 __ ctc1(scratch2, FCSR);
167
168 // Check for overflow and NaNs.
169 __ And(
170 scratch, scratch,
171 kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
172 | kFCSRInvalidOpFlagMask);
173 // If we had no exceptions then set result_reg and we are done.
174 Label error;
175 __ Branch(&error, ne, scratch, Operand(zero_reg));
176 __ Move(result_reg, scratch3);
177 __ Branch(&done);
178 __ bind(&error);
179 }
180
181 // Load the double value and perform a manual truncation.
182 Register input_high = scratch2;
183 Register input_low = scratch3;
184
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000185 __ lw(input_low,
186 MemOperand(input_reg, double_offset + Register::kMantissaOffset));
187 __ lw(input_high,
188 MemOperand(input_reg, double_offset + Register::kExponentOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000189
190 Label normal_exponent, restore_sign;
191 // Extract the biased exponent in result.
192 __ Ext(result_reg,
193 input_high,
194 HeapNumber::kExponentShift,
195 HeapNumber::kExponentBits);
196
197 // Check for Infinity and NaNs, which should return 0.
198 __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
199 __ Movz(result_reg, zero_reg, scratch);
200 __ Branch(&done, eq, scratch, Operand(zero_reg));
201
202 // Express exponent as delta to (number of mantissa bits + 31).
203 __ Subu(result_reg,
204 result_reg,
205 Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
206
207 // If the delta is strictly positive, all bits would be shifted away,
208 // which means that we can return 0.
209 __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
210 __ mov(result_reg, zero_reg);
211 __ Branch(&done);
212
213 __ bind(&normal_exponent);
214 const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
215 // Calculate shift.
216 __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
217
218 // Save the sign.
219 Register sign = result_reg;
220 result_reg = no_reg;
221 __ And(sign, input_high, Operand(HeapNumber::kSignMask));
222
223 // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
224 // to check for this specific case.
225 Label high_shift_needed, high_shift_done;
226 __ Branch(&high_shift_needed, lt, scratch, Operand(32));
227 __ mov(input_high, zero_reg);
228 __ Branch(&high_shift_done);
229 __ bind(&high_shift_needed);
230
231 // Set the implicit 1 before the mantissa part in input_high.
232 __ Or(input_high,
233 input_high,
234 Operand(1 << HeapNumber::kMantissaBitsInTopWord));
235 // Shift the mantissa bits to the correct position.
236 // We don't need to clear non-mantissa bits as they will be shifted away.
237 // If they weren't, it would mean that the answer is in the 32bit range.
238 __ sllv(input_high, input_high, scratch);
239
240 __ bind(&high_shift_done);
241
242 // Replace the shifted bits with bits from the lower mantissa word.
243 Label pos_shift, shift_done;
244 __ li(at, 32);
245 __ subu(scratch, at, scratch);
246 __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
247
248 // Negate scratch.
249 __ Subu(scratch, zero_reg, scratch);
250 __ sllv(input_low, input_low, scratch);
251 __ Branch(&shift_done);
252
253 __ bind(&pos_shift);
254 __ srlv(input_low, input_low, scratch);
255
256 __ bind(&shift_done);
257 __ Or(input_high, input_high, Operand(input_low));
258 // Restore sign if necessary.
259 __ mov(scratch, sign);
260 result_reg = sign;
261 sign = no_reg;
262 __ Subu(result_reg, zero_reg, input_high);
263 __ Movz(result_reg, input_high, scratch);
264
265 __ bind(&done);
266
267 __ Pop(scratch, scratch2, scratch3);
268 __ Ret();
269}
270
271
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000272// Handle the case where the lhs and rhs are the same object.
273// Equality is almost reflexive (everything but NaN), so this is a test
274// for "identity and not NaN".
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000275static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
276 Condition cc, Strength strength) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000277 Label not_identical;
278 Label heap_number, return_equal;
279 Register exp_mask_reg = t1;
280
281 __ Branch(&not_identical, ne, a0, Operand(a1));
282
283 __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
284
285 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
286 // so we do the second best thing - test it ourselves.
287 // They are both equal and they are not both Smis so both of them are not
288 // Smis. If it's not a heap number, then return equal.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000289 __ GetObjectType(a0, t0, t0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000290 if (cc == less || cc == greater) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000291 // Call runtime on identical JSObjects.
292 __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE));
293 // Call runtime on identical symbols since we need to throw a TypeError.
294 __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE));
295 // Call runtime on identical SIMD values since we must throw a TypeError.
296 __ Branch(slow, eq, t0, Operand(SIMD128_VALUE_TYPE));
297 if (is_strong(strength)) {
298 // Call the runtime on anything that is converted in the semantics, since
299 // we need to throw a TypeError. Smis have already been ruled out.
300 __ Branch(&return_equal, eq, t0, Operand(HEAP_NUMBER_TYPE));
301 __ And(t0, t0, Operand(kIsNotStringMask));
302 __ Branch(slow, ne, t0, Operand(zero_reg));
303 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000304 } else {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000305 __ Branch(&heap_number, eq, t0, Operand(HEAP_NUMBER_TYPE));
306 // Comparing JS objects with <=, >= is complicated.
307 if (cc != eq) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000308 __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE));
309 // Call runtime on identical symbols since we need to throw a TypeError.
310 __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE));
311 // Call runtime on identical SIMD values since we must throw a TypeError.
312 __ Branch(slow, eq, t0, Operand(SIMD128_VALUE_TYPE));
313 if (is_strong(strength)) {
314 // Call the runtime on anything that is converted in the semantics,
315 // since we need to throw a TypeError. Smis and heap numbers have
316 // already been ruled out.
317 __ And(t0, t0, Operand(kIsNotStringMask));
318 __ Branch(slow, ne, t0, Operand(zero_reg));
319 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000320 // Normally here we fall through to return_equal, but undefined is
321 // special: (undefined == undefined) == true, but
322 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
323 if (cc == less_equal || cc == greater_equal) {
324 __ Branch(&return_equal, ne, t0, Operand(ODDBALL_TYPE));
325 __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
326 __ Branch(&return_equal, ne, a0, Operand(a6));
327 DCHECK(is_int16(GREATER) && is_int16(LESS));
328 __ Ret(USE_DELAY_SLOT);
329 if (cc == le) {
330 // undefined <= undefined should fail.
331 __ li(v0, Operand(GREATER));
332 } else {
333 // undefined >= undefined should fail.
334 __ li(v0, Operand(LESS));
335 }
336 }
337 }
338 }
339
340 __ bind(&return_equal);
341 DCHECK(is_int16(GREATER) && is_int16(LESS));
342 __ Ret(USE_DELAY_SLOT);
343 if (cc == less) {
344 __ li(v0, Operand(GREATER)); // Things aren't less than themselves.
345 } else if (cc == greater) {
346 __ li(v0, Operand(LESS)); // Things aren't greater than themselves.
347 } else {
348 __ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves.
349 }
350 // For less and greater we don't have to check for NaN since the result of
351 // x < x is false regardless. For the others here is some code to check
352 // for NaN.
353 if (cc != lt && cc != gt) {
354 __ bind(&heap_number);
355 // It is a heap number, so return non-equal if it's NaN and equal if it's
356 // not NaN.
357
358 // The representation of NaN values has all exponent bits (52..62) set,
359 // and not all mantissa bits (0..51) clear.
360 // Read top bits of double representation (second word of value).
361 __ lwu(a6, FieldMemOperand(a0, HeapNumber::kExponentOffset));
362 // Test that exponent bits are all set.
363 __ And(a7, a6, Operand(exp_mask_reg));
364 // If all bits not set (ne cond), then not a NaN, objects are equal.
365 __ Branch(&return_equal, ne, a7, Operand(exp_mask_reg));
366
367 // Shift out flag and all exponent bits, retaining only mantissa.
368 __ sll(a6, a6, HeapNumber::kNonMantissaBitsInTopWord);
369 // Or with all low-bits of mantissa.
370 __ lwu(a7, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
371 __ Or(v0, a7, Operand(a6));
372 // For equal we already have the right value in v0: Return zero (equal)
373 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
374 // not (it's a NaN). For <= and >= we need to load v0 with the failing
375 // value if it's a NaN.
376 if (cc != eq) {
377 // All-zero means Infinity means equal.
378 __ Ret(eq, v0, Operand(zero_reg));
379 DCHECK(is_int16(GREATER) && is_int16(LESS));
380 __ Ret(USE_DELAY_SLOT);
381 if (cc == le) {
382 __ li(v0, Operand(GREATER)); // NaN <= NaN should fail.
383 } else {
384 __ li(v0, Operand(LESS)); // NaN >= NaN should fail.
385 }
386 }
387 }
388 // No fall through here.
389
390 __ bind(&not_identical);
391}
392
393
394static void EmitSmiNonsmiComparison(MacroAssembler* masm,
395 Register lhs,
396 Register rhs,
397 Label* both_loaded_as_doubles,
398 Label* slow,
399 bool strict) {
400 DCHECK((lhs.is(a0) && rhs.is(a1)) ||
401 (lhs.is(a1) && rhs.is(a0)));
402
403 Label lhs_is_smi;
404 __ JumpIfSmi(lhs, &lhs_is_smi);
405 // Rhs is a Smi.
406 // Check whether the non-smi is a heap number.
407 __ GetObjectType(lhs, t0, t0);
408 if (strict) {
409 // If lhs was not a number and rhs was a Smi then strict equality cannot
410 // succeed. Return non-equal (lhs is already not zero).
411 __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
412 __ mov(v0, lhs);
413 } else {
414 // Smi compared non-strictly with a non-Smi non-heap-number. Call
415 // the runtime.
416 __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
417 }
418 // Rhs is a smi, lhs is a number.
419 // Convert smi rhs to double.
420 __ SmiUntag(at, rhs);
421 __ mtc1(at, f14);
422 __ cvt_d_w(f14, f14);
423 __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
424
425 // We now have both loaded as doubles.
426 __ jmp(both_loaded_as_doubles);
427
428 __ bind(&lhs_is_smi);
429 // Lhs is a Smi. Check whether the non-smi is a heap number.
430 __ GetObjectType(rhs, t0, t0);
431 if (strict) {
432 // If lhs was not a number and rhs was a Smi then strict equality cannot
433 // succeed. Return non-equal.
434 __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
435 __ li(v0, Operand(1));
436 } else {
437 // Smi compared non-strictly with a non-Smi non-heap-number. Call
438 // the runtime.
439 __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
440 }
441
442 // Lhs is a smi, rhs is a number.
443 // Convert smi lhs to double.
444 __ SmiUntag(at, lhs);
445 __ mtc1(at, f12);
446 __ cvt_d_w(f12, f12);
447 __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
448 // Fall through to both_loaded_as_doubles.
449}
450
451
452static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
453 Register lhs,
454 Register rhs) {
455 // If either operand is a JS object or an oddball value, then they are
456 // not equal since their pointers are different.
457 // There is no test for undetectability in strict equality.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000458 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000459 Label first_non_object;
460 // Get the type of the first operand into a2 and compare it with
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000461 // FIRST_JS_RECEIVER_TYPE.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000462 __ GetObjectType(lhs, a2, a2);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000463 __ Branch(&first_non_object, less, a2, Operand(FIRST_JS_RECEIVER_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000464
465 // Return non-zero.
466 Label return_not_equal;
467 __ bind(&return_not_equal);
468 __ Ret(USE_DELAY_SLOT);
469 __ li(v0, Operand(1));
470
471 __ bind(&first_non_object);
472 // Check for oddballs: true, false, null, undefined.
473 __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
474
475 __ GetObjectType(rhs, a3, a3);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000476 __ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_RECEIVER_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000477
478 // Check for oddballs: true, false, null, undefined.
479 __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
480
481 // Now that we have the types we might as well check for
482 // internalized-internalized.
483 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
484 __ Or(a2, a2, Operand(a3));
485 __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
486 __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
487}
488
489
490static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
491 Register lhs,
492 Register rhs,
493 Label* both_loaded_as_doubles,
494 Label* not_heap_numbers,
495 Label* slow) {
496 __ GetObjectType(lhs, a3, a2);
497 __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
498 __ ld(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
499 // If first was a heap number & second wasn't, go to slow case.
500 __ Branch(slow, ne, a3, Operand(a2));
501
502 // Both are heap numbers. Load them up then jump to the code we have
503 // for that.
504 __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
505 __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
506
507 __ jmp(both_loaded_as_doubles);
508}
509
510
511// Fast negative check for internalized-to-internalized equality.
512static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
513 Register lhs,
514 Register rhs,
515 Label* possible_strings,
516 Label* not_both_strings) {
517 DCHECK((lhs.is(a0) && rhs.is(a1)) ||
518 (lhs.is(a1) && rhs.is(a0)));
519
520 // a2 is object type of rhs.
521 Label object_test;
522 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
523 __ And(at, a2, Operand(kIsNotStringMask));
524 __ Branch(&object_test, ne, at, Operand(zero_reg));
525 __ And(at, a2, Operand(kIsNotInternalizedMask));
526 __ Branch(possible_strings, ne, at, Operand(zero_reg));
527 __ GetObjectType(rhs, a3, a3);
528 __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
529 __ And(at, a3, Operand(kIsNotInternalizedMask));
530 __ Branch(possible_strings, ne, at, Operand(zero_reg));
531
532 // Both are internalized strings. We already checked they weren't the same
533 // pointer so they are not equal.
534 __ Ret(USE_DELAY_SLOT);
535 __ li(v0, Operand(1)); // Non-zero indicates not equal.
536
537 __ bind(&object_test);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000538 __ Branch(not_both_strings, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000539 __ GetObjectType(rhs, a2, a3);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000540 __ Branch(not_both_strings, lt, a3, Operand(FIRST_JS_RECEIVER_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000541
542 // If both objects are undetectable, they are equal. Otherwise, they
543 // are not equal, since they are different objects and an object is not
544 // equal to undefined.
545 __ ld(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
546 __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
547 __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
548 __ and_(a0, a2, a3);
549 __ And(a0, a0, Operand(1 << Map::kIsUndetectable));
550 __ Ret(USE_DELAY_SLOT);
551 __ xori(v0, a0, 1 << Map::kIsUndetectable);
552}
553
554
555static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
556 Register scratch,
557 CompareICState::State expected,
558 Label* fail) {
559 Label ok;
560 if (expected == CompareICState::SMI) {
561 __ JumpIfNotSmi(input, fail);
562 } else if (expected == CompareICState::NUMBER) {
563 __ JumpIfSmi(input, &ok);
564 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
565 DONT_DO_SMI_CHECK);
566 }
567 // We could be strict about internalized/string here, but as long as
568 // hydrogen doesn't care, the stub doesn't have to care either.
569 __ bind(&ok);
570}
571
572
573// On entry a1 and a2 are the values to be compared.
574// On exit a0 is 0, positive or negative to indicate the result of
575// the comparison.
576void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
577 Register lhs = a1;
578 Register rhs = a0;
579 Condition cc = GetCondition();
580
581 Label miss;
582 CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
583 CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
584
585 Label slow; // Call builtin.
586 Label not_smis, both_loaded_as_doubles;
587
588 Label not_two_smis, smi_done;
589 __ Or(a2, a1, a0);
590 __ JumpIfNotSmi(a2, &not_two_smis);
591 __ SmiUntag(a1);
592 __ SmiUntag(a0);
593
594 __ Ret(USE_DELAY_SLOT);
595 __ dsubu(v0, a1, a0);
596 __ bind(&not_two_smis);
597
598 // NOTICE! This code is only reached after a smi-fast-case check, so
599 // it is certain that at least one operand isn't a smi.
600
601 // Handle the case where the objects are identical. Either returns the answer
602 // or goes to slow. Only falls through if the objects were not identical.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000603 EmitIdenticalObjectComparison(masm, &slow, cc, strength());
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000604
605 // If either is a Smi (we know that not both are), then they can only
606 // be strictly equal if the other is a HeapNumber.
607 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000608 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000609 __ And(a6, lhs, Operand(rhs));
610 __ JumpIfNotSmi(a6, &not_smis, a4);
611 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
612 // 1) Return the answer.
613 // 2) Go to slow.
614 // 3) Fall through to both_loaded_as_doubles.
615 // 4) Jump to rhs_not_nan.
616 // In cases 3 and 4 we have found out we were dealing with a number-number
617 // comparison and the numbers have been loaded into f12 and f14 as doubles,
618 // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
619 EmitSmiNonsmiComparison(masm, lhs, rhs,
620 &both_loaded_as_doubles, &slow, strict());
621
622 __ bind(&both_loaded_as_doubles);
623 // f12, f14 are the double representations of the left hand side
624 // and the right hand side if we have FPU. Otherwise a2, a3 represent
625 // left hand side and a0, a1 represent right hand side.
626
627 Label nan;
628 __ li(a4, Operand(LESS));
629 __ li(a5, Operand(GREATER));
630 __ li(a6, Operand(EQUAL));
631
632 // Check if either rhs or lhs is NaN.
633 __ BranchF(NULL, &nan, eq, f12, f14);
634
635 // Check if LESS condition is satisfied. If true, move conditionally
636 // result to v0.
637 if (kArchVariant != kMips64r6) {
638 __ c(OLT, D, f12, f14);
639 __ Movt(v0, a4);
640 // Use previous check to store conditionally to v0 oposite condition
641 // (GREATER). If rhs is equal to lhs, this will be corrected in next
642 // check.
643 __ Movf(v0, a5);
644 // Check if EQUAL condition is satisfied. If true, move conditionally
645 // result to v0.
646 __ c(EQ, D, f12, f14);
647 __ Movt(v0, a6);
648 } else {
649 Label skip;
650 __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
651 __ mov(v0, a4); // Return LESS as result.
652
653 __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
654 __ mov(v0, a6); // Return EQUAL as result.
655
656 __ mov(v0, a5); // Return GREATER as result.
657 __ bind(&skip);
658 }
659 __ Ret();
660
661 __ bind(&nan);
662 // NaN comparisons always fail.
663 // Load whatever we need in v0 to make the comparison fail.
664 DCHECK(is_int16(GREATER) && is_int16(LESS));
665 __ Ret(USE_DELAY_SLOT);
666 if (cc == lt || cc == le) {
667 __ li(v0, Operand(GREATER));
668 } else {
669 __ li(v0, Operand(LESS));
670 }
671
672
673 __ bind(&not_smis);
674 // At this point we know we are dealing with two different objects,
675 // and neither of them is a Smi. The objects are in lhs_ and rhs_.
676 if (strict()) {
677 // This returns non-equal for some object types, or falls through if it
678 // was not lucky.
679 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
680 }
681
682 Label check_for_internalized_strings;
683 Label flat_string_check;
684 // Check for heap-number-heap-number comparison. Can jump to slow case,
685 // or load both doubles and jump to the code that handles
686 // that case. If the inputs are not doubles then jumps to
687 // check_for_internalized_strings.
688 // In this case a2 will contain the type of lhs_.
689 EmitCheckForTwoHeapNumbers(masm,
690 lhs,
691 rhs,
692 &both_loaded_as_doubles,
693 &check_for_internalized_strings,
694 &flat_string_check);
695
696 __ bind(&check_for_internalized_strings);
697 if (cc == eq && !strict()) {
698 // Returns an answer for two internalized strings or two
699 // detectable objects.
700 // Otherwise jumps to string case or not both strings case.
701 // Assumes that a2 is the type of lhs_ on entry.
702 EmitCheckForInternalizedStringsOrObjects(
703 masm, lhs, rhs, &flat_string_check, &slow);
704 }
705
706 // Check for both being sequential one-byte strings,
707 // and inline if that is the case.
708 __ bind(&flat_string_check);
709
710 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
711
712 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
713 a3);
714 if (cc == eq) {
715 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, a4);
716 } else {
717 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, a4,
718 a5);
719 }
720 // Never falls through to here.
721
722 __ bind(&slow);
723 // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
724 // a1 (rhs) second.
725 __ Push(lhs, rhs);
726 // Figure out which native to call and setup the arguments.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000727 if (cc == eq) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000728 __ TailCallRuntime(strict() ? Runtime::kStrictEquals : Runtime::kEquals);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000729 } else {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000730 int ncr; // NaN compare result.
731 if (cc == lt || cc == le) {
732 ncr = GREATER;
733 } else {
734 DCHECK(cc == gt || cc == ge); // Remaining cases.
735 ncr = LESS;
736 }
737 __ li(a0, Operand(Smi::FromInt(ncr)));
738 __ push(a0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000739
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000740 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
741 // tagged as a small integer.
742 __ TailCallRuntime(is_strong(strength()) ? Runtime::kCompare_Strong
743 : Runtime::kCompare);
744 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000745
746 __ bind(&miss);
747 GenerateMiss(masm);
748}
749
750
751void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
752 __ mov(t9, ra);
753 __ pop(ra);
754 __ PushSafepointRegisters();
755 __ Jump(t9);
756}
757
758
759void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
760 __ mov(t9, ra);
761 __ pop(ra);
762 __ PopSafepointRegisters();
763 __ Jump(t9);
764}
765
766
767void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
768 // We don't allow a GC during a store buffer overflow so there is no need to
769 // store the registers in any particular way, but we do have to store and
770 // restore them.
771 __ MultiPush(kJSCallerSaved | ra.bit());
772 if (save_doubles()) {
773 __ MultiPushFPU(kCallerSavedFPU);
774 }
775 const int argument_count = 1;
776 const int fp_argument_count = 0;
777 const Register scratch = a1;
778
779 AllowExternalCallThatCantCauseGC scope(masm);
780 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
781 __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
782 __ CallCFunction(
783 ExternalReference::store_buffer_overflow_function(isolate()),
784 argument_count);
785 if (save_doubles()) {
786 __ MultiPopFPU(kCallerSavedFPU);
787 }
788
789 __ MultiPop(kJSCallerSaved | ra.bit());
790 __ Ret();
791}
792
793
794void MathPowStub::Generate(MacroAssembler* masm) {
795 const Register base = a1;
796 const Register exponent = MathPowTaggedDescriptor::exponent();
797 DCHECK(exponent.is(a2));
798 const Register heapnumbermap = a5;
799 const Register heapnumber = v0;
800 const DoubleRegister double_base = f2;
801 const DoubleRegister double_exponent = f4;
802 const DoubleRegister double_result = f0;
803 const DoubleRegister double_scratch = f6;
804 const FPURegister single_scratch = f8;
805 const Register scratch = t1;
806 const Register scratch2 = a7;
807
808 Label call_runtime, done, int_exponent;
809 if (exponent_type() == ON_STACK) {
810 Label base_is_smi, unpack_exponent;
811 // The exponent and base are supplied as arguments on the stack.
812 // This can only happen if the stub is called from non-optimized code.
813 // Load input parameters from stack to double registers.
814 __ ld(base, MemOperand(sp, 1 * kPointerSize));
815 __ ld(exponent, MemOperand(sp, 0 * kPointerSize));
816
817 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
818
819 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
820 __ ld(scratch, FieldMemOperand(base, JSObject::kMapOffset));
821 __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
822
823 __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
824 __ jmp(&unpack_exponent);
825
826 __ bind(&base_is_smi);
827 __ mtc1(scratch, single_scratch);
828 __ cvt_d_w(double_base, single_scratch);
829 __ bind(&unpack_exponent);
830
831 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
832
833 __ ld(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
834 __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
835 __ ldc1(double_exponent,
836 FieldMemOperand(exponent, HeapNumber::kValueOffset));
837 } else if (exponent_type() == TAGGED) {
838 // Base is already in double_base.
839 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
840
841 __ ldc1(double_exponent,
842 FieldMemOperand(exponent, HeapNumber::kValueOffset));
843 }
844
845 if (exponent_type() != INTEGER) {
846 Label int_exponent_convert;
847 // Detect integer exponents stored as double.
848 __ EmitFPUTruncate(kRoundToMinusInf,
849 scratch,
850 double_exponent,
851 at,
852 double_scratch,
853 scratch2,
854 kCheckForInexactConversion);
855 // scratch2 == 0 means there was no conversion error.
856 __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
857
858 if (exponent_type() == ON_STACK) {
859 // Detect square root case. Crankshaft detects constant +/-0.5 at
860 // compile time and uses DoMathPowHalf instead. We then skip this check
861 // for non-constant cases of +/-0.5 as these hardly occur.
862 Label not_plus_half;
863
864 // Test for 0.5.
865 __ Move(double_scratch, 0.5);
866 __ BranchF(USE_DELAY_SLOT,
867 &not_plus_half,
868 NULL,
869 ne,
870 double_exponent,
871 double_scratch);
872 // double_scratch can be overwritten in the delay slot.
873 // Calculates square root of base. Check for the special case of
874 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400875 __ Move(double_scratch, static_cast<double>(-V8_INFINITY));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000876 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
877 __ neg_d(double_result, double_scratch);
878
879 // Add +0 to convert -0 to +0.
880 __ add_d(double_scratch, double_base, kDoubleRegZero);
881 __ sqrt_d(double_result, double_scratch);
882 __ jmp(&done);
883
884 __ bind(&not_plus_half);
885 __ Move(double_scratch, -0.5);
886 __ BranchF(USE_DELAY_SLOT,
887 &call_runtime,
888 NULL,
889 ne,
890 double_exponent,
891 double_scratch);
892 // double_scratch can be overwritten in the delay slot.
893 // Calculates square root of base. Check for the special case of
894 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400895 __ Move(double_scratch, static_cast<double>(-V8_INFINITY));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000896 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
897 __ Move(double_result, kDoubleRegZero);
898
899 // Add +0 to convert -0 to +0.
900 __ add_d(double_scratch, double_base, kDoubleRegZero);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400901 __ Move(double_result, 1.);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000902 __ sqrt_d(double_scratch, double_scratch);
903 __ div_d(double_result, double_result, double_scratch);
904 __ jmp(&done);
905 }
906
907 __ push(ra);
908 {
909 AllowExternalCallThatCantCauseGC scope(masm);
910 __ PrepareCallCFunction(0, 2, scratch2);
911 __ MovToFloatParameters(double_base, double_exponent);
912 __ CallCFunction(
913 ExternalReference::power_double_double_function(isolate()),
914 0, 2);
915 }
916 __ pop(ra);
917 __ MovFromFloatResult(double_result);
918 __ jmp(&done);
919
920 __ bind(&int_exponent_convert);
921 }
922
923 // Calculate power with integer exponent.
924 __ bind(&int_exponent);
925
926 // Get two copies of exponent in the registers scratch and exponent.
927 if (exponent_type() == INTEGER) {
928 __ mov(scratch, exponent);
929 } else {
930 // Exponent has previously been stored into scratch as untagged integer.
931 __ mov(exponent, scratch);
932 }
933
934 __ mov_d(double_scratch, double_base); // Back up base.
935 __ Move(double_result, 1.0);
936
937 // Get absolute value of exponent.
938 Label positive_exponent;
939 __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
940 __ Dsubu(scratch, zero_reg, scratch);
941 __ bind(&positive_exponent);
942
943 Label while_true, no_carry, loop_end;
944 __ bind(&while_true);
945
946 __ And(scratch2, scratch, 1);
947
948 __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
949 __ mul_d(double_result, double_result, double_scratch);
950 __ bind(&no_carry);
951
952 __ dsra(scratch, scratch, 1);
953
954 __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
955 __ mul_d(double_scratch, double_scratch, double_scratch);
956
957 __ Branch(&while_true);
958
959 __ bind(&loop_end);
960
961 __ Branch(&done, ge, exponent, Operand(zero_reg));
962 __ Move(double_scratch, 1.0);
963 __ div_d(double_result, double_scratch, double_result);
964 // Test whether result is zero. Bail out to check for subnormal result.
965 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
966 __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
967
968 // double_exponent may not contain the exponent value if the input was a
969 // smi. We set it with exponent value before bailing out.
970 __ mtc1(exponent, single_scratch);
971 __ cvt_d_w(double_exponent, single_scratch);
972
973 // Returning or bailing out.
974 Counters* counters = isolate()->counters();
975 if (exponent_type() == ON_STACK) {
976 // The arguments are still on the stack.
977 __ bind(&call_runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000978 __ TailCallRuntime(Runtime::kMathPowRT);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000979
980 // The stub is called from non-optimized code, which expects the result
981 // as heap number in exponent.
982 __ bind(&done);
983 __ AllocateHeapNumber(
984 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
985 __ sdc1(double_result,
986 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
987 DCHECK(heapnumber.is(v0));
988 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
989 __ DropAndRet(2);
990 } else {
991 __ push(ra);
992 {
993 AllowExternalCallThatCantCauseGC scope(masm);
994 __ PrepareCallCFunction(0, 2, scratch);
995 __ MovToFloatParameters(double_base, double_exponent);
996 __ CallCFunction(
997 ExternalReference::power_double_double_function(isolate()),
998 0, 2);
999 }
1000 __ pop(ra);
1001 __ MovFromFloatResult(double_result);
1002
1003 __ bind(&done);
1004 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
1005 __ Ret();
1006 }
1007}
1008
1009
1010bool CEntryStub::NeedsImmovableCode() {
1011 return true;
1012}
1013
1014
1015void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
1016 CEntryStub::GenerateAheadOfTime(isolate);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001017 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
1018 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1019 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
1020 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001021 CreateWeakCellStub::GenerateAheadOfTime(isolate);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001022 BinaryOpICStub::GenerateAheadOfTime(isolate);
1023 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
1024 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
1025 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001026 StoreFastElementStub::GenerateAheadOfTime(isolate);
1027 TypeofStub::GenerateAheadOfTime(isolate);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001028}
1029
1030
1031void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1032 StoreRegistersStateStub stub(isolate);
1033 stub.GetCode();
1034}
1035
1036
1037void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1038 RestoreRegistersStateStub stub(isolate);
1039 stub.GetCode();
1040}
1041
1042
1043void CodeStub::GenerateFPStubs(Isolate* isolate) {
1044 // Generate if not already in cache.
1045 SaveFPRegsMode mode = kSaveFPRegs;
1046 CEntryStub(isolate, 1, mode).GetCode();
1047 StoreBufferOverflowStub(isolate, mode).GetCode();
1048 isolate->set_fp_stubs_generated(true);
1049}
1050
1051
1052void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1053 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1054 stub.GetCode();
1055}
1056
1057
1058void CEntryStub::Generate(MacroAssembler* masm) {
1059 // Called from JavaScript; parameters are on stack as if calling JS function
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001060 // a0: number of arguments including receiver
1061 // a1: pointer to builtin function
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001062 // fp: frame pointer (restored after C call)
1063 // sp: stack pointer (restored as callee's sp after C call)
1064 // cp: current context (C callee-saved)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001065 //
1066 // If argv_in_register():
1067 // a2: pointer to the first argument
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001068
1069 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1070
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001071 if (argv_in_register()) {
1072 // Move argv into the correct register.
1073 __ mov(s1, a2);
1074 } else {
1075 // Compute the argv pointer in a callee-saved register.
1076 __ dsll(s1, a0, kPointerSizeLog2);
1077 __ Daddu(s1, sp, s1);
1078 __ Dsubu(s1, s1, kPointerSize);
1079 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001080
1081 // Enter the exit frame that transitions from JavaScript to C++.
1082 FrameScope scope(masm, StackFrame::MANUAL);
1083 __ EnterExitFrame(save_doubles());
1084
1085 // s0: number of arguments including receiver (C callee-saved)
1086 // s1: pointer to first argument (C callee-saved)
1087 // s2: pointer to builtin function (C callee-saved)
1088
1089 // Prepare arguments for C routine.
1090 // a0 = argc
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001091 __ mov(s0, a0);
1092 __ mov(s2, a1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001093 // a1 = argv (set in the delay slot after find_ra below).
1094
1095 // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
1096 // also need to reserve the 4 argument slots on the stack.
1097
1098 __ AssertStackIsAligned();
1099
1100 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
1101
1102 // To let the GC traverse the return address of the exit frames, we need to
1103 // know where the return address is. The CEntryStub is unmovable, so
1104 // we can store the address on the stack to be able to find it again and
1105 // we never have to restore it, because it will not change.
1106 { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
1107 // This branch-and-link sequence is needed to find the current PC on mips,
1108 // saved to the ra register.
1109 // Use masm-> here instead of the double-underscore macro since extra
1110 // coverage code can interfere with the proper calculation of ra.
1111 Label find_ra;
1112 masm->bal(&find_ra); // bal exposes branch delay slot.
1113 masm->mov(a1, s1);
1114 masm->bind(&find_ra);
1115
1116 // Adjust the value in ra to point to the correct return location, 2nd
1117 // instruction past the real call into C code (the jalr(t9)), and push it.
1118 // This is the return address of the exit frame.
1119 const int kNumInstructionsToJump = 5;
1120 masm->Daddu(ra, ra, kNumInstructionsToJump * kInt32Size);
1121 masm->sd(ra, MemOperand(sp)); // This spot was reserved in EnterExitFrame.
1122 // Stack space reservation moved to the branch delay slot below.
1123 // Stack is still aligned.
1124
1125 // Call the C routine.
1126 masm->mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC.
1127 masm->jalr(t9);
1128 // Set up sp in the delay slot.
1129 masm->daddiu(sp, sp, -kCArgsSlotsSize);
1130 // Make sure the stored 'ra' points to this position.
1131 DCHECK_EQ(kNumInstructionsToJump,
1132 masm->InstructionsGeneratedSince(&find_ra));
1133 }
1134
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001135 // Check result for exception sentinel.
1136 Label exception_returned;
1137 __ LoadRoot(a4, Heap::kExceptionRootIndex);
1138 __ Branch(&exception_returned, eq, a4, Operand(v0));
1139
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001140 // Check that there is no pending exception, otherwise we
1141 // should have returned the exception sentinel.
1142 if (FLAG_debug_code) {
1143 Label okay;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001144 ExternalReference pending_exception_address(
1145 Isolate::kPendingExceptionAddress, isolate());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001146 __ li(a2, Operand(pending_exception_address));
1147 __ ld(a2, MemOperand(a2));
1148 __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
1149 // Cannot use check here as it attempts to generate call into runtime.
1150 __ Branch(&okay, eq, a4, Operand(a2));
1151 __ stop("Unexpected pending exception");
1152 __ bind(&okay);
1153 }
1154
1155 // Exit C frame and return.
1156 // v0:v1: result
1157 // sp: stack pointer
1158 // fp: frame pointer
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001159 Register argc;
1160 if (argv_in_register()) {
1161 // We don't want to pop arguments so set argc to no_reg.
1162 argc = no_reg;
1163 } else {
1164 // s0: still holds argc (callee-saved).
1165 argc = s0;
1166 }
1167 __ LeaveExitFrame(save_doubles(), argc, true, EMIT_RETURN);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001168
1169 // Handling of exception.
1170 __ bind(&exception_returned);
1171
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001172 ExternalReference pending_handler_context_address(
1173 Isolate::kPendingHandlerContextAddress, isolate());
1174 ExternalReference pending_handler_code_address(
1175 Isolate::kPendingHandlerCodeAddress, isolate());
1176 ExternalReference pending_handler_offset_address(
1177 Isolate::kPendingHandlerOffsetAddress, isolate());
1178 ExternalReference pending_handler_fp_address(
1179 Isolate::kPendingHandlerFPAddress, isolate());
1180 ExternalReference pending_handler_sp_address(
1181 Isolate::kPendingHandlerSPAddress, isolate());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001182
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001183 // Ask the runtime for help to determine the handler. This will set v0 to
1184 // contain the current pending exception, don't clobber it.
1185 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1186 isolate());
1187 {
1188 FrameScope scope(masm, StackFrame::MANUAL);
1189 __ PrepareCallCFunction(3, 0, a0);
1190 __ mov(a0, zero_reg);
1191 __ mov(a1, zero_reg);
1192 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
1193 __ CallCFunction(find_handler, 3);
1194 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001195
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001196 // Retrieve the handler context, SP and FP.
1197 __ li(cp, Operand(pending_handler_context_address));
1198 __ ld(cp, MemOperand(cp));
1199 __ li(sp, Operand(pending_handler_sp_address));
1200 __ ld(sp, MemOperand(sp));
1201 __ li(fp, Operand(pending_handler_fp_address));
1202 __ ld(fp, MemOperand(fp));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001203
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001204 // If the handler is a JS frame, restore the context to the frame. Note that
1205 // the context will be set to (cp == 0) for non-JS frames.
1206 Label zero;
1207 __ Branch(&zero, eq, cp, Operand(zero_reg));
1208 __ sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1209 __ bind(&zero);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001210
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001211 // Compute the handler entry address and jump to it.
1212 __ li(a1, Operand(pending_handler_code_address));
1213 __ ld(a1, MemOperand(a1));
1214 __ li(a2, Operand(pending_handler_offset_address));
1215 __ ld(a2, MemOperand(a2));
1216 __ Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));
1217 __ Daddu(t9, a1, a2);
1218 __ Jump(t9);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001219}
1220
1221
1222void JSEntryStub::Generate(MacroAssembler* masm) {
1223 Label invoke, handler_entry, exit;
1224 Isolate* isolate = masm->isolate();
1225
1226 // TODO(plind): unify the ABI description here.
1227 // Registers:
1228 // a0: entry address
1229 // a1: function
1230 // a2: receiver
1231 // a3: argc
1232 // a4 (a4): on mips64
1233
1234 // Stack:
1235 // 0 arg slots on mips64 (4 args slots on mips)
1236 // args -- in a4/a4 on mips64, on stack on mips
1237
1238 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1239
1240 // Save callee saved registers on the stack.
1241 __ MultiPush(kCalleeSaved | ra.bit());
1242
1243 // Save callee-saved FPU registers.
1244 __ MultiPushFPU(kCalleeSavedFPU);
1245 // Set up the reserved register for 0.0.
1246 __ Move(kDoubleRegZero, 0.0);
1247
1248 // Load argv in s0 register.
1249 if (kMipsAbi == kN64) {
1250 __ mov(s0, a4); // 5th parameter in mips64 a4 (a4) register.
1251 } else { // Abi O32.
1252 // 5th parameter on stack for O32 abi.
1253 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1254 offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
1255 __ ld(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
1256 }
1257
1258 __ InitializeRootRegister();
1259
1260 // We build an EntryFrame.
1261 __ li(a7, Operand(-1)); // Push a bad frame pointer to fail if it is used.
1262 int marker = type();
1263 __ li(a6, Operand(Smi::FromInt(marker)));
1264 __ li(a5, Operand(Smi::FromInt(marker)));
1265 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
1266 __ li(a4, Operand(c_entry_fp));
1267 __ ld(a4, MemOperand(a4));
1268 __ Push(a7, a6, a5, a4);
1269 // Set up frame pointer for the frame to be pushed.
1270 __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
1271
1272 // Registers:
1273 // a0: entry_address
1274 // a1: function
1275 // a2: receiver_pointer
1276 // a3: argc
1277 // s0: argv
1278 //
1279 // Stack:
1280 // caller fp |
1281 // function slot | entry frame
1282 // context slot |
1283 // bad fp (0xff...f) |
1284 // callee saved registers + ra
1285 // [ O32: 4 args slots]
1286 // args
1287
1288 // If this is the outermost JS call, set js_entry_sp value.
1289 Label non_outermost_js;
1290 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
1291 __ li(a5, Operand(ExternalReference(js_entry_sp)));
1292 __ ld(a6, MemOperand(a5));
1293 __ Branch(&non_outermost_js, ne, a6, Operand(zero_reg));
1294 __ sd(fp, MemOperand(a5));
1295 __ li(a4, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1296 Label cont;
1297 __ b(&cont);
1298 __ nop(); // Branch delay slot nop.
1299 __ bind(&non_outermost_js);
1300 __ li(a4, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
1301 __ bind(&cont);
1302 __ push(a4);
1303
1304 // Jump to a faked try block that does the invoke, with a faked catch
1305 // block that sets the pending exception.
1306 __ jmp(&invoke);
1307 __ bind(&handler_entry);
1308 handler_offset_ = handler_entry.pos();
1309 // Caught exception: Store result (exception) in the pending exception
1310 // field in the JSEnv and return a failure sentinel. Coming in here the
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001311 // fp will be invalid because the PushStackHandler below sets it to 0 to
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001312 // signal the existence of the JSEntry frame.
1313 __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1314 isolate)));
1315 __ sd(v0, MemOperand(a4)); // We come back from 'invoke'. result is in v0.
1316 __ LoadRoot(v0, Heap::kExceptionRootIndex);
1317 __ b(&exit); // b exposes branch delay slot.
1318 __ nop(); // Branch delay slot nop.
1319
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001320 // Invoke: Link this frame into the handler chain.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001321 __ bind(&invoke);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001322 __ PushStackHandler();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001323 // If an exception not caught by another handler occurs, this handler
1324 // returns control to the code after the bal(&invoke) above, which
1325 // restores all kCalleeSaved registers (including cp and fp) to their
1326 // saved values before returning a failure to C.
1327
1328 // Clear any pending exceptions.
1329 __ LoadRoot(a5, Heap::kTheHoleValueRootIndex);
1330 __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1331 isolate)));
1332 __ sd(a5, MemOperand(a4));
1333
1334 // Invoke the function by calling through JS entry trampoline builtin.
1335 // Notice that we cannot store a reference to the trampoline code directly in
1336 // this stub, because runtime stubs are not traversed when doing GC.
1337
1338 // Registers:
1339 // a0: entry_address
1340 // a1: function
1341 // a2: receiver_pointer
1342 // a3: argc
1343 // s0: argv
1344 //
1345 // Stack:
1346 // handler frame
1347 // entry frame
1348 // callee saved registers + ra
1349 // [ O32: 4 args slots]
1350 // args
1351
1352 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1353 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1354 isolate);
1355 __ li(a4, Operand(construct_entry));
1356 } else {
1357 ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
1358 __ li(a4, Operand(entry));
1359 }
1360 __ ld(t9, MemOperand(a4)); // Deref address.
1361 // Call JSEntryTrampoline.
1362 __ daddiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
1363 __ Call(t9);
1364
1365 // Unlink this frame from the handler chain.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001366 __ PopStackHandler();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001367
1368 __ bind(&exit); // v0 holds result
1369 // Check if the current stack frame is marked as the outermost JS frame.
1370 Label non_outermost_js_2;
1371 __ pop(a5);
1372 __ Branch(&non_outermost_js_2,
1373 ne,
1374 a5,
1375 Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1376 __ li(a5, Operand(ExternalReference(js_entry_sp)));
1377 __ sd(zero_reg, MemOperand(a5));
1378 __ bind(&non_outermost_js_2);
1379
1380 // Restore the top frame descriptors from the stack.
1381 __ pop(a5);
1382 __ li(a4, Operand(ExternalReference(Isolate::kCEntryFPAddress,
1383 isolate)));
1384 __ sd(a5, MemOperand(a4));
1385
1386 // Reset the stack to the callee saved registers.
1387 __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
1388
1389 // Restore callee-saved fpu registers.
1390 __ MultiPopFPU(kCalleeSavedFPU);
1391
1392 // Restore callee saved registers from the stack.
1393 __ MultiPop(kCalleeSaved | ra.bit());
1394 // Return.
1395 __ Jump(ra);
1396}
1397
1398
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001399void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1400 // Return address is in ra.
1401 Label miss;
1402
1403 Register receiver = LoadDescriptor::ReceiverRegister();
1404 Register index = LoadDescriptor::NameRegister();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001405 Register scratch = a5;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001406 Register result = v0;
1407 DCHECK(!scratch.is(receiver) && !scratch.is(index));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001408 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001409
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001410 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1411 &miss, // When not a string.
1412 &miss, // When not a number.
1413 &miss, // When index out of range.
1414 STRING_INDEX_IS_ARRAY_INDEX,
1415 RECEIVER_IS_STRING);
1416 char_at_generator.GenerateFast(masm);
1417 __ Ret();
1418
1419 StubRuntimeCallHelper call_helper;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001420 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001421
1422 __ bind(&miss);
1423 PropertyAccessCompiler::TailCallBuiltin(
1424 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1425}
1426
1427
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001428void InstanceOfStub::Generate(MacroAssembler* masm) {
1429 Register const object = a1; // Object (lhs).
1430 Register const function = a0; // Function (rhs).
1431 Register const object_map = a2; // Map of {object}.
1432 Register const function_map = a3; // Map of {function}.
1433 Register const function_prototype = a4; // Prototype of {function}.
1434 Register const scratch = a5;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001435
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001436 DCHECK(object.is(InstanceOfDescriptor::LeftRegister()));
1437 DCHECK(function.is(InstanceOfDescriptor::RightRegister()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001438
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001439 // Check if {object} is a smi.
1440 Label object_is_smi;
1441 __ JumpIfSmi(object, &object_is_smi);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001442
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001443 // Lookup the {function} and the {object} map in the global instanceof cache.
1444 // Note: This is safe because we clear the global instanceof cache whenever
1445 // we change the prototype of any object.
1446 Label fast_case, slow_case;
1447 __ ld(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
1448 __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
1449 __ Branch(&fast_case, ne, function, Operand(at));
1450 __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
1451 __ Branch(&fast_case, ne, object_map, Operand(at));
1452 __ Ret(USE_DELAY_SLOT);
1453 __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex); // In delay slot.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001454
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001455 // If {object} is a smi we can safely return false if {function} is a JS
1456 // function, otherwise we have to miss to the runtime and throw an exception.
1457 __ bind(&object_is_smi);
1458 __ JumpIfSmi(function, &slow_case);
1459 __ GetObjectType(function, function_map, scratch);
1460 __ Branch(&slow_case, ne, scratch, Operand(JS_FUNCTION_TYPE));
1461 __ Ret(USE_DELAY_SLOT);
1462 __ LoadRoot(v0, Heap::kFalseValueRootIndex); // In delay slot.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001463
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001464 // Fast-case: The {function} must be a valid JSFunction.
1465 __ bind(&fast_case);
1466 __ JumpIfSmi(function, &slow_case);
1467 __ GetObjectType(function, function_map, scratch);
1468 __ Branch(&slow_case, ne, scratch, Operand(JS_FUNCTION_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001469
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001470 // Ensure that {function} has an instance prototype.
1471 __ lbu(scratch, FieldMemOperand(function_map, Map::kBitFieldOffset));
1472 __ And(at, scratch, Operand(1 << Map::kHasNonInstancePrototype));
1473 __ Branch(&slow_case, ne, at, Operand(zero_reg));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001474
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001475 // Get the "prototype" (or initial map) of the {function}.
1476 __ ld(function_prototype,
1477 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1478 __ AssertNotSmi(function_prototype);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001479
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001480 // Resolve the prototype if the {function} has an initial map. Afterwards the
1481 // {function_prototype} will be either the JSReceiver prototype object or the
1482 // hole value, which means that no instances of the {function} were created so
1483 // far and hence we should return false.
1484 Label function_prototype_valid;
1485 __ GetObjectType(function_prototype, scratch, scratch);
1486 __ Branch(&function_prototype_valid, ne, scratch, Operand(MAP_TYPE));
1487 __ ld(function_prototype,
1488 FieldMemOperand(function_prototype, Map::kPrototypeOffset));
1489 __ bind(&function_prototype_valid);
1490 __ AssertNotSmi(function_prototype);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001491
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001492 // Update the global instanceof cache with the current {object} map and
1493 // {function}. The cached answer will be set when it is known below.
1494 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1495 __ StoreRoot(object_map, Heap::kInstanceofCacheMapRootIndex);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001496
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001497 // Loop through the prototype chain looking for the {function} prototype.
1498 // Assume true, and change to false if not found.
1499 Register const object_instance_type = function_map;
1500 Register const map_bit_field = function_map;
1501 Register const null = scratch;
1502 Register const result = v0;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001503
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001504 Label done, loop, fast_runtime_fallback;
1505 __ LoadRoot(result, Heap::kTrueValueRootIndex);
1506 __ LoadRoot(null, Heap::kNullValueRootIndex);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001507 __ bind(&loop);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001508
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001509 // Check if the object needs to be access checked.
1510 __ lbu(map_bit_field, FieldMemOperand(object_map, Map::kBitFieldOffset));
1511 __ And(map_bit_field, map_bit_field, Operand(1 << Map::kIsAccessCheckNeeded));
1512 __ Branch(&fast_runtime_fallback, ne, map_bit_field, Operand(zero_reg));
1513 // Check if the current object is a Proxy.
1514 __ lbu(object_instance_type,
1515 FieldMemOperand(object_map, Map::kInstanceTypeOffset));
1516 __ Branch(&fast_runtime_fallback, eq, object_instance_type,
1517 Operand(JS_PROXY_TYPE));
1518
1519 __ ld(object, FieldMemOperand(object_map, Map::kPrototypeOffset));
1520 __ Branch(&done, eq, object, Operand(function_prototype));
1521 __ Branch(USE_DELAY_SLOT, &loop, ne, object, Operand(null));
1522 __ ld(object_map,
1523 FieldMemOperand(object, HeapObject::kMapOffset)); // In delay slot.
1524 __ LoadRoot(result, Heap::kFalseValueRootIndex);
1525 __ bind(&done);
1526 __ Ret(USE_DELAY_SLOT);
1527 __ StoreRoot(result,
1528 Heap::kInstanceofCacheAnswerRootIndex); // In delay slot.
1529
1530 // Found Proxy or access check needed: Call the runtime
1531 __ bind(&fast_runtime_fallback);
1532 __ Push(object, function_prototype);
1533 // Invalidate the instanceof cache.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001534 DCHECK(Smi::FromInt(0) == 0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001535 __ StoreRoot(zero_reg, Heap::kInstanceofCacheFunctionRootIndex);
1536 __ TailCallRuntime(Runtime::kHasInPrototypeChain);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001537
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001538 // Slow-case: Call the %InstanceOf runtime function.
1539 __ bind(&slow_case);
1540 __ Push(object, function);
1541 __ TailCallRuntime(Runtime::kInstanceOf);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001542}
1543
1544
1545void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1546 Label miss;
1547 Register receiver = LoadDescriptor::ReceiverRegister();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001548 // Ensure that the vector and slot registers won't be clobbered before
1549 // calling the miss handler.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001550 DCHECK(!AreAliased(a4, a5, LoadWithVectorDescriptor::VectorRegister(),
1551 LoadWithVectorDescriptor::SlotRegister()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001552
1553 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, a4,
1554 a5, &miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001555 __ bind(&miss);
1556 PropertyAccessCompiler::TailCallBuiltin(
1557 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1558}
1559
1560
1561void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1562 // The displacement is the offset of the last parameter (if any)
1563 // relative to the frame pointer.
1564 const int kDisplacement =
1565 StandardFrameConstants::kCallerSPOffset - kPointerSize;
1566 DCHECK(a1.is(ArgumentsAccessReadDescriptor::index()));
1567 DCHECK(a0.is(ArgumentsAccessReadDescriptor::parameter_count()));
1568
1569 // Check that the key is a smiGenerateReadElement.
1570 Label slow;
1571 __ JumpIfNotSmi(a1, &slow);
1572
1573 // Check if the calling frame is an arguments adaptor frame.
1574 Label adaptor;
1575 __ ld(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1576 __ ld(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
1577 __ Branch(&adaptor,
1578 eq,
1579 a3,
1580 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1581
1582 // Check index (a1) against formal parameters count limit passed in
1583 // through register a0. Use unsigned comparison to get negative
1584 // check for free.
1585 __ Branch(&slow, hs, a1, Operand(a0));
1586
1587 // Read the argument from the stack and return it.
1588 __ dsubu(a3, a0, a1);
1589 __ SmiScale(a7, a3, kPointerSizeLog2);
1590 __ Daddu(a3, fp, Operand(a7));
1591 __ Ret(USE_DELAY_SLOT);
1592 __ ld(v0, MemOperand(a3, kDisplacement));
1593
1594 // Arguments adaptor case: Check index (a1) against actual arguments
1595 // limit found in the arguments adaptor frame. Use unsigned
1596 // comparison to get negative check for free.
1597 __ bind(&adaptor);
1598 __ ld(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1599 __ Branch(&slow, Ugreater_equal, a1, Operand(a0));
1600
1601 // Read the argument from the adaptor frame and return it.
1602 __ dsubu(a3, a0, a1);
1603 __ SmiScale(a7, a3, kPointerSizeLog2);
1604 __ Daddu(a3, a2, Operand(a7));
1605 __ Ret(USE_DELAY_SLOT);
1606 __ ld(v0, MemOperand(a3, kDisplacement));
1607
1608 // Slow-case: Handle non-smi or out-of-bounds access to arguments
1609 // by calling the runtime system.
1610 __ bind(&slow);
1611 __ push(a1);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001612 __ TailCallRuntime(Runtime::kArguments);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001613}
1614
1615
1616void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001617 // a1 : function
1618 // a2 : number of parameters (tagged)
1619 // a3 : parameters pointer
1620
1621 DCHECK(a1.is(ArgumentsAccessNewDescriptor::function()));
1622 DCHECK(a2.is(ArgumentsAccessNewDescriptor::parameter_count()));
1623 DCHECK(a3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
1624
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001625 // Check if the calling frame is an arguments adaptor frame.
1626 Label runtime;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001627 __ ld(a4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1628 __ ld(a0, MemOperand(a4, StandardFrameConstants::kContextOffset));
1629 __ Branch(&runtime, ne, a0,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001630 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1631
1632 // Patch the arguments.length and the parameters pointer in the current frame.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001633 __ ld(a2, MemOperand(a4, ArgumentsAdaptorFrameConstants::kLengthOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001634 __ SmiScale(a7, a2, kPointerSizeLog2);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001635 __ Daddu(a4, a4, Operand(a7));
1636 __ daddiu(a3, a4, StandardFrameConstants::kCallerSPOffset);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001637
1638 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001639 __ Push(a1, a3, a2);
1640 __ TailCallRuntime(Runtime::kNewSloppyArguments);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001641}
1642
1643
1644void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001645 // a1 : function
1646 // a2 : number of parameters (tagged)
1647 // a3 : parameters pointer
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001648 // Registers used over whole function:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001649 // a5 : arguments count (tagged)
1650 // a6 : mapped parameter count (tagged)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001651
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001652 DCHECK(a1.is(ArgumentsAccessNewDescriptor::function()));
1653 DCHECK(a2.is(ArgumentsAccessNewDescriptor::parameter_count()));
1654 DCHECK(a3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001655
1656 // Check if the calling frame is an arguments adaptor frame.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001657 Label adaptor_frame, try_allocate, runtime;
1658 __ ld(a4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1659 __ ld(a0, MemOperand(a4, StandardFrameConstants::kContextOffset));
1660 __ Branch(&adaptor_frame, eq, a0,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001661 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1662
1663 // No adaptor, parameter count = argument count.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001664 __ mov(a5, a2);
1665 __ Branch(USE_DELAY_SLOT, &try_allocate);
1666 __ mov(a6, a2); // In delay slot.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001667
1668 // We have an adaptor frame. Patch the parameters pointer.
1669 __ bind(&adaptor_frame);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001670 __ ld(a5, MemOperand(a4, ArgumentsAdaptorFrameConstants::kLengthOffset));
1671 __ SmiScale(t2, a5, kPointerSizeLog2);
1672 __ Daddu(a4, a4, Operand(t2));
1673 __ Daddu(a3, a4, Operand(StandardFrameConstants::kCallerSPOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001674
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001675 // a5 = argument count (tagged)
1676 // a6 = parameter count (tagged)
1677 // Compute the mapped parameter count = min(a6, a5) in a6.
1678 __ mov(a6, a2);
1679 __ Branch(&try_allocate, le, a6, Operand(a5));
1680 __ mov(a6, a5);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001681
1682 __ bind(&try_allocate);
1683
1684 // Compute the sizes of backing store, parameter map, and arguments object.
1685 // 1. Parameter map, has 2 extra words containing context and backing store.
1686 const int kParameterMapHeaderSize =
1687 FixedArray::kHeaderSize + 2 * kPointerSize;
1688 // If there are no mapped parameters, we do not need the parameter_map.
1689 Label param_map_size;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001690 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
1691 __ Branch(USE_DELAY_SLOT, &param_map_size, eq, a6, Operand(zero_reg));
1692 __ mov(t1, zero_reg); // In delay slot: param map size = 0 when a6 == 0.
1693 __ SmiScale(t1, a6, kPointerSizeLog2);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001694 __ daddiu(t1, t1, kParameterMapHeaderSize);
1695 __ bind(&param_map_size);
1696
1697 // 2. Backing store.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001698 __ SmiScale(t2, a5, kPointerSizeLog2);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001699 __ Daddu(t1, t1, Operand(t2));
1700 __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize));
1701
1702 // 3. Arguments object.
1703 __ Daddu(t1, t1, Operand(Heap::kSloppyArgumentsObjectSize));
1704
1705 // Do the allocation of all three objects in one go.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001706 __ Allocate(t1, v0, t1, a4, &runtime, TAG_OBJECT);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001707
1708 // v0 = address of new object(s) (tagged)
1709 // a2 = argument count (smi-tagged)
1710 // Get the arguments boilerplate from the current native context into a4.
1711 const int kNormalOffset =
1712 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
1713 const int kAliasedOffset =
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001714 Context::SlotOffset(Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001715
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001716 __ ld(a4, NativeContextMemOperand());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001717 Label skip2_ne, skip2_eq;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001718 __ Branch(&skip2_ne, ne, a6, Operand(zero_reg));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001719 __ ld(a4, MemOperand(a4, kNormalOffset));
1720 __ bind(&skip2_ne);
1721
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001722 __ Branch(&skip2_eq, eq, a6, Operand(zero_reg));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001723 __ ld(a4, MemOperand(a4, kAliasedOffset));
1724 __ bind(&skip2_eq);
1725
1726 // v0 = address of new object (tagged)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001727 // a2 = argument count (smi-tagged)
1728 // a4 = address of arguments map (tagged)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001729 // a6 = mapped parameter count (tagged)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001730 __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001731 __ LoadRoot(t1, Heap::kEmptyFixedArrayRootIndex);
1732 __ sd(t1, FieldMemOperand(v0, JSObject::kPropertiesOffset));
1733 __ sd(t1, FieldMemOperand(v0, JSObject::kElementsOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001734
1735 // Set up the callee in-object property.
1736 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001737 __ AssertNotSmi(a1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001738 const int kCalleeOffset = JSObject::kHeaderSize +
1739 Heap::kArgumentsCalleeIndex * kPointerSize;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001740 __ sd(a1, FieldMemOperand(v0, kCalleeOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001741
1742 // Use the length (smi tagged) and set that as an in-object property too.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001743 __ AssertSmi(a5);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001744 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1745 const int kLengthOffset = JSObject::kHeaderSize +
1746 Heap::kArgumentsLengthIndex * kPointerSize;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001747 __ sd(a5, FieldMemOperand(v0, kLengthOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001748
1749 // Set up the elements pointer in the allocated arguments object.
1750 // If we allocated a parameter map, a4 will point there, otherwise
1751 // it will point to the backing store.
1752 __ Daddu(a4, v0, Operand(Heap::kSloppyArgumentsObjectSize));
1753 __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
1754
1755 // v0 = address of new object (tagged)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001756 // a2 = argument count (tagged)
1757 // a4 = address of parameter map or backing store (tagged)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001758 // a6 = mapped parameter count (tagged)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001759 // Initialize parameter map. If there are no mapped arguments, we're done.
1760 Label skip_parameter_map;
1761 Label skip3;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001762 __ Branch(&skip3, ne, a6, Operand(Smi::FromInt(0)));
1763 // Move backing store address to a1, because it is
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001764 // expected there when filling in the unmapped arguments.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001765 __ mov(a1, a4);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001766 __ bind(&skip3);
1767
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001768 __ Branch(&skip_parameter_map, eq, a6, Operand(Smi::FromInt(0)));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001769
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001770 __ LoadRoot(a5, Heap::kSloppyArgumentsElementsMapRootIndex);
1771 __ sd(a5, FieldMemOperand(a4, FixedArray::kMapOffset));
1772 __ Daddu(a5, a6, Operand(Smi::FromInt(2)));
1773 __ sd(a5, FieldMemOperand(a4, FixedArray::kLengthOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001774 __ sd(cp, FieldMemOperand(a4, FixedArray::kHeaderSize + 0 * kPointerSize));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001775 __ SmiScale(t2, a6, kPointerSizeLog2);
1776 __ Daddu(a5, a4, Operand(t2));
1777 __ Daddu(a5, a5, Operand(kParameterMapHeaderSize));
1778 __ sd(a5, FieldMemOperand(a4, FixedArray::kHeaderSize + 1 * kPointerSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001779
1780 // Copy the parameter slots and the holes in the arguments.
1781 // We need to fill in mapped_parameter_count slots. They index the context,
1782 // where parameters are stored in reverse order, at
1783 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
1784 // The mapped parameter thus need to get indices
1785 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
1786 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
1787 // We loop from right to left.
1788 Label parameters_loop, parameters_test;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001789 __ mov(a5, a6);
1790 __ Daddu(t1, a2, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
1791 __ Dsubu(t1, t1, Operand(a6));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001792 __ LoadRoot(a7, Heap::kTheHoleValueRootIndex);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001793 __ SmiScale(t2, a5, kPointerSizeLog2);
1794 __ Daddu(a1, a4, Operand(t2));
1795 __ Daddu(a1, a1, Operand(kParameterMapHeaderSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001796
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001797 // a1 = address of backing store (tagged)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001798 // a4 = address of parameter map (tagged)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001799 // a0 = temporary scratch (a.o., for address calculation)
1800 // t1 = loop variable (tagged)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001801 // a7 = the hole value
1802 __ jmp(&parameters_test);
1803
1804 __ bind(&parameters_loop);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001805 __ Dsubu(a5, a5, Operand(Smi::FromInt(1)));
1806 __ SmiScale(a0, a5, kPointerSizeLog2);
1807 __ Daddu(a0, a0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
1808 __ Daddu(t2, a4, a0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001809 __ sd(t1, MemOperand(t2));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001810 __ Dsubu(a0, a0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
1811 __ Daddu(t2, a1, a0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001812 __ sd(a7, MemOperand(t2));
1813 __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
1814 __ bind(&parameters_test);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001815 __ Branch(&parameters_loop, ne, a5, Operand(Smi::FromInt(0)));
1816
1817 // Restore t1 = argument count (tagged).
1818 __ ld(a5, FieldMemOperand(v0, kLengthOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001819
1820 __ bind(&skip_parameter_map);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001821 // v0 = address of new object (tagged)
1822 // a1 = address of backing store (tagged)
1823 // a5 = argument count (tagged)
1824 // a6 = mapped parameter count (tagged)
1825 // t1 = scratch
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001826 // Copy arguments header and remaining slots (if there are any).
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001827 __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
1828 __ sd(t1, FieldMemOperand(a1, FixedArray::kMapOffset));
1829 __ sd(a5, FieldMemOperand(a1, FixedArray::kLengthOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001830
1831 Label arguments_loop, arguments_test;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001832 __ SmiScale(t2, a6, kPointerSizeLog2);
1833 __ Dsubu(a3, a3, Operand(t2));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001834 __ jmp(&arguments_test);
1835
1836 __ bind(&arguments_loop);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001837 __ Dsubu(a3, a3, Operand(kPointerSize));
1838 __ ld(a4, MemOperand(a3, 0));
1839 __ SmiScale(t2, a6, kPointerSizeLog2);
1840 __ Daddu(t1, a1, Operand(t2));
1841 __ sd(a4, FieldMemOperand(t1, FixedArray::kHeaderSize));
1842 __ Daddu(a6, a6, Operand(Smi::FromInt(1)));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001843
1844 __ bind(&arguments_test);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001845 __ Branch(&arguments_loop, lt, a6, Operand(a5));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001846
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001847 // Return.
1848 __ Ret();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001849
1850 // Do the runtime call to allocate the arguments object.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001851 // a5 = argument count (tagged)
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001852 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001853 __ Push(a1, a3, a5);
1854 __ TailCallRuntime(Runtime::kNewSloppyArguments);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001855}
1856
1857
1858void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
1859 // Return address is in ra.
1860 Label slow;
1861
1862 Register receiver = LoadDescriptor::ReceiverRegister();
1863 Register key = LoadDescriptor::NameRegister();
1864
1865 // Check that the key is an array index, that is Uint32.
1866 __ And(t0, key, Operand(kSmiTagMask | kSmiSignMask));
1867 __ Branch(&slow, ne, t0, Operand(zero_reg));
1868
1869 // Everything is fine, call runtime.
1870 __ Push(receiver, key); // Receiver, key.
1871
1872 // Perform tail call to the entry.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001873 __ TailCallRuntime(Runtime::kLoadElementWithInterceptor);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001874
1875 __ bind(&slow);
1876 PropertyAccessCompiler::TailCallBuiltin(
1877 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1878}
1879
1880
1881void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001882 // a1 : function
1883 // a2 : number of parameters (tagged)
1884 // a3 : parameters pointer
1885
1886 DCHECK(a1.is(ArgumentsAccessNewDescriptor::function()));
1887 DCHECK(a2.is(ArgumentsAccessNewDescriptor::parameter_count()));
1888 DCHECK(a3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
1889
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001890 // Check if the calling frame is an arguments adaptor frame.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001891 Label try_allocate, runtime;
1892 __ ld(a4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1893 __ ld(a0, MemOperand(a4, StandardFrameConstants::kContextOffset));
1894 __ Branch(&try_allocate, ne, a0,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001895 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1896
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001897 // Patch the arguments.length and the parameters pointer.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001898 __ ld(a2, MemOperand(a4, ArgumentsAdaptorFrameConstants::kLengthOffset));
1899 __ SmiScale(at, a2, kPointerSizeLog2);
1900 __ Daddu(a4, a4, Operand(at));
1901 __ Daddu(a3, a4, Operand(StandardFrameConstants::kCallerSPOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001902
1903 // Try the new space allocation. Start out with computing the size
1904 // of the arguments object and the elements array in words.
1905 Label add_arguments_object;
1906 __ bind(&try_allocate);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001907 __ SmiUntag(t1, a2);
1908 __ Branch(&add_arguments_object, eq, a2, Operand(zero_reg));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001909
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001910 __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize / kPointerSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001911 __ bind(&add_arguments_object);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001912 __ Daddu(t1, t1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001913
1914 // Do the allocation of both objects in one go.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001915 __ Allocate(t1, v0, a4, a5, &runtime,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001916 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
1917
1918 // Get the arguments boilerplate from the current native context.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001919 __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, a4);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001920
1921 __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001922 __ LoadRoot(a5, Heap::kEmptyFixedArrayRootIndex);
1923 __ sd(a5, FieldMemOperand(v0, JSObject::kPropertiesOffset));
1924 __ sd(a5, FieldMemOperand(v0, JSObject::kElementsOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001925
1926 // Get the length (smi tagged) and set that as an in-object property too.
1927 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001928 __ AssertSmi(a2);
1929 __ sd(a2,
1930 FieldMemOperand(v0, JSObject::kHeaderSize +
1931 Heap::kArgumentsLengthIndex * kPointerSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001932
1933 Label done;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001934 __ Branch(&done, eq, a2, Operand(zero_reg));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001935
1936 // Set up the elements pointer in the allocated arguments object and
1937 // initialize the header in the elements fixed array.
1938 __ Daddu(a4, v0, Operand(Heap::kStrictArgumentsObjectSize));
1939 __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001940 __ LoadRoot(a5, Heap::kFixedArrayMapRootIndex);
1941 __ sd(a5, FieldMemOperand(a4, FixedArray::kMapOffset));
1942 __ sd(a2, FieldMemOperand(a4, FixedArray::kLengthOffset));
1943 __ SmiUntag(a2);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001944
1945 // Copy the fixed array slots.
1946 Label loop;
1947 // Set up a4 to point to the first array slot.
1948 __ Daddu(a4, a4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1949 __ bind(&loop);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001950 // Pre-decrement a3 with kPointerSize on each iteration.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001951 // Pre-decrement in order to skip receiver.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001952 __ Daddu(a3, a3, Operand(-kPointerSize));
1953 __ ld(a5, MemOperand(a3));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001954 // Post-increment a4 with kPointerSize on each iteration.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001955 __ sd(a5, MemOperand(a4));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001956 __ Daddu(a4, a4, Operand(kPointerSize));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001957 __ Dsubu(a2, a2, Operand(1));
1958 __ Branch(&loop, ne, a2, Operand(zero_reg));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001959
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001960 // Return.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001961 __ bind(&done);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001962 __ Ret();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001963
1964 // Do the runtime call to allocate the arguments object.
1965 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001966 __ Push(a1, a3, a2);
1967 __ TailCallRuntime(Runtime::kNewStrictArguments);
1968}
1969
1970
1971void RestParamAccessStub::GenerateNew(MacroAssembler* masm) {
1972 // a2 : number of parameters (tagged)
1973 // a3 : parameters pointer
1974 // a4 : rest parameter index (tagged)
1975 // Check if the calling frame is an arguments adaptor frame.
1976
1977 Label runtime;
1978 __ ld(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1979 __ ld(a5, MemOperand(a0, StandardFrameConstants::kContextOffset));
1980 __ Branch(&runtime, ne, a5,
1981 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1982
1983 // Patch the arguments.length and the parameters pointer.
1984 __ ld(a2, MemOperand(a0, ArgumentsAdaptorFrameConstants::kLengthOffset));
1985 __ SmiScale(at, a2, kPointerSizeLog2);
1986
1987 __ Daddu(a3, a0, Operand(at));
1988 __ Daddu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
1989
1990 // Do the runtime call to allocate the arguments object.
1991 __ bind(&runtime);
1992 __ Push(a2, a3, a4);
1993 __ TailCallRuntime(Runtime::kNewRestParam);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001994}
1995
1996
1997void RegExpExecStub::Generate(MacroAssembler* masm) {
1998 // Just jump directly to runtime if native RegExp is not selected at compile
1999 // time or if regexp entry in generated code is turned off runtime switch or
2000 // at compilation.
2001#ifdef V8_INTERPRETED_REGEXP
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002002 __ TailCallRuntime(Runtime::kRegExpExec);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002003#else // V8_INTERPRETED_REGEXP
2004
2005 // Stack frame on entry.
2006 // sp[0]: last_match_info (expected JSArray)
2007 // sp[4]: previous index
2008 // sp[8]: subject string
2009 // sp[12]: JSRegExp object
2010
2011 const int kLastMatchInfoOffset = 0 * kPointerSize;
2012 const int kPreviousIndexOffset = 1 * kPointerSize;
2013 const int kSubjectOffset = 2 * kPointerSize;
2014 const int kJSRegExpOffset = 3 * kPointerSize;
2015
2016 Label runtime;
2017 // Allocation of registers for this function. These are in callee save
2018 // registers and will be preserved by the call to the native RegExp code, as
2019 // this code is called using the normal C calling convention. When calling
2020 // directly from generated code the native RegExp code will not do a GC and
2021 // therefore the content of these registers are safe to use after the call.
2022 // MIPS - using s0..s2, since we are not using CEntry Stub.
2023 Register subject = s0;
2024 Register regexp_data = s1;
2025 Register last_match_info_elements = s2;
2026
2027 // Ensure that a RegExp stack is allocated.
2028 ExternalReference address_of_regexp_stack_memory_address =
2029 ExternalReference::address_of_regexp_stack_memory_address(
2030 isolate());
2031 ExternalReference address_of_regexp_stack_memory_size =
2032 ExternalReference::address_of_regexp_stack_memory_size(isolate());
2033 __ li(a0, Operand(address_of_regexp_stack_memory_size));
2034 __ ld(a0, MemOperand(a0, 0));
2035 __ Branch(&runtime, eq, a0, Operand(zero_reg));
2036
2037 // Check that the first argument is a JSRegExp object.
2038 __ ld(a0, MemOperand(sp, kJSRegExpOffset));
2039 STATIC_ASSERT(kSmiTag == 0);
2040 __ JumpIfSmi(a0, &runtime);
2041 __ GetObjectType(a0, a1, a1);
2042 __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
2043
2044 // Check that the RegExp has been compiled (data contains a fixed array).
2045 __ ld(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
2046 if (FLAG_debug_code) {
2047 __ SmiTst(regexp_data, a4);
2048 __ Check(nz,
2049 kUnexpectedTypeForRegExpDataFixedArrayExpected,
2050 a4,
2051 Operand(zero_reg));
2052 __ GetObjectType(regexp_data, a0, a0);
2053 __ Check(eq,
2054 kUnexpectedTypeForRegExpDataFixedArrayExpected,
2055 a0,
2056 Operand(FIXED_ARRAY_TYPE));
2057 }
2058
2059 // regexp_data: RegExp data (FixedArray)
2060 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2061 __ ld(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2062 __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
2063
2064 // regexp_data: RegExp data (FixedArray)
2065 // Check that the number of captures fit in the static offsets vector buffer.
2066 __ ld(a2,
2067 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2068 // Check (number_of_captures + 1) * 2 <= offsets vector size
2069 // Or number_of_captures * 2 <= offsets vector size - 2
2070 // Or number_of_captures <= offsets vector size / 2 - 1
2071 // Multiplying by 2 comes for free since a2 is smi-tagged.
2072 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2073 int temp = Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1;
2074 __ Branch(&runtime, hi, a2, Operand(Smi::FromInt(temp)));
2075
2076 // Reset offset for possibly sliced string.
2077 __ mov(t0, zero_reg);
2078 __ ld(subject, MemOperand(sp, kSubjectOffset));
2079 __ JumpIfSmi(subject, &runtime);
2080 __ mov(a3, subject); // Make a copy of the original subject string.
2081 __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2082 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2083 // subject: subject string
2084 // a3: subject string
2085 // a0: subject string instance type
2086 // regexp_data: RegExp data (FixedArray)
2087 // Handle subject string according to its encoding and representation:
2088 // (1) Sequential string? If yes, go to (5).
2089 // (2) Anything but sequential or cons? If yes, go to (6).
2090 // (3) Cons string. If the string is flat, replace subject with first string.
2091 // Otherwise bailout.
2092 // (4) Is subject external? If yes, go to (7).
2093 // (5) Sequential string. Load regexp code according to encoding.
2094 // (E) Carry on.
2095 /// [...]
2096
2097 // Deferred code at the end of the stub:
2098 // (6) Not a long external string? If yes, go to (8).
2099 // (7) External string. Make it, offset-wise, look like a sequential string.
2100 // Go to (5).
2101 // (8) Short external string or not a string? If yes, bail out to runtime.
2102 // (9) Sliced string. Replace subject with parent. Go to (4).
2103
2104 Label check_underlying; // (4)
2105 Label seq_string; // (5)
2106 Label not_seq_nor_cons; // (6)
2107 Label external_string; // (7)
2108 Label not_long_external; // (8)
2109
2110 // (1) Sequential string? If yes, go to (5).
2111 __ And(a1,
2112 a0,
2113 Operand(kIsNotStringMask |
2114 kStringRepresentationMask |
2115 kShortExternalStringMask));
2116 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2117 __ Branch(&seq_string, eq, a1, Operand(zero_reg)); // Go to (5).
2118
2119 // (2) Anything but sequential or cons? If yes, go to (6).
2120 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2121 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2122 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2123 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2124 // Go to (6).
2125 __ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
2126
2127 // (3) Cons string. Check that it's flat.
2128 // Replace subject with first string and reload instance type.
2129 __ ld(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
2130 __ LoadRoot(a1, Heap::kempty_stringRootIndex);
2131 __ Branch(&runtime, ne, a0, Operand(a1));
2132 __ ld(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2133
2134 // (4) Is subject external? If yes, go to (7).
2135 __ bind(&check_underlying);
2136 __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2137 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2138 STATIC_ASSERT(kSeqStringTag == 0);
2139 __ And(at, a0, Operand(kStringRepresentationMask));
2140 // The underlying external string is never a short external string.
2141 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2142 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2143 __ Branch(&external_string, ne, at, Operand(zero_reg)); // Go to (7).
2144
2145 // (5) Sequential string. Load regexp code according to encoding.
2146 __ bind(&seq_string);
2147 // subject: sequential subject string (or look-alike, external string)
2148 // a3: original subject string
2149 // Load previous index and check range before a3 is overwritten. We have to
2150 // use a3 instead of subject here because subject might have been only made
2151 // to look like a sequential string when it actually is an external string.
2152 __ ld(a1, MemOperand(sp, kPreviousIndexOffset));
2153 __ JumpIfNotSmi(a1, &runtime);
2154 __ ld(a3, FieldMemOperand(a3, String::kLengthOffset));
2155 __ Branch(&runtime, ls, a3, Operand(a1));
2156 __ SmiUntag(a1);
2157
2158 STATIC_ASSERT(kStringEncodingMask == 4);
2159 STATIC_ASSERT(kOneByteStringTag == 4);
2160 STATIC_ASSERT(kTwoByteStringTag == 0);
2161 __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for one_byte.
2162 __ ld(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
2163 __ dsra(a3, a0, 2); // a3 is 1 for one_byte, 0 for UC16 (used below).
2164 __ ld(a5, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
2165 __ Movz(t9, a5, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
2166
2167 // (E) Carry on. String handling is done.
2168 // t9: irregexp code
2169 // Check that the irregexp code has been generated for the actual string
2170 // encoding. If it has, the field contains a code object otherwise it contains
2171 // a smi (code flushing support).
2172 __ JumpIfSmi(t9, &runtime);
2173
2174 // a1: previous index
2175 // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
2176 // t9: code
2177 // subject: Subject string
2178 // regexp_data: RegExp data (FixedArray)
2179 // All checks done. Now push arguments for native regexp code.
2180 __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
2181 1, a0, a2);
2182
2183 // Isolates: note we add an additional parameter here (isolate pointer).
2184 const int kRegExpExecuteArguments = 9;
2185 const int kParameterRegisters = (kMipsAbi == kN64) ? 8 : 4;
2186 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
2187
2188 // Stack pointer now points to cell where return address is to be written.
2189 // Arguments are before that on the stack or in registers, meaning we
2190 // treat the return address as argument 5. Thus every argument after that
2191 // needs to be shifted back by 1. Since DirectCEntryStub will handle
2192 // allocating space for the c argument slots, we don't need to calculate
2193 // that into the argument positions on the stack. This is how the stack will
2194 // look (sp meaning the value of sp at this moment):
2195 // Abi n64:
2196 // [sp + 1] - Argument 9
2197 // [sp + 0] - saved ra
2198 // Abi O32:
2199 // [sp + 5] - Argument 9
2200 // [sp + 4] - Argument 8
2201 // [sp + 3] - Argument 7
2202 // [sp + 2] - Argument 6
2203 // [sp + 1] - Argument 5
2204 // [sp + 0] - saved ra
2205
2206 if (kMipsAbi == kN64) {
2207 // Argument 9: Pass current isolate address.
2208 __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
2209 __ sd(a0, MemOperand(sp, 1 * kPointerSize));
2210
2211 // Argument 8: Indicate that this is a direct call from JavaScript.
2212 __ li(a7, Operand(1));
2213
2214 // Argument 7: Start (high end) of backtracking stack memory area.
2215 __ li(a0, Operand(address_of_regexp_stack_memory_address));
2216 __ ld(a0, MemOperand(a0, 0));
2217 __ li(a2, Operand(address_of_regexp_stack_memory_size));
2218 __ ld(a2, MemOperand(a2, 0));
2219 __ daddu(a6, a0, a2);
2220
2221 // Argument 6: Set the number of capture registers to zero to force global
2222 // regexps to behave as non-global. This does not affect non-global regexps.
2223 __ mov(a5, zero_reg);
2224
2225 // Argument 5: static offsets vector buffer.
2226 __ li(a4, Operand(
2227 ExternalReference::address_of_static_offsets_vector(isolate())));
2228 } else { // O32.
2229 DCHECK(kMipsAbi == kO32);
2230
2231 // Argument 9: Pass current isolate address.
2232 // CFunctionArgumentOperand handles MIPS stack argument slots.
2233 __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
2234 __ sd(a0, MemOperand(sp, 5 * kPointerSize));
2235
2236 // Argument 8: Indicate that this is a direct call from JavaScript.
2237 __ li(a0, Operand(1));
2238 __ sd(a0, MemOperand(sp, 4 * kPointerSize));
2239
2240 // Argument 7: Start (high end) of backtracking stack memory area.
2241 __ li(a0, Operand(address_of_regexp_stack_memory_address));
2242 __ ld(a0, MemOperand(a0, 0));
2243 __ li(a2, Operand(address_of_regexp_stack_memory_size));
2244 __ ld(a2, MemOperand(a2, 0));
2245 __ daddu(a0, a0, a2);
2246 __ sd(a0, MemOperand(sp, 3 * kPointerSize));
2247
2248 // Argument 6: Set the number of capture registers to zero to force global
2249 // regexps to behave as non-global. This does not affect non-global regexps.
2250 __ mov(a0, zero_reg);
2251 __ sd(a0, MemOperand(sp, 2 * kPointerSize));
2252
2253 // Argument 5: static offsets vector buffer.
2254 __ li(a0, Operand(
2255 ExternalReference::address_of_static_offsets_vector(isolate())));
2256 __ sd(a0, MemOperand(sp, 1 * kPointerSize));
2257 }
2258
2259 // For arguments 4 and 3 get string length, calculate start of string data
2260 // and calculate the shift of the index (0 for one_byte and 1 for two byte).
2261 __ Daddu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
2262 __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte.
2263 // Load the length from the original subject string from the previous stack
2264 // frame. Therefore we have to use fp, which points exactly to two pointer
2265 // sizes below the previous sp. (Because creating a new stack frame pushes
2266 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
2267 __ ld(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2268 // If slice offset is not 0, load the length from the original sliced string.
2269 // Argument 4, a3: End of string data
2270 // Argument 3, a2: Start of string data
2271 // Prepare start and end index of the input.
2272 __ dsllv(t1, t0, a3);
2273 __ daddu(t0, t2, t1);
2274 __ dsllv(t1, a1, a3);
2275 __ daddu(a2, t0, t1);
2276
2277 __ ld(t2, FieldMemOperand(subject, String::kLengthOffset));
2278
2279 __ SmiUntag(t2);
2280 __ dsllv(t1, t2, a3);
2281 __ daddu(a3, t0, t1);
2282 // Argument 2 (a1): Previous index.
2283 // Already there
2284
2285 // Argument 1 (a0): Subject string.
2286 __ mov(a0, subject);
2287
2288 // Locate the code entry and call it.
2289 __ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
2290 DirectCEntryStub stub(isolate());
2291 stub.GenerateCall(masm, t9);
2292
2293 __ LeaveExitFrame(false, no_reg, true);
2294
2295 // v0: result
2296 // subject: subject string (callee saved)
2297 // regexp_data: RegExp data (callee saved)
2298 // last_match_info_elements: Last match info elements (callee saved)
2299 // Check the result.
2300 Label success;
2301 __ Branch(&success, eq, v0, Operand(1));
2302 // We expect exactly one result since we force the called regexp to behave
2303 // as non-global.
2304 Label failure;
2305 __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
2306 // If not exception it can only be retry. Handle that in the runtime system.
2307 __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
2308 // Result must now be exception. If there is no pending exception already a
2309 // stack overflow (on the backtrack stack) was detected in RegExp code but
2310 // haven't created the exception yet. Handle that in the runtime system.
2311 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
2312 __ li(a1, Operand(isolate()->factory()->the_hole_value()));
2313 __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2314 isolate())));
2315 __ ld(v0, MemOperand(a2, 0));
2316 __ Branch(&runtime, eq, v0, Operand(a1));
2317
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002318 // For exception, throw the exception again.
2319 __ TailCallRuntime(Runtime::kRegExpExecReThrow);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002320
2321 __ bind(&failure);
2322 // For failure and exception return null.
2323 __ li(v0, Operand(isolate()->factory()->null_value()));
2324 __ DropAndRet(4);
2325
2326 // Process the result from the native regexp code.
2327 __ bind(&success);
2328
2329 __ lw(a1, UntagSmiFieldMemOperand(
2330 regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2331 // Calculate number of capture registers (number_of_captures + 1) * 2.
2332 __ Daddu(a1, a1, Operand(1));
2333 __ dsll(a1, a1, 1); // Multiply by 2.
2334
2335 __ ld(a0, MemOperand(sp, kLastMatchInfoOffset));
2336 __ JumpIfSmi(a0, &runtime);
2337 __ GetObjectType(a0, a2, a2);
2338 __ Branch(&runtime, ne, a2, Operand(JS_ARRAY_TYPE));
2339 // Check that the JSArray is in fast case.
2340 __ ld(last_match_info_elements,
2341 FieldMemOperand(a0, JSArray::kElementsOffset));
2342 __ ld(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2343 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
2344 __ Branch(&runtime, ne, a0, Operand(at));
2345 // Check that the last match info has space for the capture registers and the
2346 // additional information.
2347 __ ld(a0,
2348 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
2349 __ Daddu(a2, a1, Operand(RegExpImpl::kLastMatchOverhead));
2350
2351 __ SmiUntag(at, a0);
2352 __ Branch(&runtime, gt, a2, Operand(at));
2353
2354 // a1: number of capture registers
2355 // subject: subject string
2356 // Store the capture count.
2357 __ SmiTag(a2, a1); // To smi.
2358 __ sd(a2, FieldMemOperand(last_match_info_elements,
2359 RegExpImpl::kLastCaptureCountOffset));
2360 // Store last subject and last input.
2361 __ sd(subject,
2362 FieldMemOperand(last_match_info_elements,
2363 RegExpImpl::kLastSubjectOffset));
2364 __ mov(a2, subject);
2365 __ RecordWriteField(last_match_info_elements,
2366 RegExpImpl::kLastSubjectOffset,
2367 subject,
2368 a7,
2369 kRAHasNotBeenSaved,
2370 kDontSaveFPRegs);
2371 __ mov(subject, a2);
2372 __ sd(subject,
2373 FieldMemOperand(last_match_info_elements,
2374 RegExpImpl::kLastInputOffset));
2375 __ RecordWriteField(last_match_info_elements,
2376 RegExpImpl::kLastInputOffset,
2377 subject,
2378 a7,
2379 kRAHasNotBeenSaved,
2380 kDontSaveFPRegs);
2381
2382 // Get the static offsets vector filled by the native regexp code.
2383 ExternalReference address_of_static_offsets_vector =
2384 ExternalReference::address_of_static_offsets_vector(isolate());
2385 __ li(a2, Operand(address_of_static_offsets_vector));
2386
2387 // a1: number of capture registers
2388 // a2: offsets vector
2389 Label next_capture, done;
2390 // Capture register counter starts from number of capture registers and
2391 // counts down until wrapping after zero.
2392 __ Daddu(a0,
2393 last_match_info_elements,
2394 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
2395 __ bind(&next_capture);
2396 __ Dsubu(a1, a1, Operand(1));
2397 __ Branch(&done, lt, a1, Operand(zero_reg));
2398 // Read the value from the static offsets vector buffer.
2399 __ lw(a3, MemOperand(a2, 0));
2400 __ daddiu(a2, a2, kIntSize);
2401 // Store the smi value in the last match info.
2402 __ SmiTag(a3);
2403 __ sd(a3, MemOperand(a0, 0));
2404 __ Branch(&next_capture, USE_DELAY_SLOT);
2405 __ daddiu(a0, a0, kPointerSize); // In branch delay slot.
2406
2407 __ bind(&done);
2408
2409 // Return last match info.
2410 __ ld(v0, MemOperand(sp, kLastMatchInfoOffset));
2411 __ DropAndRet(4);
2412
2413 // Do the runtime call to execute the regexp.
2414 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002415 __ TailCallRuntime(Runtime::kRegExpExec);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002416
2417 // Deferred code for string handling.
2418 // (6) Not a long external string? If yes, go to (8).
2419 __ bind(&not_seq_nor_cons);
2420 // Go to (8).
2421 __ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
2422
2423 // (7) External string. Make it, offset-wise, look like a sequential string.
2424 __ bind(&external_string);
2425 __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2426 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2427 if (FLAG_debug_code) {
2428 // Assert that we do not have a cons or slice (indirect strings) here.
2429 // Sequential strings have already been ruled out.
2430 __ And(at, a0, Operand(kIsIndirectStringMask));
2431 __ Assert(eq,
2432 kExternalStringExpectedButNotFound,
2433 at,
2434 Operand(zero_reg));
2435 }
2436 __ ld(subject,
2437 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2438 // Move the pointer so that offset-wise, it looks like a sequential string.
2439 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2440 __ Dsubu(subject,
2441 subject,
2442 SeqTwoByteString::kHeaderSize - kHeapObjectTag);
2443 __ jmp(&seq_string); // Go to (5).
2444
2445 // (8) Short external string or not a string? If yes, bail out to runtime.
2446 __ bind(&not_long_external);
2447 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
2448 __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
2449 __ Branch(&runtime, ne, at, Operand(zero_reg));
2450
2451 // (9) Sliced string. Replace subject with parent. Go to (4).
2452 // Load offset into t0 and replace subject string with parent.
2453 __ ld(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
2454 __ SmiUntag(t0);
2455 __ ld(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2456 __ jmp(&check_underlying); // Go to (4).
2457#endif // V8_INTERPRETED_REGEXP
2458}
2459
2460
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002461static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
2462 // a0 : number of arguments to the construct function
2463 // a2 : feedback vector
2464 // a3 : slot in feedback vector (Smi)
2465 // a1 : the function to call
2466 FrameScope scope(masm, StackFrame::INTERNAL);
2467 const RegList kSavedRegs = 1 << 4 | // a0
2468 1 << 5 | // a1
2469 1 << 6 | // a2
2470 1 << 7; // a3
2471
2472
2473 // Number-of-arguments register must be smi-tagged to call out.
2474 __ SmiTag(a0);
2475 __ MultiPush(kSavedRegs);
2476
2477 __ CallStub(stub);
2478
2479 __ MultiPop(kSavedRegs);
2480 __ SmiUntag(a0);
2481}
2482
2483
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002484static void GenerateRecordCallTarget(MacroAssembler* masm) {
2485 // Cache the called function in a feedback vector slot. Cache states
2486 // are uninitialized, monomorphic (indicated by a JSFunction), and
2487 // megamorphic.
2488 // a0 : number of arguments to the construct function
2489 // a1 : the function to call
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002490 // a2 : feedback vector
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002491 // a3 : slot in feedback vector (Smi)
2492 Label initialize, done, miss, megamorphic, not_array_function;
2493
2494 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2495 masm->isolate()->heap()->megamorphic_symbol());
2496 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2497 masm->isolate()->heap()->uninitialized_symbol());
2498
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002499 // Load the cache state into a5.
2500 __ dsrl(a5, a3, 32 - kPointerSizeLog2);
2501 __ Daddu(a5, a2, Operand(a5));
2502 __ ld(a5, FieldMemOperand(a5, FixedArray::kHeaderSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002503
2504 // A monomorphic cache hit or an already megamorphic state: invoke the
2505 // function without changing the state.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002506 // We don't know if a5 is a WeakCell or a Symbol, but it's harmless to read at
2507 // this position in a symbol (see static asserts in type-feedback-vector.h).
2508 Label check_allocation_site;
2509 Register feedback_map = a6;
2510 Register weak_value = t0;
2511 __ ld(weak_value, FieldMemOperand(a5, WeakCell::kValueOffset));
2512 __ Branch(&done, eq, a1, Operand(weak_value));
2513 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
2514 __ Branch(&done, eq, a5, Operand(at));
2515 __ ld(feedback_map, FieldMemOperand(a5, HeapObject::kMapOffset));
2516 __ LoadRoot(at, Heap::kWeakCellMapRootIndex);
2517 __ Branch(&check_allocation_site, ne, feedback_map, Operand(at));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002518
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002519 // If the weak cell is cleared, we have a new chance to become monomorphic.
2520 __ JumpIfSmi(weak_value, &initialize);
2521 __ jmp(&megamorphic);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002522
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002523 __ bind(&check_allocation_site);
2524 // If we came here, we need to see if we are the array function.
2525 // If we didn't have a matching function, and we didn't find the megamorph
2526 // sentinel, then we have in the slot either some other function or an
2527 // AllocationSite.
2528 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2529 __ Branch(&miss, ne, feedback_map, Operand(at));
2530
2531 // Make sure the function is the Array() function
2532 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5);
2533 __ Branch(&megamorphic, ne, a1, Operand(a5));
2534 __ jmp(&done);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002535
2536 __ bind(&miss);
2537
2538 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2539 // megamorphic.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002540 __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002541 __ Branch(&initialize, eq, a5, Operand(at));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002542 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2543 // write-barrier is needed.
2544 __ bind(&megamorphic);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002545 __ dsrl(a5, a3, 32 - kPointerSizeLog2);
2546 __ Daddu(a5, a2, Operand(a5));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002547 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002548 __ sd(at, FieldMemOperand(a5, FixedArray::kHeaderSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002549 __ jmp(&done);
2550
2551 // An uninitialized cache is patched with the function.
2552 __ bind(&initialize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002553 // Make sure the function is the Array() function.
2554 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5);
2555 __ Branch(&not_array_function, ne, a1, Operand(a5));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002556
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002557 // The target function is the Array constructor,
2558 // Create an AllocationSite if we don't already have it, store it in the
2559 // slot.
2560 CreateAllocationSiteStub create_stub(masm->isolate());
2561 CallStubInRecordCallTarget(masm, &create_stub);
2562 __ Branch(&done);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002563
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002564 __ bind(&not_array_function);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002565
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002566 CreateWeakCellStub weak_cell_stub(masm->isolate());
2567 CallStubInRecordCallTarget(masm, &weak_cell_stub);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002568 __ bind(&done);
2569}
2570
2571
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002572void CallConstructStub::Generate(MacroAssembler* masm) {
2573 // a0 : number of arguments
2574 // a1 : the function to call
2575 // a2 : feedback vector
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002576 // a3 : slot in feedback vector (Smi, for RecordCallTarget)
2577
2578 Label non_function;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002579 // Check that the function is not a smi.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002580 __ JumpIfSmi(a1, &non_function);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002581 // Check that the function is a JSFunction.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002582 __ GetObjectType(a1, a5, a5);
2583 __ Branch(&non_function, ne, a5, Operand(JS_FUNCTION_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002584
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002585 GenerateRecordCallTarget(masm);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002586
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002587 __ dsrl(at, a3, 32 - kPointerSizeLog2);
2588 __ Daddu(a5, a2, at);
2589 Label feedback_register_initialized;
2590 // Put the AllocationSite from the feedback vector into a2, or undefined.
2591 __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize));
2592 __ ld(a5, FieldMemOperand(a2, AllocationSite::kMapOffset));
2593 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2594 __ Branch(&feedback_register_initialized, eq, a5, Operand(at));
2595 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
2596 __ bind(&feedback_register_initialized);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002597
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002598 __ AssertUndefinedOrAllocationSite(a2, a5);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002599
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002600 // Pass function as new target.
2601 __ mov(a3, a1);
2602
2603 // Tail call to the function-specific construct stub (still in the caller
2604 // context at this point).
2605 __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2606 __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset));
2607 __ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002608 __ Jump(at);
2609
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002610 __ bind(&non_function);
2611 __ mov(a3, a1);
2612 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002613}
2614
2615
2616// StringCharCodeAtGenerator.
2617void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2618 DCHECK(!a4.is(index_));
2619 DCHECK(!a4.is(result_));
2620 DCHECK(!a4.is(object_));
2621
2622 // If the receiver is a smi trigger the non-string case.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002623 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2624 __ JumpIfSmi(object_, receiver_not_string_);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002625
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002626 // Fetch the instance type of the receiver into result register.
2627 __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2628 __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2629 // If the receiver is not a string trigger the non-string case.
2630 __ And(a4, result_, Operand(kIsNotStringMask));
2631 __ Branch(receiver_not_string_, ne, a4, Operand(zero_reg));
2632 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002633
2634 // If the index is non-smi trigger the non-smi case.
2635 __ JumpIfNotSmi(index_, &index_not_smi_);
2636
2637 __ bind(&got_smi_index_);
2638
2639 // Check for index out of range.
2640 __ ld(a4, FieldMemOperand(object_, String::kLengthOffset));
2641 __ Branch(index_out_of_range_, ls, a4, Operand(index_));
2642
2643 __ SmiUntag(index_);
2644
2645 StringCharLoadGenerator::Generate(masm,
2646 object_,
2647 index_,
2648 result_,
2649 &call_runtime_);
2650
2651 __ SmiTag(result_);
2652 __ bind(&exit_);
2653}
2654
2655
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002656void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002657 // a1 - function
2658 // a3 - slot id
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002659 // a2 - vector
2660 // a4 - allocation site (loaded from vector[slot])
2661 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, at);
2662 __ Branch(miss, ne, a1, Operand(at));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002663
2664 __ li(a0, Operand(arg_count()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002665
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002666 // Increment the call count for monomorphic function calls.
2667 __ dsrl(t0, a3, 32 - kPointerSizeLog2);
2668 __ Daddu(a3, a2, Operand(t0));
2669 __ ld(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
2670 __ Daddu(t0, t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2671 __ sd(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002672
2673 __ mov(a2, a4);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002674 __ mov(a3, a1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002675 ArrayConstructorStub stub(masm->isolate(), arg_count());
2676 __ TailCallStub(&stub);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002677}
2678
2679
2680void CallICStub::Generate(MacroAssembler* masm) {
2681 // a1 - function
2682 // a3 - slot id (Smi)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002683 // a2 - vector
2684 Label extra_checks_or_miss, call, call_function;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002685 int argc = arg_count();
2686 ParameterCount actual(argc);
2687
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002688 // The checks. First, does r1 match the recorded monomorphic target?
2689 __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2690 __ Daddu(a4, a2, Operand(a4));
2691 __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002692
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002693 // We don't know that we have a weak cell. We might have a private symbol
2694 // or an AllocationSite, but the memory is safe to examine.
2695 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2696 // FixedArray.
2697 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2698 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2699 // computed, meaning that it can't appear to be a pointer. If the low bit is
2700 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2701 // to be a pointer.
2702 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2703 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2704 WeakCell::kValueOffset &&
2705 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002706
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002707 __ ld(a5, FieldMemOperand(a4, WeakCell::kValueOffset));
2708 __ Branch(&extra_checks_or_miss, ne, a1, Operand(a5));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002709
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002710 // The compare above could have been a SMI/SMI comparison. Guard against this
2711 // convincing us that we have a monomorphic JSFunction.
2712 __ JumpIfSmi(a1, &extra_checks_or_miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002713
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002714 // Increment the call count for monomorphic function calls.
2715 __ dsrl(t0, a3, 32 - kPointerSizeLog2);
2716 __ Daddu(a3, a2, Operand(t0));
2717 __ ld(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
2718 __ Daddu(t0, t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2719 __ sd(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002720
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002721 __ bind(&call_function);
2722 __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode()),
2723 RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg),
2724 USE_DELAY_SLOT);
2725 __ li(a0, Operand(argc)); // In delay slot.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002726
2727 __ bind(&extra_checks_or_miss);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002728 Label uninitialized, miss, not_allocation_site;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002729
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002730 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002731 __ Branch(&call, eq, a4, Operand(at));
2732
2733 // Verify that a4 contains an AllocationSite
2734 __ ld(a5, FieldMemOperand(a4, HeapObject::kMapOffset));
2735 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2736 __ Branch(&not_allocation_site, ne, a5, Operand(at));
2737
2738 HandleArrayCase(masm, &miss);
2739
2740 __ bind(&not_allocation_site);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002741
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002742 // The following cases attempt to handle MISS cases without going to the
2743 // runtime.
2744 if (FLAG_trace_ic) {
2745 __ Branch(&miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002746 }
2747
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002748 __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
2749 __ Branch(&uninitialized, eq, a4, Operand(at));
2750
2751 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2752 // to handle it here. More complex cases are dealt with in the runtime.
2753 __ AssertNotSmi(a4);
2754 __ GetObjectType(a4, a5, a5);
2755 __ Branch(&miss, ne, a5, Operand(JS_FUNCTION_TYPE));
2756 __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2757 __ Daddu(a4, a2, Operand(a4));
2758 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
2759 __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002760
2761 __ bind(&call);
2762 __ Jump(masm->isolate()->builtins()->Call(convert_mode()),
2763 RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg),
2764 USE_DELAY_SLOT);
2765 __ li(a0, Operand(argc)); // In delay slot.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002766
2767 __ bind(&uninitialized);
2768
2769 // We are going monomorphic, provided we actually have a JSFunction.
2770 __ JumpIfSmi(a1, &miss);
2771
2772 // Goto miss case if we do not have a function.
2773 __ GetObjectType(a1, a4, a4);
2774 __ Branch(&miss, ne, a4, Operand(JS_FUNCTION_TYPE));
2775
2776 // Make sure the function is not the Array() function, which requires special
2777 // behavior on MISS.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002778 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a4);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002779 __ Branch(&miss, eq, a1, Operand(a4));
2780
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002781 // Make sure the function belongs to the same native context.
2782 __ ld(t0, FieldMemOperand(a1, JSFunction::kContextOffset));
2783 __ ld(t0, ContextMemOperand(t0, Context::NATIVE_CONTEXT_INDEX));
2784 __ ld(t1, NativeContextMemOperand());
2785 __ Branch(&miss, ne, t0, Operand(t1));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002786
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002787 // Initialize the call counter.
2788 __ dsrl(at, a3, 32 - kPointerSizeLog2);
2789 __ Daddu(at, a2, Operand(at));
2790 __ li(t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2791 __ sd(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002792
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002793 // Store the function. Use a stub since we need a frame for allocation.
2794 // a2 - vector
2795 // a3 - slot
2796 // a1 - function
2797 {
2798 FrameScope scope(masm, StackFrame::INTERNAL);
2799 CreateWeakCellStub create_stub(masm->isolate());
2800 __ Push(a1);
2801 __ CallStub(&create_stub);
2802 __ Pop(a1);
2803 }
2804
2805 __ Branch(&call_function);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002806
2807 // We are here because tracing is on or we encountered a MISS case we can't
2808 // handle here.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002809 __ bind(&miss);
2810 GenerateMiss(masm);
2811
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002812 __ Branch(&call);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002813}
2814
2815
2816void CallICStub::GenerateMiss(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002817 FrameScope scope(masm, StackFrame::INTERNAL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002818
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002819 // Push the receiver and the function and feedback info.
2820 __ Push(a1, a2, a3);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002821
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002822 // Call the entry.
2823 __ CallRuntime(Runtime::kCallIC_Miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002824
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002825 // Move result to a1 and exit the internal frame.
2826 __ mov(a1, v0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002827}
2828
2829
2830void StringCharCodeAtGenerator::GenerateSlow(
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002831 MacroAssembler* masm, EmbedMode embed_mode,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002832 const RuntimeCallHelper& call_helper) {
2833 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2834
2835 // Index is not a smi.
2836 __ bind(&index_not_smi_);
2837 // If index is a heap number, try converting it to an integer.
2838 __ CheckMap(index_,
2839 result_,
2840 Heap::kHeapNumberMapRootIndex,
2841 index_not_number_,
2842 DONT_DO_SMI_CHECK);
2843 call_helper.BeforeCall(masm);
2844 // Consumed by runtime conversion function:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002845 if (embed_mode == PART_OF_IC_HANDLER) {
2846 __ Push(LoadWithVectorDescriptor::VectorRegister(),
2847 LoadWithVectorDescriptor::SlotRegister(), object_, index_);
2848 } else {
2849 __ Push(object_, index_);
2850 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002851 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002852 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002853 } else {
2854 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2855 // NumberToSmi discards numbers that are not exact integers.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002856 __ CallRuntime(Runtime::kNumberToSmi);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002857 }
2858
2859 // Save the conversion result before the pop instructions below
2860 // have a chance to overwrite it.
2861
2862 __ Move(index_, v0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002863 if (embed_mode == PART_OF_IC_HANDLER) {
2864 __ Pop(LoadWithVectorDescriptor::VectorRegister(),
2865 LoadWithVectorDescriptor::SlotRegister(), object_);
2866 } else {
2867 __ pop(object_);
2868 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002869 // Reload the instance type.
2870 __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2871 __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2872 call_helper.AfterCall(masm);
2873 // If index is still not a smi, it must be out of range.
2874 __ JumpIfNotSmi(index_, index_out_of_range_);
2875 // Otherwise, return to the fast path.
2876 __ Branch(&got_smi_index_);
2877
2878 // Call runtime. We get here when the receiver is a string and the
2879 // index is a number, but the code of getting the actual character
2880 // is too complex (e.g., when the string needs to be flattened).
2881 __ bind(&call_runtime_);
2882 call_helper.BeforeCall(masm);
2883 __ SmiTag(index_);
2884 __ Push(object_, index_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002885 __ CallRuntime(Runtime::kStringCharCodeAtRT);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002886
2887 __ Move(result_, v0);
2888
2889 call_helper.AfterCall(masm);
2890 __ jmp(&exit_);
2891
2892 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2893}
2894
2895
2896// -------------------------------------------------------------------------
2897// StringCharFromCodeGenerator
2898
2899void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2900 // Fast case of Heap::LookupSingleCharacterStringFromCode.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002901 __ JumpIfNotSmi(code_, &slow_case_);
2902 __ Branch(&slow_case_, hi, code_,
2903 Operand(Smi::FromInt(String::kMaxOneByteCharCode)));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002904
2905 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2906 // At this point code register contains smi tagged one_byte char code.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002907 __ SmiScale(at, code_, kPointerSizeLog2);
2908 __ Daddu(result_, result_, at);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002909 __ ld(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002910 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2911 __ Branch(&slow_case_, eq, result_, Operand(at));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002912 __ bind(&exit_);
2913}
2914
2915
2916void StringCharFromCodeGenerator::GenerateSlow(
2917 MacroAssembler* masm,
2918 const RuntimeCallHelper& call_helper) {
2919 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2920
2921 __ bind(&slow_case_);
2922 call_helper.BeforeCall(masm);
2923 __ push(code_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002924 __ CallRuntime(Runtime::kStringCharFromCode);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002925 __ Move(result_, v0);
2926
2927 call_helper.AfterCall(masm);
2928 __ Branch(&exit_);
2929
2930 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2931}
2932
2933
2934enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
2935
2936
2937void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2938 Register dest,
2939 Register src,
2940 Register count,
2941 Register scratch,
2942 String::Encoding encoding) {
2943 if (FLAG_debug_code) {
2944 // Check that destination is word aligned.
2945 __ And(scratch, dest, Operand(kPointerAlignmentMask));
2946 __ Check(eq,
2947 kDestinationOfCopyNotAligned,
2948 scratch,
2949 Operand(zero_reg));
2950 }
2951
2952 // Assumes word reads and writes are little endian.
2953 // Nothing to do for zero characters.
2954 Label done;
2955
2956 if (encoding == String::TWO_BYTE_ENCODING) {
2957 __ Daddu(count, count, count);
2958 }
2959
2960 Register limit = count; // Read until dest equals this.
2961 __ Daddu(limit, dest, Operand(count));
2962
2963 Label loop_entry, loop;
2964 // Copy bytes from src to dest until dest hits limit.
2965 __ Branch(&loop_entry);
2966 __ bind(&loop);
2967 __ lbu(scratch, MemOperand(src));
2968 __ daddiu(src, src, 1);
2969 __ sb(scratch, MemOperand(dest));
2970 __ daddiu(dest, dest, 1);
2971 __ bind(&loop_entry);
2972 __ Branch(&loop, lt, dest, Operand(limit));
2973
2974 __ bind(&done);
2975}
2976
2977
2978void SubStringStub::Generate(MacroAssembler* masm) {
2979 Label runtime;
2980 // Stack frame on entry.
2981 // ra: return address
2982 // sp[0]: to
2983 // sp[4]: from
2984 // sp[8]: string
2985
2986 // This stub is called from the native-call %_SubString(...), so
2987 // nothing can be assumed about the arguments. It is tested that:
2988 // "string" is a sequential string,
2989 // both "from" and "to" are smis, and
2990 // 0 <= from <= to <= string.length.
2991 // If any of these assumptions fail, we call the runtime system.
2992
2993 const int kToOffset = 0 * kPointerSize;
2994 const int kFromOffset = 1 * kPointerSize;
2995 const int kStringOffset = 2 * kPointerSize;
2996
2997 __ ld(a2, MemOperand(sp, kToOffset));
2998 __ ld(a3, MemOperand(sp, kFromOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002999
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003000 STATIC_ASSERT(kSmiTag == 0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003001
3002 // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
3003 // safe in this case.
3004 __ JumpIfNotSmi(a2, &runtime);
3005 __ JumpIfNotSmi(a3, &runtime);
3006 // Both a2 and a3 are untagged integers.
3007
3008 __ SmiUntag(a2, a2);
3009 __ SmiUntag(a3, a3);
3010 __ Branch(&runtime, lt, a3, Operand(zero_reg)); // From < 0.
3011
3012 __ Branch(&runtime, gt, a3, Operand(a2)); // Fail if from > to.
3013 __ Dsubu(a2, a2, a3);
3014
3015 // Make sure first argument is a string.
3016 __ ld(v0, MemOperand(sp, kStringOffset));
3017 __ JumpIfSmi(v0, &runtime);
3018 __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
3019 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3020 __ And(a4, a1, Operand(kIsNotStringMask));
3021
3022 __ Branch(&runtime, ne, a4, Operand(zero_reg));
3023
3024 Label single_char;
3025 __ Branch(&single_char, eq, a2, Operand(1));
3026
3027 // Short-cut for the case of trivial substring.
3028 Label return_v0;
3029 // v0: original string
3030 // a2: result string length
3031 __ ld(a4, FieldMemOperand(v0, String::kLengthOffset));
3032 __ SmiUntag(a4);
3033 // Return original string.
3034 __ Branch(&return_v0, eq, a2, Operand(a4));
3035 // Longer than original string's length or negative: unsafe arguments.
3036 __ Branch(&runtime, hi, a2, Operand(a4));
3037 // Shorter than original string's length: an actual substring.
3038
3039 // Deal with different string types: update the index if necessary
3040 // and put the underlying string into a5.
3041 // v0: original string
3042 // a1: instance type
3043 // a2: length
3044 // a3: from index (untagged)
3045 Label underlying_unpacked, sliced_string, seq_or_external_string;
3046 // If the string is not indirect, it can only be sequential or external.
3047 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3048 STATIC_ASSERT(kIsIndirectStringMask != 0);
3049 __ And(a4, a1, Operand(kIsIndirectStringMask));
3050 __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, a4, Operand(zero_reg));
3051 // a4 is used as a scratch register and can be overwritten in either case.
3052 __ And(a4, a1, Operand(kSlicedNotConsMask));
3053 __ Branch(&sliced_string, ne, a4, Operand(zero_reg));
3054 // Cons string. Check whether it is flat, then fetch first part.
3055 __ ld(a5, FieldMemOperand(v0, ConsString::kSecondOffset));
3056 __ LoadRoot(a4, Heap::kempty_stringRootIndex);
3057 __ Branch(&runtime, ne, a5, Operand(a4));
3058 __ ld(a5, FieldMemOperand(v0, ConsString::kFirstOffset));
3059 // Update instance type.
3060 __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
3061 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3062 __ jmp(&underlying_unpacked);
3063
3064 __ bind(&sliced_string);
3065 // Sliced string. Fetch parent and correct start index by offset.
3066 __ ld(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
3067 __ ld(a4, FieldMemOperand(v0, SlicedString::kOffsetOffset));
3068 __ SmiUntag(a4); // Add offset to index.
3069 __ Daddu(a3, a3, a4);
3070 // Update instance type.
3071 __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
3072 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3073 __ jmp(&underlying_unpacked);
3074
3075 __ bind(&seq_or_external_string);
3076 // Sequential or external string. Just move string to the expected register.
3077 __ mov(a5, v0);
3078
3079 __ bind(&underlying_unpacked);
3080
3081 if (FLAG_string_slices) {
3082 Label copy_routine;
3083 // a5: underlying subject string
3084 // a1: instance type of underlying subject string
3085 // a2: length
3086 // a3: adjusted start index (untagged)
3087 // Short slice. Copy instead of slicing.
3088 __ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
3089 // Allocate new sliced string. At this point we do not reload the instance
3090 // type including the string encoding because we simply rely on the info
3091 // provided by the original string. It does not matter if the original
3092 // string's encoding is wrong because we always have to recheck encoding of
3093 // the newly created string's parent anyways due to externalized strings.
3094 Label two_byte_slice, set_slice_header;
3095 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3096 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3097 __ And(a4, a1, Operand(kStringEncodingMask));
3098 __ Branch(&two_byte_slice, eq, a4, Operand(zero_reg));
3099 __ AllocateOneByteSlicedString(v0, a2, a6, a7, &runtime);
3100 __ jmp(&set_slice_header);
3101 __ bind(&two_byte_slice);
3102 __ AllocateTwoByteSlicedString(v0, a2, a6, a7, &runtime);
3103 __ bind(&set_slice_header);
3104 __ SmiTag(a3);
3105 __ sd(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
3106 __ sd(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
3107 __ jmp(&return_v0);
3108
3109 __ bind(&copy_routine);
3110 }
3111
3112 // a5: underlying subject string
3113 // a1: instance type of underlying subject string
3114 // a2: length
3115 // a3: adjusted start index (untagged)
3116 Label two_byte_sequential, sequential_string, allocate_result;
3117 STATIC_ASSERT(kExternalStringTag != 0);
3118 STATIC_ASSERT(kSeqStringTag == 0);
3119 __ And(a4, a1, Operand(kExternalStringTag));
3120 __ Branch(&sequential_string, eq, a4, Operand(zero_reg));
3121
3122 // Handle external string.
3123 // Rule out short external strings.
3124 STATIC_ASSERT(kShortExternalStringTag != 0);
3125 __ And(a4, a1, Operand(kShortExternalStringTag));
3126 __ Branch(&runtime, ne, a4, Operand(zero_reg));
3127 __ ld(a5, FieldMemOperand(a5, ExternalString::kResourceDataOffset));
3128 // a5 already points to the first character of underlying string.
3129 __ jmp(&allocate_result);
3130
3131 __ bind(&sequential_string);
3132 // Locate first character of underlying subject string.
3133 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3134 __ Daddu(a5, a5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3135
3136 __ bind(&allocate_result);
3137 // Sequential acii string. Allocate the result.
3138 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3139 __ And(a4, a1, Operand(kStringEncodingMask));
3140 __ Branch(&two_byte_sequential, eq, a4, Operand(zero_reg));
3141
3142 // Allocate and copy the resulting one_byte string.
3143 __ AllocateOneByteString(v0, a2, a4, a6, a7, &runtime);
3144
3145 // Locate first character of substring to copy.
3146 __ Daddu(a5, a5, a3);
3147
3148 // Locate first character of result.
3149 __ Daddu(a1, v0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3150
3151 // v0: result string
3152 // a1: first character of result string
3153 // a2: result string length
3154 // a5: first character of substring to copy
3155 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3156 StringHelper::GenerateCopyCharacters(
3157 masm, a1, a5, a2, a3, String::ONE_BYTE_ENCODING);
3158 __ jmp(&return_v0);
3159
3160 // Allocate and copy the resulting two-byte string.
3161 __ bind(&two_byte_sequential);
3162 __ AllocateTwoByteString(v0, a2, a4, a6, a7, &runtime);
3163
3164 // Locate first character of substring to copy.
3165 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
3166 __ dsll(a4, a3, 1);
3167 __ Daddu(a5, a5, a4);
3168 // Locate first character of result.
3169 __ Daddu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3170
3171 // v0: result string.
3172 // a1: first character of result.
3173 // a2: result length.
3174 // a5: first character of substring to copy.
3175 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3176 StringHelper::GenerateCopyCharacters(
3177 masm, a1, a5, a2, a3, String::TWO_BYTE_ENCODING);
3178
3179 __ bind(&return_v0);
3180 Counters* counters = isolate()->counters();
3181 __ IncrementCounter(counters->sub_string_native(), 1, a3, a4);
3182 __ DropAndRet(3);
3183
3184 // Just jump to runtime to create the sub string.
3185 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003186 __ TailCallRuntime(Runtime::kSubString);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003187
3188 __ bind(&single_char);
3189 // v0: original string
3190 // a1: instance type
3191 // a2: length
3192 // a3: from index (untagged)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003193 __ SmiTag(a3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003194 StringCharAtGenerator generator(v0, a3, a2, v0, &runtime, &runtime, &runtime,
3195 STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003196 generator.GenerateFast(masm);
3197 __ DropAndRet(3);
3198 generator.SkipSlow(masm, &runtime);
3199}
3200
3201
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003202void ToNumberStub::Generate(MacroAssembler* masm) {
3203 // The ToNumber stub takes one argument in a0.
3204 Label not_smi;
3205 __ JumpIfNotSmi(a0, &not_smi);
3206 __ Ret(USE_DELAY_SLOT);
3207 __ mov(v0, a0);
3208 __ bind(&not_smi);
3209
3210 Label not_heap_number;
3211 __ ld(a1, FieldMemOperand(a0, HeapObject::kMapOffset));
3212 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3213 // a0: object
3214 // a1: instance type.
3215 __ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
3216 __ Ret(USE_DELAY_SLOT);
3217 __ mov(v0, a0);
3218 __ bind(&not_heap_number);
3219
3220 Label not_string, slow_string;
3221 __ Branch(&not_string, hs, a1, Operand(FIRST_NONSTRING_TYPE));
3222 // Check if string has a cached array index.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003223 __ lwu(a2, FieldMemOperand(a0, String::kHashFieldOffset));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003224 __ And(at, a2, Operand(String::kContainsCachedArrayIndexMask));
3225 __ Branch(&slow_string, ne, at, Operand(zero_reg));
3226 __ IndexFromHash(a2, a0);
3227 __ Ret(USE_DELAY_SLOT);
3228 __ mov(v0, a0);
3229 __ bind(&slow_string);
3230 __ push(a0); // Push argument.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003231 __ TailCallRuntime(Runtime::kStringToNumber);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003232 __ bind(&not_string);
3233
3234 Label not_oddball;
3235 __ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
3236 __ Ret(USE_DELAY_SLOT);
3237 __ ld(v0, FieldMemOperand(a0, Oddball::kToNumberOffset));
3238 __ bind(&not_oddball);
3239
3240 __ push(a0); // Push argument.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003241 __ TailCallRuntime(Runtime::kToNumber);
3242}
3243
3244
3245void ToLengthStub::Generate(MacroAssembler* masm) {
3246 // The ToLength stub takes on argument in a0.
3247 Label not_smi, positive_smi;
3248 __ JumpIfNotSmi(a0, &not_smi);
3249 STATIC_ASSERT(kSmiTag == 0);
3250 __ Branch(&positive_smi, ge, a0, Operand(zero_reg));
3251 __ mov(a0, zero_reg);
3252 __ bind(&positive_smi);
3253 __ Ret(USE_DELAY_SLOT);
3254 __ mov(v0, a0);
3255 __ bind(&not_smi);
3256
3257 __ push(a0); // Push argument.
3258 __ TailCallRuntime(Runtime::kToLength);
3259}
3260
3261
3262void ToStringStub::Generate(MacroAssembler* masm) {
3263 // The ToString stub takes on argument in a0.
3264 Label is_number;
3265 __ JumpIfSmi(a0, &is_number);
3266
3267 Label not_string;
3268 __ GetObjectType(a0, a1, a1);
3269 // a0: receiver
3270 // a1: receiver instance type
3271 __ Branch(&not_string, ge, a1, Operand(FIRST_NONSTRING_TYPE));
3272 __ Ret(USE_DELAY_SLOT);
3273 __ mov(v0, a0);
3274 __ bind(&not_string);
3275
3276 Label not_heap_number;
3277 __ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
3278 __ bind(&is_number);
3279 NumberToStringStub stub(isolate());
3280 __ TailCallStub(&stub);
3281 __ bind(&not_heap_number);
3282
3283 Label not_oddball;
3284 __ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
3285 __ Ret(USE_DELAY_SLOT);
3286 __ ld(v0, FieldMemOperand(a0, Oddball::kToStringOffset));
3287 __ bind(&not_oddball);
3288
3289 __ push(a0); // Push argument.
3290 __ TailCallRuntime(Runtime::kToString);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003291}
3292
3293
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003294void StringHelper::GenerateFlatOneByteStringEquals(
3295 MacroAssembler* masm, Register left, Register right, Register scratch1,
3296 Register scratch2, Register scratch3) {
3297 Register length = scratch1;
3298
3299 // Compare lengths.
3300 Label strings_not_equal, check_zero_length;
3301 __ ld(length, FieldMemOperand(left, String::kLengthOffset));
3302 __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
3303 __ Branch(&check_zero_length, eq, length, Operand(scratch2));
3304 __ bind(&strings_not_equal);
3305 // Can not put li in delayslot, it has multi instructions.
3306 __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
3307 __ Ret();
3308
3309 // Check if the length is zero.
3310 Label compare_chars;
3311 __ bind(&check_zero_length);
3312 STATIC_ASSERT(kSmiTag == 0);
3313 __ Branch(&compare_chars, ne, length, Operand(zero_reg));
3314 DCHECK(is_int16((intptr_t)Smi::FromInt(EQUAL)));
3315 __ Ret(USE_DELAY_SLOT);
3316 __ li(v0, Operand(Smi::FromInt(EQUAL)));
3317
3318 // Compare characters.
3319 __ bind(&compare_chars);
3320
3321 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
3322 v0, &strings_not_equal);
3323
3324 // Characters are equal.
3325 __ Ret(USE_DELAY_SLOT);
3326 __ li(v0, Operand(Smi::FromInt(EQUAL)));
3327}
3328
3329
3330void StringHelper::GenerateCompareFlatOneByteStrings(
3331 MacroAssembler* masm, Register left, Register right, Register scratch1,
3332 Register scratch2, Register scratch3, Register scratch4) {
3333 Label result_not_equal, compare_lengths;
3334 // Find minimum length and length difference.
3335 __ ld(scratch1, FieldMemOperand(left, String::kLengthOffset));
3336 __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
3337 __ Dsubu(scratch3, scratch1, Operand(scratch2));
3338 Register length_delta = scratch3;
3339 __ slt(scratch4, scratch2, scratch1);
3340 __ Movn(scratch1, scratch2, scratch4);
3341 Register min_length = scratch1;
3342 STATIC_ASSERT(kSmiTag == 0);
3343 __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
3344
3345 // Compare loop.
3346 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3347 scratch4, v0, &result_not_equal);
3348
3349 // Compare lengths - strings up to min-length are equal.
3350 __ bind(&compare_lengths);
3351 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3352 // Use length_delta as result if it's zero.
3353 __ mov(scratch2, length_delta);
3354 __ mov(scratch4, zero_reg);
3355 __ mov(v0, zero_reg);
3356
3357 __ bind(&result_not_equal);
3358 // Conditionally update the result based either on length_delta or
3359 // the last comparion performed in the loop above.
3360 Label ret;
3361 __ Branch(&ret, eq, scratch2, Operand(scratch4));
3362 __ li(v0, Operand(Smi::FromInt(GREATER)));
3363 __ Branch(&ret, gt, scratch2, Operand(scratch4));
3364 __ li(v0, Operand(Smi::FromInt(LESS)));
3365 __ bind(&ret);
3366 __ Ret();
3367}
3368
3369
3370void StringHelper::GenerateOneByteCharsCompareLoop(
3371 MacroAssembler* masm, Register left, Register right, Register length,
3372 Register scratch1, Register scratch2, Register scratch3,
3373 Label* chars_not_equal) {
3374 // Change index to run from -length to -1 by adding length to string
3375 // start. This means that loop ends when index reaches zero, which
3376 // doesn't need an additional compare.
3377 __ SmiUntag(length);
3378 __ Daddu(scratch1, length,
3379 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3380 __ Daddu(left, left, Operand(scratch1));
3381 __ Daddu(right, right, Operand(scratch1));
3382 __ Dsubu(length, zero_reg, length);
3383 Register index = length; // index = -length;
3384
3385
3386 // Compare loop.
3387 Label loop;
3388 __ bind(&loop);
3389 __ Daddu(scratch3, left, index);
3390 __ lbu(scratch1, MemOperand(scratch3));
3391 __ Daddu(scratch3, right, index);
3392 __ lbu(scratch2, MemOperand(scratch3));
3393 __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
3394 __ Daddu(index, index, 1);
3395 __ Branch(&loop, ne, index, Operand(zero_reg));
3396}
3397
3398
3399void StringCompareStub::Generate(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003400 // ----------- S t a t e -------------
3401 // -- a1 : left
3402 // -- a0 : right
3403 // -- ra : return address
3404 // -----------------------------------
3405 __ AssertString(a1);
3406 __ AssertString(a0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003407
3408 Label not_same;
3409 __ Branch(&not_same, ne, a0, Operand(a1));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003410 __ li(v0, Operand(Smi::FromInt(EQUAL)));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003411 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a1,
3412 a2);
3413 __ Ret();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003414
3415 __ bind(&not_same);
3416
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003417 // Check that both objects are sequential one-byte strings.
3418 Label runtime;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003419 __ JumpIfNotBothSequentialOneByteStrings(a1, a0, a2, a3, &runtime);
3420
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003421 // Compare flat ASCII strings natively.
3422 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
3423 a3);
3424 StringHelper::GenerateCompareFlatOneByteStrings(masm, a1, a0, a2, a3, t0, t1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003425
3426 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003427 __ Push(a1, a0);
3428 __ TailCallRuntime(Runtime::kStringCompare);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003429}
3430
3431
3432void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3433 // ----------- S t a t e -------------
3434 // -- a1 : left
3435 // -- a0 : right
3436 // -- ra : return address
3437 // -----------------------------------
3438
3439 // Load a2 with the allocation site. We stick an undefined dummy value here
3440 // and replace it with the real allocation site later when we instantiate this
3441 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3442 __ li(a2, handle(isolate()->heap()->undefined_value()));
3443
3444 // Make sure that we actually patched the allocation site.
3445 if (FLAG_debug_code) {
3446 __ And(at, a2, Operand(kSmiTagMask));
3447 __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
3448 __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset));
3449 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
3450 __ Assert(eq, kExpectedAllocationSite, a4, Operand(at));
3451 }
3452
3453 // Tail call into the stub that handles binary operations with allocation
3454 // sites.
3455 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3456 __ TailCallStub(&stub);
3457}
3458
3459
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003460void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
3461 DCHECK_EQ(CompareICState::BOOLEAN, state());
3462 Label miss;
3463
3464 __ CheckMap(a1, a2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
3465 __ CheckMap(a0, a3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
3466 if (op() != Token::EQ_STRICT && is_strong(strength())) {
3467 __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion);
3468 } else {
3469 if (!Token::IsEqualityOp(op())) {
3470 __ ld(a1, FieldMemOperand(a1, Oddball::kToNumberOffset));
3471 __ AssertSmi(a1);
3472 __ ld(a0, FieldMemOperand(a0, Oddball::kToNumberOffset));
3473 __ AssertSmi(a0);
3474 }
3475 __ Ret(USE_DELAY_SLOT);
3476 __ Dsubu(v0, a1, a0);
3477 }
3478
3479 __ bind(&miss);
3480 GenerateMiss(masm);
3481}
3482
3483
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003484void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3485 DCHECK(state() == CompareICState::SMI);
3486 Label miss;
3487 __ Or(a2, a1, a0);
3488 __ JumpIfNotSmi(a2, &miss);
3489
3490 if (GetCondition() == eq) {
3491 // For equality we do not care about the sign of the result.
3492 __ Ret(USE_DELAY_SLOT);
3493 __ Dsubu(v0, a0, a1);
3494 } else {
3495 // Untag before subtracting to avoid handling overflow.
3496 __ SmiUntag(a1);
3497 __ SmiUntag(a0);
3498 __ Ret(USE_DELAY_SLOT);
3499 __ Dsubu(v0, a1, a0);
3500 }
3501
3502 __ bind(&miss);
3503 GenerateMiss(masm);
3504}
3505
3506
3507void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3508 DCHECK(state() == CompareICState::NUMBER);
3509
3510 Label generic_stub;
3511 Label unordered, maybe_undefined1, maybe_undefined2;
3512 Label miss;
3513
3514 if (left() == CompareICState::SMI) {
3515 __ JumpIfNotSmi(a1, &miss);
3516 }
3517 if (right() == CompareICState::SMI) {
3518 __ JumpIfNotSmi(a0, &miss);
3519 }
3520
3521 // Inlining the double comparison and falling back to the general compare
3522 // stub if NaN is involved.
3523 // Load left and right operand.
3524 Label done, left, left_smi, right_smi;
3525 __ JumpIfSmi(a0, &right_smi);
3526 __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
3527 DONT_DO_SMI_CHECK);
3528 __ Dsubu(a2, a0, Operand(kHeapObjectTag));
3529 __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
3530 __ Branch(&left);
3531 __ bind(&right_smi);
3532 __ SmiUntag(a2, a0); // Can't clobber a0 yet.
3533 FPURegister single_scratch = f6;
3534 __ mtc1(a2, single_scratch);
3535 __ cvt_d_w(f2, single_scratch);
3536
3537 __ bind(&left);
3538 __ JumpIfSmi(a1, &left_smi);
3539 __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
3540 DONT_DO_SMI_CHECK);
3541 __ Dsubu(a2, a1, Operand(kHeapObjectTag));
3542 __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
3543 __ Branch(&done);
3544 __ bind(&left_smi);
3545 __ SmiUntag(a2, a1); // Can't clobber a1 yet.
3546 single_scratch = f8;
3547 __ mtc1(a2, single_scratch);
3548 __ cvt_d_w(f0, single_scratch);
3549
3550 __ bind(&done);
3551
3552 // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
3553 Label fpu_eq, fpu_lt;
3554 // Test if equal, and also handle the unordered/NaN case.
3555 __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
3556
3557 // Test if less (unordered case is already handled).
3558 __ BranchF(&fpu_lt, NULL, lt, f0, f2);
3559
3560 // Otherwise it's greater, so just fall thru, and return.
3561 DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
3562 __ Ret(USE_DELAY_SLOT);
3563 __ li(v0, Operand(GREATER));
3564
3565 __ bind(&fpu_eq);
3566 __ Ret(USE_DELAY_SLOT);
3567 __ li(v0, Operand(EQUAL));
3568
3569 __ bind(&fpu_lt);
3570 __ Ret(USE_DELAY_SLOT);
3571 __ li(v0, Operand(LESS));
3572
3573 __ bind(&unordered);
3574 __ bind(&generic_stub);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003575 CompareICStub stub(isolate(), op(), strength(), CompareICState::GENERIC,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003576 CompareICState::GENERIC, CompareICState::GENERIC);
3577 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3578
3579 __ bind(&maybe_undefined1);
3580 if (Token::IsOrderedRelationalCompareOp(op())) {
3581 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3582 __ Branch(&miss, ne, a0, Operand(at));
3583 __ JumpIfSmi(a1, &unordered);
3584 __ GetObjectType(a1, a2, a2);
3585 __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
3586 __ jmp(&unordered);
3587 }
3588
3589 __ bind(&maybe_undefined2);
3590 if (Token::IsOrderedRelationalCompareOp(op())) {
3591 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3592 __ Branch(&unordered, eq, a1, Operand(at));
3593 }
3594
3595 __ bind(&miss);
3596 GenerateMiss(masm);
3597}
3598
3599
3600void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3601 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3602 Label miss;
3603
3604 // Registers containing left and right operands respectively.
3605 Register left = a1;
3606 Register right = a0;
3607 Register tmp1 = a2;
3608 Register tmp2 = a3;
3609
3610 // Check that both operands are heap objects.
3611 __ JumpIfEitherSmi(left, right, &miss);
3612
3613 // Check that both operands are internalized strings.
3614 __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3615 __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3616 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3617 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3618 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3619 __ Or(tmp1, tmp1, Operand(tmp2));
3620 __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3621 __ Branch(&miss, ne, at, Operand(zero_reg));
3622
3623 // Make sure a0 is non-zero. At this point input operands are
3624 // guaranteed to be non-zero.
3625 DCHECK(right.is(a0));
3626 STATIC_ASSERT(EQUAL == 0);
3627 STATIC_ASSERT(kSmiTag == 0);
3628 __ mov(v0, right);
3629 // Internalized strings are compared by identity.
3630 __ Ret(ne, left, Operand(right));
3631 DCHECK(is_int16(EQUAL));
3632 __ Ret(USE_DELAY_SLOT);
3633 __ li(v0, Operand(Smi::FromInt(EQUAL)));
3634
3635 __ bind(&miss);
3636 GenerateMiss(masm);
3637}
3638
3639
3640void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3641 DCHECK(state() == CompareICState::UNIQUE_NAME);
3642 DCHECK(GetCondition() == eq);
3643 Label miss;
3644
3645 // Registers containing left and right operands respectively.
3646 Register left = a1;
3647 Register right = a0;
3648 Register tmp1 = a2;
3649 Register tmp2 = a3;
3650
3651 // Check that both operands are heap objects.
3652 __ JumpIfEitherSmi(left, right, &miss);
3653
3654 // Check that both operands are unique names. This leaves the instance
3655 // types loaded in tmp1 and tmp2.
3656 __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3657 __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3658 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3659 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3660
3661 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
3662 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
3663
3664 // Use a0 as result
3665 __ mov(v0, a0);
3666
3667 // Unique names are compared by identity.
3668 Label done;
3669 __ Branch(&done, ne, left, Operand(right));
3670 // Make sure a0 is non-zero. At this point input operands are
3671 // guaranteed to be non-zero.
3672 DCHECK(right.is(a0));
3673 STATIC_ASSERT(EQUAL == 0);
3674 STATIC_ASSERT(kSmiTag == 0);
3675 __ li(v0, Operand(Smi::FromInt(EQUAL)));
3676 __ bind(&done);
3677 __ Ret();
3678
3679 __ bind(&miss);
3680 GenerateMiss(masm);
3681}
3682
3683
3684void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3685 DCHECK(state() == CompareICState::STRING);
3686 Label miss;
3687
3688 bool equality = Token::IsEqualityOp(op());
3689
3690 // Registers containing left and right operands respectively.
3691 Register left = a1;
3692 Register right = a0;
3693 Register tmp1 = a2;
3694 Register tmp2 = a3;
3695 Register tmp3 = a4;
3696 Register tmp4 = a5;
3697 Register tmp5 = a6;
3698
3699 // Check that both operands are heap objects.
3700 __ JumpIfEitherSmi(left, right, &miss);
3701
3702 // Check that both operands are strings. This leaves the instance
3703 // types loaded in tmp1 and tmp2.
3704 __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3705 __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3706 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3707 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3708 STATIC_ASSERT(kNotStringTag != 0);
3709 __ Or(tmp3, tmp1, tmp2);
3710 __ And(tmp5, tmp3, Operand(kIsNotStringMask));
3711 __ Branch(&miss, ne, tmp5, Operand(zero_reg));
3712
3713 // Fast check for identical strings.
3714 Label left_ne_right;
3715 STATIC_ASSERT(EQUAL == 0);
3716 STATIC_ASSERT(kSmiTag == 0);
3717 __ Branch(&left_ne_right, ne, left, Operand(right));
3718 __ Ret(USE_DELAY_SLOT);
3719 __ mov(v0, zero_reg); // In the delay slot.
3720 __ bind(&left_ne_right);
3721
3722 // Handle not identical strings.
3723
3724 // Check that both strings are internalized strings. If they are, we're done
3725 // because we already know they are not identical. We know they are both
3726 // strings.
3727 if (equality) {
3728 DCHECK(GetCondition() == eq);
3729 STATIC_ASSERT(kInternalizedTag == 0);
3730 __ Or(tmp3, tmp1, Operand(tmp2));
3731 __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
3732 Label is_symbol;
3733 __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
3734 // Make sure a0 is non-zero. At this point input operands are
3735 // guaranteed to be non-zero.
3736 DCHECK(right.is(a0));
3737 __ Ret(USE_DELAY_SLOT);
3738 __ mov(v0, a0); // In the delay slot.
3739 __ bind(&is_symbol);
3740 }
3741
3742 // Check that both strings are sequential one_byte.
3743 Label runtime;
3744 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3745 &runtime);
3746
3747 // Compare flat one_byte strings. Returns when done.
3748 if (equality) {
3749 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
3750 tmp3);
3751 } else {
3752 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3753 tmp2, tmp3, tmp4);
3754 }
3755
3756 // Handle more complex cases in runtime.
3757 __ bind(&runtime);
3758 __ Push(left, right);
3759 if (equality) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003760 __ TailCallRuntime(Runtime::kStringEquals);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003761 } else {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003762 __ TailCallRuntime(Runtime::kStringCompare);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003763 }
3764
3765 __ bind(&miss);
3766 GenerateMiss(masm);
3767}
3768
3769
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003770void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
3771 DCHECK_EQ(CompareICState::RECEIVER, state());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003772 Label miss;
3773 __ And(a2, a1, Operand(a0));
3774 __ JumpIfSmi(a2, &miss);
3775
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003776 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003777 __ GetObjectType(a0, a2, a2);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003778 __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003779 __ GetObjectType(a1, a2, a2);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003780 __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003781
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003782 DCHECK_EQ(eq, GetCondition());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003783 __ Ret(USE_DELAY_SLOT);
3784 __ dsubu(v0, a0, a1);
3785
3786 __ bind(&miss);
3787 GenerateMiss(masm);
3788}
3789
3790
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003791void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003792 Label miss;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003793 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003794 __ And(a2, a1, a0);
3795 __ JumpIfSmi(a2, &miss);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003796 __ GetWeakValue(a4, cell);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003797 __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
3798 __ ld(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003799 __ Branch(&miss, ne, a2, Operand(a4));
3800 __ Branch(&miss, ne, a3, Operand(a4));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003801
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003802 if (Token::IsEqualityOp(op())) {
3803 __ Ret(USE_DELAY_SLOT);
3804 __ dsubu(v0, a0, a1);
3805 } else if (is_strong(strength())) {
3806 __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion);
3807 } else {
3808 if (op() == Token::LT || op() == Token::LTE) {
3809 __ li(a2, Operand(Smi::FromInt(GREATER)));
3810 } else {
3811 __ li(a2, Operand(Smi::FromInt(LESS)));
3812 }
3813 __ Push(a1, a0, a2);
3814 __ TailCallRuntime(Runtime::kCompare);
3815 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003816
3817 __ bind(&miss);
3818 GenerateMiss(masm);
3819}
3820
3821
3822void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3823 {
3824 // Call the runtime system in a fresh internal frame.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003825 FrameScope scope(masm, StackFrame::INTERNAL);
3826 __ Push(a1, a0);
3827 __ Push(ra, a1, a0);
3828 __ li(a4, Operand(Smi::FromInt(op())));
3829 __ daddiu(sp, sp, -kPointerSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003830 __ CallRuntime(Runtime::kCompareIC_Miss, 3, kDontSaveFPRegs,
3831 USE_DELAY_SLOT);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003832 __ sd(a4, MemOperand(sp)); // In the delay slot.
3833 // Compute the entry point of the rewritten stub.
3834 __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
3835 // Restore registers.
3836 __ Pop(a1, a0, ra);
3837 }
3838 __ Jump(a2);
3839}
3840
3841
3842void DirectCEntryStub::Generate(MacroAssembler* masm) {
3843 // Make place for arguments to fit C calling convention. Most of the callers
3844 // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
3845 // so they handle stack restoring and we don't have to do that here.
3846 // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
3847 // kCArgsSlotsSize stack space after the call.
3848 __ daddiu(sp, sp, -kCArgsSlotsSize);
3849 // Place the return address on the stack, making the call
3850 // GC safe. The RegExp backend also relies on this.
3851 __ sd(ra, MemOperand(sp, kCArgsSlotsSize));
3852 __ Call(t9); // Call the C++ function.
3853 __ ld(t9, MemOperand(sp, kCArgsSlotsSize));
3854
3855 if (FLAG_debug_code && FLAG_enable_slow_asserts) {
3856 // In case of an error the return address may point to a memory area
3857 // filled with kZapValue by the GC.
3858 // Dereference the address and check for this.
3859 __ Uld(a4, MemOperand(t9));
3860 __ Assert(ne, kReceivedInvalidReturnAddress, a4,
3861 Operand(reinterpret_cast<uint64_t>(kZapValue)));
3862 }
3863 __ Jump(t9);
3864}
3865
3866
3867void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
3868 Register target) {
3869 intptr_t loc =
3870 reinterpret_cast<intptr_t>(GetCode().location());
3871 __ Move(t9, target);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003872 __ li(at, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
3873 __ Call(at);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003874}
3875
3876
3877void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3878 Label* miss,
3879 Label* done,
3880 Register receiver,
3881 Register properties,
3882 Handle<Name> name,
3883 Register scratch0) {
3884 DCHECK(name->IsUniqueName());
3885 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3886 // not equal to the name and kProbes-th slot is not used (its name is the
3887 // undefined value), it guarantees the hash table doesn't contain the
3888 // property. It's true even if some slots represent deleted properties
3889 // (their names are the hole value).
3890 for (int i = 0; i < kInlinedProbes; i++) {
3891 // scratch0 points to properties hash.
3892 // Compute the masked index: (hash + i + i * i) & mask.
3893 Register index = scratch0;
3894 // Capacity is smi 2^n.
3895 __ SmiLoadUntag(index, FieldMemOperand(properties, kCapacityOffset));
3896 __ Dsubu(index, index, Operand(1));
3897 __ And(index, index,
3898 Operand(name->Hash() + NameDictionary::GetProbeOffset(i)));
3899
3900 // Scale the index by multiplying by the entry size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003901 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003902 __ dsll(at, index, 1);
3903 __ Daddu(index, index, at); // index *= 3.
3904
3905 Register entity_name = scratch0;
3906 // Having undefined at this place means the name is not contained.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003907 STATIC_ASSERT(kSmiTagSize == 1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003908 Register tmp = properties;
3909
3910 __ dsll(scratch0, index, kPointerSizeLog2);
3911 __ Daddu(tmp, properties, scratch0);
3912 __ ld(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3913
3914 DCHECK(!tmp.is(entity_name));
3915 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
3916 __ Branch(done, eq, entity_name, Operand(tmp));
3917
3918 // Load the hole ready for use below:
3919 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
3920
3921 // Stop if found the property.
3922 __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
3923
3924 Label good;
3925 __ Branch(&good, eq, entity_name, Operand(tmp));
3926
3927 // Check if the entry name is not a unique name.
3928 __ ld(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3929 __ lbu(entity_name,
3930 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3931 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
3932 __ bind(&good);
3933
3934 // Restore the properties.
3935 __ ld(properties,
3936 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3937 }
3938
3939 const int spill_mask =
3940 (ra.bit() | a6.bit() | a5.bit() | a4.bit() | a3.bit() |
3941 a2.bit() | a1.bit() | a0.bit() | v0.bit());
3942
3943 __ MultiPush(spill_mask);
3944 __ ld(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3945 __ li(a1, Operand(Handle<Name>(name)));
3946 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3947 __ CallStub(&stub);
3948 __ mov(at, v0);
3949 __ MultiPop(spill_mask);
3950
3951 __ Branch(done, eq, at, Operand(zero_reg));
3952 __ Branch(miss, ne, at, Operand(zero_reg));
3953}
3954
3955
3956// Probe the name dictionary in the |elements| register. Jump to the
3957// |done| label if a property with the given name is found. Jump to
3958// the |miss| label otherwise.
3959// If lookup was successful |scratch2| will be equal to elements + 4 * index.
3960void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3961 Label* miss,
3962 Label* done,
3963 Register elements,
3964 Register name,
3965 Register scratch1,
3966 Register scratch2) {
3967 DCHECK(!elements.is(scratch1));
3968 DCHECK(!elements.is(scratch2));
3969 DCHECK(!name.is(scratch1));
3970 DCHECK(!name.is(scratch2));
3971
3972 __ AssertName(name);
3973
3974 // Compute the capacity mask.
3975 __ ld(scratch1, FieldMemOperand(elements, kCapacityOffset));
3976 __ SmiUntag(scratch1);
3977 __ Dsubu(scratch1, scratch1, Operand(1));
3978
3979 // Generate an unrolled loop that performs a few probes before
3980 // giving up. Measurements done on Gmail indicate that 2 probes
3981 // cover ~93% of loads from dictionaries.
3982 for (int i = 0; i < kInlinedProbes; i++) {
3983 // Compute the masked index: (hash + i + i * i) & mask.
3984 __ lwu(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
3985 if (i > 0) {
3986 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3987 // the hash in a separate instruction. The value hash + i + i * i is right
3988 // shifted in the following and instruction.
3989 DCHECK(NameDictionary::GetProbeOffset(i) <
3990 1 << (32 - Name::kHashFieldOffset));
3991 __ Daddu(scratch2, scratch2, Operand(
3992 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3993 }
3994 __ dsrl(scratch2, scratch2, Name::kHashShift);
3995 __ And(scratch2, scratch1, scratch2);
3996
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003997 // Scale the index by multiplying by the entry size.
3998 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003999 // scratch2 = scratch2 * 3.
4000
4001 __ dsll(at, scratch2, 1);
4002 __ Daddu(scratch2, scratch2, at);
4003
4004 // Check if the key is identical to the name.
4005 __ dsll(at, scratch2, kPointerSizeLog2);
4006 __ Daddu(scratch2, elements, at);
4007 __ ld(at, FieldMemOperand(scratch2, kElementsStartOffset));
4008 __ Branch(done, eq, name, Operand(at));
4009 }
4010
4011 const int spill_mask =
4012 (ra.bit() | a6.bit() | a5.bit() | a4.bit() |
4013 a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
4014 ~(scratch1.bit() | scratch2.bit());
4015
4016 __ MultiPush(spill_mask);
4017 if (name.is(a0)) {
4018 DCHECK(!elements.is(a1));
4019 __ Move(a1, name);
4020 __ Move(a0, elements);
4021 } else {
4022 __ Move(a0, elements);
4023 __ Move(a1, name);
4024 }
4025 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
4026 __ CallStub(&stub);
4027 __ mov(scratch2, a2);
4028 __ mov(at, v0);
4029 __ MultiPop(spill_mask);
4030
4031 __ Branch(done, ne, at, Operand(zero_reg));
4032 __ Branch(miss, eq, at, Operand(zero_reg));
4033}
4034
4035
4036void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4037 // This stub overrides SometimesSetsUpAFrame() to return false. That means
4038 // we cannot call anything that could cause a GC from this stub.
4039 // Registers:
4040 // result: NameDictionary to probe
4041 // a1: key
4042 // dictionary: NameDictionary to probe.
4043 // index: will hold an index of entry if lookup is successful.
4044 // might alias with result_.
4045 // Returns:
4046 // result_ is zero if lookup failed, non zero otherwise.
4047
4048 Register result = v0;
4049 Register dictionary = a0;
4050 Register key = a1;
4051 Register index = a2;
4052 Register mask = a3;
4053 Register hash = a4;
4054 Register undefined = a5;
4055 Register entry_key = a6;
4056
4057 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4058
4059 __ ld(mask, FieldMemOperand(dictionary, kCapacityOffset));
4060 __ SmiUntag(mask);
4061 __ Dsubu(mask, mask, Operand(1));
4062
4063 __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
4064
4065 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
4066
4067 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4068 // Compute the masked index: (hash + i + i * i) & mask.
4069 // Capacity is smi 2^n.
4070 if (i > 0) {
4071 // Add the probe offset (i + i * i) left shifted to avoid right shifting
4072 // the hash in a separate instruction. The value hash + i + i * i is right
4073 // shifted in the following and instruction.
4074 DCHECK(NameDictionary::GetProbeOffset(i) <
4075 1 << (32 - Name::kHashFieldOffset));
4076 __ Daddu(index, hash, Operand(
4077 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4078 } else {
4079 __ mov(index, hash);
4080 }
4081 __ dsrl(index, index, Name::kHashShift);
4082 __ And(index, mask, index);
4083
4084 // Scale the index by multiplying by the entry size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004085 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004086 // index *= 3.
4087 __ mov(at, index);
4088 __ dsll(index, index, 1);
4089 __ Daddu(index, index, at);
4090
4091
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004092 STATIC_ASSERT(kSmiTagSize == 1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004093 __ dsll(index, index, kPointerSizeLog2);
4094 __ Daddu(index, index, dictionary);
4095 __ ld(entry_key, FieldMemOperand(index, kElementsStartOffset));
4096
4097 // Having undefined at this place means the name is not contained.
4098 __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
4099
4100 // Stop if found the property.
4101 __ Branch(&in_dictionary, eq, entry_key, Operand(key));
4102
4103 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4104 // Check if the entry name is not a unique name.
4105 __ ld(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
4106 __ lbu(entry_key,
4107 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
4108 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
4109 }
4110 }
4111
4112 __ bind(&maybe_in_dictionary);
4113 // If we are doing negative lookup then probing failure should be
4114 // treated as a lookup success. For positive lookup probing failure
4115 // should be treated as lookup failure.
4116 if (mode() == POSITIVE_LOOKUP) {
4117 __ Ret(USE_DELAY_SLOT);
4118 __ mov(result, zero_reg);
4119 }
4120
4121 __ bind(&in_dictionary);
4122 __ Ret(USE_DELAY_SLOT);
4123 __ li(result, 1);
4124
4125 __ bind(&not_in_dictionary);
4126 __ Ret(USE_DELAY_SLOT);
4127 __ mov(result, zero_reg);
4128}
4129
4130
4131void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
4132 Isolate* isolate) {
4133 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
4134 stub1.GetCode();
4135 // Hydrogen code stubs need stub2 at snapshot time.
4136 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4137 stub2.GetCode();
4138}
4139
4140
4141// Takes the input in 3 registers: address_ value_ and object_. A pointer to
4142// the value has just been written into the object, now this stub makes sure
4143// we keep the GC informed. The word in the object where the value has been
4144// written is in the address register.
4145void RecordWriteStub::Generate(MacroAssembler* masm) {
4146 Label skip_to_incremental_noncompacting;
4147 Label skip_to_incremental_compacting;
4148
4149 // The first two branch+nop instructions are generated with labels so as to
4150 // get the offset fixed up correctly by the bind(Label*) call. We patch it
4151 // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
4152 // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
4153 // incremental heap marking.
4154 // See RecordWriteStub::Patch for details.
4155 __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
4156 __ nop();
4157 __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
4158 __ nop();
4159
4160 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4161 __ RememberedSetHelper(object(),
4162 address(),
4163 value(),
4164 save_fp_regs_mode(),
4165 MacroAssembler::kReturnAtEnd);
4166 }
4167 __ Ret();
4168
4169 __ bind(&skip_to_incremental_noncompacting);
4170 GenerateIncremental(masm, INCREMENTAL);
4171
4172 __ bind(&skip_to_incremental_compacting);
4173 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4174
4175 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4176 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4177
4178 PatchBranchIntoNop(masm, 0);
4179 PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
4180}
4181
4182
4183void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4184 regs_.Save(masm);
4185
4186 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4187 Label dont_need_remembered_set;
4188
4189 __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
4190 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
4191 regs_.scratch0(),
4192 &dont_need_remembered_set);
4193
4194 __ CheckPageFlag(regs_.object(),
4195 regs_.scratch0(),
4196 1 << MemoryChunk::SCAN_ON_SCAVENGE,
4197 ne,
4198 &dont_need_remembered_set);
4199
4200 // First notify the incremental marker if necessary, then update the
4201 // remembered set.
4202 CheckNeedsToInformIncrementalMarker(
4203 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
4204 InformIncrementalMarker(masm);
4205 regs_.Restore(masm);
4206 __ RememberedSetHelper(object(),
4207 address(),
4208 value(),
4209 save_fp_regs_mode(),
4210 MacroAssembler::kReturnAtEnd);
4211
4212 __ bind(&dont_need_remembered_set);
4213 }
4214
4215 CheckNeedsToInformIncrementalMarker(
4216 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4217 InformIncrementalMarker(masm);
4218 regs_.Restore(masm);
4219 __ Ret();
4220}
4221
4222
4223void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4224 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4225 int argument_count = 3;
4226 __ PrepareCallCFunction(argument_count, regs_.scratch0());
4227 Register address =
4228 a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
4229 DCHECK(!address.is(regs_.object()));
4230 DCHECK(!address.is(a0));
4231 __ Move(address, regs_.address());
4232 __ Move(a0, regs_.object());
4233 __ Move(a1, address);
4234 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
4235
4236 AllowExternalCallThatCantCauseGC scope(masm);
4237 __ CallCFunction(
4238 ExternalReference::incremental_marking_record_write_function(isolate()),
4239 argument_count);
4240 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4241}
4242
4243
4244void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4245 MacroAssembler* masm,
4246 OnNoNeedToInformIncrementalMarker on_no_need,
4247 Mode mode) {
4248 Label on_black;
4249 Label need_incremental;
4250 Label need_incremental_pop_scratch;
4251
4252 __ And(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
4253 __ ld(regs_.scratch1(),
4254 MemOperand(regs_.scratch0(),
4255 MemoryChunk::kWriteBarrierCounterOffset));
4256 __ Dsubu(regs_.scratch1(), regs_.scratch1(), Operand(1));
4257 __ sd(regs_.scratch1(),
4258 MemOperand(regs_.scratch0(),
4259 MemoryChunk::kWriteBarrierCounterOffset));
4260 __ Branch(&need_incremental, lt, regs_.scratch1(), Operand(zero_reg));
4261
4262 // Let's look at the color of the object: If it is not black we don't have
4263 // to inform the incremental marker.
4264 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
4265
4266 regs_.Restore(masm);
4267 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4268 __ RememberedSetHelper(object(),
4269 address(),
4270 value(),
4271 save_fp_regs_mode(),
4272 MacroAssembler::kReturnAtEnd);
4273 } else {
4274 __ Ret();
4275 }
4276
4277 __ bind(&on_black);
4278
4279 // Get the value from the slot.
4280 __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
4281
4282 if (mode == INCREMENTAL_COMPACTION) {
4283 Label ensure_not_white;
4284
4285 __ CheckPageFlag(regs_.scratch0(), // Contains value.
4286 regs_.scratch1(), // Scratch.
4287 MemoryChunk::kEvacuationCandidateMask,
4288 eq,
4289 &ensure_not_white);
4290
4291 __ CheckPageFlag(regs_.object(),
4292 regs_.scratch1(), // Scratch.
4293 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4294 eq,
4295 &need_incremental);
4296
4297 __ bind(&ensure_not_white);
4298 }
4299
4300 // We need extra registers for this, so we push the object and the address
4301 // register temporarily.
4302 __ Push(regs_.object(), regs_.address());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004303 __ JumpIfWhite(regs_.scratch0(), // The value.
4304 regs_.scratch1(), // Scratch.
4305 regs_.object(), // Scratch.
4306 regs_.address(), // Scratch.
4307 &need_incremental_pop_scratch);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004308 __ Pop(regs_.object(), regs_.address());
4309
4310 regs_.Restore(masm);
4311 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4312 __ RememberedSetHelper(object(),
4313 address(),
4314 value(),
4315 save_fp_regs_mode(),
4316 MacroAssembler::kReturnAtEnd);
4317 } else {
4318 __ Ret();
4319 }
4320
4321 __ bind(&need_incremental_pop_scratch);
4322 __ Pop(regs_.object(), regs_.address());
4323
4324 __ bind(&need_incremental);
4325
4326 // Fall through when we need to inform the incremental marker.
4327}
4328
4329
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004330void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4331 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4332 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4333 int parameter_count_offset =
4334 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4335 __ ld(a1, MemOperand(fp, parameter_count_offset));
4336 if (function_mode() == JS_FUNCTION_STUB_MODE) {
4337 __ Daddu(a1, a1, Operand(1));
4338 }
4339 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4340 __ dsll(a1, a1, kPointerSizeLog2);
4341 __ Ret(USE_DELAY_SLOT);
4342 __ Daddu(sp, sp, a1);
4343}
4344
4345
4346void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004347 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
4348 LoadICStub stub(isolate(), state());
4349 stub.GenerateForTrampoline(masm);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004350}
4351
4352
4353void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004354 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
4355 KeyedLoadICStub stub(isolate(), state());
4356 stub.GenerateForTrampoline(masm);
4357}
4358
4359
4360void CallICTrampolineStub::Generate(MacroAssembler* masm) {
4361 __ EmitLoadTypeFeedbackVector(a2);
4362 CallICStub stub(isolate(), state());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004363 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4364}
4365
4366
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004367void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
4368
4369
4370void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4371 GenerateImpl(masm, true);
4372}
4373
4374
4375static void HandleArrayCases(MacroAssembler* masm, Register feedback,
4376 Register receiver_map, Register scratch1,
4377 Register scratch2, bool is_polymorphic,
4378 Label* miss) {
4379 // feedback initially contains the feedback array
4380 Label next_loop, prepare_next;
4381 Label start_polymorphic;
4382
4383 Register cached_map = scratch1;
4384
4385 __ ld(cached_map,
4386 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4387 __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4388 __ Branch(&start_polymorphic, ne, receiver_map, Operand(cached_map));
4389 // found, now call handler.
4390 Register handler = feedback;
4391 __ ld(handler, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4392 __ Daddu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
4393 __ Jump(t9);
4394
4395 Register length = scratch2;
4396 __ bind(&start_polymorphic);
4397 __ ld(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
4398 if (!is_polymorphic) {
4399 // If the IC could be monomorphic we have to make sure we don't go past the
4400 // end of the feedback array.
4401 __ Branch(miss, eq, length, Operand(Smi::FromInt(2)));
4402 }
4403
4404 Register too_far = length;
4405 Register pointer_reg = feedback;
4406
4407 // +-----+------+------+-----+-----+ ... ----+
4408 // | map | len | wm0 | h0 | wm1 | hN |
4409 // +-----+------+------+-----+-----+ ... ----+
4410 // 0 1 2 len-1
4411 // ^ ^
4412 // | |
4413 // pointer_reg too_far
4414 // aka feedback scratch2
4415 // also need receiver_map
4416 // use cached_map (scratch1) to look in the weak map values.
4417 __ SmiScale(too_far, length, kPointerSizeLog2);
4418 __ Daddu(too_far, feedback, Operand(too_far));
4419 __ Daddu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4420 __ Daddu(pointer_reg, feedback,
4421 Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag));
4422
4423 __ bind(&next_loop);
4424 __ ld(cached_map, MemOperand(pointer_reg));
4425 __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4426 __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map));
4427 __ ld(handler, MemOperand(pointer_reg, kPointerSize));
4428 __ Daddu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
4429 __ Jump(t9);
4430
4431 __ bind(&prepare_next);
4432 __ Daddu(pointer_reg, pointer_reg, Operand(kPointerSize * 2));
4433 __ Branch(&next_loop, lt, pointer_reg, Operand(too_far));
4434
4435 // We exhausted our array of map handler pairs.
4436 __ Branch(miss);
4437}
4438
4439
4440static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
4441 Register receiver_map, Register feedback,
4442 Register vector, Register slot,
4443 Register scratch, Label* compare_map,
4444 Label* load_smi_map, Label* try_array) {
4445 __ JumpIfSmi(receiver, load_smi_map);
4446 __ ld(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
4447 __ bind(compare_map);
4448 Register cached_map = scratch;
4449 // Move the weak map into the weak_cell register.
4450 __ ld(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
4451 __ Branch(try_array, ne, cached_map, Operand(receiver_map));
4452 Register handler = feedback;
4453 __ SmiScale(handler, slot, kPointerSizeLog2);
4454 __ Daddu(handler, vector, Operand(handler));
4455 __ ld(handler,
4456 FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize));
4457 __ Daddu(t9, handler, Code::kHeaderSize - kHeapObjectTag);
4458 __ Jump(t9);
4459}
4460
4461
4462void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4463 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // a1
4464 Register name = LoadWithVectorDescriptor::NameRegister(); // a2
4465 Register vector = LoadWithVectorDescriptor::VectorRegister(); // a3
4466 Register slot = LoadWithVectorDescriptor::SlotRegister(); // a0
4467 Register feedback = a4;
4468 Register receiver_map = a5;
4469 Register scratch1 = a6;
4470
4471 __ SmiScale(feedback, slot, kPointerSizeLog2);
4472 __ Daddu(feedback, vector, Operand(feedback));
4473 __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4474
4475 // Try to quickly handle the monomorphic case without knowing for sure
4476 // if we have a weak cell in feedback. We do know it's safe to look
4477 // at WeakCell::kValueOffset.
4478 Label try_array, load_smi_map, compare_map;
4479 Label not_array, miss;
4480 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4481 scratch1, &compare_map, &load_smi_map, &try_array);
4482
4483 // Is it a fixed array?
4484 __ bind(&try_array);
4485 __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4486 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
4487 __ Branch(&not_array, ne, scratch1, Operand(at));
4488 HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, true, &miss);
4489
4490 __ bind(&not_array);
4491 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
4492 __ Branch(&miss, ne, feedback, Operand(at));
4493 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4494 Code::ComputeHandlerFlags(Code::LOAD_IC));
4495 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
4496 receiver, name, feedback,
4497 receiver_map, scratch1, a7);
4498
4499 __ bind(&miss);
4500 LoadIC::GenerateMiss(masm);
4501
4502 __ bind(&load_smi_map);
4503 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4504 __ Branch(&compare_map);
4505}
4506
4507
4508void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4509 GenerateImpl(masm, false);
4510}
4511
4512
4513void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4514 GenerateImpl(masm, true);
4515}
4516
4517
4518void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4519 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // a1
4520 Register key = LoadWithVectorDescriptor::NameRegister(); // a2
4521 Register vector = LoadWithVectorDescriptor::VectorRegister(); // a3
4522 Register slot = LoadWithVectorDescriptor::SlotRegister(); // a0
4523 Register feedback = a4;
4524 Register receiver_map = a5;
4525 Register scratch1 = a6;
4526
4527 __ SmiScale(feedback, slot, kPointerSizeLog2);
4528 __ Daddu(feedback, vector, Operand(feedback));
4529 __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4530
4531 // Try to quickly handle the monomorphic case without knowing for sure
4532 // if we have a weak cell in feedback. We do know it's safe to look
4533 // at WeakCell::kValueOffset.
4534 Label try_array, load_smi_map, compare_map;
4535 Label not_array, miss;
4536 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4537 scratch1, &compare_map, &load_smi_map, &try_array);
4538
4539 __ bind(&try_array);
4540 // Is it a fixed array?
4541 __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4542 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
4543 __ Branch(&not_array, ne, scratch1, Operand(at));
4544 // We have a polymorphic element handler.
4545 __ JumpIfNotSmi(key, &miss);
4546
4547 Label polymorphic, try_poly_name;
4548 __ bind(&polymorphic);
4549 HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, true, &miss);
4550
4551 __ bind(&not_array);
4552 // Is it generic?
4553 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
4554 __ Branch(&try_poly_name, ne, feedback, Operand(at));
4555 Handle<Code> megamorphic_stub =
4556 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4557 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4558
4559 __ bind(&try_poly_name);
4560 // We might have a name in feedback, and a fixed array in the next slot.
4561 __ Branch(&miss, ne, key, Operand(feedback));
4562 // If the name comparison succeeded, we know we have a fixed array with
4563 // at least one map/handler pair.
4564 __ SmiScale(feedback, slot, kPointerSizeLog2);
4565 __ Daddu(feedback, vector, Operand(feedback));
4566 __ ld(feedback,
4567 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4568 HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, false, &miss);
4569
4570 __ bind(&miss);
4571 KeyedLoadIC::GenerateMiss(masm);
4572
4573 __ bind(&load_smi_map);
4574 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4575 __ Branch(&compare_map);
4576}
4577
4578
4579void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4580 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
4581 VectorStoreICStub stub(isolate(), state());
4582 stub.GenerateForTrampoline(masm);
4583}
4584
4585
4586void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4587 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
4588 VectorKeyedStoreICStub stub(isolate(), state());
4589 stub.GenerateForTrampoline(masm);
4590}
4591
4592
4593void VectorStoreICStub::Generate(MacroAssembler* masm) {
4594 GenerateImpl(masm, false);
4595}
4596
4597
4598void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4599 GenerateImpl(masm, true);
4600}
4601
4602
4603void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4604 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // a1
4605 Register key = VectorStoreICDescriptor::NameRegister(); // a2
4606 Register vector = VectorStoreICDescriptor::VectorRegister(); // a3
4607 Register slot = VectorStoreICDescriptor::SlotRegister(); // a4
4608 DCHECK(VectorStoreICDescriptor::ValueRegister().is(a0)); // a0
4609 Register feedback = a5;
4610 Register receiver_map = a6;
4611 Register scratch1 = a7;
4612
4613 __ SmiScale(scratch1, slot, kPointerSizeLog2);
4614 __ Daddu(feedback, vector, Operand(scratch1));
4615 __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4616
4617 // Try to quickly handle the monomorphic case without knowing for sure
4618 // if we have a weak cell in feedback. We do know it's safe to look
4619 // at WeakCell::kValueOffset.
4620 Label try_array, load_smi_map, compare_map;
4621 Label not_array, miss;
4622 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4623 scratch1, &compare_map, &load_smi_map, &try_array);
4624
4625 // Is it a fixed array?
4626 __ bind(&try_array);
4627 __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4628 __ Branch(&not_array, ne, scratch1, Heap::kFixedArrayMapRootIndex);
4629
4630 Register scratch2 = t0;
4631 HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, true,
4632 &miss);
4633
4634 __ bind(&not_array);
4635 __ Branch(&miss, ne, feedback, Heap::kmegamorphic_symbolRootIndex);
4636 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4637 Code::ComputeHandlerFlags(Code::STORE_IC));
4638 masm->isolate()->stub_cache()->GenerateProbe(
4639 masm, Code::STORE_IC, code_flags, receiver, key, feedback, receiver_map,
4640 scratch1, scratch2);
4641
4642 __ bind(&miss);
4643 StoreIC::GenerateMiss(masm);
4644
4645 __ bind(&load_smi_map);
4646 __ Branch(USE_DELAY_SLOT, &compare_map);
4647 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); // In delay slot.
4648}
4649
4650
4651void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4652 GenerateImpl(masm, false);
4653}
4654
4655
4656void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4657 GenerateImpl(masm, true);
4658}
4659
4660
4661static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback,
4662 Register receiver_map, Register scratch1,
4663 Register scratch2, Label* miss) {
4664 // feedback initially contains the feedback array
4665 Label next_loop, prepare_next;
4666 Label start_polymorphic;
4667 Label transition_call;
4668
4669 Register cached_map = scratch1;
4670 Register too_far = scratch2;
4671 Register pointer_reg = feedback;
4672
4673 __ ld(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset));
4674
4675 // +-----+------+------+-----+-----+-----+ ... ----+
4676 // | map | len | wm0 | wt0 | h0 | wm1 | hN |
4677 // +-----+------+------+-----+-----+ ----+ ... ----+
4678 // 0 1 2 len-1
4679 // ^ ^
4680 // | |
4681 // pointer_reg too_far
4682 // aka feedback scratch2
4683 // also need receiver_map
4684 // use cached_map (scratch1) to look in the weak map values.
4685 __ SmiScale(too_far, too_far, kPointerSizeLog2);
4686 __ Daddu(too_far, feedback, Operand(too_far));
4687 __ Daddu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4688 __ Daddu(pointer_reg, feedback,
4689 Operand(FixedArray::OffsetOfElementAt(0) - kHeapObjectTag));
4690
4691 __ bind(&next_loop);
4692 __ ld(cached_map, MemOperand(pointer_reg));
4693 __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4694 __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map));
4695 // Is it a transitioning store?
4696 __ ld(too_far, MemOperand(pointer_reg, kPointerSize));
4697 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4698 __ Branch(&transition_call, ne, too_far, Operand(at));
4699
4700 __ ld(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2));
4701 __ Daddu(t9, pointer_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
4702 __ Jump(t9);
4703
4704 __ bind(&transition_call);
4705 __ ld(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset));
4706 __ JumpIfSmi(too_far, miss);
4707
4708 __ ld(receiver_map, MemOperand(pointer_reg, kPointerSize * 2));
4709 // Load the map into the correct register.
4710 DCHECK(feedback.is(VectorStoreTransitionDescriptor::MapRegister()));
4711 __ Move(feedback, too_far);
4712 __ Daddu(t9, receiver_map, Operand(Code::kHeaderSize - kHeapObjectTag));
4713 __ Jump(t9);
4714
4715 __ bind(&prepare_next);
4716 __ Daddu(pointer_reg, pointer_reg, Operand(kPointerSize * 3));
4717 __ Branch(&next_loop, lt, pointer_reg, Operand(too_far));
4718
4719 // We exhausted our array of map handler pairs.
4720 __ Branch(miss);
4721}
4722
4723
4724void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4725 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // a1
4726 Register key = VectorStoreICDescriptor::NameRegister(); // a2
4727 Register vector = VectorStoreICDescriptor::VectorRegister(); // a3
4728 Register slot = VectorStoreICDescriptor::SlotRegister(); // a4
4729 DCHECK(VectorStoreICDescriptor::ValueRegister().is(a0)); // a0
4730 Register feedback = a5;
4731 Register receiver_map = a6;
4732 Register scratch1 = a7;
4733
4734 __ SmiScale(scratch1, slot, kPointerSizeLog2);
4735 __ Daddu(feedback, vector, Operand(scratch1));
4736 __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4737
4738 // Try to quickly handle the monomorphic case without knowing for sure
4739 // if we have a weak cell in feedback. We do know it's safe to look
4740 // at WeakCell::kValueOffset.
4741 Label try_array, load_smi_map, compare_map;
4742 Label not_array, miss;
4743 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4744 scratch1, &compare_map, &load_smi_map, &try_array);
4745
4746 __ bind(&try_array);
4747 // Is it a fixed array?
4748 __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4749 __ Branch(&not_array, ne, scratch1, Heap::kFixedArrayMapRootIndex);
4750
4751 // We have a polymorphic element handler.
4752 Label try_poly_name;
4753
4754 Register scratch2 = t0;
4755
4756 HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, scratch2,
4757 &miss);
4758
4759 __ bind(&not_array);
4760 // Is it generic?
4761 __ Branch(&try_poly_name, ne, feedback, Heap::kmegamorphic_symbolRootIndex);
4762 Handle<Code> megamorphic_stub =
4763 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4764 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4765
4766 __ bind(&try_poly_name);
4767 // We might have a name in feedback, and a fixed array in the next slot.
4768 __ Branch(&miss, ne, key, Operand(feedback));
4769 // If the name comparison succeeded, we know we have a fixed array with
4770 // at least one map/handler pair.
4771 __ SmiScale(scratch1, slot, kPointerSizeLog2);
4772 __ Daddu(feedback, vector, Operand(scratch1));
4773 __ ld(feedback,
4774 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4775 HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, false,
4776 &miss);
4777
4778 __ bind(&miss);
4779 KeyedStoreIC::GenerateMiss(masm);
4780
4781 __ bind(&load_smi_map);
4782 __ Branch(USE_DELAY_SLOT, &compare_map);
4783 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); // In delay slot.
4784}
4785
4786
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004787void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4788 if (masm->isolate()->function_entry_hook() != NULL) {
4789 ProfileEntryHookStub stub(masm->isolate());
4790 __ push(ra);
4791 __ CallStub(&stub);
4792 __ pop(ra);
4793 }
4794}
4795
4796
4797void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4798 // The entry hook is a "push ra" instruction, followed by a call.
4799 // Note: on MIPS "push" is 2 instruction
4800 const int32_t kReturnAddressDistanceFromFunctionStart =
4801 Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
4802
4803 // This should contain all kJSCallerSaved registers.
4804 const RegList kSavedRegs =
4805 kJSCallerSaved | // Caller saved registers.
4806 s5.bit(); // Saved stack pointer.
4807
4808 // We also save ra, so the count here is one higher than the mask indicates.
4809 const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
4810
4811 // Save all caller-save registers as this may be called from anywhere.
4812 __ MultiPush(kSavedRegs | ra.bit());
4813
4814 // Compute the function's address for the first argument.
4815 __ Dsubu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
4816
4817 // The caller's return address is above the saved temporaries.
4818 // Grab that for the second argument to the hook.
4819 __ Daddu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
4820
4821 // Align the stack if necessary.
4822 int frame_alignment = masm->ActivationFrameAlignment();
4823 if (frame_alignment > kPointerSize) {
4824 __ mov(s5, sp);
4825 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4826 __ And(sp, sp, Operand(-frame_alignment));
4827 }
4828
4829 __ Dsubu(sp, sp, kCArgsSlotsSize);
4830#if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
4831 int64_t entry_hook =
4832 reinterpret_cast<int64_t>(isolate()->function_entry_hook());
4833 __ li(t9, Operand(entry_hook));
4834#else
4835 // Under the simulator we need to indirect the entry hook through a
4836 // trampoline function at a known address.
4837 // It additionally takes an isolate as a third parameter.
4838 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
4839
4840 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4841 __ li(t9, Operand(ExternalReference(&dispatcher,
4842 ExternalReference::BUILTIN_CALL,
4843 isolate())));
4844#endif
4845 // Call C function through t9 to conform ABI for PIC.
4846 __ Call(t9);
4847
4848 // Restore the stack pointer if needed.
4849 if (frame_alignment > kPointerSize) {
4850 __ mov(sp, s5);
4851 } else {
4852 __ Daddu(sp, sp, kCArgsSlotsSize);
4853 }
4854
4855 // Also pop ra to get Ret(0).
4856 __ MultiPop(kSavedRegs | ra.bit());
4857 __ Ret();
4858}
4859
4860
4861template<class T>
4862static void CreateArrayDispatch(MacroAssembler* masm,
4863 AllocationSiteOverrideMode mode) {
4864 if (mode == DISABLE_ALLOCATION_SITES) {
4865 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4866 __ TailCallStub(&stub);
4867 } else if (mode == DONT_OVERRIDE) {
4868 int last_index = GetSequenceIndexFromFastElementsKind(
4869 TERMINAL_FAST_ELEMENTS_KIND);
4870 for (int i = 0; i <= last_index; ++i) {
4871 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4872 T stub(masm->isolate(), kind);
4873 __ TailCallStub(&stub, eq, a3, Operand(kind));
4874 }
4875
4876 // If we reached this point there is a problem.
4877 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4878 } else {
4879 UNREACHABLE();
4880 }
4881}
4882
4883
4884static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4885 AllocationSiteOverrideMode mode) {
4886 // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4887 // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
4888 // a0 - number of arguments
4889 // a1 - constructor?
4890 // sp[0] - last argument
4891 Label normal_sequence;
4892 if (mode == DONT_OVERRIDE) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004893 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4894 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4895 STATIC_ASSERT(FAST_ELEMENTS == 2);
4896 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4897 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4898 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004899
4900 // is the low bit set? If so, we are holey and that is good.
4901 __ And(at, a3, Operand(1));
4902 __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
4903 }
4904 // look at the first argument
4905 __ ld(a5, MemOperand(sp, 0));
4906 __ Branch(&normal_sequence, eq, a5, Operand(zero_reg));
4907
4908 if (mode == DISABLE_ALLOCATION_SITES) {
4909 ElementsKind initial = GetInitialFastElementsKind();
4910 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4911
4912 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4913 holey_initial,
4914 DISABLE_ALLOCATION_SITES);
4915 __ TailCallStub(&stub_holey);
4916
4917 __ bind(&normal_sequence);
4918 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4919 initial,
4920 DISABLE_ALLOCATION_SITES);
4921 __ TailCallStub(&stub);
4922 } else if (mode == DONT_OVERRIDE) {
4923 // We are going to create a holey array, but our kind is non-holey.
4924 // Fix kind and retry (only if we have an allocation site in the slot).
4925 __ Daddu(a3, a3, Operand(1));
4926
4927 if (FLAG_debug_code) {
4928 __ ld(a5, FieldMemOperand(a2, 0));
4929 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
4930 __ Assert(eq, kExpectedAllocationSite, a5, Operand(at));
4931 }
4932
4933 // Save the resulting elements kind in type info. We can't just store a3
4934 // in the AllocationSite::transition_info field because elements kind is
4935 // restricted to a portion of the field...upper bits need to be left alone.
4936 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4937 __ ld(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4938 __ Daddu(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
4939 __ sd(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4940
4941
4942 __ bind(&normal_sequence);
4943 int last_index = GetSequenceIndexFromFastElementsKind(
4944 TERMINAL_FAST_ELEMENTS_KIND);
4945 for (int i = 0; i <= last_index; ++i) {
4946 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4947 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4948 __ TailCallStub(&stub, eq, a3, Operand(kind));
4949 }
4950
4951 // If we reached this point there is a problem.
4952 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4953 } else {
4954 UNREACHABLE();
4955 }
4956}
4957
4958
4959template<class T>
4960static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4961 int to_index = GetSequenceIndexFromFastElementsKind(
4962 TERMINAL_FAST_ELEMENTS_KIND);
4963 for (int i = 0; i <= to_index; ++i) {
4964 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4965 T stub(isolate, kind);
4966 stub.GetCode();
4967 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4968 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4969 stub1.GetCode();
4970 }
4971 }
4972}
4973
4974
4975void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4976 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4977 isolate);
4978 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4979 isolate);
4980 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4981 isolate);
4982}
4983
4984
4985void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4986 Isolate* isolate) {
4987 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4988 for (int i = 0; i < 2; i++) {
4989 // For internal arrays we only need a few things.
4990 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4991 stubh1.GetCode();
4992 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4993 stubh2.GetCode();
4994 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4995 stubh3.GetCode();
4996 }
4997}
4998
4999
5000void ArrayConstructorStub::GenerateDispatchToArrayStub(
5001 MacroAssembler* masm,
5002 AllocationSiteOverrideMode mode) {
5003 if (argument_count() == ANY) {
5004 Label not_zero_case, not_one_case;
5005 __ And(at, a0, a0);
5006 __ Branch(&not_zero_case, ne, at, Operand(zero_reg));
5007 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5008
5009 __ bind(&not_zero_case);
5010 __ Branch(&not_one_case, gt, a0, Operand(1));
5011 CreateArrayDispatchOneArgument(masm, mode);
5012
5013 __ bind(&not_one_case);
5014 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5015 } else if (argument_count() == NONE) {
5016 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5017 } else if (argument_count() == ONE) {
5018 CreateArrayDispatchOneArgument(masm, mode);
5019 } else if (argument_count() == MORE_THAN_ONE) {
5020 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5021 } else {
5022 UNREACHABLE();
5023 }
5024}
5025
5026
5027void ArrayConstructorStub::Generate(MacroAssembler* masm) {
5028 // ----------- S t a t e -------------
5029 // -- a0 : argc (only if argument_count() == ANY)
5030 // -- a1 : constructor
5031 // -- a2 : AllocationSite or undefined
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005032 // -- a3 : new target
5033 // -- sp[0] : last argument
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005034 // -----------------------------------
5035
5036 if (FLAG_debug_code) {
5037 // The array construct code is only set for the global and natives
5038 // builtin Array functions which always have maps.
5039
5040 // Initial map for the builtin Array function should be a map.
5041 __ ld(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
5042 // Will both indicate a NULL and a Smi.
5043 __ SmiTst(a4, at);
5044 __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
5045 at, Operand(zero_reg));
5046 __ GetObjectType(a4, a4, a5);
5047 __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
5048 a5, Operand(MAP_TYPE));
5049
5050 // We should either have undefined in a2 or a valid AllocationSite
5051 __ AssertUndefinedOrAllocationSite(a2, a4);
5052 }
5053
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005054 // Enter the context of the Array function.
5055 __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
5056
5057 Label subclassing;
5058 __ Branch(&subclassing, ne, a1, Operand(a3));
5059
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005060 Label no_info;
5061 // Get the elements kind and case on that.
5062 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5063 __ Branch(&no_info, eq, a2, Operand(at));
5064
5065 __ ld(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
5066 __ SmiUntag(a3);
5067 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
5068 __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
5069 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
5070
5071 __ bind(&no_info);
5072 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005073
5074 // Subclassing.
5075 __ bind(&subclassing);
5076 switch (argument_count()) {
5077 case ANY:
5078 case MORE_THAN_ONE:
5079 __ dsll(at, a0, kPointerSizeLog2);
5080 __ Daddu(at, sp, at);
5081 __ sd(a1, MemOperand(at));
5082 __ li(at, Operand(3));
5083 __ Daddu(a0, a0, at);
5084 break;
5085 case NONE:
5086 __ sd(a1, MemOperand(sp, 0 * kPointerSize));
5087 __ li(a0, Operand(3));
5088 break;
5089 case ONE:
5090 __ sd(a1, MemOperand(sp, 1 * kPointerSize));
5091 __ li(a0, Operand(4));
5092 break;
5093 }
5094 __ Push(a3, a2);
5095 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005096}
5097
5098
5099void InternalArrayConstructorStub::GenerateCase(
5100 MacroAssembler* masm, ElementsKind kind) {
5101
5102 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
5103 __ TailCallStub(&stub0, lo, a0, Operand(1));
5104
5105 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
5106 __ TailCallStub(&stubN, hi, a0, Operand(1));
5107
5108 if (IsFastPackedElementsKind(kind)) {
5109 // We might need to create a holey array
5110 // look at the first argument.
5111 __ ld(at, MemOperand(sp, 0));
5112
5113 InternalArraySingleArgumentConstructorStub
5114 stub1_holey(isolate(), GetHoleyElementsKind(kind));
5115 __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
5116 }
5117
5118 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
5119 __ TailCallStub(&stub1);
5120}
5121
5122
5123void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
5124 // ----------- S t a t e -------------
5125 // -- a0 : argc
5126 // -- a1 : constructor
5127 // -- sp[0] : return address
5128 // -- sp[4] : last argument
5129 // -----------------------------------
5130
5131 if (FLAG_debug_code) {
5132 // The array construct code is only set for the global and natives
5133 // builtin Array functions which always have maps.
5134
5135 // Initial map for the builtin Array function should be a map.
5136 __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
5137 // Will both indicate a NULL and a Smi.
5138 __ SmiTst(a3, at);
5139 __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
5140 at, Operand(zero_reg));
5141 __ GetObjectType(a3, a3, a4);
5142 __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
5143 a4, Operand(MAP_TYPE));
5144 }
5145
5146 // Figure out the right elements kind.
5147 __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
5148
5149 // Load the map's "bit field 2" into a3. We only need the first byte,
5150 // but the following bit field extraction takes care of that anyway.
5151 __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
5152 // Retrieve elements_kind from bit field 2.
5153 __ DecodeField<Map::ElementsKindBits>(a3);
5154
5155 if (FLAG_debug_code) {
5156 Label done;
5157 __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
5158 __ Assert(
5159 eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
5160 a3, Operand(FAST_HOLEY_ELEMENTS));
5161 __ bind(&done);
5162 }
5163
5164 Label fast_elements_case;
5165 __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
5166 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
5167
5168 __ bind(&fast_elements_case);
5169 GenerateCase(masm, FAST_ELEMENTS);
5170}
5171
5172
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005173void LoadGlobalViaContextStub::Generate(MacroAssembler* masm) {
5174 Register context_reg = cp;
5175 Register slot_reg = a2;
5176 Register result_reg = v0;
5177 Label slow_case;
5178
5179 // Go up context chain to the script context.
5180 for (int i = 0; i < depth(); ++i) {
5181 __ ld(result_reg, ContextMemOperand(context_reg, Context::PREVIOUS_INDEX));
5182 context_reg = result_reg;
5183 }
5184
5185 // Load the PropertyCell value at the specified slot.
5186 __ dsll(at, slot_reg, kPointerSizeLog2);
5187 __ Daddu(at, at, Operand(context_reg));
5188 __ ld(result_reg, ContextMemOperand(at, 0));
5189 __ ld(result_reg, FieldMemOperand(result_reg, PropertyCell::kValueOffset));
5190
5191 // Check that value is not the_hole.
5192 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
5193 __ Branch(&slow_case, eq, result_reg, Operand(at));
5194 __ Ret();
5195
5196 // Fallback to the runtime.
5197 __ bind(&slow_case);
5198 __ SmiTag(slot_reg);
5199 __ Push(slot_reg);
5200 __ TailCallRuntime(Runtime::kLoadGlobalViaContext);
5201}
5202
5203
5204void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
5205 Register context_reg = cp;
5206 Register slot_reg = a2;
5207 Register value_reg = a0;
5208 Register cell_reg = a4;
5209 Register cell_value_reg = a5;
5210 Register cell_details_reg = a6;
5211 Label fast_heapobject_case, fast_smi_case, slow_case;
5212
5213 if (FLAG_debug_code) {
5214 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
5215 __ Check(ne, kUnexpectedValue, value_reg, Operand(at));
5216 }
5217
5218 // Go up context chain to the script context.
5219 for (int i = 0; i < depth(); ++i) {
5220 __ ld(cell_reg, ContextMemOperand(context_reg, Context::PREVIOUS_INDEX));
5221 context_reg = cell_reg;
5222 }
5223
5224 // Load the PropertyCell at the specified slot.
5225 __ dsll(at, slot_reg, kPointerSizeLog2);
5226 __ Daddu(at, at, Operand(context_reg));
5227 __ ld(cell_reg, ContextMemOperand(at, 0));
5228
5229 // Load PropertyDetails for the cell (actually only the cell_type and kind).
5230 __ ld(cell_details_reg,
5231 FieldMemOperand(cell_reg, PropertyCell::kDetailsOffset));
5232 __ SmiUntag(cell_details_reg);
5233 __ And(cell_details_reg, cell_details_reg,
5234 PropertyDetails::PropertyCellTypeField::kMask |
5235 PropertyDetails::KindField::kMask |
5236 PropertyDetails::kAttributesReadOnlyMask);
5237
5238 // Check if PropertyCell holds mutable data.
5239 Label not_mutable_data;
5240 __ Branch(&not_mutable_data, ne, cell_details_reg,
5241 Operand(PropertyDetails::PropertyCellTypeField::encode(
5242 PropertyCellType::kMutable) |
5243 PropertyDetails::KindField::encode(kData)));
5244 __ JumpIfSmi(value_reg, &fast_smi_case);
5245 __ bind(&fast_heapobject_case);
5246 __ sd(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
5247 __ RecordWriteField(cell_reg, PropertyCell::kValueOffset, value_reg,
5248 cell_details_reg, kRAHasNotBeenSaved, kDontSaveFPRegs,
5249 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
5250 // RecordWriteField clobbers the value register, so we need to reload.
5251 __ Ret(USE_DELAY_SLOT);
5252 __ ld(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
5253 __ bind(&not_mutable_data);
5254
5255 // Check if PropertyCell value matches the new value (relevant for Constant,
5256 // ConstantType and Undefined cells).
5257 Label not_same_value;
5258 __ ld(cell_value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
5259 __ Branch(&not_same_value, ne, value_reg, Operand(cell_value_reg));
5260 // Make sure the PropertyCell is not marked READ_ONLY.
5261 __ And(at, cell_details_reg, PropertyDetails::kAttributesReadOnlyMask);
5262 __ Branch(&slow_case, ne, at, Operand(zero_reg));
5263 if (FLAG_debug_code) {
5264 Label done;
5265 // This can only be true for Constant, ConstantType and Undefined cells,
5266 // because we never store the_hole via this stub.
5267 __ Branch(&done, eq, cell_details_reg,
5268 Operand(PropertyDetails::PropertyCellTypeField::encode(
5269 PropertyCellType::kConstant) |
5270 PropertyDetails::KindField::encode(kData)));
5271 __ Branch(&done, eq, cell_details_reg,
5272 Operand(PropertyDetails::PropertyCellTypeField::encode(
5273 PropertyCellType::kConstantType) |
5274 PropertyDetails::KindField::encode(kData)));
5275 __ Check(eq, kUnexpectedValue, cell_details_reg,
5276 Operand(PropertyDetails::PropertyCellTypeField::encode(
5277 PropertyCellType::kUndefined) |
5278 PropertyDetails::KindField::encode(kData)));
5279 __ bind(&done);
5280 }
5281 __ Ret();
5282 __ bind(&not_same_value);
5283
5284 // Check if PropertyCell contains data with constant type (and is not
5285 // READ_ONLY).
5286 __ Branch(&slow_case, ne, cell_details_reg,
5287 Operand(PropertyDetails::PropertyCellTypeField::encode(
5288 PropertyCellType::kConstantType) |
5289 PropertyDetails::KindField::encode(kData)));
5290
5291 // Now either both old and new values must be SMIs or both must be heap
5292 // objects with same map.
5293 Label value_is_heap_object;
5294 __ JumpIfNotSmi(value_reg, &value_is_heap_object);
5295 __ JumpIfNotSmi(cell_value_reg, &slow_case);
5296 // Old and new values are SMIs, no need for a write barrier here.
5297 __ bind(&fast_smi_case);
5298 __ Ret(USE_DELAY_SLOT);
5299 __ sd(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
5300 __ bind(&value_is_heap_object);
5301 __ JumpIfSmi(cell_value_reg, &slow_case);
5302 Register cell_value_map_reg = cell_value_reg;
5303 __ ld(cell_value_map_reg,
5304 FieldMemOperand(cell_value_reg, HeapObject::kMapOffset));
5305 __ Branch(&fast_heapobject_case, eq, cell_value_map_reg,
5306 FieldMemOperand(value_reg, HeapObject::kMapOffset));
5307
5308 // Fallback to the runtime.
5309 __ bind(&slow_case);
5310 __ SmiTag(slot_reg);
5311 __ Push(slot_reg, value_reg);
5312 __ TailCallRuntime(is_strict(language_mode())
5313 ? Runtime::kStoreGlobalViaContext_Strict
5314 : Runtime::kStoreGlobalViaContext_Sloppy);
5315}
5316
5317
5318static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
5319 int64_t offset = (ref0.address() - ref1.address());
5320 DCHECK(static_cast<int>(offset) == offset);
5321 return static_cast<int>(offset);
5322}
5323
5324
5325// Calls an API function. Allocates HandleScope, extracts returned value
5326// from handle and propagates exceptions. Restores context. stack_space
5327// - space to be unwound on exit (includes the call JS arguments space and
5328// the additional space allocated for the fast call).
5329static void CallApiFunctionAndReturn(
5330 MacroAssembler* masm, Register function_address,
5331 ExternalReference thunk_ref, int stack_space, int32_t stack_space_offset,
5332 MemOperand return_value_operand, MemOperand* context_restore_operand) {
5333 Isolate* isolate = masm->isolate();
5334 ExternalReference next_address =
5335 ExternalReference::handle_scope_next_address(isolate);
5336 const int kNextOffset = 0;
5337 const int kLimitOffset = AddressOffset(
5338 ExternalReference::handle_scope_limit_address(isolate), next_address);
5339 const int kLevelOffset = AddressOffset(
5340 ExternalReference::handle_scope_level_address(isolate), next_address);
5341
5342 DCHECK(function_address.is(a1) || function_address.is(a2));
5343
5344 Label profiler_disabled;
5345 Label end_profiler_check;
5346 __ li(t9, Operand(ExternalReference::is_profiling_address(isolate)));
5347 __ lb(t9, MemOperand(t9, 0));
5348 __ Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
5349
5350 // Additional parameter is the address of the actual callback.
5351 __ li(t9, Operand(thunk_ref));
5352 __ jmp(&end_profiler_check);
5353
5354 __ bind(&profiler_disabled);
5355 __ mov(t9, function_address);
5356 __ bind(&end_profiler_check);
5357
5358 // Allocate HandleScope in callee-save registers.
5359 __ li(s3, Operand(next_address));
5360 __ ld(s0, MemOperand(s3, kNextOffset));
5361 __ ld(s1, MemOperand(s3, kLimitOffset));
5362 __ lw(s2, MemOperand(s3, kLevelOffset));
5363 __ Addu(s2, s2, Operand(1));
5364 __ sw(s2, MemOperand(s3, kLevelOffset));
5365
5366 if (FLAG_log_timer_events) {
5367 FrameScope frame(masm, StackFrame::MANUAL);
5368 __ PushSafepointRegisters();
5369 __ PrepareCallCFunction(1, a0);
5370 __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
5371 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5372 1);
5373 __ PopSafepointRegisters();
5374 }
5375
5376 // Native call returns to the DirectCEntry stub which redirects to the
5377 // return address pushed on stack (could have moved after GC).
5378 // DirectCEntry stub itself is generated early and never moves.
5379 DirectCEntryStub stub(isolate);
5380 stub.GenerateCall(masm, t9);
5381
5382 if (FLAG_log_timer_events) {
5383 FrameScope frame(masm, StackFrame::MANUAL);
5384 __ PushSafepointRegisters();
5385 __ PrepareCallCFunction(1, a0);
5386 __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
5387 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5388 1);
5389 __ PopSafepointRegisters();
5390 }
5391
5392 Label promote_scheduled_exception;
5393 Label delete_allocated_handles;
5394 Label leave_exit_frame;
5395 Label return_value_loaded;
5396
5397 // Load value from ReturnValue.
5398 __ ld(v0, return_value_operand);
5399 __ bind(&return_value_loaded);
5400
5401 // No more valid handles (the result handle was the last one). Restore
5402 // previous handle scope.
5403 __ sd(s0, MemOperand(s3, kNextOffset));
5404 if (__ emit_debug_code()) {
5405 __ lw(a1, MemOperand(s3, kLevelOffset));
5406 __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
5407 }
5408 __ Subu(s2, s2, Operand(1));
5409 __ sw(s2, MemOperand(s3, kLevelOffset));
5410 __ ld(at, MemOperand(s3, kLimitOffset));
5411 __ Branch(&delete_allocated_handles, ne, s1, Operand(at));
5412
5413 // Leave the API exit frame.
5414 __ bind(&leave_exit_frame);
5415
5416 bool restore_context = context_restore_operand != NULL;
5417 if (restore_context) {
5418 __ ld(cp, *context_restore_operand);
5419 }
5420 if (stack_space_offset != kInvalidStackOffset) {
5421 DCHECK(kCArgsSlotsSize == 0);
5422 __ ld(s0, MemOperand(sp, stack_space_offset));
5423 } else {
5424 __ li(s0, Operand(stack_space));
5425 }
5426 __ LeaveExitFrame(false, s0, !restore_context, NO_EMIT_RETURN,
5427 stack_space_offset != kInvalidStackOffset);
5428
5429 // Check if the function scheduled an exception.
5430 __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
5431 __ li(at, Operand(ExternalReference::scheduled_exception_address(isolate)));
5432 __ ld(a5, MemOperand(at));
5433 __ Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
5434
5435 __ Ret();
5436
5437 // Re-throw by promoting a scheduled exception.
5438 __ bind(&promote_scheduled_exception);
5439 __ TailCallRuntime(Runtime::kPromoteScheduledException);
5440
5441 // HandleScope limit has changed. Delete allocated extensions.
5442 __ bind(&delete_allocated_handles);
5443 __ sd(s1, MemOperand(s3, kLimitOffset));
5444 __ mov(s0, v0);
5445 __ mov(a0, v0);
5446 __ PrepareCallCFunction(1, s1);
5447 __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
5448 __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
5449 1);
5450 __ mov(v0, s0);
5451 __ jmp(&leave_exit_frame);
5452}
5453
5454
5455static void CallApiFunctionStubHelper(MacroAssembler* masm,
5456 const ParameterCount& argc,
5457 bool return_first_arg,
5458 bool call_data_undefined) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005459 // ----------- S t a t e -------------
5460 // -- a0 : callee
5461 // -- a4 : call_data
5462 // -- a2 : holder
5463 // -- a1 : api_function_address
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005464 // -- a3 : number of arguments if argc is a register
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005465 // -- cp : context
5466 // --
5467 // -- sp[0] : last argument
5468 // -- ...
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005469 // -- sp[(argc - 1)* 8] : first argument
5470 // -- sp[argc * 8] : receiver
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005471 // -----------------------------------
5472
5473 Register callee = a0;
5474 Register call_data = a4;
5475 Register holder = a2;
5476 Register api_function_address = a1;
5477 Register context = cp;
5478
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005479 typedef FunctionCallbackArguments FCA;
5480
5481 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5482 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5483 STATIC_ASSERT(FCA::kDataIndex == 4);
5484 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5485 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5486 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5487 STATIC_ASSERT(FCA::kHolderIndex == 0);
5488 STATIC_ASSERT(FCA::kArgsLength == 7);
5489
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005490 DCHECK(argc.is_immediate() || a3.is(argc.reg()));
5491
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005492 // Save context, callee and call data.
5493 __ Push(context, callee, call_data);
5494 // Load context from callee.
5495 __ ld(context, FieldMemOperand(callee, JSFunction::kContextOffset));
5496
5497 Register scratch = call_data;
5498 if (!call_data_undefined) {
5499 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
5500 }
5501 // Push return value and default return value.
5502 __ Push(scratch, scratch);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005503 __ li(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005504 // Push isolate and holder.
5505 __ Push(scratch, holder);
5506
5507 // Prepare arguments.
5508 __ mov(scratch, sp);
5509
5510 // Allocate the v8::Arguments structure in the arguments' space since
5511 // it's not controlled by GC.
5512 const int kApiStackSpace = 4;
5513
5514 FrameScope frame_scope(masm, StackFrame::MANUAL);
5515 __ EnterExitFrame(false, kApiStackSpace);
5516
5517 DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
5518 // a0 = FunctionCallbackInfo&
5519 // Arguments is after the return address.
5520 __ Daddu(a0, sp, Operand(1 * kPointerSize));
5521 // FunctionCallbackInfo::implicit_args_
5522 __ sd(scratch, MemOperand(a0, 0 * kPointerSize));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005523 if (argc.is_immediate()) {
5524 // FunctionCallbackInfo::values_
5525 __ Daddu(at, scratch,
5526 Operand((FCA::kArgsLength - 1 + argc.immediate()) * kPointerSize));
5527 __ sd(at, MemOperand(a0, 1 * kPointerSize));
5528 // FunctionCallbackInfo::length_ = argc
5529 // Stored as int field, 32-bit integers within struct on stack always left
5530 // justified by n64 ABI.
5531 __ li(at, Operand(argc.immediate()));
5532 __ sw(at, MemOperand(a0, 2 * kPointerSize));
5533 // FunctionCallbackInfo::is_construct_call_ = 0
5534 __ sw(zero_reg, MemOperand(a0, 2 * kPointerSize + kIntSize));
5535 } else {
5536 // FunctionCallbackInfo::values_
5537 __ dsll(at, argc.reg(), kPointerSizeLog2);
5538 __ Daddu(at, at, scratch);
5539 __ Daddu(at, at, Operand((FCA::kArgsLength - 1) * kPointerSize));
5540 __ sd(at, MemOperand(a0, 1 * kPointerSize));
5541 // FunctionCallbackInfo::length_ = argc
5542 // Stored as int field, 32-bit integers within struct on stack always left
5543 // justified by n64 ABI.
5544 __ sw(argc.reg(), MemOperand(a0, 2 * kPointerSize));
5545 // FunctionCallbackInfo::is_construct_call_
5546 __ Daddu(argc.reg(), argc.reg(), Operand(FCA::kArgsLength + 1));
5547 __ dsll(at, argc.reg(), kPointerSizeLog2);
5548 __ sw(at, MemOperand(a0, 2 * kPointerSize + kIntSize));
5549 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005550
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005551 ExternalReference thunk_ref =
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005552 ExternalReference::invoke_function_callback(masm->isolate());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005553
5554 AllowExternalCallThatCantCauseGC scope(masm);
5555 MemOperand context_restore_operand(
5556 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
5557 // Stores return the first js argument.
5558 int return_value_offset = 0;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005559 if (return_first_arg) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005560 return_value_offset = 2 + FCA::kArgsLength;
5561 } else {
5562 return_value_offset = 2 + FCA::kReturnValueOffset;
5563 }
5564 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005565 int stack_space = 0;
5566 int32_t stack_space_offset = 4 * kPointerSize;
5567 if (argc.is_immediate()) {
5568 stack_space = argc.immediate() + FCA::kArgsLength + 1;
5569 stack_space_offset = kInvalidStackOffset;
5570 }
5571 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
5572 stack_space_offset, return_value_operand,
5573 &context_restore_operand);
5574}
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005575
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005576
5577void CallApiFunctionStub::Generate(MacroAssembler* masm) {
5578 bool call_data_undefined = this->call_data_undefined();
5579 CallApiFunctionStubHelper(masm, ParameterCount(a3), false,
5580 call_data_undefined);
5581}
5582
5583
5584void CallApiAccessorStub::Generate(MacroAssembler* masm) {
5585 bool is_store = this->is_store();
5586 int argc = this->argc();
5587 bool call_data_undefined = this->call_data_undefined();
5588 CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
5589 call_data_undefined);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005590}
5591
5592
5593void CallApiGetterStub::Generate(MacroAssembler* masm) {
5594 // ----------- S t a t e -------------
5595 // -- sp[0] : name
5596 // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object
5597 // -- ...
5598 // -- a2 : api_function_address
5599 // -----------------------------------
5600
5601 Register api_function_address = ApiGetterDescriptor::function_address();
5602 DCHECK(api_function_address.is(a2));
5603
5604 __ mov(a0, sp); // a0 = Handle<Name>
5605 __ Daddu(a1, a0, Operand(1 * kPointerSize)); // a1 = PCA
5606
5607 const int kApiStackSpace = 1;
5608 FrameScope frame_scope(masm, StackFrame::MANUAL);
5609 __ EnterExitFrame(false, kApiStackSpace);
5610
5611 // Create PropertyAccessorInfo instance on the stack above the exit frame with
5612 // a1 (internal::Object** args_) as the data.
5613 __ sd(a1, MemOperand(sp, 1 * kPointerSize));
5614 __ Daddu(a1, sp, Operand(1 * kPointerSize)); // a1 = AccessorInfo&
5615
5616 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
5617
5618 ExternalReference thunk_ref =
5619 ExternalReference::invoke_accessor_getter_callback(isolate());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005620 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5621 kStackUnwindSpace, kInvalidStackOffset,
5622 MemOperand(fp, 6 * kPointerSize), NULL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005623}
5624
5625
5626#undef __
5627
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005628} // namespace internal
5629} // namespace v8
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005630
5631#endif // V8_TARGET_ARCH_MIPS64