blob: f0f74c38a4fe4bd51a110d3bf15217b42d07f509 [file] [log] [blame]
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005#if V8_TARGET_ARCH_PPC
6
Ben Murdochda12d292016-06-02 14:46:10 +01007#include "src/code-stubs.h"
8#include "src/api-arguments.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -04009#include "src/base/bits.h"
10#include "src/bootstrapper.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040011#include "src/codegen.h"
12#include "src/ic/handler-compiler.h"
13#include "src/ic/ic.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000014#include "src/ic/stub-cache.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040015#include "src/isolate.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000016#include "src/ppc/code-stubs-ppc.h"
17#include "src/regexp/jsregexp.h"
18#include "src/regexp/regexp-macro-assembler.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040019#include "src/runtime/runtime.h"
20
21namespace v8 {
22namespace internal {
23
24
25static void InitializeArrayConstructorDescriptor(
26 Isolate* isolate, CodeStubDescriptor* descriptor,
27 int constant_stack_parameter_count) {
28 Address deopt_handler =
29 Runtime::FunctionForId(Runtime::kArrayConstructor)->entry;
30
31 if (constant_stack_parameter_count == 0) {
32 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
33 JS_FUNCTION_STUB_MODE);
34 } else {
35 descriptor->Initialize(r3, deopt_handler, constant_stack_parameter_count,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000036 JS_FUNCTION_STUB_MODE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -040037 }
38}
39
40
41static void InitializeInternalArrayConstructorDescriptor(
42 Isolate* isolate, CodeStubDescriptor* descriptor,
43 int constant_stack_parameter_count) {
44 Address deopt_handler =
45 Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry;
46
47 if (constant_stack_parameter_count == 0) {
48 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
49 JS_FUNCTION_STUB_MODE);
50 } else {
51 descriptor->Initialize(r3, deopt_handler, constant_stack_parameter_count,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000052 JS_FUNCTION_STUB_MODE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -040053 }
54}
55
56
Emily Bernierd0a1eb72015-03-24 16:35:39 -040057void ArraySingleArgumentConstructorStub::InitializeDescriptor(
58 CodeStubDescriptor* descriptor) {
59 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
60}
61
62
63void ArrayNArgumentsConstructorStub::InitializeDescriptor(
64 CodeStubDescriptor* descriptor) {
65 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
66}
67
68
Ben Murdochda12d292016-06-02 14:46:10 +010069void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) {
70 Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry;
71 descriptor->Initialize(r3, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
72}
Emily Bernierd0a1eb72015-03-24 16:35:39 -040073
74void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
75 CodeStubDescriptor* descriptor) {
76 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
77}
78
79
80void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
81 CodeStubDescriptor* descriptor) {
82 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
83}
84
85
86#define __ ACCESS_MASM(masm)
87
Emily Bernierd0a1eb72015-03-24 16:35:39 -040088static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
Ben Murdoch097c5b22016-05-18 11:27:45 +010089 Condition cond);
Emily Bernierd0a1eb72015-03-24 16:35:39 -040090static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
91 Register rhs, Label* lhs_not_nan,
92 Label* slow, bool strict);
93static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
94 Register rhs);
95
96
97void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
98 ExternalReference miss) {
99 // Update the static counter each time a new code stub is generated.
100 isolate()->counters()->code_stubs()->Increment();
101
102 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000103 int param_count = descriptor.GetRegisterParameterCount();
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400104 {
105 // Call the runtime system in a fresh internal frame.
106 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
107 DCHECK(param_count == 0 ||
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000108 r3.is(descriptor.GetRegisterParameter(param_count - 1)));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400109 // Push arguments
110 for (int i = 0; i < param_count; ++i) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000111 __ push(descriptor.GetRegisterParameter(i));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400112 }
113 __ CallExternalReference(miss, param_count);
114 }
115
116 __ Ret();
117}
118
119
120void DoubleToIStub::Generate(MacroAssembler* masm) {
121 Label out_of_range, only_low, negate, done, fastpath_done;
122 Register input_reg = source();
123 Register result_reg = destination();
124 DCHECK(is_truncating());
125
126 int double_offset = offset();
127
128 // Immediate values for this stub fit in instructions, so it's safe to use ip.
129 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
130 Register scratch_low =
131 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
132 Register scratch_high =
133 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
134 DoubleRegister double_scratch = kScratchDoubleReg;
135
136 __ push(scratch);
137 // Account for saved regs if input is sp.
138 if (input_reg.is(sp)) double_offset += kPointerSize;
139
140 if (!skip_fastpath()) {
141 // Load double input.
142 __ lfd(double_scratch, MemOperand(input_reg, double_offset));
143
144 // Do fast-path convert from double to int.
145 __ ConvertDoubleToInt64(double_scratch,
146#if !V8_TARGET_ARCH_PPC64
147 scratch,
148#endif
149 result_reg, d0);
150
151// Test for overflow
152#if V8_TARGET_ARCH_PPC64
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000153 __ TestIfInt32(result_reg, r0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400154#else
155 __ TestIfInt32(scratch, result_reg, r0);
156#endif
157 __ beq(&fastpath_done);
158 }
159
160 __ Push(scratch_high, scratch_low);
161 // Account for saved regs if input is sp.
162 if (input_reg.is(sp)) double_offset += 2 * kPointerSize;
163
164 __ lwz(scratch_high,
165 MemOperand(input_reg, double_offset + Register::kExponentOffset));
166 __ lwz(scratch_low,
167 MemOperand(input_reg, double_offset + Register::kMantissaOffset));
168
169 __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
170 // Load scratch with exponent - 1. This is faster than loading
171 // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value.
172 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
173 __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
174 // If exponent is greater than or equal to 84, the 32 less significant
175 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
176 // the result is 0.
177 // Compare exponent with 84 (compare exponent - 1 with 83).
178 __ cmpi(scratch, Operand(83));
179 __ bge(&out_of_range);
180
181 // If we reach this code, 31 <= exponent <= 83.
182 // So, we don't have to handle cases where 0 <= exponent <= 20 for
183 // which we would need to shift right the high part of the mantissa.
184 // Scratch contains exponent - 1.
185 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
186 __ subfic(scratch, scratch, Operand(51));
187 __ cmpi(scratch, Operand::Zero());
188 __ ble(&only_low);
189 // 21 <= exponent <= 51, shift scratch_low and scratch_high
190 // to generate the result.
191 __ srw(scratch_low, scratch_low, scratch);
192 // Scratch contains: 52 - exponent.
193 // We needs: exponent - 20.
194 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
195 __ subfic(scratch, scratch, Operand(32));
196 __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
197 // Set the implicit 1 before the mantissa part in scratch_high.
198 STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
199 __ oris(result_reg, result_reg,
200 Operand(1 << ((HeapNumber::kMantissaBitsInTopWord) - 16)));
201 __ slw(r0, result_reg, scratch);
202 __ orx(result_reg, scratch_low, r0);
203 __ b(&negate);
204
205 __ bind(&out_of_range);
206 __ mov(result_reg, Operand::Zero());
207 __ b(&done);
208
209 __ bind(&only_low);
210 // 52 <= exponent <= 83, shift only scratch_low.
211 // On entry, scratch contains: 52 - exponent.
212 __ neg(scratch, scratch);
213 __ slw(result_reg, scratch_low, scratch);
214
215 __ bind(&negate);
216 // If input was positive, scratch_high ASR 31 equals 0 and
217 // scratch_high LSR 31 equals zero.
218 // New result = (result eor 0) + 0 = result.
219 // If the input was negative, we have to negate the result.
220 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
221 // New result = (result eor 0xffffffff) + 1 = 0 - result.
222 __ srawi(r0, scratch_high, 31);
223#if V8_TARGET_ARCH_PPC64
224 __ srdi(r0, r0, Operand(32));
225#endif
226 __ xor_(result_reg, result_reg, r0);
227 __ srwi(r0, scratch_high, Operand(31));
228 __ add(result_reg, result_reg, r0);
229
230 __ bind(&done);
231 __ Pop(scratch_high, scratch_low);
232
233 __ bind(&fastpath_done);
234 __ pop(scratch);
235
236 __ Ret();
237}
238
239
240// Handle the case where the lhs and rhs are the same object.
241// Equality is almost reflexive (everything but NaN), so this is a test
242// for "identity and not NaN".
243static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
Ben Murdoch097c5b22016-05-18 11:27:45 +0100244 Condition cond) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400245 Label not_identical;
246 Label heap_number, return_equal;
247 __ cmp(r3, r4);
248 __ bne(&not_identical);
249
250 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
251 // so we do the second best thing - test it ourselves.
252 // They are both equal and they are not both Smis so both of them are not
253 // Smis. If it's not a heap number, then return equal.
254 if (cond == lt || cond == gt) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000255 // Call runtime on identical JSObjects.
256 __ CompareObjectType(r3, r7, r7, FIRST_JS_RECEIVER_TYPE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400257 __ bge(slow);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000258 // Call runtime on identical symbols since we need to throw a TypeError.
259 __ cmpi(r7, Operand(SYMBOL_TYPE));
260 __ beq(slow);
261 // Call runtime on identical SIMD values since we must throw a TypeError.
262 __ cmpi(r7, Operand(SIMD128_VALUE_TYPE));
263 __ beq(slow);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400264 } else {
265 __ CompareObjectType(r3, r7, r7, HEAP_NUMBER_TYPE);
266 __ beq(&heap_number);
267 // Comparing JS objects with <=, >= is complicated.
268 if (cond != eq) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000269 __ cmpi(r7, Operand(FIRST_JS_RECEIVER_TYPE));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400270 __ bge(slow);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000271 // Call runtime on identical symbols since we need to throw a TypeError.
272 __ cmpi(r7, Operand(SYMBOL_TYPE));
273 __ beq(slow);
274 // Call runtime on identical SIMD values since we must throw a TypeError.
275 __ cmpi(r7, Operand(SIMD128_VALUE_TYPE));
276 __ beq(slow);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400277 // Normally here we fall through to return_equal, but undefined is
278 // special: (undefined == undefined) == true, but
279 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
280 if (cond == le || cond == ge) {
281 __ cmpi(r7, Operand(ODDBALL_TYPE));
282 __ bne(&return_equal);
283 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
284 __ cmp(r3, r5);
285 __ bne(&return_equal);
286 if (cond == le) {
287 // undefined <= undefined should fail.
288 __ li(r3, Operand(GREATER));
289 } else {
290 // undefined >= undefined should fail.
291 __ li(r3, Operand(LESS));
292 }
293 __ Ret();
294 }
295 }
296 }
297
298 __ bind(&return_equal);
299 if (cond == lt) {
300 __ li(r3, Operand(GREATER)); // Things aren't less than themselves.
301 } else if (cond == gt) {
302 __ li(r3, Operand(LESS)); // Things aren't greater than themselves.
303 } else {
304 __ li(r3, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
305 }
306 __ Ret();
307
308 // For less and greater we don't have to check for NaN since the result of
309 // x < x is false regardless. For the others here is some code to check
310 // for NaN.
311 if (cond != lt && cond != gt) {
312 __ bind(&heap_number);
313 // It is a heap number, so return non-equal if it's NaN and equal if it's
314 // not NaN.
315
316 // The representation of NaN values has all exponent bits (52..62) set,
317 // and not all mantissa bits (0..51) clear.
318 // Read top bits of double representation (second word of value).
319 __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
320 // Test that exponent bits are all set.
321 STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u);
322 __ ExtractBitMask(r6, r5, HeapNumber::kExponentMask);
323 __ cmpli(r6, Operand(0x7ff));
324 __ bne(&return_equal);
325
326 // Shift out flag and all exponent bits, retaining only mantissa.
327 __ slwi(r5, r5, Operand(HeapNumber::kNonMantissaBitsInTopWord));
328 // Or with all low-bits of mantissa.
329 __ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
330 __ orx(r3, r6, r5);
331 __ cmpi(r3, Operand::Zero());
332 // For equal we already have the right value in r3: Return zero (equal)
333 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
334 // not (it's a NaN). For <= and >= we need to load r0 with the failing
335 // value if it's a NaN.
336 if (cond != eq) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000337 if (CpuFeatures::IsSupported(ISELECT)) {
338 __ li(r4, Operand((cond == le) ? GREATER : LESS));
339 __ isel(eq, r3, r3, r4);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400340 } else {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000341 // All-zero means Infinity means equal.
342 __ Ret(eq);
343 if (cond == le) {
344 __ li(r3, Operand(GREATER)); // NaN <= NaN should fail.
345 } else {
346 __ li(r3, Operand(LESS)); // NaN >= NaN should fail.
347 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400348 }
349 }
350 __ Ret();
351 }
352 // No fall through here.
353
354 __ bind(&not_identical);
355}
356
357
358// See comment at call site.
359static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
360 Register rhs, Label* lhs_not_nan,
361 Label* slow, bool strict) {
362 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
363
364 Label rhs_is_smi;
365 __ JumpIfSmi(rhs, &rhs_is_smi);
366
367 // Lhs is a Smi. Check whether the rhs is a heap number.
368 __ CompareObjectType(rhs, r6, r7, HEAP_NUMBER_TYPE);
369 if (strict) {
370 // If rhs is not a number and lhs is a Smi then strict equality cannot
371 // succeed. Return non-equal
372 // If rhs is r3 then there is already a non zero value in it.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400373 if (!rhs.is(r3)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000374 Label skip;
375 __ beq(&skip);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400376 __ mov(r3, Operand(NOT_EQUAL));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000377 __ Ret();
378 __ bind(&skip);
379 } else {
380 __ Ret(ne);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400381 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400382 } else {
383 // Smi compared non-strictly with a non-Smi non-heap-number. Call
384 // the runtime.
385 __ bne(slow);
386 }
387
388 // Lhs is a smi, rhs is a number.
389 // Convert lhs to a double in d7.
390 __ SmiToDouble(d7, lhs);
391 // Load the double from rhs, tagged HeapNumber r3, to d6.
392 __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
393
394 // We now have both loaded as doubles but we can skip the lhs nan check
395 // since it's a smi.
396 __ b(lhs_not_nan);
397
398 __ bind(&rhs_is_smi);
399 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
400 __ CompareObjectType(lhs, r7, r7, HEAP_NUMBER_TYPE);
401 if (strict) {
402 // If lhs is not a number and rhs is a smi then strict equality cannot
403 // succeed. Return non-equal.
404 // If lhs is r3 then there is already a non zero value in it.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400405 if (!lhs.is(r3)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000406 Label skip;
407 __ beq(&skip);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400408 __ mov(r3, Operand(NOT_EQUAL));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000409 __ Ret();
410 __ bind(&skip);
411 } else {
412 __ Ret(ne);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400413 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400414 } else {
415 // Smi compared non-strictly with a non-smi non-heap-number. Call
416 // the runtime.
417 __ bne(slow);
418 }
419
420 // Rhs is a smi, lhs is a heap number.
421 // Load the double from lhs, tagged HeapNumber r4, to d7.
422 __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
423 // Convert rhs to a double in d6.
424 __ SmiToDouble(d6, rhs);
425 // Fall through to both_loaded_as_doubles.
426}
427
428
429// See comment at call site.
430static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
431 Register rhs) {
432 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
433
434 // If either operand is a JS object or an oddball value, then they are
435 // not equal since their pointers are different.
436 // There is no test for undetectability in strict equality.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000437 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400438 Label first_non_object;
439 // Get the type of the first operand into r5 and compare it with
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000440 // FIRST_JS_RECEIVER_TYPE.
441 __ CompareObjectType(rhs, r5, r5, FIRST_JS_RECEIVER_TYPE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400442 __ blt(&first_non_object);
443
444 // Return non-zero (r3 is not zero)
445 Label return_not_equal;
446 __ bind(&return_not_equal);
447 __ Ret();
448
449 __ bind(&first_non_object);
450 // Check for oddballs: true, false, null, undefined.
451 __ cmpi(r5, Operand(ODDBALL_TYPE));
452 __ beq(&return_not_equal);
453
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000454 __ CompareObjectType(lhs, r6, r6, FIRST_JS_RECEIVER_TYPE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400455 __ bge(&return_not_equal);
456
457 // Check for oddballs: true, false, null, undefined.
458 __ cmpi(r6, Operand(ODDBALL_TYPE));
459 __ beq(&return_not_equal);
460
461 // Now that we have the types we might as well check for
462 // internalized-internalized.
463 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
464 __ orx(r5, r5, r6);
465 __ andi(r0, r5, Operand(kIsNotStringMask | kIsNotInternalizedMask));
466 __ beq(&return_not_equal, cr0);
467}
468
469
470// See comment at call site.
471static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs,
472 Register rhs,
473 Label* both_loaded_as_doubles,
474 Label* not_heap_numbers, Label* slow) {
475 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
476
477 __ CompareObjectType(rhs, r6, r5, HEAP_NUMBER_TYPE);
478 __ bne(not_heap_numbers);
479 __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset));
480 __ cmp(r5, r6);
481 __ bne(slow); // First was a heap number, second wasn't. Go slow case.
482
483 // Both are heap numbers. Load them up then jump to the code we have
484 // for that.
485 __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
486 __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
487
488 __ b(both_loaded_as_doubles);
489}
490
Ben Murdochda12d292016-06-02 14:46:10 +0100491// Fast negative check for internalized-to-internalized equality or receiver
492// equality. Also handles the undetectable receiver to null/undefined
493// comparison.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400494static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
495 Register lhs, Register rhs,
496 Label* possible_strings,
Ben Murdoch097c5b22016-05-18 11:27:45 +0100497 Label* runtime_call) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400498 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
499
500 // r5 is object type of rhs.
Ben Murdochda12d292016-06-02 14:46:10 +0100501 Label object_test, return_equal, return_unequal, undetectable;
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400502 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
503 __ andi(r0, r5, Operand(kIsNotStringMask));
504 __ bne(&object_test, cr0);
505 __ andi(r0, r5, Operand(kIsNotInternalizedMask));
506 __ bne(possible_strings, cr0);
507 __ CompareObjectType(lhs, r6, r6, FIRST_NONSTRING_TYPE);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100508 __ bge(runtime_call);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400509 __ andi(r0, r6, Operand(kIsNotInternalizedMask));
510 __ bne(possible_strings, cr0);
511
Ben Murdoch097c5b22016-05-18 11:27:45 +0100512 // Both are internalized. We already checked they weren't the same pointer so
513 // they are not equal. Return non-equal by returning the non-zero object
514 // pointer in r3.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400515 __ Ret();
516
517 __ bind(&object_test);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100518 __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400519 __ LoadP(r6, FieldMemOperand(rhs, HeapObject::kMapOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +0100520 __ lbz(r7, FieldMemOperand(r5, Map::kBitFieldOffset));
521 __ lbz(r8, FieldMemOperand(r6, Map::kBitFieldOffset));
522 __ andi(r0, r7, Operand(1 << Map::kIsUndetectable));
523 __ bne(&undetectable, cr0);
524 __ andi(r0, r8, Operand(1 << Map::kIsUndetectable));
525 __ bne(&return_unequal, cr0);
526
527 __ CompareInstanceType(r5, r5, FIRST_JS_RECEIVER_TYPE);
528 __ blt(runtime_call);
529 __ CompareInstanceType(r6, r6, FIRST_JS_RECEIVER_TYPE);
530 __ blt(runtime_call);
531
532 __ bind(&return_unequal);
533 // Return non-equal by returning the non-zero object pointer in r3.
534 __ Ret();
535
536 __ bind(&undetectable);
537 __ andi(r0, r8, Operand(1 << Map::kIsUndetectable));
538 __ beq(&return_unequal, cr0);
Ben Murdochda12d292016-06-02 14:46:10 +0100539
540 // If both sides are JSReceivers, then the result is false according to
541 // the HTML specification, which says that only comparisons with null or
542 // undefined are affected by special casing for document.all.
543 __ CompareInstanceType(r5, r5, ODDBALL_TYPE);
544 __ beq(&return_equal);
545 __ CompareInstanceType(r6, r6, ODDBALL_TYPE);
546 __ bne(&return_unequal);
547
548 __ bind(&return_equal);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100549 __ li(r3, Operand(EQUAL));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400550 __ Ret();
551}
552
553
554static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
555 Register scratch,
556 CompareICState::State expected,
557 Label* fail) {
558 Label ok;
559 if (expected == CompareICState::SMI) {
560 __ JumpIfNotSmi(input, fail);
561 } else if (expected == CompareICState::NUMBER) {
562 __ JumpIfSmi(input, &ok);
563 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
564 DONT_DO_SMI_CHECK);
565 }
566 // We could be strict about internalized/non-internalized here, but as long as
567 // hydrogen doesn't care, the stub doesn't have to care either.
568 __ bind(&ok);
569}
570
571
572// On entry r4 and r5 are the values to be compared.
573// On exit r3 is 0, positive or negative to indicate the result of
574// the comparison.
575void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
576 Register lhs = r4;
577 Register rhs = r3;
578 Condition cc = GetCondition();
579
580 Label miss;
581 CompareICStub_CheckInputType(masm, lhs, r5, left(), &miss);
582 CompareICStub_CheckInputType(masm, rhs, r6, right(), &miss);
583
584 Label slow; // Call builtin.
585 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
586
587 Label not_two_smis, smi_done;
588 __ orx(r5, r4, r3);
589 __ JumpIfNotSmi(r5, &not_two_smis);
590 __ SmiUntag(r4);
591 __ SmiUntag(r3);
592 __ sub(r3, r4, r3);
593 __ Ret();
594 __ bind(&not_two_smis);
595
596 // NOTICE! This code is only reached after a smi-fast-case check, so
597 // it is certain that at least one operand isn't a smi.
598
599 // Handle the case where the objects are identical. Either returns the answer
600 // or goes to slow. Only falls through if the objects were not identical.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100601 EmitIdenticalObjectComparison(masm, &slow, cc);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400602
603 // If either is a Smi (we know that not both are), then they can only
604 // be strictly equal if the other is a HeapNumber.
605 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000606 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400607 __ and_(r5, lhs, rhs);
608 __ JumpIfNotSmi(r5, &not_smis);
609 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
610 // 1) Return the answer.
611 // 2) Go to slow.
612 // 3) Fall through to both_loaded_as_doubles.
613 // 4) Jump to lhs_not_nan.
614 // In cases 3 and 4 we have found out we were dealing with a number-number
615 // comparison. The double values of the numbers have been loaded
616 // into d7 and d6.
617 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
618
619 __ bind(&both_loaded_as_doubles);
620 // The arguments have been converted to doubles and stored in d6 and d7
621 __ bind(&lhs_not_nan);
622 Label no_nan;
623 __ fcmpu(d7, d6);
624
625 Label nan, equal, less_than;
626 __ bunordered(&nan);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000627 if (CpuFeatures::IsSupported(ISELECT)) {
628 DCHECK(EQUAL == 0);
629 __ li(r4, Operand(GREATER));
630 __ li(r5, Operand(LESS));
631 __ isel(eq, r3, r0, r4);
632 __ isel(lt, r3, r5, r3);
633 __ Ret();
634 } else {
635 __ beq(&equal);
636 __ blt(&less_than);
637 __ li(r3, Operand(GREATER));
638 __ Ret();
639 __ bind(&equal);
640 __ li(r3, Operand(EQUAL));
641 __ Ret();
642 __ bind(&less_than);
643 __ li(r3, Operand(LESS));
644 __ Ret();
645 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400646
647 __ bind(&nan);
648 // If one of the sides was a NaN then the v flag is set. Load r3 with
649 // whatever it takes to make the comparison fail, since comparisons with NaN
650 // always fail.
651 if (cc == lt || cc == le) {
652 __ li(r3, Operand(GREATER));
653 } else {
654 __ li(r3, Operand(LESS));
655 }
656 __ Ret();
657
658 __ bind(&not_smis);
659 // At this point we know we are dealing with two different objects,
660 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
661 if (strict()) {
662 // This returns non-equal for some object types, or falls through if it
663 // was not lucky.
664 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
665 }
666
667 Label check_for_internalized_strings;
668 Label flat_string_check;
669 // Check for heap-number-heap-number comparison. Can jump to slow case,
670 // or load both doubles into r3, r4, r5, r6 and jump to the code that handles
671 // that case. If the inputs are not doubles then jumps to
672 // check_for_internalized_strings.
673 // In this case r5 will contain the type of rhs_. Never falls through.
674 EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles,
675 &check_for_internalized_strings,
676 &flat_string_check);
677
678 __ bind(&check_for_internalized_strings);
679 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
680 // internalized strings.
681 if (cc == eq && !strict()) {
682 // Returns an answer for two internalized strings or two detectable objects.
683 // Otherwise jumps to string case or not both strings case.
684 // Assumes that r5 is the type of rhs_ on entry.
685 EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check,
686 &slow);
687 }
688
689 // Check for both being sequential one-byte strings,
690 // and inline if that is the case.
691 __ bind(&flat_string_check);
692
693 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r5, r6, &slow);
694
695 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r5,
696 r6);
697 if (cc == eq) {
698 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r5, r6);
699 } else {
700 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r5, r6, r7);
701 }
702 // Never falls through to here.
703
704 __ bind(&slow);
705
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400706 if (cc == eq) {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100707 {
708 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
709 __ Push(lhs, rhs);
710 __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
711 }
712 // Turn true into 0 and false into some non-zero value.
713 STATIC_ASSERT(EQUAL == 0);
714 __ LoadRoot(r4, Heap::kTrueValueRootIndex);
715 __ sub(r3, r3, r4);
716 __ Ret();
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400717 } else {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100718 __ Push(lhs, rhs);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400719 int ncr; // NaN compare result
720 if (cc == lt || cc == le) {
721 ncr = GREATER;
722 } else {
723 DCHECK(cc == gt || cc == ge); // remaining cases
724 ncr = LESS;
725 }
726 __ LoadSmiLiteral(r3, Smi::FromInt(ncr));
727 __ push(r3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400728
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000729 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
730 // tagged as a small integer.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100731 __ TailCallRuntime(Runtime::kCompare);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000732 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400733
734 __ bind(&miss);
735 GenerateMiss(masm);
736}
737
738
739void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
740 // We don't allow a GC during a store buffer overflow so there is no need to
741 // store the registers in any particular way, but we do have to store and
742 // restore them.
743 __ mflr(r0);
744 __ MultiPush(kJSCallerSaved | r0.bit());
745 if (save_doubles()) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000746 __ MultiPushDoubles(kCallerSavedDoubles);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400747 }
748 const int argument_count = 1;
749 const int fp_argument_count = 0;
750 const Register scratch = r4;
751
752 AllowExternalCallThatCantCauseGC scope(masm);
753 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
754 __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
755 __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()),
756 argument_count);
757 if (save_doubles()) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000758 __ MultiPopDoubles(kCallerSavedDoubles);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400759 }
760 __ MultiPop(kJSCallerSaved | r0.bit());
761 __ mtlr(r0);
762 __ Ret();
763}
764
765
766void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
767 __ PushSafepointRegisters();
768 __ blr();
769}
770
771
772void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
773 __ PopSafepointRegisters();
774 __ blr();
775}
776
777
778void MathPowStub::Generate(MacroAssembler* masm) {
779 const Register base = r4;
780 const Register exponent = MathPowTaggedDescriptor::exponent();
781 DCHECK(exponent.is(r5));
782 const Register heapnumbermap = r8;
783 const Register heapnumber = r3;
784 const DoubleRegister double_base = d1;
785 const DoubleRegister double_exponent = d2;
786 const DoubleRegister double_result = d3;
787 const DoubleRegister double_scratch = d0;
788 const Register scratch = r11;
789 const Register scratch2 = r10;
790
791 Label call_runtime, done, int_exponent;
792 if (exponent_type() == ON_STACK) {
793 Label base_is_smi, unpack_exponent;
794 // The exponent and base are supplied as arguments on the stack.
795 // This can only happen if the stub is called from non-optimized code.
796 // Load input parameters from stack to double registers.
797 __ LoadP(base, MemOperand(sp, 1 * kPointerSize));
798 __ LoadP(exponent, MemOperand(sp, 0 * kPointerSize));
799
800 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
801
802 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
803 __ LoadP(scratch, FieldMemOperand(base, JSObject::kMapOffset));
804 __ cmp(scratch, heapnumbermap);
805 __ bne(&call_runtime);
806
807 __ lfd(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
808 __ b(&unpack_exponent);
809
810 __ bind(&base_is_smi);
811 __ ConvertIntToDouble(scratch, double_base);
812 __ bind(&unpack_exponent);
813
814 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
815 __ LoadP(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
816 __ cmp(scratch, heapnumbermap);
817 __ bne(&call_runtime);
818
819 __ lfd(double_exponent,
820 FieldMemOperand(exponent, HeapNumber::kValueOffset));
821 } else if (exponent_type() == TAGGED) {
822 // Base is already in double_base.
823 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
824
825 __ lfd(double_exponent,
826 FieldMemOperand(exponent, HeapNumber::kValueOffset));
827 }
828
829 if (exponent_type() != INTEGER) {
830 // Detect integer exponents stored as double.
831 __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2,
832 double_scratch);
833 __ beq(&int_exponent);
834
835 if (exponent_type() == ON_STACK) {
836 // Detect square root case. Crankshaft detects constant +/-0.5 at
837 // compile time and uses DoMathPowHalf instead. We then skip this check
838 // for non-constant cases of +/-0.5 as these hardly occur.
839 Label not_plus_half, not_minus_inf1, not_minus_inf2;
840
841 // Test for 0.5.
842 __ LoadDoubleLiteral(double_scratch, 0.5, scratch);
843 __ fcmpu(double_exponent, double_scratch);
844 __ bne(&not_plus_half);
845
846 // Calculates square root of base. Check for the special case of
847 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
848 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
849 __ fcmpu(double_base, double_scratch);
850 __ bne(&not_minus_inf1);
851 __ fneg(double_result, double_scratch);
852 __ b(&done);
853 __ bind(&not_minus_inf1);
854
855 // Add +0 to convert -0 to +0.
856 __ fadd(double_scratch, double_base, kDoubleRegZero);
857 __ fsqrt(double_result, double_scratch);
858 __ b(&done);
859
860 __ bind(&not_plus_half);
861 __ LoadDoubleLiteral(double_scratch, -0.5, scratch);
862 __ fcmpu(double_exponent, double_scratch);
863 __ bne(&call_runtime);
864
865 // Calculates square root of base. Check for the special case of
866 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
867 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
868 __ fcmpu(double_base, double_scratch);
869 __ bne(&not_minus_inf2);
870 __ fmr(double_result, kDoubleRegZero);
871 __ b(&done);
872 __ bind(&not_minus_inf2);
873
874 // Add +0 to convert -0 to +0.
875 __ fadd(double_scratch, double_base, kDoubleRegZero);
876 __ LoadDoubleLiteral(double_result, 1.0, scratch);
877 __ fsqrt(double_scratch, double_scratch);
878 __ fdiv(double_result, double_result, double_scratch);
879 __ b(&done);
880 }
881
882 __ mflr(r0);
883 __ push(r0);
884 {
885 AllowExternalCallThatCantCauseGC scope(masm);
886 __ PrepareCallCFunction(0, 2, scratch);
887 __ MovToFloatParameters(double_base, double_exponent);
888 __ CallCFunction(
889 ExternalReference::power_double_double_function(isolate()), 0, 2);
890 }
891 __ pop(r0);
892 __ mtlr(r0);
893 __ MovFromFloatResult(double_result);
894 __ b(&done);
895 }
896
897 // Calculate power with integer exponent.
898 __ bind(&int_exponent);
899
900 // Get two copies of exponent in the registers scratch and exponent.
901 if (exponent_type() == INTEGER) {
902 __ mr(scratch, exponent);
903 } else {
904 // Exponent has previously been stored into scratch as untagged integer.
905 __ mr(exponent, scratch);
906 }
907 __ fmr(double_scratch, double_base); // Back up base.
908 __ li(scratch2, Operand(1));
909 __ ConvertIntToDouble(scratch2, double_result);
910
911 // Get absolute value of exponent.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400912 __ cmpi(scratch, Operand::Zero());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000913 if (CpuFeatures::IsSupported(ISELECT)) {
914 __ neg(scratch2, scratch);
915 __ isel(lt, scratch, scratch2, scratch);
916 } else {
917 Label positive_exponent;
918 __ bge(&positive_exponent);
919 __ neg(scratch, scratch);
920 __ bind(&positive_exponent);
921 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400922
923 Label while_true, no_carry, loop_end;
924 __ bind(&while_true);
925 __ andi(scratch2, scratch, Operand(1));
926 __ beq(&no_carry, cr0);
927 __ fmul(double_result, double_result, double_scratch);
928 __ bind(&no_carry);
929 __ ShiftRightArithImm(scratch, scratch, 1, SetRC);
930 __ beq(&loop_end, cr0);
931 __ fmul(double_scratch, double_scratch, double_scratch);
932 __ b(&while_true);
933 __ bind(&loop_end);
934
935 __ cmpi(exponent, Operand::Zero());
936 __ bge(&done);
937
938 __ li(scratch2, Operand(1));
939 __ ConvertIntToDouble(scratch2, double_scratch);
940 __ fdiv(double_result, double_scratch, double_result);
941 // Test whether result is zero. Bail out to check for subnormal result.
942 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
943 __ fcmpu(double_result, kDoubleRegZero);
944 __ bne(&done);
945 // double_exponent may not containe the exponent value if the input was a
946 // smi. We set it with exponent value before bailing out.
947 __ ConvertIntToDouble(exponent, double_exponent);
948
949 // Returning or bailing out.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400950 if (exponent_type() == ON_STACK) {
951 // The arguments are still on the stack.
952 __ bind(&call_runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000953 __ TailCallRuntime(Runtime::kMathPowRT);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400954
955 // The stub is called from non-optimized code, which expects the result
956 // as heap number in exponent.
957 __ bind(&done);
958 __ AllocateHeapNumber(heapnumber, scratch, scratch2, heapnumbermap,
959 &call_runtime);
960 __ stfd(double_result,
961 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
962 DCHECK(heapnumber.is(r3));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400963 __ Ret(2);
964 } else {
965 __ mflr(r0);
966 __ push(r0);
967 {
968 AllowExternalCallThatCantCauseGC scope(masm);
969 __ PrepareCallCFunction(0, 2, scratch);
970 __ MovToFloatParameters(double_base, double_exponent);
971 __ CallCFunction(
972 ExternalReference::power_double_double_function(isolate()), 0, 2);
973 }
974 __ pop(r0);
975 __ mtlr(r0);
976 __ MovFromFloatResult(double_result);
977
978 __ bind(&done);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400979 __ Ret();
980 }
981}
982
983
984bool CEntryStub::NeedsImmovableCode() { return true; }
985
986
987void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
988 CEntryStub::GenerateAheadOfTime(isolate);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400989 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
990 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
991 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
992 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000993 CreateWeakCellStub::GenerateAheadOfTime(isolate);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400994 BinaryOpICStub::GenerateAheadOfTime(isolate);
995 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
996 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
997 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000998 StoreFastElementStub::GenerateAheadOfTime(isolate);
999 TypeofStub::GenerateAheadOfTime(isolate);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001000}
1001
1002
1003void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1004 StoreRegistersStateStub stub(isolate);
1005 stub.GetCode();
1006}
1007
1008
1009void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1010 RestoreRegistersStateStub stub(isolate);
1011 stub.GetCode();
1012}
1013
1014
1015void CodeStub::GenerateFPStubs(Isolate* isolate) {
1016 // Generate if not already in cache.
1017 SaveFPRegsMode mode = kSaveFPRegs;
1018 CEntryStub(isolate, 1, mode).GetCode();
1019 StoreBufferOverflowStub(isolate, mode).GetCode();
1020 isolate->set_fp_stubs_generated(true);
1021}
1022
1023
1024void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1025 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1026 stub.GetCode();
1027}
1028
1029
1030void CEntryStub::Generate(MacroAssembler* masm) {
1031 // Called from JavaScript; parameters are on stack as if calling JS function.
1032 // r3: number of arguments including receiver
1033 // r4: pointer to builtin function
1034 // fp: frame pointer (restored after C call)
1035 // sp: stack pointer (restored as callee's sp after C call)
1036 // cp: current context (C callee-saved)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001037 //
1038 // If argv_in_register():
1039 // r5: pointer to the first argument
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001040 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1041
1042 __ mr(r15, r4);
1043
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001044 if (argv_in_register()) {
1045 // Move argv into the correct register.
1046 __ mr(r4, r5);
1047 } else {
1048 // Compute the argv pointer.
1049 __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2));
1050 __ add(r4, r4, sp);
1051 __ subi(r4, r4, Operand(kPointerSize));
1052 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001053
1054 // Enter the exit frame that transitions from JavaScript to C++.
1055 FrameScope scope(masm, StackFrame::MANUAL);
1056
1057 // Need at least one extra slot for return address location.
1058 int arg_stack_space = 1;
1059
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001060 // Pass buffer for return value on stack if necessary
Ben Murdoch097c5b22016-05-18 11:27:45 +01001061 bool needs_return_buffer =
1062 result_size() > 2 ||
1063 (result_size() == 2 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
1064 if (needs_return_buffer) {
1065 arg_stack_space += result_size();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001066 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001067
1068 __ EnterExitFrame(save_doubles(), arg_stack_space);
1069
1070 // Store a copy of argc in callee-saved registers for later.
1071 __ mr(r14, r3);
1072
1073 // r3, r14: number of arguments including receiver (C callee-saved)
1074 // r4: pointer to the first argument
1075 // r15: pointer to builtin function (C callee-saved)
1076
1077 // Result returned in registers or stack, depending on result size and ABI.
1078
1079 Register isolate_reg = r5;
Ben Murdoch097c5b22016-05-18 11:27:45 +01001080 if (needs_return_buffer) {
1081 // The return value is a non-scalar value.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001082 // Use frame storage reserved by calling function to pass return
1083 // buffer as implicit first argument.
1084 __ mr(r5, r4);
1085 __ mr(r4, r3);
1086 __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
1087 isolate_reg = r6;
1088 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001089
1090 // Call C built-in.
1091 __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate())));
1092
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001093 Register target = r15;
Ben Murdoch097c5b22016-05-18 11:27:45 +01001094 if (ABI_USES_FUNCTION_DESCRIPTORS) {
1095 // AIX/PPC64BE Linux use a function descriptor.
1096 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize));
1097 __ LoadP(ip, MemOperand(r15, 0)); // Instruction address
1098 target = ip;
1099 } else if (ABI_CALL_VIA_IP) {
1100 __ Move(ip, r15);
1101 target = ip;
1102 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001103
1104 // To let the GC traverse the return address of the exit frames, we need to
1105 // know where the return address is. The CEntryStub is unmovable, so
1106 // we can store the address on the stack to be able to find it again and
1107 // we never have to restore it, because it will not change.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001108 Label after_call;
1109 __ mov_label_addr(r0, &after_call);
1110 __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
1111 __ Call(target);
1112 __ bind(&after_call);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001113
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001114 // If return value is on the stack, pop it to registers.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001115 if (needs_return_buffer) {
1116 if (result_size() > 2) __ LoadP(r5, MemOperand(r3, 2 * kPointerSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001117 __ LoadP(r4, MemOperand(r3, kPointerSize));
1118 __ LoadP(r3, MemOperand(r3));
1119 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001120
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001121 // Check result for exception sentinel.
1122 Label exception_returned;
1123 __ CompareRoot(r3, Heap::kExceptionRootIndex);
1124 __ beq(&exception_returned);
1125
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001126 // Check that there is no pending exception, otherwise we
1127 // should have returned the exception sentinel.
1128 if (FLAG_debug_code) {
1129 Label okay;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001130 ExternalReference pending_exception_address(
1131 Isolate::kPendingExceptionAddress, isolate());
1132
Ben Murdoch097c5b22016-05-18 11:27:45 +01001133 __ mov(r6, Operand(pending_exception_address));
1134 __ LoadP(r6, MemOperand(r6));
1135 __ CompareRoot(r6, Heap::kTheHoleValueRootIndex);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001136 // Cannot use check here as it attempts to generate call into runtime.
1137 __ beq(&okay);
1138 __ stop("Unexpected pending exception");
1139 __ bind(&okay);
1140 }
1141
1142 // Exit C frame and return.
1143 // r3:r4: result
1144 // sp: stack pointer
1145 // fp: frame pointer
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001146 Register argc;
1147 if (argv_in_register()) {
1148 // We don't want to pop arguments so set argc to no_reg.
1149 argc = no_reg;
1150 } else {
1151 // r14: still holds argc (callee-saved).
1152 argc = r14;
1153 }
1154 __ LeaveExitFrame(save_doubles(), argc, true);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001155 __ blr();
1156
1157 // Handling of exception.
1158 __ bind(&exception_returned);
1159
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001160 ExternalReference pending_handler_context_address(
1161 Isolate::kPendingHandlerContextAddress, isolate());
1162 ExternalReference pending_handler_code_address(
1163 Isolate::kPendingHandlerCodeAddress, isolate());
1164 ExternalReference pending_handler_offset_address(
1165 Isolate::kPendingHandlerOffsetAddress, isolate());
1166 ExternalReference pending_handler_fp_address(
1167 Isolate::kPendingHandlerFPAddress, isolate());
1168 ExternalReference pending_handler_sp_address(
1169 Isolate::kPendingHandlerSPAddress, isolate());
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001170
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001171 // Ask the runtime for help to determine the handler. This will set r3 to
1172 // contain the current pending exception, don't clobber it.
1173 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1174 isolate());
1175 {
1176 FrameScope scope(masm, StackFrame::MANUAL);
1177 __ PrepareCallCFunction(3, 0, r3);
1178 __ li(r3, Operand::Zero());
1179 __ li(r4, Operand::Zero());
1180 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
1181 __ CallCFunction(find_handler, 3);
1182 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001183
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001184 // Retrieve the handler context, SP and FP.
1185 __ mov(cp, Operand(pending_handler_context_address));
1186 __ LoadP(cp, MemOperand(cp));
1187 __ mov(sp, Operand(pending_handler_sp_address));
1188 __ LoadP(sp, MemOperand(sp));
1189 __ mov(fp, Operand(pending_handler_fp_address));
1190 __ LoadP(fp, MemOperand(fp));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001191
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001192 // If the handler is a JS frame, restore the context to the frame. Note that
1193 // the context will be set to (cp == 0) for non-JS frames.
1194 Label skip;
1195 __ cmpi(cp, Operand::Zero());
1196 __ beq(&skip);
1197 __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1198 __ bind(&skip);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001199
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001200 // Compute the handler entry address and jump to it.
1201 ConstantPoolUnavailableScope constant_pool_unavailable(masm);
1202 __ mov(r4, Operand(pending_handler_code_address));
1203 __ LoadP(r4, MemOperand(r4));
1204 __ mov(r5, Operand(pending_handler_offset_address));
1205 __ LoadP(r5, MemOperand(r5));
1206 __ addi(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start
1207 if (FLAG_enable_embedded_constant_pool) {
1208 __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r4);
1209 }
1210 __ add(ip, r4, r5);
1211 __ Jump(ip);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001212}
1213
1214
1215void JSEntryStub::Generate(MacroAssembler* masm) {
1216 // r3: code entry
1217 // r4: function
1218 // r5: receiver
1219 // r6: argc
1220 // [sp+0]: argv
1221
1222 Label invoke, handler_entry, exit;
1223
1224// Called from C
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001225 __ function_descriptor();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001226
1227 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1228
1229 // PPC LINUX ABI:
1230 // preserve LR in pre-reserved slot in caller's frame
1231 __ mflr(r0);
1232 __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
1233
1234 // Save callee saved registers on the stack.
1235 __ MultiPush(kCalleeSaved);
1236
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001237 // Save callee-saved double registers.
1238 __ MultiPushDoubles(kCalleeSavedDoubles);
1239 // Set up the reserved register for 0.0.
1240 __ LoadDoubleLiteral(kDoubleRegZero, 0.0, r0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001241
1242 // Push a frame with special values setup to mark it as an entry frame.
1243 // r3: code entry
1244 // r4: function
1245 // r5: receiver
1246 // r6: argc
1247 // r7: argv
1248 __ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used.
1249 __ push(r0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001250 if (FLAG_enable_embedded_constant_pool) {
1251 __ li(kConstantPoolRegister, Operand::Zero());
1252 __ push(kConstantPoolRegister);
1253 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001254 int marker = type();
1255 __ LoadSmiLiteral(r0, Smi::FromInt(marker));
1256 __ push(r0);
1257 __ push(r0);
1258 // Save copies of the top frame descriptor on the stack.
1259 __ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1260 __ LoadP(r0, MemOperand(r8));
1261 __ push(r0);
1262
1263 // Set up frame pointer for the frame to be pushed.
1264 __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1265
1266 // If this is the outermost JS call, set js_entry_sp value.
1267 Label non_outermost_js;
1268 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1269 __ mov(r8, Operand(ExternalReference(js_entry_sp)));
1270 __ LoadP(r9, MemOperand(r8));
1271 __ cmpi(r9, Operand::Zero());
1272 __ bne(&non_outermost_js);
1273 __ StoreP(fp, MemOperand(r8));
1274 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1275 Label cont;
1276 __ b(&cont);
1277 __ bind(&non_outermost_js);
1278 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
1279 __ bind(&cont);
1280 __ push(ip); // frame-type
1281
1282 // Jump to a faked try block that does the invoke, with a faked catch
1283 // block that sets the pending exception.
1284 __ b(&invoke);
1285
1286 __ bind(&handler_entry);
1287 handler_offset_ = handler_entry.pos();
1288 // Caught exception: Store result (exception) in the pending exception
1289 // field in the JSEnv and return a failure sentinel. Coming in here the
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001290 // fp will be invalid because the PushStackHandler below sets it to 0 to
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001291 // signal the existence of the JSEntry frame.
1292 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1293 isolate())));
1294
1295 __ StoreP(r3, MemOperand(ip));
1296 __ LoadRoot(r3, Heap::kExceptionRootIndex);
1297 __ b(&exit);
1298
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001299 // Invoke: Link this frame into the handler chain.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001300 __ bind(&invoke);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001301 // Must preserve r3-r7.
1302 __ PushStackHandler();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001303 // If an exception not caught by another handler occurs, this handler
1304 // returns control to the code after the b(&invoke) above, which
1305 // restores all kCalleeSaved registers (including cp and fp) to their
1306 // saved values before returning a failure to C.
1307
1308 // Clear any pending exceptions.
1309 __ mov(r8, Operand(isolate()->factory()->the_hole_value()));
1310 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1311 isolate())));
1312 __ StoreP(r8, MemOperand(ip));
1313
1314 // Invoke the function by calling through JS entry trampoline builtin.
1315 // Notice that we cannot store a reference to the trampoline code directly in
1316 // this stub, because runtime stubs are not traversed when doing GC.
1317
1318 // Expected registers by Builtins::JSEntryTrampoline
1319 // r3: code entry
1320 // r4: function
1321 // r5: receiver
1322 // r6: argc
1323 // r7: argv
1324 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1325 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1326 isolate());
1327 __ mov(ip, Operand(construct_entry));
1328 } else {
1329 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1330 __ mov(ip, Operand(entry));
1331 }
1332 __ LoadP(ip, MemOperand(ip)); // deref address
1333
1334 // Branch and link to JSEntryTrampoline.
1335 // the address points to the start of the code object, skip the header
1336 __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1337 __ mtctr(ip);
1338 __ bctrl(); // make the call
1339
1340 // Unlink this frame from the handler chain.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001341 __ PopStackHandler();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001342
1343 __ bind(&exit); // r3 holds result
1344 // Check if the current stack frame is marked as the outermost JS frame.
1345 Label non_outermost_js_2;
1346 __ pop(r8);
1347 __ CmpSmiLiteral(r8, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME), r0);
1348 __ bne(&non_outermost_js_2);
1349 __ mov(r9, Operand::Zero());
1350 __ mov(r8, Operand(ExternalReference(js_entry_sp)));
1351 __ StoreP(r9, MemOperand(r8));
1352 __ bind(&non_outermost_js_2);
1353
1354 // Restore the top frame descriptors from the stack.
1355 __ pop(r6);
1356 __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1357 __ StoreP(r6, MemOperand(ip));
1358
1359 // Reset the stack to the callee saved registers.
1360 __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1361
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001362 // Restore callee-saved double registers.
1363 __ MultiPopDoubles(kCalleeSavedDoubles);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001364
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001365 // Restore callee-saved registers.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001366 __ MultiPop(kCalleeSaved);
1367
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001368 // Return
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001369 __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001370 __ mtlr(r0);
1371 __ blr();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001372}
1373
1374
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001375void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1376 Label miss;
1377 Register receiver = LoadDescriptor::ReceiverRegister();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001378 // Ensure that the vector and slot registers won't be clobbered before
1379 // calling the miss handler.
1380 DCHECK(!AreAliased(r7, r8, LoadWithVectorDescriptor::VectorRegister(),
1381 LoadWithVectorDescriptor::SlotRegister()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001382
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001383 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r7,
1384 r8, &miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001385 __ bind(&miss);
1386 PropertyAccessCompiler::TailCallBuiltin(
1387 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1388}
1389
1390
1391void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1392 // Return address is in lr.
1393 Label miss;
1394
1395 Register receiver = LoadDescriptor::ReceiverRegister();
1396 Register index = LoadDescriptor::NameRegister();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001397 Register scratch = r8;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001398 Register result = r3;
1399 DCHECK(!scratch.is(receiver) && !scratch.is(index));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001400 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
1401 result.is(LoadWithVectorDescriptor::SlotRegister()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001402
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001403 // StringCharAtGenerator doesn't use the result register until it's passed
1404 // the different miss possibilities. If it did, we would have a conflict
1405 // when FLAG_vector_ics is true.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001406 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1407 &miss, // When not a string.
1408 &miss, // When not a number.
1409 &miss, // When index out of range.
1410 STRING_INDEX_IS_ARRAY_INDEX,
1411 RECEIVER_IS_STRING);
1412 char_at_generator.GenerateFast(masm);
1413 __ Ret();
1414
1415 StubRuntimeCallHelper call_helper;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001416 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001417
1418 __ bind(&miss);
1419 PropertyAccessCompiler::TailCallBuiltin(
1420 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1421}
1422
1423
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001424void RegExpExecStub::Generate(MacroAssembler* masm) {
1425// Just jump directly to runtime if native RegExp is not selected at compile
1426// time or if regexp entry in generated code is turned off runtime switch or
1427// at compilation.
1428#ifdef V8_INTERPRETED_REGEXP
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001429 __ TailCallRuntime(Runtime::kRegExpExec);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001430#else // V8_INTERPRETED_REGEXP
1431
1432 // Stack frame on entry.
1433 // sp[0]: last_match_info (expected JSArray)
1434 // sp[4]: previous index
1435 // sp[8]: subject string
1436 // sp[12]: JSRegExp object
1437
1438 const int kLastMatchInfoOffset = 0 * kPointerSize;
1439 const int kPreviousIndexOffset = 1 * kPointerSize;
1440 const int kSubjectOffset = 2 * kPointerSize;
1441 const int kJSRegExpOffset = 3 * kPointerSize;
1442
1443 Label runtime, br_over, encoding_type_UC16;
1444
1445 // Allocation of registers for this function. These are in callee save
1446 // registers and will be preserved by the call to the native RegExp code, as
1447 // this code is called using the normal C calling convention. When calling
1448 // directly from generated code the native RegExp code will not do a GC and
1449 // therefore the content of these registers are safe to use after the call.
1450 Register subject = r14;
1451 Register regexp_data = r15;
1452 Register last_match_info_elements = r16;
1453 Register code = r17;
1454
1455 // Ensure register assigments are consistent with callee save masks
1456 DCHECK(subject.bit() & kCalleeSaved);
1457 DCHECK(regexp_data.bit() & kCalleeSaved);
1458 DCHECK(last_match_info_elements.bit() & kCalleeSaved);
1459 DCHECK(code.bit() & kCalleeSaved);
1460
1461 // Ensure that a RegExp stack is allocated.
1462 ExternalReference address_of_regexp_stack_memory_address =
1463 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1464 ExternalReference address_of_regexp_stack_memory_size =
1465 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1466 __ mov(r3, Operand(address_of_regexp_stack_memory_size));
1467 __ LoadP(r3, MemOperand(r3, 0));
1468 __ cmpi(r3, Operand::Zero());
1469 __ beq(&runtime);
1470
1471 // Check that the first argument is a JSRegExp object.
1472 __ LoadP(r3, MemOperand(sp, kJSRegExpOffset));
1473 __ JumpIfSmi(r3, &runtime);
1474 __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
1475 __ bne(&runtime);
1476
1477 // Check that the RegExp has been compiled (data contains a fixed array).
1478 __ LoadP(regexp_data, FieldMemOperand(r3, JSRegExp::kDataOffset));
1479 if (FLAG_debug_code) {
1480 __ TestIfSmi(regexp_data, r0);
1481 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0);
1482 __ CompareObjectType(regexp_data, r3, r3, FIXED_ARRAY_TYPE);
1483 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1484 }
1485
1486 // regexp_data: RegExp data (FixedArray)
1487 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1488 __ LoadP(r3, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1489 // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu);
1490 __ CmpSmiLiteral(r3, Smi::FromInt(JSRegExp::IRREGEXP), r0);
1491 __ bne(&runtime);
1492
1493 // regexp_data: RegExp data (FixedArray)
1494 // Check that the number of captures fit in the static offsets vector buffer.
1495 __ LoadP(r5,
1496 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1497 // Check (number_of_captures + 1) * 2 <= offsets vector size
1498 // Or number_of_captures * 2 <= offsets vector size - 2
1499 // SmiToShortArrayOffset accomplishes the multiplication by 2 and
1500 // SmiUntag (which is a nop for 32-bit).
1501 __ SmiToShortArrayOffset(r5, r5);
1502 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1503 __ cmpli(r5, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
1504 __ bgt(&runtime);
1505
1506 // Reset offset for possibly sliced string.
1507 __ li(r11, Operand::Zero());
1508 __ LoadP(subject, MemOperand(sp, kSubjectOffset));
1509 __ JumpIfSmi(subject, &runtime);
1510 __ mr(r6, subject); // Make a copy of the original subject string.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001511 // subject: subject string
1512 // r6: subject string
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001513 // regexp_data: RegExp data (FixedArray)
1514 // Handle subject string according to its encoding and representation:
Ben Murdoch097c5b22016-05-18 11:27:45 +01001515 // (1) Sequential string? If yes, go to (4).
1516 // (2) Sequential or cons? If not, go to (5).
1517 // (3) Cons string. If the string is flat, replace subject with first string
1518 // and go to (1). Otherwise bail out to runtime.
1519 // (4) Sequential string. Load regexp code according to encoding.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001520 // (E) Carry on.
1521 /// [...]
1522
1523 // Deferred code at the end of the stub:
Ben Murdoch097c5b22016-05-18 11:27:45 +01001524 // (5) Long external string? If not, go to (7).
1525 // (6) External string. Make it, offset-wise, look like a sequential string.
1526 // Go to (4).
1527 // (7) Short external string or not a string? If yes, bail out to runtime.
1528 // (8) Sliced string. Replace subject with parent. Go to (1).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001529
Ben Murdoch097c5b22016-05-18 11:27:45 +01001530 Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */,
1531 not_seq_nor_cons /* 5 */, not_long_external /* 7 */;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001532
Ben Murdoch097c5b22016-05-18 11:27:45 +01001533 __ bind(&check_underlying);
1534 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
1535 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
1536
1537 // (1) Sequential string? If yes, go to (4).
1538
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001539 STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask |
1540 kShortExternalStringMask) == 0x93);
1541 __ andi(r4, r3, Operand(kIsNotStringMask | kStringRepresentationMask |
1542 kShortExternalStringMask));
1543 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001544 __ beq(&seq_string, cr0); // Go to (4).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001545
Ben Murdoch097c5b22016-05-18 11:27:45 +01001546 // (2) Sequential or cons? If not, go to (5).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001547 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1548 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1549 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1550 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1551 STATIC_ASSERT(kExternalStringTag < 0xffffu);
1552 __ cmpi(r4, Operand(kExternalStringTag));
Ben Murdoch097c5b22016-05-18 11:27:45 +01001553 __ bge(&not_seq_nor_cons); // Go to (5).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001554
1555 // (3) Cons string. Check that it's flat.
1556 // Replace subject with first string and reload instance type.
1557 __ LoadP(r3, FieldMemOperand(subject, ConsString::kSecondOffset));
1558 __ CompareRoot(r3, Heap::kempty_stringRootIndex);
1559 __ bne(&runtime);
1560 __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01001561 __ b(&check_underlying);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001562
Ben Murdoch097c5b22016-05-18 11:27:45 +01001563 // (4) Sequential string. Load regexp code according to encoding.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001564 __ bind(&seq_string);
1565 // subject: sequential subject string (or look-alike, external string)
1566 // r6: original subject string
1567 // Load previous index and check range before r6 is overwritten. We have to
1568 // use r6 instead of subject here because subject might have been only made
1569 // to look like a sequential string when it actually is an external string.
1570 __ LoadP(r4, MemOperand(sp, kPreviousIndexOffset));
1571 __ JumpIfNotSmi(r4, &runtime);
1572 __ LoadP(r6, FieldMemOperand(r6, String::kLengthOffset));
1573 __ cmpl(r6, r4);
1574 __ ble(&runtime);
1575 __ SmiUntag(r4);
1576
1577 STATIC_ASSERT(4 == kOneByteStringTag);
1578 STATIC_ASSERT(kTwoByteStringTag == 0);
1579 STATIC_ASSERT(kStringEncodingMask == 4);
1580 __ ExtractBitMask(r6, r3, kStringEncodingMask, SetRC);
1581 __ beq(&encoding_type_UC16, cr0);
1582 __ LoadP(code,
1583 FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
1584 __ b(&br_over);
1585 __ bind(&encoding_type_UC16);
1586 __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
1587 __ bind(&br_over);
1588
1589 // (E) Carry on. String handling is done.
1590 // code: irregexp code
1591 // Check that the irregexp code has been generated for the actual string
1592 // encoding. If it has, the field contains a code object otherwise it contains
1593 // a smi (code flushing support).
1594 __ JumpIfSmi(code, &runtime);
1595
1596 // r4: previous index
1597 // r6: encoding of subject string (1 if one_byte, 0 if two_byte);
1598 // code: Address of generated regexp code
1599 // subject: Subject string
1600 // regexp_data: RegExp data (FixedArray)
1601 // All checks done. Now push arguments for native regexp code.
1602 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r3, r5);
1603
1604 // Isolates: note we add an additional parameter here (isolate pointer).
1605 const int kRegExpExecuteArguments = 10;
1606 const int kParameterRegisters = 8;
1607 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
1608
1609 // Stack pointer now points to cell where return address is to be written.
1610 // Arguments are before that on the stack or in registers.
1611
1612 // Argument 10 (in stack parameter area): Pass current isolate address.
1613 __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
1614 __ StoreP(r3, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
1615
1616 // Argument 9 is a dummy that reserves the space used for
1617 // the return address added by the ExitFrame in native calls.
1618
1619 // Argument 8 (r10): Indicate that this is a direct call from JavaScript.
1620 __ li(r10, Operand(1));
1621
1622 // Argument 7 (r9): Start (high end) of backtracking stack memory area.
1623 __ mov(r3, Operand(address_of_regexp_stack_memory_address));
1624 __ LoadP(r3, MemOperand(r3, 0));
1625 __ mov(r5, Operand(address_of_regexp_stack_memory_size));
1626 __ LoadP(r5, MemOperand(r5, 0));
1627 __ add(r9, r3, r5);
1628
1629 // Argument 6 (r8): Set the number of capture registers to zero to force
1630 // global egexps to behave as non-global. This does not affect non-global
1631 // regexps.
1632 __ li(r8, Operand::Zero());
1633
1634 // Argument 5 (r7): static offsets vector buffer.
1635 __ mov(
1636 r7,
1637 Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
1638
1639 // For arguments 4 (r6) and 3 (r5) get string length, calculate start of data
1640 // and calculate the shift of the index (0 for one-byte and 1 for two-byte).
1641 __ addi(r18, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
1642 __ xori(r6, r6, Operand(1));
1643 // Load the length from the original subject string from the previous stack
1644 // frame. Therefore we have to use fp, which points exactly to two pointer
1645 // sizes below the previous sp. (Because creating a new stack frame pushes
1646 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
1647 __ LoadP(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
1648 // If slice offset is not 0, load the length from the original sliced string.
1649 // Argument 4, r6: End of string data
1650 // Argument 3, r5: Start of string data
1651 // Prepare start and end index of the input.
1652 __ ShiftLeft_(r11, r11, r6);
1653 __ add(r11, r18, r11);
1654 __ ShiftLeft_(r5, r4, r6);
1655 __ add(r5, r11, r5);
1656
1657 __ LoadP(r18, FieldMemOperand(subject, String::kLengthOffset));
1658 __ SmiUntag(r18);
1659 __ ShiftLeft_(r6, r18, r6);
1660 __ add(r6, r11, r6);
1661
1662 // Argument 2 (r4): Previous index.
1663 // Already there
1664
1665 // Argument 1 (r3): Subject string.
1666 __ mr(r3, subject);
1667
1668 // Locate the code entry and call it.
1669 __ addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
1670
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001671 DirectCEntryStub stub(isolate());
1672 stub.GenerateCall(masm, code);
1673
1674 __ LeaveExitFrame(false, no_reg, true);
1675
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001676 // r3: result (int32)
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001677 // subject: subject string (callee saved)
1678 // regexp_data: RegExp data (callee saved)
1679 // last_match_info_elements: Last match info elements (callee saved)
1680 // Check the result.
1681 Label success;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001682 __ cmpwi(r3, Operand(1));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001683 // We expect exactly one result since we force the called regexp to behave
1684 // as non-global.
1685 __ beq(&success);
1686 Label failure;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001687 __ cmpwi(r3, Operand(NativeRegExpMacroAssembler::FAILURE));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001688 __ beq(&failure);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001689 __ cmpwi(r3, Operand(NativeRegExpMacroAssembler::EXCEPTION));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001690 // If not exception it can only be retry. Handle that in the runtime system.
1691 __ bne(&runtime);
1692 // Result must now be exception. If there is no pending exception already a
1693 // stack overflow (on the backtrack stack) was detected in RegExp code but
1694 // haven't created the exception yet. Handle that in the runtime system.
1695 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1696 __ mov(r4, Operand(isolate()->factory()->the_hole_value()));
1697 __ mov(r5, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1698 isolate())));
1699 __ LoadP(r3, MemOperand(r5, 0));
1700 __ cmp(r3, r4);
1701 __ beq(&runtime);
1702
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001703 // For exception, throw the exception again.
1704 __ TailCallRuntime(Runtime::kRegExpExecReThrow);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001705
1706 __ bind(&failure);
1707 // For failure and exception return null.
1708 __ mov(r3, Operand(isolate()->factory()->null_value()));
1709 __ addi(sp, sp, Operand(4 * kPointerSize));
1710 __ Ret();
1711
1712 // Process the result from the native regexp code.
1713 __ bind(&success);
1714 __ LoadP(r4,
1715 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1716 // Calculate number of capture registers (number_of_captures + 1) * 2.
1717 // SmiToShortArrayOffset accomplishes the multiplication by 2 and
1718 // SmiUntag (which is a nop for 32-bit).
1719 __ SmiToShortArrayOffset(r4, r4);
1720 __ addi(r4, r4, Operand(2));
1721
1722 __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset));
1723 __ JumpIfSmi(r3, &runtime);
1724 __ CompareObjectType(r3, r5, r5, JS_ARRAY_TYPE);
1725 __ bne(&runtime);
1726 // Check that the JSArray is in fast case.
1727 __ LoadP(last_match_info_elements,
1728 FieldMemOperand(r3, JSArray::kElementsOffset));
1729 __ LoadP(r3,
1730 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
1731 __ CompareRoot(r3, Heap::kFixedArrayMapRootIndex);
1732 __ bne(&runtime);
1733 // Check that the last match info has space for the capture registers and the
1734 // additional information.
1735 __ LoadP(
1736 r3, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
1737 __ addi(r5, r4, Operand(RegExpImpl::kLastMatchOverhead));
1738 __ SmiUntag(r0, r3);
1739 __ cmp(r5, r0);
1740 __ bgt(&runtime);
1741
1742 // r4: number of capture registers
1743 // subject: subject string
1744 // Store the capture count.
1745 __ SmiTag(r5, r4);
1746 __ StoreP(r5, FieldMemOperand(last_match_info_elements,
1747 RegExpImpl::kLastCaptureCountOffset),
1748 r0);
1749 // Store last subject and last input.
1750 __ StoreP(subject, FieldMemOperand(last_match_info_elements,
1751 RegExpImpl::kLastSubjectOffset),
1752 r0);
1753 __ mr(r5, subject);
1754 __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset,
1755 subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs);
1756 __ mr(subject, r5);
1757 __ StoreP(subject, FieldMemOperand(last_match_info_elements,
1758 RegExpImpl::kLastInputOffset),
1759 r0);
1760 __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset,
1761 subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs);
1762
1763 // Get the static offsets vector filled by the native regexp code.
1764 ExternalReference address_of_static_offsets_vector =
1765 ExternalReference::address_of_static_offsets_vector(isolate());
1766 __ mov(r5, Operand(address_of_static_offsets_vector));
1767
1768 // r4: number of capture registers
1769 // r5: offsets vector
1770 Label next_capture;
1771 // Capture register counter starts from number of capture registers and
1772 // counts down until wraping after zero.
1773 __ addi(
1774 r3, last_match_info_elements,
1775 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag - kPointerSize));
1776 __ addi(r5, r5, Operand(-kIntSize)); // bias down for lwzu
1777 __ mtctr(r4);
1778 __ bind(&next_capture);
1779 // Read the value from the static offsets vector buffer.
1780 __ lwzu(r6, MemOperand(r5, kIntSize));
1781 // Store the smi value in the last match info.
1782 __ SmiTag(r6);
1783 __ StorePU(r6, MemOperand(r3, kPointerSize));
1784 __ bdnz(&next_capture);
1785
1786 // Return last match info.
1787 __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset));
1788 __ addi(sp, sp, Operand(4 * kPointerSize));
1789 __ Ret();
1790
1791 // Do the runtime call to execute the regexp.
1792 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001793 __ TailCallRuntime(Runtime::kRegExpExec);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001794
1795 // Deferred code for string handling.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001796 // (5) Long external string? If not, go to (7).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001797 __ bind(&not_seq_nor_cons);
1798 // Compare flags are still set.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001799 __ bgt(&not_long_external); // Go to (7).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001800
Ben Murdoch097c5b22016-05-18 11:27:45 +01001801 // (6) External string. Make it, offset-wise, look like a sequential string.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001802 __ bind(&external_string);
1803 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
1804 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
1805 if (FLAG_debug_code) {
1806 // Assert that we do not have a cons or slice (indirect strings) here.
1807 // Sequential strings have already been ruled out.
1808 STATIC_ASSERT(kIsIndirectStringMask == 1);
1809 __ andi(r0, r3, Operand(kIsIndirectStringMask));
1810 __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
1811 }
1812 __ LoadP(subject,
1813 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
1814 // Move the pointer so that offset-wise, it looks like a sequential string.
1815 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1816 __ subi(subject, subject,
1817 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
Ben Murdoch097c5b22016-05-18 11:27:45 +01001818 __ b(&seq_string); // Go to (4).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001819
Ben Murdoch097c5b22016-05-18 11:27:45 +01001820 // (7) Short external string or not a string? If yes, bail out to runtime.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001821 __ bind(&not_long_external);
1822 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0);
1823 __ andi(r0, r4, Operand(kIsNotStringMask | kShortExternalStringMask));
1824 __ bne(&runtime, cr0);
1825
Ben Murdoch097c5b22016-05-18 11:27:45 +01001826 // (8) Sliced string. Replace subject with parent. Go to (4).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001827 // Load offset into r11 and replace subject string with parent.
1828 __ LoadP(r11, FieldMemOperand(subject, SlicedString::kOffsetOffset));
1829 __ SmiUntag(r11);
1830 __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
1831 __ b(&check_underlying); // Go to (4).
1832#endif // V8_INTERPRETED_REGEXP
1833}
1834
1835
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001836static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1837 // r3 : number of arguments to the construct function
1838 // r4 : the function to call
1839 // r5 : feedback vector
1840 // r6 : slot in feedback vector (Smi)
1841 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1842
1843 // Number-of-arguments register must be smi-tagged to call out.
1844 __ SmiTag(r3);
1845 __ Push(r6, r5, r4, r3);
1846
1847 __ CallStub(stub);
1848
1849 __ Pop(r6, r5, r4, r3);
1850 __ SmiUntag(r3);
1851}
1852
1853
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001854static void GenerateRecordCallTarget(MacroAssembler* masm) {
1855 // Cache the called function in a feedback vector slot. Cache states
1856 // are uninitialized, monomorphic (indicated by a JSFunction), and
1857 // megamorphic.
1858 // r3 : number of arguments to the construct function
1859 // r4 : the function to call
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001860 // r5 : feedback vector
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001861 // r6 : slot in feedback vector (Smi)
1862 Label initialize, done, miss, megamorphic, not_array_function;
1863
1864 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
1865 masm->isolate()->heap()->megamorphic_symbol());
1866 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
1867 masm->isolate()->heap()->uninitialized_symbol());
1868
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001869 // Load the cache state into r8.
1870 __ SmiToPtrArrayOffset(r8, r6);
1871 __ add(r8, r5, r8);
1872 __ LoadP(r8, FieldMemOperand(r8, FixedArray::kHeaderSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001873
1874 // A monomorphic cache hit or an already megamorphic state: invoke the
1875 // function without changing the state.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001876 // We don't know if r8 is a WeakCell or a Symbol, but it's harmless to read at
1877 // this position in a symbol (see static asserts in type-feedback-vector.h).
1878 Label check_allocation_site;
1879 Register feedback_map = r9;
1880 Register weak_value = r10;
1881 __ LoadP(weak_value, FieldMemOperand(r8, WeakCell::kValueOffset));
1882 __ cmp(r4, weak_value);
1883 __ beq(&done);
1884 __ CompareRoot(r8, Heap::kmegamorphic_symbolRootIndex);
1885 __ beq(&done);
1886 __ LoadP(feedback_map, FieldMemOperand(r8, HeapObject::kMapOffset));
1887 __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
1888 __ bne(&check_allocation_site);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001889
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001890 // If the weak cell is cleared, we have a new chance to become monomorphic.
1891 __ JumpIfSmi(weak_value, &initialize);
1892 __ b(&megamorphic);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001893
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001894 __ bind(&check_allocation_site);
1895 // If we came here, we need to see if we are the array function.
1896 // If we didn't have a matching function, and we didn't find the megamorph
1897 // sentinel, then we have in the slot either some other function or an
1898 // AllocationSite.
1899 __ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex);
1900 __ bne(&miss);
1901
1902 // Make sure the function is the Array() function
1903 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8);
1904 __ cmp(r4, r8);
1905 __ bne(&megamorphic);
1906 __ b(&done);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001907
1908 __ bind(&miss);
1909
1910 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1911 // megamorphic.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001912 __ CompareRoot(r8, Heap::kuninitialized_symbolRootIndex);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001913 __ beq(&initialize);
1914 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1915 // write-barrier is needed.
1916 __ bind(&megamorphic);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001917 __ SmiToPtrArrayOffset(r8, r6);
1918 __ add(r8, r5, r8);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001919 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001920 __ StoreP(ip, FieldMemOperand(r8, FixedArray::kHeaderSize), r0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001921 __ jmp(&done);
1922
1923 // An uninitialized cache is patched with the function
1924 __ bind(&initialize);
1925
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001926 // Make sure the function is the Array() function.
1927 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8);
1928 __ cmp(r4, r8);
1929 __ bne(&not_array_function);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001930
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001931 // The target function is the Array constructor,
1932 // Create an AllocationSite if we don't already have it, store it in the
1933 // slot.
1934 CreateAllocationSiteStub create_stub(masm->isolate());
1935 CallStubInRecordCallTarget(masm, &create_stub);
1936 __ b(&done);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001937
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001938 __ bind(&not_array_function);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001939
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001940 CreateWeakCellStub weak_cell_stub(masm->isolate());
1941 CallStubInRecordCallTarget(masm, &weak_cell_stub);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001942 __ bind(&done);
1943}
1944
1945
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001946void CallConstructStub::Generate(MacroAssembler* masm) {
1947 // r3 : number of arguments
1948 // r4 : the function to call
1949 // r5 : feedback vector
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001950 // r6 : slot in feedback vector (Smi, for RecordCallTarget)
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001951
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001952 Label non_function;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001953 // Check that the function is not a smi.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001954 __ JumpIfSmi(r4, &non_function);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001955 // Check that the function is a JSFunction.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001956 __ CompareObjectType(r4, r8, r8, JS_FUNCTION_TYPE);
1957 __ bne(&non_function);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001958
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001959 GenerateRecordCallTarget(masm);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001960
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001961 __ SmiToPtrArrayOffset(r8, r6);
1962 __ add(r8, r5, r8);
1963 // Put the AllocationSite from the feedback vector into r5, or undefined.
1964 __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize));
1965 __ LoadP(r8, FieldMemOperand(r5, AllocationSite::kMapOffset));
1966 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
1967 if (CpuFeatures::IsSupported(ISELECT)) {
1968 __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
1969 __ isel(eq, r5, r5, r8);
1970 } else {
1971 Label feedback_register_initialized;
1972 __ beq(&feedback_register_initialized);
1973 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
1974 __ bind(&feedback_register_initialized);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001975 }
1976
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001977 __ AssertUndefinedOrAllocationSite(r5, r8);
1978
1979 // Pass function as new target.
1980 __ mr(r6, r4);
1981
1982 // Tail call to the function-specific construct stub (still in the caller
1983 // context at this point).
1984 __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
1985 __ LoadP(r7, FieldMemOperand(r7, SharedFunctionInfo::kConstructStubOffset));
1986 __ addi(ip, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001987 __ JumpToJSEntry(ip);
1988
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001989 __ bind(&non_function);
1990 __ mr(r6, r4);
1991 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001992}
1993
1994
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001995void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001996 // r4 - function
1997 // r6 - slot id
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001998 // r5 - vector
1999 // r7 - allocation site (loaded from vector[slot])
2000 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8);
2001 __ cmp(r4, r8);
2002 __ bne(miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002003
2004 __ mov(r3, Operand(arg_count()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002005
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002006 // Increment the call count for monomorphic function calls.
2007 const int count_offset = FixedArray::kHeaderSize + kPointerSize;
2008 __ SmiToPtrArrayOffset(r8, r6);
2009 __ add(r5, r5, r8);
2010 __ LoadP(r6, FieldMemOperand(r5, count_offset));
2011 __ AddSmiLiteral(r6, r6, Smi::FromInt(CallICNexus::kCallCountIncrement), r0);
2012 __ StoreP(r6, FieldMemOperand(r5, count_offset), r0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002013
2014 __ mr(r5, r7);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002015 __ mr(r6, r4);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002016 ArrayConstructorStub stub(masm->isolate(), arg_count());
2017 __ TailCallStub(&stub);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002018}
2019
2020
2021void CallICStub::Generate(MacroAssembler* masm) {
2022 // r4 - function
2023 // r6 - slot id (Smi)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002024 // r5 - vector
2025 Label extra_checks_or_miss, call, call_function;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002026 int argc = arg_count();
2027 ParameterCount actual(argc);
2028
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002029 // The checks. First, does r4 match the recorded monomorphic target?
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002030 __ SmiToPtrArrayOffset(r9, r6);
2031 __ add(r9, r5, r9);
2032 __ LoadP(r7, FieldMemOperand(r9, FixedArray::kHeaderSize));
2033
2034 // We don't know that we have a weak cell. We might have a private symbol
2035 // or an AllocationSite, but the memory is safe to examine.
2036 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2037 // FixedArray.
2038 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2039 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2040 // computed, meaning that it can't appear to be a pointer. If the low bit is
2041 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2042 // to be a pointer.
2043 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2044 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2045 WeakCell::kValueOffset &&
2046 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2047
2048 __ LoadP(r8, FieldMemOperand(r7, WeakCell::kValueOffset));
2049 __ cmp(r4, r8);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002050 __ bne(&extra_checks_or_miss);
2051
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002052 // The compare above could have been a SMI/SMI comparison. Guard against this
2053 // convincing us that we have a monomorphic JSFunction.
2054 __ JumpIfSmi(r4, &extra_checks_or_miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002055
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002056 // Increment the call count for monomorphic function calls.
2057 const int count_offset = FixedArray::kHeaderSize + kPointerSize;
2058 __ LoadP(r6, FieldMemOperand(r9, count_offset));
2059 __ AddSmiLiteral(r6, r6, Smi::FromInt(CallICNexus::kCallCountIncrement), r0);
2060 __ StoreP(r6, FieldMemOperand(r9, count_offset), r0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002061
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002062 __ bind(&call_function);
2063 __ mov(r3, Operand(argc));
Ben Murdoch097c5b22016-05-18 11:27:45 +01002064 __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
2065 tail_call_mode()),
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002066 RelocInfo::CODE_TARGET);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002067
2068 __ bind(&extra_checks_or_miss);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002069 Label uninitialized, miss, not_allocation_site;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002070
2071 __ CompareRoot(r7, Heap::kmegamorphic_symbolRootIndex);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002072 __ beq(&call);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002073
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002074 // Verify that r7 contains an AllocationSite
2075 __ LoadP(r8, FieldMemOperand(r7, HeapObject::kMapOffset));
2076 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
2077 __ bne(&not_allocation_site);
2078
2079 // We have an allocation site.
2080 HandleArrayCase(masm, &miss);
2081
2082 __ bind(&not_allocation_site);
2083
2084 // The following cases attempt to handle MISS cases without going to the
2085 // runtime.
2086 if (FLAG_trace_ic) {
2087 __ b(&miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002088 }
2089
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002090 __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex);
2091 __ beq(&uninitialized);
2092
2093 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2094 // to handle it here. More complex cases are dealt with in the runtime.
2095 __ AssertNotSmi(r7);
2096 __ CompareObjectType(r7, r8, r8, JS_FUNCTION_TYPE);
2097 __ bne(&miss);
2098 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
2099 __ StoreP(ip, FieldMemOperand(r9, FixedArray::kHeaderSize), r0);
2100
2101 __ bind(&call);
2102 __ mov(r3, Operand(argc));
Ben Murdoch097c5b22016-05-18 11:27:45 +01002103 __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002104 RelocInfo::CODE_TARGET);
2105
2106 __ bind(&uninitialized);
2107
2108 // We are going monomorphic, provided we actually have a JSFunction.
2109 __ JumpIfSmi(r4, &miss);
2110
2111 // Goto miss case if we do not have a function.
2112 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
2113 __ bne(&miss);
2114
2115 // Make sure the function is not the Array() function, which requires special
2116 // behavior on MISS.
2117 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r7);
2118 __ cmp(r4, r7);
2119 __ beq(&miss);
2120
2121 // Make sure the function belongs to the same native context.
2122 __ LoadP(r7, FieldMemOperand(r4, JSFunction::kContextOffset));
2123 __ LoadP(r7, ContextMemOperand(r7, Context::NATIVE_CONTEXT_INDEX));
2124 __ LoadP(ip, NativeContextMemOperand());
2125 __ cmp(r7, ip);
2126 __ bne(&miss);
2127
2128 // Initialize the call counter.
2129 __ LoadSmiLiteral(r8, Smi::FromInt(CallICNexus::kCallCountIncrement));
2130 __ StoreP(r8, FieldMemOperand(r9, count_offset), r0);
2131
2132 // Store the function. Use a stub since we need a frame for allocation.
2133 // r5 - vector
2134 // r6 - slot
2135 // r4 - function
2136 {
2137 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2138 CreateWeakCellStub create_stub(masm->isolate());
2139 __ Push(r4);
2140 __ CallStub(&create_stub);
2141 __ Pop(r4);
2142 }
2143
2144 __ b(&call_function);
2145
2146 // We are here because tracing is on or we encountered a MISS case we can't
2147 // handle here.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002148 __ bind(&miss);
2149 GenerateMiss(masm);
2150
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002151 __ b(&call);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002152}
2153
2154
2155void CallICStub::GenerateMiss(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002156 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002157
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002158 // Push the function and feedback info.
2159 __ Push(r4, r5, r6);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002160
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002161 // Call the entry.
2162 __ CallRuntime(Runtime::kCallIC_Miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002163
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002164 // Move result to r4 and exit the internal frame.
2165 __ mr(r4, r3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002166}
2167
2168
2169// StringCharCodeAtGenerator
2170void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2171 // If the receiver is a smi trigger the non-string case.
2172 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2173 __ JumpIfSmi(object_, receiver_not_string_);
2174
2175 // Fetch the instance type of the receiver into result register.
2176 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2177 __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2178 // If the receiver is not a string trigger the non-string case.
2179 __ andi(r0, result_, Operand(kIsNotStringMask));
2180 __ bne(receiver_not_string_, cr0);
2181 }
2182
2183 // If the index is non-smi trigger the non-smi case.
2184 __ JumpIfNotSmi(index_, &index_not_smi_);
2185 __ bind(&got_smi_index_);
2186
2187 // Check for index out of range.
2188 __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset));
2189 __ cmpl(ip, index_);
2190 __ ble(index_out_of_range_);
2191
2192 __ SmiUntag(index_);
2193
2194 StringCharLoadGenerator::Generate(masm, object_, index_, result_,
2195 &call_runtime_);
2196
2197 __ SmiTag(result_);
2198 __ bind(&exit_);
2199}
2200
2201
2202void StringCharCodeAtGenerator::GenerateSlow(
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002203 MacroAssembler* masm, EmbedMode embed_mode,
2204 const RuntimeCallHelper& call_helper) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002205 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2206
2207 // Index is not a smi.
2208 __ bind(&index_not_smi_);
2209 // If index is a heap number, try converting it to an integer.
2210 __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_,
2211 DONT_DO_SMI_CHECK);
2212 call_helper.BeforeCall(masm);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002213 if (embed_mode == PART_OF_IC_HANDLER) {
2214 __ Push(LoadWithVectorDescriptor::VectorRegister(),
2215 LoadWithVectorDescriptor::SlotRegister(), object_, index_);
2216 } else {
2217 // index_ is consumed by runtime conversion function.
2218 __ Push(object_, index_);
2219 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002220 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002221 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002222 } else {
2223 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2224 // NumberToSmi discards numbers that are not exact integers.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002225 __ CallRuntime(Runtime::kNumberToSmi);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002226 }
2227 // Save the conversion result before the pop instructions below
2228 // have a chance to overwrite it.
2229 __ Move(index_, r3);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002230 if (embed_mode == PART_OF_IC_HANDLER) {
2231 __ Pop(LoadWithVectorDescriptor::VectorRegister(),
2232 LoadWithVectorDescriptor::SlotRegister(), object_);
2233 } else {
2234 __ pop(object_);
2235 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002236 // Reload the instance type.
2237 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2238 __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2239 call_helper.AfterCall(masm);
2240 // If index is still not a smi, it must be out of range.
2241 __ JumpIfNotSmi(index_, index_out_of_range_);
2242 // Otherwise, return to the fast path.
2243 __ b(&got_smi_index_);
2244
2245 // Call runtime. We get here when the receiver is a string and the
2246 // index is a number, but the code of getting the actual character
2247 // is too complex (e.g., when the string needs to be flattened).
2248 __ bind(&call_runtime_);
2249 call_helper.BeforeCall(masm);
2250 __ SmiTag(index_);
2251 __ Push(object_, index_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002252 __ CallRuntime(Runtime::kStringCharCodeAtRT);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002253 __ Move(result_, r3);
2254 call_helper.AfterCall(masm);
2255 __ b(&exit_);
2256
2257 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2258}
2259
2260
2261// -------------------------------------------------------------------------
2262// StringCharFromCodeGenerator
2263
2264void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2265 // Fast case of Heap::LookupSingleCharacterStringFromCode.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002266 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1));
2267 __ LoadSmiLiteral(r0, Smi::FromInt(~String::kMaxOneByteCharCodeU));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002268 __ ori(r0, r0, Operand(kSmiTagMask));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002269 __ and_(r0, code_, r0, SetRC);
2270 __ bne(&slow_case_, cr0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002271
2272 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2273 // At this point code register contains smi tagged one-byte char code.
2274 __ mr(r0, code_);
2275 __ SmiToPtrArrayOffset(code_, code_);
2276 __ add(result_, result_, code_);
2277 __ mr(code_, r0);
2278 __ LoadP(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
2279 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
2280 __ beq(&slow_case_);
2281 __ bind(&exit_);
2282}
2283
2284
2285void StringCharFromCodeGenerator::GenerateSlow(
2286 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
2287 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2288
2289 __ bind(&slow_case_);
2290 call_helper.BeforeCall(masm);
2291 __ push(code_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002292 __ CallRuntime(Runtime::kStringCharFromCode);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002293 __ Move(result_, r3);
2294 call_helper.AfterCall(masm);
2295 __ b(&exit_);
2296
2297 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2298}
2299
2300
2301enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
2302
2303
2304void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest,
2305 Register src, Register count,
2306 Register scratch,
2307 String::Encoding encoding) {
2308 if (FLAG_debug_code) {
2309 // Check that destination is word aligned.
2310 __ andi(r0, dest, Operand(kPointerAlignmentMask));
2311 __ Check(eq, kDestinationOfCopyNotAligned, cr0);
2312 }
2313
2314 // Nothing to do for zero characters.
2315 Label done;
2316 if (encoding == String::TWO_BYTE_ENCODING) {
2317 // double the length
2318 __ add(count, count, count, LeaveOE, SetRC);
2319 __ beq(&done, cr0);
2320 } else {
2321 __ cmpi(count, Operand::Zero());
2322 __ beq(&done);
2323 }
2324
2325 // Copy count bytes from src to dst.
2326 Label byte_loop;
2327 __ mtctr(count);
2328 __ bind(&byte_loop);
2329 __ lbz(scratch, MemOperand(src));
2330 __ addi(src, src, Operand(1));
2331 __ stb(scratch, MemOperand(dest));
2332 __ addi(dest, dest, Operand(1));
2333 __ bdnz(&byte_loop);
2334
2335 __ bind(&done);
2336}
2337
2338
2339void SubStringStub::Generate(MacroAssembler* masm) {
2340 Label runtime;
2341
2342 // Stack frame on entry.
2343 // lr: return address
2344 // sp[0]: to
2345 // sp[4]: from
2346 // sp[8]: string
2347
2348 // This stub is called from the native-call %_SubString(...), so
2349 // nothing can be assumed about the arguments. It is tested that:
2350 // "string" is a sequential string,
2351 // both "from" and "to" are smis, and
2352 // 0 <= from <= to <= string.length.
2353 // If any of these assumptions fail, we call the runtime system.
2354
2355 const int kToOffset = 0 * kPointerSize;
2356 const int kFromOffset = 1 * kPointerSize;
2357 const int kStringOffset = 2 * kPointerSize;
2358
2359 __ LoadP(r5, MemOperand(sp, kToOffset));
2360 __ LoadP(r6, MemOperand(sp, kFromOffset));
2361
2362 // If either to or from had the smi tag bit set, then fail to generic runtime
2363 __ JumpIfNotSmi(r5, &runtime);
2364 __ JumpIfNotSmi(r6, &runtime);
2365 __ SmiUntag(r5);
2366 __ SmiUntag(r6, SetRC);
2367 // Both r5 and r6 are untagged integers.
2368
2369 // We want to bailout to runtime here if From is negative.
2370 __ blt(&runtime, cr0); // From < 0.
2371
2372 __ cmpl(r6, r5);
2373 __ bgt(&runtime); // Fail if from > to.
2374 __ sub(r5, r5, r6);
2375
2376 // Make sure first argument is a string.
2377 __ LoadP(r3, MemOperand(sp, kStringOffset));
2378 __ JumpIfSmi(r3, &runtime);
2379 Condition is_string = masm->IsObjectStringType(r3, r4);
2380 __ b(NegateCondition(is_string), &runtime, cr0);
2381
2382 Label single_char;
2383 __ cmpi(r5, Operand(1));
2384 __ b(eq, &single_char);
2385
2386 // Short-cut for the case of trivial substring.
2387 Label return_r3;
2388 // r3: original string
2389 // r5: result string length
2390 __ LoadP(r7, FieldMemOperand(r3, String::kLengthOffset));
2391 __ SmiUntag(r0, r7);
2392 __ cmpl(r5, r0);
2393 // Return original string.
2394 __ beq(&return_r3);
2395 // Longer than original string's length or negative: unsafe arguments.
2396 __ bgt(&runtime);
2397 // Shorter than original string's length: an actual substring.
2398
2399 // Deal with different string types: update the index if necessary
2400 // and put the underlying string into r8.
2401 // r3: original string
2402 // r4: instance type
2403 // r5: length
2404 // r6: from index (untagged)
2405 Label underlying_unpacked, sliced_string, seq_or_external_string;
2406 // If the string is not indirect, it can only be sequential or external.
2407 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2408 STATIC_ASSERT(kIsIndirectStringMask != 0);
2409 __ andi(r0, r4, Operand(kIsIndirectStringMask));
2410 __ beq(&seq_or_external_string, cr0);
2411
2412 __ andi(r0, r4, Operand(kSlicedNotConsMask));
2413 __ bne(&sliced_string, cr0);
2414 // Cons string. Check whether it is flat, then fetch first part.
2415 __ LoadP(r8, FieldMemOperand(r3, ConsString::kSecondOffset));
2416 __ CompareRoot(r8, Heap::kempty_stringRootIndex);
2417 __ bne(&runtime);
2418 __ LoadP(r8, FieldMemOperand(r3, ConsString::kFirstOffset));
2419 // Update instance type.
2420 __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset));
2421 __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
2422 __ b(&underlying_unpacked);
2423
2424 __ bind(&sliced_string);
2425 // Sliced string. Fetch parent and correct start index by offset.
2426 __ LoadP(r8, FieldMemOperand(r3, SlicedString::kParentOffset));
2427 __ LoadP(r7, FieldMemOperand(r3, SlicedString::kOffsetOffset));
2428 __ SmiUntag(r4, r7);
2429 __ add(r6, r6, r4); // Add offset to index.
2430 // Update instance type.
2431 __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset));
2432 __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
2433 __ b(&underlying_unpacked);
2434
2435 __ bind(&seq_or_external_string);
2436 // Sequential or external string. Just move string to the expected register.
2437 __ mr(r8, r3);
2438
2439 __ bind(&underlying_unpacked);
2440
2441 if (FLAG_string_slices) {
2442 Label copy_routine;
2443 // r8: underlying subject string
2444 // r4: instance type of underlying subject string
2445 // r5: length
2446 // r6: adjusted start index (untagged)
2447 __ cmpi(r5, Operand(SlicedString::kMinLength));
2448 // Short slice. Copy instead of slicing.
2449 __ blt(&copy_routine);
2450 // Allocate new sliced string. At this point we do not reload the instance
2451 // type including the string encoding because we simply rely on the info
2452 // provided by the original string. It does not matter if the original
2453 // string's encoding is wrong because we always have to recheck encoding of
2454 // the newly created string's parent anyways due to externalized strings.
2455 Label two_byte_slice, set_slice_header;
2456 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
2457 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
2458 __ andi(r0, r4, Operand(kStringEncodingMask));
2459 __ beq(&two_byte_slice, cr0);
2460 __ AllocateOneByteSlicedString(r3, r5, r9, r10, &runtime);
2461 __ b(&set_slice_header);
2462 __ bind(&two_byte_slice);
2463 __ AllocateTwoByteSlicedString(r3, r5, r9, r10, &runtime);
2464 __ bind(&set_slice_header);
2465 __ SmiTag(r6);
2466 __ StoreP(r8, FieldMemOperand(r3, SlicedString::kParentOffset), r0);
2467 __ StoreP(r6, FieldMemOperand(r3, SlicedString::kOffsetOffset), r0);
2468 __ b(&return_r3);
2469
2470 __ bind(&copy_routine);
2471 }
2472
2473 // r8: underlying subject string
2474 // r4: instance type of underlying subject string
2475 // r5: length
2476 // r6: adjusted start index (untagged)
2477 Label two_byte_sequential, sequential_string, allocate_result;
2478 STATIC_ASSERT(kExternalStringTag != 0);
2479 STATIC_ASSERT(kSeqStringTag == 0);
2480 __ andi(r0, r4, Operand(kExternalStringTag));
2481 __ beq(&sequential_string, cr0);
2482
2483 // Handle external string.
2484 // Rule out short external strings.
2485 STATIC_ASSERT(kShortExternalStringTag != 0);
2486 __ andi(r0, r4, Operand(kShortExternalStringTag));
2487 __ bne(&runtime, cr0);
2488 __ LoadP(r8, FieldMemOperand(r8, ExternalString::kResourceDataOffset));
2489 // r8 already points to the first character of underlying string.
2490 __ b(&allocate_result);
2491
2492 __ bind(&sequential_string);
2493 // Locate first character of underlying subject string.
2494 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2495 __ addi(r8, r8, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2496
2497 __ bind(&allocate_result);
2498 // Sequential acii string. Allocate the result.
2499 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
2500 __ andi(r0, r4, Operand(kStringEncodingMask));
2501 __ beq(&two_byte_sequential, cr0);
2502
2503 // Allocate and copy the resulting one-byte string.
2504 __ AllocateOneByteString(r3, r5, r7, r9, r10, &runtime);
2505
2506 // Locate first character of substring to copy.
2507 __ add(r8, r8, r6);
2508 // Locate first character of result.
2509 __ addi(r4, r3, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2510
2511 // r3: result string
2512 // r4: first character of result string
2513 // r5: result string length
2514 // r8: first character of substring to copy
2515 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
2516 StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6,
2517 String::ONE_BYTE_ENCODING);
2518 __ b(&return_r3);
2519
2520 // Allocate and copy the resulting two-byte string.
2521 __ bind(&two_byte_sequential);
2522 __ AllocateTwoByteString(r3, r5, r7, r9, r10, &runtime);
2523
2524 // Locate first character of substring to copy.
2525 __ ShiftLeftImm(r4, r6, Operand(1));
2526 __ add(r8, r8, r4);
2527 // Locate first character of result.
2528 __ addi(r4, r3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2529
2530 // r3: result string.
2531 // r4: first character of result.
2532 // r5: result length.
2533 // r8: first character of substring to copy.
2534 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
2535 StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6,
2536 String::TWO_BYTE_ENCODING);
2537
2538 __ bind(&return_r3);
2539 Counters* counters = isolate()->counters();
2540 __ IncrementCounter(counters->sub_string_native(), 1, r6, r7);
2541 __ Drop(3);
2542 __ Ret();
2543
2544 // Just jump to runtime to create the sub string.
2545 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002546 __ TailCallRuntime(Runtime::kSubString);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002547
2548 __ bind(&single_char);
2549 // r3: original string
2550 // r4: instance type
2551 // r5: length
2552 // r6: from index (untagged)
2553 __ SmiTag(r6, r6);
2554 StringCharAtGenerator generator(r3, r6, r5, r3, &runtime, &runtime, &runtime,
2555 STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING);
2556 generator.GenerateFast(masm);
2557 __ Drop(3);
2558 __ Ret();
2559 generator.SkipSlow(masm, &runtime);
2560}
2561
2562
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002563void ToNumberStub::Generate(MacroAssembler* masm) {
2564 // The ToNumber stub takes one argument in r3.
Ben Murdochda12d292016-06-02 14:46:10 +01002565 STATIC_ASSERT(kSmiTag == 0);
2566 __ TestIfSmi(r3, r0);
2567 __ Ret(eq, cr0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002568
2569 __ CompareObjectType(r3, r4, r4, HEAP_NUMBER_TYPE);
2570 // r3: receiver
2571 // r4: receiver instance type
2572 __ Ret(eq);
2573
Ben Murdochda12d292016-06-02 14:46:10 +01002574 NonNumberToNumberStub stub(masm->isolate());
2575 __ TailCallStub(&stub);
2576}
2577
2578void NonNumberToNumberStub::Generate(MacroAssembler* masm) {
2579 // The NonNumberToNumber stub takes one argument in r3.
2580 __ AssertNotNumber(r3);
2581
2582 __ CompareObjectType(r3, r4, r4, FIRST_NONSTRING_TYPE);
2583 // r3: receiver
2584 // r4: receiver instance type
2585 StringToNumberStub stub(masm->isolate());
2586 __ TailCallStub(&stub, lt);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002587
2588 Label not_oddball;
2589 __ cmpi(r4, Operand(ODDBALL_TYPE));
2590 __ bne(&not_oddball);
2591 __ LoadP(r3, FieldMemOperand(r3, Oddball::kToNumberOffset));
2592 __ blr();
2593 __ bind(&not_oddball);
2594
2595 __ push(r3); // Push argument.
2596 __ TailCallRuntime(Runtime::kToNumber);
2597}
2598
Ben Murdochda12d292016-06-02 14:46:10 +01002599void StringToNumberStub::Generate(MacroAssembler* masm) {
2600 // The StringToNumber stub takes one argument in r3.
2601 __ AssertString(r3);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002602
Ben Murdochda12d292016-06-02 14:46:10 +01002603 // Check if string has a cached array index.
2604 Label runtime;
2605 __ lwz(r5, FieldMemOperand(r3, String::kHashFieldOffset));
2606 __ And(r0, r5, Operand(String::kContainsCachedArrayIndexMask), SetRC);
2607 __ bne(&runtime, cr0);
2608 __ IndexFromHash(r5, r3);
2609 __ blr();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002610
Ben Murdochda12d292016-06-02 14:46:10 +01002611 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002612 __ push(r3); // Push argument.
Ben Murdochda12d292016-06-02 14:46:10 +01002613 __ TailCallRuntime(Runtime::kStringToNumber);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002614}
2615
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002616void ToStringStub::Generate(MacroAssembler* masm) {
2617 // The ToString stub takes one argument in r3.
2618 Label is_number;
2619 __ JumpIfSmi(r3, &is_number);
2620
2621 __ CompareObjectType(r3, r4, r4, FIRST_NONSTRING_TYPE);
2622 // r3: receiver
2623 // r4: receiver instance type
2624 __ Ret(lt);
2625
2626 Label not_heap_number;
2627 __ cmpi(r4, Operand(HEAP_NUMBER_TYPE));
2628 __ bne(&not_heap_number);
2629 __ bind(&is_number);
2630 NumberToStringStub stub(isolate());
2631 __ TailCallStub(&stub);
2632 __ bind(&not_heap_number);
2633
2634 Label not_oddball;
2635 __ cmpi(r4, Operand(ODDBALL_TYPE));
2636 __ bne(&not_oddball);
2637 __ LoadP(r3, FieldMemOperand(r3, Oddball::kToStringOffset));
2638 __ Ret();
2639 __ bind(&not_oddball);
2640
2641 __ push(r3); // Push argument.
2642 __ TailCallRuntime(Runtime::kToString);
2643}
2644
2645
Ben Murdoch097c5b22016-05-18 11:27:45 +01002646void ToNameStub::Generate(MacroAssembler* masm) {
2647 // The ToName stub takes one argument in r3.
2648 Label is_number;
2649 __ JumpIfSmi(r3, &is_number);
2650
2651 STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
2652 __ CompareObjectType(r3, r4, r4, LAST_NAME_TYPE);
2653 // r3: receiver
2654 // r4: receiver instance type
2655 __ Ret(le);
2656
2657 Label not_heap_number;
2658 __ cmpi(r4, Operand(HEAP_NUMBER_TYPE));
2659 __ bne(&not_heap_number);
2660 __ bind(&is_number);
2661 NumberToStringStub stub(isolate());
2662 __ TailCallStub(&stub);
2663 __ bind(&not_heap_number);
2664
2665 Label not_oddball;
2666 __ cmpi(r4, Operand(ODDBALL_TYPE));
2667 __ bne(&not_oddball);
2668 __ LoadP(r3, FieldMemOperand(r3, Oddball::kToStringOffset));
2669 __ Ret();
2670 __ bind(&not_oddball);
2671
2672 __ push(r3); // Push argument.
2673 __ TailCallRuntime(Runtime::kToName);
2674}
2675
2676
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002677void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
2678 Register left,
2679 Register right,
2680 Register scratch1,
2681 Register scratch2) {
2682 Register length = scratch1;
2683
2684 // Compare lengths.
2685 Label strings_not_equal, check_zero_length;
2686 __ LoadP(length, FieldMemOperand(left, String::kLengthOffset));
2687 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
2688 __ cmp(length, scratch2);
2689 __ beq(&check_zero_length);
2690 __ bind(&strings_not_equal);
2691 __ LoadSmiLiteral(r3, Smi::FromInt(NOT_EQUAL));
2692 __ Ret();
2693
2694 // Check if the length is zero.
2695 Label compare_chars;
2696 __ bind(&check_zero_length);
2697 STATIC_ASSERT(kSmiTag == 0);
2698 __ cmpi(length, Operand::Zero());
2699 __ bne(&compare_chars);
2700 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
2701 __ Ret();
2702
2703 // Compare characters.
2704 __ bind(&compare_chars);
2705 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
2706 &strings_not_equal);
2707
2708 // Characters are equal.
2709 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
2710 __ Ret();
2711}
2712
2713
2714void StringHelper::GenerateCompareFlatOneByteStrings(
2715 MacroAssembler* masm, Register left, Register right, Register scratch1,
2716 Register scratch2, Register scratch3) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002717 Label result_not_equal, compare_lengths;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002718 // Find minimum length and length difference.
2719 __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset));
2720 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
2721 __ sub(scratch3, scratch1, scratch2, LeaveOE, SetRC);
2722 Register length_delta = scratch3;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002723 if (CpuFeatures::IsSupported(ISELECT)) {
2724 __ isel(gt, scratch1, scratch2, scratch1, cr0);
2725 } else {
2726 Label skip;
2727 __ ble(&skip, cr0);
2728 __ mr(scratch1, scratch2);
2729 __ bind(&skip);
2730 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002731 Register min_length = scratch1;
2732 STATIC_ASSERT(kSmiTag == 0);
2733 __ cmpi(min_length, Operand::Zero());
2734 __ beq(&compare_lengths);
2735
2736 // Compare loop.
2737 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
2738 &result_not_equal);
2739
2740 // Compare lengths - strings up to min-length are equal.
2741 __ bind(&compare_lengths);
2742 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
2743 // Use length_delta as result if it's zero.
2744 __ mr(r3, length_delta);
2745 __ cmpi(r3, Operand::Zero());
2746 __ bind(&result_not_equal);
2747 // Conditionally update the result based either on length_delta or
2748 // the last comparion performed in the loop above.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002749 if (CpuFeatures::IsSupported(ISELECT)) {
2750 __ LoadSmiLiteral(r4, Smi::FromInt(GREATER));
2751 __ LoadSmiLiteral(r5, Smi::FromInt(LESS));
2752 __ isel(eq, r3, r0, r4);
2753 __ isel(lt, r3, r5, r3);
2754 __ Ret();
2755 } else {
2756 Label less_equal, equal;
2757 __ ble(&less_equal);
2758 __ LoadSmiLiteral(r3, Smi::FromInt(GREATER));
2759 __ Ret();
2760 __ bind(&less_equal);
2761 __ beq(&equal);
2762 __ LoadSmiLiteral(r3, Smi::FromInt(LESS));
2763 __ bind(&equal);
2764 __ Ret();
2765 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002766}
2767
2768
2769void StringHelper::GenerateOneByteCharsCompareLoop(
2770 MacroAssembler* masm, Register left, Register right, Register length,
2771 Register scratch1, Label* chars_not_equal) {
2772 // Change index to run from -length to -1 by adding length to string
2773 // start. This means that loop ends when index reaches zero, which
2774 // doesn't need an additional compare.
2775 __ SmiUntag(length);
2776 __ addi(scratch1, length,
2777 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2778 __ add(left, left, scratch1);
2779 __ add(right, right, scratch1);
2780 __ subfic(length, length, Operand::Zero());
2781 Register index = length; // index = -length;
2782
2783 // Compare loop.
2784 Label loop;
2785 __ bind(&loop);
2786 __ lbzx(scratch1, MemOperand(left, index));
2787 __ lbzx(r0, MemOperand(right, index));
2788 __ cmp(scratch1, r0);
2789 __ bne(chars_not_equal);
2790 __ addi(index, index, Operand(1));
2791 __ cmpi(index, Operand::Zero());
2792 __ bne(&loop);
2793}
2794
2795
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002796void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
2797 // ----------- S t a t e -------------
2798 // -- r4 : left
2799 // -- r3 : right
2800 // -- lr : return address
2801 // -----------------------------------
2802
2803 // Load r5 with the allocation site. We stick an undefined dummy value here
2804 // and replace it with the real allocation site later when we instantiate this
2805 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
2806 __ Move(r5, handle(isolate()->heap()->undefined_value()));
2807
2808 // Make sure that we actually patched the allocation site.
2809 if (FLAG_debug_code) {
2810 __ TestIfSmi(r5, r0);
2811 __ Assert(ne, kExpectedAllocationSite, cr0);
2812 __ push(r5);
2813 __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
2814 __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
2815 __ cmp(r5, ip);
2816 __ pop(r5);
2817 __ Assert(eq, kExpectedAllocationSite);
2818 }
2819
2820 // Tail call into the stub that handles binary operations with allocation
2821 // sites.
2822 BinaryOpWithAllocationSiteStub stub(isolate(), state());
2823 __ TailCallStub(&stub);
2824}
2825
2826
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002827void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
2828 DCHECK_EQ(CompareICState::BOOLEAN, state());
2829 Label miss;
2830
2831 __ CheckMap(r4, r5, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2832 __ CheckMap(r3, r6, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002833 if (!Token::IsEqualityOp(op())) {
2834 __ LoadP(r4, FieldMemOperand(r4, Oddball::kToNumberOffset));
2835 __ AssertSmi(r4);
2836 __ LoadP(r3, FieldMemOperand(r3, Oddball::kToNumberOffset));
2837 __ AssertSmi(r3);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002838 }
Ben Murdoch097c5b22016-05-18 11:27:45 +01002839 __ sub(r3, r4, r3);
2840 __ Ret();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002841
2842 __ bind(&miss);
2843 GenerateMiss(masm);
2844}
2845
2846
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002847void CompareICStub::GenerateSmis(MacroAssembler* masm) {
2848 DCHECK(state() == CompareICState::SMI);
2849 Label miss;
2850 __ orx(r5, r4, r3);
2851 __ JumpIfNotSmi(r5, &miss);
2852
2853 if (GetCondition() == eq) {
2854 // For equality we do not care about the sign of the result.
2855 // __ sub(r3, r3, r4, SetCC);
2856 __ sub(r3, r3, r4);
2857 } else {
2858 // Untag before subtracting to avoid handling overflow.
2859 __ SmiUntag(r4);
2860 __ SmiUntag(r3);
2861 __ sub(r3, r4, r3);
2862 }
2863 __ Ret();
2864
2865 __ bind(&miss);
2866 GenerateMiss(masm);
2867}
2868
2869
2870void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
2871 DCHECK(state() == CompareICState::NUMBER);
2872
2873 Label generic_stub;
2874 Label unordered, maybe_undefined1, maybe_undefined2;
2875 Label miss;
2876 Label equal, less_than;
2877
2878 if (left() == CompareICState::SMI) {
2879 __ JumpIfNotSmi(r4, &miss);
2880 }
2881 if (right() == CompareICState::SMI) {
2882 __ JumpIfNotSmi(r3, &miss);
2883 }
2884
2885 // Inlining the double comparison and falling back to the general compare
2886 // stub if NaN is involved.
2887 // Load left and right operand.
2888 Label done, left, left_smi, right_smi;
2889 __ JumpIfSmi(r3, &right_smi);
2890 __ CheckMap(r3, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
2891 DONT_DO_SMI_CHECK);
2892 __ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset));
2893 __ b(&left);
2894 __ bind(&right_smi);
2895 __ SmiToDouble(d1, r3);
2896
2897 __ bind(&left);
2898 __ JumpIfSmi(r4, &left_smi);
2899 __ CheckMap(r4, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
2900 DONT_DO_SMI_CHECK);
2901 __ lfd(d0, FieldMemOperand(r4, HeapNumber::kValueOffset));
2902 __ b(&done);
2903 __ bind(&left_smi);
2904 __ SmiToDouble(d0, r4);
2905
2906 __ bind(&done);
2907
2908 // Compare operands
2909 __ fcmpu(d0, d1);
2910
2911 // Don't base result on status bits when a NaN is involved.
2912 __ bunordered(&unordered);
2913
2914 // Return a result of -1, 0, or 1, based on status bits.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002915 if (CpuFeatures::IsSupported(ISELECT)) {
2916 DCHECK(EQUAL == 0);
2917 __ li(r4, Operand(GREATER));
2918 __ li(r5, Operand(LESS));
2919 __ isel(eq, r3, r0, r4);
2920 __ isel(lt, r3, r5, r3);
2921 __ Ret();
2922 } else {
2923 __ beq(&equal);
2924 __ blt(&less_than);
2925 // assume greater than
2926 __ li(r3, Operand(GREATER));
2927 __ Ret();
2928 __ bind(&equal);
2929 __ li(r3, Operand(EQUAL));
2930 __ Ret();
2931 __ bind(&less_than);
2932 __ li(r3, Operand(LESS));
2933 __ Ret();
2934 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002935
2936 __ bind(&unordered);
2937 __ bind(&generic_stub);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002938 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002939 CompareICState::GENERIC, CompareICState::GENERIC);
2940 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2941
2942 __ bind(&maybe_undefined1);
2943 if (Token::IsOrderedRelationalCompareOp(op())) {
2944 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
2945 __ bne(&miss);
2946 __ JumpIfSmi(r4, &unordered);
2947 __ CompareObjectType(r4, r5, r5, HEAP_NUMBER_TYPE);
2948 __ bne(&maybe_undefined2);
2949 __ b(&unordered);
2950 }
2951
2952 __ bind(&maybe_undefined2);
2953 if (Token::IsOrderedRelationalCompareOp(op())) {
2954 __ CompareRoot(r4, Heap::kUndefinedValueRootIndex);
2955 __ beq(&unordered);
2956 }
2957
2958 __ bind(&miss);
2959 GenerateMiss(masm);
2960}
2961
2962
2963void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
2964 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
2965 Label miss, not_equal;
2966
2967 // Registers containing left and right operands respectively.
2968 Register left = r4;
2969 Register right = r3;
2970 Register tmp1 = r5;
2971 Register tmp2 = r6;
2972
2973 // Check that both operands are heap objects.
2974 __ JumpIfEitherSmi(left, right, &miss);
2975
2976 // Check that both operands are symbols.
2977 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2978 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2979 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2980 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2981 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2982 __ orx(tmp1, tmp1, tmp2);
2983 __ andi(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
2984 __ bne(&miss, cr0);
2985
2986 // Internalized strings are compared by identity.
2987 __ cmp(left, right);
2988 __ bne(&not_equal);
2989 // Make sure r3 is non-zero. At this point input operands are
2990 // guaranteed to be non-zero.
2991 DCHECK(right.is(r3));
2992 STATIC_ASSERT(EQUAL == 0);
2993 STATIC_ASSERT(kSmiTag == 0);
2994 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
2995 __ bind(&not_equal);
2996 __ Ret();
2997
2998 __ bind(&miss);
2999 GenerateMiss(masm);
3000}
3001
3002
3003void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3004 DCHECK(state() == CompareICState::UNIQUE_NAME);
3005 DCHECK(GetCondition() == eq);
3006 Label miss;
3007
3008 // Registers containing left and right operands respectively.
3009 Register left = r4;
3010 Register right = r3;
3011 Register tmp1 = r5;
3012 Register tmp2 = r6;
3013
3014 // Check that both operands are heap objects.
3015 __ JumpIfEitherSmi(left, right, &miss);
3016
3017 // Check that both operands are unique names. This leaves the instance
3018 // types loaded in tmp1 and tmp2.
3019 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3020 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3021 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3022 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3023
3024 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
3025 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
3026
3027 // Unique names are compared by identity.
3028 __ cmp(left, right);
3029 __ bne(&miss);
3030 // Make sure r3 is non-zero. At this point input operands are
3031 // guaranteed to be non-zero.
3032 DCHECK(right.is(r3));
3033 STATIC_ASSERT(EQUAL == 0);
3034 STATIC_ASSERT(kSmiTag == 0);
3035 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3036 __ Ret();
3037
3038 __ bind(&miss);
3039 GenerateMiss(masm);
3040}
3041
3042
3043void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3044 DCHECK(state() == CompareICState::STRING);
3045 Label miss, not_identical, is_symbol;
3046
3047 bool equality = Token::IsEqualityOp(op());
3048
3049 // Registers containing left and right operands respectively.
3050 Register left = r4;
3051 Register right = r3;
3052 Register tmp1 = r5;
3053 Register tmp2 = r6;
3054 Register tmp3 = r7;
3055 Register tmp4 = r8;
3056
3057 // Check that both operands are heap objects.
3058 __ JumpIfEitherSmi(left, right, &miss);
3059
3060 // Check that both operands are strings. This leaves the instance
3061 // types loaded in tmp1 and tmp2.
3062 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3063 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3064 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3065 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3066 STATIC_ASSERT(kNotStringTag != 0);
3067 __ orx(tmp3, tmp1, tmp2);
3068 __ andi(r0, tmp3, Operand(kIsNotStringMask));
3069 __ bne(&miss, cr0);
3070
3071 // Fast check for identical strings.
3072 __ cmp(left, right);
3073 STATIC_ASSERT(EQUAL == 0);
3074 STATIC_ASSERT(kSmiTag == 0);
3075 __ bne(&not_identical);
3076 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3077 __ Ret();
3078 __ bind(&not_identical);
3079
3080 // Handle not identical strings.
3081
3082 // Check that both strings are internalized strings. If they are, we're done
3083 // because we already know they are not identical. We know they are both
3084 // strings.
3085 if (equality) {
3086 DCHECK(GetCondition() == eq);
3087 STATIC_ASSERT(kInternalizedTag == 0);
3088 __ orx(tmp3, tmp1, tmp2);
3089 __ andi(r0, tmp3, Operand(kIsNotInternalizedMask));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003090 // Make sure r3 is non-zero. At this point input operands are
3091 // guaranteed to be non-zero.
3092 DCHECK(right.is(r3));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003093 __ Ret(eq, cr0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003094 }
3095
3096 // Check that both strings are sequential one-byte.
3097 Label runtime;
3098 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3099 &runtime);
3100
3101 // Compare flat one-byte strings. Returns when done.
3102 if (equality) {
3103 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3104 tmp2);
3105 } else {
3106 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3107 tmp2, tmp3);
3108 }
3109
3110 // Handle more complex cases in runtime.
3111 __ bind(&runtime);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003112 if (equality) {
Ben Murdochda12d292016-06-02 14:46:10 +01003113 {
3114 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
3115 __ Push(left, right);
3116 __ CallRuntime(Runtime::kStringEqual);
3117 }
3118 __ LoadRoot(r4, Heap::kTrueValueRootIndex);
3119 __ sub(r3, r3, r4);
3120 __ Ret();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003121 } else {
Ben Murdochda12d292016-06-02 14:46:10 +01003122 __ Push(left, right);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003123 __ TailCallRuntime(Runtime::kStringCompare);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003124 }
3125
3126 __ bind(&miss);
3127 GenerateMiss(masm);
3128}
3129
3130
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003131void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
3132 DCHECK_EQ(CompareICState::RECEIVER, state());
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003133 Label miss;
3134 __ and_(r5, r4, r3);
3135 __ JumpIfSmi(r5, &miss);
3136
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003137 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
3138 __ CompareObjectType(r3, r5, r5, FIRST_JS_RECEIVER_TYPE);
3139 __ blt(&miss);
3140 __ CompareObjectType(r4, r5, r5, FIRST_JS_RECEIVER_TYPE);
3141 __ blt(&miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003142
3143 DCHECK(GetCondition() == eq);
3144 __ sub(r3, r3, r4);
3145 __ Ret();
3146
3147 __ bind(&miss);
3148 GenerateMiss(masm);
3149}
3150
3151
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003152void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003153 Label miss;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003154 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003155 __ and_(r5, r4, r3);
3156 __ JumpIfSmi(r5, &miss);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003157 __ GetWeakValue(r7, cell);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003158 __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
3159 __ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003160 __ cmp(r5, r7);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003161 __ bne(&miss);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003162 __ cmp(r6, r7);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003163 __ bne(&miss);
3164
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003165 if (Token::IsEqualityOp(op())) {
3166 __ sub(r3, r3, r4);
3167 __ Ret();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003168 } else {
3169 if (op() == Token::LT || op() == Token::LTE) {
3170 __ LoadSmiLiteral(r5, Smi::FromInt(GREATER));
3171 } else {
3172 __ LoadSmiLiteral(r5, Smi::FromInt(LESS));
3173 }
3174 __ Push(r4, r3, r5);
3175 __ TailCallRuntime(Runtime::kCompare);
3176 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003177
3178 __ bind(&miss);
3179 GenerateMiss(masm);
3180}
3181
3182
3183void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3184 {
3185 // Call the runtime system in a fresh internal frame.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003186 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
3187 __ Push(r4, r3);
3188 __ Push(r4, r3);
3189 __ LoadSmiLiteral(r0, Smi::FromInt(op()));
3190 __ push(r0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003191 __ CallRuntime(Runtime::kCompareIC_Miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003192 // Compute the entry point of the rewritten stub.
3193 __ addi(r5, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
3194 // Restore registers.
3195 __ Pop(r4, r3);
3196 }
3197
3198 __ JumpToJSEntry(r5);
3199}
3200
3201
3202// This stub is paired with DirectCEntryStub::GenerateCall
3203void DirectCEntryStub::Generate(MacroAssembler* masm) {
3204 // Place the return address on the stack, making the call
3205 // GC safe. The RegExp backend also relies on this.
3206 __ mflr(r0);
3207 __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
3208 __ Call(ip); // Call the C++ function.
3209 __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
3210 __ mtlr(r0);
3211 __ blr();
3212}
3213
3214
3215void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01003216 if (ABI_USES_FUNCTION_DESCRIPTORS) {
3217 // AIX/PPC64BE Linux use a function descriptor.
3218 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
3219 __ LoadP(ip, MemOperand(target, 0)); // Instruction address
3220 } else {
3221 // ip needs to be set for DirectCEentryStub::Generate, and also
3222 // for ABI_CALL_VIA_IP.
3223 __ Move(ip, target);
3224 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003225
3226 intptr_t code = reinterpret_cast<intptr_t>(GetCode().location());
3227 __ mov(r0, Operand(code, RelocInfo::CODE_TARGET));
3228 __ Call(r0); // Call the stub.
3229}
3230
3231
3232void NameDictionaryLookupStub::GenerateNegativeLookup(
3233 MacroAssembler* masm, Label* miss, Label* done, Register receiver,
3234 Register properties, Handle<Name> name, Register scratch0) {
3235 DCHECK(name->IsUniqueName());
3236 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3237 // not equal to the name and kProbes-th slot is not used (its name is the
3238 // undefined value), it guarantees the hash table doesn't contain the
3239 // property. It's true even if some slots represent deleted properties
3240 // (their names are the hole value).
3241 for (int i = 0; i < kInlinedProbes; i++) {
3242 // scratch0 points to properties hash.
3243 // Compute the masked index: (hash + i + i * i) & mask.
3244 Register index = scratch0;
3245 // Capacity is smi 2^n.
3246 __ LoadP(index, FieldMemOperand(properties, kCapacityOffset));
3247 __ subi(index, index, Operand(1));
3248 __ LoadSmiLiteral(
3249 ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)));
3250 __ and_(index, index, ip);
3251
3252 // Scale the index by multiplying by the entry size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003253 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003254 __ ShiftLeftImm(ip, index, Operand(1));
3255 __ add(index, index, ip); // index *= 3.
3256
3257 Register entity_name = scratch0;
3258 // Having undefined at this place means the name is not contained.
3259 Register tmp = properties;
3260 __ SmiToPtrArrayOffset(ip, index);
3261 __ add(tmp, properties, ip);
3262 __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3263
3264 DCHECK(!tmp.is(entity_name));
3265 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
3266 __ cmp(entity_name, tmp);
3267 __ beq(done);
3268
3269 // Load the hole ready for use below:
3270 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
3271
3272 // Stop if found the property.
3273 __ Cmpi(entity_name, Operand(Handle<Name>(name)), r0);
3274 __ beq(miss);
3275
3276 Label good;
3277 __ cmp(entity_name, tmp);
3278 __ beq(&good);
3279
3280 // Check if the entry name is not a unique name.
3281 __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3282 __ lbz(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3283 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
3284 __ bind(&good);
3285
3286 // Restore the properties.
3287 __ LoadP(properties,
3288 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3289 }
3290
3291 const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
3292 r5.bit() | r4.bit() | r3.bit());
3293
3294 __ mflr(r0);
3295 __ MultiPush(spill_mask);
3296
3297 __ LoadP(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3298 __ mov(r4, Operand(Handle<Name>(name)));
3299 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3300 __ CallStub(&stub);
3301 __ cmpi(r3, Operand::Zero());
3302
3303 __ MultiPop(spill_mask); // MultiPop does not touch condition flags
3304 __ mtlr(r0);
3305
3306 __ beq(done);
3307 __ bne(miss);
3308}
3309
3310
3311// Probe the name dictionary in the |elements| register. Jump to the
3312// |done| label if a property with the given name is found. Jump to
3313// the |miss| label otherwise.
3314// If lookup was successful |scratch2| will be equal to elements + 4 * index.
3315void NameDictionaryLookupStub::GeneratePositiveLookup(
3316 MacroAssembler* masm, Label* miss, Label* done, Register elements,
3317 Register name, Register scratch1, Register scratch2) {
3318 DCHECK(!elements.is(scratch1));
3319 DCHECK(!elements.is(scratch2));
3320 DCHECK(!name.is(scratch1));
3321 DCHECK(!name.is(scratch2));
3322
3323 __ AssertName(name);
3324
3325 // Compute the capacity mask.
3326 __ LoadP(scratch1, FieldMemOperand(elements, kCapacityOffset));
3327 __ SmiUntag(scratch1); // convert smi to int
3328 __ subi(scratch1, scratch1, Operand(1));
3329
3330 // Generate an unrolled loop that performs a few probes before
3331 // giving up. Measurements done on Gmail indicate that 2 probes
3332 // cover ~93% of loads from dictionaries.
3333 for (int i = 0; i < kInlinedProbes; i++) {
3334 // Compute the masked index: (hash + i + i * i) & mask.
3335 __ lwz(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
3336 if (i > 0) {
3337 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3338 // the hash in a separate instruction. The value hash + i + i * i is right
3339 // shifted in the following and instruction.
3340 DCHECK(NameDictionary::GetProbeOffset(i) <
3341 1 << (32 - Name::kHashFieldOffset));
3342 __ addi(scratch2, scratch2,
3343 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3344 }
3345 __ srwi(scratch2, scratch2, Operand(Name::kHashShift));
3346 __ and_(scratch2, scratch1, scratch2);
3347
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003348 // Scale the index by multiplying by the entry size.
3349 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003350 // scratch2 = scratch2 * 3.
3351 __ ShiftLeftImm(ip, scratch2, Operand(1));
3352 __ add(scratch2, scratch2, ip);
3353
3354 // Check if the key is identical to the name.
3355 __ ShiftLeftImm(ip, scratch2, Operand(kPointerSizeLog2));
3356 __ add(scratch2, elements, ip);
3357 __ LoadP(ip, FieldMemOperand(scratch2, kElementsStartOffset));
3358 __ cmp(name, ip);
3359 __ beq(done);
3360 }
3361
3362 const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
3363 r5.bit() | r4.bit() | r3.bit()) &
3364 ~(scratch1.bit() | scratch2.bit());
3365
3366 __ mflr(r0);
3367 __ MultiPush(spill_mask);
3368 if (name.is(r3)) {
3369 DCHECK(!elements.is(r4));
3370 __ mr(r4, name);
3371 __ mr(r3, elements);
3372 } else {
3373 __ mr(r3, elements);
3374 __ mr(r4, name);
3375 }
3376 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
3377 __ CallStub(&stub);
3378 __ cmpi(r3, Operand::Zero());
3379 __ mr(scratch2, r5);
3380 __ MultiPop(spill_mask);
3381 __ mtlr(r0);
3382
3383 __ bne(done);
3384 __ beq(miss);
3385}
3386
3387
3388void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3389 // This stub overrides SometimesSetsUpAFrame() to return false. That means
3390 // we cannot call anything that could cause a GC from this stub.
3391 // Registers:
3392 // result: NameDictionary to probe
3393 // r4: key
3394 // dictionary: NameDictionary to probe.
3395 // index: will hold an index of entry if lookup is successful.
3396 // might alias with result_.
3397 // Returns:
3398 // result_ is zero if lookup failed, non zero otherwise.
3399
3400 Register result = r3;
3401 Register dictionary = r3;
3402 Register key = r4;
3403 Register index = r5;
3404 Register mask = r6;
3405 Register hash = r7;
3406 Register undefined = r8;
3407 Register entry_key = r9;
3408 Register scratch = r9;
3409
3410 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3411
3412 __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset));
3413 __ SmiUntag(mask);
3414 __ subi(mask, mask, Operand(1));
3415
3416 __ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset));
3417
3418 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
3419
3420 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3421 // Compute the masked index: (hash + i + i * i) & mask.
3422 // Capacity is smi 2^n.
3423 if (i > 0) {
3424 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3425 // the hash in a separate instruction. The value hash + i + i * i is right
3426 // shifted in the following and instruction.
3427 DCHECK(NameDictionary::GetProbeOffset(i) <
3428 1 << (32 - Name::kHashFieldOffset));
3429 __ addi(index, hash,
3430 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3431 } else {
3432 __ mr(index, hash);
3433 }
3434 __ srwi(r0, index, Operand(Name::kHashShift));
3435 __ and_(index, mask, r0);
3436
3437 // Scale the index by multiplying by the entry size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003438 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003439 __ ShiftLeftImm(scratch, index, Operand(1));
3440 __ add(index, index, scratch); // index *= 3.
3441
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003442 __ ShiftLeftImm(scratch, index, Operand(kPointerSizeLog2));
3443 __ add(index, dictionary, scratch);
3444 __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset));
3445
3446 // Having undefined at this place means the name is not contained.
3447 __ cmp(entry_key, undefined);
3448 __ beq(&not_in_dictionary);
3449
3450 // Stop if found the property.
3451 __ cmp(entry_key, key);
3452 __ beq(&in_dictionary);
3453
3454 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3455 // Check if the entry name is not a unique name.
3456 __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
3457 __ lbz(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
3458 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
3459 }
3460 }
3461
3462 __ bind(&maybe_in_dictionary);
3463 // If we are doing negative lookup then probing failure should be
3464 // treated as a lookup success. For positive lookup probing failure
3465 // should be treated as lookup failure.
3466 if (mode() == POSITIVE_LOOKUP) {
3467 __ li(result, Operand::Zero());
3468 __ Ret();
3469 }
3470
3471 __ bind(&in_dictionary);
3472 __ li(result, Operand(1));
3473 __ Ret();
3474
3475 __ bind(&not_in_dictionary);
3476 __ li(result, Operand::Zero());
3477 __ Ret();
3478}
3479
3480
3481void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3482 Isolate* isolate) {
3483 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
3484 stub1.GetCode();
3485 // Hydrogen code stubs need stub2 at snapshot time.
3486 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3487 stub2.GetCode();
3488}
3489
3490
3491// Takes the input in 3 registers: address_ value_ and object_. A pointer to
3492// the value has just been written into the object, now this stub makes sure
3493// we keep the GC informed. The word in the object where the value has been
3494// written is in the address register.
3495void RecordWriteStub::Generate(MacroAssembler* masm) {
3496 Label skip_to_incremental_noncompacting;
3497 Label skip_to_incremental_compacting;
3498
3499 // The first two branch instructions are generated with labels so as to
3500 // get the offset fixed up correctly by the bind(Label*) call. We patch
3501 // it back and forth between branch condition True and False
3502 // when we start and stop incremental heap marking.
3503 // See RecordWriteStub::Patch for details.
3504
3505 // Clear the bit, branch on True for NOP action initially
3506 __ crclr(Assembler::encode_crbit(cr2, CR_LT));
3507 __ blt(&skip_to_incremental_noncompacting, cr2);
3508 __ blt(&skip_to_incremental_compacting, cr2);
3509
3510 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3511 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3512 MacroAssembler::kReturnAtEnd);
3513 }
3514 __ Ret();
3515
3516 __ bind(&skip_to_incremental_noncompacting);
3517 GenerateIncremental(masm, INCREMENTAL);
3518
3519 __ bind(&skip_to_incremental_compacting);
3520 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3521
3522 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3523 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3524 // patching not required on PPC as the initial path is effectively NOP
3525}
3526
3527
3528void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3529 regs_.Save(masm);
3530
3531 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3532 Label dont_need_remembered_set;
3533
3534 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
3535 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
3536 regs_.scratch0(), &dont_need_remembered_set);
3537
Ben Murdoch097c5b22016-05-18 11:27:45 +01003538 __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
3539 &dont_need_remembered_set);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003540
3541 // First notify the incremental marker if necessary, then update the
3542 // remembered set.
3543 CheckNeedsToInformIncrementalMarker(
3544 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
3545 InformIncrementalMarker(masm);
3546 regs_.Restore(masm);
3547 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3548 MacroAssembler::kReturnAtEnd);
3549
3550 __ bind(&dont_need_remembered_set);
3551 }
3552
3553 CheckNeedsToInformIncrementalMarker(
3554 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
3555 InformIncrementalMarker(masm);
3556 regs_.Restore(masm);
3557 __ Ret();
3558}
3559
3560
3561void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3562 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3563 int argument_count = 3;
3564 __ PrepareCallCFunction(argument_count, regs_.scratch0());
3565 Register address =
3566 r3.is(regs_.address()) ? regs_.scratch0() : regs_.address();
3567 DCHECK(!address.is(regs_.object()));
3568 DCHECK(!address.is(r3));
3569 __ mr(address, regs_.address());
3570 __ mr(r3, regs_.object());
3571 __ mr(r4, address);
3572 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
3573
3574 AllowExternalCallThatCantCauseGC scope(masm);
3575 __ CallCFunction(
3576 ExternalReference::incremental_marking_record_write_function(isolate()),
3577 argument_count);
3578 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3579}
3580
3581
3582void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3583 MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need,
3584 Mode mode) {
3585 Label on_black;
3586 Label need_incremental;
3587 Label need_incremental_pop_scratch;
3588
3589 DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0);
3590 __ lis(r0, Operand((~Page::kPageAlignmentMask >> 16)));
3591 __ and_(regs_.scratch0(), regs_.object(), r0);
3592 __ LoadP(
3593 regs_.scratch1(),
3594 MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
3595 __ subi(regs_.scratch1(), regs_.scratch1(), Operand(1));
3596 __ StoreP(
3597 regs_.scratch1(),
3598 MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
3599 __ cmpi(regs_.scratch1(), Operand::Zero()); // PPC, we could do better here
3600 __ blt(&need_incremental);
3601
3602 // Let's look at the color of the object: If it is not black we don't have
3603 // to inform the incremental marker.
3604 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
3605
3606 regs_.Restore(masm);
3607 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3608 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3609 MacroAssembler::kReturnAtEnd);
3610 } else {
3611 __ Ret();
3612 }
3613
3614 __ bind(&on_black);
3615
3616 // Get the value from the slot.
3617 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
3618
3619 if (mode == INCREMENTAL_COMPACTION) {
3620 Label ensure_not_white;
3621
3622 __ CheckPageFlag(regs_.scratch0(), // Contains value.
3623 regs_.scratch1(), // Scratch.
3624 MemoryChunk::kEvacuationCandidateMask, eq,
3625 &ensure_not_white);
3626
3627 __ CheckPageFlag(regs_.object(),
3628 regs_.scratch1(), // Scratch.
3629 MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq,
3630 &need_incremental);
3631
3632 __ bind(&ensure_not_white);
3633 }
3634
3635 // We need extra registers for this, so we push the object and the address
3636 // register temporarily.
3637 __ Push(regs_.object(), regs_.address());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003638 __ JumpIfWhite(regs_.scratch0(), // The value.
3639 regs_.scratch1(), // Scratch.
3640 regs_.object(), // Scratch.
3641 regs_.address(), // Scratch.
3642 &need_incremental_pop_scratch);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003643 __ Pop(regs_.object(), regs_.address());
3644
3645 regs_.Restore(masm);
3646 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3647 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3648 MacroAssembler::kReturnAtEnd);
3649 } else {
3650 __ Ret();
3651 }
3652
3653 __ bind(&need_incremental_pop_scratch);
3654 __ Pop(regs_.object(), regs_.address());
3655
3656 __ bind(&need_incremental);
3657
3658 // Fall through when we need to inform the incremental marker.
3659}
3660
3661
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003662void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
3663 CEntryStub ces(isolate(), 1, kSaveFPRegs);
3664 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
3665 int parameter_count_offset =
Ben Murdochda12d292016-06-02 14:46:10 +01003666 StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003667 __ LoadP(r4, MemOperand(fp, parameter_count_offset));
3668 if (function_mode() == JS_FUNCTION_STUB_MODE) {
3669 __ addi(r4, r4, Operand(1));
3670 }
3671 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
3672 __ slwi(r4, r4, Operand(kPointerSizeLog2));
3673 __ add(sp, sp, r4);
3674 __ Ret();
3675}
3676
3677
3678void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003679 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
3680 LoadICStub stub(isolate(), state());
3681 stub.GenerateForTrampoline(masm);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003682}
3683
3684
3685void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003686 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
3687 KeyedLoadICStub stub(isolate(), state());
3688 stub.GenerateForTrampoline(masm);
3689}
3690
3691
3692void CallICTrampolineStub::Generate(MacroAssembler* masm) {
3693 __ EmitLoadTypeFeedbackVector(r5);
3694 CallICStub stub(isolate(), state());
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003695 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3696}
3697
3698
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003699void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
3700
3701
3702void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
3703 GenerateImpl(masm, true);
3704}
3705
3706
3707static void HandleArrayCases(MacroAssembler* masm, Register feedback,
3708 Register receiver_map, Register scratch1,
3709 Register scratch2, bool is_polymorphic,
3710 Label* miss) {
3711 // feedback initially contains the feedback array
3712 Label next_loop, prepare_next;
3713 Label start_polymorphic;
3714
3715 Register cached_map = scratch1;
3716
3717 __ LoadP(cached_map,
3718 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
3719 __ LoadP(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3720 __ cmp(receiver_map, cached_map);
3721 __ bne(&start_polymorphic);
3722 // found, now call handler.
3723 Register handler = feedback;
3724 __ LoadP(handler,
3725 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
3726 __ addi(ip, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3727 __ Jump(ip);
3728
3729
3730 Register length = scratch2;
3731 __ bind(&start_polymorphic);
3732 __ LoadP(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
3733 if (!is_polymorphic) {
3734 // If the IC could be monomorphic we have to make sure we don't go past the
3735 // end of the feedback array.
3736 __ CmpSmiLiteral(length, Smi::FromInt(2), r0);
3737 __ beq(miss);
3738 }
3739
3740 Register too_far = length;
3741 Register pointer_reg = feedback;
3742
3743 // +-----+------+------+-----+-----+ ... ----+
3744 // | map | len | wm0 | h0 | wm1 | hN |
3745 // +-----+------+------+-----+-----+ ... ----+
3746 // 0 1 2 len-1
3747 // ^ ^
3748 // | |
3749 // pointer_reg too_far
3750 // aka feedback scratch2
3751 // also need receiver_map
3752 // use cached_map (scratch1) to look in the weak map values.
3753 __ SmiToPtrArrayOffset(r0, length);
3754 __ add(too_far, feedback, r0);
3755 __ addi(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3756 __ addi(pointer_reg, feedback,
3757 Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag));
3758
3759 __ bind(&next_loop);
3760 __ LoadP(cached_map, MemOperand(pointer_reg));
3761 __ LoadP(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3762 __ cmp(receiver_map, cached_map);
3763 __ bne(&prepare_next);
3764 __ LoadP(handler, MemOperand(pointer_reg, kPointerSize));
3765 __ addi(ip, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3766 __ Jump(ip);
3767
3768 __ bind(&prepare_next);
3769 __ addi(pointer_reg, pointer_reg, Operand(kPointerSize * 2));
3770 __ cmp(pointer_reg, too_far);
3771 __ blt(&next_loop);
3772
3773 // We exhausted our array of map handler pairs.
3774 __ b(miss);
3775}
3776
3777
3778static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
3779 Register receiver_map, Register feedback,
3780 Register vector, Register slot,
3781 Register scratch, Label* compare_map,
3782 Label* load_smi_map, Label* try_array) {
3783 __ JumpIfSmi(receiver, load_smi_map);
3784 __ LoadP(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
3785 __ bind(compare_map);
3786 Register cached_map = scratch;
3787 // Move the weak map into the weak_cell register.
3788 __ LoadP(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
3789 __ cmp(cached_map, receiver_map);
3790 __ bne(try_array);
3791 Register handler = feedback;
3792 __ SmiToPtrArrayOffset(r0, slot);
3793 __ add(handler, vector, r0);
3794 __ LoadP(handler,
3795 FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize));
3796 __ addi(ip, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3797 __ Jump(ip);
3798}
3799
3800
3801void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3802 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // r4
3803 Register name = LoadWithVectorDescriptor::NameRegister(); // r5
3804 Register vector = LoadWithVectorDescriptor::VectorRegister(); // r6
3805 Register slot = LoadWithVectorDescriptor::SlotRegister(); // r3
3806 Register feedback = r7;
3807 Register receiver_map = r8;
3808 Register scratch1 = r9;
3809
3810 __ SmiToPtrArrayOffset(r0, slot);
3811 __ add(feedback, vector, r0);
3812 __ LoadP(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
3813
3814 // Try to quickly handle the monomorphic case without knowing for sure
3815 // if we have a weak cell in feedback. We do know it's safe to look
3816 // at WeakCell::kValueOffset.
3817 Label try_array, load_smi_map, compare_map;
3818 Label not_array, miss;
3819 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3820 scratch1, &compare_map, &load_smi_map, &try_array);
3821
3822 // Is it a fixed array?
3823 __ bind(&try_array);
3824 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3825 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
3826 __ bne(&not_array);
3827 HandleArrayCases(masm, feedback, receiver_map, scratch1, r10, true, &miss);
3828
3829 __ bind(&not_array);
3830 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
3831 __ bne(&miss);
Ben Murdochc5610432016-08-08 18:44:38 +01003832 Code::Flags code_flags =
3833 Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::LOAD_IC));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003834 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
3835 receiver, name, feedback,
3836 receiver_map, scratch1, r10);
3837
3838 __ bind(&miss);
3839 LoadIC::GenerateMiss(masm);
3840
3841 __ bind(&load_smi_map);
3842 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3843 __ b(&compare_map);
3844}
3845
3846
3847void KeyedLoadICStub::Generate(MacroAssembler* masm) {
3848 GenerateImpl(masm, false);
3849}
3850
3851
3852void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
3853 GenerateImpl(masm, true);
3854}
3855
3856
3857void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3858 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // r4
3859 Register key = LoadWithVectorDescriptor::NameRegister(); // r5
3860 Register vector = LoadWithVectorDescriptor::VectorRegister(); // r6
3861 Register slot = LoadWithVectorDescriptor::SlotRegister(); // r3
3862 Register feedback = r7;
3863 Register receiver_map = r8;
3864 Register scratch1 = r9;
3865
3866 __ SmiToPtrArrayOffset(r0, slot);
3867 __ add(feedback, vector, r0);
3868 __ LoadP(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
3869
3870 // Try to quickly handle the monomorphic case without knowing for sure
3871 // if we have a weak cell in feedback. We do know it's safe to look
3872 // at WeakCell::kValueOffset.
3873 Label try_array, load_smi_map, compare_map;
3874 Label not_array, miss;
3875 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3876 scratch1, &compare_map, &load_smi_map, &try_array);
3877
3878 __ bind(&try_array);
3879 // Is it a fixed array?
3880 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3881 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
3882 __ bne(&not_array);
3883
3884 // We have a polymorphic element handler.
3885 Label polymorphic, try_poly_name;
3886 __ bind(&polymorphic);
3887 HandleArrayCases(masm, feedback, receiver_map, scratch1, r10, true, &miss);
3888
3889 __ bind(&not_array);
3890 // Is it generic?
3891 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
3892 __ bne(&try_poly_name);
3893 Handle<Code> megamorphic_stub =
3894 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
3895 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
3896
3897 __ bind(&try_poly_name);
3898 // We might have a name in feedback, and a fixed array in the next slot.
3899 __ cmp(key, feedback);
3900 __ bne(&miss);
3901 // If the name comparison succeeded, we know we have a fixed array with
3902 // at least one map/handler pair.
3903 __ SmiToPtrArrayOffset(r0, slot);
3904 __ add(feedback, vector, r0);
3905 __ LoadP(feedback,
3906 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
3907 HandleArrayCases(masm, feedback, receiver_map, scratch1, r10, false, &miss);
3908
3909 __ bind(&miss);
3910 KeyedLoadIC::GenerateMiss(masm);
3911
3912 __ bind(&load_smi_map);
3913 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3914 __ b(&compare_map);
3915}
3916
3917
3918void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
3919 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
3920 VectorStoreICStub stub(isolate(), state());
3921 stub.GenerateForTrampoline(masm);
3922}
3923
3924
3925void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
3926 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
3927 VectorKeyedStoreICStub stub(isolate(), state());
3928 stub.GenerateForTrampoline(masm);
3929}
3930
3931
3932void VectorStoreICStub::Generate(MacroAssembler* masm) {
3933 GenerateImpl(masm, false);
3934}
3935
3936
3937void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
3938 GenerateImpl(masm, true);
3939}
3940
3941
3942void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3943 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // r4
3944 Register key = VectorStoreICDescriptor::NameRegister(); // r5
3945 Register vector = VectorStoreICDescriptor::VectorRegister(); // r6
3946 Register slot = VectorStoreICDescriptor::SlotRegister(); // r7
3947 DCHECK(VectorStoreICDescriptor::ValueRegister().is(r3)); // r3
3948 Register feedback = r8;
3949 Register receiver_map = r9;
3950 Register scratch1 = r10;
3951
3952 __ SmiToPtrArrayOffset(r0, slot);
3953 __ add(feedback, vector, r0);
3954 __ LoadP(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
3955
3956 // Try to quickly handle the monomorphic case without knowing for sure
3957 // if we have a weak cell in feedback. We do know it's safe to look
3958 // at WeakCell::kValueOffset.
3959 Label try_array, load_smi_map, compare_map;
3960 Label not_array, miss;
3961 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3962 scratch1, &compare_map, &load_smi_map, &try_array);
3963
3964 // Is it a fixed array?
3965 __ bind(&try_array);
3966 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3967 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
3968 __ bne(&not_array);
3969
3970 Register scratch2 = r11;
3971 HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, true,
3972 &miss);
3973
3974 __ bind(&not_array);
3975 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
3976 __ bne(&miss);
Ben Murdochc5610432016-08-08 18:44:38 +01003977 Code::Flags code_flags =
3978 Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::STORE_IC));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003979 masm->isolate()->stub_cache()->GenerateProbe(
3980 masm, Code::STORE_IC, code_flags, receiver, key, feedback, receiver_map,
3981 scratch1, scratch2);
3982
3983 __ bind(&miss);
3984 StoreIC::GenerateMiss(masm);
3985
3986 __ bind(&load_smi_map);
3987 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3988 __ b(&compare_map);
3989}
3990
3991
3992void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
3993 GenerateImpl(masm, false);
3994}
3995
3996
3997void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
3998 GenerateImpl(masm, true);
3999}
4000
4001
4002static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback,
4003 Register receiver_map, Register scratch1,
4004 Register scratch2, Label* miss) {
4005 // feedback initially contains the feedback array
4006 Label next_loop, prepare_next;
4007 Label start_polymorphic;
4008 Label transition_call;
4009
4010 Register cached_map = scratch1;
4011 Register too_far = scratch2;
4012 Register pointer_reg = feedback;
4013 __ LoadP(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset));
4014
4015 // +-----+------+------+-----+-----+-----+ ... ----+
4016 // | map | len | wm0 | wt0 | h0 | wm1 | hN |
4017 // +-----+------+------+-----+-----+ ----+ ... ----+
4018 // 0 1 2 len-1
4019 // ^ ^
4020 // | |
4021 // pointer_reg too_far
4022 // aka feedback scratch2
4023 // also need receiver_map
4024 // use cached_map (scratch1) to look in the weak map values.
4025 __ SmiToPtrArrayOffset(r0, too_far);
4026 __ add(too_far, feedback, r0);
4027 __ addi(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4028 __ addi(pointer_reg, feedback,
4029 Operand(FixedArray::OffsetOfElementAt(0) - kHeapObjectTag));
4030
4031 __ bind(&next_loop);
4032 __ LoadP(cached_map, MemOperand(pointer_reg));
4033 __ LoadP(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4034 __ cmp(receiver_map, cached_map);
4035 __ bne(&prepare_next);
4036 // Is it a transitioning store?
4037 __ LoadP(too_far, MemOperand(pointer_reg, kPointerSize));
4038 __ CompareRoot(too_far, Heap::kUndefinedValueRootIndex);
4039 __ bne(&transition_call);
4040 __ LoadP(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2));
4041 __ addi(ip, pointer_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
4042 __ Jump(ip);
4043
4044 __ bind(&transition_call);
4045 __ LoadP(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset));
4046 __ JumpIfSmi(too_far, miss);
4047
4048 __ LoadP(receiver_map, MemOperand(pointer_reg, kPointerSize * 2));
4049
4050 // Load the map into the correct register.
4051 DCHECK(feedback.is(VectorStoreTransitionDescriptor::MapRegister()));
4052 __ mr(feedback, too_far);
4053
4054 __ addi(ip, receiver_map, Operand(Code::kHeaderSize - kHeapObjectTag));
4055 __ Jump(ip);
4056
4057 __ bind(&prepare_next);
4058 __ addi(pointer_reg, pointer_reg, Operand(kPointerSize * 3));
4059 __ cmpl(pointer_reg, too_far);
4060 __ blt(&next_loop);
4061
4062 // We exhausted our array of map handler pairs.
4063 __ b(miss);
4064}
4065
4066
4067void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4068 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // r4
4069 Register key = VectorStoreICDescriptor::NameRegister(); // r5
4070 Register vector = VectorStoreICDescriptor::VectorRegister(); // r6
4071 Register slot = VectorStoreICDescriptor::SlotRegister(); // r7
4072 DCHECK(VectorStoreICDescriptor::ValueRegister().is(r3)); // r3
4073 Register feedback = r8;
4074 Register receiver_map = r9;
4075 Register scratch1 = r10;
4076
4077 __ SmiToPtrArrayOffset(r0, slot);
4078 __ add(feedback, vector, r0);
4079 __ LoadP(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4080
4081 // Try to quickly handle the monomorphic case without knowing for sure
4082 // if we have a weak cell in feedback. We do know it's safe to look
4083 // at WeakCell::kValueOffset.
4084 Label try_array, load_smi_map, compare_map;
4085 Label not_array, miss;
4086 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4087 scratch1, &compare_map, &load_smi_map, &try_array);
4088
4089 __ bind(&try_array);
4090 // Is it a fixed array?
4091 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4092 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
4093 __ bne(&not_array);
4094
4095 // We have a polymorphic element handler.
4096 Label polymorphic, try_poly_name;
4097 __ bind(&polymorphic);
4098
4099 Register scratch2 = r11;
4100
4101 HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, scratch2,
4102 &miss);
4103
4104 __ bind(&not_array);
4105 // Is it generic?
4106 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4107 __ bne(&try_poly_name);
4108 Handle<Code> megamorphic_stub =
4109 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4110 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4111
4112 __ bind(&try_poly_name);
4113 // We might have a name in feedback, and a fixed array in the next slot.
4114 __ cmp(key, feedback);
4115 __ bne(&miss);
4116 // If the name comparison succeeded, we know we have a fixed array with
4117 // at least one map/handler pair.
4118 __ SmiToPtrArrayOffset(r0, slot);
4119 __ add(feedback, vector, r0);
4120 __ LoadP(feedback,
4121 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4122 HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, false,
4123 &miss);
4124
4125 __ bind(&miss);
4126 KeyedStoreIC::GenerateMiss(masm);
4127
4128 __ bind(&load_smi_map);
4129 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4130 __ b(&compare_map);
4131}
4132
4133
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004134void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4135 if (masm->isolate()->function_entry_hook() != NULL) {
4136 PredictableCodeSizeScope predictable(masm,
4137#if V8_TARGET_ARCH_PPC64
4138 14 * Assembler::kInstrSize);
4139#else
4140 11 * Assembler::kInstrSize);
4141#endif
4142 ProfileEntryHookStub stub(masm->isolate());
4143 __ mflr(r0);
4144 __ Push(r0, ip);
4145 __ CallStub(&stub);
4146 __ Pop(r0, ip);
4147 __ mtlr(r0);
4148 }
4149}
4150
4151
4152void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4153 // The entry hook is a "push lr, ip" instruction, followed by a call.
4154 const int32_t kReturnAddressDistanceFromFunctionStart =
4155 Assembler::kCallTargetAddressOffset + 3 * Assembler::kInstrSize;
4156
4157 // This should contain all kJSCallerSaved registers.
4158 const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers.
4159 r15.bit(); // Saved stack pointer.
4160
4161 // We also save lr, so the count here is one higher than the mask indicates.
4162 const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
4163
4164 // Save all caller-save registers as this may be called from anywhere.
4165 __ mflr(ip);
4166 __ MultiPush(kSavedRegs | ip.bit());
4167
4168 // Compute the function's address for the first argument.
4169 __ subi(r3, ip, Operand(kReturnAddressDistanceFromFunctionStart));
4170
4171 // The caller's return address is two slots above the saved temporaries.
4172 // Grab that for the second argument to the hook.
4173 __ addi(r4, sp, Operand((kNumSavedRegs + 1) * kPointerSize));
4174
4175 // Align the stack if necessary.
4176 int frame_alignment = masm->ActivationFrameAlignment();
4177 if (frame_alignment > kPointerSize) {
4178 __ mr(r15, sp);
4179 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4180 __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
4181 }
4182
4183#if !defined(USE_SIMULATOR)
4184 uintptr_t entry_hook =
4185 reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
Ben Murdoch097c5b22016-05-18 11:27:45 +01004186#else
4187 // Under the simulator we need to indirect the entry hook through a
4188 // trampoline function at a known address.
4189 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4190 ExternalReference entry_hook = ExternalReference(
4191 &dispatcher, ExternalReference::BUILTIN_CALL, isolate());
4192
4193 // It additionally takes an isolate as a third parameter
4194 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
4195#endif
4196
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004197 __ mov(ip, Operand(entry_hook));
4198
Ben Murdoch097c5b22016-05-18 11:27:45 +01004199 if (ABI_USES_FUNCTION_DESCRIPTORS) {
4200 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
4201 __ LoadP(ip, MemOperand(ip, 0));
4202 }
4203 // ip set above, so nothing more to do for ABI_CALL_VIA_IP.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004204
4205 // PPC LINUX ABI:
4206 __ li(r0, Operand::Zero());
4207 __ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004208
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004209 __ Call(ip);
4210
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004211 __ addi(sp, sp, Operand(kNumRequiredStackFrameSlots * kPointerSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004212
4213 // Restore the stack pointer if needed.
4214 if (frame_alignment > kPointerSize) {
4215 __ mr(sp, r15);
4216 }
4217
4218 // Also pop lr to get Ret(0).
4219 __ MultiPop(kSavedRegs | ip.bit());
4220 __ mtlr(ip);
4221 __ Ret();
4222}
4223
4224
4225template <class T>
4226static void CreateArrayDispatch(MacroAssembler* masm,
4227 AllocationSiteOverrideMode mode) {
4228 if (mode == DISABLE_ALLOCATION_SITES) {
4229 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4230 __ TailCallStub(&stub);
4231 } else if (mode == DONT_OVERRIDE) {
4232 int last_index =
4233 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4234 for (int i = 0; i <= last_index; ++i) {
4235 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4236 __ Cmpi(r6, Operand(kind), r0);
4237 T stub(masm->isolate(), kind);
4238 __ TailCallStub(&stub, eq);
4239 }
4240
4241 // If we reached this point there is a problem.
4242 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4243 } else {
4244 UNREACHABLE();
4245 }
4246}
4247
4248
4249static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4250 AllocationSiteOverrideMode mode) {
4251 // r5 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4252 // r6 - kind (if mode != DISABLE_ALLOCATION_SITES)
4253 // r3 - number of arguments
4254 // r4 - constructor?
4255 // sp[0] - last argument
4256 Label normal_sequence;
4257 if (mode == DONT_OVERRIDE) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004258 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4259 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4260 STATIC_ASSERT(FAST_ELEMENTS == 2);
4261 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4262 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4263 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004264
4265 // is the low bit set? If so, we are holey and that is good.
4266 __ andi(r0, r6, Operand(1));
4267 __ bne(&normal_sequence, cr0);
4268 }
4269
4270 // look at the first argument
4271 __ LoadP(r8, MemOperand(sp, 0));
4272 __ cmpi(r8, Operand::Zero());
4273 __ beq(&normal_sequence);
4274
4275 if (mode == DISABLE_ALLOCATION_SITES) {
4276 ElementsKind initial = GetInitialFastElementsKind();
4277 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4278
4279 ArraySingleArgumentConstructorStub stub_holey(
4280 masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
4281 __ TailCallStub(&stub_holey);
4282
4283 __ bind(&normal_sequence);
4284 ArraySingleArgumentConstructorStub stub(masm->isolate(), initial,
4285 DISABLE_ALLOCATION_SITES);
4286 __ TailCallStub(&stub);
4287 } else if (mode == DONT_OVERRIDE) {
4288 // We are going to create a holey array, but our kind is non-holey.
4289 // Fix kind and retry (only if we have an allocation site in the slot).
4290 __ addi(r6, r6, Operand(1));
4291
4292 if (FLAG_debug_code) {
4293 __ LoadP(r8, FieldMemOperand(r5, 0));
4294 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
4295 __ Assert(eq, kExpectedAllocationSite);
4296 }
4297
4298 // Save the resulting elements kind in type info. We can't just store r6
4299 // in the AllocationSite::transition_info field because elements kind is
4300 // restricted to a portion of the field...upper bits need to be left alone.
4301 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4302 __ LoadP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
4303 __ AddSmiLiteral(r7, r7, Smi::FromInt(kFastElementsKindPackedToHoley), r0);
4304 __ StoreP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset),
4305 r0);
4306
4307 __ bind(&normal_sequence);
4308 int last_index =
4309 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4310 for (int i = 0; i <= last_index; ++i) {
4311 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4312 __ mov(r0, Operand(kind));
4313 __ cmp(r6, r0);
4314 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4315 __ TailCallStub(&stub, eq);
4316 }
4317
4318 // If we reached this point there is a problem.
4319 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4320 } else {
4321 UNREACHABLE();
4322 }
4323}
4324
4325
4326template <class T>
4327static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4328 int to_index =
4329 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4330 for (int i = 0; i <= to_index; ++i) {
4331 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4332 T stub(isolate, kind);
4333 stub.GetCode();
4334 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4335 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4336 stub1.GetCode();
4337 }
4338 }
4339}
4340
4341
4342void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4343 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4344 isolate);
4345 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4346 isolate);
4347 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4348 isolate);
4349}
4350
4351
4352void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4353 Isolate* isolate) {
4354 ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS};
4355 for (int i = 0; i < 2; i++) {
4356 // For internal arrays we only need a few things
4357 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4358 stubh1.GetCode();
4359 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4360 stubh2.GetCode();
4361 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4362 stubh3.GetCode();
4363 }
4364}
4365
4366
4367void ArrayConstructorStub::GenerateDispatchToArrayStub(
4368 MacroAssembler* masm, AllocationSiteOverrideMode mode) {
4369 if (argument_count() == ANY) {
4370 Label not_zero_case, not_one_case;
4371 __ cmpi(r3, Operand::Zero());
4372 __ bne(&not_zero_case);
4373 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4374
4375 __ bind(&not_zero_case);
4376 __ cmpi(r3, Operand(1));
4377 __ bgt(&not_one_case);
4378 CreateArrayDispatchOneArgument(masm, mode);
4379
4380 __ bind(&not_one_case);
4381 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4382 } else if (argument_count() == NONE) {
4383 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4384 } else if (argument_count() == ONE) {
4385 CreateArrayDispatchOneArgument(masm, mode);
4386 } else if (argument_count() == MORE_THAN_ONE) {
4387 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4388 } else {
4389 UNREACHABLE();
4390 }
4391}
4392
4393
4394void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4395 // ----------- S t a t e -------------
4396 // -- r3 : argc (only if argument_count() == ANY)
4397 // -- r4 : constructor
4398 // -- r5 : AllocationSite or undefined
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004399 // -- r6 : new target
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004400 // -- sp[0] : return address
4401 // -- sp[4] : last argument
4402 // -----------------------------------
4403
4404 if (FLAG_debug_code) {
4405 // The array construct code is only set for the global and natives
4406 // builtin Array functions which always have maps.
4407
4408 // Initial map for the builtin Array function should be a map.
4409 __ LoadP(r7, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
4410 // Will both indicate a NULL and a Smi.
4411 __ TestIfSmi(r7, r0);
4412 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
4413 __ CompareObjectType(r7, r7, r8, MAP_TYPE);
4414 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4415
4416 // We should either have undefined in r5 or a valid AllocationSite
4417 __ AssertUndefinedOrAllocationSite(r5, r7);
4418 }
4419
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004420 // Enter the context of the Array function.
4421 __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
4422
4423 Label subclassing;
4424 __ cmp(r6, r4);
4425 __ bne(&subclassing);
4426
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004427 Label no_info;
4428 // Get the elements kind and case on that.
4429 __ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
4430 __ beq(&no_info);
4431
4432 __ LoadP(r6, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
4433 __ SmiUntag(r6);
4434 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4435 __ And(r6, r6, Operand(AllocationSite::ElementsKindBits::kMask));
4436 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4437
4438 __ bind(&no_info);
4439 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004440
4441 __ bind(&subclassing);
4442 switch (argument_count()) {
4443 case ANY:
4444 case MORE_THAN_ONE:
4445 __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2));
4446 __ StorePX(r4, MemOperand(sp, r0));
4447 __ addi(r3, r3, Operand(3));
4448 break;
4449 case NONE:
4450 __ StoreP(r4, MemOperand(sp, 0 * kPointerSize));
4451 __ li(r3, Operand(3));
4452 break;
4453 case ONE:
4454 __ StoreP(r4, MemOperand(sp, 1 * kPointerSize));
4455 __ li(r3, Operand(4));
4456 break;
4457 }
4458
4459 __ Push(r6, r5);
4460 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004461}
4462
4463
4464void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
4465 ElementsKind kind) {
4466 __ cmpli(r3, Operand(1));
4467
4468 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4469 __ TailCallStub(&stub0, lt);
4470
4471 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4472 __ TailCallStub(&stubN, gt);
4473
4474 if (IsFastPackedElementsKind(kind)) {
4475 // We might need to create a holey array
4476 // look at the first argument
4477 __ LoadP(r6, MemOperand(sp, 0));
4478 __ cmpi(r6, Operand::Zero());
4479
4480 InternalArraySingleArgumentConstructorStub stub1_holey(
4481 isolate(), GetHoleyElementsKind(kind));
4482 __ TailCallStub(&stub1_holey, ne);
4483 }
4484
4485 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4486 __ TailCallStub(&stub1);
4487}
4488
4489
4490void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4491 // ----------- S t a t e -------------
4492 // -- r3 : argc
4493 // -- r4 : constructor
4494 // -- sp[0] : return address
4495 // -- sp[4] : last argument
4496 // -----------------------------------
4497
4498 if (FLAG_debug_code) {
4499 // The array construct code is only set for the global and natives
4500 // builtin Array functions which always have maps.
4501
4502 // Initial map for the builtin Array function should be a map.
4503 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
4504 // Will both indicate a NULL and a Smi.
4505 __ TestIfSmi(r6, r0);
4506 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
4507 __ CompareObjectType(r6, r6, r7, MAP_TYPE);
4508 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4509 }
4510
4511 // Figure out the right elements kind
4512 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
4513 // Load the map's "bit field 2" into |result|.
4514 __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset));
4515 // Retrieve elements_kind from bit field 2.
4516 __ DecodeField<Map::ElementsKindBits>(r6);
4517
4518 if (FLAG_debug_code) {
4519 Label done;
4520 __ cmpi(r6, Operand(FAST_ELEMENTS));
4521 __ beq(&done);
4522 __ cmpi(r6, Operand(FAST_HOLEY_ELEMENTS));
4523 __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4524 __ bind(&done);
4525 }
4526
4527 Label fast_elements_case;
4528 __ cmpi(r6, Operand(FAST_ELEMENTS));
4529 __ beq(&fast_elements_case);
4530 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4531
4532 __ bind(&fast_elements_case);
4533 GenerateCase(masm, FAST_ELEMENTS);
4534}
4535
Ben Murdoch097c5b22016-05-18 11:27:45 +01004536void FastNewObjectStub::Generate(MacroAssembler* masm) {
4537 // ----------- S t a t e -------------
4538 // -- r4 : target
4539 // -- r6 : new target
4540 // -- cp : context
4541 // -- lr : return address
4542 // -----------------------------------
4543 __ AssertFunction(r4);
4544 __ AssertReceiver(r6);
4545
4546 // Verify that the new target is a JSFunction.
4547 Label new_object;
4548 __ CompareObjectType(r6, r5, r5, JS_FUNCTION_TYPE);
4549 __ bne(&new_object);
4550
4551 // Load the initial map and verify that it's in fact a map.
4552 __ LoadP(r5, FieldMemOperand(r6, JSFunction::kPrototypeOrInitialMapOffset));
4553 __ JumpIfSmi(r5, &new_object);
4554 __ CompareObjectType(r5, r3, r3, MAP_TYPE);
4555 __ bne(&new_object);
4556
4557 // Fall back to runtime if the target differs from the new target's
4558 // initial map constructor.
4559 __ LoadP(r3, FieldMemOperand(r5, Map::kConstructorOrBackPointerOffset));
4560 __ cmp(r3, r4);
4561 __ bne(&new_object);
4562
4563 // Allocate the JSObject on the heap.
4564 Label allocate, done_allocate;
4565 __ lbz(r7, FieldMemOperand(r5, Map::kInstanceSizeOffset));
4566 __ Allocate(r7, r3, r8, r9, &allocate, SIZE_IN_WORDS);
4567 __ bind(&done_allocate);
4568
4569 // Initialize the JSObject fields.
Ben Murdochc5610432016-08-08 18:44:38 +01004570 __ StoreP(r5, FieldMemOperand(r3, JSObject::kMapOffset), r0);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004571 __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
Ben Murdochc5610432016-08-08 18:44:38 +01004572 __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
4573 __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004574 STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
Ben Murdochc5610432016-08-08 18:44:38 +01004575 __ addi(r4, r3, Operand(JSObject::kHeaderSize - kHeapObjectTag));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004576
4577 // ----------- S t a t e -------------
Ben Murdochc5610432016-08-08 18:44:38 +01004578 // -- r3 : result (tagged)
Ben Murdoch097c5b22016-05-18 11:27:45 +01004579 // -- r4 : result fields (untagged)
4580 // -- r8 : result end (untagged)
4581 // -- r5 : initial map
4582 // -- cp : context
4583 // -- lr : return address
4584 // -----------------------------------
4585
4586 // Perform in-object slack tracking if requested.
4587 Label slack_tracking;
4588 STATIC_ASSERT(Map::kNoSlackTracking == 0);
4589 __ LoadRoot(r9, Heap::kUndefinedValueRootIndex);
4590 __ lwz(r6, FieldMemOperand(r5, Map::kBitField3Offset));
4591 __ DecodeField<Map::ConstructionCounter>(r10, r6, SetRC);
4592 __ bne(&slack_tracking, cr0);
4593 {
4594 // Initialize all in-object fields with undefined.
4595 __ InitializeFieldsWithFiller(r4, r8, r9);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004596 __ Ret();
4597 }
4598 __ bind(&slack_tracking);
4599 {
4600 // Decrease generous allocation count.
4601 STATIC_ASSERT(Map::ConstructionCounter::kNext == 32);
4602 __ Add(r6, r6, -(1 << Map::ConstructionCounter::kShift), r0);
4603 __ stw(r6, FieldMemOperand(r5, Map::kBitField3Offset));
4604
4605 // Initialize the in-object fields with undefined.
4606 __ lbz(r7, FieldMemOperand(r5, Map::kUnusedPropertyFieldsOffset));
4607 __ ShiftLeftImm(r7, r7, Operand(kPointerSizeLog2));
4608 __ sub(r7, r8, r7);
4609 __ InitializeFieldsWithFiller(r4, r7, r9);
4610
4611 // Initialize the remaining (reserved) fields with one pointer filler map.
4612 __ LoadRoot(r9, Heap::kOnePointerFillerMapRootIndex);
4613 __ InitializeFieldsWithFiller(r4, r8, r9);
4614
Ben Murdoch097c5b22016-05-18 11:27:45 +01004615 // Check if we can finalize the instance size.
4616 __ cmpi(r10, Operand(Map::kSlackTrackingCounterEnd));
4617 __ Ret(ne);
4618
4619 // Finalize the instance size.
4620 {
4621 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4622 __ Push(r3, r5);
4623 __ CallRuntime(Runtime::kFinalizeInstanceSize);
4624 __ Pop(r3);
4625 }
4626 __ Ret();
4627 }
4628
4629 // Fall back to %AllocateInNewSpace.
4630 __ bind(&allocate);
4631 {
4632 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4633 STATIC_ASSERT(kSmiTag == 0);
4634 __ ShiftLeftImm(r7, r7,
4635 Operand(kPointerSizeLog2 + kSmiTagSize + kSmiShiftSize));
4636 __ Push(r5, r7);
4637 __ CallRuntime(Runtime::kAllocateInNewSpace);
4638 __ Pop(r5);
4639 }
Ben Murdoch097c5b22016-05-18 11:27:45 +01004640 __ lbz(r8, FieldMemOperand(r5, Map::kInstanceSizeOffset));
4641 __ ShiftLeftImm(r8, r8, Operand(kPointerSizeLog2));
4642 __ add(r8, r3, r8);
Ben Murdochc5610432016-08-08 18:44:38 +01004643 __ subi(r8, r8, Operand(kHeapObjectTag));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004644 __ b(&done_allocate);
4645
4646 // Fall back to %NewObject.
4647 __ bind(&new_object);
4648 __ Push(r4, r6);
4649 __ TailCallRuntime(Runtime::kNewObject);
4650}
4651
4652void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
4653 // ----------- S t a t e -------------
4654 // -- r4 : function
4655 // -- cp : context
4656 // -- fp : frame pointer
4657 // -- lr : return address
4658 // -----------------------------------
4659 __ AssertFunction(r4);
4660
Ben Murdochc5610432016-08-08 18:44:38 +01004661 // Make r5 point to the JavaScript frame.
4662 __ mr(r5, fp);
4663 if (skip_stub_frame()) {
4664 // For Ignition we need to skip the handler/stub frame to reach the
4665 // JavaScript frame for the function.
Ben Murdoch097c5b22016-05-18 11:27:45 +01004666 __ LoadP(r5, MemOperand(r5, StandardFrameConstants::kCallerFPOffset));
Ben Murdochc5610432016-08-08 18:44:38 +01004667 }
4668 if (FLAG_debug_code) {
4669 Label ok;
Ben Murdochda12d292016-06-02 14:46:10 +01004670 __ LoadP(ip, MemOperand(r5, StandardFrameConstants::kFunctionOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004671 __ cmp(ip, r4);
Ben Murdochc5610432016-08-08 18:44:38 +01004672 __ beq(&ok);
4673 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
4674 __ bind(&ok);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004675 }
4676
4677 // Check if we have rest parameters (only possible if we have an
4678 // arguments adaptor frame below the function frame).
4679 Label no_rest_parameters;
4680 __ LoadP(r5, MemOperand(r5, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01004681 __ LoadP(ip, MemOperand(r5, CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004682 __ CmpSmiLiteral(ip, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
4683 __ bne(&no_rest_parameters);
4684
4685 // Check if the arguments adaptor frame contains more arguments than
4686 // specified by the function's internal formal parameter count.
4687 Label rest_parameters;
4688 __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
4689 __ LoadP(r4, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
4690 __ LoadWordArith(
4691 r4, FieldMemOperand(r4, SharedFunctionInfo::kFormalParameterCountOffset));
4692#if V8_TARGET_ARCH_PPC64
4693 __ SmiTag(r4);
4694#endif
4695 __ sub(r3, r3, r4, LeaveOE, SetRC);
4696 __ bgt(&rest_parameters, cr0);
4697
4698 // Return an empty rest parameter array.
4699 __ bind(&no_rest_parameters);
4700 {
4701 // ----------- S t a t e -------------
4702 // -- cp : context
4703 // -- lr : return address
4704 // -----------------------------------
4705
4706 // Allocate an empty rest parameter array.
4707 Label allocate, done_allocate;
Ben Murdochc5610432016-08-08 18:44:38 +01004708 __ Allocate(JSArray::kSize, r3, r4, r5, &allocate, NO_ALLOCATION_FLAGS);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004709 __ bind(&done_allocate);
4710
4711 // Setup the rest parameter array in r0.
4712 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, r4);
4713 __ StoreP(r4, FieldMemOperand(r3, JSArray::kMapOffset), r0);
4714 __ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex);
4715 __ StoreP(r4, FieldMemOperand(r3, JSArray::kPropertiesOffset), r0);
4716 __ StoreP(r4, FieldMemOperand(r3, JSArray::kElementsOffset), r0);
4717 __ li(r4, Operand::Zero());
4718 __ StoreP(r4, FieldMemOperand(r3, JSArray::kLengthOffset), r0);
4719 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
4720 __ Ret();
4721
4722 // Fall back to %AllocateInNewSpace.
4723 __ bind(&allocate);
4724 {
4725 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4726 __ Push(Smi::FromInt(JSArray::kSize));
4727 __ CallRuntime(Runtime::kAllocateInNewSpace);
4728 }
4729 __ b(&done_allocate);
4730 }
4731
4732 __ bind(&rest_parameters);
4733 {
4734 // Compute the pointer to the first rest parameter (skippping the receiver).
4735 __ SmiToPtrArrayOffset(r9, r3);
4736 __ add(r5, r5, r9);
4737 __ addi(r5, r5, Operand(StandardFrameConstants::kCallerSPOffset));
4738
4739 // ----------- S t a t e -------------
4740 // -- cp : context
4741 // -- r3 : number of rest parameters (tagged)
4742 // -- r5 : pointer just past first rest parameters
4743 // -- r9 : size of rest parameters
4744 // -- lr : return address
4745 // -----------------------------------
4746
4747 // Allocate space for the rest parameter array plus the backing store.
4748 Label allocate, done_allocate;
4749 __ mov(r4, Operand(JSArray::kSize + FixedArray::kHeaderSize));
4750 __ add(r4, r4, r9);
Ben Murdochc5610432016-08-08 18:44:38 +01004751 __ Allocate(r4, r6, r7, r8, &allocate, NO_ALLOCATION_FLAGS);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004752 __ bind(&done_allocate);
4753
4754 // Setup the elements array in r6.
4755 __ LoadRoot(r4, Heap::kFixedArrayMapRootIndex);
4756 __ StoreP(r4, FieldMemOperand(r6, FixedArray::kMapOffset), r0);
4757 __ StoreP(r3, FieldMemOperand(r6, FixedArray::kLengthOffset), r0);
4758 __ addi(r7, r6,
4759 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
4760 {
4761 Label loop;
4762 __ SmiUntag(r0, r3);
4763 __ mtctr(r0);
4764 __ bind(&loop);
4765 __ LoadPU(ip, MemOperand(r5, -kPointerSize));
4766 __ StorePU(ip, MemOperand(r7, kPointerSize));
4767 __ bdnz(&loop);
4768 __ addi(r7, r7, Operand(kPointerSize));
4769 }
4770
4771 // Setup the rest parameter array in r7.
4772 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, r4);
4773 __ StoreP(r4, MemOperand(r7, JSArray::kMapOffset));
4774 __ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex);
4775 __ StoreP(r4, MemOperand(r7, JSArray::kPropertiesOffset));
4776 __ StoreP(r6, MemOperand(r7, JSArray::kElementsOffset));
4777 __ StoreP(r3, MemOperand(r7, JSArray::kLengthOffset));
4778 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
4779 __ addi(r3, r7, Operand(kHeapObjectTag));
4780 __ Ret();
4781
4782 // Fall back to %AllocateInNewSpace.
4783 __ bind(&allocate);
4784 {
4785 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4786 __ SmiTag(r4);
4787 __ Push(r3, r5, r4);
4788 __ CallRuntime(Runtime::kAllocateInNewSpace);
4789 __ mr(r6, r3);
4790 __ Pop(r3, r5);
4791 }
4792 __ b(&done_allocate);
4793 }
4794}
4795
4796void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
4797 // ----------- S t a t e -------------
4798 // -- r4 : function
4799 // -- cp : context
4800 // -- fp : frame pointer
4801 // -- lr : return address
4802 // -----------------------------------
4803 __ AssertFunction(r4);
4804
Ben Murdochc5610432016-08-08 18:44:38 +01004805 // Make r10 point to the JavaScript frame.
4806 __ mr(r10, fp);
4807 if (skip_stub_frame()) {
4808 // For Ignition we need to skip the handler/stub frame to reach the
4809 // JavaScript frame for the function.
4810 __ LoadP(r10, MemOperand(r10, StandardFrameConstants::kCallerFPOffset));
4811 }
4812 if (FLAG_debug_code) {
4813 Label ok;
4814 __ LoadP(ip, MemOperand(r10, StandardFrameConstants::kFunctionOffset));
4815 __ cmp(ip, r4);
4816 __ beq(&ok);
4817 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
4818 __ bind(&ok);
4819 }
4820
4821
Ben Murdoch097c5b22016-05-18 11:27:45 +01004822 // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
4823 __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
4824 __ LoadWordArith(
4825 r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset));
4826#if V8_TARGET_ARCH_PPC64
4827 __ SmiTag(r5);
4828#endif
4829 __ SmiToPtrArrayOffset(r6, r5);
Ben Murdochc5610432016-08-08 18:44:38 +01004830 __ add(r6, r10, r6);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004831 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
4832
4833 // r4 : function
4834 // r5 : number of parameters (tagged)
4835 // r6 : parameters pointer
Ben Murdochc5610432016-08-08 18:44:38 +01004836 // r10 : JavaScript frame pointer
Ben Murdoch097c5b22016-05-18 11:27:45 +01004837 // Registers used over whole function:
4838 // r8 : arguments count (tagged)
4839 // r9 : mapped parameter count (tagged)
4840
4841 // Check if the calling frame is an arguments adaptor frame.
4842 Label adaptor_frame, try_allocate, runtime;
Ben Murdochc5610432016-08-08 18:44:38 +01004843 __ LoadP(r7, MemOperand(r10, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01004844 __ LoadP(r3, MemOperand(r7, CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004845 __ CmpSmiLiteral(r3, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
4846 __ beq(&adaptor_frame);
4847
4848 // No adaptor, parameter count = argument count.
4849 __ mr(r8, r5);
4850 __ mr(r9, r5);
4851 __ b(&try_allocate);
4852
4853 // We have an adaptor frame. Patch the parameters pointer.
4854 __ bind(&adaptor_frame);
4855 __ LoadP(r8, MemOperand(r7, ArgumentsAdaptorFrameConstants::kLengthOffset));
4856 __ SmiToPtrArrayOffset(r6, r8);
4857 __ add(r6, r6, r7);
4858 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
4859
4860 // r8 = argument count (tagged)
4861 // r9 = parameter count (tagged)
4862 // Compute the mapped parameter count = min(r5, r8) in r9.
4863 __ cmp(r5, r8);
4864 if (CpuFeatures::IsSupported(ISELECT)) {
4865 __ isel(lt, r9, r5, r8);
4866 } else {
4867 Label skip;
4868 __ mr(r9, r5);
4869 __ blt(&skip);
4870 __ mr(r9, r8);
4871 __ bind(&skip);
4872 }
4873
4874 __ bind(&try_allocate);
4875
4876 // Compute the sizes of backing store, parameter map, and arguments object.
4877 // 1. Parameter map, has 2 extra words containing context and backing store.
4878 const int kParameterMapHeaderSize =
4879 FixedArray::kHeaderSize + 2 * kPointerSize;
4880 // If there are no mapped parameters, we do not need the parameter_map.
4881 __ CmpSmiLiteral(r9, Smi::FromInt(0), r0);
4882 if (CpuFeatures::IsSupported(ISELECT)) {
4883 __ SmiToPtrArrayOffset(r11, r9);
4884 __ addi(r11, r11, Operand(kParameterMapHeaderSize));
4885 __ isel(eq, r11, r0, r11);
4886 } else {
4887 Label skip2, skip3;
4888 __ bne(&skip2);
4889 __ li(r11, Operand::Zero());
4890 __ b(&skip3);
4891 __ bind(&skip2);
4892 __ SmiToPtrArrayOffset(r11, r9);
4893 __ addi(r11, r11, Operand(kParameterMapHeaderSize));
4894 __ bind(&skip3);
4895 }
4896
4897 // 2. Backing store.
4898 __ SmiToPtrArrayOffset(r7, r8);
4899 __ add(r11, r11, r7);
4900 __ addi(r11, r11, Operand(FixedArray::kHeaderSize));
4901
4902 // 3. Arguments object.
4903 __ addi(r11, r11, Operand(JSSloppyArgumentsObject::kSize));
4904
4905 // Do the allocation of all three objects in one go.
Ben Murdochc5610432016-08-08 18:44:38 +01004906 __ Allocate(r11, r3, r11, r7, &runtime, NO_ALLOCATION_FLAGS);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004907
4908 // r3 = address of new object(s) (tagged)
4909 // r5 = argument count (smi-tagged)
4910 // Get the arguments boilerplate from the current native context into r4.
4911 const int kNormalOffset =
4912 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
4913 const int kAliasedOffset =
4914 Context::SlotOffset(Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
4915
4916 __ LoadP(r7, NativeContextMemOperand());
4917 __ cmpi(r9, Operand::Zero());
4918 if (CpuFeatures::IsSupported(ISELECT)) {
4919 __ LoadP(r11, MemOperand(r7, kNormalOffset));
4920 __ LoadP(r7, MemOperand(r7, kAliasedOffset));
4921 __ isel(eq, r7, r11, r7);
4922 } else {
4923 Label skip4, skip5;
4924 __ bne(&skip4);
4925 __ LoadP(r7, MemOperand(r7, kNormalOffset));
4926 __ b(&skip5);
4927 __ bind(&skip4);
4928 __ LoadP(r7, MemOperand(r7, kAliasedOffset));
4929 __ bind(&skip5);
4930 }
4931
4932 // r3 = address of new object (tagged)
4933 // r5 = argument count (smi-tagged)
4934 // r7 = address of arguments map (tagged)
4935 // r9 = mapped parameter count (tagged)
4936 __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0);
4937 __ LoadRoot(r11, Heap::kEmptyFixedArrayRootIndex);
4938 __ StoreP(r11, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
4939 __ StoreP(r11, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
4940
4941 // Set up the callee in-object property.
4942 __ AssertNotSmi(r4);
4943 __ StoreP(r4, FieldMemOperand(r3, JSSloppyArgumentsObject::kCalleeOffset),
4944 r0);
4945
4946 // Use the length (smi tagged) and set that as an in-object property too.
4947 __ AssertSmi(r8);
4948 __ StoreP(r8, FieldMemOperand(r3, JSSloppyArgumentsObject::kLengthOffset),
4949 r0);
4950
4951 // Set up the elements pointer in the allocated arguments object.
4952 // If we allocated a parameter map, r7 will point there, otherwise
4953 // it will point to the backing store.
4954 __ addi(r7, r3, Operand(JSSloppyArgumentsObject::kSize));
4955 __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
4956
4957 // r3 = address of new object (tagged)
4958 // r5 = argument count (tagged)
4959 // r7 = address of parameter map or backing store (tagged)
4960 // r9 = mapped parameter count (tagged)
4961 // Initialize parameter map. If there are no mapped arguments, we're done.
4962 Label skip_parameter_map;
4963 __ CmpSmiLiteral(r9, Smi::FromInt(0), r0);
4964 if (CpuFeatures::IsSupported(ISELECT)) {
4965 __ isel(eq, r4, r7, r4);
4966 __ beq(&skip_parameter_map);
4967 } else {
4968 Label skip6;
4969 __ bne(&skip6);
4970 // Move backing store address to r4, because it is
4971 // expected there when filling in the unmapped arguments.
4972 __ mr(r4, r7);
4973 __ b(&skip_parameter_map);
4974 __ bind(&skip6);
4975 }
4976
4977 __ LoadRoot(r8, Heap::kSloppyArgumentsElementsMapRootIndex);
4978 __ StoreP(r8, FieldMemOperand(r7, FixedArray::kMapOffset), r0);
4979 __ AddSmiLiteral(r8, r9, Smi::FromInt(2), r0);
4980 __ StoreP(r8, FieldMemOperand(r7, FixedArray::kLengthOffset), r0);
4981 __ StoreP(cp, FieldMemOperand(r7, FixedArray::kHeaderSize + 0 * kPointerSize),
4982 r0);
4983 __ SmiToPtrArrayOffset(r8, r9);
4984 __ add(r8, r8, r7);
4985 __ addi(r8, r8, Operand(kParameterMapHeaderSize));
4986 __ StoreP(r8, FieldMemOperand(r7, FixedArray::kHeaderSize + 1 * kPointerSize),
4987 r0);
4988
4989 // Copy the parameter slots and the holes in the arguments.
4990 // We need to fill in mapped_parameter_count slots. They index the context,
4991 // where parameters are stored in reverse order, at
4992 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
4993 // The mapped parameter thus need to get indices
4994 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
4995 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
4996 // We loop from right to left.
4997 Label parameters_loop;
4998 __ mr(r8, r9);
4999 __ AddSmiLiteral(r11, r5, Smi::FromInt(Context::MIN_CONTEXT_SLOTS), r0);
5000 __ sub(r11, r11, r9);
5001 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
5002 __ SmiToPtrArrayOffset(r4, r8);
5003 __ add(r4, r4, r7);
5004 __ addi(r4, r4, Operand(kParameterMapHeaderSize));
5005
5006 // r4 = address of backing store (tagged)
5007 // r7 = address of parameter map (tagged)
5008 // r8 = temporary scratch (a.o., for address calculation)
5009 // r10 = temporary scratch (a.o., for address calculation)
5010 // ip = the hole value
5011 __ SmiUntag(r8);
5012 __ mtctr(r8);
5013 __ ShiftLeftImm(r8, r8, Operand(kPointerSizeLog2));
5014 __ add(r10, r4, r8);
5015 __ add(r8, r7, r8);
5016 __ addi(r10, r10, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
5017 __ addi(r8, r8, Operand(kParameterMapHeaderSize - kHeapObjectTag));
5018
5019 __ bind(&parameters_loop);
5020 __ StorePU(r11, MemOperand(r8, -kPointerSize));
5021 __ StorePU(ip, MemOperand(r10, -kPointerSize));
5022 __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0);
5023 __ bdnz(&parameters_loop);
5024
5025 // Restore r8 = argument count (tagged).
5026 __ LoadP(r8, FieldMemOperand(r3, JSSloppyArgumentsObject::kLengthOffset));
5027
5028 __ bind(&skip_parameter_map);
5029 // r3 = address of new object (tagged)
5030 // r4 = address of backing store (tagged)
5031 // r8 = argument count (tagged)
5032 // r9 = mapped parameter count (tagged)
5033 // r11 = scratch
5034 // Copy arguments header and remaining slots (if there are any).
5035 __ LoadRoot(r11, Heap::kFixedArrayMapRootIndex);
5036 __ StoreP(r11, FieldMemOperand(r4, FixedArray::kMapOffset), r0);
5037 __ StoreP(r8, FieldMemOperand(r4, FixedArray::kLengthOffset), r0);
5038 __ sub(r11, r8, r9, LeaveOE, SetRC);
5039 __ Ret(eq, cr0);
5040
5041 Label arguments_loop;
5042 __ SmiUntag(r11);
5043 __ mtctr(r11);
5044
5045 __ SmiToPtrArrayOffset(r0, r9);
5046 __ sub(r6, r6, r0);
5047 __ add(r11, r4, r0);
5048 __ addi(r11, r11,
5049 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
5050
5051 __ bind(&arguments_loop);
5052 __ LoadPU(r7, MemOperand(r6, -kPointerSize));
5053 __ StorePU(r7, MemOperand(r11, kPointerSize));
5054 __ bdnz(&arguments_loop);
5055
5056 // Return.
5057 __ Ret();
5058
5059 // Do the runtime call to allocate the arguments object.
5060 // r8 = argument count (tagged)
5061 __ bind(&runtime);
5062 __ Push(r4, r6, r8);
5063 __ TailCallRuntime(Runtime::kNewSloppyArguments);
5064}
5065
5066void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
5067 // ----------- S t a t e -------------
5068 // -- r4 : function
5069 // -- cp : context
5070 // -- fp : frame pointer
5071 // -- lr : return address
5072 // -----------------------------------
5073 __ AssertFunction(r4);
5074
Ben Murdochc5610432016-08-08 18:44:38 +01005075 // Make r5 point to the JavaScript frame.
5076 __ mr(r5, fp);
5077 if (skip_stub_frame()) {
5078 // For Ignition we need to skip the handler/stub frame to reach the
5079 // JavaScript frame for the function.
Ben Murdoch097c5b22016-05-18 11:27:45 +01005080 __ LoadP(r5, MemOperand(r5, StandardFrameConstants::kCallerFPOffset));
Ben Murdochc5610432016-08-08 18:44:38 +01005081 }
5082 if (FLAG_debug_code) {
5083 Label ok;
Ben Murdochda12d292016-06-02 14:46:10 +01005084 __ LoadP(ip, MemOperand(r5, StandardFrameConstants::kFunctionOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005085 __ cmp(ip, r4);
Ben Murdochc5610432016-08-08 18:44:38 +01005086 __ b(&ok);
5087 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
5088 __ bind(&ok);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005089 }
5090
5091 // Check if we have an arguments adaptor frame below the function frame.
5092 Label arguments_adaptor, arguments_done;
5093 __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01005094 __ LoadP(ip, MemOperand(r6, CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005095 __ CmpSmiLiteral(ip, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
5096 __ beq(&arguments_adaptor);
5097 {
5098 __ LoadP(r4, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
5099 __ LoadWordArith(
5100 r3,
5101 FieldMemOperand(r4, SharedFunctionInfo::kFormalParameterCountOffset));
5102#if V8_TARGET_ARCH_PPC64
5103 __ SmiTag(r3);
5104#endif
5105 __ SmiToPtrArrayOffset(r9, r3);
5106 __ add(r5, r5, r9);
5107 }
5108 __ b(&arguments_done);
5109 __ bind(&arguments_adaptor);
5110 {
5111 __ LoadP(r3, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
5112 __ SmiToPtrArrayOffset(r9, r3);
5113 __ add(r5, r6, r9);
5114 }
5115 __ bind(&arguments_done);
5116 __ addi(r5, r5, Operand(StandardFrameConstants::kCallerSPOffset));
5117
5118 // ----------- S t a t e -------------
5119 // -- cp : context
5120 // -- r3 : number of rest parameters (tagged)
5121 // -- r5 : pointer just past first rest parameters
5122 // -- r9 : size of rest parameters
5123 // -- lr : return address
5124 // -----------------------------------
5125
5126 // Allocate space for the strict arguments object plus the backing store.
5127 Label allocate, done_allocate;
5128 __ mov(r4, Operand(JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize));
5129 __ add(r4, r4, r9);
Ben Murdochc5610432016-08-08 18:44:38 +01005130 __ Allocate(r4, r6, r7, r8, &allocate, NO_ALLOCATION_FLAGS);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005131 __ bind(&done_allocate);
5132
5133 // Setup the elements array in r6.
5134 __ LoadRoot(r4, Heap::kFixedArrayMapRootIndex);
5135 __ StoreP(r4, FieldMemOperand(r6, FixedArray::kMapOffset), r0);
5136 __ StoreP(r3, FieldMemOperand(r6, FixedArray::kLengthOffset), r0);
5137 __ addi(r7, r6,
5138 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
5139 {
5140 Label loop, done_loop;
5141 __ SmiUntag(r0, r3, SetRC);
5142 __ beq(&done_loop, cr0);
5143 __ mtctr(r0);
5144 __ bind(&loop);
5145 __ LoadPU(ip, MemOperand(r5, -kPointerSize));
5146 __ StorePU(ip, MemOperand(r7, kPointerSize));
5147 __ bdnz(&loop);
5148 __ bind(&done_loop);
5149 __ addi(r7, r7, Operand(kPointerSize));
5150 }
5151
5152 // Setup the rest parameter array in r7.
5153 __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, r4);
5154 __ StoreP(r4, MemOperand(r7, JSStrictArgumentsObject::kMapOffset));
5155 __ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex);
5156 __ StoreP(r4, MemOperand(r7, JSStrictArgumentsObject::kPropertiesOffset));
5157 __ StoreP(r6, MemOperand(r7, JSStrictArgumentsObject::kElementsOffset));
5158 __ StoreP(r3, MemOperand(r7, JSStrictArgumentsObject::kLengthOffset));
5159 STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
5160 __ addi(r3, r7, Operand(kHeapObjectTag));
5161 __ Ret();
5162
5163 // Fall back to %AllocateInNewSpace.
5164 __ bind(&allocate);
5165 {
5166 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
5167 __ SmiTag(r4);
5168 __ Push(r3, r5, r4);
5169 __ CallRuntime(Runtime::kAllocateInNewSpace);
5170 __ mr(r6, r3);
5171 __ Pop(r3, r5);
5172 }
5173 __ b(&done_allocate);
5174}
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005175
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005176void LoadGlobalViaContextStub::Generate(MacroAssembler* masm) {
5177 Register context = cp;
5178 Register result = r3;
5179 Register slot = r5;
5180
5181 // Go up the context chain to the script context.
5182 for (int i = 0; i < depth(); ++i) {
5183 __ LoadP(result, ContextMemOperand(context, Context::PREVIOUS_INDEX));
5184 context = result;
5185 }
5186
5187 // Load the PropertyCell value at the specified slot.
5188 __ ShiftLeftImm(r0, slot, Operand(kPointerSizeLog2));
5189 __ add(result, context, r0);
5190 __ LoadP(result, ContextMemOperand(result));
5191 __ LoadP(result, FieldMemOperand(result, PropertyCell::kValueOffset));
5192
5193 // If the result is not the_hole, return. Otherwise, handle in the runtime.
5194 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
5195 __ Ret(ne);
5196
5197 // Fallback to runtime.
5198 __ SmiTag(slot);
5199 __ Push(slot);
5200 __ TailCallRuntime(Runtime::kLoadGlobalViaContext);
5201}
5202
5203
5204void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
5205 Register value = r3;
5206 Register slot = r5;
5207
5208 Register cell = r4;
5209 Register cell_details = r6;
5210 Register cell_value = r7;
5211 Register cell_value_map = r8;
5212 Register scratch = r9;
5213
5214 Register context = cp;
5215 Register context_temp = cell;
5216
5217 Label fast_heapobject_case, fast_smi_case, slow_case;
5218
5219 if (FLAG_debug_code) {
5220 __ CompareRoot(value, Heap::kTheHoleValueRootIndex);
5221 __ Check(ne, kUnexpectedValue);
5222 }
5223
5224 // Go up the context chain to the script context.
5225 for (int i = 0; i < depth(); i++) {
5226 __ LoadP(context_temp, ContextMemOperand(context, Context::PREVIOUS_INDEX));
5227 context = context_temp;
5228 }
5229
5230 // Load the PropertyCell at the specified slot.
5231 __ ShiftLeftImm(r0, slot, Operand(kPointerSizeLog2));
5232 __ add(cell, context, r0);
5233 __ LoadP(cell, ContextMemOperand(cell));
5234
5235 // Load PropertyDetails for the cell (actually only the cell_type and kind).
5236 __ LoadP(cell_details, FieldMemOperand(cell, PropertyCell::kDetailsOffset));
5237 __ SmiUntag(cell_details);
5238 __ andi(cell_details, cell_details,
5239 Operand(PropertyDetails::PropertyCellTypeField::kMask |
5240 PropertyDetails::KindField::kMask |
5241 PropertyDetails::kAttributesReadOnlyMask));
5242
5243 // Check if PropertyCell holds mutable data.
5244 Label not_mutable_data;
5245 __ cmpi(cell_details, Operand(PropertyDetails::PropertyCellTypeField::encode(
5246 PropertyCellType::kMutable) |
5247 PropertyDetails::KindField::encode(kData)));
5248 __ bne(&not_mutable_data);
5249 __ JumpIfSmi(value, &fast_smi_case);
5250
5251 __ bind(&fast_heapobject_case);
5252 __ StoreP(value, FieldMemOperand(cell, PropertyCell::kValueOffset), r0);
5253 // RecordWriteField clobbers the value register, so we copy it before the
5254 // call.
5255 __ mr(r6, value);
5256 __ RecordWriteField(cell, PropertyCell::kValueOffset, r6, scratch,
5257 kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
5258 OMIT_SMI_CHECK);
5259 __ Ret();
5260
5261 __ bind(&not_mutable_data);
5262 // Check if PropertyCell value matches the new value (relevant for Constant,
5263 // ConstantType and Undefined cells).
5264 Label not_same_value;
5265 __ LoadP(cell_value, FieldMemOperand(cell, PropertyCell::kValueOffset));
5266 __ cmp(cell_value, value);
5267 __ bne(&not_same_value);
5268
5269 // Make sure the PropertyCell is not marked READ_ONLY.
5270 __ andi(r0, cell_details, Operand(PropertyDetails::kAttributesReadOnlyMask));
5271 __ bne(&slow_case, cr0);
5272
5273 if (FLAG_debug_code) {
5274 Label done;
5275 // This can only be true for Constant, ConstantType and Undefined cells,
5276 // because we never store the_hole via this stub.
5277 __ cmpi(cell_details,
5278 Operand(PropertyDetails::PropertyCellTypeField::encode(
5279 PropertyCellType::kConstant) |
5280 PropertyDetails::KindField::encode(kData)));
5281 __ beq(&done);
5282 __ cmpi(cell_details,
5283 Operand(PropertyDetails::PropertyCellTypeField::encode(
5284 PropertyCellType::kConstantType) |
5285 PropertyDetails::KindField::encode(kData)));
5286 __ beq(&done);
5287 __ cmpi(cell_details,
5288 Operand(PropertyDetails::PropertyCellTypeField::encode(
5289 PropertyCellType::kUndefined) |
5290 PropertyDetails::KindField::encode(kData)));
5291 __ Check(eq, kUnexpectedValue);
5292 __ bind(&done);
5293 }
5294 __ Ret();
5295 __ bind(&not_same_value);
5296
5297 // Check if PropertyCell contains data with constant type (and is not
5298 // READ_ONLY).
5299 __ cmpi(cell_details, Operand(PropertyDetails::PropertyCellTypeField::encode(
5300 PropertyCellType::kConstantType) |
5301 PropertyDetails::KindField::encode(kData)));
5302 __ bne(&slow_case);
5303
5304 // Now either both old and new values must be smis or both must be heap
5305 // objects with same map.
5306 Label value_is_heap_object;
5307 __ JumpIfNotSmi(value, &value_is_heap_object);
5308 __ JumpIfNotSmi(cell_value, &slow_case);
5309 // Old and new values are smis, no need for a write barrier here.
5310 __ bind(&fast_smi_case);
5311 __ StoreP(value, FieldMemOperand(cell, PropertyCell::kValueOffset), r0);
5312 __ Ret();
5313
5314 __ bind(&value_is_heap_object);
5315 __ JumpIfSmi(cell_value, &slow_case);
5316
5317 __ LoadP(cell_value_map, FieldMemOperand(cell_value, HeapObject::kMapOffset));
5318 __ LoadP(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5319 __ cmp(cell_value_map, scratch);
5320 __ beq(&fast_heapobject_case);
5321
5322 // Fallback to runtime.
5323 __ bind(&slow_case);
5324 __ SmiTag(slot);
5325 __ Push(slot, value);
5326 __ TailCallRuntime(is_strict(language_mode())
5327 ? Runtime::kStoreGlobalViaContext_Strict
5328 : Runtime::kStoreGlobalViaContext_Sloppy);
5329}
5330
5331
5332static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
5333 return ref0.address() - ref1.address();
5334}
5335
5336
5337// Calls an API function. Allocates HandleScope, extracts returned value
5338// from handle and propagates exceptions. Restores context. stack_space
5339// - space to be unwound on exit (includes the call JS arguments space and
5340// the additional space allocated for the fast call).
5341static void CallApiFunctionAndReturn(MacroAssembler* masm,
5342 Register function_address,
5343 ExternalReference thunk_ref,
5344 int stack_space,
5345 MemOperand* stack_space_operand,
5346 MemOperand return_value_operand,
5347 MemOperand* context_restore_operand) {
5348 Isolate* isolate = masm->isolate();
5349 ExternalReference next_address =
5350 ExternalReference::handle_scope_next_address(isolate);
5351 const int kNextOffset = 0;
5352 const int kLimitOffset = AddressOffset(
5353 ExternalReference::handle_scope_limit_address(isolate), next_address);
5354 const int kLevelOffset = AddressOffset(
5355 ExternalReference::handle_scope_level_address(isolate), next_address);
5356
5357 // Additional parameter is the address of the actual callback.
5358 DCHECK(function_address.is(r4) || function_address.is(r5));
5359 Register scratch = r6;
5360
5361 __ mov(scratch, Operand(ExternalReference::is_profiling_address(isolate)));
5362 __ lbz(scratch, MemOperand(scratch, 0));
5363 __ cmpi(scratch, Operand::Zero());
5364
5365 if (CpuFeatures::IsSupported(ISELECT)) {
5366 __ mov(scratch, Operand(thunk_ref));
5367 __ isel(eq, scratch, function_address, scratch);
5368 } else {
5369 Label profiler_disabled;
5370 Label end_profiler_check;
5371 __ beq(&profiler_disabled);
5372 __ mov(scratch, Operand(thunk_ref));
5373 __ b(&end_profiler_check);
5374 __ bind(&profiler_disabled);
5375 __ mr(scratch, function_address);
5376 __ bind(&end_profiler_check);
5377 }
5378
5379 // Allocate HandleScope in callee-save registers.
5380 // r17 - next_address
5381 // r14 - next_address->kNextOffset
5382 // r15 - next_address->kLimitOffset
5383 // r16 - next_address->kLevelOffset
5384 __ mov(r17, Operand(next_address));
5385 __ LoadP(r14, MemOperand(r17, kNextOffset));
5386 __ LoadP(r15, MemOperand(r17, kLimitOffset));
5387 __ lwz(r16, MemOperand(r17, kLevelOffset));
5388 __ addi(r16, r16, Operand(1));
5389 __ stw(r16, MemOperand(r17, kLevelOffset));
5390
5391 if (FLAG_log_timer_events) {
5392 FrameScope frame(masm, StackFrame::MANUAL);
5393 __ PushSafepointRegisters();
5394 __ PrepareCallCFunction(1, r3);
5395 __ mov(r3, Operand(ExternalReference::isolate_address(isolate)));
5396 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5397 1);
5398 __ PopSafepointRegisters();
5399 }
5400
5401 // Native call returns to the DirectCEntry stub which redirects to the
5402 // return address pushed on stack (could have moved after GC).
5403 // DirectCEntry stub itself is generated early and never moves.
5404 DirectCEntryStub stub(isolate);
5405 stub.GenerateCall(masm, scratch);
5406
5407 if (FLAG_log_timer_events) {
5408 FrameScope frame(masm, StackFrame::MANUAL);
5409 __ PushSafepointRegisters();
5410 __ PrepareCallCFunction(1, r3);
5411 __ mov(r3, Operand(ExternalReference::isolate_address(isolate)));
5412 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5413 1);
5414 __ PopSafepointRegisters();
5415 }
5416
5417 Label promote_scheduled_exception;
5418 Label delete_allocated_handles;
5419 Label leave_exit_frame;
5420 Label return_value_loaded;
5421
5422 // load value from ReturnValue
5423 __ LoadP(r3, return_value_operand);
5424 __ bind(&return_value_loaded);
5425 // No more valid handles (the result handle was the last one). Restore
5426 // previous handle scope.
5427 __ StoreP(r14, MemOperand(r17, kNextOffset));
5428 if (__ emit_debug_code()) {
5429 __ lwz(r4, MemOperand(r17, kLevelOffset));
5430 __ cmp(r4, r16);
5431 __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
5432 }
5433 __ subi(r16, r16, Operand(1));
5434 __ stw(r16, MemOperand(r17, kLevelOffset));
5435 __ LoadP(r0, MemOperand(r17, kLimitOffset));
5436 __ cmp(r15, r0);
5437 __ bne(&delete_allocated_handles);
5438
5439 // Leave the API exit frame.
5440 __ bind(&leave_exit_frame);
5441 bool restore_context = context_restore_operand != NULL;
5442 if (restore_context) {
5443 __ LoadP(cp, *context_restore_operand);
5444 }
5445 // LeaveExitFrame expects unwind space to be in a register.
5446 if (stack_space_operand != NULL) {
5447 __ lwz(r14, *stack_space_operand);
5448 } else {
5449 __ mov(r14, Operand(stack_space));
5450 }
5451 __ LeaveExitFrame(false, r14, !restore_context, stack_space_operand != NULL);
5452
5453 // Check if the function scheduled an exception.
5454 __ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
5455 __ mov(r15, Operand(ExternalReference::scheduled_exception_address(isolate)));
5456 __ LoadP(r15, MemOperand(r15));
5457 __ cmp(r14, r15);
5458 __ bne(&promote_scheduled_exception);
5459
5460 __ blr();
5461
5462 // Re-throw by promoting a scheduled exception.
5463 __ bind(&promote_scheduled_exception);
5464 __ TailCallRuntime(Runtime::kPromoteScheduledException);
5465
5466 // HandleScope limit has changed. Delete allocated extensions.
5467 __ bind(&delete_allocated_handles);
5468 __ StoreP(r15, MemOperand(r17, kLimitOffset));
5469 __ mr(r14, r3);
5470 __ PrepareCallCFunction(1, r15);
5471 __ mov(r3, Operand(ExternalReference::isolate_address(isolate)));
5472 __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
5473 1);
5474 __ mr(r3, r14);
5475 __ b(&leave_exit_frame);
5476}
5477
Ben Murdochda12d292016-06-02 14:46:10 +01005478void CallApiCallbackStub::Generate(MacroAssembler* masm) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005479 // ----------- S t a t e -------------
5480 // -- r3 : callee
5481 // -- r7 : call_data
5482 // -- r5 : holder
5483 // -- r4 : api_function_address
5484 // -- cp : context
5485 // --
5486 // -- sp[0] : last argument
5487 // -- ...
5488 // -- sp[(argc - 1)* 4] : first argument
5489 // -- sp[argc * 4] : receiver
5490 // -----------------------------------
5491
5492 Register callee = r3;
5493 Register call_data = r7;
5494 Register holder = r5;
5495 Register api_function_address = r4;
5496 Register context = cp;
5497
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005498 typedef FunctionCallbackArguments FCA;
5499
5500 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5501 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5502 STATIC_ASSERT(FCA::kDataIndex == 4);
5503 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5504 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5505 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5506 STATIC_ASSERT(FCA::kHolderIndex == 0);
Ben Murdochc5610432016-08-08 18:44:38 +01005507 STATIC_ASSERT(FCA::kNewTargetIndex == 7);
5508 STATIC_ASSERT(FCA::kArgsLength == 8);
5509
5510 // new target
5511 __ PushRoot(Heap::kUndefinedValueRootIndex);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005512
5513 // context save
5514 __ push(context);
Ben Murdochda12d292016-06-02 14:46:10 +01005515 if (!is_lazy()) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01005516 // load context from callee
5517 __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset));
5518 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005519
5520 // callee
5521 __ push(callee);
5522
5523 // call data
5524 __ push(call_data);
5525
5526 Register scratch = call_data;
Ben Murdochda12d292016-06-02 14:46:10 +01005527 if (!call_data_undefined()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005528 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
5529 }
5530 // return value
5531 __ push(scratch);
5532 // return value default
5533 __ push(scratch);
5534 // isolate
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005535 __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005536 __ push(scratch);
5537 // holder
5538 __ push(holder);
5539
5540 // Prepare arguments.
5541 __ mr(scratch, sp);
5542
5543 // Allocate the v8::Arguments structure in the arguments' space since
5544 // it's not controlled by GC.
5545 // PPC LINUX ABI:
5546 //
Ben Murdochc5610432016-08-08 18:44:38 +01005547 // Create 4 extra slots on stack:
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005548 // [0] space for DirectCEntryStub's LR save
Ben Murdochc5610432016-08-08 18:44:38 +01005549 // [1-3] FunctionCallbackInfo
5550 const int kApiStackSpace = 4;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005551 const int kFunctionCallbackInfoOffset =
5552 (kStackFrameExtraParamSlot + 1) * kPointerSize;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005553
5554 FrameScope frame_scope(masm, StackFrame::MANUAL);
5555 __ EnterExitFrame(false, kApiStackSpace);
5556
5557 DCHECK(!api_function_address.is(r3) && !scratch.is(r3));
5558 // r3 = FunctionCallbackInfo&
5559 // Arguments is after the return address.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005560 __ addi(r3, sp, Operand(kFunctionCallbackInfoOffset));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005561 // FunctionCallbackInfo::implicit_args_
5562 __ StoreP(scratch, MemOperand(r3, 0 * kPointerSize));
Ben Murdochda12d292016-06-02 14:46:10 +01005563 // FunctionCallbackInfo::values_
5564 __ addi(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
5565 __ StoreP(ip, MemOperand(r3, 1 * kPointerSize));
5566 // FunctionCallbackInfo::length_ = argc
5567 __ li(ip, Operand(argc()));
5568 __ stw(ip, MemOperand(r3, 2 * kPointerSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005569
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005570 ExternalReference thunk_ref =
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005571 ExternalReference::invoke_function_callback(masm->isolate());
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005572
5573 AllowExternalCallThatCantCauseGC scope(masm);
5574 MemOperand context_restore_operand(
5575 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
5576 // Stores return the first js argument
5577 int return_value_offset = 0;
Ben Murdochda12d292016-06-02 14:46:10 +01005578 if (is_store()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005579 return_value_offset = 2 + FCA::kArgsLength;
5580 } else {
5581 return_value_offset = 2 + FCA::kReturnValueOffset;
5582 }
5583 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005584 int stack_space = 0;
Ben Murdochc5610432016-08-08 18:44:38 +01005585 MemOperand length_operand =
5586 MemOperand(sp, kFunctionCallbackInfoOffset + 2 * kPointerSize);
5587 MemOperand* stack_space_operand = &length_operand;
Ben Murdochda12d292016-06-02 14:46:10 +01005588 stack_space = argc() + FCA::kArgsLength + 1;
5589 stack_space_operand = NULL;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005590 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
5591 stack_space_operand, return_value_operand,
5592 &context_restore_operand);
5593}
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005594
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005595
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005596void CallApiGetterStub::Generate(MacroAssembler* masm) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01005597 int arg0Slot = 0;
5598 int accessorInfoSlot = 0;
5599 int apiStackSpace = 0;
Ben Murdochc5610432016-08-08 18:44:38 +01005600 // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
5601 // name below the exit frame to make GC aware of them.
5602 STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
5603 STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
5604 STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
5605 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
5606 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
5607 STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
5608 STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
5609 STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
5610
5611 Register receiver = ApiGetterDescriptor::ReceiverRegister();
5612 Register holder = ApiGetterDescriptor::HolderRegister();
5613 Register callback = ApiGetterDescriptor::CallbackRegister();
5614 Register scratch = r7;
5615 DCHECK(!AreAliased(receiver, holder, callback, scratch));
5616
5617 Register api_function_address = r5;
5618
5619 __ push(receiver);
5620 // Push data from AccessorInfo.
5621 __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
5622 __ push(scratch);
5623 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
5624 __ Push(scratch, scratch);
5625 __ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
5626 __ Push(scratch, holder);
5627 __ Push(Smi::FromInt(0)); // should_throw_on_error -> false
5628 __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
5629 __ push(scratch);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005630
Ben Murdoch097c5b22016-05-18 11:27:45 +01005631 // v8::PropertyCallbackInfo::args_ array and name handle.
5632 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
5633
5634 // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
5635 __ mr(r3, sp); // r3 = Handle<Name>
5636 __ addi(r4, r3, Operand(1 * kPointerSize)); // r4 = v8::PCI::args_
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005637
5638// If ABI passes Handles (pointer-sized struct) in a register:
5639//
5640// Create 2 extra slots on stack:
5641// [0] space for DirectCEntryStub's LR save
5642// [1] AccessorInfo&
5643//
5644// Otherwise:
5645//
5646// Create 3 extra slots on stack:
5647// [0] space for DirectCEntryStub's LR save
5648// [1] copy of Handle (first arg)
5649// [2] AccessorInfo&
Ben Murdoch097c5b22016-05-18 11:27:45 +01005650 if (ABI_PASSES_HANDLES_IN_REGS) {
5651 accessorInfoSlot = kStackFrameExtraParamSlot + 1;
5652 apiStackSpace = 2;
5653 } else {
5654 arg0Slot = kStackFrameExtraParamSlot + 1;
5655 accessorInfoSlot = arg0Slot + 1;
5656 apiStackSpace = 3;
5657 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005658
5659 FrameScope frame_scope(masm, StackFrame::MANUAL);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005660 __ EnterExitFrame(false, apiStackSpace);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005661
Ben Murdoch097c5b22016-05-18 11:27:45 +01005662 if (!ABI_PASSES_HANDLES_IN_REGS) {
5663 // pass 1st arg by reference
5664 __ StoreP(r3, MemOperand(sp, arg0Slot * kPointerSize));
5665 __ addi(r3, sp, Operand(arg0Slot * kPointerSize));
5666 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005667
Ben Murdoch097c5b22016-05-18 11:27:45 +01005668 // Create v8::PropertyCallbackInfo object on the stack and initialize
5669 // it's args_ field.
5670 __ StoreP(r4, MemOperand(sp, accessorInfoSlot * kPointerSize));
5671 __ addi(r4, sp, Operand(accessorInfoSlot * kPointerSize));
5672 // r4 = v8::PropertyCallbackInfo&
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005673
5674 ExternalReference thunk_ref =
5675 ExternalReference::invoke_accessor_getter_callback(isolate());
Ben Murdoch097c5b22016-05-18 11:27:45 +01005676
Ben Murdochc5610432016-08-08 18:44:38 +01005677 __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
5678 __ LoadP(api_function_address,
5679 FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
5680
Ben Murdoch097c5b22016-05-18 11:27:45 +01005681 // +3 is to skip prolog, return address and name handle.
5682 MemOperand return_value_operand(
5683 fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005684 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
Ben Murdoch097c5b22016-05-18 11:27:45 +01005685 kStackUnwindSpace, NULL, return_value_operand, NULL);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005686}
5687
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005688#undef __
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005689} // namespace internal
5690} // namespace v8
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005691
5692#endif // V8_TARGET_ARCH_PPC