blob: 7fa96442f96a3cc7f7f47e3b96c35fa223b061ce [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2011 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <limits.h>
6#include <stdarg.h>
7#include <stdlib.h>
8#include <cmath>
9
Ben Murdochb8a8cc12014-11-26 15:28:44 +000010#if V8_TARGET_ARCH_MIPS64
11
12#include "src/assembler.h"
13#include "src/base/bits.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000014#include "src/codegen.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000015#include "src/disasm.h"
16#include "src/mips64/constants-mips64.h"
17#include "src/mips64/simulator-mips64.h"
18#include "src/ostreams.h"
19
20// Only build the simulator if not compiling for real MIPS hardware.
21#if defined(USE_SIMULATOR)
22
23namespace v8 {
24namespace internal {
25
26// Utils functions.
27bool HaveSameSign(int64_t a, int64_t b) {
28 return ((a ^ b) >= 0);
29}
30
31
32uint32_t get_fcsr_condition_bit(uint32_t cc) {
33 if (cc == 0) {
34 return 23;
35 } else {
36 return 24 + cc;
37 }
38}
39
40
41static int64_t MultiplyHighSigned(int64_t u, int64_t v) {
42 uint64_t u0, v0, w0;
43 int64_t u1, v1, w1, w2, t;
44
45 u0 = u & 0xffffffffL;
46 u1 = u >> 32;
47 v0 = v & 0xffffffffL;
48 v1 = v >> 32;
49
50 w0 = u0 * v0;
51 t = u1 * v0 + (w0 >> 32);
52 w1 = t & 0xffffffffL;
53 w2 = t >> 32;
54 w1 = u0 * v1 + w1;
55
56 return u1 * v1 + w2 + (w1 >> 32);
57}
58
59
60// This macro provides a platform independent use of sscanf. The reason for
61// SScanF not being implemented in a platform independent was through
62// ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time
63// Library does not provide vsscanf.
64#define SScanF sscanf // NOLINT
65
66// The MipsDebugger class is used by the simulator while debugging simulated
67// code.
68class MipsDebugger {
69 public:
70 explicit MipsDebugger(Simulator* sim) : sim_(sim) { }
71 ~MipsDebugger();
72
73 void Stop(Instruction* instr);
74 void Debug();
75 // Print all registers with a nice formatting.
76 void PrintAllRegs();
77 void PrintAllRegsIncludingFPU();
78
79 private:
80 // We set the breakpoint code to 0xfffff to easily recognize it.
81 static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6;
82 static const Instr kNopInstr = 0x0;
83
84 Simulator* sim_;
85
86 int64_t GetRegisterValue(int regnum);
87 int64_t GetFPURegisterValue(int regnum);
88 float GetFPURegisterValueFloat(int regnum);
89 double GetFPURegisterValueDouble(int regnum);
90 bool GetValue(const char* desc, int64_t* value);
91
92 // Set or delete a breakpoint. Returns true if successful.
93 bool SetBreakpoint(Instruction* breakpc);
94 bool DeleteBreakpoint(Instruction* breakpc);
95
96 // Undo and redo all breakpoints. This is needed to bracket disassembly and
97 // execution to skip past breakpoints when run from the debugger.
98 void UndoBreakpoints();
99 void RedoBreakpoints();
100};
101
102
103MipsDebugger::~MipsDebugger() {
104}
105
106
107#ifdef GENERATED_CODE_COVERAGE
108static FILE* coverage_log = NULL;
109
110
111static void InitializeCoverage() {
112 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
113 if (file_name != NULL) {
114 coverage_log = fopen(file_name, "aw+");
115 }
116}
117
118
119void MipsDebugger::Stop(Instruction* instr) {
120 // Get the stop code.
121 uint32_t code = instr->Bits(25, 6);
122 // Retrieve the encoded address, which comes just after this stop.
123 char** msg_address =
124 reinterpret_cast<char**>(sim_->get_pc() + Instr::kInstrSize);
125 char* msg = *msg_address;
126 DCHECK(msg != NULL);
127
128 // Update this stop description.
129 if (!watched_stops_[code].desc) {
130 watched_stops_[code].desc = msg;
131 }
132
133 if (strlen(msg) > 0) {
134 if (coverage_log != NULL) {
135 fprintf(coverage_log, "%s\n", str);
136 fflush(coverage_log);
137 }
138 // Overwrite the instruction and address with nops.
139 instr->SetInstructionBits(kNopInstr);
140 reinterpret_cast<Instr*>(msg_address)->SetInstructionBits(kNopInstr);
141 }
142 // TODO(yuyin): 2 -> 3?
143 sim_->set_pc(sim_->get_pc() + 3 * Instruction::kInstructionSize);
144}
145
146
147#else // GENERATED_CODE_COVERAGE
148
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000149#define UNSUPPORTED() printf("Sim: Unsupported instruction.\n");
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000150
151static void InitializeCoverage() {}
152
153
154void MipsDebugger::Stop(Instruction* instr) {
155 // Get the stop code.
156 uint32_t code = instr->Bits(25, 6);
157 // Retrieve the encoded address, which comes just after this stop.
158 char* msg = *reinterpret_cast<char**>(sim_->get_pc() +
159 Instruction::kInstrSize);
160 // Update this stop description.
161 if (!sim_->watched_stops_[code].desc) {
162 sim_->watched_stops_[code].desc = msg;
163 }
164 PrintF("Simulator hit %s (%u)\n", msg, code);
165 // TODO(yuyin): 2 -> 3?
166 sim_->set_pc(sim_->get_pc() + 3 * Instruction::kInstrSize);
167 Debug();
168}
169#endif // GENERATED_CODE_COVERAGE
170
171
172int64_t MipsDebugger::GetRegisterValue(int regnum) {
173 if (regnum == kNumSimuRegisters) {
174 return sim_->get_pc();
175 } else {
176 return sim_->get_register(regnum);
177 }
178}
179
180
181int64_t MipsDebugger::GetFPURegisterValue(int regnum) {
182 if (regnum == kNumFPURegisters) {
183 return sim_->get_pc();
184 } else {
185 return sim_->get_fpu_register(regnum);
186 }
187}
188
189
190float MipsDebugger::GetFPURegisterValueFloat(int regnum) {
191 if (regnum == kNumFPURegisters) {
192 return sim_->get_pc();
193 } else {
194 return sim_->get_fpu_register_float(regnum);
195 }
196}
197
198
199double MipsDebugger::GetFPURegisterValueDouble(int regnum) {
200 if (regnum == kNumFPURegisters) {
201 return sim_->get_pc();
202 } else {
203 return sim_->get_fpu_register_double(regnum);
204 }
205}
206
207
208bool MipsDebugger::GetValue(const char* desc, int64_t* value) {
209 int regnum = Registers::Number(desc);
210 int fpuregnum = FPURegisters::Number(desc);
211
212 if (regnum != kInvalidRegister) {
213 *value = GetRegisterValue(regnum);
214 return true;
215 } else if (fpuregnum != kInvalidFPURegister) {
216 *value = GetFPURegisterValue(fpuregnum);
217 return true;
218 } else if (strncmp(desc, "0x", 2) == 0) {
219 return SScanF(desc + 2, "%" SCNx64,
220 reinterpret_cast<uint64_t*>(value)) == 1;
221 } else {
222 return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1;
223 }
224 return false;
225}
226
227
228bool MipsDebugger::SetBreakpoint(Instruction* breakpc) {
229 // Check if a breakpoint can be set. If not return without any side-effects.
230 if (sim_->break_pc_ != NULL) {
231 return false;
232 }
233
234 // Set the breakpoint.
235 sim_->break_pc_ = breakpc;
236 sim_->break_instr_ = breakpc->InstructionBits();
237 // Not setting the breakpoint instruction in the code itself. It will be set
238 // when the debugger shell continues.
239 return true;
240}
241
242
243bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) {
244 if (sim_->break_pc_ != NULL) {
245 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
246 }
247
248 sim_->break_pc_ = NULL;
249 sim_->break_instr_ = 0;
250 return true;
251}
252
253
254void MipsDebugger::UndoBreakpoints() {
255 if (sim_->break_pc_ != NULL) {
256 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
257 }
258}
259
260
261void MipsDebugger::RedoBreakpoints() {
262 if (sim_->break_pc_ != NULL) {
263 sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
264 }
265}
266
267
268void MipsDebugger::PrintAllRegs() {
269#define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)
270
271 PrintF("\n");
272 // at, v0, a0.
273 PrintF("%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n",
274 REG_INFO(1), REG_INFO(2), REG_INFO(4));
275 // v1, a1.
276 PrintF("%34s\t%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n",
277 "", REG_INFO(3), REG_INFO(5));
278 // a2.
279 PrintF("%34s\t%34s\t%3s: 0x%016lx %14ld\n", "", "", REG_INFO(6));
280 // a3.
281 PrintF("%34s\t%34s\t%3s: 0x%016lx %14ld\n", "", "", REG_INFO(7));
282 PrintF("\n");
283 // a4-t3, s0-s7
284 for (int i = 0; i < 8; i++) {
285 PrintF("%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n",
286 REG_INFO(8+i), REG_INFO(16+i));
287 }
288 PrintF("\n");
289 // t8, k0, LO.
290 PrintF("%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n",
291 REG_INFO(24), REG_INFO(26), REG_INFO(32));
292 // t9, k1, HI.
293 PrintF("%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n",
294 REG_INFO(25), REG_INFO(27), REG_INFO(33));
295 // sp, fp, gp.
296 PrintF("%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n",
297 REG_INFO(29), REG_INFO(30), REG_INFO(28));
298 // pc.
299 PrintF("%3s: 0x%016lx %14ld\t%3s: 0x%016lx %14ld\n",
300 REG_INFO(31), REG_INFO(34));
301
302#undef REG_INFO
303#undef FPU_REG_INFO
304}
305
306
307void MipsDebugger::PrintAllRegsIncludingFPU() {
308#define FPU_REG_INFO(n) FPURegisters::Name(n), \
309 GetFPURegisterValue(n), \
310 GetFPURegisterValueDouble(n)
311
312 PrintAllRegs();
313
314 PrintF("\n\n");
315 // f0, f1, f2, ... f31.
316 // TODO(plind): consider printing 2 columns for space efficiency.
317 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(0) );
318 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(1) );
319 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(2) );
320 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(3) );
321 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(4) );
322 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(5) );
323 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(6) );
324 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(7) );
325 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(8) );
326 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(9) );
327 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(10));
328 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(11));
329 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(12));
330 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(13));
331 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(14));
332 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(15));
333 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(16));
334 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(17));
335 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(18));
336 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(19));
337 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(20));
338 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(21));
339 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(22));
340 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(23));
341 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(24));
342 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(25));
343 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(26));
344 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(27));
345 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(28));
346 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(29));
347 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(30));
348 PrintF("%3s: 0x%016lx %16.4e\n", FPU_REG_INFO(31));
349
350#undef REG_INFO
351#undef FPU_REG_INFO
352}
353
354
355void MipsDebugger::Debug() {
356 intptr_t last_pc = -1;
357 bool done = false;
358
359#define COMMAND_SIZE 63
360#define ARG_SIZE 255
361
362#define STR(a) #a
363#define XSTR(a) STR(a)
364
365 char cmd[COMMAND_SIZE + 1];
366 char arg1[ARG_SIZE + 1];
367 char arg2[ARG_SIZE + 1];
368 char* argv[3] = { cmd, arg1, arg2 };
369
370 // Make sure to have a proper terminating character if reaching the limit.
371 cmd[COMMAND_SIZE] = 0;
372 arg1[ARG_SIZE] = 0;
373 arg2[ARG_SIZE] = 0;
374
375 // Undo all set breakpoints while running in the debugger shell. This will
376 // make them invisible to all commands.
377 UndoBreakpoints();
378
379 while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) {
380 if (last_pc != sim_->get_pc()) {
381 disasm::NameConverter converter;
382 disasm::Disassembler dasm(converter);
383 // Use a reasonably large buffer.
384 v8::internal::EmbeddedVector<char, 256> buffer;
385 dasm.InstructionDecode(buffer,
386 reinterpret_cast<byte*>(sim_->get_pc()));
387 PrintF(" 0x%016lx %s\n", sim_->get_pc(), buffer.start());
388 last_pc = sim_->get_pc();
389 }
390 char* line = ReadLine("sim> ");
391 if (line == NULL) {
392 break;
393 } else {
394 char* last_input = sim_->last_debugger_input();
395 if (strcmp(line, "\n") == 0 && last_input != NULL) {
396 line = last_input;
397 } else {
398 // Ownership is transferred to sim_;
399 sim_->set_last_debugger_input(line);
400 }
401 // Use sscanf to parse the individual parts of the command line. At the
402 // moment no command expects more than two parameters.
403 int argc = SScanF(line,
404 "%" XSTR(COMMAND_SIZE) "s "
405 "%" XSTR(ARG_SIZE) "s "
406 "%" XSTR(ARG_SIZE) "s",
407 cmd, arg1, arg2);
408 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
409 Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc());
410 if (!(instr->IsTrap()) ||
411 instr->InstructionBits() == rtCallRedirInstr) {
412 sim_->InstructionDecode(
413 reinterpret_cast<Instruction*>(sim_->get_pc()));
414 } else {
415 // Allow si to jump over generated breakpoints.
416 PrintF("/!\\ Jumping over generated breakpoint.\n");
417 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
418 }
419 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
420 // Execute the one instruction we broke at with breakpoints disabled.
421 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
422 // Leave the debugger shell.
423 done = true;
424 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
425 if (argc == 2) {
426 int64_t value;
427 double dvalue;
428 if (strcmp(arg1, "all") == 0) {
429 PrintAllRegs();
430 } else if (strcmp(arg1, "allf") == 0) {
431 PrintAllRegsIncludingFPU();
432 } else {
433 int regnum = Registers::Number(arg1);
434 int fpuregnum = FPURegisters::Number(arg1);
435
436 if (regnum != kInvalidRegister) {
437 value = GetRegisterValue(regnum);
438 PrintF("%s: 0x%08lx %ld \n", arg1, value, value);
439 } else if (fpuregnum != kInvalidFPURegister) {
440 value = GetFPURegisterValue(fpuregnum);
441 dvalue = GetFPURegisterValueDouble(fpuregnum);
442 PrintF("%3s: 0x%016lx %16.4e\n",
443 FPURegisters::Name(fpuregnum), value, dvalue);
444 } else {
445 PrintF("%s unrecognized\n", arg1);
446 }
447 }
448 } else {
449 if (argc == 3) {
450 if (strcmp(arg2, "single") == 0) {
451 int64_t value;
452 float fvalue;
453 int fpuregnum = FPURegisters::Number(arg1);
454
455 if (fpuregnum != kInvalidFPURegister) {
456 value = GetFPURegisterValue(fpuregnum);
457 value &= 0xffffffffUL;
458 fvalue = GetFPURegisterValueFloat(fpuregnum);
459 PrintF("%s: 0x%08lx %11.4e\n", arg1, value, fvalue);
460 } else {
461 PrintF("%s unrecognized\n", arg1);
462 }
463 } else {
464 PrintF("print <fpu register> single\n");
465 }
466 } else {
467 PrintF("print <register> or print <fpu register> single\n");
468 }
469 }
470 } else if ((strcmp(cmd, "po") == 0)
471 || (strcmp(cmd, "printobject") == 0)) {
472 if (argc == 2) {
473 int64_t value;
474 OFStream os(stdout);
475 if (GetValue(arg1, &value)) {
476 Object* obj = reinterpret_cast<Object*>(value);
477 os << arg1 << ": \n";
478#ifdef DEBUG
479 obj->Print(os);
480 os << "\n";
481#else
482 os << Brief(obj) << "\n";
483#endif
484 } else {
485 os << arg1 << " unrecognized\n";
486 }
487 } else {
488 PrintF("printobject <value>\n");
489 }
490 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
491 int64_t* cur = NULL;
492 int64_t* end = NULL;
493 int next_arg = 1;
494
495 if (strcmp(cmd, "stack") == 0) {
496 cur = reinterpret_cast<int64_t*>(sim_->get_register(Simulator::sp));
497 } else { // Command "mem".
498 int64_t value;
499 if (!GetValue(arg1, &value)) {
500 PrintF("%s unrecognized\n", arg1);
501 continue;
502 }
503 cur = reinterpret_cast<int64_t*>(value);
504 next_arg++;
505 }
506
507 int64_t words;
508 if (argc == next_arg) {
509 words = 10;
510 } else {
511 if (!GetValue(argv[next_arg], &words)) {
512 words = 10;
513 }
514 }
515 end = cur + words;
516
517 while (cur < end) {
518 PrintF(" 0x%012lx: 0x%016lx %14ld",
519 reinterpret_cast<intptr_t>(cur), *cur, *cur);
520 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
521 int64_t value = *cur;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000522 Heap* current_heap = sim_->isolate_->heap();
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000523 if (((value & 1) == 0) || current_heap->Contains(obj)) {
524 PrintF(" (");
525 if ((value & 1) == 0) {
526 PrintF("smi %d", static_cast<int>(value >> 32));
527 } else {
528 obj->ShortPrint();
529 }
530 PrintF(")");
531 }
532 PrintF("\n");
533 cur++;
534 }
535
536 } else if ((strcmp(cmd, "disasm") == 0) ||
537 (strcmp(cmd, "dpc") == 0) ||
538 (strcmp(cmd, "di") == 0)) {
539 disasm::NameConverter converter;
540 disasm::Disassembler dasm(converter);
541 // Use a reasonably large buffer.
542 v8::internal::EmbeddedVector<char, 256> buffer;
543
544 byte* cur = NULL;
545 byte* end = NULL;
546
547 if (argc == 1) {
548 cur = reinterpret_cast<byte*>(sim_->get_pc());
549 end = cur + (10 * Instruction::kInstrSize);
550 } else if (argc == 2) {
551 int regnum = Registers::Number(arg1);
552 if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) {
553 // The argument is an address or a register name.
554 int64_t value;
555 if (GetValue(arg1, &value)) {
556 cur = reinterpret_cast<byte*>(value);
557 // Disassemble 10 instructions at <arg1>.
558 end = cur + (10 * Instruction::kInstrSize);
559 }
560 } else {
561 // The argument is the number of instructions.
562 int64_t value;
563 if (GetValue(arg1, &value)) {
564 cur = reinterpret_cast<byte*>(sim_->get_pc());
565 // Disassemble <arg1> instructions.
566 end = cur + (value * Instruction::kInstrSize);
567 }
568 }
569 } else {
570 int64_t value1;
571 int64_t value2;
572 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
573 cur = reinterpret_cast<byte*>(value1);
574 end = cur + (value2 * Instruction::kInstrSize);
575 }
576 }
577
578 while (cur < end) {
579 dasm.InstructionDecode(buffer, cur);
580 PrintF(" 0x%08lx %s\n",
581 reinterpret_cast<intptr_t>(cur), buffer.start());
582 cur += Instruction::kInstrSize;
583 }
584 } else if (strcmp(cmd, "gdb") == 0) {
585 PrintF("relinquishing control to gdb\n");
586 v8::base::OS::DebugBreak();
587 PrintF("regaining control from gdb\n");
588 } else if (strcmp(cmd, "break") == 0) {
589 if (argc == 2) {
590 int64_t value;
591 if (GetValue(arg1, &value)) {
592 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
593 PrintF("setting breakpoint failed\n");
594 }
595 } else {
596 PrintF("%s unrecognized\n", arg1);
597 }
598 } else {
599 PrintF("break <address>\n");
600 }
601 } else if (strcmp(cmd, "del") == 0) {
602 if (!DeleteBreakpoint(NULL)) {
603 PrintF("deleting breakpoint failed\n");
604 }
605 } else if (strcmp(cmd, "flags") == 0) {
606 PrintF("No flags on MIPS !\n");
607 } else if (strcmp(cmd, "stop") == 0) {
608 int64_t value;
609 intptr_t stop_pc = sim_->get_pc() -
610 2 * Instruction::kInstrSize;
611 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
612 Instruction* msg_address =
613 reinterpret_cast<Instruction*>(stop_pc +
614 Instruction::kInstrSize);
615 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
616 // Remove the current stop.
617 if (sim_->IsStopInstruction(stop_instr)) {
618 stop_instr->SetInstructionBits(kNopInstr);
619 msg_address->SetInstructionBits(kNopInstr);
620 } else {
621 PrintF("Not at debugger stop.\n");
622 }
623 } else if (argc == 3) {
624 // Print information about all/the specified breakpoint(s).
625 if (strcmp(arg1, "info") == 0) {
626 if (strcmp(arg2, "all") == 0) {
627 PrintF("Stop information:\n");
628 for (uint32_t i = kMaxWatchpointCode + 1;
629 i <= kMaxStopCode;
630 i++) {
631 sim_->PrintStopInfo(i);
632 }
633 } else if (GetValue(arg2, &value)) {
634 sim_->PrintStopInfo(value);
635 } else {
636 PrintF("Unrecognized argument.\n");
637 }
638 } else if (strcmp(arg1, "enable") == 0) {
639 // Enable all/the specified breakpoint(s).
640 if (strcmp(arg2, "all") == 0) {
641 for (uint32_t i = kMaxWatchpointCode + 1;
642 i <= kMaxStopCode;
643 i++) {
644 sim_->EnableStop(i);
645 }
646 } else if (GetValue(arg2, &value)) {
647 sim_->EnableStop(value);
648 } else {
649 PrintF("Unrecognized argument.\n");
650 }
651 } else if (strcmp(arg1, "disable") == 0) {
652 // Disable all/the specified breakpoint(s).
653 if (strcmp(arg2, "all") == 0) {
654 for (uint32_t i = kMaxWatchpointCode + 1;
655 i <= kMaxStopCode;
656 i++) {
657 sim_->DisableStop(i);
658 }
659 } else if (GetValue(arg2, &value)) {
660 sim_->DisableStop(value);
661 } else {
662 PrintF("Unrecognized argument.\n");
663 }
664 }
665 } else {
666 PrintF("Wrong usage. Use help command for more information.\n");
667 }
668 } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) {
669 // Print registers and disassemble.
670 PrintAllRegs();
671 PrintF("\n");
672
673 disasm::NameConverter converter;
674 disasm::Disassembler dasm(converter);
675 // Use a reasonably large buffer.
676 v8::internal::EmbeddedVector<char, 256> buffer;
677
678 byte* cur = NULL;
679 byte* end = NULL;
680
681 if (argc == 1) {
682 cur = reinterpret_cast<byte*>(sim_->get_pc());
683 end = cur + (10 * Instruction::kInstrSize);
684 } else if (argc == 2) {
685 int64_t value;
686 if (GetValue(arg1, &value)) {
687 cur = reinterpret_cast<byte*>(value);
688 // no length parameter passed, assume 10 instructions
689 end = cur + (10 * Instruction::kInstrSize);
690 }
691 } else {
692 int64_t value1;
693 int64_t value2;
694 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
695 cur = reinterpret_cast<byte*>(value1);
696 end = cur + (value2 * Instruction::kInstrSize);
697 }
698 }
699
700 while (cur < end) {
701 dasm.InstructionDecode(buffer, cur);
702 PrintF(" 0x%08lx %s\n",
703 reinterpret_cast<intptr_t>(cur), buffer.start());
704 cur += Instruction::kInstrSize;
705 }
706 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
707 PrintF("cont\n");
708 PrintF(" continue execution (alias 'c')\n");
709 PrintF("stepi\n");
710 PrintF(" step one instruction (alias 'si')\n");
711 PrintF("print <register>\n");
712 PrintF(" print register content (alias 'p')\n");
713 PrintF(" use register name 'all' to print all registers\n");
714 PrintF("printobject <register>\n");
715 PrintF(" print an object from a register (alias 'po')\n");
716 PrintF("stack [<words>]\n");
717 PrintF(" dump stack content, default dump 10 words)\n");
718 PrintF("mem <address> [<words>]\n");
719 PrintF(" dump memory content, default dump 10 words)\n");
720 PrintF("flags\n");
721 PrintF(" print flags\n");
722 PrintF("disasm [<instructions>]\n");
723 PrintF("disasm [<address/register>]\n");
724 PrintF("disasm [[<address/register>] <instructions>]\n");
725 PrintF(" disassemble code, default is 10 instructions\n");
726 PrintF(" from pc (alias 'di')\n");
727 PrintF("gdb\n");
728 PrintF(" enter gdb\n");
729 PrintF("break <address>\n");
730 PrintF(" set a break point on the address\n");
731 PrintF("del\n");
732 PrintF(" delete the breakpoint\n");
733 PrintF("stop feature:\n");
734 PrintF(" Description:\n");
735 PrintF(" Stops are debug instructions inserted by\n");
736 PrintF(" the Assembler::stop() function.\n");
737 PrintF(" When hitting a stop, the Simulator will\n");
738 PrintF(" stop and and give control to the Debugger.\n");
739 PrintF(" All stop codes are watched:\n");
740 PrintF(" - They can be enabled / disabled: the Simulator\n");
741 PrintF(" will / won't stop when hitting them.\n");
742 PrintF(" - The Simulator keeps track of how many times they \n");
743 PrintF(" are met. (See the info command.) Going over a\n");
744 PrintF(" disabled stop still increases its counter. \n");
745 PrintF(" Commands:\n");
746 PrintF(" stop info all/<code> : print infos about number <code>\n");
747 PrintF(" or all stop(s).\n");
748 PrintF(" stop enable/disable all/<code> : enables / disables\n");
749 PrintF(" all or number <code> stop(s)\n");
750 PrintF(" stop unstop\n");
751 PrintF(" ignore the stop instruction at the current location\n");
752 PrintF(" from now on\n");
753 } else {
754 PrintF("Unknown command: %s\n", cmd);
755 }
756 }
757 }
758
759 // Add all the breakpoints back to stop execution and enter the debugger
760 // shell when hit.
761 RedoBreakpoints();
762
763#undef COMMAND_SIZE
764#undef ARG_SIZE
765
766#undef STR
767#undef XSTR
768}
769
770
771static bool ICacheMatch(void* one, void* two) {
772 DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
773 DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
774 return one == two;
775}
776
777
778static uint32_t ICacheHash(void* key) {
779 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
780}
781
782
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000783static bool AllOnOnePage(uintptr_t start, size_t size) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000784 intptr_t start_page = (start & ~CachePage::kPageMask);
785 intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
786 return start_page == end_page;
787}
788
789
790void Simulator::set_last_debugger_input(char* input) {
791 DeleteArray(last_debugger_input_);
792 last_debugger_input_ = input;
793}
794
795
796void Simulator::FlushICache(v8::internal::HashMap* i_cache,
797 void* start_addr,
798 size_t size) {
799 int64_t start = reinterpret_cast<int64_t>(start_addr);
800 int64_t intra_line = (start & CachePage::kLineMask);
801 start -= intra_line;
802 size += intra_line;
803 size = ((size - 1) | CachePage::kLineMask) + 1;
804 int offset = (start & CachePage::kPageMask);
805 while (!AllOnOnePage(start, size - 1)) {
806 int bytes_to_flush = CachePage::kPageSize - offset;
807 FlushOnePage(i_cache, start, bytes_to_flush);
808 start += bytes_to_flush;
809 size -= bytes_to_flush;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000810 DCHECK_EQ((int64_t)0, start & CachePage::kPageMask);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000811 offset = 0;
812 }
813 if (size != 0) {
814 FlushOnePage(i_cache, start, size);
815 }
816}
817
818
819CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000820 v8::internal::HashMap::Entry* entry =
821 i_cache->LookupOrInsert(page, ICacheHash(page));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000822 if (entry->value == NULL) {
823 CachePage* new_page = new CachePage();
824 entry->value = new_page;
825 }
826 return reinterpret_cast<CachePage*>(entry->value);
827}
828
829
830// Flush from start up to and not including start + size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000831void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
832 size_t size) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000833 DCHECK(size <= CachePage::kPageSize);
834 DCHECK(AllOnOnePage(start, size - 1));
835 DCHECK((start & CachePage::kLineMask) == 0);
836 DCHECK((size & CachePage::kLineMask) == 0);
837 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
838 int offset = (start & CachePage::kPageMask);
839 CachePage* cache_page = GetCachePage(i_cache, page);
840 char* valid_bytemap = cache_page->ValidityByte(offset);
841 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
842}
843
844
845void Simulator::CheckICache(v8::internal::HashMap* i_cache,
846 Instruction* instr) {
847 int64_t address = reinterpret_cast<int64_t>(instr);
848 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
849 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
850 int offset = (address & CachePage::kPageMask);
851 CachePage* cache_page = GetCachePage(i_cache, page);
852 char* cache_valid_byte = cache_page->ValidityByte(offset);
853 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
854 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
855 if (cache_hit) {
856 // Check that the data in memory matches the contents of the I-cache.
857 CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr),
858 cache_page->CachedData(offset),
859 Instruction::kInstrSize));
860 } else {
861 // Cache miss. Load memory into the cache.
862 memcpy(cached_line, line, CachePage::kLineLength);
863 *cache_valid_byte = CachePage::LINE_VALID;
864 }
865}
866
867
868void Simulator::Initialize(Isolate* isolate) {
869 if (isolate->simulator_initialized()) return;
870 isolate->set_simulator_initialized(true);
871 ::v8::internal::ExternalReference::set_redirector(isolate,
872 &RedirectExternalReference);
873}
874
875
876Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
877 i_cache_ = isolate_->simulator_i_cache();
878 if (i_cache_ == NULL) {
879 i_cache_ = new v8::internal::HashMap(&ICacheMatch);
880 isolate_->set_simulator_i_cache(i_cache_);
881 }
882 Initialize(isolate);
883 // Set up simulator support first. Some of this information is needed to
884 // setup the architecture state.
885 stack_size_ = FLAG_sim_stack_size * KB;
886 stack_ = reinterpret_cast<char*>(malloc(stack_size_));
887 pc_modified_ = false;
888 icount_ = 0;
889 break_count_ = 0;
890 break_pc_ = NULL;
891 break_instr_ = 0;
892
893 // Set up architecture state.
894 // All registers are initialized to zero to start with.
895 for (int i = 0; i < kNumSimuRegisters; i++) {
896 registers_[i] = 0;
897 }
898 for (int i = 0; i < kNumFPURegisters; i++) {
899 FPUregisters_[i] = 0;
900 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000901
902 if (kArchVariant == kMips64r6) {
903 FCSR_ = kFCSRNaN2008FlagMask;
904 } else {
905 FCSR_ = 0;
906 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000907
908 // The sp is initialized to point to the bottom (high address) of the
909 // allocated stack area. To be safe in potential stack underflows we leave
910 // some buffer below.
911 registers_[sp] = reinterpret_cast<int64_t>(stack_) + stack_size_ - 64;
912 // The ra and pc are initialized to a known bad value that will cause an
913 // access violation if the simulator ever tries to execute it.
914 registers_[pc] = bad_ra;
915 registers_[ra] = bad_ra;
916 InitializeCoverage();
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000917
918 last_debugger_input_ = NULL;
919}
920
921
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000922Simulator::~Simulator() { free(stack_); }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000923
924
925// When the generated code calls an external reference we need to catch that in
926// the simulator. The external reference will be a function compiled for the
927// host architecture. We need to call that function instead of trying to
928// execute it with the simulator. We do that by redirecting the external
929// reference to a swi (software-interrupt) instruction that is handled by
930// the simulator. We write the original destination of the jump just at a known
931// offset from the swi instruction so the simulator knows what to call.
932class Redirection {
933 public:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000934 Redirection(Isolate* isolate, void* external_function,
935 ExternalReference::Type type)
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000936 : external_function_(external_function),
937 swi_instruction_(rtCallRedirInstr),
938 type_(type),
939 next_(NULL) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000940 next_ = isolate->simulator_redirection();
941 Simulator::current(isolate)->
942 FlushICache(isolate->simulator_i_cache(),
943 reinterpret_cast<void*>(&swi_instruction_),
944 Instruction::kInstrSize);
945 isolate->set_simulator_redirection(this);
946 }
947
948 void* address_of_swi_instruction() {
949 return reinterpret_cast<void*>(&swi_instruction_);
950 }
951
952 void* external_function() { return external_function_; }
953 ExternalReference::Type type() { return type_; }
954
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000955 static Redirection* Get(Isolate* isolate, void* external_function,
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000956 ExternalReference::Type type) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000957 Redirection* current = isolate->simulator_redirection();
958 for (; current != NULL; current = current->next_) {
959 if (current->external_function_ == external_function) return current;
960 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000961 return new Redirection(isolate, external_function, type);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000962 }
963
964 static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
965 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
966 char* addr_of_redirection =
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000967 addr_of_swi - offsetof(Redirection, swi_instruction_);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000968 return reinterpret_cast<Redirection*>(addr_of_redirection);
969 }
970
971 static void* ReverseRedirection(int64_t reg) {
972 Redirection* redirection = FromSwiInstruction(
973 reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
974 return redirection->external_function();
975 }
976
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000977 static void DeleteChain(Redirection* redirection) {
978 while (redirection != nullptr) {
979 Redirection* next = redirection->next_;
980 delete redirection;
981 redirection = next;
982 }
983 }
984
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000985 private:
986 void* external_function_;
987 uint32_t swi_instruction_;
988 ExternalReference::Type type_;
989 Redirection* next_;
990};
991
992
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000993// static
994void Simulator::TearDown(HashMap* i_cache, Redirection* first) {
995 Redirection::DeleteChain(first);
996 if (i_cache != nullptr) {
997 for (HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
998 entry = i_cache->Next(entry)) {
999 delete static_cast<CachePage*>(entry->value);
1000 }
1001 delete i_cache;
1002 }
1003}
1004
1005
1006void* Simulator::RedirectExternalReference(Isolate* isolate,
1007 void* external_function,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001008 ExternalReference::Type type) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001009 Redirection* redirection = Redirection::Get(isolate, external_function, type);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001010 return redirection->address_of_swi_instruction();
1011}
1012
1013
1014// Get the active Simulator for the current thread.
1015Simulator* Simulator::current(Isolate* isolate) {
1016 v8::internal::Isolate::PerIsolateThreadData* isolate_data =
1017 isolate->FindOrAllocatePerThreadDataForThisThread();
1018 DCHECK(isolate_data != NULL);
1019 DCHECK(isolate_data != NULL);
1020
1021 Simulator* sim = isolate_data->simulator();
1022 if (sim == NULL) {
1023 // TODO(146): delete the simulator object when a thread/isolate goes away.
1024 sim = new Simulator(isolate);
1025 isolate_data->set_simulator(sim);
1026 }
1027 return sim;
1028}
1029
1030
1031// Sets the register in the architecture state. It will also deal with updating
1032// Simulator internal state for special registers such as PC.
1033void Simulator::set_register(int reg, int64_t value) {
1034 DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
1035 if (reg == pc) {
1036 pc_modified_ = true;
1037 }
1038
1039 // Zero register always holds 0.
1040 registers_[reg] = (reg == 0) ? 0 : value;
1041}
1042
1043
1044void Simulator::set_dw_register(int reg, const int* dbl) {
1045 DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
1046 registers_[reg] = dbl[1];
1047 registers_[reg] = registers_[reg] << 32;
1048 registers_[reg] += dbl[0];
1049}
1050
1051
1052void Simulator::set_fpu_register(int fpureg, int64_t value) {
1053 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1054 FPUregisters_[fpureg] = value;
1055}
1056
1057
1058void Simulator::set_fpu_register_word(int fpureg, int32_t value) {
1059 // Set ONLY lower 32-bits, leaving upper bits untouched.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001060 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001061 int32_t* pword;
1062 if (kArchEndian == kLittle) {
1063 pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]);
1064 } else {
1065 pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]) + 1;
1066 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001067 *pword = value;
1068}
1069
1070
1071void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) {
1072 // Set ONLY upper 32-bits, leaving lower bits untouched.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001073 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001074 int32_t* phiword;
1075 if (kArchEndian == kLittle) {
1076 phiword = (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg])) + 1;
1077 } else {
1078 phiword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]);
1079 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001080 *phiword = value;
1081}
1082
1083
1084void Simulator::set_fpu_register_float(int fpureg, float value) {
1085 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1086 *bit_cast<float*>(&FPUregisters_[fpureg]) = value;
1087}
1088
1089
1090void Simulator::set_fpu_register_double(int fpureg, double value) {
1091 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1092 *bit_cast<double*>(&FPUregisters_[fpureg]) = value;
1093}
1094
1095
1096// Get the register from the architecture state. This function does handle
1097// the special case of accessing the PC register.
1098int64_t Simulator::get_register(int reg) const {
1099 DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
1100 if (reg == 0)
1101 return 0;
1102 else
1103 return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
1104}
1105
1106
1107double Simulator::get_double_from_register_pair(int reg) {
1108 // TODO(plind): bad ABI stuff, refactor or remove.
1109 DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0));
1110
1111 double dm_val = 0.0;
1112 // Read the bits from the unsigned integer register_[] array
1113 // into the double precision floating point value and return it.
1114 char buffer[sizeof(registers_[0])];
1115 memcpy(buffer, &registers_[reg], sizeof(registers_[0]));
1116 memcpy(&dm_val, buffer, sizeof(registers_[0]));
1117 return(dm_val);
1118}
1119
1120
1121int64_t Simulator::get_fpu_register(int fpureg) const {
1122 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1123 return FPUregisters_[fpureg];
1124}
1125
1126
1127int32_t Simulator::get_fpu_register_word(int fpureg) const {
1128 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1129 return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff);
1130}
1131
1132
1133int32_t Simulator::get_fpu_register_signed_word(int fpureg) const {
1134 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1135 return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff);
1136}
1137
1138
1139int32_t Simulator::get_fpu_register_hi_word(int fpureg) const {
1140 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1141 return static_cast<int32_t>((FPUregisters_[fpureg] >> 32) & 0xffffffff);
1142}
1143
1144
1145float Simulator::get_fpu_register_float(int fpureg) const {
1146 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1147 return *bit_cast<float*>(const_cast<int64_t*>(&FPUregisters_[fpureg]));
1148}
1149
1150
1151double Simulator::get_fpu_register_double(int fpureg) const {
1152 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1153 return *bit_cast<double*>(&FPUregisters_[fpureg]);
1154}
1155
1156
1157// Runtime FP routines take up to two double arguments and zero
1158// or one integer arguments. All are constructed here,
1159// from a0-a3 or f12 and f13 (n64), or f14 (O32).
1160void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
1161 if (!IsMipsSoftFloatABI) {
1162 const int fparg2 = (kMipsAbi == kN64) ? 13 : 14;
1163 *x = get_fpu_register_double(12);
1164 *y = get_fpu_register_double(fparg2);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001165 *z = static_cast<int32_t>(get_register(a2));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001166 } else {
1167 // TODO(plind): bad ABI stuff, refactor or remove.
1168 // We use a char buffer to get around the strict-aliasing rules which
1169 // otherwise allow the compiler to optimize away the copy.
1170 char buffer[sizeof(*x)];
1171 int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
1172
1173 // Registers a0 and a1 -> x.
1174 reg_buffer[0] = get_register(a0);
1175 reg_buffer[1] = get_register(a1);
1176 memcpy(x, buffer, sizeof(buffer));
1177 // Registers a2 and a3 -> y.
1178 reg_buffer[0] = get_register(a2);
1179 reg_buffer[1] = get_register(a3);
1180 memcpy(y, buffer, sizeof(buffer));
1181 // Register 2 -> z.
1182 reg_buffer[0] = get_register(a2);
1183 memcpy(z, buffer, sizeof(*z));
1184 }
1185}
1186
1187
1188// The return value is either in v0/v1 or f0.
1189void Simulator::SetFpResult(const double& result) {
1190 if (!IsMipsSoftFloatABI) {
1191 set_fpu_register_double(0, result);
1192 } else {
1193 char buffer[2 * sizeof(registers_[0])];
1194 int64_t* reg_buffer = reinterpret_cast<int64_t*>(buffer);
1195 memcpy(buffer, &result, sizeof(buffer));
1196 // Copy result to v0 and v1.
1197 set_register(v0, reg_buffer[0]);
1198 set_register(v1, reg_buffer[1]);
1199 }
1200}
1201
1202
1203// Helper functions for setting and testing the FCSR register's bits.
1204void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
1205 if (value) {
1206 FCSR_ |= (1 << cc);
1207 } else {
1208 FCSR_ &= ~(1 << cc);
1209 }
1210}
1211
1212
1213bool Simulator::test_fcsr_bit(uint32_t cc) {
1214 return FCSR_ & (1 << cc);
1215}
1216
1217
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001218void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) {
1219 FCSR_ |= mode & kFPURoundingModeMask;
1220}
1221
1222
1223unsigned int Simulator::get_fcsr_rounding_mode() {
1224 return FCSR_ & kFPURoundingModeMask;
1225}
1226
1227
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001228// Sets the rounding error codes in FCSR based on the result of the rounding.
1229// Returns true if the operation was invalid.
1230bool Simulator::set_fcsr_round_error(double original, double rounded) {
1231 bool ret = false;
1232 double max_int32 = std::numeric_limits<int32_t>::max();
1233 double min_int32 = std::numeric_limits<int32_t>::min();
1234
1235 if (!std::isfinite(original) || !std::isfinite(rounded)) {
1236 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1237 ret = true;
1238 }
1239
1240 if (original != rounded) {
1241 set_fcsr_bit(kFCSRInexactFlagBit, true);
1242 }
1243
1244 if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
1245 set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1246 ret = true;
1247 }
1248
1249 if (rounded > max_int32 || rounded < min_int32) {
1250 set_fcsr_bit(kFCSROverflowFlagBit, true);
1251 // The reference is not really clear but it seems this is required:
1252 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1253 ret = true;
1254 }
1255
1256 return ret;
1257}
1258
1259
1260// Sets the rounding error codes in FCSR based on the result of the rounding.
1261// Returns true if the operation was invalid.
1262bool Simulator::set_fcsr_round64_error(double original, double rounded) {
1263 bool ret = false;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001264 // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1265 // loading the most accurate representation into max_int64, which is 2^63.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001266 double max_int64 = std::numeric_limits<int64_t>::max();
1267 double min_int64 = std::numeric_limits<int64_t>::min();
1268
1269 if (!std::isfinite(original) || !std::isfinite(rounded)) {
1270 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1271 ret = true;
1272 }
1273
1274 if (original != rounded) {
1275 set_fcsr_bit(kFCSRInexactFlagBit, true);
1276 }
1277
1278 if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
1279 set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1280 ret = true;
1281 }
1282
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001283 if (rounded >= max_int64 || rounded < min_int64) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001284 set_fcsr_bit(kFCSROverflowFlagBit, true);
1285 // The reference is not really clear but it seems this is required:
1286 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1287 ret = true;
1288 }
1289
1290 return ret;
1291}
1292
1293
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001294// Sets the rounding error codes in FCSR based on the result of the rounding.
1295// Returns true if the operation was invalid.
1296bool Simulator::set_fcsr_round_error(float original, float rounded) {
1297 bool ret = false;
1298 double max_int32 = std::numeric_limits<int32_t>::max();
1299 double min_int32 = std::numeric_limits<int32_t>::min();
1300
1301 if (!std::isfinite(original) || !std::isfinite(rounded)) {
1302 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1303 ret = true;
1304 }
1305
1306 if (original != rounded) {
1307 set_fcsr_bit(kFCSRInexactFlagBit, true);
1308 }
1309
1310 if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
1311 set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1312 ret = true;
1313 }
1314
1315 if (rounded > max_int32 || rounded < min_int32) {
1316 set_fcsr_bit(kFCSROverflowFlagBit, true);
1317 // The reference is not really clear but it seems this is required:
1318 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1319 ret = true;
1320 }
1321
1322 return ret;
1323}
1324
1325void Simulator::set_fpu_register_word_invalid_result(float original,
1326 float rounded) {
1327 if (FCSR_ & kFCSRNaN2008FlagMask) {
1328 double max_int32 = std::numeric_limits<int32_t>::max();
1329 double min_int32 = std::numeric_limits<int32_t>::min();
1330 if (std::isnan(original)) {
1331 set_fpu_register_word(fd_reg(), 0);
1332 } else if (rounded > max_int32) {
1333 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1334 } else if (rounded < min_int32) {
1335 set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
1336 } else {
1337 UNREACHABLE();
1338 }
1339 } else {
1340 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1341 }
1342}
1343
1344
1345void Simulator::set_fpu_register_invalid_result(float original, float rounded) {
1346 if (FCSR_ & kFCSRNaN2008FlagMask) {
1347 double max_int32 = std::numeric_limits<int32_t>::max();
1348 double min_int32 = std::numeric_limits<int32_t>::min();
1349 if (std::isnan(original)) {
1350 set_fpu_register(fd_reg(), 0);
1351 } else if (rounded > max_int32) {
1352 set_fpu_register(fd_reg(), kFPUInvalidResult);
1353 } else if (rounded < min_int32) {
1354 set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
1355 } else {
1356 UNREACHABLE();
1357 }
1358 } else {
1359 set_fpu_register(fd_reg(), kFPUInvalidResult);
1360 }
1361}
1362
1363
1364void Simulator::set_fpu_register_invalid_result64(float original,
1365 float rounded) {
1366 if (FCSR_ & kFCSRNaN2008FlagMask) {
1367 // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1368 // loading the most accurate representation into max_int64, which is 2^63.
1369 double max_int64 = std::numeric_limits<int64_t>::max();
1370 double min_int64 = std::numeric_limits<int64_t>::min();
1371 if (std::isnan(original)) {
1372 set_fpu_register(fd_reg(), 0);
1373 } else if (rounded >= max_int64) {
1374 set_fpu_register(fd_reg(), kFPU64InvalidResult);
1375 } else if (rounded < min_int64) {
1376 set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
1377 } else {
1378 UNREACHABLE();
1379 }
1380 } else {
1381 set_fpu_register(fd_reg(), kFPU64InvalidResult);
1382 }
1383}
1384
1385
1386void Simulator::set_fpu_register_word_invalid_result(double original,
1387 double rounded) {
1388 if (FCSR_ & kFCSRNaN2008FlagMask) {
1389 double max_int32 = std::numeric_limits<int32_t>::max();
1390 double min_int32 = std::numeric_limits<int32_t>::min();
1391 if (std::isnan(original)) {
1392 set_fpu_register_word(fd_reg(), 0);
1393 } else if (rounded > max_int32) {
1394 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1395 } else if (rounded < min_int32) {
1396 set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
1397 } else {
1398 UNREACHABLE();
1399 }
1400 } else {
1401 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1402 }
1403}
1404
1405
1406void Simulator::set_fpu_register_invalid_result(double original,
1407 double rounded) {
1408 if (FCSR_ & kFCSRNaN2008FlagMask) {
1409 double max_int32 = std::numeric_limits<int32_t>::max();
1410 double min_int32 = std::numeric_limits<int32_t>::min();
1411 if (std::isnan(original)) {
1412 set_fpu_register(fd_reg(), 0);
1413 } else if (rounded > max_int32) {
1414 set_fpu_register(fd_reg(), kFPUInvalidResult);
1415 } else if (rounded < min_int32) {
1416 set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
1417 } else {
1418 UNREACHABLE();
1419 }
1420 } else {
1421 set_fpu_register(fd_reg(), kFPUInvalidResult);
1422 }
1423}
1424
1425
1426void Simulator::set_fpu_register_invalid_result64(double original,
1427 double rounded) {
1428 if (FCSR_ & kFCSRNaN2008FlagMask) {
1429 // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1430 // loading the most accurate representation into max_int64, which is 2^63.
1431 double max_int64 = std::numeric_limits<int64_t>::max();
1432 double min_int64 = std::numeric_limits<int64_t>::min();
1433 if (std::isnan(original)) {
1434 set_fpu_register(fd_reg(), 0);
1435 } else if (rounded >= max_int64) {
1436 set_fpu_register(fd_reg(), kFPU64InvalidResult);
1437 } else if (rounded < min_int64) {
1438 set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
1439 } else {
1440 UNREACHABLE();
1441 }
1442 } else {
1443 set_fpu_register(fd_reg(), kFPU64InvalidResult);
1444 }
1445}
1446
1447
1448// Sets the rounding error codes in FCSR based on the result of the rounding.
1449// Returns true if the operation was invalid.
1450bool Simulator::set_fcsr_round64_error(float original, float rounded) {
1451 bool ret = false;
1452 // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1453 // loading the most accurate representation into max_int64, which is 2^63.
1454 double max_int64 = std::numeric_limits<int64_t>::max();
1455 double min_int64 = std::numeric_limits<int64_t>::min();
1456
1457 if (!std::isfinite(original) || !std::isfinite(rounded)) {
1458 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1459 ret = true;
1460 }
1461
1462 if (original != rounded) {
1463 set_fcsr_bit(kFCSRInexactFlagBit, true);
1464 }
1465
1466 if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
1467 set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1468 ret = true;
1469 }
1470
1471 if (rounded >= max_int64 || rounded < min_int64) {
1472 set_fcsr_bit(kFCSROverflowFlagBit, true);
1473 // The reference is not really clear but it seems this is required:
1474 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1475 ret = true;
1476 }
1477
1478 return ret;
1479}
1480
1481
1482// For cvt instructions only
1483void Simulator::round_according_to_fcsr(double toRound, double& rounded,
1484 int32_t& rounded_int, double fs) {
1485 // 0 RN (round to nearest): Round a result to the nearest
1486 // representable value; if the result is exactly halfway between
1487 // two representable values, round to zero. Behave like round_w_d.
1488
1489 // 1 RZ (round toward zero): Round a result to the closest
1490 // representable value whose absolute value is less than or
1491 // equal to the infinitely accurate result. Behave like trunc_w_d.
1492
1493 // 2 RP (round up, or toward +infinity): Round a result to the
1494 // next representable value up. Behave like ceil_w_d.
1495
1496 // 3 RN (round down, or toward −infinity): Round a result to
1497 // the next representable value down. Behave like floor_w_d.
1498 switch (FCSR_ & 3) {
1499 case kRoundToNearest:
1500 rounded = std::floor(fs + 0.5);
1501 rounded_int = static_cast<int32_t>(rounded);
1502 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
1503 // If the number is halfway between two integers,
1504 // round to the even one.
1505 rounded_int--;
1506 }
1507 break;
1508 case kRoundToZero:
1509 rounded = trunc(fs);
1510 rounded_int = static_cast<int32_t>(rounded);
1511 break;
1512 case kRoundToPlusInf:
1513 rounded = std::ceil(fs);
1514 rounded_int = static_cast<int32_t>(rounded);
1515 break;
1516 case kRoundToMinusInf:
1517 rounded = std::floor(fs);
1518 rounded_int = static_cast<int32_t>(rounded);
1519 break;
1520 }
1521}
1522
1523
1524void Simulator::round64_according_to_fcsr(double toRound, double& rounded,
1525 int64_t& rounded_int, double fs) {
1526 // 0 RN (round to nearest): Round a result to the nearest
1527 // representable value; if the result is exactly halfway between
1528 // two representable values, round to zero. Behave like round_w_d.
1529
1530 // 1 RZ (round toward zero): Round a result to the closest
1531 // representable value whose absolute value is less than or.
1532 // equal to the infinitely accurate result. Behave like trunc_w_d.
1533
1534 // 2 RP (round up, or toward +infinity): Round a result to the
1535 // next representable value up. Behave like ceil_w_d.
1536
1537 // 3 RN (round down, or toward −infinity): Round a result to
1538 // the next representable value down. Behave like floor_w_d.
1539 switch (FCSR_ & 3) {
1540 case kRoundToNearest:
1541 rounded = std::floor(fs + 0.5);
1542 rounded_int = static_cast<int64_t>(rounded);
1543 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
1544 // If the number is halfway between two integers,
1545 // round to the even one.
1546 rounded_int--;
1547 }
1548 break;
1549 case kRoundToZero:
1550 rounded = trunc(fs);
1551 rounded_int = static_cast<int64_t>(rounded);
1552 break;
1553 case kRoundToPlusInf:
1554 rounded = std::ceil(fs);
1555 rounded_int = static_cast<int64_t>(rounded);
1556 break;
1557 case kRoundToMinusInf:
1558 rounded = std::floor(fs);
1559 rounded_int = static_cast<int64_t>(rounded);
1560 break;
1561 }
1562}
1563
1564
1565// for cvt instructions only
1566void Simulator::round_according_to_fcsr(float toRound, float& rounded,
1567 int32_t& rounded_int, float fs) {
1568 // 0 RN (round to nearest): Round a result to the nearest
1569 // representable value; if the result is exactly halfway between
1570 // two representable values, round to zero. Behave like round_w_d.
1571
1572 // 1 RZ (round toward zero): Round a result to the closest
1573 // representable value whose absolute value is less than or
1574 // equal to the infinitely accurate result. Behave like trunc_w_d.
1575
1576 // 2 RP (round up, or toward +infinity): Round a result to the
1577 // next representable value up. Behave like ceil_w_d.
1578
1579 // 3 RN (round down, or toward −infinity): Round a result to
1580 // the next representable value down. Behave like floor_w_d.
1581 switch (FCSR_ & 3) {
1582 case kRoundToNearest:
1583 rounded = std::floor(fs + 0.5);
1584 rounded_int = static_cast<int32_t>(rounded);
1585 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
1586 // If the number is halfway between two integers,
1587 // round to the even one.
1588 rounded_int--;
1589 }
1590 break;
1591 case kRoundToZero:
1592 rounded = trunc(fs);
1593 rounded_int = static_cast<int32_t>(rounded);
1594 break;
1595 case kRoundToPlusInf:
1596 rounded = std::ceil(fs);
1597 rounded_int = static_cast<int32_t>(rounded);
1598 break;
1599 case kRoundToMinusInf:
1600 rounded = std::floor(fs);
1601 rounded_int = static_cast<int32_t>(rounded);
1602 break;
1603 }
1604}
1605
1606
1607void Simulator::round64_according_to_fcsr(float toRound, float& rounded,
1608 int64_t& rounded_int, float fs) {
1609 // 0 RN (round to nearest): Round a result to the nearest
1610 // representable value; if the result is exactly halfway between
1611 // two representable values, round to zero. Behave like round_w_d.
1612
1613 // 1 RZ (round toward zero): Round a result to the closest
1614 // representable value whose absolute value is less than or.
1615 // equal to the infinitely accurate result. Behave like trunc_w_d.
1616
1617 // 2 RP (round up, or toward +infinity): Round a result to the
1618 // next representable value up. Behave like ceil_w_d.
1619
1620 // 3 RN (round down, or toward −infinity): Round a result to
1621 // the next representable value down. Behave like floor_w_d.
1622 switch (FCSR_ & 3) {
1623 case kRoundToNearest:
1624 rounded = std::floor(fs + 0.5);
1625 rounded_int = static_cast<int64_t>(rounded);
1626 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
1627 // If the number is halfway between two integers,
1628 // round to the even one.
1629 rounded_int--;
1630 }
1631 break;
1632 case kRoundToZero:
1633 rounded = trunc(fs);
1634 rounded_int = static_cast<int64_t>(rounded);
1635 break;
1636 case kRoundToPlusInf:
1637 rounded = std::ceil(fs);
1638 rounded_int = static_cast<int64_t>(rounded);
1639 break;
1640 case kRoundToMinusInf:
1641 rounded = std::floor(fs);
1642 rounded_int = static_cast<int64_t>(rounded);
1643 break;
1644 }
1645}
1646
1647
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001648// Raw access to the PC register.
1649void Simulator::set_pc(int64_t value) {
1650 pc_modified_ = true;
1651 registers_[pc] = value;
1652}
1653
1654
1655bool Simulator::has_bad_pc() const {
1656 return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
1657}
1658
1659
1660// Raw access to the PC register without the special adjustment when reading.
1661int64_t Simulator::get_pc() const {
1662 return registers_[pc];
1663}
1664
1665
1666// The MIPS cannot do unaligned reads and writes. On some MIPS platforms an
1667// interrupt is caused. On others it does a funky rotation thing. For now we
1668// simply disallow unaligned reads, but at some point we may want to move to
1669// emulating the rotate behaviour. Note that simulator runs have the runtime
1670// system running directly on the host system and only generated code is
1671// executed in the simulator. Since the host is typically IA32 we will not
1672// get the correct MIPS-like behaviour on unaligned accesses.
1673
1674// TODO(plind): refactor this messy debug code when we do unaligned access.
1675void Simulator::DieOrDebug() {
1676 if (1) { // Flag for this was removed.
1677 MipsDebugger dbg(this);
1678 dbg.Debug();
1679 } else {
1680 base::OS::Abort();
1681 }
1682}
1683
1684
1685void Simulator::TraceRegWr(int64_t value) {
1686 if (::v8::internal::FLAG_trace_sim) {
1687 SNPrintF(trace_buf_, "%016lx", value);
1688 }
1689}
1690
1691
1692// TODO(plind): consider making icount_ printing a flag option.
1693void Simulator::TraceMemRd(int64_t addr, int64_t value) {
1694 if (::v8::internal::FLAG_trace_sim) {
1695 SNPrintF(trace_buf_, "%016lx <-- [%016lx] (%ld)",
1696 value, addr, icount_);
1697 }
1698}
1699
1700
1701void Simulator::TraceMemWr(int64_t addr, int64_t value, TraceType t) {
1702 if (::v8::internal::FLAG_trace_sim) {
1703 switch (t) {
1704 case BYTE:
1705 SNPrintF(trace_buf_, " %02x --> [%016lx]",
1706 static_cast<int8_t>(value), addr);
1707 break;
1708 case HALF:
1709 SNPrintF(trace_buf_, " %04x --> [%016lx]",
1710 static_cast<int16_t>(value), addr);
1711 break;
1712 case WORD:
1713 SNPrintF(trace_buf_, " %08x --> [%016lx]",
1714 static_cast<int32_t>(value), addr);
1715 break;
1716 case DWORD:
1717 SNPrintF(trace_buf_, "%016lx --> [%016lx] (%ld)",
1718 value, addr, icount_);
1719 break;
1720 }
1721 }
1722}
1723
1724
1725// TODO(plind): sign-extend and zero-extend not implmented properly
1726// on all the ReadXX functions, I don't think re-interpret cast does it.
1727int32_t Simulator::ReadW(int64_t addr, Instruction* instr) {
1728 if (addr >=0 && addr < 0x400) {
1729 // This has to be a NULL-dereference, drop into debugger.
1730 PrintF("Memory read from bad address: 0x%08lx, pc=0x%08lx\n",
1731 addr, reinterpret_cast<intptr_t>(instr));
1732 DieOrDebug();
1733 }
1734 if ((addr & 0x3) == 0) {
1735 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1736 TraceMemRd(addr, static_cast<int64_t>(*ptr));
1737 return *ptr;
1738 }
1739 PrintF("Unaligned read at 0x%08lx, pc=0x%08" V8PRIxPTR "\n",
1740 addr,
1741 reinterpret_cast<intptr_t>(instr));
1742 DieOrDebug();
1743 return 0;
1744}
1745
1746
1747uint32_t Simulator::ReadWU(int64_t addr, Instruction* instr) {
1748 if (addr >=0 && addr < 0x400) {
1749 // This has to be a NULL-dereference, drop into debugger.
1750 PrintF("Memory read from bad address: 0x%08lx, pc=0x%08lx\n",
1751 addr, reinterpret_cast<intptr_t>(instr));
1752 DieOrDebug();
1753 }
1754 if ((addr & 0x3) == 0) {
1755 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1756 TraceMemRd(addr, static_cast<int64_t>(*ptr));
1757 return *ptr;
1758 }
1759 PrintF("Unaligned read at 0x%08lx, pc=0x%08" V8PRIxPTR "\n",
1760 addr,
1761 reinterpret_cast<intptr_t>(instr));
1762 DieOrDebug();
1763 return 0;
1764}
1765
1766
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001767void Simulator::WriteW(int64_t addr, int32_t value, Instruction* instr) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001768 if (addr >= 0 && addr < 0x400) {
1769 // This has to be a NULL-dereference, drop into debugger.
1770 PrintF("Memory write to bad address: 0x%08lx, pc=0x%08lx\n",
1771 addr, reinterpret_cast<intptr_t>(instr));
1772 DieOrDebug();
1773 }
1774 if ((addr & 0x3) == 0) {
1775 TraceMemWr(addr, value, WORD);
1776 int* ptr = reinterpret_cast<int*>(addr);
1777 *ptr = value;
1778 return;
1779 }
1780 PrintF("Unaligned write at 0x%08lx, pc=0x%08" V8PRIxPTR "\n",
1781 addr,
1782 reinterpret_cast<intptr_t>(instr));
1783 DieOrDebug();
1784}
1785
1786
1787int64_t Simulator::Read2W(int64_t addr, Instruction* instr) {
1788 if (addr >=0 && addr < 0x400) {
1789 // This has to be a NULL-dereference, drop into debugger.
1790 PrintF("Memory read from bad address: 0x%08lx, pc=0x%08lx\n",
1791 addr, reinterpret_cast<intptr_t>(instr));
1792 DieOrDebug();
1793 }
1794 if ((addr & kPointerAlignmentMask) == 0) {
1795 int64_t* ptr = reinterpret_cast<int64_t*>(addr);
1796 TraceMemRd(addr, *ptr);
1797 return *ptr;
1798 }
1799 PrintF("Unaligned read at 0x%08lx, pc=0x%08" V8PRIxPTR "\n",
1800 addr,
1801 reinterpret_cast<intptr_t>(instr));
1802 DieOrDebug();
1803 return 0;
1804}
1805
1806
1807void Simulator::Write2W(int64_t addr, int64_t value, Instruction* instr) {
1808 if (addr >= 0 && addr < 0x400) {
1809 // This has to be a NULL-dereference, drop into debugger.
1810 PrintF("Memory write to bad address: 0x%08lx, pc=0x%08lx\n",
1811 addr, reinterpret_cast<intptr_t>(instr));
1812 DieOrDebug();
1813 }
1814 if ((addr & kPointerAlignmentMask) == 0) {
1815 TraceMemWr(addr, value, DWORD);
1816 int64_t* ptr = reinterpret_cast<int64_t*>(addr);
1817 *ptr = value;
1818 return;
1819 }
1820 PrintF("Unaligned write at 0x%08lx, pc=0x%08" V8PRIxPTR "\n",
1821 addr,
1822 reinterpret_cast<intptr_t>(instr));
1823 DieOrDebug();
1824}
1825
1826
1827double Simulator::ReadD(int64_t addr, Instruction* instr) {
1828 if ((addr & kDoubleAlignmentMask) == 0) {
1829 double* ptr = reinterpret_cast<double*>(addr);
1830 return *ptr;
1831 }
1832 PrintF("Unaligned (double) read at 0x%08lx, pc=0x%08" V8PRIxPTR "\n",
1833 addr,
1834 reinterpret_cast<intptr_t>(instr));
1835 base::OS::Abort();
1836 return 0;
1837}
1838
1839
1840void Simulator::WriteD(int64_t addr, double value, Instruction* instr) {
1841 if ((addr & kDoubleAlignmentMask) == 0) {
1842 double* ptr = reinterpret_cast<double*>(addr);
1843 *ptr = value;
1844 return;
1845 }
1846 PrintF("Unaligned (double) write at 0x%08lx, pc=0x%08" V8PRIxPTR "\n",
1847 addr,
1848 reinterpret_cast<intptr_t>(instr));
1849 DieOrDebug();
1850}
1851
1852
1853uint16_t Simulator::ReadHU(int64_t addr, Instruction* instr) {
1854 if ((addr & 1) == 0) {
1855 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1856 TraceMemRd(addr, static_cast<int64_t>(*ptr));
1857 return *ptr;
1858 }
1859 PrintF("Unaligned unsigned halfword read at 0x%08lx, pc=0x%08" V8PRIxPTR "\n",
1860 addr,
1861 reinterpret_cast<intptr_t>(instr));
1862 DieOrDebug();
1863 return 0;
1864}
1865
1866
1867int16_t Simulator::ReadH(int64_t addr, Instruction* instr) {
1868 if ((addr & 1) == 0) {
1869 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1870 TraceMemRd(addr, static_cast<int64_t>(*ptr));
1871 return *ptr;
1872 }
1873 PrintF("Unaligned signed halfword read at 0x%08lx, pc=0x%08" V8PRIxPTR "\n",
1874 addr,
1875 reinterpret_cast<intptr_t>(instr));
1876 DieOrDebug();
1877 return 0;
1878}
1879
1880
1881void Simulator::WriteH(int64_t addr, uint16_t value, Instruction* instr) {
1882 if ((addr & 1) == 0) {
1883 TraceMemWr(addr, value, HALF);
1884 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1885 *ptr = value;
1886 return;
1887 }
1888 PrintF(
1889 "Unaligned unsigned halfword write at 0x%08lx, pc=0x%08" V8PRIxPTR "\n",
1890 addr,
1891 reinterpret_cast<intptr_t>(instr));
1892 DieOrDebug();
1893}
1894
1895
1896void Simulator::WriteH(int64_t addr, int16_t value, Instruction* instr) {
1897 if ((addr & 1) == 0) {
1898 TraceMemWr(addr, value, HALF);
1899 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1900 *ptr = value;
1901 return;
1902 }
1903 PrintF("Unaligned halfword write at 0x%08lx, pc=0x%08" V8PRIxPTR "\n",
1904 addr,
1905 reinterpret_cast<intptr_t>(instr));
1906 DieOrDebug();
1907}
1908
1909
1910uint32_t Simulator::ReadBU(int64_t addr) {
1911 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1912 TraceMemRd(addr, static_cast<int64_t>(*ptr));
1913 return *ptr & 0xff;
1914}
1915
1916
1917int32_t Simulator::ReadB(int64_t addr) {
1918 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1919 TraceMemRd(addr, static_cast<int64_t>(*ptr));
1920 return *ptr;
1921}
1922
1923
1924void Simulator::WriteB(int64_t addr, uint8_t value) {
1925 TraceMemWr(addr, value, BYTE);
1926 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1927 *ptr = value;
1928}
1929
1930
1931void Simulator::WriteB(int64_t addr, int8_t value) {
1932 TraceMemWr(addr, value, BYTE);
1933 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1934 *ptr = value;
1935}
1936
1937
1938// Returns the limit of the stack area to enable checking for stack overflows.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001939uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
1940 // The simulator uses a separate JS stack. If we have exhausted the C stack,
1941 // we also drop down the JS limit to reflect the exhaustion on the JS stack.
1942 if (GetCurrentStackPosition() < c_limit) {
1943 return reinterpret_cast<uintptr_t>(get_sp());
1944 }
1945
1946 // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes
1947 // to prevent overrunning the stack when pushing values.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001948 return reinterpret_cast<uintptr_t>(stack_) + 1024;
1949}
1950
1951
1952// Unsupported instructions use Format to print an error and stop execution.
1953void Simulator::Format(Instruction* instr, const char* format) {
1954 PrintF("Simulator found unsupported instruction:\n 0x%08lx: %s\n",
1955 reinterpret_cast<intptr_t>(instr), format);
1956 UNIMPLEMENTED_MIPS();
1957}
1958
1959
1960// Calls into the V8 runtime are based on this very simple interface.
1961// Note: To be able to return two values from some calls the code in runtime.cc
1962// uses the ObjectPair which is essentially two 32-bit values stuffed into a
1963// 64-bit value. With the code below we assume that all runtime calls return
1964// 64 bits of result. If they don't, the v1 result register contains a bogus
1965// value, which is fine because it is caller-saved.
1966
1967struct ObjectPair {
1968 Object* x;
1969 Object* y;
1970};
1971
1972typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0,
1973 int64_t arg1,
1974 int64_t arg2,
1975 int64_t arg3,
1976 int64_t arg4,
1977 int64_t arg5);
1978
1979
1980// These prototypes handle the four types of FP calls.
1981typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
1982typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
1983typedef double (*SimulatorRuntimeFPCall)(double darg0);
1984typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0);
1985
1986// This signature supports direct call in to API function native callback
1987// (refer to InvocationCallback in v8.h).
1988typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0);
1989typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1);
1990
1991// This signature supports direct call to accessor getter callback.
1992typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1);
1993typedef void (*SimulatorRuntimeProfilingGetterCall)(
1994 int64_t arg0, int64_t arg1, void* arg2);
1995
1996// Software interrupt instructions are used by the simulator to call into the
1997// C-based V8 runtime. They are also used for debugging with simulator.
1998void Simulator::SoftwareInterrupt(Instruction* instr) {
1999 // There are several instructions that could get us here,
2000 // the break_ instruction, or several variants of traps. All
2001 // Are "SPECIAL" class opcode, and are distinuished by function.
2002 int32_t func = instr->FunctionFieldRaw();
2003 uint32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1;
2004 // We first check if we met a call_rt_redirected.
2005 if (instr->InstructionBits() == rtCallRedirInstr) {
2006 Redirection* redirection = Redirection::FromSwiInstruction(instr);
2007 int64_t arg0 = get_register(a0);
2008 int64_t arg1 = get_register(a1);
2009 int64_t arg2 = get_register(a2);
2010 int64_t arg3 = get_register(a3);
2011 int64_t arg4, arg5;
2012
2013 if (kMipsAbi == kN64) {
2014 arg4 = get_register(a4); // Abi n64 register a4.
2015 arg5 = get_register(a5); // Abi n64 register a5.
2016 } else { // Abi O32.
2017 int64_t* stack_pointer = reinterpret_cast<int64_t*>(get_register(sp));
2018 // Args 4 and 5 are on the stack after the reserved space for args 0..3.
2019 arg4 = stack_pointer[4];
2020 arg5 = stack_pointer[5];
2021 }
2022 bool fp_call =
2023 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
2024 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
2025 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
2026 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
2027
2028 if (!IsMipsSoftFloatABI) {
2029 // With the hard floating point calling convention, double
2030 // arguments are passed in FPU registers. Fetch the arguments
2031 // from there and call the builtin using soft floating point
2032 // convention.
2033 switch (redirection->type()) {
2034 case ExternalReference::BUILTIN_FP_FP_CALL:
2035 case ExternalReference::BUILTIN_COMPARE_CALL:
2036 arg0 = get_fpu_register(f12);
2037 arg1 = get_fpu_register(f13);
2038 arg2 = get_fpu_register(f14);
2039 arg3 = get_fpu_register(f15);
2040 break;
2041 case ExternalReference::BUILTIN_FP_CALL:
2042 arg0 = get_fpu_register(f12);
2043 arg1 = get_fpu_register(f13);
2044 break;
2045 case ExternalReference::BUILTIN_FP_INT_CALL:
2046 arg0 = get_fpu_register(f12);
2047 arg1 = get_fpu_register(f13);
2048 arg2 = get_register(a2);
2049 break;
2050 default:
2051 break;
2052 }
2053 }
2054
2055 // This is dodgy but it works because the C entry stubs are never moved.
2056 // See comment in codegen-arm.cc and bug 1242173.
2057 int64_t saved_ra = get_register(ra);
2058
2059 intptr_t external =
2060 reinterpret_cast<intptr_t>(redirection->external_function());
2061
2062 // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
2063 // FPU, or gcc soft-float routines. Hardware FPU is simulated in this
2064 // simulator. Soft-float has additional abstraction of ExternalReference,
2065 // to support serialization.
2066 if (fp_call) {
2067 double dval0, dval1; // one or two double parameters
2068 int32_t ival; // zero or one integer parameters
2069 int64_t iresult = 0; // integer return value
2070 double dresult = 0; // double return value
2071 GetFpArgs(&dval0, &dval1, &ival);
2072 SimulatorRuntimeCall generic_target =
2073 reinterpret_cast<SimulatorRuntimeCall>(external);
2074 if (::v8::internal::FLAG_trace_sim) {
2075 switch (redirection->type()) {
2076 case ExternalReference::BUILTIN_FP_FP_CALL:
2077 case ExternalReference::BUILTIN_COMPARE_CALL:
2078 PrintF("Call to host function at %p with args %f, %f",
2079 FUNCTION_ADDR(generic_target), dval0, dval1);
2080 break;
2081 case ExternalReference::BUILTIN_FP_CALL:
2082 PrintF("Call to host function at %p with arg %f",
2083 FUNCTION_ADDR(generic_target), dval0);
2084 break;
2085 case ExternalReference::BUILTIN_FP_INT_CALL:
2086 PrintF("Call to host function at %p with args %f, %d",
2087 FUNCTION_ADDR(generic_target), dval0, ival);
2088 break;
2089 default:
2090 UNREACHABLE();
2091 break;
2092 }
2093 }
2094 switch (redirection->type()) {
2095 case ExternalReference::BUILTIN_COMPARE_CALL: {
2096 SimulatorRuntimeCompareCall target =
2097 reinterpret_cast<SimulatorRuntimeCompareCall>(external);
2098 iresult = target(dval0, dval1);
2099 set_register(v0, static_cast<int64_t>(iresult));
2100 // set_register(v1, static_cast<int64_t>(iresult >> 32));
2101 break;
2102 }
2103 case ExternalReference::BUILTIN_FP_FP_CALL: {
2104 SimulatorRuntimeFPFPCall target =
2105 reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
2106 dresult = target(dval0, dval1);
2107 SetFpResult(dresult);
2108 break;
2109 }
2110 case ExternalReference::BUILTIN_FP_CALL: {
2111 SimulatorRuntimeFPCall target =
2112 reinterpret_cast<SimulatorRuntimeFPCall>(external);
2113 dresult = target(dval0);
2114 SetFpResult(dresult);
2115 break;
2116 }
2117 case ExternalReference::BUILTIN_FP_INT_CALL: {
2118 SimulatorRuntimeFPIntCall target =
2119 reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
2120 dresult = target(dval0, ival);
2121 SetFpResult(dresult);
2122 break;
2123 }
2124 default:
2125 UNREACHABLE();
2126 break;
2127 }
2128 if (::v8::internal::FLAG_trace_sim) {
2129 switch (redirection->type()) {
2130 case ExternalReference::BUILTIN_COMPARE_CALL:
2131 PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
2132 break;
2133 case ExternalReference::BUILTIN_FP_FP_CALL:
2134 case ExternalReference::BUILTIN_FP_CALL:
2135 case ExternalReference::BUILTIN_FP_INT_CALL:
2136 PrintF("Returned %f\n", dresult);
2137 break;
2138 default:
2139 UNREACHABLE();
2140 break;
2141 }
2142 }
2143 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
2144 if (::v8::internal::FLAG_trace_sim) {
2145 PrintF("Call to host function at %p args %08lx\n",
2146 reinterpret_cast<void*>(external), arg0);
2147 }
2148 SimulatorRuntimeDirectApiCall target =
2149 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
2150 target(arg0);
2151 } else if (
2152 redirection->type() == ExternalReference::PROFILING_API_CALL) {
2153 if (::v8::internal::FLAG_trace_sim) {
2154 PrintF("Call to host function at %p args %08lx %08lx\n",
2155 reinterpret_cast<void*>(external), arg0, arg1);
2156 }
2157 SimulatorRuntimeProfilingApiCall target =
2158 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
2159 target(arg0, Redirection::ReverseRedirection(arg1));
2160 } else if (
2161 redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
2162 if (::v8::internal::FLAG_trace_sim) {
2163 PrintF("Call to host function at %p args %08lx %08lx\n",
2164 reinterpret_cast<void*>(external), arg0, arg1);
2165 }
2166 SimulatorRuntimeDirectGetterCall target =
2167 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
2168 target(arg0, arg1);
2169 } else if (
2170 redirection->type() == ExternalReference::PROFILING_GETTER_CALL) {
2171 if (::v8::internal::FLAG_trace_sim) {
2172 PrintF("Call to host function at %p args %08lx %08lx %08lx\n",
2173 reinterpret_cast<void*>(external), arg0, arg1, arg2);
2174 }
2175 SimulatorRuntimeProfilingGetterCall target =
2176 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
2177 target(arg0, arg1, Redirection::ReverseRedirection(arg2));
2178 } else {
2179 SimulatorRuntimeCall target =
2180 reinterpret_cast<SimulatorRuntimeCall>(external);
2181 if (::v8::internal::FLAG_trace_sim) {
2182 PrintF(
2183 "Call to host function at %p "
2184 "args %08lx, %08lx, %08lx, %08lx, %08lx, %08lx\n",
2185 FUNCTION_ADDR(target),
2186 arg0,
2187 arg1,
2188 arg2,
2189 arg3,
2190 arg4,
2191 arg5);
2192 }
2193 // int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
2194 // set_register(v0, static_cast<int32_t>(result));
2195 // set_register(v1, static_cast<int32_t>(result >> 32));
2196 ObjectPair result = target(arg0, arg1, arg2, arg3, arg4, arg5);
2197 set_register(v0, (int64_t)(result.x));
2198 set_register(v1, (int64_t)(result.y));
2199 }
2200 if (::v8::internal::FLAG_trace_sim) {
2201 PrintF("Returned %08lx : %08lx\n", get_register(v1), get_register(v0));
2202 }
2203 set_register(ra, saved_ra);
2204 set_pc(get_register(ra));
2205
2206 } else if (func == BREAK && code <= kMaxStopCode) {
2207 if (IsWatchpoint(code)) {
2208 PrintWatchpoint(code);
2209 } else {
2210 IncreaseStopCounter(code);
2211 HandleStop(code, instr);
2212 }
2213 } else {
2214 // All remaining break_ codes, and all traps are handled here.
2215 MipsDebugger dbg(this);
2216 dbg.Debug();
2217 }
2218}
2219
2220
2221// Stop helper functions.
2222bool Simulator::IsWatchpoint(uint64_t code) {
2223 return (code <= kMaxWatchpointCode);
2224}
2225
2226
2227void Simulator::PrintWatchpoint(uint64_t code) {
2228 MipsDebugger dbg(this);
2229 ++break_count_;
2230 PrintF("\n---- break %ld marker: %3d (instr count: %8ld) ----------"
2231 "----------------------------------",
2232 code, break_count_, icount_);
2233 dbg.PrintAllRegs(); // Print registers and continue running.
2234}
2235
2236
2237void Simulator::HandleStop(uint64_t code, Instruction* instr) {
2238 // Stop if it is enabled, otherwise go on jumping over the stop
2239 // and the message address.
2240 if (IsEnabledStop(code)) {
2241 MipsDebugger dbg(this);
2242 dbg.Stop(instr);
2243 } else {
2244 set_pc(get_pc() + 2 * Instruction::kInstrSize);
2245 }
2246}
2247
2248
2249bool Simulator::IsStopInstruction(Instruction* instr) {
2250 int32_t func = instr->FunctionFieldRaw();
2251 uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6));
2252 return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode;
2253}
2254
2255
2256bool Simulator::IsEnabledStop(uint64_t code) {
2257 DCHECK(code <= kMaxStopCode);
2258 DCHECK(code > kMaxWatchpointCode);
2259 return !(watched_stops_[code].count & kStopDisabledBit);
2260}
2261
2262
2263void Simulator::EnableStop(uint64_t code) {
2264 if (!IsEnabledStop(code)) {
2265 watched_stops_[code].count &= ~kStopDisabledBit;
2266 }
2267}
2268
2269
2270void Simulator::DisableStop(uint64_t code) {
2271 if (IsEnabledStop(code)) {
2272 watched_stops_[code].count |= kStopDisabledBit;
2273 }
2274}
2275
2276
2277void Simulator::IncreaseStopCounter(uint64_t code) {
2278 DCHECK(code <= kMaxStopCode);
2279 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
2280 PrintF("Stop counter for code %ld has overflowed.\n"
2281 "Enabling this code and reseting the counter to 0.\n", code);
2282 watched_stops_[code].count = 0;
2283 EnableStop(code);
2284 } else {
2285 watched_stops_[code].count++;
2286 }
2287}
2288
2289
2290// Print a stop status.
2291void Simulator::PrintStopInfo(uint64_t code) {
2292 if (code <= kMaxWatchpointCode) {
2293 PrintF("That is a watchpoint, not a stop.\n");
2294 return;
2295 } else if (code > kMaxStopCode) {
2296 PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1);
2297 return;
2298 }
2299 const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled";
2300 int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
2301 // Don't print the state of unused breakpoints.
2302 if (count != 0) {
2303 if (watched_stops_[code].desc) {
2304 PrintF("stop %ld - 0x%lx: \t%s, \tcounter = %i, \t%s\n",
2305 code, code, state, count, watched_stops_[code].desc);
2306 } else {
2307 PrintF("stop %ld - 0x%lx: \t%s, \tcounter = %i\n",
2308 code, code, state, count);
2309 }
2310 }
2311}
2312
2313
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002314void Simulator::SignalException(Exception e) {
2315 V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.",
2316 static_cast<int>(e));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002317}
2318
2319
2320// Handle execution based on instruction types.
2321
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002322void Simulator::DecodeTypeRegisterSRsType() {
2323 float fs, ft, fd;
2324 fs = get_fpu_register_float(fs_reg());
2325 ft = get_fpu_register_float(ft_reg());
2326 fd = get_fpu_register_float(fd_reg());
2327 int32_t ft_int = bit_cast<int32_t>(ft);
2328 int32_t fd_int = bit_cast<int32_t>(fd);
2329 uint32_t cc, fcsr_cc;
2330 cc = get_instr()->FCccValue();
2331 fcsr_cc = get_fcsr_condition_bit(cc);
2332 switch (get_instr()->FunctionFieldRaw()) {
2333 case RINT: {
2334 DCHECK(kArchVariant == kMips64r6);
2335 float result, temp_result;
2336 double temp;
2337 float upper = std::ceil(fs);
2338 float lower = std::floor(fs);
2339 switch (get_fcsr_rounding_mode()) {
2340 case kRoundToNearest:
2341 if (upper - fs < fs - lower) {
2342 result = upper;
2343 } else if (upper - fs > fs - lower) {
2344 result = lower;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002345 } else {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002346 temp_result = upper / 2;
2347 float reminder = modf(temp_result, &temp);
2348 if (reminder == 0) {
2349 result = upper;
2350 } else {
2351 result = lower;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002352 }
2353 }
2354 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002355 case kRoundToZero:
2356 result = (fs > 0 ? lower : upper);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002357 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002358 case kRoundToPlusInf:
2359 result = upper;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002360 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002361 case kRoundToMinusInf:
2362 result = lower;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002363 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002364 }
2365 set_fpu_register_float(fd_reg(), result);
2366 if (result != fs) {
2367 set_fcsr_bit(kFCSRInexactFlagBit, true);
2368 }
2369 break;
2370 }
2371 case ADD_S:
2372 set_fpu_register_float(fd_reg(), fs + ft);
2373 break;
2374 case SUB_S:
2375 set_fpu_register_float(fd_reg(), fs - ft);
2376 break;
2377 case MUL_S:
2378 set_fpu_register_float(fd_reg(), fs * ft);
2379 break;
2380 case DIV_S:
2381 set_fpu_register_float(fd_reg(), fs / ft);
2382 break;
2383 case ABS_S:
2384 set_fpu_register_float(fd_reg(), fabs(fs));
2385 break;
2386 case MOV_S:
2387 set_fpu_register_float(fd_reg(), fs);
2388 break;
2389 case NEG_S:
2390 set_fpu_register_float(fd_reg(), -fs);
2391 break;
2392 case SQRT_S:
2393 lazily_initialize_fast_sqrt(isolate_);
2394 set_fpu_register_float(fd_reg(), fast_sqrt(fs, isolate_));
2395 break;
2396 case RSQRT_S: {
2397 lazily_initialize_fast_sqrt(isolate_);
2398 float result = 1.0 / fast_sqrt(fs, isolate_);
2399 set_fpu_register_float(fd_reg(), result);
2400 break;
2401 }
2402 case RECIP_S: {
2403 float result = 1.0 / fs;
2404 set_fpu_register_float(fd_reg(), result);
2405 break;
2406 }
2407 case C_F_D:
2408 set_fcsr_bit(fcsr_cc, false);
2409 break;
2410 case C_UN_D:
2411 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
2412 break;
2413 case C_EQ_D:
2414 set_fcsr_bit(fcsr_cc, (fs == ft));
2415 break;
2416 case C_UEQ_D:
2417 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
2418 break;
2419 case C_OLT_D:
2420 set_fcsr_bit(fcsr_cc, (fs < ft));
2421 break;
2422 case C_ULT_D:
2423 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
2424 break;
2425 case C_OLE_D:
2426 set_fcsr_bit(fcsr_cc, (fs <= ft));
2427 break;
2428 case C_ULE_D:
2429 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
2430 break;
2431 case CVT_D_S:
2432 set_fpu_register_double(fd_reg(), static_cast<double>(fs));
2433 break;
2434 case CLASS_S: { // Mips64r6 instruction
2435 // Convert float input to uint32_t for easier bit manipulation
2436 uint32_t classed = bit_cast<uint32_t>(fs);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002437
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002438 // Extracting sign, exponent and mantissa from the input float
2439 uint32_t sign = (classed >> 31) & 1;
2440 uint32_t exponent = (classed >> 23) & 0x000000ff;
2441 uint32_t mantissa = classed & 0x007fffff;
2442 uint32_t result;
2443 float fResult;
2444
2445 // Setting flags if input float is negative infinity,
2446 // positive infinity, negative zero or positive zero
2447 bool negInf = (classed == 0xFF800000);
2448 bool posInf = (classed == 0x7F800000);
2449 bool negZero = (classed == 0x80000000);
2450 bool posZero = (classed == 0x00000000);
2451
2452 bool signalingNan;
2453 bool quietNan;
2454 bool negSubnorm;
2455 bool posSubnorm;
2456 bool negNorm;
2457 bool posNorm;
2458
2459 // Setting flags if float is NaN
2460 signalingNan = false;
2461 quietNan = false;
2462 if (!negInf && !posInf && (exponent == 0xff)) {
2463 quietNan = ((mantissa & 0x00200000) == 0) &&
2464 ((mantissa & (0x00200000 - 1)) == 0);
2465 signalingNan = !quietNan;
2466 }
2467
2468 // Setting flags if float is subnormal number
2469 posSubnorm = false;
2470 negSubnorm = false;
2471 if ((exponent == 0) && (mantissa != 0)) {
2472 DCHECK(sign == 0 || sign == 1);
2473 posSubnorm = (sign == 0);
2474 negSubnorm = (sign == 1);
2475 }
2476
2477 // Setting flags if float is normal number
2478 posNorm = false;
2479 negNorm = false;
2480 if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan &&
2481 !quietNan && !negZero && !posZero) {
2482 DCHECK(sign == 0 || sign == 1);
2483 posNorm = (sign == 0);
2484 negNorm = (sign == 1);
2485 }
2486
2487 // Calculating result according to description of CLASS.S instruction
2488 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
2489 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
2490 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
2491
2492 DCHECK(result != 0);
2493
2494 fResult = bit_cast<float>(result);
2495 set_fpu_register_float(fd_reg(), fResult);
2496
2497 break;
2498 }
2499 case CVT_L_S: {
2500 float rounded;
2501 int64_t result;
2502 round64_according_to_fcsr(fs, rounded, result, fs);
2503 set_fpu_register(fd_reg(), result);
2504 if (set_fcsr_round64_error(fs, rounded)) {
2505 set_fpu_register_invalid_result64(fs, rounded);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002506 }
2507 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002508 }
2509 case CVT_W_S: {
2510 float rounded;
2511 int32_t result;
2512 round_according_to_fcsr(fs, rounded, result, fs);
2513 set_fpu_register_word(fd_reg(), result);
2514 if (set_fcsr_round_error(fs, rounded)) {
2515 set_fpu_register_word_invalid_result(fs, rounded);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002516 }
2517 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002518 }
2519 case TRUNC_W_S: { // Truncate single to word (round towards 0).
2520 float rounded = trunc(fs);
2521 int32_t result = static_cast<int32_t>(rounded);
2522 set_fpu_register_word(fd_reg(), result);
2523 if (set_fcsr_round_error(fs, rounded)) {
2524 set_fpu_register_word_invalid_result(fs, rounded);
2525 }
2526 } break;
2527 case TRUNC_L_S: { // Mips64r2 instruction.
2528 float rounded = trunc(fs);
2529 int64_t result = static_cast<int64_t>(rounded);
2530 set_fpu_register(fd_reg(), result);
2531 if (set_fcsr_round64_error(fs, rounded)) {
2532 set_fpu_register_invalid_result64(fs, rounded);
2533 }
2534 break;
2535 }
2536 case ROUND_W_S: {
2537 float rounded = std::floor(fs + 0.5);
2538 int32_t result = static_cast<int32_t>(rounded);
2539 if ((result & 1) != 0 && result - fs == 0.5) {
2540 // If the number is halfway between two integers,
2541 // round to the even one.
2542 result--;
2543 }
2544 set_fpu_register_word(fd_reg(), result);
2545 if (set_fcsr_round_error(fs, rounded)) {
2546 set_fpu_register_word_invalid_result(fs, rounded);
2547 }
2548 break;
2549 }
2550 case ROUND_L_S: { // Mips64r2 instruction.
2551 float rounded = std::floor(fs + 0.5);
2552 int64_t result = static_cast<int64_t>(rounded);
2553 if ((result & 1) != 0 && result - fs == 0.5) {
2554 // If the number is halfway between two integers,
2555 // round to the even one.
2556 result--;
2557 }
2558 int64_t i64 = static_cast<int64_t>(result);
2559 set_fpu_register(fd_reg(), i64);
2560 if (set_fcsr_round64_error(fs, rounded)) {
2561 set_fpu_register_invalid_result64(fs, rounded);
2562 }
2563 break;
2564 }
2565 case FLOOR_L_S: { // Mips64r2 instruction.
2566 float rounded = floor(fs);
2567 int64_t result = static_cast<int64_t>(rounded);
2568 set_fpu_register(fd_reg(), result);
2569 if (set_fcsr_round64_error(fs, rounded)) {
2570 set_fpu_register_invalid_result64(fs, rounded);
2571 }
2572 break;
2573 }
2574 case FLOOR_W_S: // Round double to word towards negative infinity.
2575 {
2576 float rounded = std::floor(fs);
2577 int32_t result = static_cast<int32_t>(rounded);
2578 set_fpu_register_word(fd_reg(), result);
2579 if (set_fcsr_round_error(fs, rounded)) {
2580 set_fpu_register_word_invalid_result(fs, rounded);
2581 }
2582 } break;
2583 case CEIL_W_S: // Round double to word towards positive infinity.
2584 {
2585 float rounded = std::ceil(fs);
2586 int32_t result = static_cast<int32_t>(rounded);
2587 set_fpu_register_word(fd_reg(), result);
2588 if (set_fcsr_round_error(fs, rounded)) {
2589 set_fpu_register_invalid_result(fs, rounded);
2590 }
2591 } break;
2592 case CEIL_L_S: { // Mips64r2 instruction.
2593 float rounded = ceil(fs);
2594 int64_t result = static_cast<int64_t>(rounded);
2595 set_fpu_register(fd_reg(), result);
2596 if (set_fcsr_round64_error(fs, rounded)) {
2597 set_fpu_register_invalid_result64(fs, rounded);
2598 }
2599 break;
2600 }
2601 case MINA:
2602 DCHECK(kArchVariant == kMips64r6);
2603 fs = get_fpu_register_float(fs_reg());
2604 if (std::isnan(fs) && std::isnan(ft)) {
2605 set_fpu_register_float(fd_reg(), fs);
2606 } else if (std::isnan(fs) && !std::isnan(ft)) {
2607 set_fpu_register_float(fd_reg(), ft);
2608 } else if (!std::isnan(fs) && std::isnan(ft)) {
2609 set_fpu_register_float(fd_reg(), fs);
2610 } else {
2611 float result;
2612 if (fabs(fs) > fabs(ft)) {
2613 result = ft;
2614 } else if (fabs(fs) < fabs(ft)) {
2615 result = fs;
2616 } else {
2617 result = (fs < ft ? fs : ft);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002618 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002619 set_fpu_register_float(fd_reg(), result);
2620 }
2621 break;
2622 case MAXA:
2623 DCHECK(kArchVariant == kMips64r6);
2624 fs = get_fpu_register_float(fs_reg());
2625 if (std::isnan(fs) && std::isnan(ft)) {
2626 set_fpu_register_float(fd_reg(), fs);
2627 } else if (std::isnan(fs) && !std::isnan(ft)) {
2628 set_fpu_register_float(fd_reg(), ft);
2629 } else if (!std::isnan(fs) && std::isnan(ft)) {
2630 set_fpu_register_float(fd_reg(), fs);
2631 } else {
2632 float result;
2633 if (fabs(fs) < fabs(ft)) {
2634 result = ft;
2635 } else if (fabs(fs) > fabs(ft)) {
2636 result = fs;
2637 } else {
2638 result = (fs > ft ? fs : ft);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002639 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002640 set_fpu_register_float(fd_reg(), result);
2641 }
2642 break;
2643 case MIN:
2644 DCHECK(kArchVariant == kMips64r6);
2645 fs = get_fpu_register_float(fs_reg());
2646 if (std::isnan(fs) && std::isnan(ft)) {
2647 set_fpu_register_float(fd_reg(), fs);
2648 } else if (std::isnan(fs) && !std::isnan(ft)) {
2649 set_fpu_register_float(fd_reg(), ft);
2650 } else if (!std::isnan(fs) && std::isnan(ft)) {
2651 set_fpu_register_float(fd_reg(), fs);
2652 } else {
2653 set_fpu_register_float(fd_reg(), (fs >= ft) ? ft : fs);
2654 }
2655 break;
2656 case MAX:
2657 DCHECK(kArchVariant == kMips64r6);
2658 fs = get_fpu_register_float(fs_reg());
2659 if (std::isnan(fs) && std::isnan(ft)) {
2660 set_fpu_register_float(fd_reg(), fs);
2661 } else if (std::isnan(fs) && !std::isnan(ft)) {
2662 set_fpu_register_float(fd_reg(), ft);
2663 } else if (!std::isnan(fs) && std::isnan(ft)) {
2664 set_fpu_register_float(fd_reg(), fs);
2665 } else {
2666 set_fpu_register_float(fd_reg(), (fs <= ft) ? ft : fs);
2667 }
2668 break;
2669 case SEL:
2670 DCHECK(kArchVariant == kMips64r6);
2671 set_fpu_register_float(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
2672 break;
2673 case SELEQZ_C:
2674 DCHECK(kArchVariant == kMips64r6);
2675 set_fpu_register_float(fd_reg(), (ft_int & 0x1) == 0
2676 ? get_fpu_register_float(fs_reg())
2677 : 0.0);
2678 break;
2679 case SELNEZ_C:
2680 DCHECK(kArchVariant == kMips64r6);
2681 set_fpu_register_float(fd_reg(), (ft_int & 0x1) != 0
2682 ? get_fpu_register_float(fs_reg())
2683 : 0.0);
2684 break;
2685 case MOVZ_C: {
2686 DCHECK(kArchVariant == kMips64r2);
2687 if (rt() == 0) {
2688 set_fpu_register_float(fd_reg(), fs);
2689 }
2690 break;
2691 }
2692 case MOVN_C: {
2693 DCHECK(kArchVariant == kMips64r2);
2694 if (rt() != 0) {
2695 set_fpu_register_float(fd_reg(), fs);
2696 }
2697 break;
2698 }
2699 case MOVF: {
2700 // Same function field for MOVT.D and MOVF.D
2701 uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
2702 ft_cc = get_fcsr_condition_bit(ft_cc);
2703
2704 if (get_instr()->Bit(16)) { // Read Tf bit.
2705 // MOVT.D
2706 if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs);
2707 } else {
2708 // MOVF.D
2709 if (!test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs);
2710 }
2711 break;
2712 }
2713 default:
2714 // TRUNC_W_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S
2715 // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented.
2716 UNREACHABLE();
2717 }
2718}
2719
2720
2721void Simulator::DecodeTypeRegisterDRsType() {
2722 double ft, fs, fd;
2723 uint32_t cc, fcsr_cc;
2724 fs = get_fpu_register_double(fs_reg());
2725 ft = (get_instr()->FunctionFieldRaw() != MOVF)
2726 ? get_fpu_register_double(ft_reg())
2727 : 0.0;
2728 fd = get_fpu_register_double(fd_reg());
2729 cc = get_instr()->FCccValue();
2730 fcsr_cc = get_fcsr_condition_bit(cc);
2731 int64_t ft_int = bit_cast<int64_t>(ft);
2732 int64_t fd_int = bit_cast<int64_t>(fd);
2733 switch (get_instr()->FunctionFieldRaw()) {
2734 case RINT: {
2735 DCHECK(kArchVariant == kMips64r6);
2736 double result, temp, temp_result;
2737 double upper = std::ceil(fs);
2738 double lower = std::floor(fs);
2739 switch (get_fcsr_rounding_mode()) {
2740 case kRoundToNearest:
2741 if (upper - fs < fs - lower) {
2742 result = upper;
2743 } else if (upper - fs > fs - lower) {
2744 result = lower;
2745 } else {
2746 temp_result = upper / 2;
2747 double reminder = modf(temp_result, &temp);
2748 if (reminder == 0) {
2749 result = upper;
2750 } else {
2751 result = lower;
2752 }
2753 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002754 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002755 case kRoundToZero:
2756 result = (fs > 0 ? lower : upper);
2757 break;
2758 case kRoundToPlusInf:
2759 result = upper;
2760 break;
2761 case kRoundToMinusInf:
2762 result = lower;
2763 break;
2764 }
2765 set_fpu_register_double(fd_reg(), result);
2766 if (result != fs) {
2767 set_fcsr_bit(kFCSRInexactFlagBit, true);
2768 }
2769 break;
2770 }
2771 case SEL:
2772 DCHECK(kArchVariant == kMips64r6);
2773 set_fpu_register_double(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
2774 break;
2775 case SELEQZ_C:
2776 DCHECK(kArchVariant == kMips64r6);
2777 set_fpu_register_double(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0);
2778 break;
2779 case SELNEZ_C:
2780 DCHECK(kArchVariant == kMips64r6);
2781 set_fpu_register_double(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0);
2782 break;
2783 case MOVZ_C: {
2784 DCHECK(kArchVariant == kMips64r2);
2785 if (rt() == 0) {
2786 set_fpu_register_double(fd_reg(), fs);
2787 }
2788 break;
2789 }
2790 case MOVN_C: {
2791 DCHECK(kArchVariant == kMips64r2);
2792 if (rt() != 0) {
2793 set_fpu_register_double(fd_reg(), fs);
2794 }
2795 break;
2796 }
2797 case MOVF: {
2798 // Same function field for MOVT.D and MOVF.D
2799 uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
2800 ft_cc = get_fcsr_condition_bit(ft_cc);
2801 if (get_instr()->Bit(16)) { // Read Tf bit.
2802 // MOVT.D
2803 if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
2804 } else {
2805 // MOVF.D
2806 if (!test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
2807 }
2808 break;
2809 }
2810 case MINA:
2811 DCHECK(kArchVariant == kMips64r6);
2812 fs = get_fpu_register_double(fs_reg());
2813 if (std::isnan(fs) && std::isnan(ft)) {
2814 set_fpu_register_double(fd_reg(), fs);
2815 } else if (std::isnan(fs) && !std::isnan(ft)) {
2816 set_fpu_register_double(fd_reg(), ft);
2817 } else if (!std::isnan(fs) && std::isnan(ft)) {
2818 set_fpu_register_double(fd_reg(), fs);
2819 } else {
2820 double result;
2821 if (fabs(fs) > fabs(ft)) {
2822 result = ft;
2823 } else if (fabs(fs) < fabs(ft)) {
2824 result = fs;
2825 } else {
2826 result = (fs < ft ? fs : ft);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002827 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002828 set_fpu_register_double(fd_reg(), result);
2829 }
2830 break;
2831 case MAXA:
2832 DCHECK(kArchVariant == kMips64r6);
2833 fs = get_fpu_register_double(fs_reg());
2834 if (std::isnan(fs) && std::isnan(ft)) {
2835 set_fpu_register_double(fd_reg(), fs);
2836 } else if (std::isnan(fs) && !std::isnan(ft)) {
2837 set_fpu_register_double(fd_reg(), ft);
2838 } else if (!std::isnan(fs) && std::isnan(ft)) {
2839 set_fpu_register_double(fd_reg(), fs);
2840 } else {
2841 double result;
2842 if (fabs(fs) < fabs(ft)) {
2843 result = ft;
2844 } else if (fabs(fs) > fabs(ft)) {
2845 result = fs;
2846 } else {
2847 result = (fs > ft ? fs : ft);
2848 }
2849 set_fpu_register_double(fd_reg(), result);
2850 }
2851 break;
2852 case MIN:
2853 DCHECK(kArchVariant == kMips64r6);
2854 fs = get_fpu_register_double(fs_reg());
2855 if (std::isnan(fs) && std::isnan(ft)) {
2856 set_fpu_register_double(fd_reg(), fs);
2857 } else if (std::isnan(fs) && !std::isnan(ft)) {
2858 set_fpu_register_double(fd_reg(), ft);
2859 } else if (!std::isnan(fs) && std::isnan(ft)) {
2860 set_fpu_register_double(fd_reg(), fs);
2861 } else {
2862 set_fpu_register_double(fd_reg(), (fs >= ft) ? ft : fs);
2863 }
2864 break;
2865 case MAX:
2866 DCHECK(kArchVariant == kMips64r6);
2867 fs = get_fpu_register_double(fs_reg());
2868 if (std::isnan(fs) && std::isnan(ft)) {
2869 set_fpu_register_double(fd_reg(), fs);
2870 } else if (std::isnan(fs) && !std::isnan(ft)) {
2871 set_fpu_register_double(fd_reg(), ft);
2872 } else if (!std::isnan(fs) && std::isnan(ft)) {
2873 set_fpu_register_double(fd_reg(), fs);
2874 } else {
2875 set_fpu_register_double(fd_reg(), (fs <= ft) ? ft : fs);
2876 }
2877 break;
2878 case ADD_D:
2879 set_fpu_register_double(fd_reg(), fs + ft);
2880 break;
2881 case SUB_D:
2882 set_fpu_register_double(fd_reg(), fs - ft);
2883 break;
2884 case MUL_D:
2885 set_fpu_register_double(fd_reg(), fs * ft);
2886 break;
2887 case DIV_D:
2888 set_fpu_register_double(fd_reg(), fs / ft);
2889 break;
2890 case ABS_D:
2891 set_fpu_register_double(fd_reg(), fabs(fs));
2892 break;
2893 case MOV_D:
2894 set_fpu_register_double(fd_reg(), fs);
2895 break;
2896 case NEG_D:
2897 set_fpu_register_double(fd_reg(), -fs);
2898 break;
2899 case SQRT_D:
2900 lazily_initialize_fast_sqrt(isolate_);
2901 set_fpu_register_double(fd_reg(), fast_sqrt(fs, isolate_));
2902 break;
2903 case RSQRT_D: {
2904 lazily_initialize_fast_sqrt(isolate_);
2905 double result = 1.0 / fast_sqrt(fs, isolate_);
2906 set_fpu_register_double(fd_reg(), result);
2907 break;
2908 }
2909 case RECIP_D: {
2910 double result = 1.0 / fs;
2911 set_fpu_register_double(fd_reg(), result);
2912 break;
2913 }
2914 case C_UN_D:
2915 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
2916 break;
2917 case C_EQ_D:
2918 set_fcsr_bit(fcsr_cc, (fs == ft));
2919 break;
2920 case C_UEQ_D:
2921 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
2922 break;
2923 case C_OLT_D:
2924 set_fcsr_bit(fcsr_cc, (fs < ft));
2925 break;
2926 case C_ULT_D:
2927 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
2928 break;
2929 case C_OLE_D:
2930 set_fcsr_bit(fcsr_cc, (fs <= ft));
2931 break;
2932 case C_ULE_D:
2933 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
2934 break;
2935 case CVT_W_D: { // Convert double to word.
2936 double rounded;
2937 int32_t result;
2938 round_according_to_fcsr(fs, rounded, result, fs);
2939 set_fpu_register_word(fd_reg(), result);
2940 if (set_fcsr_round_error(fs, rounded)) {
2941 set_fpu_register_word_invalid_result(fs, rounded);
2942 }
2943 break;
2944 }
2945 case ROUND_W_D: // Round double to word (round half to even).
2946 {
2947 double rounded = std::floor(fs + 0.5);
2948 int32_t result = static_cast<int32_t>(rounded);
2949 if ((result & 1) != 0 && result - fs == 0.5) {
2950 // If the number is halfway between two integers,
2951 // round to the even one.
2952 result--;
2953 }
2954 set_fpu_register_word(fd_reg(), result);
2955 if (set_fcsr_round_error(fs, rounded)) {
2956 set_fpu_register_invalid_result(fs, rounded);
2957 }
2958 } break;
2959 case TRUNC_W_D: // Truncate double to word (round towards 0).
2960 {
2961 double rounded = trunc(fs);
2962 int32_t result = static_cast<int32_t>(rounded);
2963 set_fpu_register_word(fd_reg(), result);
2964 if (set_fcsr_round_error(fs, rounded)) {
2965 set_fpu_register_invalid_result(fs, rounded);
2966 }
2967 } break;
2968 case FLOOR_W_D: // Round double to word towards negative infinity.
2969 {
2970 double rounded = std::floor(fs);
2971 int32_t result = static_cast<int32_t>(rounded);
2972 set_fpu_register_word(fd_reg(), result);
2973 if (set_fcsr_round_error(fs, rounded)) {
2974 set_fpu_register_invalid_result(fs, rounded);
2975 }
2976 } break;
2977 case CEIL_W_D: // Round double to word towards positive infinity.
2978 {
2979 double rounded = std::ceil(fs);
2980 int32_t result = static_cast<int32_t>(rounded);
2981 set_fpu_register_word(fd_reg(), result);
2982 if (set_fcsr_round_error(fs, rounded)) {
2983 set_fpu_register_invalid_result(fs, rounded);
2984 }
2985 } break;
2986 case CVT_S_D: // Convert double to float (single).
2987 set_fpu_register_float(fd_reg(), static_cast<float>(fs));
2988 break;
2989 case CVT_L_D: { // Mips64r2: Truncate double to 64-bit long-word.
2990 double rounded;
2991 int64_t result;
2992 round64_according_to_fcsr(fs, rounded, result, fs);
2993 set_fpu_register(fd_reg(), result);
2994 if (set_fcsr_round64_error(fs, rounded)) {
2995 set_fpu_register_invalid_result64(fs, rounded);
2996 }
2997 break;
2998 }
2999 case ROUND_L_D: { // Mips64r2 instruction.
3000 double rounded = std::floor(fs + 0.5);
3001 int64_t result = static_cast<int64_t>(rounded);
3002 if ((result & 1) != 0 && result - fs == 0.5) {
3003 // If the number is halfway between two integers,
3004 // round to the even one.
3005 result--;
3006 }
3007 int64_t i64 = static_cast<int64_t>(result);
3008 set_fpu_register(fd_reg(), i64);
3009 if (set_fcsr_round64_error(fs, rounded)) {
3010 set_fpu_register_invalid_result64(fs, rounded);
3011 }
3012 break;
3013 }
3014 case TRUNC_L_D: { // Mips64r2 instruction.
3015 double rounded = trunc(fs);
3016 int64_t result = static_cast<int64_t>(rounded);
3017 set_fpu_register(fd_reg(), result);
3018 if (set_fcsr_round64_error(fs, rounded)) {
3019 set_fpu_register_invalid_result64(fs, rounded);
3020 }
3021 break;
3022 }
3023 case FLOOR_L_D: { // Mips64r2 instruction.
3024 double rounded = floor(fs);
3025 int64_t result = static_cast<int64_t>(rounded);
3026 set_fpu_register(fd_reg(), result);
3027 if (set_fcsr_round64_error(fs, rounded)) {
3028 set_fpu_register_invalid_result64(fs, rounded);
3029 }
3030 break;
3031 }
3032 case CEIL_L_D: { // Mips64r2 instruction.
3033 double rounded = ceil(fs);
3034 int64_t result = static_cast<int64_t>(rounded);
3035 set_fpu_register(fd_reg(), result);
3036 if (set_fcsr_round64_error(fs, rounded)) {
3037 set_fpu_register_invalid_result64(fs, rounded);
3038 }
3039 break;
3040 }
3041 case CLASS_D: { // Mips64r6 instruction
3042 // Convert double input to uint64_t for easier bit manipulation
3043 uint64_t classed = bit_cast<uint64_t>(fs);
3044
3045 // Extracting sign, exponent and mantissa from the input double
3046 uint32_t sign = (classed >> 63) & 1;
3047 uint32_t exponent = (classed >> 52) & 0x00000000000007ff;
3048 uint64_t mantissa = classed & 0x000fffffffffffff;
3049 uint64_t result;
3050 double dResult;
3051
3052 // Setting flags if input double is negative infinity,
3053 // positive infinity, negative zero or positive zero
3054 bool negInf = (classed == 0xFFF0000000000000);
3055 bool posInf = (classed == 0x7FF0000000000000);
3056 bool negZero = (classed == 0x8000000000000000);
3057 bool posZero = (classed == 0x0000000000000000);
3058
3059 bool signalingNan;
3060 bool quietNan;
3061 bool negSubnorm;
3062 bool posSubnorm;
3063 bool negNorm;
3064 bool posNorm;
3065
3066 // Setting flags if double is NaN
3067 signalingNan = false;
3068 quietNan = false;
3069 if (!negInf && !posInf && exponent == 0x7ff) {
3070 quietNan = ((mantissa & 0x0008000000000000) != 0) &&
3071 ((mantissa & (0x0008000000000000 - 1)) == 0);
3072 signalingNan = !quietNan;
3073 }
3074
3075 // Setting flags if double is subnormal number
3076 posSubnorm = false;
3077 negSubnorm = false;
3078 if ((exponent == 0) && (mantissa != 0)) {
3079 DCHECK(sign == 0 || sign == 1);
3080 posSubnorm = (sign == 0);
3081 negSubnorm = (sign == 1);
3082 }
3083
3084 // Setting flags if double is normal number
3085 posNorm = false;
3086 negNorm = false;
3087 if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan &&
3088 !quietNan && !negZero && !posZero) {
3089 DCHECK(sign == 0 || sign == 1);
3090 posNorm = (sign == 0);
3091 negNorm = (sign == 1);
3092 }
3093
3094 // Calculating result according to description of CLASS.D instruction
3095 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
3096 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
3097 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
3098
3099 DCHECK(result != 0);
3100
3101 dResult = bit_cast<double>(result);
3102 set_fpu_register_double(fd_reg(), dResult);
3103
3104 break;
3105 }
3106 case C_F_D: {
3107 set_fcsr_bit(fcsr_cc, false);
3108 break;
3109 }
3110 default:
3111 UNREACHABLE();
3112 }
3113}
3114
3115
3116void Simulator::DecodeTypeRegisterWRsType() {
3117 float fs = get_fpu_register_float(fs_reg());
3118 float ft = get_fpu_register_float(ft_reg());
3119 int64_t alu_out = 0x12345678;
3120 switch (get_instr()->FunctionFieldRaw()) {
3121 case CVT_S_W: // Convert word to float (single).
3122 alu_out = get_fpu_register_signed_word(fs_reg());
3123 set_fpu_register_float(fd_reg(), static_cast<float>(alu_out));
3124 break;
3125 case CVT_D_W: // Convert word to double.
3126 alu_out = get_fpu_register_signed_word(fs_reg());
3127 set_fpu_register_double(fd_reg(), static_cast<double>(alu_out));
3128 break;
3129 case CMP_AF:
3130 set_fpu_register_word(fd_reg(), 0);
3131 break;
3132 case CMP_UN:
3133 if (std::isnan(fs) || std::isnan(ft)) {
3134 set_fpu_register_word(fd_reg(), -1);
3135 } else {
3136 set_fpu_register_word(fd_reg(), 0);
3137 }
3138 break;
3139 case CMP_EQ:
3140 if (fs == ft) {
3141 set_fpu_register_word(fd_reg(), -1);
3142 } else {
3143 set_fpu_register_word(fd_reg(), 0);
3144 }
3145 break;
3146 case CMP_UEQ:
3147 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
3148 set_fpu_register_word(fd_reg(), -1);
3149 } else {
3150 set_fpu_register_word(fd_reg(), 0);
3151 }
3152 break;
3153 case CMP_LT:
3154 if (fs < ft) {
3155 set_fpu_register_word(fd_reg(), -1);
3156 } else {
3157 set_fpu_register_word(fd_reg(), 0);
3158 }
3159 break;
3160 case CMP_ULT:
3161 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
3162 set_fpu_register_word(fd_reg(), -1);
3163 } else {
3164 set_fpu_register_word(fd_reg(), 0);
3165 }
3166 break;
3167 case CMP_LE:
3168 if (fs <= ft) {
3169 set_fpu_register_word(fd_reg(), -1);
3170 } else {
3171 set_fpu_register_word(fd_reg(), 0);
3172 }
3173 break;
3174 case CMP_ULE:
3175 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
3176 set_fpu_register_word(fd_reg(), -1);
3177 } else {
3178 set_fpu_register_word(fd_reg(), 0);
3179 }
3180 break;
3181 case CMP_OR:
3182 if (!std::isnan(fs) && !std::isnan(ft)) {
3183 set_fpu_register_word(fd_reg(), -1);
3184 } else {
3185 set_fpu_register_word(fd_reg(), 0);
3186 }
3187 break;
3188 case CMP_UNE:
3189 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
3190 set_fpu_register_word(fd_reg(), -1);
3191 } else {
3192 set_fpu_register_word(fd_reg(), 0);
3193 }
3194 break;
3195 case CMP_NE:
3196 if (fs != ft) {
3197 set_fpu_register_word(fd_reg(), -1);
3198 } else {
3199 set_fpu_register_word(fd_reg(), 0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003200 }
3201 break;
3202 default:
3203 UNREACHABLE();
3204 }
3205}
3206
3207
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003208void Simulator::DecodeTypeRegisterLRsType() {
3209 double fs = get_fpu_register_double(fs_reg());
3210 double ft = get_fpu_register_double(ft_reg());
3211 int64_t i64;
3212 switch (get_instr()->FunctionFieldRaw()) {
3213 case CVT_D_L: // Mips32r2 instruction.
3214 i64 = get_fpu_register(fs_reg());
3215 set_fpu_register_double(fd_reg(), static_cast<double>(i64));
3216 break;
3217 case CVT_S_L:
3218 i64 = get_fpu_register(fs_reg());
3219 set_fpu_register_float(fd_reg(), static_cast<float>(i64));
3220 break;
3221 case CMP_AF:
3222 set_fpu_register(fd_reg(), 0);
3223 break;
3224 case CMP_UN:
3225 if (std::isnan(fs) || std::isnan(ft)) {
3226 set_fpu_register(fd_reg(), -1);
3227 } else {
3228 set_fpu_register(fd_reg(), 0);
3229 }
3230 break;
3231 case CMP_EQ:
3232 if (fs == ft) {
3233 set_fpu_register(fd_reg(), -1);
3234 } else {
3235 set_fpu_register(fd_reg(), 0);
3236 }
3237 break;
3238 case CMP_UEQ:
3239 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
3240 set_fpu_register(fd_reg(), -1);
3241 } else {
3242 set_fpu_register(fd_reg(), 0);
3243 }
3244 break;
3245 case CMP_LT:
3246 if (fs < ft) {
3247 set_fpu_register(fd_reg(), -1);
3248 } else {
3249 set_fpu_register(fd_reg(), 0);
3250 }
3251 break;
3252 case CMP_ULT:
3253 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
3254 set_fpu_register(fd_reg(), -1);
3255 } else {
3256 set_fpu_register(fd_reg(), 0);
3257 }
3258 break;
3259 case CMP_LE:
3260 if (fs <= ft) {
3261 set_fpu_register(fd_reg(), -1);
3262 } else {
3263 set_fpu_register(fd_reg(), 0);
3264 }
3265 break;
3266 case CMP_ULE:
3267 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
3268 set_fpu_register(fd_reg(), -1);
3269 } else {
3270 set_fpu_register(fd_reg(), 0);
3271 }
3272 break;
3273 case CMP_OR:
3274 if (!std::isnan(fs) && !std::isnan(ft)) {
3275 set_fpu_register(fd_reg(), -1);
3276 } else {
3277 set_fpu_register(fd_reg(), 0);
3278 }
3279 break;
3280 case CMP_UNE:
3281 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
3282 set_fpu_register(fd_reg(), -1);
3283 } else {
3284 set_fpu_register(fd_reg(), 0);
3285 }
3286 break;
3287 case CMP_NE:
3288 if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) {
3289 set_fpu_register(fd_reg(), -1);
3290 } else {
3291 set_fpu_register(fd_reg(), 0);
3292 }
3293 break;
3294 default:
3295 UNREACHABLE();
3296 }
3297}
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003298
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003299
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003300void Simulator::DecodeTypeRegisterCOP1() {
3301 switch (get_instr()->RsFieldRaw()) {
3302 case BC1: // Branch on coprocessor condition.
3303 case BC1EQZ:
3304 case BC1NEZ:
3305 UNREACHABLE();
3306 break;
3307 case CFC1:
3308 // At the moment only FCSR is supported.
3309 DCHECK(fs_reg() == kFCSRRegister);
3310 set_register(rt_reg(), FCSR_);
3311 break;
3312 case MFC1:
3313 set_register(rt_reg(),
3314 static_cast<int64_t>(get_fpu_register_word(fs_reg())));
3315 break;
3316 case DMFC1:
3317 set_register(rt_reg(), get_fpu_register(fs_reg()));
3318 break;
3319 case MFHC1:
3320 set_register(rt_reg(), get_fpu_register_hi_word(fs_reg()));
3321 break;
3322 case CTC1: {
3323 // At the moment only FCSR is supported.
3324 DCHECK(fs_reg() == kFCSRRegister);
3325 uint32_t reg = static_cast<uint32_t>(rt());
3326 if (kArchVariant == kMips64r6) {
3327 FCSR_ = reg | kFCSRNaN2008FlagMask;
3328 } else {
3329 DCHECK(kArchVariant == kMips64r2);
3330 FCSR_ = reg & ~kFCSRNaN2008FlagMask;
3331 }
3332 break;
3333 }
3334 case MTC1:
3335 // Hardware writes upper 32-bits to zero on mtc1.
3336 set_fpu_register_hi_word(fs_reg(), 0);
3337 set_fpu_register_word(fs_reg(), static_cast<int32_t>(rt()));
3338 break;
3339 case DMTC1:
3340 set_fpu_register(fs_reg(), rt());
3341 break;
3342 case MTHC1:
3343 set_fpu_register_hi_word(fs_reg(), static_cast<int32_t>(rt()));
3344 break;
3345 case S:
3346 DecodeTypeRegisterSRsType();
3347 break;
3348 case D:
3349 DecodeTypeRegisterDRsType();
3350 break;
3351 case W:
3352 DecodeTypeRegisterWRsType();
3353 break;
3354 case L:
3355 DecodeTypeRegisterLRsType();
3356 break;
3357 default:
3358 UNREACHABLE();
3359 }
3360}
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003361
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003362
3363void Simulator::DecodeTypeRegisterCOP1X() {
3364 switch (get_instr()->FunctionFieldRaw()) {
3365 case MADD_D:
3366 double fr, ft, fs;
3367 fr = get_fpu_register_double(fr_reg());
3368 fs = get_fpu_register_double(fs_reg());
3369 ft = get_fpu_register_double(ft_reg());
3370 set_fpu_register_double(fd_reg(), fs * ft + fr);
3371 break;
3372 default:
3373 UNREACHABLE();
3374 }
3375}
3376
3377
3378void Simulator::DecodeTypeRegisterSPECIAL() {
3379 int64_t i64hilo;
3380 uint64_t u64hilo;
3381 int64_t alu_out;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003382 bool do_interrupt = false;
3383
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003384 switch (get_instr()->FunctionFieldRaw()) {
3385 case SELEQZ_S:
3386 DCHECK(kArchVariant == kMips64r6);
3387 set_register(rd_reg(), rt() == 0 ? rs() : 0);
3388 break;
3389 case SELNEZ_S:
3390 DCHECK(kArchVariant == kMips64r6);
3391 set_register(rd_reg(), rt() != 0 ? rs() : 0);
3392 break;
3393 case JR: {
3394 int64_t next_pc = rs();
3395 int64_t current_pc = get_pc();
3396 Instruction* branch_delay_instr =
3397 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
3398 BranchDelayInstructionDecode(branch_delay_instr);
3399 set_pc(next_pc);
3400 pc_modified_ = true;
3401 break;
3402 }
3403 case JALR: {
3404 int64_t next_pc = rs();
3405 int64_t current_pc = get_pc();
3406 int32_t return_addr_reg = rd_reg();
3407 Instruction* branch_delay_instr =
3408 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
3409 BranchDelayInstructionDecode(branch_delay_instr);
3410 set_register(return_addr_reg, current_pc + 2 * Instruction::kInstrSize);
3411 set_pc(next_pc);
3412 pc_modified_ = true;
3413 break;
3414 }
3415 case SLL:
3416 SetResult(rd_reg(), static_cast<int32_t>(rt()) << sa());
3417 break;
3418 case DSLL:
3419 SetResult(rd_reg(), rt() << sa());
3420 break;
3421 case DSLL32:
3422 SetResult(rd_reg(), rt() << sa() << 32);
3423 break;
3424 case SRL:
3425 if (rs_reg() == 0) {
3426 // Regular logical right shift of a word by a fixed number of
3427 // bits instruction. RS field is always equal to 0.
3428 // Sign-extend the 32-bit result.
3429 alu_out = static_cast<int32_t>(static_cast<uint32_t>(rt_u()) >> sa());
3430 } else {
3431 // Logical right-rotate of a word by a fixed number of bits. This
3432 // is special case of SRL instruction, added in MIPS32 Release 2.
3433 // RS field is equal to 00001.
3434 alu_out = static_cast<int32_t>(
3435 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()),
3436 static_cast<const uint32_t>(sa())));
3437 }
3438 SetResult(rd_reg(), alu_out);
3439 break;
3440 case DSRL:
3441 SetResult(rd_reg(), rt_u() >> sa());
3442 break;
3443 case DSRL32:
3444 SetResult(rd_reg(), rt_u() >> sa() >> 32);
3445 break;
3446 case SRA:
3447 SetResult(rd_reg(), (int32_t)rt() >> sa());
3448 break;
3449 case DSRA:
3450 SetResult(rd_reg(), rt() >> sa());
3451 break;
3452 case DSRA32:
3453 SetResult(rd_reg(), rt() >> sa() >> 32);
3454 break;
3455 case SLLV:
3456 SetResult(rd_reg(), (int32_t)rt() << rs());
3457 break;
3458 case DSLLV:
3459 SetResult(rd_reg(), rt() << rs());
3460 break;
3461 case SRLV:
3462 if (sa() == 0) {
3463 // Regular logical right-shift of a word by a variable number of
3464 // bits instruction. SA field is always equal to 0.
3465 alu_out = static_cast<int32_t>((uint32_t)rt_u() >> rs());
3466 } else {
3467 // Logical right-rotate of a word by a variable number of bits.
3468 // This is special case od SRLV instruction, added in MIPS32
3469 // Release 2. SA field is equal to 00001.
3470 alu_out = static_cast<int32_t>(
3471 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()),
3472 static_cast<const uint32_t>(rs_u())));
3473 }
3474 SetResult(rd_reg(), alu_out);
3475 break;
3476 case DSRLV:
3477 if (sa() == 0) {
3478 // Regular logical right-shift of a word by a variable number of
3479 // bits instruction. SA field is always equal to 0.
3480 alu_out = rt_u() >> rs();
3481 } else {
3482 // Logical right-rotate of a word by a variable number of bits.
3483 // This is special case od SRLV instruction, added in MIPS32
3484 // Release 2. SA field is equal to 00001.
3485 alu_out =
3486 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()),
3487 static_cast<const uint32_t>(rs_u()));
3488 }
3489 SetResult(rd_reg(), alu_out);
3490 break;
3491 case SRAV:
3492 SetResult(rd_reg(), (int32_t)rt() >> rs());
3493 break;
3494 case DSRAV:
3495 SetResult(rd_reg(), rt() >> rs());
3496 break;
3497 case LSA: {
3498 DCHECK(kArchVariant == kMips64r6);
3499 int8_t sa = lsa_sa() + 1;
3500 int32_t _rt = static_cast<int32_t>(rt());
3501 int32_t _rs = static_cast<int32_t>(rs());
3502 int32_t res = _rs << sa;
3503 res += _rt;
3504 SetResult(rd_reg(), static_cast<int64_t>(res));
3505 break;
3506 }
3507 case DLSA:
3508 DCHECK(kArchVariant == kMips64r6);
3509 SetResult(rd_reg(), (rs() << (lsa_sa() + 1)) + rt());
3510 break;
3511 case MFHI: // MFHI == CLZ on R6.
3512 if (kArchVariant != kMips64r6) {
3513 DCHECK(sa() == 0);
3514 alu_out = get_register(HI);
3515 } else {
3516 // MIPS spec: If no bits were set in GPR rs(), the result written to
3517 // GPR rd() is 32.
3518 DCHECK(sa() == 1);
3519 alu_out = base::bits::CountLeadingZeros32(static_cast<int32_t>(rs_u()));
3520 }
3521 SetResult(rd_reg(), alu_out);
3522 break;
3523 case MFLO: // MFLO == DCLZ on R6.
3524 if (kArchVariant != kMips64r6) {
3525 DCHECK(sa() == 0);
3526 alu_out = get_register(LO);
3527 } else {
3528 // MIPS spec: If no bits were set in GPR rs(), the result written to
3529 // GPR rd() is 64.
3530 DCHECK(sa() == 1);
3531 alu_out = base::bits::CountLeadingZeros64(static_cast<int64_t>(rs_u()));
3532 }
3533 SetResult(rd_reg(), alu_out);
3534 break;
3535 // Instructions using HI and LO registers.
3536 case MULT: { // MULT == D_MUL_MUH.
3537 int32_t rs_lo = static_cast<int32_t>(rs());
3538 int32_t rt_lo = static_cast<int32_t>(rt());
3539 i64hilo = static_cast<int64_t>(rs_lo) * static_cast<int64_t>(rt_lo);
3540 if (kArchVariant != kMips64r6) {
3541 set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff));
3542 set_register(HI, static_cast<int32_t>(i64hilo >> 32));
3543 } else {
3544 switch (sa()) {
3545 case MUL_OP:
3546 set_register(rd_reg(), static_cast<int32_t>(i64hilo & 0xffffffff));
3547 break;
3548 case MUH_OP:
3549 set_register(rd_reg(), static_cast<int32_t>(i64hilo >> 32));
3550 break;
3551 default:
3552 UNIMPLEMENTED_MIPS();
3553 break;
3554 }
3555 }
3556 break;
3557 }
3558 case MULTU:
3559 u64hilo = static_cast<uint64_t>(rs_u() & 0xffffffff) *
3560 static_cast<uint64_t>(rt_u() & 0xffffffff);
3561 if (kArchVariant != kMips64r6) {
3562 set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff));
3563 set_register(HI, static_cast<int32_t>(u64hilo >> 32));
3564 } else {
3565 switch (sa()) {
3566 case MUL_OP:
3567 set_register(rd_reg(), static_cast<int32_t>(u64hilo & 0xffffffff));
3568 break;
3569 case MUH_OP:
3570 set_register(rd_reg(), static_cast<int32_t>(u64hilo >> 32));
3571 break;
3572 default:
3573 UNIMPLEMENTED_MIPS();
3574 break;
3575 }
3576 }
3577 break;
3578 case DMULT: // DMULT == D_MUL_MUH.
3579 if (kArchVariant != kMips64r6) {
3580 set_register(LO, rs() * rt());
3581 set_register(HI, MultiplyHighSigned(rs(), rt()));
3582 } else {
3583 switch (sa()) {
3584 case MUL_OP:
3585 set_register(rd_reg(), rs() * rt());
3586 break;
3587 case MUH_OP:
3588 set_register(rd_reg(), MultiplyHighSigned(rs(), rt()));
3589 break;
3590 default:
3591 UNIMPLEMENTED_MIPS();
3592 break;
3593 }
3594 }
3595 break;
3596 case DMULTU:
3597 UNIMPLEMENTED_MIPS();
3598 break;
3599 case DIV:
3600 case DDIV: {
3601 const int64_t int_min_value =
3602 get_instr()->FunctionFieldRaw() == DIV ? INT_MIN : LONG_MIN;
3603 switch (kArchVariant) {
3604 case kMips64r2:
3605 // Divide by zero and overflow was not checked in the
3606 // configuration step - div and divu do not raise exceptions. On
3607 // division by 0 the result will be UNPREDICTABLE. On overflow
3608 // (INT_MIN/-1), return INT_MIN which is what the hardware does.
3609 if (rs() == int_min_value && rt() == -1) {
3610 set_register(LO, int_min_value);
3611 set_register(HI, 0);
3612 } else if (rt() != 0) {
3613 set_register(LO, rs() / rt());
3614 set_register(HI, rs() % rt());
3615 }
3616 break;
3617 case kMips64r6:
3618 switch (sa()) {
3619 case DIV_OP:
3620 if (rs() == int_min_value && rt() == -1) {
3621 set_register(rd_reg(), int_min_value);
3622 } else if (rt() != 0) {
3623 set_register(rd_reg(), rs() / rt());
3624 }
3625 break;
3626 case MOD_OP:
3627 if (rs() == int_min_value && rt() == -1) {
3628 set_register(rd_reg(), 0);
3629 } else if (rt() != 0) {
3630 set_register(rd_reg(), rs() % rt());
3631 }
3632 break;
3633 default:
3634 UNIMPLEMENTED_MIPS();
3635 break;
3636 }
3637 break;
3638 default:
3639 break;
3640 }
3641 break;
3642 }
3643 case DIVU:
3644 switch (kArchVariant) {
3645 case kMips64r6: {
3646 uint32_t rt_u_32 = static_cast<uint32_t>(rt_u());
3647 uint32_t rs_u_32 = static_cast<uint32_t>(rs_u());
3648 switch (get_instr()->SaValue()) {
3649 case DIV_OP:
3650 if (rt_u_32 != 0) {
3651 set_register(rd_reg(), rs_u_32 / rt_u_32);
3652 }
3653 break;
3654 case MOD_OP:
3655 if (rt_u() != 0) {
3656 set_register(rd_reg(), rs_u_32 % rt_u_32);
3657 }
3658 break;
3659 default:
3660 UNIMPLEMENTED_MIPS();
3661 break;
3662 }
3663 } break;
3664 default: {
3665 if (rt_u() != 0) {
3666 uint32_t rt_u_32 = static_cast<uint32_t>(rt_u());
3667 uint32_t rs_u_32 = static_cast<uint32_t>(rs_u());
3668 set_register(LO, rs_u_32 / rt_u_32);
3669 set_register(HI, rs_u_32 % rt_u_32);
3670 }
3671 }
3672 }
3673 break;
3674 case DDIVU:
3675 switch (kArchVariant) {
3676 case kMips64r6: {
3677 switch (get_instr()->SaValue()) {
3678 case DIV_OP:
3679 if (rt_u() != 0) {
3680 set_register(rd_reg(), rs_u() / rt_u());
3681 }
3682 break;
3683 case MOD_OP:
3684 if (rt_u() != 0) {
3685 set_register(rd_reg(), rs_u() % rt_u());
3686 }
3687 break;
3688 default:
3689 UNIMPLEMENTED_MIPS();
3690 break;
3691 }
3692 } break;
3693 default: {
3694 if (rt_u() != 0) {
3695 set_register(LO, rs_u() / rt_u());
3696 set_register(HI, rs_u() % rt_u());
3697 }
3698 }
3699 }
3700 break;
3701 case ADD:
3702 case DADD:
3703 if (HaveSameSign(rs(), rt())) {
3704 if (rs() > 0) {
3705 if (rs() > (Registers::kMaxValue - rt())) {
3706 SignalException(kIntegerOverflow);
3707 }
3708 } else if (rs() < 0) {
3709 if (rs() < (Registers::kMinValue - rt())) {
3710 SignalException(kIntegerUnderflow);
3711 }
3712 }
3713 }
3714 SetResult(rd_reg(), rs() + rt());
3715 break;
3716 case ADDU: {
3717 int32_t alu32_out = static_cast<int32_t>(rs() + rt());
3718 // Sign-extend result of 32bit operation into 64bit register.
3719 SetResult(rd_reg(), static_cast<int64_t>(alu32_out));
3720 break;
3721 }
3722 case DADDU:
3723 SetResult(rd_reg(), rs() + rt());
3724 break;
3725 case SUB:
3726 case DSUB:
3727 if (!HaveSameSign(rs(), rt())) {
3728 if (rs() > 0) {
3729 if (rs() > (Registers::kMaxValue + rt())) {
3730 SignalException(kIntegerOverflow);
3731 }
3732 } else if (rs() < 0) {
3733 if (rs() < (Registers::kMinValue + rt())) {
3734 SignalException(kIntegerUnderflow);
3735 }
3736 }
3737 }
3738 SetResult(rd_reg(), rs() - rt());
3739 break;
3740 case SUBU: {
3741 int32_t alu32_out = static_cast<int32_t>(rs() - rt());
3742 // Sign-extend result of 32bit operation into 64bit register.
3743 SetResult(rd_reg(), static_cast<int64_t>(alu32_out));
3744 break;
3745 }
3746 case DSUBU:
3747 SetResult(rd_reg(), rs() - rt());
3748 break;
3749 case AND:
3750 SetResult(rd_reg(), rs() & rt());
3751 break;
3752 case OR:
3753 SetResult(rd_reg(), rs() | rt());
3754 break;
3755 case XOR:
3756 SetResult(rd_reg(), rs() ^ rt());
3757 break;
3758 case NOR:
3759 SetResult(rd_reg(), ~(rs() | rt()));
3760 break;
3761 case SLT:
3762 SetResult(rd_reg(), rs() < rt() ? 1 : 0);
3763 break;
3764 case SLTU:
3765 SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0);
3766 break;
3767 // Break and trap instructions.
3768 case BREAK:
3769 do_interrupt = true;
3770 break;
3771 case TGE:
3772 do_interrupt = rs() >= rt();
3773 break;
3774 case TGEU:
3775 do_interrupt = rs_u() >= rt_u();
3776 break;
3777 case TLT:
3778 do_interrupt = rs() < rt();
3779 break;
3780 case TLTU:
3781 do_interrupt = rs_u() < rt_u();
3782 break;
3783 case TEQ:
3784 do_interrupt = rs() == rt();
3785 break;
3786 case TNE:
3787 do_interrupt = rs() != rt();
3788 break;
3789 // Conditional moves.
3790 case MOVN:
3791 if (rt()) {
3792 SetResult(rd_reg(), rs());
3793 }
3794 break;
3795 case MOVCI: {
3796 uint32_t cc = get_instr()->FBccValue();
3797 uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
3798 if (get_instr()->Bit(16)) { // Read Tf bit.
3799 if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
3800 } else {
3801 if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
3802 }
3803 break;
3804 }
3805 case MOVZ:
3806 if (!rt()) {
3807 SetResult(rd_reg(), rs());
3808 }
3809 break;
3810 default:
3811 UNREACHABLE();
3812 }
3813 if (do_interrupt) {
3814 SoftwareInterrupt(get_instr());
3815 }
3816}
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003817
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003818
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003819void Simulator::DecodeTypeRegisterSPECIAL2() {
3820 int64_t alu_out;
3821 switch (get_instr()->FunctionFieldRaw()) {
3822 case MUL:
3823 alu_out = static_cast<int32_t>(rs_u()) * static_cast<int32_t>(rt_u());
3824 SetResult(rd_reg(), alu_out);
3825 // HI and LO are UNPREDICTABLE after the operation.
3826 set_register(LO, Unpredictable);
3827 set_register(HI, Unpredictable);
3828 break;
3829 case CLZ:
3830 // MIPS32 spec: If no bits were set in GPR rs(), the result written to
3831 // GPR rd is 32.
3832 alu_out = base::bits::CountLeadingZeros32(static_cast<uint32_t>(rs_u()));
3833 SetResult(rd_reg(), alu_out);
3834 break;
3835 case DCLZ:
3836 // MIPS64 spec: If no bits were set in GPR rs(), the result written to
3837 // GPR rd is 64.
3838 alu_out = base::bits::CountLeadingZeros64(static_cast<uint64_t>(rs_u()));
3839 SetResult(rd_reg(), alu_out);
3840 break;
3841 default:
3842 alu_out = 0x12345678;
3843 UNREACHABLE();
3844 }
3845}
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003846
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003847
3848void Simulator::DecodeTypeRegisterSPECIAL3() {
3849 int64_t alu_out;
3850 switch (get_instr()->FunctionFieldRaw()) {
3851 case INS: { // Mips64r2 instruction.
3852 // Interpret rd field as 5-bit msb of insert.
3853 uint16_t msb = rd_reg();
3854 // Interpret sa field as 5-bit lsb of insert.
3855 uint16_t lsb = sa();
3856 uint16_t size = msb - lsb + 1;
3857 uint64_t mask = (1ULL << size) - 1;
3858 alu_out = static_cast<int32_t>((rt_u() & ~(mask << lsb)) |
3859 ((rs_u() & mask) << lsb));
3860 SetResult(rt_reg(), alu_out);
3861 break;
3862 }
3863 case DINS: { // Mips64r2 instruction.
3864 // Interpret rd field as 5-bit msb of insert.
3865 uint16_t msb = rd_reg();
3866 // Interpret sa field as 5-bit lsb of insert.
3867 uint16_t lsb = sa();
3868 uint16_t size = msb - lsb + 1;
3869 uint64_t mask = (1ULL << size) - 1;
3870 alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb);
3871 SetResult(rt_reg(), alu_out);
3872 break;
3873 }
3874 case EXT: { // Mips64r2 instruction.
3875 // Interpret rd field as 5-bit msb of extract.
3876 uint16_t msb = rd_reg();
3877 // Interpret sa field as 5-bit lsb of extract.
3878 uint16_t lsb = sa();
3879 uint16_t size = msb + 1;
3880 uint64_t mask = (1ULL << size) - 1;
3881 alu_out = static_cast<int32_t>((rs_u() & (mask << lsb)) >> lsb);
3882 SetResult(rt_reg(), alu_out);
3883 break;
3884 }
3885 case DEXT: { // Mips64r2 instruction.
3886 // Interpret rd field as 5-bit msb of extract.
3887 uint16_t msb = rd_reg();
3888 // Interpret sa field as 5-bit lsb of extract.
3889 uint16_t lsb = sa();
3890 uint16_t size = msb + 1;
3891 uint64_t mask = (1ULL << size) - 1;
3892 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb);
3893 SetResult(rt_reg(), alu_out);
3894 break;
3895 }
3896 case DEXTM: {
3897 // Interpret rd field as 5-bit msb of extract.
3898 uint16_t msb = rd_reg();
3899 // Interpret sa field as 5-bit lsb of extract.
3900 uint16_t lsb = sa();
3901 uint16_t size = msb + 33;
3902 uint64_t mask = (1ULL << size) - 1;
3903 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb);
3904 SetResult(rt_reg(), alu_out);
3905 break;
3906 }
3907 case DEXTU: {
3908 // Interpret rd field as 5-bit msb of extract.
3909 uint16_t msb = rd_reg();
3910 // Interpret sa field as 5-bit lsb of extract.
3911 uint16_t lsb = sa() + 32;
3912 uint16_t size = msb + 1;
3913 uint64_t mask = (1ULL << size) - 1;
3914 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb);
3915 SetResult(rt_reg(), alu_out);
3916 break;
3917 }
3918 case BSHFL: {
3919 int32_t sa = get_instr()->SaFieldRaw() >> kSaShift;
3920 switch (sa) {
3921 case BITSWAP: {
3922 uint32_t input = static_cast<uint32_t>(rt());
3923 uint32_t output = 0;
3924 uint8_t i_byte, o_byte;
3925
3926 // Reverse the bit in byte for each individual byte
3927 for (int i = 0; i < 4; i++) {
3928 output = output >> 8;
3929 i_byte = input & 0xff;
3930
3931 // Fast way to reverse bits in byte
3932 // Devised by Sean Anderson, July 13, 2001
3933 o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
3934 (i_byte * 0x8020LU & 0x88440LU)) *
3935 0x10101LU >>
3936 16);
3937
3938 output = output | (static_cast<uint32_t>(o_byte << 24));
3939 input = input >> 8;
3940 }
3941
3942 alu_out = static_cast<int64_t>(static_cast<int32_t>(output));
3943 break;
3944 }
3945 case SEB:
3946 case SEH:
3947 case WSBH:
3948 alu_out = 0x12345678;
3949 UNREACHABLE();
3950 break;
3951 default: {
3952 const uint8_t bp2 = get_instr()->Bp2Value();
3953 sa >>= kBp2Bits;
3954 switch (sa) {
3955 case ALIGN: {
3956 if (bp2 == 0) {
3957 alu_out = static_cast<int32_t>(rt());
3958 } else {
3959 uint64_t rt_hi = rt() << (8 * bp2);
3960 uint64_t rs_lo = rs() >> (8 * (4 - bp2));
3961 alu_out = static_cast<int32_t>(rt_hi | rs_lo);
3962 }
3963 break;
3964 }
3965 default:
3966 alu_out = 0x12345678;
3967 UNREACHABLE();
3968 break;
3969 }
3970 break;
3971 }
3972 }
3973 SetResult(rd_reg(), alu_out);
3974 break;
3975 }
3976 case DBSHFL: {
3977 int32_t sa = get_instr()->SaFieldRaw() >> kSaShift;
3978 switch (sa) {
3979 case DBITSWAP: {
3980 switch (sa) {
3981 case DBITSWAP_SA: { // Mips64r6
3982 uint64_t input = static_cast<uint64_t>(rt());
3983 uint64_t output = 0;
3984 uint8_t i_byte, o_byte;
3985
3986 // Reverse the bit in byte for each individual byte
3987 for (int i = 0; i < 8; i++) {
3988 output = output >> 8;
3989 i_byte = input & 0xff;
3990
3991 // Fast way to reverse bits in byte
3992 // Devised by Sean Anderson, July 13, 2001
3993 o_byte =
3994 static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
3995 (i_byte * 0x8020LU & 0x88440LU)) *
3996 0x10101LU >>
3997 16);
3998
3999 output = output | ((static_cast<uint64_t>(o_byte) << 56));
4000 input = input >> 8;
4001 }
4002
4003 alu_out = static_cast<int64_t>(output);
4004 break;
4005 }
4006 }
4007 break;
4008 }
4009 case DSBH:
4010 case DSHD:
4011 alu_out = 0x12345678;
4012 UNREACHABLE();
4013 break;
4014 default: {
4015 const uint8_t bp3 = get_instr()->Bp3Value();
4016 sa >>= kBp3Bits;
4017 switch (sa) {
4018 case DALIGN: {
4019 if (bp3 == 0) {
4020 alu_out = static_cast<int64_t>(rt());
4021 } else {
4022 uint64_t rt_hi = rt() << (8 * bp3);
4023 uint64_t rs_lo = rs() >> (8 * (8 - bp3));
4024 alu_out = static_cast<int64_t>(rt_hi | rs_lo);
4025 }
4026 break;
4027 }
4028 default:
4029 alu_out = 0x12345678;
4030 UNREACHABLE();
4031 break;
4032 }
4033 break;
4034 }
4035 }
4036 SetResult(rd_reg(), alu_out);
4037 break;
4038 }
4039 default:
4040 UNREACHABLE();
4041 }
4042}
4043
4044
4045void Simulator::DecodeTypeRegister(Instruction* instr) {
4046 set_instr(instr);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004047
4048 // ---------- Execution.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004049 switch (instr->OpcodeFieldRaw()) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004050 case COP1:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004051 DecodeTypeRegisterCOP1();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004052 break;
4053 case COP1X:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004054 DecodeTypeRegisterCOP1X();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004055 break;
4056 case SPECIAL:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004057 DecodeTypeRegisterSPECIAL();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004058 break;
4059 case SPECIAL2:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004060 DecodeTypeRegisterSPECIAL2();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004061 break;
4062 case SPECIAL3:
4063 switch (instr->FunctionFieldRaw()) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004064 case BSHFL: {
4065 int32_t saVal = sa();
4066 saVal >>= kBp2Bits;
4067 switch (saVal) {
4068 case ALIGN: {
4069 DecodeTypeRegisterSPECIAL3();
4070 break;
4071 }
4072 }
4073 }
4074 case DBSHFL: {
4075 int32_t saVal = sa();
4076 saVal >>= kBp2Bits;
4077 switch (saVal) {
4078 case DALIGN: {
4079 DecodeTypeRegisterSPECIAL3();
4080 break;
4081 }
4082 }
4083 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004084 default:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004085 DecodeTypeRegisterSPECIAL3();
4086 break;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004087 }
4088 break;
4089 // Unimplemented opcodes raised an error in the configuration step before,
4090 // so we can use the default here to set the destination register in common
4091 // cases.
4092 default:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004093 UNREACHABLE();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004094 }
4095}
4096
4097
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004098// Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004099void Simulator::DecodeTypeImmediate(Instruction* instr) {
4100 // Instruction fields.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004101 Opcode op = instr->OpcodeFieldRaw();
4102 int32_t rs_reg = instr->RsValue();
4103 int64_t rs = get_register(instr->RsValue());
4104 uint64_t rs_u = static_cast<uint64_t>(rs);
4105 int32_t rt_reg = instr->RtValue(); // Destination register.
4106 int64_t rt = get_register(rt_reg);
4107 int16_t imm16 = instr->Imm16Value();
4108 int32_t imm18 = instr->Imm18Value();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004109
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004110 int32_t ft_reg = instr->FtValue(); // Destination register.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004111
4112 // Zero extended immediate.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004113 uint64_t oe_imm16 = 0xffff & imm16;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004114 // Sign extended immediate.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004115 int64_t se_imm16 = imm16;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004116 int64_t se_imm18 = imm18 | ((imm18 & 0x20000) ? 0xfffffffffffc0000 : 0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004117
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004118 // Next pc.
4119 int64_t next_pc = bad_ra;
4120
4121 // Used for conditional branch instructions.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004122 bool execute_branch_delay_instruction = false;
4123
4124 // Used for arithmetic instructions.
4125 int64_t alu_out = 0;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004126
4127 // Used for memory instructions.
4128 int64_t addr = 0x0;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004129 // Alignment for 32-bit integers used in LWL, LWR, etc.
4130 const int kInt32AlignmentMask = sizeof(uint32_t) - 1;
4131
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004132 // Branch instructions common part.
4133 auto BranchAndLinkHelper = [this, instr, &next_pc,
4134 &execute_branch_delay_instruction](
4135 bool do_branch) {
4136 execute_branch_delay_instruction = true;
4137 int64_t current_pc = get_pc();
4138 if (do_branch) {
4139 int16_t imm16 = instr->Imm16Value();
4140 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
4141 set_register(31, current_pc + 2 * Instruction::kInstrSize);
4142 } else {
4143 next_pc = current_pc + 2 * Instruction::kInstrSize;
4144 }
4145 };
4146
4147 auto BranchHelper = [this, instr, &next_pc,
4148 &execute_branch_delay_instruction](bool do_branch) {
4149 execute_branch_delay_instruction = true;
4150 int64_t current_pc = get_pc();
4151 if (do_branch) {
4152 int16_t imm16 = instr->Imm16Value();
4153 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
4154 } else {
4155 next_pc = current_pc + 2 * Instruction::kInstrSize;
4156 }
4157 };
4158
4159 auto BranchAndLinkCompactHelper = [this, instr, &next_pc](bool do_branch,
4160 int bits) {
4161 int64_t current_pc = get_pc();
4162 CheckForbiddenSlot(current_pc);
4163 if (do_branch) {
4164 int32_t imm = instr->ImmValue(bits);
4165 imm <<= 32 - bits;
4166 imm >>= 32 - bits;
4167 next_pc = current_pc + (imm << 2) + Instruction::kInstrSize;
4168 set_register(31, current_pc + Instruction::kInstrSize);
4169 }
4170 };
4171
4172 auto BranchCompactHelper = [&next_pc, this, instr](bool do_branch, int bits) {
4173 int64_t current_pc = get_pc();
4174 CheckForbiddenSlot(current_pc);
4175 if (do_branch) {
4176 int32_t imm = instr->ImmValue(bits);
4177 imm <<= 32 - bits;
4178 imm >>= 32 - bits;
4179 next_pc = get_pc() + (imm << 2) + Instruction::kInstrSize;
4180 }
4181 };
4182
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004183 switch (op) {
4184 // ------------- COP1. Coprocessor instructions.
4185 case COP1:
4186 switch (instr->RsFieldRaw()) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004187 case BC1: { // Branch on coprocessor condition.
4188 uint32_t cc = instr->FBccValue();
4189 uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
4190 uint32_t cc_value = test_fcsr_bit(fcsr_cc);
4191 bool do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value;
4192 BranchHelper(do_branch);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004193 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004194 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004195 case BC1EQZ:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004196 BranchHelper(!(get_fpu_register(ft_reg) & 0x1));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004197 break;
4198 case BC1NEZ:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004199 BranchHelper(get_fpu_register(ft_reg) & 0x1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004200 break;
4201 default:
4202 UNREACHABLE();
4203 }
4204 break;
4205 // ------------- REGIMM class.
4206 case REGIMM:
4207 switch (instr->RtFieldRaw()) {
4208 case BLTZ:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004209 BranchHelper(rs < 0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004210 break;
4211 case BGEZ:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004212 BranchHelper(rs >= 0);
4213 break;
4214 case BLTZAL:
4215 BranchAndLinkHelper(rs < 0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004216 break;
4217 case BGEZAL:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004218 BranchAndLinkHelper(rs >= 0);
4219 break;
4220 case DAHI:
4221 SetResult(rs_reg, rs + (se_imm16 << 32));
4222 break;
4223 case DATI:
4224 SetResult(rs_reg, rs + (se_imm16 << 48));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004225 break;
4226 default:
4227 UNREACHABLE();
4228 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004229 break; // case REGIMM.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004230 // ------------- Branch instructions.
4231 // When comparing to zero, the encoding of rt field is always 0, so we don't
4232 // need to replace rt with zero.
4233 case BEQ:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004234 BranchHelper(rs == rt);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004235 break;
4236 case BNE:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004237 BranchHelper(rs != rt);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004238 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004239 case POP06: // BLEZALC, BGEZALC, BGEUC, BLEZ (pre-r6)
4240 if (kArchVariant == kMips64r6) {
4241 if (rt_reg != 0) {
4242 if (rs_reg == 0) { // BLEZALC
4243 BranchAndLinkCompactHelper(rt <= 0, 16);
4244 } else {
4245 if (rs_reg == rt_reg) { // BGEZALC
4246 BranchAndLinkCompactHelper(rt >= 0, 16);
4247 } else { // BGEUC
4248 BranchCompactHelper(
4249 static_cast<uint64_t>(rs) >= static_cast<uint64_t>(rt), 16);
4250 }
4251 }
4252 } else { // BLEZ
4253 BranchHelper(rs <= 0);
4254 }
4255 } else { // BLEZ
4256 BranchHelper(rs <= 0);
4257 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004258 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004259 case POP07: // BGTZALC, BLTZALC, BLTUC, BGTZ (pre-r6)
4260 if (kArchVariant == kMips64r6) {
4261 if (rt_reg != 0) {
4262 if (rs_reg == 0) { // BGTZALC
4263 BranchAndLinkCompactHelper(rt > 0, 16);
4264 } else {
4265 if (rt_reg == rs_reg) { // BLTZALC
4266 BranchAndLinkCompactHelper(rt < 0, 16);
4267 } else { // BLTUC
4268 BranchCompactHelper(
4269 static_cast<uint64_t>(rs) < static_cast<uint64_t>(rt), 16);
4270 }
4271 }
4272 } else { // BGTZ
4273 BranchHelper(rs > 0);
4274 }
4275 } else { // BGTZ
4276 BranchHelper(rs > 0);
4277 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004278 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004279 case POP26: // BLEZC, BGEZC, BGEC/BLEC / BLEZL (pre-r6)
4280 if (kArchVariant == kMips64r6) {
4281 if (rt_reg != 0) {
4282 if (rs_reg == 0) { // BLEZC
4283 BranchCompactHelper(rt <= 0, 16);
4284 } else {
4285 if (rs_reg == rt_reg) { // BGEZC
4286 BranchCompactHelper(rt >= 0, 16);
4287 } else { // BGEC/BLEC
4288 BranchCompactHelper(rs >= rt, 16);
4289 }
4290 }
4291 }
4292 } else { // BLEZL
4293 BranchAndLinkHelper(rs <= 0);
4294 }
4295 break;
4296 case POP27: // BGTZC, BLTZC, BLTC/BGTC / BGTZL (pre-r6)
4297 if (kArchVariant == kMips64r6) {
4298 if (rt_reg != 0) {
4299 if (rs_reg == 0) { // BGTZC
4300 BranchCompactHelper(rt > 0, 16);
4301 } else {
4302 if (rs_reg == rt_reg) { // BLTZC
4303 BranchCompactHelper(rt < 0, 16);
4304 } else { // BLTC/BGTC
4305 BranchCompactHelper(rs < rt, 16);
4306 }
4307 }
4308 }
4309 } else { // BGTZL
4310 BranchAndLinkHelper(rs > 0);
4311 }
4312 break;
4313 case POP66: // BEQZC, JIC
4314 if (rs_reg != 0) { // BEQZC
4315 BranchCompactHelper(rs == 0, 21);
4316 } else { // JIC
4317 next_pc = rt + imm16;
4318 }
4319 break;
4320 case POP76: // BNEZC, JIALC
4321 if (rs_reg != 0) { // BNEZC
4322 BranchCompactHelper(rs != 0, 21);
4323 } else { // JIALC
4324 int64_t current_pc = get_pc();
4325 set_register(31, current_pc + Instruction::kInstrSize);
4326 next_pc = rt + imm16;
4327 }
4328 break;
4329 case BC:
4330 BranchCompactHelper(true, 26);
4331 break;
4332 case BALC:
4333 BranchAndLinkCompactHelper(true, 26);
4334 break;
4335 case POP10: // BOVC, BEQZALC, BEQC / ADDI (pre-r6)
4336 if (kArchVariant == kMips64r6) {
4337 if (rs_reg >= rt_reg) { // BOVC
4338 if (HaveSameSign(rs, rt)) {
4339 if (rs > 0) {
4340 BranchCompactHelper(rs > Registers::kMaxValue - rt, 16);
4341 } else if (rs < 0) {
4342 BranchCompactHelper(rs < Registers::kMinValue - rt, 16);
4343 }
4344 }
4345 } else {
4346 if (rs_reg == 0) { // BEQZALC
4347 BranchAndLinkCompactHelper(rt == 0, 16);
4348 } else { // BEQC
4349 BranchCompactHelper(rt == rs, 16);
4350 }
4351 }
4352 } else { // ADDI
4353 if (HaveSameSign(rs, se_imm16)) {
4354 if (rs > 0) {
4355 if (rs <= Registers::kMaxValue - se_imm16) {
4356 SignalException(kIntegerOverflow);
4357 }
4358 } else if (rs < 0) {
4359 if (rs >= Registers::kMinValue - se_imm16) {
4360 SignalException(kIntegerUnderflow);
4361 }
4362 }
4363 }
4364 SetResult(rt_reg, rs + se_imm16);
4365 }
4366 break;
4367 case POP30: // BNVC, BNEZALC, BNEC / DADDI (pre-r6)
4368 if (kArchVariant == kMips64r6) {
4369 if (rs_reg >= rt_reg) { // BNVC
4370 if (!HaveSameSign(rs, rt) || rs == 0 || rt == 0) {
4371 BranchCompactHelper(true, 16);
4372 } else {
4373 if (rs > 0) {
4374 BranchCompactHelper(rs <= Registers::kMaxValue - rt, 16);
4375 } else if (rs < 0) {
4376 BranchCompactHelper(rs >= Registers::kMinValue - rt, 16);
4377 }
4378 }
4379 } else {
4380 if (rs_reg == 0) { // BNEZALC
4381 BranchAndLinkCompactHelper(rt != 0, 16);
4382 } else { // BNEC
4383 BranchCompactHelper(rt != rs, 16);
4384 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004385 }
4386 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004387 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004388 // ------------- Arithmetic instructions.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004389 case ADDIU: {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004390 int32_t alu32_out = static_cast<int32_t>(rs + se_imm16);
4391 // Sign-extend result of 32bit operation into 64bit register.
4392 SetResult(rt_reg, static_cast<int64_t>(alu32_out));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004393 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004394 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004395 case DADDIU:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004396 SetResult(rt_reg, rs + se_imm16);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004397 break;
4398 case SLTI:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004399 SetResult(rt_reg, rs < se_imm16 ? 1 : 0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004400 break;
4401 case SLTIU:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004402 SetResult(rt_reg, rs_u < static_cast<uint64_t>(se_imm16) ? 1 : 0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004403 break;
4404 case ANDI:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004405 SetResult(rt_reg, rs & oe_imm16);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004406 break;
4407 case ORI:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004408 SetResult(rt_reg, rs | oe_imm16);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004409 break;
4410 case XORI:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004411 SetResult(rt_reg, rs ^ oe_imm16);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004412 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004413 case LUI:
4414 if (rs_reg != 0) {
4415 // AUI instruction.
4416 DCHECK(kArchVariant == kMips64r6);
4417 int32_t alu32_out = static_cast<int32_t>(rs + (se_imm16 << 16));
4418 SetResult(rt_reg, static_cast<int64_t>(alu32_out));
4419 } else {
4420 // LUI instruction.
4421 int32_t alu32_out = static_cast<int32_t>(oe_imm16 << 16);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004422 // Sign-extend result of 32bit operation into 64bit register.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004423 SetResult(rt_reg, static_cast<int64_t>(alu32_out));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004424 }
4425 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004426 case DAUI:
4427 DCHECK(kArchVariant == kMips64r6);
4428 DCHECK(rs_reg != 0);
4429 SetResult(rt_reg, rs + (se_imm16 << 16));
4430 break;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004431 // ------------- Memory instructions.
4432 case LB:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004433 set_register(rt_reg, ReadB(rs + se_imm16));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004434 break;
4435 case LH:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004436 set_register(rt_reg, ReadH(rs + se_imm16, instr));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004437 break;
4438 case LWL: {
4439 // al_offset is offset of the effective address within an aligned word.
4440 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
4441 uint8_t byte_shift = kInt32AlignmentMask - al_offset;
4442 uint32_t mask = (1 << byte_shift * 8) - 1;
4443 addr = rs + se_imm16 - al_offset;
4444 alu_out = ReadW(addr, instr);
4445 alu_out <<= byte_shift * 8;
4446 alu_out |= rt & mask;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004447 set_register(rt_reg, alu_out);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004448 break;
4449 }
4450 case LW:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004451 set_register(rt_reg, ReadW(rs + se_imm16, instr));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004452 break;
4453 case LWU:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004454 set_register(rt_reg, ReadWU(rs + se_imm16, instr));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004455 break;
4456 case LD:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004457 set_register(rt_reg, Read2W(rs + se_imm16, instr));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004458 break;
4459 case LBU:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004460 set_register(rt_reg, ReadBU(rs + se_imm16));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004461 break;
4462 case LHU:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004463 set_register(rt_reg, ReadHU(rs + se_imm16, instr));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004464 break;
4465 case LWR: {
4466 // al_offset is offset of the effective address within an aligned word.
4467 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
4468 uint8_t byte_shift = kInt32AlignmentMask - al_offset;
4469 uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
4470 addr = rs + se_imm16 - al_offset;
4471 alu_out = ReadW(addr, instr);
4472 alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
4473 alu_out |= rt & mask;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004474 set_register(rt_reg, alu_out);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004475 break;
4476 }
4477 case SB:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004478 WriteB(rs + se_imm16, static_cast<int8_t>(rt));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004479 break;
4480 case SH:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004481 WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004482 break;
4483 case SWL: {
4484 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
4485 uint8_t byte_shift = kInt32AlignmentMask - al_offset;
4486 uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
4487 addr = rs + se_imm16 - al_offset;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004488 uint64_t mem_value = ReadW(addr, instr) & mask;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004489 mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004490 WriteW(addr, static_cast<int32_t>(mem_value), instr);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004491 break;
4492 }
4493 case SW:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004494 WriteW(rs + se_imm16, static_cast<int32_t>(rt), instr);
4495 break;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004496 case SD:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004497 Write2W(rs + se_imm16, rt, instr);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004498 break;
4499 case SWR: {
4500 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
4501 uint32_t mask = (1 << al_offset * 8) - 1;
4502 addr = rs + se_imm16 - al_offset;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004503 uint64_t mem_value = ReadW(addr, instr);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004504 mem_value = (rt << al_offset * 8) | (mem_value & mask);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004505 WriteW(addr, static_cast<int32_t>(mem_value), instr);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004506 break;
4507 }
4508 case LWC1:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004509 set_fpu_register(ft_reg, kFPUInvalidResult); // Trash upper 32 bits.
4510 set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004511 break;
4512 case LDC1:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004513 set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004514 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004515 case SWC1: {
4516 int32_t alu_out_32 = static_cast<int32_t>(get_fpu_register(ft_reg));
4517 WriteW(rs + se_imm16, alu_out_32, instr);
4518 break;
4519 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004520 case SDC1:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004521 WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004522 break;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004523 // ------------- PC-Relative instructions.
4524 case PCREL: {
4525 // rt field: checking 5-bits.
4526 int32_t imm21 = instr->Imm21Value();
4527 int64_t current_pc = get_pc();
4528 uint8_t rt = (imm21 >> kImm16Bits);
4529 switch (rt) {
4530 case ALUIPC:
4531 addr = current_pc + (se_imm16 << 16);
4532 alu_out = static_cast<int64_t>(~0x0FFFF) & addr;
4533 break;
4534 case AUIPC:
4535 alu_out = current_pc + (se_imm16 << 16);
4536 break;
4537 default: {
4538 int32_t imm19 = instr->Imm19Value();
4539 // rt field: checking the most significant 3-bits.
4540 rt = (imm21 >> kImm18Bits);
4541 switch (rt) {
4542 case LDPC:
4543 addr =
4544 (current_pc & static_cast<int64_t>(~0x7)) + (se_imm18 << 3);
4545 alu_out = Read2W(addr, instr);
4546 break;
4547 default: {
4548 // rt field: checking the most significant 2-bits.
4549 rt = (imm21 >> kImm19Bits);
4550 switch (rt) {
4551 case LWUPC: {
4552 // Set sign.
4553 imm19 <<= (kOpcodeBits + kRsBits + 2);
4554 imm19 >>= (kOpcodeBits + kRsBits + 2);
4555 addr = current_pc + (imm19 << 2);
4556 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
4557 alu_out = *ptr;
4558 break;
4559 }
4560 case LWPC: {
4561 // Set sign.
4562 imm19 <<= (kOpcodeBits + kRsBits + 2);
4563 imm19 >>= (kOpcodeBits + kRsBits + 2);
4564 addr = current_pc + (imm19 << 2);
4565 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
4566 alu_out = *ptr;
4567 break;
4568 }
4569 case ADDIUPC: {
4570 int64_t se_imm19 =
4571 imm19 | ((imm19 & 0x40000) ? 0xfffffffffff80000 : 0);
4572 alu_out = current_pc + (se_imm19 << 2);
4573 break;
4574 }
4575 default:
4576 UNREACHABLE();
4577 break;
4578 }
4579 break;
4580 }
4581 }
4582 break;
4583 }
4584 }
4585 set_register(rs_reg, alu_out);
4586 break;
4587 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004588 default:
4589 UNREACHABLE();
4590 }
4591
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004592 if (execute_branch_delay_instruction) {
4593 // Execute branch delay slot
4594 // We don't check for end_sim_pc. First it should not be met as the current
4595 // pc is valid. Secondly a jump should always execute its branch delay slot.
4596 Instruction* branch_delay_instr =
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004597 reinterpret_cast<Instruction*>(get_pc() + Instruction::kInstrSize);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004598 BranchDelayInstructionDecode(branch_delay_instr);
4599 }
4600
4601 // If needed update pc after the branch delay execution.
4602 if (next_pc != bad_ra) {
4603 set_pc(next_pc);
4604 }
4605}
4606
4607
4608// Type 3: instructions using a 26 bytes immediate. (e.g. j, jal).
4609void Simulator::DecodeTypeJump(Instruction* instr) {
4610 // Get current pc.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004611 int64_t current_pc = get_pc();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004612 // Get unchanged bits of pc.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004613 int64_t pc_high_bits = current_pc & 0xfffffffff0000000;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004614 // Next pc.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004615 int64_t next_pc = pc_high_bits | (instr->Imm26Value() << 2);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004616
4617 // Execute branch delay slot.
4618 // We don't check for end_sim_pc. First it should not be met as the current pc
4619 // is valid. Secondly a jump should always execute its branch delay slot.
4620 Instruction* branch_delay_instr =
4621 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
4622 BranchDelayInstructionDecode(branch_delay_instr);
4623
4624 // Update pc and ra if necessary.
4625 // Do this after the branch delay execution.
4626 if (instr->IsLinkingInstruction()) {
4627 set_register(31, current_pc + 2 * Instruction::kInstrSize);
4628 }
4629 set_pc(next_pc);
4630 pc_modified_ = true;
4631}
4632
4633
4634// Executes the current instruction.
4635void Simulator::InstructionDecode(Instruction* instr) {
4636 if (v8::internal::FLAG_check_icache) {
4637 CheckICache(isolate_->simulator_i_cache(), instr);
4638 }
4639 pc_modified_ = false;
4640
4641 v8::internal::EmbeddedVector<char, 256> buffer;
4642
4643 if (::v8::internal::FLAG_trace_sim) {
4644 SNPrintF(trace_buf_, " ");
4645 disasm::NameConverter converter;
4646 disasm::Disassembler dasm(converter);
4647 // Use a reasonably large buffer.
4648 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
4649 }
4650
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004651 switch (instr->InstructionType(Instruction::TypeChecks::EXTRA)) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004652 case Instruction::kRegisterType:
4653 DecodeTypeRegister(instr);
4654 break;
4655 case Instruction::kImmediateType:
4656 DecodeTypeImmediate(instr);
4657 break;
4658 case Instruction::kJumpType:
4659 DecodeTypeJump(instr);
4660 break;
4661 default:
4662 UNSUPPORTED();
4663 }
4664
4665 if (::v8::internal::FLAG_trace_sim) {
4666 PrintF(" 0x%08lx %-44s %s\n", reinterpret_cast<intptr_t>(instr),
4667 buffer.start(), trace_buf_.start());
4668 }
4669
4670 if (!pc_modified_) {
4671 set_register(pc, reinterpret_cast<int64_t>(instr) +
4672 Instruction::kInstrSize);
4673 }
4674}
4675
4676
4677
4678void Simulator::Execute() {
4679 // Get the PC to simulate. Cannot use the accessor here as we need the
4680 // raw PC value and not the one used as input to arithmetic instructions.
4681 int64_t program_counter = get_pc();
4682 if (::v8::internal::FLAG_stop_sim_at == 0) {
4683 // Fast version of the dispatch loop without checking whether the simulator
4684 // should be stopping at a particular executed instruction.
4685 while (program_counter != end_sim_pc) {
4686 Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
4687 icount_++;
4688 InstructionDecode(instr);
4689 program_counter = get_pc();
4690 }
4691 } else {
4692 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
4693 // we reach the particular instuction count.
4694 while (program_counter != end_sim_pc) {
4695 Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
4696 icount_++;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004697 if (icount_ == static_cast<uint64_t>(::v8::internal::FLAG_stop_sim_at)) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004698 MipsDebugger dbg(this);
4699 dbg.Debug();
4700 } else {
4701 InstructionDecode(instr);
4702 }
4703 program_counter = get_pc();
4704 }
4705 }
4706}
4707
4708
4709void Simulator::CallInternal(byte* entry) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004710 // Adjust JS-based stack limit to C-based stack limit.
4711 isolate_->stack_guard()->AdjustStackLimitForSimulator();
4712
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004713 // Prepare to execute the code at entry.
4714 set_register(pc, reinterpret_cast<int64_t>(entry));
4715 // Put down marker for end of simulation. The simulator will stop simulation
4716 // when the PC reaches this value. By saving the "end simulation" value into
4717 // the LR the simulation stops when returning to this call point.
4718 set_register(ra, end_sim_pc);
4719
4720 // Remember the values of callee-saved registers.
4721 // The code below assumes that r9 is not used as sb (static base) in
4722 // simulator code and therefore is regarded as a callee-saved register.
4723 int64_t s0_val = get_register(s0);
4724 int64_t s1_val = get_register(s1);
4725 int64_t s2_val = get_register(s2);
4726 int64_t s3_val = get_register(s3);
4727 int64_t s4_val = get_register(s4);
4728 int64_t s5_val = get_register(s5);
4729 int64_t s6_val = get_register(s6);
4730 int64_t s7_val = get_register(s7);
4731 int64_t gp_val = get_register(gp);
4732 int64_t sp_val = get_register(sp);
4733 int64_t fp_val = get_register(fp);
4734
4735 // Set up the callee-saved registers with a known value. To be able to check
4736 // that they are preserved properly across JS execution.
4737 int64_t callee_saved_value = icount_;
4738 set_register(s0, callee_saved_value);
4739 set_register(s1, callee_saved_value);
4740 set_register(s2, callee_saved_value);
4741 set_register(s3, callee_saved_value);
4742 set_register(s4, callee_saved_value);
4743 set_register(s5, callee_saved_value);
4744 set_register(s6, callee_saved_value);
4745 set_register(s7, callee_saved_value);
4746 set_register(gp, callee_saved_value);
4747 set_register(fp, callee_saved_value);
4748
4749 // Start the simulation.
4750 Execute();
4751
4752 // Check that the callee-saved registers have been preserved.
4753 CHECK_EQ(callee_saved_value, get_register(s0));
4754 CHECK_EQ(callee_saved_value, get_register(s1));
4755 CHECK_EQ(callee_saved_value, get_register(s2));
4756 CHECK_EQ(callee_saved_value, get_register(s3));
4757 CHECK_EQ(callee_saved_value, get_register(s4));
4758 CHECK_EQ(callee_saved_value, get_register(s5));
4759 CHECK_EQ(callee_saved_value, get_register(s6));
4760 CHECK_EQ(callee_saved_value, get_register(s7));
4761 CHECK_EQ(callee_saved_value, get_register(gp));
4762 CHECK_EQ(callee_saved_value, get_register(fp));
4763
4764 // Restore callee-saved registers with the original value.
4765 set_register(s0, s0_val);
4766 set_register(s1, s1_val);
4767 set_register(s2, s2_val);
4768 set_register(s3, s3_val);
4769 set_register(s4, s4_val);
4770 set_register(s5, s5_val);
4771 set_register(s6, s6_val);
4772 set_register(s7, s7_val);
4773 set_register(gp, gp_val);
4774 set_register(sp, sp_val);
4775 set_register(fp, fp_val);
4776}
4777
4778
4779int64_t Simulator::Call(byte* entry, int argument_count, ...) {
4780 const int kRegisterPassedArguments = (kMipsAbi == kN64) ? 8 : 4;
4781 va_list parameters;
4782 va_start(parameters, argument_count);
4783 // Set up arguments.
4784
4785 // First four arguments passed in registers in both ABI's.
4786 DCHECK(argument_count >= 4);
4787 set_register(a0, va_arg(parameters, int64_t));
4788 set_register(a1, va_arg(parameters, int64_t));
4789 set_register(a2, va_arg(parameters, int64_t));
4790 set_register(a3, va_arg(parameters, int64_t));
4791
4792 if (kMipsAbi == kN64) {
4793 // Up to eight arguments passed in registers in N64 ABI.
4794 // TODO(plind): N64 ABI calls these regs a4 - a7. Clarify this.
4795 if (argument_count >= 5) set_register(a4, va_arg(parameters, int64_t));
4796 if (argument_count >= 6) set_register(a5, va_arg(parameters, int64_t));
4797 if (argument_count >= 7) set_register(a6, va_arg(parameters, int64_t));
4798 if (argument_count >= 8) set_register(a7, va_arg(parameters, int64_t));
4799 }
4800
4801 // Remaining arguments passed on stack.
4802 int64_t original_stack = get_register(sp);
4803 // Compute position of stack on entry to generated code.
4804 int stack_args_count = (argument_count > kRegisterPassedArguments) ?
4805 (argument_count - kRegisterPassedArguments) : 0;
4806 int stack_args_size = stack_args_count * sizeof(int64_t) + kCArgsSlotsSize;
4807 int64_t entry_stack = original_stack - stack_args_size;
4808
4809 if (base::OS::ActivationFrameAlignment() != 0) {
4810 entry_stack &= -base::OS::ActivationFrameAlignment();
4811 }
4812 // Store remaining arguments on stack, from low to high memory.
4813 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
4814 for (int i = kRegisterPassedArguments; i < argument_count; i++) {
4815 int stack_index = i - kRegisterPassedArguments + kCArgSlotCount;
4816 stack_argument[stack_index] = va_arg(parameters, int64_t);
4817 }
4818 va_end(parameters);
4819 set_register(sp, entry_stack);
4820
4821 CallInternal(entry);
4822
4823 // Pop stack passed arguments.
4824 CHECK_EQ(entry_stack, get_register(sp));
4825 set_register(sp, original_stack);
4826
4827 int64_t result = get_register(v0);
4828 return result;
4829}
4830
4831
4832double Simulator::CallFP(byte* entry, double d0, double d1) {
4833 if (!IsMipsSoftFloatABI) {
4834 const FPURegister fparg2 = (kMipsAbi == kN64) ? f13 : f14;
4835 set_fpu_register_double(f12, d0);
4836 set_fpu_register_double(fparg2, d1);
4837 } else {
4838 int buffer[2];
4839 DCHECK(sizeof(buffer[0]) * 2 == sizeof(d0));
4840 memcpy(buffer, &d0, sizeof(d0));
4841 set_dw_register(a0, buffer);
4842 memcpy(buffer, &d1, sizeof(d1));
4843 set_dw_register(a2, buffer);
4844 }
4845 CallInternal(entry);
4846 if (!IsMipsSoftFloatABI) {
4847 return get_fpu_register_double(f0);
4848 } else {
4849 return get_double_from_register_pair(v0);
4850 }
4851}
4852
4853
4854uintptr_t Simulator::PushAddress(uintptr_t address) {
4855 int64_t new_sp = get_register(sp) - sizeof(uintptr_t);
4856 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
4857 *stack_slot = address;
4858 set_register(sp, new_sp);
4859 return new_sp;
4860}
4861
4862
4863uintptr_t Simulator::PopAddress() {
4864 int64_t current_sp = get_register(sp);
4865 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
4866 uintptr_t address = *stack_slot;
4867 set_register(sp, current_sp + sizeof(uintptr_t));
4868 return address;
4869}
4870
4871
4872#undef UNSUPPORTED
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004873} // namespace internal
4874} // namespace v8
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004875
4876#endif // USE_SIMULATOR
4877
4878#endif // V8_TARGET_ARCH_MIPS64