blob: 3e84a2143c3417a987c63eec0834e83b64db05c6 [file] [log] [blame]
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_PPC
8
9#include "src/base/bits.h"
10#include "src/bootstrapper.h"
11#include "src/code-stubs.h"
12#include "src/codegen.h"
13#include "src/ic/handler-compiler.h"
14#include "src/ic/ic.h"
15#include "src/isolate.h"
16#include "src/jsregexp.h"
17#include "src/regexp-macro-assembler.h"
18#include "src/runtime/runtime.h"
19
20namespace v8 {
21namespace internal {
22
23
24static void InitializeArrayConstructorDescriptor(
25 Isolate* isolate, CodeStubDescriptor* descriptor,
26 int constant_stack_parameter_count) {
27 Address deopt_handler =
28 Runtime::FunctionForId(Runtime::kArrayConstructor)->entry;
29
30 if (constant_stack_parameter_count == 0) {
31 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
32 JS_FUNCTION_STUB_MODE);
33 } else {
34 descriptor->Initialize(r3, deopt_handler, constant_stack_parameter_count,
35 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
36 }
37}
38
39
40static void InitializeInternalArrayConstructorDescriptor(
41 Isolate* isolate, CodeStubDescriptor* descriptor,
42 int constant_stack_parameter_count) {
43 Address deopt_handler =
44 Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry;
45
46 if (constant_stack_parameter_count == 0) {
47 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
48 JS_FUNCTION_STUB_MODE);
49 } else {
50 descriptor->Initialize(r3, deopt_handler, constant_stack_parameter_count,
51 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
52 }
53}
54
55
56void ArrayNoArgumentConstructorStub::InitializeDescriptor(
57 CodeStubDescriptor* descriptor) {
58 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
59}
60
61
62void ArraySingleArgumentConstructorStub::InitializeDescriptor(
63 CodeStubDescriptor* descriptor) {
64 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
65}
66
67
68void ArrayNArgumentsConstructorStub::InitializeDescriptor(
69 CodeStubDescriptor* descriptor) {
70 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
71}
72
73
74void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
75 CodeStubDescriptor* descriptor) {
76 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
77}
78
79
80void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
81 CodeStubDescriptor* descriptor) {
82 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
83}
84
85
86void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
87 CodeStubDescriptor* descriptor) {
88 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
89}
90
91
92#define __ ACCESS_MASM(masm)
93
94
95static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
96 Condition cond);
97static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
98 Register rhs, Label* lhs_not_nan,
99 Label* slow, bool strict);
100static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
101 Register rhs);
102
103
104void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
105 ExternalReference miss) {
106 // Update the static counter each time a new code stub is generated.
107 isolate()->counters()->code_stubs()->Increment();
108
109 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
110 int param_count = descriptor.GetEnvironmentParameterCount();
111 {
112 // Call the runtime system in a fresh internal frame.
113 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
114 DCHECK(param_count == 0 ||
115 r3.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
116 // Push arguments
117 for (int i = 0; i < param_count; ++i) {
118 __ push(descriptor.GetEnvironmentParameterRegister(i));
119 }
120 __ CallExternalReference(miss, param_count);
121 }
122
123 __ Ret();
124}
125
126
127void DoubleToIStub::Generate(MacroAssembler* masm) {
128 Label out_of_range, only_low, negate, done, fastpath_done;
129 Register input_reg = source();
130 Register result_reg = destination();
131 DCHECK(is_truncating());
132
133 int double_offset = offset();
134
135 // Immediate values for this stub fit in instructions, so it's safe to use ip.
136 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
137 Register scratch_low =
138 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
139 Register scratch_high =
140 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
141 DoubleRegister double_scratch = kScratchDoubleReg;
142
143 __ push(scratch);
144 // Account for saved regs if input is sp.
145 if (input_reg.is(sp)) double_offset += kPointerSize;
146
147 if (!skip_fastpath()) {
148 // Load double input.
149 __ lfd(double_scratch, MemOperand(input_reg, double_offset));
150
151 // Do fast-path convert from double to int.
152 __ ConvertDoubleToInt64(double_scratch,
153#if !V8_TARGET_ARCH_PPC64
154 scratch,
155#endif
156 result_reg, d0);
157
158// Test for overflow
159#if V8_TARGET_ARCH_PPC64
160 __ TestIfInt32(result_reg, scratch, r0);
161#else
162 __ TestIfInt32(scratch, result_reg, r0);
163#endif
164 __ beq(&fastpath_done);
165 }
166
167 __ Push(scratch_high, scratch_low);
168 // Account for saved regs if input is sp.
169 if (input_reg.is(sp)) double_offset += 2 * kPointerSize;
170
171 __ lwz(scratch_high,
172 MemOperand(input_reg, double_offset + Register::kExponentOffset));
173 __ lwz(scratch_low,
174 MemOperand(input_reg, double_offset + Register::kMantissaOffset));
175
176 __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
177 // Load scratch with exponent - 1. This is faster than loading
178 // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value.
179 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
180 __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
181 // If exponent is greater than or equal to 84, the 32 less significant
182 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
183 // the result is 0.
184 // Compare exponent with 84 (compare exponent - 1 with 83).
185 __ cmpi(scratch, Operand(83));
186 __ bge(&out_of_range);
187
188 // If we reach this code, 31 <= exponent <= 83.
189 // So, we don't have to handle cases where 0 <= exponent <= 20 for
190 // which we would need to shift right the high part of the mantissa.
191 // Scratch contains exponent - 1.
192 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
193 __ subfic(scratch, scratch, Operand(51));
194 __ cmpi(scratch, Operand::Zero());
195 __ ble(&only_low);
196 // 21 <= exponent <= 51, shift scratch_low and scratch_high
197 // to generate the result.
198 __ srw(scratch_low, scratch_low, scratch);
199 // Scratch contains: 52 - exponent.
200 // We needs: exponent - 20.
201 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
202 __ subfic(scratch, scratch, Operand(32));
203 __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
204 // Set the implicit 1 before the mantissa part in scratch_high.
205 STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
206 __ oris(result_reg, result_reg,
207 Operand(1 << ((HeapNumber::kMantissaBitsInTopWord) - 16)));
208 __ slw(r0, result_reg, scratch);
209 __ orx(result_reg, scratch_low, r0);
210 __ b(&negate);
211
212 __ bind(&out_of_range);
213 __ mov(result_reg, Operand::Zero());
214 __ b(&done);
215
216 __ bind(&only_low);
217 // 52 <= exponent <= 83, shift only scratch_low.
218 // On entry, scratch contains: 52 - exponent.
219 __ neg(scratch, scratch);
220 __ slw(result_reg, scratch_low, scratch);
221
222 __ bind(&negate);
223 // If input was positive, scratch_high ASR 31 equals 0 and
224 // scratch_high LSR 31 equals zero.
225 // New result = (result eor 0) + 0 = result.
226 // If the input was negative, we have to negate the result.
227 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
228 // New result = (result eor 0xffffffff) + 1 = 0 - result.
229 __ srawi(r0, scratch_high, 31);
230#if V8_TARGET_ARCH_PPC64
231 __ srdi(r0, r0, Operand(32));
232#endif
233 __ xor_(result_reg, result_reg, r0);
234 __ srwi(r0, scratch_high, Operand(31));
235 __ add(result_reg, result_reg, r0);
236
237 __ bind(&done);
238 __ Pop(scratch_high, scratch_low);
239
240 __ bind(&fastpath_done);
241 __ pop(scratch);
242
243 __ Ret();
244}
245
246
247// Handle the case where the lhs and rhs are the same object.
248// Equality is almost reflexive (everything but NaN), so this is a test
249// for "identity and not NaN".
250static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
251 Condition cond) {
252 Label not_identical;
253 Label heap_number, return_equal;
254 __ cmp(r3, r4);
255 __ bne(&not_identical);
256
257 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
258 // so we do the second best thing - test it ourselves.
259 // They are both equal and they are not both Smis so both of them are not
260 // Smis. If it's not a heap number, then return equal.
261 if (cond == lt || cond == gt) {
262 __ CompareObjectType(r3, r7, r7, FIRST_SPEC_OBJECT_TYPE);
263 __ bge(slow);
264 } else {
265 __ CompareObjectType(r3, r7, r7, HEAP_NUMBER_TYPE);
266 __ beq(&heap_number);
267 // Comparing JS objects with <=, >= is complicated.
268 if (cond != eq) {
269 __ cmpi(r7, Operand(FIRST_SPEC_OBJECT_TYPE));
270 __ bge(slow);
271 // Normally here we fall through to return_equal, but undefined is
272 // special: (undefined == undefined) == true, but
273 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
274 if (cond == le || cond == ge) {
275 __ cmpi(r7, Operand(ODDBALL_TYPE));
276 __ bne(&return_equal);
277 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
278 __ cmp(r3, r5);
279 __ bne(&return_equal);
280 if (cond == le) {
281 // undefined <= undefined should fail.
282 __ li(r3, Operand(GREATER));
283 } else {
284 // undefined >= undefined should fail.
285 __ li(r3, Operand(LESS));
286 }
287 __ Ret();
288 }
289 }
290 }
291
292 __ bind(&return_equal);
293 if (cond == lt) {
294 __ li(r3, Operand(GREATER)); // Things aren't less than themselves.
295 } else if (cond == gt) {
296 __ li(r3, Operand(LESS)); // Things aren't greater than themselves.
297 } else {
298 __ li(r3, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
299 }
300 __ Ret();
301
302 // For less and greater we don't have to check for NaN since the result of
303 // x < x is false regardless. For the others here is some code to check
304 // for NaN.
305 if (cond != lt && cond != gt) {
306 __ bind(&heap_number);
307 // It is a heap number, so return non-equal if it's NaN and equal if it's
308 // not NaN.
309
310 // The representation of NaN values has all exponent bits (52..62) set,
311 // and not all mantissa bits (0..51) clear.
312 // Read top bits of double representation (second word of value).
313 __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
314 // Test that exponent bits are all set.
315 STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u);
316 __ ExtractBitMask(r6, r5, HeapNumber::kExponentMask);
317 __ cmpli(r6, Operand(0x7ff));
318 __ bne(&return_equal);
319
320 // Shift out flag and all exponent bits, retaining only mantissa.
321 __ slwi(r5, r5, Operand(HeapNumber::kNonMantissaBitsInTopWord));
322 // Or with all low-bits of mantissa.
323 __ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
324 __ orx(r3, r6, r5);
325 __ cmpi(r3, Operand::Zero());
326 // For equal we already have the right value in r3: Return zero (equal)
327 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
328 // not (it's a NaN). For <= and >= we need to load r0 with the failing
329 // value if it's a NaN.
330 if (cond != eq) {
331 Label not_equal;
332 __ bne(&not_equal);
333 // All-zero means Infinity means equal.
334 __ Ret();
335 __ bind(&not_equal);
336 if (cond == le) {
337 __ li(r3, Operand(GREATER)); // NaN <= NaN should fail.
338 } else {
339 __ li(r3, Operand(LESS)); // NaN >= NaN should fail.
340 }
341 }
342 __ Ret();
343 }
344 // No fall through here.
345
346 __ bind(&not_identical);
347}
348
349
350// See comment at call site.
351static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
352 Register rhs, Label* lhs_not_nan,
353 Label* slow, bool strict) {
354 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
355
356 Label rhs_is_smi;
357 __ JumpIfSmi(rhs, &rhs_is_smi);
358
359 // Lhs is a Smi. Check whether the rhs is a heap number.
360 __ CompareObjectType(rhs, r6, r7, HEAP_NUMBER_TYPE);
361 if (strict) {
362 // If rhs is not a number and lhs is a Smi then strict equality cannot
363 // succeed. Return non-equal
364 // If rhs is r3 then there is already a non zero value in it.
365 Label skip;
366 __ beq(&skip);
367 if (!rhs.is(r3)) {
368 __ mov(r3, Operand(NOT_EQUAL));
369 }
370 __ Ret();
371 __ bind(&skip);
372 } else {
373 // Smi compared non-strictly with a non-Smi non-heap-number. Call
374 // the runtime.
375 __ bne(slow);
376 }
377
378 // Lhs is a smi, rhs is a number.
379 // Convert lhs to a double in d7.
380 __ SmiToDouble(d7, lhs);
381 // Load the double from rhs, tagged HeapNumber r3, to d6.
382 __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
383
384 // We now have both loaded as doubles but we can skip the lhs nan check
385 // since it's a smi.
386 __ b(lhs_not_nan);
387
388 __ bind(&rhs_is_smi);
389 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
390 __ CompareObjectType(lhs, r7, r7, HEAP_NUMBER_TYPE);
391 if (strict) {
392 // If lhs is not a number and rhs is a smi then strict equality cannot
393 // succeed. Return non-equal.
394 // If lhs is r3 then there is already a non zero value in it.
395 Label skip;
396 __ beq(&skip);
397 if (!lhs.is(r3)) {
398 __ mov(r3, Operand(NOT_EQUAL));
399 }
400 __ Ret();
401 __ bind(&skip);
402 } else {
403 // Smi compared non-strictly with a non-smi non-heap-number. Call
404 // the runtime.
405 __ bne(slow);
406 }
407
408 // Rhs is a smi, lhs is a heap number.
409 // Load the double from lhs, tagged HeapNumber r4, to d7.
410 __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
411 // Convert rhs to a double in d6.
412 __ SmiToDouble(d6, rhs);
413 // Fall through to both_loaded_as_doubles.
414}
415
416
417// See comment at call site.
418static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
419 Register rhs) {
420 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
421
422 // If either operand is a JS object or an oddball value, then they are
423 // not equal since their pointers are different.
424 // There is no test for undetectability in strict equality.
425 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
426 Label first_non_object;
427 // Get the type of the first operand into r5 and compare it with
428 // FIRST_SPEC_OBJECT_TYPE.
429 __ CompareObjectType(rhs, r5, r5, FIRST_SPEC_OBJECT_TYPE);
430 __ blt(&first_non_object);
431
432 // Return non-zero (r3 is not zero)
433 Label return_not_equal;
434 __ bind(&return_not_equal);
435 __ Ret();
436
437 __ bind(&first_non_object);
438 // Check for oddballs: true, false, null, undefined.
439 __ cmpi(r5, Operand(ODDBALL_TYPE));
440 __ beq(&return_not_equal);
441
442 __ CompareObjectType(lhs, r6, r6, FIRST_SPEC_OBJECT_TYPE);
443 __ bge(&return_not_equal);
444
445 // Check for oddballs: true, false, null, undefined.
446 __ cmpi(r6, Operand(ODDBALL_TYPE));
447 __ beq(&return_not_equal);
448
449 // Now that we have the types we might as well check for
450 // internalized-internalized.
451 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
452 __ orx(r5, r5, r6);
453 __ andi(r0, r5, Operand(kIsNotStringMask | kIsNotInternalizedMask));
454 __ beq(&return_not_equal, cr0);
455}
456
457
458// See comment at call site.
459static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs,
460 Register rhs,
461 Label* both_loaded_as_doubles,
462 Label* not_heap_numbers, Label* slow) {
463 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
464
465 __ CompareObjectType(rhs, r6, r5, HEAP_NUMBER_TYPE);
466 __ bne(not_heap_numbers);
467 __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset));
468 __ cmp(r5, r6);
469 __ bne(slow); // First was a heap number, second wasn't. Go slow case.
470
471 // Both are heap numbers. Load them up then jump to the code we have
472 // for that.
473 __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
474 __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
475
476 __ b(both_loaded_as_doubles);
477}
478
479
480// Fast negative check for internalized-to-internalized equality.
481static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
482 Register lhs, Register rhs,
483 Label* possible_strings,
484 Label* not_both_strings) {
485 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
486
487 // r5 is object type of rhs.
488 Label object_test;
489 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
490 __ andi(r0, r5, Operand(kIsNotStringMask));
491 __ bne(&object_test, cr0);
492 __ andi(r0, r5, Operand(kIsNotInternalizedMask));
493 __ bne(possible_strings, cr0);
494 __ CompareObjectType(lhs, r6, r6, FIRST_NONSTRING_TYPE);
495 __ bge(not_both_strings);
496 __ andi(r0, r6, Operand(kIsNotInternalizedMask));
497 __ bne(possible_strings, cr0);
498
499 // Both are internalized. We already checked they weren't the same pointer
500 // so they are not equal.
501 __ li(r3, Operand(NOT_EQUAL));
502 __ Ret();
503
504 __ bind(&object_test);
505 __ cmpi(r5, Operand(FIRST_SPEC_OBJECT_TYPE));
506 __ blt(not_both_strings);
507 __ CompareObjectType(lhs, r5, r6, FIRST_SPEC_OBJECT_TYPE);
508 __ blt(not_both_strings);
509 // If both objects are undetectable, they are equal. Otherwise, they
510 // are not equal, since they are different objects and an object is not
511 // equal to undefined.
512 __ LoadP(r6, FieldMemOperand(rhs, HeapObject::kMapOffset));
513 __ lbz(r5, FieldMemOperand(r5, Map::kBitFieldOffset));
514 __ lbz(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
515 __ and_(r3, r5, r6);
516 __ andi(r3, r3, Operand(1 << Map::kIsUndetectable));
517 __ xori(r3, r3, Operand(1 << Map::kIsUndetectable));
518 __ Ret();
519}
520
521
522static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
523 Register scratch,
524 CompareICState::State expected,
525 Label* fail) {
526 Label ok;
527 if (expected == CompareICState::SMI) {
528 __ JumpIfNotSmi(input, fail);
529 } else if (expected == CompareICState::NUMBER) {
530 __ JumpIfSmi(input, &ok);
531 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
532 DONT_DO_SMI_CHECK);
533 }
534 // We could be strict about internalized/non-internalized here, but as long as
535 // hydrogen doesn't care, the stub doesn't have to care either.
536 __ bind(&ok);
537}
538
539
540// On entry r4 and r5 are the values to be compared.
541// On exit r3 is 0, positive or negative to indicate the result of
542// the comparison.
543void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
544 Register lhs = r4;
545 Register rhs = r3;
546 Condition cc = GetCondition();
547
548 Label miss;
549 CompareICStub_CheckInputType(masm, lhs, r5, left(), &miss);
550 CompareICStub_CheckInputType(masm, rhs, r6, right(), &miss);
551
552 Label slow; // Call builtin.
553 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
554
555 Label not_two_smis, smi_done;
556 __ orx(r5, r4, r3);
557 __ JumpIfNotSmi(r5, &not_two_smis);
558 __ SmiUntag(r4);
559 __ SmiUntag(r3);
560 __ sub(r3, r4, r3);
561 __ Ret();
562 __ bind(&not_two_smis);
563
564 // NOTICE! This code is only reached after a smi-fast-case check, so
565 // it is certain that at least one operand isn't a smi.
566
567 // Handle the case where the objects are identical. Either returns the answer
568 // or goes to slow. Only falls through if the objects were not identical.
569 EmitIdenticalObjectComparison(masm, &slow, cc);
570
571 // If either is a Smi (we know that not both are), then they can only
572 // be strictly equal if the other is a HeapNumber.
573 STATIC_ASSERT(kSmiTag == 0);
574 DCHECK_EQ(0, Smi::FromInt(0));
575 __ and_(r5, lhs, rhs);
576 __ JumpIfNotSmi(r5, &not_smis);
577 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
578 // 1) Return the answer.
579 // 2) Go to slow.
580 // 3) Fall through to both_loaded_as_doubles.
581 // 4) Jump to lhs_not_nan.
582 // In cases 3 and 4 we have found out we were dealing with a number-number
583 // comparison. The double values of the numbers have been loaded
584 // into d7 and d6.
585 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
586
587 __ bind(&both_loaded_as_doubles);
588 // The arguments have been converted to doubles and stored in d6 and d7
589 __ bind(&lhs_not_nan);
590 Label no_nan;
591 __ fcmpu(d7, d6);
592
593 Label nan, equal, less_than;
594 __ bunordered(&nan);
595 __ beq(&equal);
596 __ blt(&less_than);
597 __ li(r3, Operand(GREATER));
598 __ Ret();
599 __ bind(&equal);
600 __ li(r3, Operand(EQUAL));
601 __ Ret();
602 __ bind(&less_than);
603 __ li(r3, Operand(LESS));
604 __ Ret();
605
606 __ bind(&nan);
607 // If one of the sides was a NaN then the v flag is set. Load r3 with
608 // whatever it takes to make the comparison fail, since comparisons with NaN
609 // always fail.
610 if (cc == lt || cc == le) {
611 __ li(r3, Operand(GREATER));
612 } else {
613 __ li(r3, Operand(LESS));
614 }
615 __ Ret();
616
617 __ bind(&not_smis);
618 // At this point we know we are dealing with two different objects,
619 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
620 if (strict()) {
621 // This returns non-equal for some object types, or falls through if it
622 // was not lucky.
623 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
624 }
625
626 Label check_for_internalized_strings;
627 Label flat_string_check;
628 // Check for heap-number-heap-number comparison. Can jump to slow case,
629 // or load both doubles into r3, r4, r5, r6 and jump to the code that handles
630 // that case. If the inputs are not doubles then jumps to
631 // check_for_internalized_strings.
632 // In this case r5 will contain the type of rhs_. Never falls through.
633 EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles,
634 &check_for_internalized_strings,
635 &flat_string_check);
636
637 __ bind(&check_for_internalized_strings);
638 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
639 // internalized strings.
640 if (cc == eq && !strict()) {
641 // Returns an answer for two internalized strings or two detectable objects.
642 // Otherwise jumps to string case or not both strings case.
643 // Assumes that r5 is the type of rhs_ on entry.
644 EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check,
645 &slow);
646 }
647
648 // Check for both being sequential one-byte strings,
649 // and inline if that is the case.
650 __ bind(&flat_string_check);
651
652 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r5, r6, &slow);
653
654 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r5,
655 r6);
656 if (cc == eq) {
657 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r5, r6);
658 } else {
659 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r5, r6, r7);
660 }
661 // Never falls through to here.
662
663 __ bind(&slow);
664
665 __ Push(lhs, rhs);
666 // Figure out which native to call and setup the arguments.
667 Builtins::JavaScript native;
668 if (cc == eq) {
669 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
670 } else {
671 native = Builtins::COMPARE;
672 int ncr; // NaN compare result
673 if (cc == lt || cc == le) {
674 ncr = GREATER;
675 } else {
676 DCHECK(cc == gt || cc == ge); // remaining cases
677 ncr = LESS;
678 }
679 __ LoadSmiLiteral(r3, Smi::FromInt(ncr));
680 __ push(r3);
681 }
682
683 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
684 // tagged as a small integer.
685 __ InvokeBuiltin(native, JUMP_FUNCTION);
686
687 __ bind(&miss);
688 GenerateMiss(masm);
689}
690
691
692void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
693 // We don't allow a GC during a store buffer overflow so there is no need to
694 // store the registers in any particular way, but we do have to store and
695 // restore them.
696 __ mflr(r0);
697 __ MultiPush(kJSCallerSaved | r0.bit());
698 if (save_doubles()) {
699 __ SaveFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters);
700 }
701 const int argument_count = 1;
702 const int fp_argument_count = 0;
703 const Register scratch = r4;
704
705 AllowExternalCallThatCantCauseGC scope(masm);
706 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
707 __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
708 __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()),
709 argument_count);
710 if (save_doubles()) {
711 __ RestoreFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters);
712 }
713 __ MultiPop(kJSCallerSaved | r0.bit());
714 __ mtlr(r0);
715 __ Ret();
716}
717
718
719void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
720 __ PushSafepointRegisters();
721 __ blr();
722}
723
724
725void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
726 __ PopSafepointRegisters();
727 __ blr();
728}
729
730
731void MathPowStub::Generate(MacroAssembler* masm) {
732 const Register base = r4;
733 const Register exponent = MathPowTaggedDescriptor::exponent();
734 DCHECK(exponent.is(r5));
735 const Register heapnumbermap = r8;
736 const Register heapnumber = r3;
737 const DoubleRegister double_base = d1;
738 const DoubleRegister double_exponent = d2;
739 const DoubleRegister double_result = d3;
740 const DoubleRegister double_scratch = d0;
741 const Register scratch = r11;
742 const Register scratch2 = r10;
743
744 Label call_runtime, done, int_exponent;
745 if (exponent_type() == ON_STACK) {
746 Label base_is_smi, unpack_exponent;
747 // The exponent and base are supplied as arguments on the stack.
748 // This can only happen if the stub is called from non-optimized code.
749 // Load input parameters from stack to double registers.
750 __ LoadP(base, MemOperand(sp, 1 * kPointerSize));
751 __ LoadP(exponent, MemOperand(sp, 0 * kPointerSize));
752
753 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
754
755 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
756 __ LoadP(scratch, FieldMemOperand(base, JSObject::kMapOffset));
757 __ cmp(scratch, heapnumbermap);
758 __ bne(&call_runtime);
759
760 __ lfd(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
761 __ b(&unpack_exponent);
762
763 __ bind(&base_is_smi);
764 __ ConvertIntToDouble(scratch, double_base);
765 __ bind(&unpack_exponent);
766
767 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
768 __ LoadP(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
769 __ cmp(scratch, heapnumbermap);
770 __ bne(&call_runtime);
771
772 __ lfd(double_exponent,
773 FieldMemOperand(exponent, HeapNumber::kValueOffset));
774 } else if (exponent_type() == TAGGED) {
775 // Base is already in double_base.
776 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
777
778 __ lfd(double_exponent,
779 FieldMemOperand(exponent, HeapNumber::kValueOffset));
780 }
781
782 if (exponent_type() != INTEGER) {
783 // Detect integer exponents stored as double.
784 __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2,
785 double_scratch);
786 __ beq(&int_exponent);
787
788 if (exponent_type() == ON_STACK) {
789 // Detect square root case. Crankshaft detects constant +/-0.5 at
790 // compile time and uses DoMathPowHalf instead. We then skip this check
791 // for non-constant cases of +/-0.5 as these hardly occur.
792 Label not_plus_half, not_minus_inf1, not_minus_inf2;
793
794 // Test for 0.5.
795 __ LoadDoubleLiteral(double_scratch, 0.5, scratch);
796 __ fcmpu(double_exponent, double_scratch);
797 __ bne(&not_plus_half);
798
799 // Calculates square root of base. Check for the special case of
800 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
801 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
802 __ fcmpu(double_base, double_scratch);
803 __ bne(&not_minus_inf1);
804 __ fneg(double_result, double_scratch);
805 __ b(&done);
806 __ bind(&not_minus_inf1);
807
808 // Add +0 to convert -0 to +0.
809 __ fadd(double_scratch, double_base, kDoubleRegZero);
810 __ fsqrt(double_result, double_scratch);
811 __ b(&done);
812
813 __ bind(&not_plus_half);
814 __ LoadDoubleLiteral(double_scratch, -0.5, scratch);
815 __ fcmpu(double_exponent, double_scratch);
816 __ bne(&call_runtime);
817
818 // Calculates square root of base. Check for the special case of
819 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
820 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
821 __ fcmpu(double_base, double_scratch);
822 __ bne(&not_minus_inf2);
823 __ fmr(double_result, kDoubleRegZero);
824 __ b(&done);
825 __ bind(&not_minus_inf2);
826
827 // Add +0 to convert -0 to +0.
828 __ fadd(double_scratch, double_base, kDoubleRegZero);
829 __ LoadDoubleLiteral(double_result, 1.0, scratch);
830 __ fsqrt(double_scratch, double_scratch);
831 __ fdiv(double_result, double_result, double_scratch);
832 __ b(&done);
833 }
834
835 __ mflr(r0);
836 __ push(r0);
837 {
838 AllowExternalCallThatCantCauseGC scope(masm);
839 __ PrepareCallCFunction(0, 2, scratch);
840 __ MovToFloatParameters(double_base, double_exponent);
841 __ CallCFunction(
842 ExternalReference::power_double_double_function(isolate()), 0, 2);
843 }
844 __ pop(r0);
845 __ mtlr(r0);
846 __ MovFromFloatResult(double_result);
847 __ b(&done);
848 }
849
850 // Calculate power with integer exponent.
851 __ bind(&int_exponent);
852
853 // Get two copies of exponent in the registers scratch and exponent.
854 if (exponent_type() == INTEGER) {
855 __ mr(scratch, exponent);
856 } else {
857 // Exponent has previously been stored into scratch as untagged integer.
858 __ mr(exponent, scratch);
859 }
860 __ fmr(double_scratch, double_base); // Back up base.
861 __ li(scratch2, Operand(1));
862 __ ConvertIntToDouble(scratch2, double_result);
863
864 // Get absolute value of exponent.
865 Label positive_exponent;
866 __ cmpi(scratch, Operand::Zero());
867 __ bge(&positive_exponent);
868 __ neg(scratch, scratch);
869 __ bind(&positive_exponent);
870
871 Label while_true, no_carry, loop_end;
872 __ bind(&while_true);
873 __ andi(scratch2, scratch, Operand(1));
874 __ beq(&no_carry, cr0);
875 __ fmul(double_result, double_result, double_scratch);
876 __ bind(&no_carry);
877 __ ShiftRightArithImm(scratch, scratch, 1, SetRC);
878 __ beq(&loop_end, cr0);
879 __ fmul(double_scratch, double_scratch, double_scratch);
880 __ b(&while_true);
881 __ bind(&loop_end);
882
883 __ cmpi(exponent, Operand::Zero());
884 __ bge(&done);
885
886 __ li(scratch2, Operand(1));
887 __ ConvertIntToDouble(scratch2, double_scratch);
888 __ fdiv(double_result, double_scratch, double_result);
889 // Test whether result is zero. Bail out to check for subnormal result.
890 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
891 __ fcmpu(double_result, kDoubleRegZero);
892 __ bne(&done);
893 // double_exponent may not containe the exponent value if the input was a
894 // smi. We set it with exponent value before bailing out.
895 __ ConvertIntToDouble(exponent, double_exponent);
896
897 // Returning or bailing out.
898 Counters* counters = isolate()->counters();
899 if (exponent_type() == ON_STACK) {
900 // The arguments are still on the stack.
901 __ bind(&call_runtime);
902 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
903
904 // The stub is called from non-optimized code, which expects the result
905 // as heap number in exponent.
906 __ bind(&done);
907 __ AllocateHeapNumber(heapnumber, scratch, scratch2, heapnumbermap,
908 &call_runtime);
909 __ stfd(double_result,
910 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
911 DCHECK(heapnumber.is(r3));
912 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
913 __ Ret(2);
914 } else {
915 __ mflr(r0);
916 __ push(r0);
917 {
918 AllowExternalCallThatCantCauseGC scope(masm);
919 __ PrepareCallCFunction(0, 2, scratch);
920 __ MovToFloatParameters(double_base, double_exponent);
921 __ CallCFunction(
922 ExternalReference::power_double_double_function(isolate()), 0, 2);
923 }
924 __ pop(r0);
925 __ mtlr(r0);
926 __ MovFromFloatResult(double_result);
927
928 __ bind(&done);
929 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
930 __ Ret();
931 }
932}
933
934
935bool CEntryStub::NeedsImmovableCode() { return true; }
936
937
938void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
939 CEntryStub::GenerateAheadOfTime(isolate);
940 // WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
941 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
942 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
943 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
944 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
945 BinaryOpICStub::GenerateAheadOfTime(isolate);
946 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
947 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
948 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
949}
950
951
952void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
953 StoreRegistersStateStub stub(isolate);
954 stub.GetCode();
955}
956
957
958void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
959 RestoreRegistersStateStub stub(isolate);
960 stub.GetCode();
961}
962
963
964void CodeStub::GenerateFPStubs(Isolate* isolate) {
965 // Generate if not already in cache.
966 SaveFPRegsMode mode = kSaveFPRegs;
967 CEntryStub(isolate, 1, mode).GetCode();
968 StoreBufferOverflowStub(isolate, mode).GetCode();
969 isolate->set_fp_stubs_generated(true);
970}
971
972
973void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
974 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
975 stub.GetCode();
976}
977
978
979void CEntryStub::Generate(MacroAssembler* masm) {
980 // Called from JavaScript; parameters are on stack as if calling JS function.
981 // r3: number of arguments including receiver
982 // r4: pointer to builtin function
983 // fp: frame pointer (restored after C call)
984 // sp: stack pointer (restored as callee's sp after C call)
985 // cp: current context (C callee-saved)
986
987 ProfileEntryHookStub::MaybeCallEntryHook(masm);
988
989 __ mr(r15, r4);
990
991 // Compute the argv pointer.
992 __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2));
993 __ add(r4, r4, sp);
994 __ subi(r4, r4, Operand(kPointerSize));
995
996 // Enter the exit frame that transitions from JavaScript to C++.
997 FrameScope scope(masm, StackFrame::MANUAL);
998
999 // Need at least one extra slot for return address location.
1000 int arg_stack_space = 1;
1001
1002// PPC LINUX ABI:
1003#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
1004 // Pass buffer for return value on stack if necessary
1005 if (result_size() > 1) {
1006 DCHECK_EQ(2, result_size());
1007 arg_stack_space += 2;
1008 }
1009#endif
1010
1011 __ EnterExitFrame(save_doubles(), arg_stack_space);
1012
1013 // Store a copy of argc in callee-saved registers for later.
1014 __ mr(r14, r3);
1015
1016 // r3, r14: number of arguments including receiver (C callee-saved)
1017 // r4: pointer to the first argument
1018 // r15: pointer to builtin function (C callee-saved)
1019
1020 // Result returned in registers or stack, depending on result size and ABI.
1021
1022 Register isolate_reg = r5;
1023#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
1024 if (result_size() > 1) {
1025 // The return value is 16-byte non-scalar value.
1026 // Use frame storage reserved by calling function to pass return
1027 // buffer as implicit first argument.
1028 __ mr(r5, r4);
1029 __ mr(r4, r3);
1030 __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
1031 isolate_reg = r6;
1032 }
1033#endif
1034
1035 // Call C built-in.
1036 __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate())));
1037
1038#if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
1039 // Native AIX/PPC64 Linux use a function descriptor.
1040 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize));
1041 __ LoadP(ip, MemOperand(r15, 0)); // Instruction address
1042 Register target = ip;
1043#elif ABI_TOC_ADDRESSABILITY_VIA_IP
1044 __ Move(ip, r15);
1045 Register target = ip;
1046#else
1047 Register target = r15;
1048#endif
1049
1050 // To let the GC traverse the return address of the exit frames, we need to
1051 // know where the return address is. The CEntryStub is unmovable, so
1052 // we can store the address on the stack to be able to find it again and
1053 // we never have to restore it, because it will not change.
1054 // Compute the return address in lr to return to after the jump below. Pc is
1055 // already at '+ 8' from the current instruction but return is after three
1056 // instructions so add another 4 to pc to get the return address.
1057 {
1058 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
1059 Label here;
1060 __ b(&here, SetLK);
1061 __ bind(&here);
1062 __ mflr(r8);
1063
1064 // Constant used below is dependent on size of Call() macro instructions
1065 __ addi(r0, r8, Operand(20));
1066
1067 __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
1068 __ Call(target);
1069 }
1070
1071#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
1072 // If return value is on the stack, pop it to registers.
1073 if (result_size() > 1) {
1074 __ LoadP(r4, MemOperand(r3, kPointerSize));
1075 __ LoadP(r3, MemOperand(r3));
1076 }
1077#endif
1078
1079 // Runtime functions should not return 'the hole'. Allowing it to escape may
1080 // lead to crashes in the IC code later.
1081 if (FLAG_debug_code) {
1082 Label okay;
1083 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
1084 __ bne(&okay);
1085 __ stop("The hole escaped");
1086 __ bind(&okay);
1087 }
1088
1089 // Check result for exception sentinel.
1090 Label exception_returned;
1091 __ CompareRoot(r3, Heap::kExceptionRootIndex);
1092 __ beq(&exception_returned);
1093
1094 ExternalReference pending_exception_address(Isolate::kPendingExceptionAddress,
1095 isolate());
1096
1097 // Check that there is no pending exception, otherwise we
1098 // should have returned the exception sentinel.
1099 if (FLAG_debug_code) {
1100 Label okay;
1101 __ mov(r5, Operand(pending_exception_address));
1102 __ LoadP(r5, MemOperand(r5));
1103 __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
1104 // Cannot use check here as it attempts to generate call into runtime.
1105 __ beq(&okay);
1106 __ stop("Unexpected pending exception");
1107 __ bind(&okay);
1108 }
1109
1110 // Exit C frame and return.
1111 // r3:r4: result
1112 // sp: stack pointer
1113 // fp: frame pointer
1114 // r14: still holds argc (callee-saved).
1115 __ LeaveExitFrame(save_doubles(), r14, true);
1116 __ blr();
1117
1118 // Handling of exception.
1119 __ bind(&exception_returned);
1120
1121 // Retrieve the pending exception.
1122 __ mov(r5, Operand(pending_exception_address));
1123 __ LoadP(r3, MemOperand(r5));
1124
1125 // Clear the pending exception.
1126 __ LoadRoot(r6, Heap::kTheHoleValueRootIndex);
1127 __ StoreP(r6, MemOperand(r5));
1128
1129 // Special handling of termination exceptions which are uncatchable
1130 // by javascript code.
1131 Label throw_termination_exception;
1132 __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex);
1133 __ beq(&throw_termination_exception);
1134
1135 // Handle normal exception.
1136 __ Throw(r3);
1137
1138 __ bind(&throw_termination_exception);
1139 __ ThrowUncatchable(r3);
1140}
1141
1142
1143void JSEntryStub::Generate(MacroAssembler* masm) {
1144 // r3: code entry
1145 // r4: function
1146 // r5: receiver
1147 // r6: argc
1148 // [sp+0]: argv
1149
1150 Label invoke, handler_entry, exit;
1151
1152// Called from C
1153#if ABI_USES_FUNCTION_DESCRIPTORS
1154 __ function_descriptor();
1155#endif
1156
1157 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1158
1159 // PPC LINUX ABI:
1160 // preserve LR in pre-reserved slot in caller's frame
1161 __ mflr(r0);
1162 __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
1163
1164 // Save callee saved registers on the stack.
1165 __ MultiPush(kCalleeSaved);
1166
1167 // Floating point regs FPR0 - FRP13 are volatile
1168 // FPR14-FPR31 are non-volatile, but sub-calls will save them for us
1169
1170 // int offset_to_argv = kPointerSize * 22; // matches (22*4) above
1171 // __ lwz(r7, MemOperand(sp, offset_to_argv));
1172
1173 // Push a frame with special values setup to mark it as an entry frame.
1174 // r3: code entry
1175 // r4: function
1176 // r5: receiver
1177 // r6: argc
1178 // r7: argv
1179 __ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used.
1180 __ push(r0);
1181#if V8_OOL_CONSTANT_POOL
1182 __ mov(kConstantPoolRegister,
1183 Operand(isolate()->factory()->empty_constant_pool_array()));
1184 __ push(kConstantPoolRegister);
1185#endif
1186 int marker = type();
1187 __ LoadSmiLiteral(r0, Smi::FromInt(marker));
1188 __ push(r0);
1189 __ push(r0);
1190 // Save copies of the top frame descriptor on the stack.
1191 __ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1192 __ LoadP(r0, MemOperand(r8));
1193 __ push(r0);
1194
1195 // Set up frame pointer for the frame to be pushed.
1196 __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1197
1198 // If this is the outermost JS call, set js_entry_sp value.
1199 Label non_outermost_js;
1200 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1201 __ mov(r8, Operand(ExternalReference(js_entry_sp)));
1202 __ LoadP(r9, MemOperand(r8));
1203 __ cmpi(r9, Operand::Zero());
1204 __ bne(&non_outermost_js);
1205 __ StoreP(fp, MemOperand(r8));
1206 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1207 Label cont;
1208 __ b(&cont);
1209 __ bind(&non_outermost_js);
1210 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
1211 __ bind(&cont);
1212 __ push(ip); // frame-type
1213
1214 // Jump to a faked try block that does the invoke, with a faked catch
1215 // block that sets the pending exception.
1216 __ b(&invoke);
1217
1218 __ bind(&handler_entry);
1219 handler_offset_ = handler_entry.pos();
1220 // Caught exception: Store result (exception) in the pending exception
1221 // field in the JSEnv and return a failure sentinel. Coming in here the
1222 // fp will be invalid because the PushTryHandler below sets it to 0 to
1223 // signal the existence of the JSEntry frame.
1224 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1225 isolate())));
1226
1227 __ StoreP(r3, MemOperand(ip));
1228 __ LoadRoot(r3, Heap::kExceptionRootIndex);
1229 __ b(&exit);
1230
1231 // Invoke: Link this frame into the handler chain. There's only one
1232 // handler block in this code object, so its index is 0.
1233 __ bind(&invoke);
1234 // Must preserve r0-r4, r5-r7 are available. (needs update for PPC)
1235 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
1236 // If an exception not caught by another handler occurs, this handler
1237 // returns control to the code after the b(&invoke) above, which
1238 // restores all kCalleeSaved registers (including cp and fp) to their
1239 // saved values before returning a failure to C.
1240
1241 // Clear any pending exceptions.
1242 __ mov(r8, Operand(isolate()->factory()->the_hole_value()));
1243 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1244 isolate())));
1245 __ StoreP(r8, MemOperand(ip));
1246
1247 // Invoke the function by calling through JS entry trampoline builtin.
1248 // Notice that we cannot store a reference to the trampoline code directly in
1249 // this stub, because runtime stubs are not traversed when doing GC.
1250
1251 // Expected registers by Builtins::JSEntryTrampoline
1252 // r3: code entry
1253 // r4: function
1254 // r5: receiver
1255 // r6: argc
1256 // r7: argv
1257 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1258 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1259 isolate());
1260 __ mov(ip, Operand(construct_entry));
1261 } else {
1262 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1263 __ mov(ip, Operand(entry));
1264 }
1265 __ LoadP(ip, MemOperand(ip)); // deref address
1266
1267 // Branch and link to JSEntryTrampoline.
1268 // the address points to the start of the code object, skip the header
1269 __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1270 __ mtctr(ip);
1271 __ bctrl(); // make the call
1272
1273 // Unlink this frame from the handler chain.
1274 __ PopTryHandler();
1275
1276 __ bind(&exit); // r3 holds result
1277 // Check if the current stack frame is marked as the outermost JS frame.
1278 Label non_outermost_js_2;
1279 __ pop(r8);
1280 __ CmpSmiLiteral(r8, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME), r0);
1281 __ bne(&non_outermost_js_2);
1282 __ mov(r9, Operand::Zero());
1283 __ mov(r8, Operand(ExternalReference(js_entry_sp)));
1284 __ StoreP(r9, MemOperand(r8));
1285 __ bind(&non_outermost_js_2);
1286
1287 // Restore the top frame descriptors from the stack.
1288 __ pop(r6);
1289 __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1290 __ StoreP(r6, MemOperand(ip));
1291
1292 // Reset the stack to the callee saved registers.
1293 __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1294
1295// Restore callee-saved registers and return.
1296#ifdef DEBUG
1297 if (FLAG_debug_code) {
1298 Label here;
1299 __ b(&here, SetLK);
1300 __ bind(&here);
1301 }
1302#endif
1303
1304 __ MultiPop(kCalleeSaved);
1305
1306 __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
1307 __ mtctr(r0);
1308 __ bctr();
1309}
1310
1311
1312// Uses registers r3 to r7.
1313// Expected input (depending on whether args are in registers or on the stack):
1314// * object: r3 or at sp + 1 * kPointerSize.
1315// * function: r4 or at sp.
1316//
1317// An inlined call site may have been generated before calling this stub.
1318// In this case the offset to the inline site to patch is passed in r8.
1319// (See LCodeGen::DoInstanceOfKnownGlobal)
1320void InstanceofStub::Generate(MacroAssembler* masm) {
1321 // Call site inlining and patching implies arguments in registers.
1322 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
1323
1324 // Fixed register usage throughout the stub:
1325 const Register object = r3; // Object (lhs).
1326 Register map = r6; // Map of the object.
1327 const Register function = r4; // Function (rhs).
1328 const Register prototype = r7; // Prototype of the function.
1329 const Register inline_site = r9;
1330 const Register scratch = r5;
1331 Register scratch3 = no_reg;
1332
1333// delta = mov + unaligned LoadP + cmp + bne
1334#if V8_TARGET_ARCH_PPC64
1335 const int32_t kDeltaToLoadBoolResult =
1336 (Assembler::kMovInstructions + 4) * Assembler::kInstrSize;
1337#else
1338 const int32_t kDeltaToLoadBoolResult =
1339 (Assembler::kMovInstructions + 3) * Assembler::kInstrSize;
1340#endif
1341
1342 Label slow, loop, is_instance, is_not_instance, not_js_object;
1343
1344 if (!HasArgsInRegisters()) {
1345 __ LoadP(object, MemOperand(sp, 1 * kPointerSize));
1346 __ LoadP(function, MemOperand(sp, 0));
1347 }
1348
1349 // Check that the left hand is a JS object and load map.
1350 __ JumpIfSmi(object, &not_js_object);
1351 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
1352
1353 // If there is a call site cache don't look in the global cache, but do the
1354 // real lookup and update the call site cache.
1355 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
1356 Label miss;
1357 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1358 __ bne(&miss);
1359 __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
1360 __ bne(&miss);
1361 __ LoadRoot(r3, Heap::kInstanceofCacheAnswerRootIndex);
1362 __ Ret(HasArgsInRegisters() ? 0 : 2);
1363
1364 __ bind(&miss);
1365 }
1366
1367 // Get the prototype of the function.
1368 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
1369
1370 // Check that the function prototype is a JS object.
1371 __ JumpIfSmi(prototype, &slow);
1372 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
1373
1374 // Update the global instanceof or call site inlined cache with the current
1375 // map and function. The cached answer will be set when it is known below.
1376 if (!HasCallSiteInlineCheck()) {
1377 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1378 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
1379 } else {
1380 DCHECK(HasArgsInRegisters());
1381 // Patch the (relocated) inlined map check.
1382
1383 // The offset was stored in r8
1384 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1385 const Register offset = r8;
1386 __ mflr(inline_site);
1387 __ sub(inline_site, inline_site, offset);
1388 // Get the map location in r8 and patch it.
1389 __ GetRelocatedValue(inline_site, offset, scratch);
1390 __ StoreP(map, FieldMemOperand(offset, Cell::kValueOffset), r0);
1391 }
1392
1393 // Register mapping: r6 is object map and r7 is function prototype.
1394 // Get prototype of object into r5.
1395 __ LoadP(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
1396
1397 // We don't need map any more. Use it as a scratch register.
1398 scratch3 = map;
1399 map = no_reg;
1400
1401 // Loop through the prototype chain looking for the function prototype.
1402 __ LoadRoot(scratch3, Heap::kNullValueRootIndex);
1403 __ bind(&loop);
1404 __ cmp(scratch, prototype);
1405 __ beq(&is_instance);
1406 __ cmp(scratch, scratch3);
1407 __ beq(&is_not_instance);
1408 __ LoadP(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
1409 __ LoadP(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
1410 __ b(&loop);
1411 Factory* factory = isolate()->factory();
1412
1413 __ bind(&is_instance);
1414 if (!HasCallSiteInlineCheck()) {
1415 __ LoadSmiLiteral(r3, Smi::FromInt(0));
1416 __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex);
1417 if (ReturnTrueFalseObject()) {
1418 __ Move(r3, factory->true_value());
1419 }
1420 } else {
1421 // Patch the call site to return true.
1422 __ LoadRoot(r3, Heap::kTrueValueRootIndex);
1423 __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
1424 // Get the boolean result location in scratch and patch it.
1425 __ SetRelocatedValue(inline_site, scratch, r3);
1426
1427 if (!ReturnTrueFalseObject()) {
1428 __ LoadSmiLiteral(r3, Smi::FromInt(0));
1429 }
1430 }
1431 __ Ret(HasArgsInRegisters() ? 0 : 2);
1432
1433 __ bind(&is_not_instance);
1434 if (!HasCallSiteInlineCheck()) {
1435 __ LoadSmiLiteral(r3, Smi::FromInt(1));
1436 __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex);
1437 if (ReturnTrueFalseObject()) {
1438 __ Move(r3, factory->false_value());
1439 }
1440 } else {
1441 // Patch the call site to return false.
1442 __ LoadRoot(r3, Heap::kFalseValueRootIndex);
1443 __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
1444 // Get the boolean result location in scratch and patch it.
1445 __ SetRelocatedValue(inline_site, scratch, r3);
1446
1447 if (!ReturnTrueFalseObject()) {
1448 __ LoadSmiLiteral(r3, Smi::FromInt(1));
1449 }
1450 }
1451 __ Ret(HasArgsInRegisters() ? 0 : 2);
1452
1453 Label object_not_null, object_not_null_or_smi;
1454 __ bind(&not_js_object);
1455 // Before null, smi and string value checks, check that the rhs is a function
1456 // as for a non-function rhs an exception needs to be thrown.
1457 __ JumpIfSmi(function, &slow);
1458 __ CompareObjectType(function, scratch3, scratch, JS_FUNCTION_TYPE);
1459 __ bne(&slow);
1460
1461 // Null is not instance of anything.
1462 __ Cmpi(object, Operand(isolate()->factory()->null_value()), r0);
1463 __ bne(&object_not_null);
1464 if (ReturnTrueFalseObject()) {
1465 __ Move(r3, factory->false_value());
1466 } else {
1467 __ LoadSmiLiteral(r3, Smi::FromInt(1));
1468 }
1469 __ Ret(HasArgsInRegisters() ? 0 : 2);
1470
1471 __ bind(&object_not_null);
1472 // Smi values are not instances of anything.
1473 __ JumpIfNotSmi(object, &object_not_null_or_smi);
1474 if (ReturnTrueFalseObject()) {
1475 __ Move(r3, factory->false_value());
1476 } else {
1477 __ LoadSmiLiteral(r3, Smi::FromInt(1));
1478 }
1479 __ Ret(HasArgsInRegisters() ? 0 : 2);
1480
1481 __ bind(&object_not_null_or_smi);
1482 // String values are not instances of anything.
1483 __ IsObjectJSStringType(object, scratch, &slow);
1484 if (ReturnTrueFalseObject()) {
1485 __ Move(r3, factory->false_value());
1486 } else {
1487 __ LoadSmiLiteral(r3, Smi::FromInt(1));
1488 }
1489 __ Ret(HasArgsInRegisters() ? 0 : 2);
1490
1491 // Slow-case. Tail call builtin.
1492 __ bind(&slow);
1493 if (!ReturnTrueFalseObject()) {
1494 if (HasArgsInRegisters()) {
1495 __ Push(r3, r4);
1496 }
1497 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
1498 } else {
1499 {
1500 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1501 __ Push(r3, r4);
1502 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
1503 }
1504 Label true_value, done;
1505 __ cmpi(r3, Operand::Zero());
1506 __ beq(&true_value);
1507
1508 __ LoadRoot(r3, Heap::kFalseValueRootIndex);
1509 __ b(&done);
1510
1511 __ bind(&true_value);
1512 __ LoadRoot(r3, Heap::kTrueValueRootIndex);
1513
1514 __ bind(&done);
1515 __ Ret(HasArgsInRegisters() ? 0 : 2);
1516 }
1517}
1518
1519
1520void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1521 Label miss;
1522 Register receiver = LoadDescriptor::ReceiverRegister();
1523
1524 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r6,
1525 r7, &miss);
1526 __ bind(&miss);
1527 PropertyAccessCompiler::TailCallBuiltin(
1528 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1529}
1530
1531
1532void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1533 // Return address is in lr.
1534 Label miss;
1535
1536 Register receiver = LoadDescriptor::ReceiverRegister();
1537 Register index = LoadDescriptor::NameRegister();
1538 Register scratch = r6;
1539 Register result = r3;
1540 DCHECK(!scratch.is(receiver) && !scratch.is(index));
1541
1542 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1543 &miss, // When not a string.
1544 &miss, // When not a number.
1545 &miss, // When index out of range.
1546 STRING_INDEX_IS_ARRAY_INDEX,
1547 RECEIVER_IS_STRING);
1548 char_at_generator.GenerateFast(masm);
1549 __ Ret();
1550
1551 StubRuntimeCallHelper call_helper;
1552 char_at_generator.GenerateSlow(masm, call_helper);
1553
1554 __ bind(&miss);
1555 PropertyAccessCompiler::TailCallBuiltin(
1556 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1557}
1558
1559
1560void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1561 // The displacement is the offset of the last parameter (if any)
1562 // relative to the frame pointer.
1563 const int kDisplacement =
1564 StandardFrameConstants::kCallerSPOffset - kPointerSize;
1565 DCHECK(r4.is(ArgumentsAccessReadDescriptor::index()));
1566 DCHECK(r3.is(ArgumentsAccessReadDescriptor::parameter_count()));
1567
1568 // Check that the key is a smi.
1569 Label slow;
1570 __ JumpIfNotSmi(r4, &slow);
1571
1572 // Check if the calling frame is an arguments adaptor frame.
1573 Label adaptor;
1574 __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1575 __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
1576 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
1577 __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
1578 __ beq(&adaptor);
1579
1580 // Check index against formal parameters count limit passed in
1581 // through register r3. Use unsigned comparison to get negative
1582 // check for free.
1583 __ cmpl(r4, r3);
1584 __ bge(&slow);
1585
1586 // Read the argument from the stack and return it.
1587 __ sub(r6, r3, r4);
1588 __ SmiToPtrArrayOffset(r6, r6);
1589 __ add(r6, fp, r6);
1590 __ LoadP(r3, MemOperand(r6, kDisplacement));
1591 __ blr();
1592
1593 // Arguments adaptor case: Check index against actual arguments
1594 // limit found in the arguments adaptor frame. Use unsigned
1595 // comparison to get negative check for free.
1596 __ bind(&adaptor);
1597 __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
1598 __ cmpl(r4, r3);
1599 __ bge(&slow);
1600
1601 // Read the argument from the adaptor frame and return it.
1602 __ sub(r6, r3, r4);
1603 __ SmiToPtrArrayOffset(r6, r6);
1604 __ add(r6, r5, r6);
1605 __ LoadP(r3, MemOperand(r6, kDisplacement));
1606 __ blr();
1607
1608 // Slow-case: Handle non-smi or out-of-bounds access to arguments
1609 // by calling the runtime system.
1610 __ bind(&slow);
1611 __ push(r4);
1612 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
1613}
1614
1615
1616void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1617 // sp[0] : number of parameters
1618 // sp[1] : receiver displacement
1619 // sp[2] : function
1620
1621 // Check if the calling frame is an arguments adaptor frame.
1622 Label runtime;
1623 __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1624 __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset));
1625 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
1626 __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
1627 __ bne(&runtime);
1628
1629 // Patch the arguments.length and the parameters pointer in the current frame.
1630 __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
1631 __ StoreP(r5, MemOperand(sp, 0 * kPointerSize));
1632 __ SmiToPtrArrayOffset(r5, r5);
1633 __ add(r6, r6, r5);
1634 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
1635 __ StoreP(r6, MemOperand(sp, 1 * kPointerSize));
1636
1637 __ bind(&runtime);
1638 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1639}
1640
1641
1642void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
1643 // Stack layout:
1644 // sp[0] : number of parameters (tagged)
1645 // sp[1] : address of receiver argument
1646 // sp[2] : function
1647 // Registers used over whole function:
1648 // r9 : allocated object (tagged)
1649 // r11 : mapped parameter count (tagged)
1650
1651 __ LoadP(r4, MemOperand(sp, 0 * kPointerSize));
1652 // r4 = parameter count (tagged)
1653
1654 // Check if the calling frame is an arguments adaptor frame.
1655 Label runtime;
1656 Label adaptor_frame, try_allocate;
1657 __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1658 __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset));
1659 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
1660 __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
1661 __ beq(&adaptor_frame);
1662
1663 // No adaptor, parameter count = argument count.
1664 __ mr(r5, r4);
1665 __ b(&try_allocate);
1666
1667 // We have an adaptor frame. Patch the parameters pointer.
1668 __ bind(&adaptor_frame);
1669 __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
1670 __ SmiToPtrArrayOffset(r7, r5);
1671 __ add(r6, r6, r7);
1672 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
1673 __ StoreP(r6, MemOperand(sp, 1 * kPointerSize));
1674
1675 // r4 = parameter count (tagged)
1676 // r5 = argument count (tagged)
1677 // Compute the mapped parameter count = min(r4, r5) in r4.
1678 Label skip;
1679 __ cmp(r4, r5);
1680 __ blt(&skip);
1681 __ mr(r4, r5);
1682 __ bind(&skip);
1683
1684 __ bind(&try_allocate);
1685
1686 // Compute the sizes of backing store, parameter map, and arguments object.
1687 // 1. Parameter map, has 2 extra words containing context and backing store.
1688 const int kParameterMapHeaderSize =
1689 FixedArray::kHeaderSize + 2 * kPointerSize;
1690 // If there are no mapped parameters, we do not need the parameter_map.
1691 Label skip2, skip3;
1692 __ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
1693 __ bne(&skip2);
1694 __ li(r11, Operand::Zero());
1695 __ b(&skip3);
1696 __ bind(&skip2);
1697 __ SmiToPtrArrayOffset(r11, r4);
1698 __ addi(r11, r11, Operand(kParameterMapHeaderSize));
1699 __ bind(&skip3);
1700
1701 // 2. Backing store.
1702 __ SmiToPtrArrayOffset(r7, r5);
1703 __ add(r11, r11, r7);
1704 __ addi(r11, r11, Operand(FixedArray::kHeaderSize));
1705
1706 // 3. Arguments object.
1707 __ addi(r11, r11, Operand(Heap::kSloppyArgumentsObjectSize));
1708
1709 // Do the allocation of all three objects in one go.
1710 __ Allocate(r11, r3, r6, r7, &runtime, TAG_OBJECT);
1711
1712 // r3 = address of new object(s) (tagged)
1713 // r5 = argument count (smi-tagged)
1714 // Get the arguments boilerplate from the current native context into r4.
1715 const int kNormalOffset =
1716 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
1717 const int kAliasedOffset =
1718 Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
1719
1720 __ LoadP(r7,
1721 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1722 __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset));
1723 Label skip4, skip5;
1724 __ cmpi(r4, Operand::Zero());
1725 __ bne(&skip4);
1726 __ LoadP(r7, MemOperand(r7, kNormalOffset));
1727 __ b(&skip5);
1728 __ bind(&skip4);
1729 __ LoadP(r7, MemOperand(r7, kAliasedOffset));
1730 __ bind(&skip5);
1731
1732 // r3 = address of new object (tagged)
1733 // r4 = mapped parameter count (tagged)
1734 // r5 = argument count (smi-tagged)
1735 // r7 = address of arguments map (tagged)
1736 __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0);
1737 __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
1738 __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
1739 __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
1740
1741 // Set up the callee in-object property.
1742 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1743 __ LoadP(r6, MemOperand(sp, 2 * kPointerSize));
1744 __ AssertNotSmi(r6);
1745 const int kCalleeOffset =
1746 JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize;
1747 __ StoreP(r6, FieldMemOperand(r3, kCalleeOffset), r0);
1748
1749 // Use the length (smi tagged) and set that as an in-object property too.
1750 __ AssertSmi(r5);
1751 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1752 const int kLengthOffset =
1753 JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize;
1754 __ StoreP(r5, FieldMemOperand(r3, kLengthOffset), r0);
1755
1756 // Set up the elements pointer in the allocated arguments object.
1757 // If we allocated a parameter map, r7 will point there, otherwise
1758 // it will point to the backing store.
1759 __ addi(r7, r3, Operand(Heap::kSloppyArgumentsObjectSize));
1760 __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
1761
1762 // r3 = address of new object (tagged)
1763 // r4 = mapped parameter count (tagged)
1764 // r5 = argument count (tagged)
1765 // r7 = address of parameter map or backing store (tagged)
1766 // Initialize parameter map. If there are no mapped arguments, we're done.
1767 Label skip_parameter_map, skip6;
1768 __ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
1769 __ bne(&skip6);
1770 // Move backing store address to r6, because it is
1771 // expected there when filling in the unmapped arguments.
1772 __ mr(r6, r7);
1773 __ b(&skip_parameter_map);
1774 __ bind(&skip6);
1775
1776 __ LoadRoot(r9, Heap::kSloppyArgumentsElementsMapRootIndex);
1777 __ StoreP(r9, FieldMemOperand(r7, FixedArray::kMapOffset), r0);
1778 __ AddSmiLiteral(r9, r4, Smi::FromInt(2), r0);
1779 __ StoreP(r9, FieldMemOperand(r7, FixedArray::kLengthOffset), r0);
1780 __ StoreP(cp, FieldMemOperand(r7, FixedArray::kHeaderSize + 0 * kPointerSize),
1781 r0);
1782 __ SmiToPtrArrayOffset(r9, r4);
1783 __ add(r9, r7, r9);
1784 __ addi(r9, r9, Operand(kParameterMapHeaderSize));
1785 __ StoreP(r9, FieldMemOperand(r7, FixedArray::kHeaderSize + 1 * kPointerSize),
1786 r0);
1787
1788 // Copy the parameter slots and the holes in the arguments.
1789 // We need to fill in mapped_parameter_count slots. They index the context,
1790 // where parameters are stored in reverse order, at
1791 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
1792 // The mapped parameter thus need to get indices
1793 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
1794 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
1795 // We loop from right to left.
1796 Label parameters_loop, parameters_test;
1797 __ mr(r9, r4);
1798 __ LoadP(r11, MemOperand(sp, 0 * kPointerSize));
1799 __ AddSmiLiteral(r11, r11, Smi::FromInt(Context::MIN_CONTEXT_SLOTS), r0);
1800 __ sub(r11, r11, r4);
1801 __ LoadRoot(r10, Heap::kTheHoleValueRootIndex);
1802 __ SmiToPtrArrayOffset(r6, r9);
1803 __ add(r6, r7, r6);
1804 __ addi(r6, r6, Operand(kParameterMapHeaderSize));
1805
1806 // r9 = loop variable (tagged)
1807 // r4 = mapping index (tagged)
1808 // r6 = address of backing store (tagged)
1809 // r7 = address of parameter map (tagged)
1810 // r8 = temporary scratch (a.o., for address calculation)
1811 // r10 = the hole value
1812 __ b(&parameters_test);
1813
1814 __ bind(&parameters_loop);
1815 __ SubSmiLiteral(r9, r9, Smi::FromInt(1), r0);
1816 __ SmiToPtrArrayOffset(r8, r9);
1817 __ addi(r8, r8, Operand(kParameterMapHeaderSize - kHeapObjectTag));
1818 __ StorePX(r11, MemOperand(r8, r7));
1819 __ subi(r8, r8, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
1820 __ StorePX(r10, MemOperand(r8, r6));
1821 __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0);
1822 __ bind(&parameters_test);
1823 __ CmpSmiLiteral(r9, Smi::FromInt(0), r0);
1824 __ bne(&parameters_loop);
1825
1826 __ bind(&skip_parameter_map);
1827 // r5 = argument count (tagged)
1828 // r6 = address of backing store (tagged)
1829 // r8 = scratch
1830 // Copy arguments header and remaining slots (if there are any).
1831 __ LoadRoot(r8, Heap::kFixedArrayMapRootIndex);
1832 __ StoreP(r8, FieldMemOperand(r6, FixedArray::kMapOffset), r0);
1833 __ StoreP(r5, FieldMemOperand(r6, FixedArray::kLengthOffset), r0);
1834
1835 Label arguments_loop, arguments_test;
1836 __ mr(r11, r4);
1837 __ LoadP(r7, MemOperand(sp, 1 * kPointerSize));
1838 __ SmiToPtrArrayOffset(r8, r11);
1839 __ sub(r7, r7, r8);
1840 __ b(&arguments_test);
1841
1842 __ bind(&arguments_loop);
1843 __ subi(r7, r7, Operand(kPointerSize));
1844 __ LoadP(r9, MemOperand(r7, 0));
1845 __ SmiToPtrArrayOffset(r8, r11);
1846 __ add(r8, r6, r8);
1847 __ StoreP(r9, FieldMemOperand(r8, FixedArray::kHeaderSize), r0);
1848 __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0);
1849
1850 __ bind(&arguments_test);
1851 __ cmp(r11, r5);
1852 __ blt(&arguments_loop);
1853
1854 // Return and remove the on-stack parameters.
1855 __ addi(sp, sp, Operand(3 * kPointerSize));
1856 __ Ret();
1857
1858 // Do the runtime call to allocate the arguments object.
1859 // r5 = argument count (tagged)
1860 __ bind(&runtime);
1861 __ StoreP(r5, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
1862 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1863}
1864
1865
1866void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
1867 // Return address is in lr.
1868 Label slow;
1869
1870 Register receiver = LoadDescriptor::ReceiverRegister();
1871 Register key = LoadDescriptor::NameRegister();
1872
1873 // Check that the key is an array index, that is Uint32.
1874 __ TestIfPositiveSmi(key, r0);
1875 __ bne(&slow, cr0);
1876
1877 // Everything is fine, call runtime.
1878 __ Push(receiver, key); // Receiver, key.
1879
1880 // Perform tail call to the entry.
1881 __ TailCallExternalReference(
1882 ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
1883 masm->isolate()),
1884 2, 1);
1885
1886 __ bind(&slow);
1887 PropertyAccessCompiler::TailCallBuiltin(
1888 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1889}
1890
1891
1892void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1893 // sp[0] : number of parameters
1894 // sp[4] : receiver displacement
1895 // sp[8] : function
1896 // Check if the calling frame is an arguments adaptor frame.
1897 Label adaptor_frame, try_allocate, runtime;
1898 __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1899 __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
1900 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
1901 __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
1902 __ beq(&adaptor_frame);
1903
1904 // Get the length from the frame.
1905 __ LoadP(r4, MemOperand(sp, 0));
1906 __ b(&try_allocate);
1907
1908 // Patch the arguments.length and the parameters pointer.
1909 __ bind(&adaptor_frame);
1910 __ LoadP(r4, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
1911 __ StoreP(r4, MemOperand(sp, 0));
1912 __ SmiToPtrArrayOffset(r6, r4);
1913 __ add(r6, r5, r6);
1914 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
1915 __ StoreP(r6, MemOperand(sp, 1 * kPointerSize));
1916
1917 // Try the new space allocation. Start out with computing the size
1918 // of the arguments object and the elements array in words.
1919 Label add_arguments_object;
1920 __ bind(&try_allocate);
1921 __ cmpi(r4, Operand::Zero());
1922 __ beq(&add_arguments_object);
1923 __ SmiUntag(r4);
1924 __ addi(r4, r4, Operand(FixedArray::kHeaderSize / kPointerSize));
1925 __ bind(&add_arguments_object);
1926 __ addi(r4, r4, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
1927
1928 // Do the allocation of both objects in one go.
1929 __ Allocate(r4, r3, r5, r6, &runtime,
1930 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
1931
1932 // Get the arguments boilerplate from the current native context.
1933 __ LoadP(r7,
1934 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1935 __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset));
1936 __ LoadP(
1937 r7,
1938 MemOperand(r7, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX)));
1939
1940 __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0);
1941 __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
1942 __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
1943 __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
1944
1945 // Get the length (smi tagged) and set that as an in-object property too.
1946 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1947 __ LoadP(r4, MemOperand(sp, 0 * kPointerSize));
1948 __ AssertSmi(r4);
1949 __ StoreP(r4,
1950 FieldMemOperand(r3, JSObject::kHeaderSize +
1951 Heap::kArgumentsLengthIndex * kPointerSize),
1952 r0);
1953
1954 // If there are no actual arguments, we're done.
1955 Label done;
1956 __ cmpi(r4, Operand::Zero());
1957 __ beq(&done);
1958
1959 // Get the parameters pointer from the stack.
1960 __ LoadP(r5, MemOperand(sp, 1 * kPointerSize));
1961
1962 // Set up the elements pointer in the allocated arguments object and
1963 // initialize the header in the elements fixed array.
1964 __ addi(r7, r3, Operand(Heap::kStrictArgumentsObjectSize));
1965 __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
1966 __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
1967 __ StoreP(r6, FieldMemOperand(r7, FixedArray::kMapOffset), r0);
1968 __ StoreP(r4, FieldMemOperand(r7, FixedArray::kLengthOffset), r0);
1969 // Untag the length for the loop.
1970 __ SmiUntag(r4);
1971
1972 // Copy the fixed array slots.
1973 Label loop;
1974 // Set up r7 to point just prior to the first array slot.
1975 __ addi(r7, r7,
1976 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
1977 __ mtctr(r4);
1978 __ bind(&loop);
1979 // Pre-decrement r5 with kPointerSize on each iteration.
1980 // Pre-decrement in order to skip receiver.
1981 __ LoadPU(r6, MemOperand(r5, -kPointerSize));
1982 // Pre-increment r7 with kPointerSize on each iteration.
1983 __ StorePU(r6, MemOperand(r7, kPointerSize));
1984 __ bdnz(&loop);
1985
1986 // Return and remove the on-stack parameters.
1987 __ bind(&done);
1988 __ addi(sp, sp, Operand(3 * kPointerSize));
1989 __ Ret();
1990
1991 // Do the runtime call to allocate the arguments object.
1992 __ bind(&runtime);
1993 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
1994}
1995
1996
1997void RegExpExecStub::Generate(MacroAssembler* masm) {
1998// Just jump directly to runtime if native RegExp is not selected at compile
1999// time or if regexp entry in generated code is turned off runtime switch or
2000// at compilation.
2001#ifdef V8_INTERPRETED_REGEXP
2002 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2003#else // V8_INTERPRETED_REGEXP
2004
2005 // Stack frame on entry.
2006 // sp[0]: last_match_info (expected JSArray)
2007 // sp[4]: previous index
2008 // sp[8]: subject string
2009 // sp[12]: JSRegExp object
2010
2011 const int kLastMatchInfoOffset = 0 * kPointerSize;
2012 const int kPreviousIndexOffset = 1 * kPointerSize;
2013 const int kSubjectOffset = 2 * kPointerSize;
2014 const int kJSRegExpOffset = 3 * kPointerSize;
2015
2016 Label runtime, br_over, encoding_type_UC16;
2017
2018 // Allocation of registers for this function. These are in callee save
2019 // registers and will be preserved by the call to the native RegExp code, as
2020 // this code is called using the normal C calling convention. When calling
2021 // directly from generated code the native RegExp code will not do a GC and
2022 // therefore the content of these registers are safe to use after the call.
2023 Register subject = r14;
2024 Register regexp_data = r15;
2025 Register last_match_info_elements = r16;
2026 Register code = r17;
2027
2028 // Ensure register assigments are consistent with callee save masks
2029 DCHECK(subject.bit() & kCalleeSaved);
2030 DCHECK(regexp_data.bit() & kCalleeSaved);
2031 DCHECK(last_match_info_elements.bit() & kCalleeSaved);
2032 DCHECK(code.bit() & kCalleeSaved);
2033
2034 // Ensure that a RegExp stack is allocated.
2035 ExternalReference address_of_regexp_stack_memory_address =
2036 ExternalReference::address_of_regexp_stack_memory_address(isolate());
2037 ExternalReference address_of_regexp_stack_memory_size =
2038 ExternalReference::address_of_regexp_stack_memory_size(isolate());
2039 __ mov(r3, Operand(address_of_regexp_stack_memory_size));
2040 __ LoadP(r3, MemOperand(r3, 0));
2041 __ cmpi(r3, Operand::Zero());
2042 __ beq(&runtime);
2043
2044 // Check that the first argument is a JSRegExp object.
2045 __ LoadP(r3, MemOperand(sp, kJSRegExpOffset));
2046 __ JumpIfSmi(r3, &runtime);
2047 __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
2048 __ bne(&runtime);
2049
2050 // Check that the RegExp has been compiled (data contains a fixed array).
2051 __ LoadP(regexp_data, FieldMemOperand(r3, JSRegExp::kDataOffset));
2052 if (FLAG_debug_code) {
2053 __ TestIfSmi(regexp_data, r0);
2054 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0);
2055 __ CompareObjectType(regexp_data, r3, r3, FIXED_ARRAY_TYPE);
2056 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2057 }
2058
2059 // regexp_data: RegExp data (FixedArray)
2060 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2061 __ LoadP(r3, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2062 // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu);
2063 __ CmpSmiLiteral(r3, Smi::FromInt(JSRegExp::IRREGEXP), r0);
2064 __ bne(&runtime);
2065
2066 // regexp_data: RegExp data (FixedArray)
2067 // Check that the number of captures fit in the static offsets vector buffer.
2068 __ LoadP(r5,
2069 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2070 // Check (number_of_captures + 1) * 2 <= offsets vector size
2071 // Or number_of_captures * 2 <= offsets vector size - 2
2072 // SmiToShortArrayOffset accomplishes the multiplication by 2 and
2073 // SmiUntag (which is a nop for 32-bit).
2074 __ SmiToShortArrayOffset(r5, r5);
2075 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2076 __ cmpli(r5, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
2077 __ bgt(&runtime);
2078
2079 // Reset offset for possibly sliced string.
2080 __ li(r11, Operand::Zero());
2081 __ LoadP(subject, MemOperand(sp, kSubjectOffset));
2082 __ JumpIfSmi(subject, &runtime);
2083 __ mr(r6, subject); // Make a copy of the original subject string.
2084 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
2085 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
2086 // subject: subject string
2087 // r6: subject string
2088 // r3: subject string instance type
2089 // regexp_data: RegExp data (FixedArray)
2090 // Handle subject string according to its encoding and representation:
2091 // (1) Sequential string? If yes, go to (5).
2092 // (2) Anything but sequential or cons? If yes, go to (6).
2093 // (3) Cons string. If the string is flat, replace subject with first string.
2094 // Otherwise bailout.
2095 // (4) Is subject external? If yes, go to (7).
2096 // (5) Sequential string. Load regexp code according to encoding.
2097 // (E) Carry on.
2098 /// [...]
2099
2100 // Deferred code at the end of the stub:
2101 // (6) Not a long external string? If yes, go to (8).
2102 // (7) External string. Make it, offset-wise, look like a sequential string.
2103 // Go to (5).
2104 // (8) Short external string or not a string? If yes, bail out to runtime.
2105 // (9) Sliced string. Replace subject with parent. Go to (4).
2106
2107 Label seq_string /* 5 */, external_string /* 7 */, check_underlying /* 4 */,
2108 not_seq_nor_cons /* 6 */, not_long_external /* 8 */;
2109
2110 // (1) Sequential string? If yes, go to (5).
2111 STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask |
2112 kShortExternalStringMask) == 0x93);
2113 __ andi(r4, r3, Operand(kIsNotStringMask | kStringRepresentationMask |
2114 kShortExternalStringMask));
2115 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2116 __ beq(&seq_string, cr0); // Go to (5).
2117
2118 // (2) Anything but sequential or cons? If yes, go to (6).
2119 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2120 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2121 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2122 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2123 STATIC_ASSERT(kExternalStringTag < 0xffffu);
2124 __ cmpi(r4, Operand(kExternalStringTag));
2125 __ bge(&not_seq_nor_cons); // Go to (6).
2126
2127 // (3) Cons string. Check that it's flat.
2128 // Replace subject with first string and reload instance type.
2129 __ LoadP(r3, FieldMemOperand(subject, ConsString::kSecondOffset));
2130 __ CompareRoot(r3, Heap::kempty_stringRootIndex);
2131 __ bne(&runtime);
2132 __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2133
2134 // (4) Is subject external? If yes, go to (7).
2135 __ bind(&check_underlying);
2136 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
2137 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
2138 STATIC_ASSERT(kSeqStringTag == 0);
2139 STATIC_ASSERT(kStringRepresentationMask == 3);
2140 __ andi(r0, r3, Operand(kStringRepresentationMask));
2141 // The underlying external string is never a short external string.
2142 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2143 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2144 __ bne(&external_string, cr0); // Go to (7).
2145
2146 // (5) Sequential string. Load regexp code according to encoding.
2147 __ bind(&seq_string);
2148 // subject: sequential subject string (or look-alike, external string)
2149 // r6: original subject string
2150 // Load previous index and check range before r6 is overwritten. We have to
2151 // use r6 instead of subject here because subject might have been only made
2152 // to look like a sequential string when it actually is an external string.
2153 __ LoadP(r4, MemOperand(sp, kPreviousIndexOffset));
2154 __ JumpIfNotSmi(r4, &runtime);
2155 __ LoadP(r6, FieldMemOperand(r6, String::kLengthOffset));
2156 __ cmpl(r6, r4);
2157 __ ble(&runtime);
2158 __ SmiUntag(r4);
2159
2160 STATIC_ASSERT(4 == kOneByteStringTag);
2161 STATIC_ASSERT(kTwoByteStringTag == 0);
2162 STATIC_ASSERT(kStringEncodingMask == 4);
2163 __ ExtractBitMask(r6, r3, kStringEncodingMask, SetRC);
2164 __ beq(&encoding_type_UC16, cr0);
2165 __ LoadP(code,
2166 FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
2167 __ b(&br_over);
2168 __ bind(&encoding_type_UC16);
2169 __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
2170 __ bind(&br_over);
2171
2172 // (E) Carry on. String handling is done.
2173 // code: irregexp code
2174 // Check that the irregexp code has been generated for the actual string
2175 // encoding. If it has, the field contains a code object otherwise it contains
2176 // a smi (code flushing support).
2177 __ JumpIfSmi(code, &runtime);
2178
2179 // r4: previous index
2180 // r6: encoding of subject string (1 if one_byte, 0 if two_byte);
2181 // code: Address of generated regexp code
2182 // subject: Subject string
2183 // regexp_data: RegExp data (FixedArray)
2184 // All checks done. Now push arguments for native regexp code.
2185 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r3, r5);
2186
2187 // Isolates: note we add an additional parameter here (isolate pointer).
2188 const int kRegExpExecuteArguments = 10;
2189 const int kParameterRegisters = 8;
2190 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
2191
2192 // Stack pointer now points to cell where return address is to be written.
2193 // Arguments are before that on the stack or in registers.
2194
2195 // Argument 10 (in stack parameter area): Pass current isolate address.
2196 __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
2197 __ StoreP(r3, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
2198
2199 // Argument 9 is a dummy that reserves the space used for
2200 // the return address added by the ExitFrame in native calls.
2201
2202 // Argument 8 (r10): Indicate that this is a direct call from JavaScript.
2203 __ li(r10, Operand(1));
2204
2205 // Argument 7 (r9): Start (high end) of backtracking stack memory area.
2206 __ mov(r3, Operand(address_of_regexp_stack_memory_address));
2207 __ LoadP(r3, MemOperand(r3, 0));
2208 __ mov(r5, Operand(address_of_regexp_stack_memory_size));
2209 __ LoadP(r5, MemOperand(r5, 0));
2210 __ add(r9, r3, r5);
2211
2212 // Argument 6 (r8): Set the number of capture registers to zero to force
2213 // global egexps to behave as non-global. This does not affect non-global
2214 // regexps.
2215 __ li(r8, Operand::Zero());
2216
2217 // Argument 5 (r7): static offsets vector buffer.
2218 __ mov(
2219 r7,
2220 Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
2221
2222 // For arguments 4 (r6) and 3 (r5) get string length, calculate start of data
2223 // and calculate the shift of the index (0 for one-byte and 1 for two-byte).
2224 __ addi(r18, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
2225 __ xori(r6, r6, Operand(1));
2226 // Load the length from the original subject string from the previous stack
2227 // frame. Therefore we have to use fp, which points exactly to two pointer
2228 // sizes below the previous sp. (Because creating a new stack frame pushes
2229 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
2230 __ LoadP(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2231 // If slice offset is not 0, load the length from the original sliced string.
2232 // Argument 4, r6: End of string data
2233 // Argument 3, r5: Start of string data
2234 // Prepare start and end index of the input.
2235 __ ShiftLeft_(r11, r11, r6);
2236 __ add(r11, r18, r11);
2237 __ ShiftLeft_(r5, r4, r6);
2238 __ add(r5, r11, r5);
2239
2240 __ LoadP(r18, FieldMemOperand(subject, String::kLengthOffset));
2241 __ SmiUntag(r18);
2242 __ ShiftLeft_(r6, r18, r6);
2243 __ add(r6, r11, r6);
2244
2245 // Argument 2 (r4): Previous index.
2246 // Already there
2247
2248 // Argument 1 (r3): Subject string.
2249 __ mr(r3, subject);
2250
2251 // Locate the code entry and call it.
2252 __ addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
2253
2254
2255#if ABI_USES_FUNCTION_DESCRIPTORS && defined(USE_SIMULATOR)
2256 // Even Simulated AIX/PPC64 Linux uses a function descriptor for the
2257 // RegExp routine. Extract the instruction address here since
2258 // DirectCEntryStub::GenerateCall will not do it for calls out to
2259 // what it thinks is C code compiled for the simulator/host
2260 // platform.
2261 __ LoadP(code, MemOperand(code, 0)); // Instruction address
2262#endif
2263
2264 DirectCEntryStub stub(isolate());
2265 stub.GenerateCall(masm, code);
2266
2267 __ LeaveExitFrame(false, no_reg, true);
2268
2269 // r3: result
2270 // subject: subject string (callee saved)
2271 // regexp_data: RegExp data (callee saved)
2272 // last_match_info_elements: Last match info elements (callee saved)
2273 // Check the result.
2274 Label success;
2275 __ cmpi(r3, Operand(1));
2276 // We expect exactly one result since we force the called regexp to behave
2277 // as non-global.
2278 __ beq(&success);
2279 Label failure;
2280 __ cmpi(r3, Operand(NativeRegExpMacroAssembler::FAILURE));
2281 __ beq(&failure);
2282 __ cmpi(r3, Operand(NativeRegExpMacroAssembler::EXCEPTION));
2283 // If not exception it can only be retry. Handle that in the runtime system.
2284 __ bne(&runtime);
2285 // Result must now be exception. If there is no pending exception already a
2286 // stack overflow (on the backtrack stack) was detected in RegExp code but
2287 // haven't created the exception yet. Handle that in the runtime system.
2288 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
2289 __ mov(r4, Operand(isolate()->factory()->the_hole_value()));
2290 __ mov(r5, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2291 isolate())));
2292 __ LoadP(r3, MemOperand(r5, 0));
2293 __ cmp(r3, r4);
2294 __ beq(&runtime);
2295
2296 __ StoreP(r4, MemOperand(r5, 0)); // Clear pending exception.
2297
2298 // Check if the exception is a termination. If so, throw as uncatchable.
2299 __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex);
2300
2301 Label termination_exception;
2302 __ beq(&termination_exception);
2303
2304 __ Throw(r3);
2305
2306 __ bind(&termination_exception);
2307 __ ThrowUncatchable(r3);
2308
2309 __ bind(&failure);
2310 // For failure and exception return null.
2311 __ mov(r3, Operand(isolate()->factory()->null_value()));
2312 __ addi(sp, sp, Operand(4 * kPointerSize));
2313 __ Ret();
2314
2315 // Process the result from the native regexp code.
2316 __ bind(&success);
2317 __ LoadP(r4,
2318 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2319 // Calculate number of capture registers (number_of_captures + 1) * 2.
2320 // SmiToShortArrayOffset accomplishes the multiplication by 2 and
2321 // SmiUntag (which is a nop for 32-bit).
2322 __ SmiToShortArrayOffset(r4, r4);
2323 __ addi(r4, r4, Operand(2));
2324
2325 __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset));
2326 __ JumpIfSmi(r3, &runtime);
2327 __ CompareObjectType(r3, r5, r5, JS_ARRAY_TYPE);
2328 __ bne(&runtime);
2329 // Check that the JSArray is in fast case.
2330 __ LoadP(last_match_info_elements,
2331 FieldMemOperand(r3, JSArray::kElementsOffset));
2332 __ LoadP(r3,
2333 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2334 __ CompareRoot(r3, Heap::kFixedArrayMapRootIndex);
2335 __ bne(&runtime);
2336 // Check that the last match info has space for the capture registers and the
2337 // additional information.
2338 __ LoadP(
2339 r3, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
2340 __ addi(r5, r4, Operand(RegExpImpl::kLastMatchOverhead));
2341 __ SmiUntag(r0, r3);
2342 __ cmp(r5, r0);
2343 __ bgt(&runtime);
2344
2345 // r4: number of capture registers
2346 // subject: subject string
2347 // Store the capture count.
2348 __ SmiTag(r5, r4);
2349 __ StoreP(r5, FieldMemOperand(last_match_info_elements,
2350 RegExpImpl::kLastCaptureCountOffset),
2351 r0);
2352 // Store last subject and last input.
2353 __ StoreP(subject, FieldMemOperand(last_match_info_elements,
2354 RegExpImpl::kLastSubjectOffset),
2355 r0);
2356 __ mr(r5, subject);
2357 __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset,
2358 subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs);
2359 __ mr(subject, r5);
2360 __ StoreP(subject, FieldMemOperand(last_match_info_elements,
2361 RegExpImpl::kLastInputOffset),
2362 r0);
2363 __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset,
2364 subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs);
2365
2366 // Get the static offsets vector filled by the native regexp code.
2367 ExternalReference address_of_static_offsets_vector =
2368 ExternalReference::address_of_static_offsets_vector(isolate());
2369 __ mov(r5, Operand(address_of_static_offsets_vector));
2370
2371 // r4: number of capture registers
2372 // r5: offsets vector
2373 Label next_capture;
2374 // Capture register counter starts from number of capture registers and
2375 // counts down until wraping after zero.
2376 __ addi(
2377 r3, last_match_info_elements,
2378 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag - kPointerSize));
2379 __ addi(r5, r5, Operand(-kIntSize)); // bias down for lwzu
2380 __ mtctr(r4);
2381 __ bind(&next_capture);
2382 // Read the value from the static offsets vector buffer.
2383 __ lwzu(r6, MemOperand(r5, kIntSize));
2384 // Store the smi value in the last match info.
2385 __ SmiTag(r6);
2386 __ StorePU(r6, MemOperand(r3, kPointerSize));
2387 __ bdnz(&next_capture);
2388
2389 // Return last match info.
2390 __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset));
2391 __ addi(sp, sp, Operand(4 * kPointerSize));
2392 __ Ret();
2393
2394 // Do the runtime call to execute the regexp.
2395 __ bind(&runtime);
2396 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2397
2398 // Deferred code for string handling.
2399 // (6) Not a long external string? If yes, go to (8).
2400 __ bind(&not_seq_nor_cons);
2401 // Compare flags are still set.
2402 __ bgt(&not_long_external); // Go to (8).
2403
2404 // (7) External string. Make it, offset-wise, look like a sequential string.
2405 __ bind(&external_string);
2406 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
2407 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
2408 if (FLAG_debug_code) {
2409 // Assert that we do not have a cons or slice (indirect strings) here.
2410 // Sequential strings have already been ruled out.
2411 STATIC_ASSERT(kIsIndirectStringMask == 1);
2412 __ andi(r0, r3, Operand(kIsIndirectStringMask));
2413 __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
2414 }
2415 __ LoadP(subject,
2416 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2417 // Move the pointer so that offset-wise, it looks like a sequential string.
2418 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2419 __ subi(subject, subject,
2420 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2421 __ b(&seq_string); // Go to (5).
2422
2423 // (8) Short external string or not a string? If yes, bail out to runtime.
2424 __ bind(&not_long_external);
2425 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0);
2426 __ andi(r0, r4, Operand(kIsNotStringMask | kShortExternalStringMask));
2427 __ bne(&runtime, cr0);
2428
2429 // (9) Sliced string. Replace subject with parent. Go to (4).
2430 // Load offset into r11 and replace subject string with parent.
2431 __ LoadP(r11, FieldMemOperand(subject, SlicedString::kOffsetOffset));
2432 __ SmiUntag(r11);
2433 __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2434 __ b(&check_underlying); // Go to (4).
2435#endif // V8_INTERPRETED_REGEXP
2436}
2437
2438
2439static void GenerateRecordCallTarget(MacroAssembler* masm) {
2440 // Cache the called function in a feedback vector slot. Cache states
2441 // are uninitialized, monomorphic (indicated by a JSFunction), and
2442 // megamorphic.
2443 // r3 : number of arguments to the construct function
2444 // r4 : the function to call
2445 // r5 : Feedback vector
2446 // r6 : slot in feedback vector (Smi)
2447 Label initialize, done, miss, megamorphic, not_array_function;
2448
2449 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2450 masm->isolate()->heap()->megamorphic_symbol());
2451 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2452 masm->isolate()->heap()->uninitialized_symbol());
2453
2454 // Load the cache state into r7.
2455 __ SmiToPtrArrayOffset(r7, r6);
2456 __ add(r7, r5, r7);
2457 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
2458
2459 // A monomorphic cache hit or an already megamorphic state: invoke the
2460 // function without changing the state.
2461 __ cmp(r7, r4);
2462 __ b(eq, &done);
2463
2464 if (!FLAG_pretenuring_call_new) {
2465 // If we came here, we need to see if we are the array function.
2466 // If we didn't have a matching function, and we didn't find the megamorph
2467 // sentinel, then we have in the slot either some other function or an
2468 // AllocationSite. Do a map check on the object in ecx.
2469 __ LoadP(r8, FieldMemOperand(r7, 0));
2470 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
2471 __ bne(&miss);
2472
2473 // Make sure the function is the Array() function
2474 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7);
2475 __ cmp(r4, r7);
2476 __ bne(&megamorphic);
2477 __ b(&done);
2478 }
2479
2480 __ bind(&miss);
2481
2482 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2483 // megamorphic.
2484 __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex);
2485 __ beq(&initialize);
2486 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2487 // write-barrier is needed.
2488 __ bind(&megamorphic);
2489 __ SmiToPtrArrayOffset(r7, r6);
2490 __ add(r7, r5, r7);
2491 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
2492 __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0);
2493 __ jmp(&done);
2494
2495 // An uninitialized cache is patched with the function
2496 __ bind(&initialize);
2497
2498 if (!FLAG_pretenuring_call_new) {
2499 // Make sure the function is the Array() function.
2500 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7);
2501 __ cmp(r4, r7);
2502 __ bne(&not_array_function);
2503
2504 // The target function is the Array constructor,
2505 // Create an AllocationSite if we don't already have it, store it in the
2506 // slot.
2507 {
2508 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2509
2510 // Arguments register must be smi-tagged to call out.
2511 __ SmiTag(r3);
2512 __ Push(r6, r5, r4, r3);
2513
2514 CreateAllocationSiteStub create_stub(masm->isolate());
2515 __ CallStub(&create_stub);
2516
2517 __ Pop(r6, r5, r4, r3);
2518 __ SmiUntag(r3);
2519 }
2520 __ b(&done);
2521
2522 __ bind(&not_array_function);
2523 }
2524
2525 __ SmiToPtrArrayOffset(r7, r6);
2526 __ add(r7, r5, r7);
2527 __ addi(r7, r7, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2528 __ StoreP(r4, MemOperand(r7, 0));
2529
2530 __ Push(r7, r5, r4);
2531 __ RecordWrite(r5, r7, r4, kLRHasNotBeenSaved, kDontSaveFPRegs,
2532 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2533 __ Pop(r7, r5, r4);
2534
2535 __ bind(&done);
2536}
2537
2538
2539static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2540 // Do not transform the receiver for strict mode functions and natives.
2541 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
2542 __ lwz(r7, FieldMemOperand(r6, SharedFunctionInfo::kCompilerHintsOffset));
2543 __ TestBit(r7,
2544#if V8_TARGET_ARCH_PPC64
2545 SharedFunctionInfo::kStrictModeFunction,
2546#else
2547 SharedFunctionInfo::kStrictModeFunction + kSmiTagSize,
2548#endif
2549 r0);
2550 __ bne(cont, cr0);
2551
2552 // Do not transform the receiver for native.
2553 __ TestBit(r7,
2554#if V8_TARGET_ARCH_PPC64
2555 SharedFunctionInfo::kNative,
2556#else
2557 SharedFunctionInfo::kNative + kSmiTagSize,
2558#endif
2559 r0);
2560 __ bne(cont, cr0);
2561}
2562
2563
2564static void EmitSlowCase(MacroAssembler* masm, int argc, Label* non_function) {
2565 // Check for function proxy.
2566 STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu);
2567 __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE));
2568 __ bne(non_function);
2569 __ push(r4); // put proxy as additional argument
2570 __ li(r3, Operand(argc + 1));
2571 __ li(r5, Operand::Zero());
2572 __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY);
2573 {
2574 Handle<Code> adaptor =
2575 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
2576 __ Jump(adaptor, RelocInfo::CODE_TARGET);
2577 }
2578
2579 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2580 // of the original receiver from the call site).
2581 __ bind(non_function);
2582 __ StoreP(r4, MemOperand(sp, argc * kPointerSize), r0);
2583 __ li(r3, Operand(argc)); // Set up the number of arguments.
2584 __ li(r5, Operand::Zero());
2585 __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION);
2586 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2587 RelocInfo::CODE_TARGET);
2588}
2589
2590
2591static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2592 // Wrap the receiver and patch it back onto the stack.
2593 {
2594 FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
2595 __ Push(r4, r6);
2596 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2597 __ pop(r4);
2598 }
2599 __ StoreP(r3, MemOperand(sp, argc * kPointerSize), r0);
2600 __ b(cont);
2601}
2602
2603
2604static void CallFunctionNoFeedback(MacroAssembler* masm, int argc,
2605 bool needs_checks, bool call_as_method) {
2606 // r4 : the function to call
2607 Label slow, non_function, wrap, cont;
2608
2609 if (needs_checks) {
2610 // Check that the function is really a JavaScript function.
2611 // r4: pushed function (to be verified)
2612 __ JumpIfSmi(r4, &non_function);
2613
2614 // Goto slow case if we do not have a function.
2615 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
2616 __ bne(&slow);
2617 }
2618
2619 // Fast-case: Invoke the function now.
2620 // r4: pushed function
2621 ParameterCount actual(argc);
2622
2623 if (call_as_method) {
2624 if (needs_checks) {
2625 EmitContinueIfStrictOrNative(masm, &cont);
2626 }
2627
2628 // Compute the receiver in sloppy mode.
2629 __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0);
2630
2631 if (needs_checks) {
2632 __ JumpIfSmi(r6, &wrap);
2633 __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE);
2634 __ blt(&wrap);
2635 } else {
2636 __ b(&wrap);
2637 }
2638
2639 __ bind(&cont);
2640 }
2641
2642 __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper());
2643
2644 if (needs_checks) {
2645 // Slow-case: Non-function called.
2646 __ bind(&slow);
2647 EmitSlowCase(masm, argc, &non_function);
2648 }
2649
2650 if (call_as_method) {
2651 __ bind(&wrap);
2652 EmitWrapCase(masm, argc, &cont);
2653 }
2654}
2655
2656
2657void CallFunctionStub::Generate(MacroAssembler* masm) {
2658 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2659}
2660
2661
2662void CallConstructStub::Generate(MacroAssembler* masm) {
2663 // r3 : number of arguments
2664 // r4 : the function to call
2665 // r5 : feedback vector
2666 // r6 : (only if r5 is not the megamorphic symbol) slot in feedback
2667 // vector (Smi)
2668 Label slow, non_function_call;
2669
2670 // Check that the function is not a smi.
2671 __ JumpIfSmi(r4, &non_function_call);
2672 // Check that the function is a JSFunction.
2673 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
2674 __ bne(&slow);
2675
2676 if (RecordCallTarget()) {
2677 GenerateRecordCallTarget(masm);
2678
2679 __ SmiToPtrArrayOffset(r8, r6);
2680 __ add(r8, r5, r8);
2681 if (FLAG_pretenuring_call_new) {
2682 // Put the AllocationSite from the feedback vector into r5.
2683 // By adding kPointerSize we encode that we know the AllocationSite
2684 // entry is at the feedback vector slot given by r6 + 1.
2685 __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize + kPointerSize));
2686 } else {
2687 Label feedback_register_initialized;
2688 // Put the AllocationSite from the feedback vector into r5, or undefined.
2689 __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize));
2690 __ LoadP(r8, FieldMemOperand(r5, AllocationSite::kMapOffset));
2691 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
2692 __ beq(&feedback_register_initialized);
2693 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
2694 __ bind(&feedback_register_initialized);
2695 }
2696
2697 __ AssertUndefinedOrAllocationSite(r5, r8);
2698 }
2699
2700 // Jump to the function-specific construct stub.
2701 Register jmp_reg = r7;
2702 __ LoadP(jmp_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
2703 __ LoadP(jmp_reg,
2704 FieldMemOperand(jmp_reg, SharedFunctionInfo::kConstructStubOffset));
2705 __ addi(ip, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
2706 __ JumpToJSEntry(ip);
2707
2708 // r3: number of arguments
2709 // r4: called object
2710 // r7: object type
2711 Label do_call;
2712 __ bind(&slow);
2713 STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu);
2714 __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE));
2715 __ bne(&non_function_call);
2716 __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2717 __ b(&do_call);
2718
2719 __ bind(&non_function_call);
2720 __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2721 __ bind(&do_call);
2722 // Set expected number of arguments to zero (not changing r3).
2723 __ li(r5, Operand::Zero());
2724 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2725 RelocInfo::CODE_TARGET);
2726}
2727
2728
2729static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2730 __ LoadP(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2731 __ LoadP(vector,
2732 FieldMemOperand(vector, JSFunction::kSharedFunctionInfoOffset));
2733 __ LoadP(vector,
2734 FieldMemOperand(vector, SharedFunctionInfo::kFeedbackVectorOffset));
2735}
2736
2737
2738void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2739 // r4 - function
2740 // r6 - slot id
2741 Label miss;
2742 int argc = arg_count();
2743 ParameterCount actual(argc);
2744
2745 EmitLoadTypeFeedbackVector(masm, r5);
2746
2747 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7);
2748 __ cmp(r4, r7);
2749 __ bne(&miss);
2750
2751 __ mov(r3, Operand(arg_count()));
2752 __ SmiToPtrArrayOffset(r7, r6);
2753 __ add(r7, r5, r7);
2754 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
2755
2756 // Verify that r7 contains an AllocationSite
2757 __ LoadP(r8, FieldMemOperand(r7, HeapObject::kMapOffset));
2758 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
2759 __ bne(&miss);
2760
2761 __ mr(r5, r7);
2762 ArrayConstructorStub stub(masm->isolate(), arg_count());
2763 __ TailCallStub(&stub);
2764
2765 __ bind(&miss);
2766 GenerateMiss(masm);
2767
2768 // The slow case, we need this no matter what to complete a call after a miss.
2769 CallFunctionNoFeedback(masm, arg_count(), true, CallAsMethod());
2770
2771 // Unreachable.
2772 __ stop("Unexpected code address");
2773}
2774
2775
2776void CallICStub::Generate(MacroAssembler* masm) {
2777 // r4 - function
2778 // r6 - slot id (Smi)
2779 Label extra_checks_or_miss, slow_start;
2780 Label slow, non_function, wrap, cont;
2781 Label have_js_function;
2782 int argc = arg_count();
2783 ParameterCount actual(argc);
2784
2785 EmitLoadTypeFeedbackVector(masm, r5);
2786
2787 // The checks. First, does r4 match the recorded monomorphic target?
2788 __ SmiToPtrArrayOffset(r7, r6);
2789 __ add(r7, r5, r7);
2790 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
2791 __ cmp(r4, r7);
2792 __ bne(&extra_checks_or_miss);
2793
2794 __ bind(&have_js_function);
2795 if (CallAsMethod()) {
2796 EmitContinueIfStrictOrNative(masm, &cont);
2797 // Compute the receiver in sloppy mode.
2798 __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0);
2799
2800 __ JumpIfSmi(r6, &wrap);
2801 __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE);
2802 __ blt(&wrap);
2803
2804 __ bind(&cont);
2805 }
2806
2807 __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper());
2808
2809 __ bind(&slow);
2810 EmitSlowCase(masm, argc, &non_function);
2811
2812 if (CallAsMethod()) {
2813 __ bind(&wrap);
2814 EmitWrapCase(masm, argc, &cont);
2815 }
2816
2817 __ bind(&extra_checks_or_miss);
2818 Label miss;
2819
2820 __ CompareRoot(r7, Heap::kmegamorphic_symbolRootIndex);
2821 __ beq(&slow_start);
2822 __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex);
2823 __ beq(&miss);
2824
2825 if (!FLAG_trace_ic) {
2826 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2827 // to handle it here. More complex cases are dealt with in the runtime.
2828 __ AssertNotSmi(r7);
2829 __ CompareObjectType(r7, r8, r8, JS_FUNCTION_TYPE);
2830 __ bne(&miss);
2831 __ SmiToPtrArrayOffset(r7, r6);
2832 __ add(r7, r5, r7);
2833 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
2834 __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0);
2835 // We have to update statistics for runtime profiling.
2836 const int with_types_offset =
2837 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kWithTypesIndex);
2838 __ LoadP(r7, FieldMemOperand(r5, with_types_offset));
2839 __ SubSmiLiteral(r7, r7, Smi::FromInt(1), r0);
2840 __ StoreP(r7, FieldMemOperand(r5, with_types_offset), r0);
2841 const int generic_offset =
2842 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kGenericCountIndex);
2843 __ LoadP(r7, FieldMemOperand(r5, generic_offset));
2844 __ AddSmiLiteral(r7, r7, Smi::FromInt(1), r0);
2845 __ StoreP(r7, FieldMemOperand(r5, generic_offset), r0);
2846 __ jmp(&slow_start);
2847 }
2848
2849 // We are here because tracing is on or we are going monomorphic.
2850 __ bind(&miss);
2851 GenerateMiss(masm);
2852
2853 // the slow case
2854 __ bind(&slow_start);
2855 // Check that the function is really a JavaScript function.
2856 // r4: pushed function (to be verified)
2857 __ JumpIfSmi(r4, &non_function);
2858
2859 // Goto slow case if we do not have a function.
2860 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
2861 __ bne(&slow);
2862 __ b(&have_js_function);
2863}
2864
2865
2866void CallICStub::GenerateMiss(MacroAssembler* masm) {
2867 // Get the receiver of the function from the stack; 1 ~ return address.
2868 __ LoadP(r7, MemOperand(sp, (arg_count() + 1) * kPointerSize), r0);
2869
2870 {
2871 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2872
2873 // Push the receiver and the function and feedback info.
2874 __ Push(r7, r4, r5, r6);
2875
2876 // Call the entry.
2877 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2878 : IC::kCallIC_Customization_Miss;
2879
2880 ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate());
2881 __ CallExternalReference(miss, 4);
2882
2883 // Move result to r4 and exit the internal frame.
2884 __ mr(r4, r3);
2885 }
2886}
2887
2888
2889// StringCharCodeAtGenerator
2890void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2891 // If the receiver is a smi trigger the non-string case.
2892 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2893 __ JumpIfSmi(object_, receiver_not_string_);
2894
2895 // Fetch the instance type of the receiver into result register.
2896 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2897 __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2898 // If the receiver is not a string trigger the non-string case.
2899 __ andi(r0, result_, Operand(kIsNotStringMask));
2900 __ bne(receiver_not_string_, cr0);
2901 }
2902
2903 // If the index is non-smi trigger the non-smi case.
2904 __ JumpIfNotSmi(index_, &index_not_smi_);
2905 __ bind(&got_smi_index_);
2906
2907 // Check for index out of range.
2908 __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset));
2909 __ cmpl(ip, index_);
2910 __ ble(index_out_of_range_);
2911
2912 __ SmiUntag(index_);
2913
2914 StringCharLoadGenerator::Generate(masm, object_, index_, result_,
2915 &call_runtime_);
2916
2917 __ SmiTag(result_);
2918 __ bind(&exit_);
2919}
2920
2921
2922void StringCharCodeAtGenerator::GenerateSlow(
2923 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
2924 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2925
2926 // Index is not a smi.
2927 __ bind(&index_not_smi_);
2928 // If index is a heap number, try converting it to an integer.
2929 __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_,
2930 DONT_DO_SMI_CHECK);
2931 call_helper.BeforeCall(masm);
2932 __ push(object_);
2933 __ push(index_); // Consumed by runtime conversion function.
2934 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2935 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2936 } else {
2937 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2938 // NumberToSmi discards numbers that are not exact integers.
2939 __ CallRuntime(Runtime::kNumberToSmi, 1);
2940 }
2941 // Save the conversion result before the pop instructions below
2942 // have a chance to overwrite it.
2943 __ Move(index_, r3);
2944 __ pop(object_);
2945 // Reload the instance type.
2946 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2947 __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2948 call_helper.AfterCall(masm);
2949 // If index is still not a smi, it must be out of range.
2950 __ JumpIfNotSmi(index_, index_out_of_range_);
2951 // Otherwise, return to the fast path.
2952 __ b(&got_smi_index_);
2953
2954 // Call runtime. We get here when the receiver is a string and the
2955 // index is a number, but the code of getting the actual character
2956 // is too complex (e.g., when the string needs to be flattened).
2957 __ bind(&call_runtime_);
2958 call_helper.BeforeCall(masm);
2959 __ SmiTag(index_);
2960 __ Push(object_, index_);
2961 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
2962 __ Move(result_, r3);
2963 call_helper.AfterCall(masm);
2964 __ b(&exit_);
2965
2966 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2967}
2968
2969
2970// -------------------------------------------------------------------------
2971// StringCharFromCodeGenerator
2972
2973void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2974 // Fast case of Heap::LookupSingleCharacterStringFromCode.
2975 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
2976 __ LoadSmiLiteral(r0, Smi::FromInt(~String::kMaxOneByteCharCode));
2977 __ ori(r0, r0, Operand(kSmiTagMask));
2978 __ and_(r0, code_, r0);
2979 __ cmpi(r0, Operand::Zero());
2980 __ bne(&slow_case_);
2981
2982 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2983 // At this point code register contains smi tagged one-byte char code.
2984 __ mr(r0, code_);
2985 __ SmiToPtrArrayOffset(code_, code_);
2986 __ add(result_, result_, code_);
2987 __ mr(code_, r0);
2988 __ LoadP(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
2989 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
2990 __ beq(&slow_case_);
2991 __ bind(&exit_);
2992}
2993
2994
2995void StringCharFromCodeGenerator::GenerateSlow(
2996 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
2997 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2998
2999 __ bind(&slow_case_);
3000 call_helper.BeforeCall(masm);
3001 __ push(code_);
3002 __ CallRuntime(Runtime::kCharFromCode, 1);
3003 __ Move(result_, r3);
3004 call_helper.AfterCall(masm);
3005 __ b(&exit_);
3006
3007 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3008}
3009
3010
3011enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
3012
3013
3014void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest,
3015 Register src, Register count,
3016 Register scratch,
3017 String::Encoding encoding) {
3018 if (FLAG_debug_code) {
3019 // Check that destination is word aligned.
3020 __ andi(r0, dest, Operand(kPointerAlignmentMask));
3021 __ Check(eq, kDestinationOfCopyNotAligned, cr0);
3022 }
3023
3024 // Nothing to do for zero characters.
3025 Label done;
3026 if (encoding == String::TWO_BYTE_ENCODING) {
3027 // double the length
3028 __ add(count, count, count, LeaveOE, SetRC);
3029 __ beq(&done, cr0);
3030 } else {
3031 __ cmpi(count, Operand::Zero());
3032 __ beq(&done);
3033 }
3034
3035 // Copy count bytes from src to dst.
3036 Label byte_loop;
3037 __ mtctr(count);
3038 __ bind(&byte_loop);
3039 __ lbz(scratch, MemOperand(src));
3040 __ addi(src, src, Operand(1));
3041 __ stb(scratch, MemOperand(dest));
3042 __ addi(dest, dest, Operand(1));
3043 __ bdnz(&byte_loop);
3044
3045 __ bind(&done);
3046}
3047
3048
3049void SubStringStub::Generate(MacroAssembler* masm) {
3050 Label runtime;
3051
3052 // Stack frame on entry.
3053 // lr: return address
3054 // sp[0]: to
3055 // sp[4]: from
3056 // sp[8]: string
3057
3058 // This stub is called from the native-call %_SubString(...), so
3059 // nothing can be assumed about the arguments. It is tested that:
3060 // "string" is a sequential string,
3061 // both "from" and "to" are smis, and
3062 // 0 <= from <= to <= string.length.
3063 // If any of these assumptions fail, we call the runtime system.
3064
3065 const int kToOffset = 0 * kPointerSize;
3066 const int kFromOffset = 1 * kPointerSize;
3067 const int kStringOffset = 2 * kPointerSize;
3068
3069 __ LoadP(r5, MemOperand(sp, kToOffset));
3070 __ LoadP(r6, MemOperand(sp, kFromOffset));
3071
3072 // If either to or from had the smi tag bit set, then fail to generic runtime
3073 __ JumpIfNotSmi(r5, &runtime);
3074 __ JumpIfNotSmi(r6, &runtime);
3075 __ SmiUntag(r5);
3076 __ SmiUntag(r6, SetRC);
3077 // Both r5 and r6 are untagged integers.
3078
3079 // We want to bailout to runtime here if From is negative.
3080 __ blt(&runtime, cr0); // From < 0.
3081
3082 __ cmpl(r6, r5);
3083 __ bgt(&runtime); // Fail if from > to.
3084 __ sub(r5, r5, r6);
3085
3086 // Make sure first argument is a string.
3087 __ LoadP(r3, MemOperand(sp, kStringOffset));
3088 __ JumpIfSmi(r3, &runtime);
3089 Condition is_string = masm->IsObjectStringType(r3, r4);
3090 __ b(NegateCondition(is_string), &runtime, cr0);
3091
3092 Label single_char;
3093 __ cmpi(r5, Operand(1));
3094 __ b(eq, &single_char);
3095
3096 // Short-cut for the case of trivial substring.
3097 Label return_r3;
3098 // r3: original string
3099 // r5: result string length
3100 __ LoadP(r7, FieldMemOperand(r3, String::kLengthOffset));
3101 __ SmiUntag(r0, r7);
3102 __ cmpl(r5, r0);
3103 // Return original string.
3104 __ beq(&return_r3);
3105 // Longer than original string's length or negative: unsafe arguments.
3106 __ bgt(&runtime);
3107 // Shorter than original string's length: an actual substring.
3108
3109 // Deal with different string types: update the index if necessary
3110 // and put the underlying string into r8.
3111 // r3: original string
3112 // r4: instance type
3113 // r5: length
3114 // r6: from index (untagged)
3115 Label underlying_unpacked, sliced_string, seq_or_external_string;
3116 // If the string is not indirect, it can only be sequential or external.
3117 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3118 STATIC_ASSERT(kIsIndirectStringMask != 0);
3119 __ andi(r0, r4, Operand(kIsIndirectStringMask));
3120 __ beq(&seq_or_external_string, cr0);
3121
3122 __ andi(r0, r4, Operand(kSlicedNotConsMask));
3123 __ bne(&sliced_string, cr0);
3124 // Cons string. Check whether it is flat, then fetch first part.
3125 __ LoadP(r8, FieldMemOperand(r3, ConsString::kSecondOffset));
3126 __ CompareRoot(r8, Heap::kempty_stringRootIndex);
3127 __ bne(&runtime);
3128 __ LoadP(r8, FieldMemOperand(r3, ConsString::kFirstOffset));
3129 // Update instance type.
3130 __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset));
3131 __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
3132 __ b(&underlying_unpacked);
3133
3134 __ bind(&sliced_string);
3135 // Sliced string. Fetch parent and correct start index by offset.
3136 __ LoadP(r8, FieldMemOperand(r3, SlicedString::kParentOffset));
3137 __ LoadP(r7, FieldMemOperand(r3, SlicedString::kOffsetOffset));
3138 __ SmiUntag(r4, r7);
3139 __ add(r6, r6, r4); // Add offset to index.
3140 // Update instance type.
3141 __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset));
3142 __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
3143 __ b(&underlying_unpacked);
3144
3145 __ bind(&seq_or_external_string);
3146 // Sequential or external string. Just move string to the expected register.
3147 __ mr(r8, r3);
3148
3149 __ bind(&underlying_unpacked);
3150
3151 if (FLAG_string_slices) {
3152 Label copy_routine;
3153 // r8: underlying subject string
3154 // r4: instance type of underlying subject string
3155 // r5: length
3156 // r6: adjusted start index (untagged)
3157 __ cmpi(r5, Operand(SlicedString::kMinLength));
3158 // Short slice. Copy instead of slicing.
3159 __ blt(&copy_routine);
3160 // Allocate new sliced string. At this point we do not reload the instance
3161 // type including the string encoding because we simply rely on the info
3162 // provided by the original string. It does not matter if the original
3163 // string's encoding is wrong because we always have to recheck encoding of
3164 // the newly created string's parent anyways due to externalized strings.
3165 Label two_byte_slice, set_slice_header;
3166 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3167 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3168 __ andi(r0, r4, Operand(kStringEncodingMask));
3169 __ beq(&two_byte_slice, cr0);
3170 __ AllocateOneByteSlicedString(r3, r5, r9, r10, &runtime);
3171 __ b(&set_slice_header);
3172 __ bind(&two_byte_slice);
3173 __ AllocateTwoByteSlicedString(r3, r5, r9, r10, &runtime);
3174 __ bind(&set_slice_header);
3175 __ SmiTag(r6);
3176 __ StoreP(r8, FieldMemOperand(r3, SlicedString::kParentOffset), r0);
3177 __ StoreP(r6, FieldMemOperand(r3, SlicedString::kOffsetOffset), r0);
3178 __ b(&return_r3);
3179
3180 __ bind(&copy_routine);
3181 }
3182
3183 // r8: underlying subject string
3184 // r4: instance type of underlying subject string
3185 // r5: length
3186 // r6: adjusted start index (untagged)
3187 Label two_byte_sequential, sequential_string, allocate_result;
3188 STATIC_ASSERT(kExternalStringTag != 0);
3189 STATIC_ASSERT(kSeqStringTag == 0);
3190 __ andi(r0, r4, Operand(kExternalStringTag));
3191 __ beq(&sequential_string, cr0);
3192
3193 // Handle external string.
3194 // Rule out short external strings.
3195 STATIC_ASSERT(kShortExternalStringTag != 0);
3196 __ andi(r0, r4, Operand(kShortExternalStringTag));
3197 __ bne(&runtime, cr0);
3198 __ LoadP(r8, FieldMemOperand(r8, ExternalString::kResourceDataOffset));
3199 // r8 already points to the first character of underlying string.
3200 __ b(&allocate_result);
3201
3202 __ bind(&sequential_string);
3203 // Locate first character of underlying subject string.
3204 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3205 __ addi(r8, r8, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3206
3207 __ bind(&allocate_result);
3208 // Sequential acii string. Allocate the result.
3209 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3210 __ andi(r0, r4, Operand(kStringEncodingMask));
3211 __ beq(&two_byte_sequential, cr0);
3212
3213 // Allocate and copy the resulting one-byte string.
3214 __ AllocateOneByteString(r3, r5, r7, r9, r10, &runtime);
3215
3216 // Locate first character of substring to copy.
3217 __ add(r8, r8, r6);
3218 // Locate first character of result.
3219 __ addi(r4, r3, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3220
3221 // r3: result string
3222 // r4: first character of result string
3223 // r5: result string length
3224 // r8: first character of substring to copy
3225 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3226 StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6,
3227 String::ONE_BYTE_ENCODING);
3228 __ b(&return_r3);
3229
3230 // Allocate and copy the resulting two-byte string.
3231 __ bind(&two_byte_sequential);
3232 __ AllocateTwoByteString(r3, r5, r7, r9, r10, &runtime);
3233
3234 // Locate first character of substring to copy.
3235 __ ShiftLeftImm(r4, r6, Operand(1));
3236 __ add(r8, r8, r4);
3237 // Locate first character of result.
3238 __ addi(r4, r3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3239
3240 // r3: result string.
3241 // r4: first character of result.
3242 // r5: result length.
3243 // r8: first character of substring to copy.
3244 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3245 StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6,
3246 String::TWO_BYTE_ENCODING);
3247
3248 __ bind(&return_r3);
3249 Counters* counters = isolate()->counters();
3250 __ IncrementCounter(counters->sub_string_native(), 1, r6, r7);
3251 __ Drop(3);
3252 __ Ret();
3253
3254 // Just jump to runtime to create the sub string.
3255 __ bind(&runtime);
3256 __ TailCallRuntime(Runtime::kSubString, 3, 1);
3257
3258 __ bind(&single_char);
3259 // r3: original string
3260 // r4: instance type
3261 // r5: length
3262 // r6: from index (untagged)
3263 __ SmiTag(r6, r6);
3264 StringCharAtGenerator generator(r3, r6, r5, r3, &runtime, &runtime, &runtime,
3265 STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING);
3266 generator.GenerateFast(masm);
3267 __ Drop(3);
3268 __ Ret();
3269 generator.SkipSlow(masm, &runtime);
3270}
3271
3272
3273void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
3274 Register left,
3275 Register right,
3276 Register scratch1,
3277 Register scratch2) {
3278 Register length = scratch1;
3279
3280 // Compare lengths.
3281 Label strings_not_equal, check_zero_length;
3282 __ LoadP(length, FieldMemOperand(left, String::kLengthOffset));
3283 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
3284 __ cmp(length, scratch2);
3285 __ beq(&check_zero_length);
3286 __ bind(&strings_not_equal);
3287 __ LoadSmiLiteral(r3, Smi::FromInt(NOT_EQUAL));
3288 __ Ret();
3289
3290 // Check if the length is zero.
3291 Label compare_chars;
3292 __ bind(&check_zero_length);
3293 STATIC_ASSERT(kSmiTag == 0);
3294 __ cmpi(length, Operand::Zero());
3295 __ bne(&compare_chars);
3296 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3297 __ Ret();
3298
3299 // Compare characters.
3300 __ bind(&compare_chars);
3301 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
3302 &strings_not_equal);
3303
3304 // Characters are equal.
3305 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3306 __ Ret();
3307}
3308
3309
3310void StringHelper::GenerateCompareFlatOneByteStrings(
3311 MacroAssembler* masm, Register left, Register right, Register scratch1,
3312 Register scratch2, Register scratch3) {
3313 Label skip, result_not_equal, compare_lengths;
3314 // Find minimum length and length difference.
3315 __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset));
3316 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
3317 __ sub(scratch3, scratch1, scratch2, LeaveOE, SetRC);
3318 Register length_delta = scratch3;
3319 __ ble(&skip, cr0);
3320 __ mr(scratch1, scratch2);
3321 __ bind(&skip);
3322 Register min_length = scratch1;
3323 STATIC_ASSERT(kSmiTag == 0);
3324 __ cmpi(min_length, Operand::Zero());
3325 __ beq(&compare_lengths);
3326
3327 // Compare loop.
3328 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3329 &result_not_equal);
3330
3331 // Compare lengths - strings up to min-length are equal.
3332 __ bind(&compare_lengths);
3333 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3334 // Use length_delta as result if it's zero.
3335 __ mr(r3, length_delta);
3336 __ cmpi(r3, Operand::Zero());
3337 __ bind(&result_not_equal);
3338 // Conditionally update the result based either on length_delta or
3339 // the last comparion performed in the loop above.
3340 Label less_equal, equal;
3341 __ ble(&less_equal);
3342 __ LoadSmiLiteral(r3, Smi::FromInt(GREATER));
3343 __ Ret();
3344 __ bind(&less_equal);
3345 __ beq(&equal);
3346 __ LoadSmiLiteral(r3, Smi::FromInt(LESS));
3347 __ bind(&equal);
3348 __ Ret();
3349}
3350
3351
3352void StringHelper::GenerateOneByteCharsCompareLoop(
3353 MacroAssembler* masm, Register left, Register right, Register length,
3354 Register scratch1, Label* chars_not_equal) {
3355 // Change index to run from -length to -1 by adding length to string
3356 // start. This means that loop ends when index reaches zero, which
3357 // doesn't need an additional compare.
3358 __ SmiUntag(length);
3359 __ addi(scratch1, length,
3360 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3361 __ add(left, left, scratch1);
3362 __ add(right, right, scratch1);
3363 __ subfic(length, length, Operand::Zero());
3364 Register index = length; // index = -length;
3365
3366 // Compare loop.
3367 Label loop;
3368 __ bind(&loop);
3369 __ lbzx(scratch1, MemOperand(left, index));
3370 __ lbzx(r0, MemOperand(right, index));
3371 __ cmp(scratch1, r0);
3372 __ bne(chars_not_equal);
3373 __ addi(index, index, Operand(1));
3374 __ cmpi(index, Operand::Zero());
3375 __ bne(&loop);
3376}
3377
3378
3379void StringCompareStub::Generate(MacroAssembler* masm) {
3380 Label runtime;
3381
3382 Counters* counters = isolate()->counters();
3383
3384 // Stack frame on entry.
3385 // sp[0]: right string
3386 // sp[4]: left string
3387 __ LoadP(r3, MemOperand(sp)); // Load right in r3, left in r4.
3388 __ LoadP(r4, MemOperand(sp, kPointerSize));
3389
3390 Label not_same;
3391 __ cmp(r3, r4);
3392 __ bne(&not_same);
3393 STATIC_ASSERT(EQUAL == 0);
3394 STATIC_ASSERT(kSmiTag == 0);
3395 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3396 __ IncrementCounter(counters->string_compare_native(), 1, r4, r5);
3397 __ addi(sp, sp, Operand(2 * kPointerSize));
3398 __ Ret();
3399
3400 __ bind(&not_same);
3401
3402 // Check that both objects are sequential one-byte strings.
3403 __ JumpIfNotBothSequentialOneByteStrings(r4, r3, r5, r6, &runtime);
3404
3405 // Compare flat one-byte strings natively. Remove arguments from stack first.
3406 __ IncrementCounter(counters->string_compare_native(), 1, r5, r6);
3407 __ addi(sp, sp, Operand(2 * kPointerSize));
3408 StringHelper::GenerateCompareFlatOneByteStrings(masm, r4, r3, r5, r6, r7);
3409
3410 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3411 // tagged as a small integer.
3412 __ bind(&runtime);
3413 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3414}
3415
3416
3417void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3418 // ----------- S t a t e -------------
3419 // -- r4 : left
3420 // -- r3 : right
3421 // -- lr : return address
3422 // -----------------------------------
3423
3424 // Load r5 with the allocation site. We stick an undefined dummy value here
3425 // and replace it with the real allocation site later when we instantiate this
3426 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3427 __ Move(r5, handle(isolate()->heap()->undefined_value()));
3428
3429 // Make sure that we actually patched the allocation site.
3430 if (FLAG_debug_code) {
3431 __ TestIfSmi(r5, r0);
3432 __ Assert(ne, kExpectedAllocationSite, cr0);
3433 __ push(r5);
3434 __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
3435 __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
3436 __ cmp(r5, ip);
3437 __ pop(r5);
3438 __ Assert(eq, kExpectedAllocationSite);
3439 }
3440
3441 // Tail call into the stub that handles binary operations with allocation
3442 // sites.
3443 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3444 __ TailCallStub(&stub);
3445}
3446
3447
3448void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3449 DCHECK(state() == CompareICState::SMI);
3450 Label miss;
3451 __ orx(r5, r4, r3);
3452 __ JumpIfNotSmi(r5, &miss);
3453
3454 if (GetCondition() == eq) {
3455 // For equality we do not care about the sign of the result.
3456 // __ sub(r3, r3, r4, SetCC);
3457 __ sub(r3, r3, r4);
3458 } else {
3459 // Untag before subtracting to avoid handling overflow.
3460 __ SmiUntag(r4);
3461 __ SmiUntag(r3);
3462 __ sub(r3, r4, r3);
3463 }
3464 __ Ret();
3465
3466 __ bind(&miss);
3467 GenerateMiss(masm);
3468}
3469
3470
3471void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3472 DCHECK(state() == CompareICState::NUMBER);
3473
3474 Label generic_stub;
3475 Label unordered, maybe_undefined1, maybe_undefined2;
3476 Label miss;
3477 Label equal, less_than;
3478
3479 if (left() == CompareICState::SMI) {
3480 __ JumpIfNotSmi(r4, &miss);
3481 }
3482 if (right() == CompareICState::SMI) {
3483 __ JumpIfNotSmi(r3, &miss);
3484 }
3485
3486 // Inlining the double comparison and falling back to the general compare
3487 // stub if NaN is involved.
3488 // Load left and right operand.
3489 Label done, left, left_smi, right_smi;
3490 __ JumpIfSmi(r3, &right_smi);
3491 __ CheckMap(r3, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
3492 DONT_DO_SMI_CHECK);
3493 __ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset));
3494 __ b(&left);
3495 __ bind(&right_smi);
3496 __ SmiToDouble(d1, r3);
3497
3498 __ bind(&left);
3499 __ JumpIfSmi(r4, &left_smi);
3500 __ CheckMap(r4, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
3501 DONT_DO_SMI_CHECK);
3502 __ lfd(d0, FieldMemOperand(r4, HeapNumber::kValueOffset));
3503 __ b(&done);
3504 __ bind(&left_smi);
3505 __ SmiToDouble(d0, r4);
3506
3507 __ bind(&done);
3508
3509 // Compare operands
3510 __ fcmpu(d0, d1);
3511
3512 // Don't base result on status bits when a NaN is involved.
3513 __ bunordered(&unordered);
3514
3515 // Return a result of -1, 0, or 1, based on status bits.
3516 __ beq(&equal);
3517 __ blt(&less_than);
3518 // assume greater than
3519 __ li(r3, Operand(GREATER));
3520 __ Ret();
3521 __ bind(&equal);
3522 __ li(r3, Operand(EQUAL));
3523 __ Ret();
3524 __ bind(&less_than);
3525 __ li(r3, Operand(LESS));
3526 __ Ret();
3527
3528 __ bind(&unordered);
3529 __ bind(&generic_stub);
3530 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
3531 CompareICState::GENERIC, CompareICState::GENERIC);
3532 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3533
3534 __ bind(&maybe_undefined1);
3535 if (Token::IsOrderedRelationalCompareOp(op())) {
3536 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
3537 __ bne(&miss);
3538 __ JumpIfSmi(r4, &unordered);
3539 __ CompareObjectType(r4, r5, r5, HEAP_NUMBER_TYPE);
3540 __ bne(&maybe_undefined2);
3541 __ b(&unordered);
3542 }
3543
3544 __ bind(&maybe_undefined2);
3545 if (Token::IsOrderedRelationalCompareOp(op())) {
3546 __ CompareRoot(r4, Heap::kUndefinedValueRootIndex);
3547 __ beq(&unordered);
3548 }
3549
3550 __ bind(&miss);
3551 GenerateMiss(masm);
3552}
3553
3554
3555void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3556 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3557 Label miss, not_equal;
3558
3559 // Registers containing left and right operands respectively.
3560 Register left = r4;
3561 Register right = r3;
3562 Register tmp1 = r5;
3563 Register tmp2 = r6;
3564
3565 // Check that both operands are heap objects.
3566 __ JumpIfEitherSmi(left, right, &miss);
3567
3568 // Check that both operands are symbols.
3569 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3570 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3571 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3572 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3573 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3574 __ orx(tmp1, tmp1, tmp2);
3575 __ andi(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3576 __ bne(&miss, cr0);
3577
3578 // Internalized strings are compared by identity.
3579 __ cmp(left, right);
3580 __ bne(&not_equal);
3581 // Make sure r3 is non-zero. At this point input operands are
3582 // guaranteed to be non-zero.
3583 DCHECK(right.is(r3));
3584 STATIC_ASSERT(EQUAL == 0);
3585 STATIC_ASSERT(kSmiTag == 0);
3586 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3587 __ bind(&not_equal);
3588 __ Ret();
3589
3590 __ bind(&miss);
3591 GenerateMiss(masm);
3592}
3593
3594
3595void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3596 DCHECK(state() == CompareICState::UNIQUE_NAME);
3597 DCHECK(GetCondition() == eq);
3598 Label miss;
3599
3600 // Registers containing left and right operands respectively.
3601 Register left = r4;
3602 Register right = r3;
3603 Register tmp1 = r5;
3604 Register tmp2 = r6;
3605
3606 // Check that both operands are heap objects.
3607 __ JumpIfEitherSmi(left, right, &miss);
3608
3609 // Check that both operands are unique names. This leaves the instance
3610 // types loaded in tmp1 and tmp2.
3611 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3612 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3613 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3614 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3615
3616 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
3617 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
3618
3619 // Unique names are compared by identity.
3620 __ cmp(left, right);
3621 __ bne(&miss);
3622 // Make sure r3 is non-zero. At this point input operands are
3623 // guaranteed to be non-zero.
3624 DCHECK(right.is(r3));
3625 STATIC_ASSERT(EQUAL == 0);
3626 STATIC_ASSERT(kSmiTag == 0);
3627 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3628 __ Ret();
3629
3630 __ bind(&miss);
3631 GenerateMiss(masm);
3632}
3633
3634
3635void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3636 DCHECK(state() == CompareICState::STRING);
3637 Label miss, not_identical, is_symbol;
3638
3639 bool equality = Token::IsEqualityOp(op());
3640
3641 // Registers containing left and right operands respectively.
3642 Register left = r4;
3643 Register right = r3;
3644 Register tmp1 = r5;
3645 Register tmp2 = r6;
3646 Register tmp3 = r7;
3647 Register tmp4 = r8;
3648
3649 // Check that both operands are heap objects.
3650 __ JumpIfEitherSmi(left, right, &miss);
3651
3652 // Check that both operands are strings. This leaves the instance
3653 // types loaded in tmp1 and tmp2.
3654 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3655 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3656 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3657 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3658 STATIC_ASSERT(kNotStringTag != 0);
3659 __ orx(tmp3, tmp1, tmp2);
3660 __ andi(r0, tmp3, Operand(kIsNotStringMask));
3661 __ bne(&miss, cr0);
3662
3663 // Fast check for identical strings.
3664 __ cmp(left, right);
3665 STATIC_ASSERT(EQUAL == 0);
3666 STATIC_ASSERT(kSmiTag == 0);
3667 __ bne(&not_identical);
3668 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3669 __ Ret();
3670 __ bind(&not_identical);
3671
3672 // Handle not identical strings.
3673
3674 // Check that both strings are internalized strings. If they are, we're done
3675 // because we already know they are not identical. We know they are both
3676 // strings.
3677 if (equality) {
3678 DCHECK(GetCondition() == eq);
3679 STATIC_ASSERT(kInternalizedTag == 0);
3680 __ orx(tmp3, tmp1, tmp2);
3681 __ andi(r0, tmp3, Operand(kIsNotInternalizedMask));
3682 __ bne(&is_symbol, cr0);
3683 // Make sure r3 is non-zero. At this point input operands are
3684 // guaranteed to be non-zero.
3685 DCHECK(right.is(r3));
3686 __ Ret();
3687 __ bind(&is_symbol);
3688 }
3689
3690 // Check that both strings are sequential one-byte.
3691 Label runtime;
3692 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3693 &runtime);
3694
3695 // Compare flat one-byte strings. Returns when done.
3696 if (equality) {
3697 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3698 tmp2);
3699 } else {
3700 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3701 tmp2, tmp3);
3702 }
3703
3704 // Handle more complex cases in runtime.
3705 __ bind(&runtime);
3706 __ Push(left, right);
3707 if (equality) {
3708 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3709 } else {
3710 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3711 }
3712
3713 __ bind(&miss);
3714 GenerateMiss(masm);
3715}
3716
3717
3718void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3719 DCHECK(state() == CompareICState::OBJECT);
3720 Label miss;
3721 __ and_(r5, r4, r3);
3722 __ JumpIfSmi(r5, &miss);
3723
3724 __ CompareObjectType(r3, r5, r5, JS_OBJECT_TYPE);
3725 __ bne(&miss);
3726 __ CompareObjectType(r4, r5, r5, JS_OBJECT_TYPE);
3727 __ bne(&miss);
3728
3729 DCHECK(GetCondition() == eq);
3730 __ sub(r3, r3, r4);
3731 __ Ret();
3732
3733 __ bind(&miss);
3734 GenerateMiss(masm);
3735}
3736
3737
3738void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3739 Label miss;
3740 __ and_(r5, r4, r3);
3741 __ JumpIfSmi(r5, &miss);
3742 __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
3743 __ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset));
3744 __ Cmpi(r5, Operand(known_map_), r0);
3745 __ bne(&miss);
3746 __ Cmpi(r6, Operand(known_map_), r0);
3747 __ bne(&miss);
3748
3749 __ sub(r3, r3, r4);
3750 __ Ret();
3751
3752 __ bind(&miss);
3753 GenerateMiss(masm);
3754}
3755
3756
3757void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3758 {
3759 // Call the runtime system in a fresh internal frame.
3760 ExternalReference miss =
3761 ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
3762
3763 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
3764 __ Push(r4, r3);
3765 __ Push(r4, r3);
3766 __ LoadSmiLiteral(r0, Smi::FromInt(op()));
3767 __ push(r0);
3768 __ CallExternalReference(miss, 3);
3769 // Compute the entry point of the rewritten stub.
3770 __ addi(r5, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
3771 // Restore registers.
3772 __ Pop(r4, r3);
3773 }
3774
3775 __ JumpToJSEntry(r5);
3776}
3777
3778
3779// This stub is paired with DirectCEntryStub::GenerateCall
3780void DirectCEntryStub::Generate(MacroAssembler* masm) {
3781 // Place the return address on the stack, making the call
3782 // GC safe. The RegExp backend also relies on this.
3783 __ mflr(r0);
3784 __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
3785 __ Call(ip); // Call the C++ function.
3786 __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
3787 __ mtlr(r0);
3788 __ blr();
3789}
3790
3791
3792void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
3793#if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
3794 // Native AIX/PPC64 Linux use a function descriptor.
3795 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
3796 __ LoadP(ip, MemOperand(target, 0)); // Instruction address
3797#else
3798 // ip needs to be set for DirectCEentryStub::Generate, and also
3799 // for ABI_TOC_ADDRESSABILITY_VIA_IP.
3800 __ Move(ip, target);
3801#endif
3802
3803 intptr_t code = reinterpret_cast<intptr_t>(GetCode().location());
3804 __ mov(r0, Operand(code, RelocInfo::CODE_TARGET));
3805 __ Call(r0); // Call the stub.
3806}
3807
3808
3809void NameDictionaryLookupStub::GenerateNegativeLookup(
3810 MacroAssembler* masm, Label* miss, Label* done, Register receiver,
3811 Register properties, Handle<Name> name, Register scratch0) {
3812 DCHECK(name->IsUniqueName());
3813 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3814 // not equal to the name and kProbes-th slot is not used (its name is the
3815 // undefined value), it guarantees the hash table doesn't contain the
3816 // property. It's true even if some slots represent deleted properties
3817 // (their names are the hole value).
3818 for (int i = 0; i < kInlinedProbes; i++) {
3819 // scratch0 points to properties hash.
3820 // Compute the masked index: (hash + i + i * i) & mask.
3821 Register index = scratch0;
3822 // Capacity is smi 2^n.
3823 __ LoadP(index, FieldMemOperand(properties, kCapacityOffset));
3824 __ subi(index, index, Operand(1));
3825 __ LoadSmiLiteral(
3826 ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)));
3827 __ and_(index, index, ip);
3828
3829 // Scale the index by multiplying by the entry size.
3830 DCHECK(NameDictionary::kEntrySize == 3);
3831 __ ShiftLeftImm(ip, index, Operand(1));
3832 __ add(index, index, ip); // index *= 3.
3833
3834 Register entity_name = scratch0;
3835 // Having undefined at this place means the name is not contained.
3836 Register tmp = properties;
3837 __ SmiToPtrArrayOffset(ip, index);
3838 __ add(tmp, properties, ip);
3839 __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3840
3841 DCHECK(!tmp.is(entity_name));
3842 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
3843 __ cmp(entity_name, tmp);
3844 __ beq(done);
3845
3846 // Load the hole ready for use below:
3847 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
3848
3849 // Stop if found the property.
3850 __ Cmpi(entity_name, Operand(Handle<Name>(name)), r0);
3851 __ beq(miss);
3852
3853 Label good;
3854 __ cmp(entity_name, tmp);
3855 __ beq(&good);
3856
3857 // Check if the entry name is not a unique name.
3858 __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3859 __ lbz(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3860 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
3861 __ bind(&good);
3862
3863 // Restore the properties.
3864 __ LoadP(properties,
3865 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3866 }
3867
3868 const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
3869 r5.bit() | r4.bit() | r3.bit());
3870
3871 __ mflr(r0);
3872 __ MultiPush(spill_mask);
3873
3874 __ LoadP(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3875 __ mov(r4, Operand(Handle<Name>(name)));
3876 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3877 __ CallStub(&stub);
3878 __ cmpi(r3, Operand::Zero());
3879
3880 __ MultiPop(spill_mask); // MultiPop does not touch condition flags
3881 __ mtlr(r0);
3882
3883 __ beq(done);
3884 __ bne(miss);
3885}
3886
3887
3888// Probe the name dictionary in the |elements| register. Jump to the
3889// |done| label if a property with the given name is found. Jump to
3890// the |miss| label otherwise.
3891// If lookup was successful |scratch2| will be equal to elements + 4 * index.
3892void NameDictionaryLookupStub::GeneratePositiveLookup(
3893 MacroAssembler* masm, Label* miss, Label* done, Register elements,
3894 Register name, Register scratch1, Register scratch2) {
3895 DCHECK(!elements.is(scratch1));
3896 DCHECK(!elements.is(scratch2));
3897 DCHECK(!name.is(scratch1));
3898 DCHECK(!name.is(scratch2));
3899
3900 __ AssertName(name);
3901
3902 // Compute the capacity mask.
3903 __ LoadP(scratch1, FieldMemOperand(elements, kCapacityOffset));
3904 __ SmiUntag(scratch1); // convert smi to int
3905 __ subi(scratch1, scratch1, Operand(1));
3906
3907 // Generate an unrolled loop that performs a few probes before
3908 // giving up. Measurements done on Gmail indicate that 2 probes
3909 // cover ~93% of loads from dictionaries.
3910 for (int i = 0; i < kInlinedProbes; i++) {
3911 // Compute the masked index: (hash + i + i * i) & mask.
3912 __ lwz(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
3913 if (i > 0) {
3914 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3915 // the hash in a separate instruction. The value hash + i + i * i is right
3916 // shifted in the following and instruction.
3917 DCHECK(NameDictionary::GetProbeOffset(i) <
3918 1 << (32 - Name::kHashFieldOffset));
3919 __ addi(scratch2, scratch2,
3920 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3921 }
3922 __ srwi(scratch2, scratch2, Operand(Name::kHashShift));
3923 __ and_(scratch2, scratch1, scratch2);
3924
3925 // Scale the index by multiplying by the element size.
3926 DCHECK(NameDictionary::kEntrySize == 3);
3927 // scratch2 = scratch2 * 3.
3928 __ ShiftLeftImm(ip, scratch2, Operand(1));
3929 __ add(scratch2, scratch2, ip);
3930
3931 // Check if the key is identical to the name.
3932 __ ShiftLeftImm(ip, scratch2, Operand(kPointerSizeLog2));
3933 __ add(scratch2, elements, ip);
3934 __ LoadP(ip, FieldMemOperand(scratch2, kElementsStartOffset));
3935 __ cmp(name, ip);
3936 __ beq(done);
3937 }
3938
3939 const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
3940 r5.bit() | r4.bit() | r3.bit()) &
3941 ~(scratch1.bit() | scratch2.bit());
3942
3943 __ mflr(r0);
3944 __ MultiPush(spill_mask);
3945 if (name.is(r3)) {
3946 DCHECK(!elements.is(r4));
3947 __ mr(r4, name);
3948 __ mr(r3, elements);
3949 } else {
3950 __ mr(r3, elements);
3951 __ mr(r4, name);
3952 }
3953 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
3954 __ CallStub(&stub);
3955 __ cmpi(r3, Operand::Zero());
3956 __ mr(scratch2, r5);
3957 __ MultiPop(spill_mask);
3958 __ mtlr(r0);
3959
3960 __ bne(done);
3961 __ beq(miss);
3962}
3963
3964
3965void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3966 // This stub overrides SometimesSetsUpAFrame() to return false. That means
3967 // we cannot call anything that could cause a GC from this stub.
3968 // Registers:
3969 // result: NameDictionary to probe
3970 // r4: key
3971 // dictionary: NameDictionary to probe.
3972 // index: will hold an index of entry if lookup is successful.
3973 // might alias with result_.
3974 // Returns:
3975 // result_ is zero if lookup failed, non zero otherwise.
3976
3977 Register result = r3;
3978 Register dictionary = r3;
3979 Register key = r4;
3980 Register index = r5;
3981 Register mask = r6;
3982 Register hash = r7;
3983 Register undefined = r8;
3984 Register entry_key = r9;
3985 Register scratch = r9;
3986
3987 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3988
3989 __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset));
3990 __ SmiUntag(mask);
3991 __ subi(mask, mask, Operand(1));
3992
3993 __ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset));
3994
3995 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
3996
3997 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3998 // Compute the masked index: (hash + i + i * i) & mask.
3999 // Capacity is smi 2^n.
4000 if (i > 0) {
4001 // Add the probe offset (i + i * i) left shifted to avoid right shifting
4002 // the hash in a separate instruction. The value hash + i + i * i is right
4003 // shifted in the following and instruction.
4004 DCHECK(NameDictionary::GetProbeOffset(i) <
4005 1 << (32 - Name::kHashFieldOffset));
4006 __ addi(index, hash,
4007 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4008 } else {
4009 __ mr(index, hash);
4010 }
4011 __ srwi(r0, index, Operand(Name::kHashShift));
4012 __ and_(index, mask, r0);
4013
4014 // Scale the index by multiplying by the entry size.
4015 DCHECK(NameDictionary::kEntrySize == 3);
4016 __ ShiftLeftImm(scratch, index, Operand(1));
4017 __ add(index, index, scratch); // index *= 3.
4018
4019 DCHECK_EQ(kSmiTagSize, 1);
4020 __ ShiftLeftImm(scratch, index, Operand(kPointerSizeLog2));
4021 __ add(index, dictionary, scratch);
4022 __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset));
4023
4024 // Having undefined at this place means the name is not contained.
4025 __ cmp(entry_key, undefined);
4026 __ beq(&not_in_dictionary);
4027
4028 // Stop if found the property.
4029 __ cmp(entry_key, key);
4030 __ beq(&in_dictionary);
4031
4032 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4033 // Check if the entry name is not a unique name.
4034 __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
4035 __ lbz(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
4036 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
4037 }
4038 }
4039
4040 __ bind(&maybe_in_dictionary);
4041 // If we are doing negative lookup then probing failure should be
4042 // treated as a lookup success. For positive lookup probing failure
4043 // should be treated as lookup failure.
4044 if (mode() == POSITIVE_LOOKUP) {
4045 __ li(result, Operand::Zero());
4046 __ Ret();
4047 }
4048
4049 __ bind(&in_dictionary);
4050 __ li(result, Operand(1));
4051 __ Ret();
4052
4053 __ bind(&not_in_dictionary);
4054 __ li(result, Operand::Zero());
4055 __ Ret();
4056}
4057
4058
4059void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
4060 Isolate* isolate) {
4061 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
4062 stub1.GetCode();
4063 // Hydrogen code stubs need stub2 at snapshot time.
4064 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4065 stub2.GetCode();
4066}
4067
4068
4069// Takes the input in 3 registers: address_ value_ and object_. A pointer to
4070// the value has just been written into the object, now this stub makes sure
4071// we keep the GC informed. The word in the object where the value has been
4072// written is in the address register.
4073void RecordWriteStub::Generate(MacroAssembler* masm) {
4074 Label skip_to_incremental_noncompacting;
4075 Label skip_to_incremental_compacting;
4076
4077 // The first two branch instructions are generated with labels so as to
4078 // get the offset fixed up correctly by the bind(Label*) call. We patch
4079 // it back and forth between branch condition True and False
4080 // when we start and stop incremental heap marking.
4081 // See RecordWriteStub::Patch for details.
4082
4083 // Clear the bit, branch on True for NOP action initially
4084 __ crclr(Assembler::encode_crbit(cr2, CR_LT));
4085 __ blt(&skip_to_incremental_noncompacting, cr2);
4086 __ blt(&skip_to_incremental_compacting, cr2);
4087
4088 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4089 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4090 MacroAssembler::kReturnAtEnd);
4091 }
4092 __ Ret();
4093
4094 __ bind(&skip_to_incremental_noncompacting);
4095 GenerateIncremental(masm, INCREMENTAL);
4096
4097 __ bind(&skip_to_incremental_compacting);
4098 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4099
4100 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4101 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4102 // patching not required on PPC as the initial path is effectively NOP
4103}
4104
4105
4106void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4107 regs_.Save(masm);
4108
4109 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4110 Label dont_need_remembered_set;
4111
4112 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
4113 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
4114 regs_.scratch0(), &dont_need_remembered_set);
4115
4116 __ CheckPageFlag(regs_.object(), regs_.scratch0(),
4117 1 << MemoryChunk::SCAN_ON_SCAVENGE, ne,
4118 &dont_need_remembered_set);
4119
4120 // First notify the incremental marker if necessary, then update the
4121 // remembered set.
4122 CheckNeedsToInformIncrementalMarker(
4123 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
4124 InformIncrementalMarker(masm);
4125 regs_.Restore(masm);
4126 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4127 MacroAssembler::kReturnAtEnd);
4128
4129 __ bind(&dont_need_remembered_set);
4130 }
4131
4132 CheckNeedsToInformIncrementalMarker(
4133 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4134 InformIncrementalMarker(masm);
4135 regs_.Restore(masm);
4136 __ Ret();
4137}
4138
4139
4140void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4141 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4142 int argument_count = 3;
4143 __ PrepareCallCFunction(argument_count, regs_.scratch0());
4144 Register address =
4145 r3.is(regs_.address()) ? regs_.scratch0() : regs_.address();
4146 DCHECK(!address.is(regs_.object()));
4147 DCHECK(!address.is(r3));
4148 __ mr(address, regs_.address());
4149 __ mr(r3, regs_.object());
4150 __ mr(r4, address);
4151 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
4152
4153 AllowExternalCallThatCantCauseGC scope(masm);
4154 __ CallCFunction(
4155 ExternalReference::incremental_marking_record_write_function(isolate()),
4156 argument_count);
4157 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4158}
4159
4160
4161void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4162 MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need,
4163 Mode mode) {
4164 Label on_black;
4165 Label need_incremental;
4166 Label need_incremental_pop_scratch;
4167
4168 DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0);
4169 __ lis(r0, Operand((~Page::kPageAlignmentMask >> 16)));
4170 __ and_(regs_.scratch0(), regs_.object(), r0);
4171 __ LoadP(
4172 regs_.scratch1(),
4173 MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
4174 __ subi(regs_.scratch1(), regs_.scratch1(), Operand(1));
4175 __ StoreP(
4176 regs_.scratch1(),
4177 MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
4178 __ cmpi(regs_.scratch1(), Operand::Zero()); // PPC, we could do better here
4179 __ blt(&need_incremental);
4180
4181 // Let's look at the color of the object: If it is not black we don't have
4182 // to inform the incremental marker.
4183 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
4184
4185 regs_.Restore(masm);
4186 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4187 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4188 MacroAssembler::kReturnAtEnd);
4189 } else {
4190 __ Ret();
4191 }
4192
4193 __ bind(&on_black);
4194
4195 // Get the value from the slot.
4196 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
4197
4198 if (mode == INCREMENTAL_COMPACTION) {
4199 Label ensure_not_white;
4200
4201 __ CheckPageFlag(regs_.scratch0(), // Contains value.
4202 regs_.scratch1(), // Scratch.
4203 MemoryChunk::kEvacuationCandidateMask, eq,
4204 &ensure_not_white);
4205
4206 __ CheckPageFlag(regs_.object(),
4207 regs_.scratch1(), // Scratch.
4208 MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq,
4209 &need_incremental);
4210
4211 __ bind(&ensure_not_white);
4212 }
4213
4214 // We need extra registers for this, so we push the object and the address
4215 // register temporarily.
4216 __ Push(regs_.object(), regs_.address());
4217 __ EnsureNotWhite(regs_.scratch0(), // The value.
4218 regs_.scratch1(), // Scratch.
4219 regs_.object(), // Scratch.
4220 regs_.address(), // Scratch.
4221 &need_incremental_pop_scratch);
4222 __ Pop(regs_.object(), regs_.address());
4223
4224 regs_.Restore(masm);
4225 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4226 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4227 MacroAssembler::kReturnAtEnd);
4228 } else {
4229 __ Ret();
4230 }
4231
4232 __ bind(&need_incremental_pop_scratch);
4233 __ Pop(regs_.object(), regs_.address());
4234
4235 __ bind(&need_incremental);
4236
4237 // Fall through when we need to inform the incremental marker.
4238}
4239
4240
4241void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4242 // ----------- S t a t e -------------
4243 // -- r3 : element value to store
4244 // -- r6 : element index as smi
4245 // -- sp[0] : array literal index in function as smi
4246 // -- sp[4] : array literal
4247 // clobbers r3, r5, r7
4248 // -----------------------------------
4249
4250 Label element_done;
4251 Label double_elements;
4252 Label smi_element;
4253 Label slow_elements;
4254 Label fast_elements;
4255
4256 // Get array literal index, array literal and its map.
4257 __ LoadP(r7, MemOperand(sp, 0 * kPointerSize));
4258 __ LoadP(r4, MemOperand(sp, 1 * kPointerSize));
4259 __ LoadP(r5, FieldMemOperand(r4, JSObject::kMapOffset));
4260
4261 __ CheckFastElements(r5, r8, &double_elements);
4262 // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
4263 __ JumpIfSmi(r3, &smi_element);
4264 __ CheckFastSmiElements(r5, r8, &fast_elements);
4265
4266 // Store into the array literal requires a elements transition. Call into
4267 // the runtime.
4268 __ bind(&slow_elements);
4269 // call.
4270 __ Push(r4, r6, r3);
4271 __ LoadP(r8, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4272 __ LoadP(r8, FieldMemOperand(r8, JSFunction::kLiteralsOffset));
4273 __ Push(r8, r7);
4274 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4275
4276 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4277 __ bind(&fast_elements);
4278 __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset));
4279 __ SmiToPtrArrayOffset(r9, r6);
4280 __ add(r9, r8, r9);
4281#if V8_TARGET_ARCH_PPC64
4282 // add due to offset alignment requirements of StorePU
4283 __ addi(r9, r9, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4284 __ StoreP(r3, MemOperand(r9));
4285#else
4286 __ StorePU(r3, MemOperand(r9, FixedArray::kHeaderSize - kHeapObjectTag));
4287#endif
4288 // Update the write barrier for the array store.
4289 __ RecordWrite(r8, r9, r3, kLRHasNotBeenSaved, kDontSaveFPRegs,
4290 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
4291 __ Ret();
4292
4293 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4294 // and value is Smi.
4295 __ bind(&smi_element);
4296 __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset));
4297 __ SmiToPtrArrayOffset(r9, r6);
4298 __ add(r9, r8, r9);
4299 __ StoreP(r3, FieldMemOperand(r9, FixedArray::kHeaderSize), r0);
4300 __ Ret();
4301
4302 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
4303 __ bind(&double_elements);
4304 __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset));
4305 __ StoreNumberToDoubleElements(r3, r6, r8, r9, d0, &slow_elements);
4306 __ Ret();
4307}
4308
4309
4310void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4311 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4312 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4313 int parameter_count_offset =
4314 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4315 __ LoadP(r4, MemOperand(fp, parameter_count_offset));
4316 if (function_mode() == JS_FUNCTION_STUB_MODE) {
4317 __ addi(r4, r4, Operand(1));
4318 }
4319 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4320 __ slwi(r4, r4, Operand(kPointerSizeLog2));
4321 __ add(sp, sp, r4);
4322 __ Ret();
4323}
4324
4325
4326void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4327 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4328 VectorLoadStub stub(isolate(), state());
4329 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4330}
4331
4332
4333void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4334 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4335 VectorKeyedLoadStub stub(isolate());
4336 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4337}
4338
4339
4340void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4341 if (masm->isolate()->function_entry_hook() != NULL) {
4342 PredictableCodeSizeScope predictable(masm,
4343#if V8_TARGET_ARCH_PPC64
4344 14 * Assembler::kInstrSize);
4345#else
4346 11 * Assembler::kInstrSize);
4347#endif
4348 ProfileEntryHookStub stub(masm->isolate());
4349 __ mflr(r0);
4350 __ Push(r0, ip);
4351 __ CallStub(&stub);
4352 __ Pop(r0, ip);
4353 __ mtlr(r0);
4354 }
4355}
4356
4357
4358void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4359 // The entry hook is a "push lr, ip" instruction, followed by a call.
4360 const int32_t kReturnAddressDistanceFromFunctionStart =
4361 Assembler::kCallTargetAddressOffset + 3 * Assembler::kInstrSize;
4362
4363 // This should contain all kJSCallerSaved registers.
4364 const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers.
4365 r15.bit(); // Saved stack pointer.
4366
4367 // We also save lr, so the count here is one higher than the mask indicates.
4368 const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
4369
4370 // Save all caller-save registers as this may be called from anywhere.
4371 __ mflr(ip);
4372 __ MultiPush(kSavedRegs | ip.bit());
4373
4374 // Compute the function's address for the first argument.
4375 __ subi(r3, ip, Operand(kReturnAddressDistanceFromFunctionStart));
4376
4377 // The caller's return address is two slots above the saved temporaries.
4378 // Grab that for the second argument to the hook.
4379 __ addi(r4, sp, Operand((kNumSavedRegs + 1) * kPointerSize));
4380
4381 // Align the stack if necessary.
4382 int frame_alignment = masm->ActivationFrameAlignment();
4383 if (frame_alignment > kPointerSize) {
4384 __ mr(r15, sp);
4385 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4386 __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
4387 }
4388
4389#if !defined(USE_SIMULATOR)
4390 uintptr_t entry_hook =
4391 reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
4392 __ mov(ip, Operand(entry_hook));
4393
4394#if ABI_USES_FUNCTION_DESCRIPTORS
4395 // Function descriptor
4396 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
4397 __ LoadP(ip, MemOperand(ip, 0));
4398#elif ABI_TOC_ADDRESSABILITY_VIA_IP
4399// ip set above, so nothing to do.
4400#endif
4401
4402 // PPC LINUX ABI:
4403 __ li(r0, Operand::Zero());
4404 __ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize));
4405#else
4406 // Under the simulator we need to indirect the entry hook through a
4407 // trampoline function at a known address.
4408 // It additionally takes an isolate as a third parameter
4409 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
4410
4411 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4412 __ mov(ip, Operand(ExternalReference(
4413 &dispatcher, ExternalReference::BUILTIN_CALL, isolate())));
4414#endif
4415 __ Call(ip);
4416
4417#if !defined(USE_SIMULATOR)
4418 __ addi(sp, sp, Operand(kNumRequiredStackFrameSlots * kPointerSize));
4419#endif
4420
4421 // Restore the stack pointer if needed.
4422 if (frame_alignment > kPointerSize) {
4423 __ mr(sp, r15);
4424 }
4425
4426 // Also pop lr to get Ret(0).
4427 __ MultiPop(kSavedRegs | ip.bit());
4428 __ mtlr(ip);
4429 __ Ret();
4430}
4431
4432
4433template <class T>
4434static void CreateArrayDispatch(MacroAssembler* masm,
4435 AllocationSiteOverrideMode mode) {
4436 if (mode == DISABLE_ALLOCATION_SITES) {
4437 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4438 __ TailCallStub(&stub);
4439 } else if (mode == DONT_OVERRIDE) {
4440 int last_index =
4441 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4442 for (int i = 0; i <= last_index; ++i) {
4443 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4444 __ Cmpi(r6, Operand(kind), r0);
4445 T stub(masm->isolate(), kind);
4446 __ TailCallStub(&stub, eq);
4447 }
4448
4449 // If we reached this point there is a problem.
4450 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4451 } else {
4452 UNREACHABLE();
4453 }
4454}
4455
4456
4457static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4458 AllocationSiteOverrideMode mode) {
4459 // r5 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4460 // r6 - kind (if mode != DISABLE_ALLOCATION_SITES)
4461 // r3 - number of arguments
4462 // r4 - constructor?
4463 // sp[0] - last argument
4464 Label normal_sequence;
4465 if (mode == DONT_OVERRIDE) {
4466 DCHECK(FAST_SMI_ELEMENTS == 0);
4467 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4468 DCHECK(FAST_ELEMENTS == 2);
4469 DCHECK(FAST_HOLEY_ELEMENTS == 3);
4470 DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4471 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4472
4473 // is the low bit set? If so, we are holey and that is good.
4474 __ andi(r0, r6, Operand(1));
4475 __ bne(&normal_sequence, cr0);
4476 }
4477
4478 // look at the first argument
4479 __ LoadP(r8, MemOperand(sp, 0));
4480 __ cmpi(r8, Operand::Zero());
4481 __ beq(&normal_sequence);
4482
4483 if (mode == DISABLE_ALLOCATION_SITES) {
4484 ElementsKind initial = GetInitialFastElementsKind();
4485 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4486
4487 ArraySingleArgumentConstructorStub stub_holey(
4488 masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
4489 __ TailCallStub(&stub_holey);
4490
4491 __ bind(&normal_sequence);
4492 ArraySingleArgumentConstructorStub stub(masm->isolate(), initial,
4493 DISABLE_ALLOCATION_SITES);
4494 __ TailCallStub(&stub);
4495 } else if (mode == DONT_OVERRIDE) {
4496 // We are going to create a holey array, but our kind is non-holey.
4497 // Fix kind and retry (only if we have an allocation site in the slot).
4498 __ addi(r6, r6, Operand(1));
4499
4500 if (FLAG_debug_code) {
4501 __ LoadP(r8, FieldMemOperand(r5, 0));
4502 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
4503 __ Assert(eq, kExpectedAllocationSite);
4504 }
4505
4506 // Save the resulting elements kind in type info. We can't just store r6
4507 // in the AllocationSite::transition_info field because elements kind is
4508 // restricted to a portion of the field...upper bits need to be left alone.
4509 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4510 __ LoadP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
4511 __ AddSmiLiteral(r7, r7, Smi::FromInt(kFastElementsKindPackedToHoley), r0);
4512 __ StoreP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset),
4513 r0);
4514
4515 __ bind(&normal_sequence);
4516 int last_index =
4517 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4518 for (int i = 0; i <= last_index; ++i) {
4519 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4520 __ mov(r0, Operand(kind));
4521 __ cmp(r6, r0);
4522 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4523 __ TailCallStub(&stub, eq);
4524 }
4525
4526 // If we reached this point there is a problem.
4527 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4528 } else {
4529 UNREACHABLE();
4530 }
4531}
4532
4533
4534template <class T>
4535static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4536 int to_index =
4537 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4538 for (int i = 0; i <= to_index; ++i) {
4539 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4540 T stub(isolate, kind);
4541 stub.GetCode();
4542 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4543 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4544 stub1.GetCode();
4545 }
4546 }
4547}
4548
4549
4550void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4551 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4552 isolate);
4553 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4554 isolate);
4555 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4556 isolate);
4557}
4558
4559
4560void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4561 Isolate* isolate) {
4562 ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS};
4563 for (int i = 0; i < 2; i++) {
4564 // For internal arrays we only need a few things
4565 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4566 stubh1.GetCode();
4567 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4568 stubh2.GetCode();
4569 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4570 stubh3.GetCode();
4571 }
4572}
4573
4574
4575void ArrayConstructorStub::GenerateDispatchToArrayStub(
4576 MacroAssembler* masm, AllocationSiteOverrideMode mode) {
4577 if (argument_count() == ANY) {
4578 Label not_zero_case, not_one_case;
4579 __ cmpi(r3, Operand::Zero());
4580 __ bne(&not_zero_case);
4581 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4582
4583 __ bind(&not_zero_case);
4584 __ cmpi(r3, Operand(1));
4585 __ bgt(&not_one_case);
4586 CreateArrayDispatchOneArgument(masm, mode);
4587
4588 __ bind(&not_one_case);
4589 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4590 } else if (argument_count() == NONE) {
4591 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4592 } else if (argument_count() == ONE) {
4593 CreateArrayDispatchOneArgument(masm, mode);
4594 } else if (argument_count() == MORE_THAN_ONE) {
4595 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4596 } else {
4597 UNREACHABLE();
4598 }
4599}
4600
4601
4602void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4603 // ----------- S t a t e -------------
4604 // -- r3 : argc (only if argument_count() == ANY)
4605 // -- r4 : constructor
4606 // -- r5 : AllocationSite or undefined
4607 // -- sp[0] : return address
4608 // -- sp[4] : last argument
4609 // -----------------------------------
4610
4611 if (FLAG_debug_code) {
4612 // The array construct code is only set for the global and natives
4613 // builtin Array functions which always have maps.
4614
4615 // Initial map for the builtin Array function should be a map.
4616 __ LoadP(r7, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
4617 // Will both indicate a NULL and a Smi.
4618 __ TestIfSmi(r7, r0);
4619 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
4620 __ CompareObjectType(r7, r7, r8, MAP_TYPE);
4621 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4622
4623 // We should either have undefined in r5 or a valid AllocationSite
4624 __ AssertUndefinedOrAllocationSite(r5, r7);
4625 }
4626
4627 Label no_info;
4628 // Get the elements kind and case on that.
4629 __ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
4630 __ beq(&no_info);
4631
4632 __ LoadP(r6, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
4633 __ SmiUntag(r6);
4634 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4635 __ And(r6, r6, Operand(AllocationSite::ElementsKindBits::kMask));
4636 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4637
4638 __ bind(&no_info);
4639 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4640}
4641
4642
4643void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
4644 ElementsKind kind) {
4645 __ cmpli(r3, Operand(1));
4646
4647 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4648 __ TailCallStub(&stub0, lt);
4649
4650 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4651 __ TailCallStub(&stubN, gt);
4652
4653 if (IsFastPackedElementsKind(kind)) {
4654 // We might need to create a holey array
4655 // look at the first argument
4656 __ LoadP(r6, MemOperand(sp, 0));
4657 __ cmpi(r6, Operand::Zero());
4658
4659 InternalArraySingleArgumentConstructorStub stub1_holey(
4660 isolate(), GetHoleyElementsKind(kind));
4661 __ TailCallStub(&stub1_holey, ne);
4662 }
4663
4664 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4665 __ TailCallStub(&stub1);
4666}
4667
4668
4669void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4670 // ----------- S t a t e -------------
4671 // -- r3 : argc
4672 // -- r4 : constructor
4673 // -- sp[0] : return address
4674 // -- sp[4] : last argument
4675 // -----------------------------------
4676
4677 if (FLAG_debug_code) {
4678 // The array construct code is only set for the global and natives
4679 // builtin Array functions which always have maps.
4680
4681 // Initial map for the builtin Array function should be a map.
4682 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
4683 // Will both indicate a NULL and a Smi.
4684 __ TestIfSmi(r6, r0);
4685 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
4686 __ CompareObjectType(r6, r6, r7, MAP_TYPE);
4687 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4688 }
4689
4690 // Figure out the right elements kind
4691 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
4692 // Load the map's "bit field 2" into |result|.
4693 __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset));
4694 // Retrieve elements_kind from bit field 2.
4695 __ DecodeField<Map::ElementsKindBits>(r6);
4696
4697 if (FLAG_debug_code) {
4698 Label done;
4699 __ cmpi(r6, Operand(FAST_ELEMENTS));
4700 __ beq(&done);
4701 __ cmpi(r6, Operand(FAST_HOLEY_ELEMENTS));
4702 __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4703 __ bind(&done);
4704 }
4705
4706 Label fast_elements_case;
4707 __ cmpi(r6, Operand(FAST_ELEMENTS));
4708 __ beq(&fast_elements_case);
4709 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4710
4711 __ bind(&fast_elements_case);
4712 GenerateCase(masm, FAST_ELEMENTS);
4713}
4714
4715
4716void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4717 // ----------- S t a t e -------------
4718 // -- r3 : callee
4719 // -- r7 : call_data
4720 // -- r5 : holder
4721 // -- r4 : api_function_address
4722 // -- cp : context
4723 // --
4724 // -- sp[0] : last argument
4725 // -- ...
4726 // -- sp[(argc - 1)* 4] : first argument
4727 // -- sp[argc * 4] : receiver
4728 // -----------------------------------
4729
4730 Register callee = r3;
4731 Register call_data = r7;
4732 Register holder = r5;
4733 Register api_function_address = r4;
4734 Register context = cp;
4735
4736 int argc = this->argc();
4737 bool is_store = this->is_store();
4738 bool call_data_undefined = this->call_data_undefined();
4739
4740 typedef FunctionCallbackArguments FCA;
4741
4742 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4743 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4744 STATIC_ASSERT(FCA::kDataIndex == 4);
4745 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4746 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4747 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4748 STATIC_ASSERT(FCA::kHolderIndex == 0);
4749 STATIC_ASSERT(FCA::kArgsLength == 7);
4750
4751 // context save
4752 __ push(context);
4753 // load context from callee
4754 __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset));
4755
4756 // callee
4757 __ push(callee);
4758
4759 // call data
4760 __ push(call_data);
4761
4762 Register scratch = call_data;
4763 if (!call_data_undefined) {
4764 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4765 }
4766 // return value
4767 __ push(scratch);
4768 // return value default
4769 __ push(scratch);
4770 // isolate
4771 __ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
4772 __ push(scratch);
4773 // holder
4774 __ push(holder);
4775
4776 // Prepare arguments.
4777 __ mr(scratch, sp);
4778
4779 // Allocate the v8::Arguments structure in the arguments' space since
4780 // it's not controlled by GC.
4781 // PPC LINUX ABI:
4782 //
4783 // Create 5 extra slots on stack:
4784 // [0] space for DirectCEntryStub's LR save
4785 // [1-4] FunctionCallbackInfo
4786 const int kApiStackSpace = 5;
4787
4788 FrameScope frame_scope(masm, StackFrame::MANUAL);
4789 __ EnterExitFrame(false, kApiStackSpace);
4790
4791 DCHECK(!api_function_address.is(r3) && !scratch.is(r3));
4792 // r3 = FunctionCallbackInfo&
4793 // Arguments is after the return address.
4794 __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
4795 // FunctionCallbackInfo::implicit_args_
4796 __ StoreP(scratch, MemOperand(r3, 0 * kPointerSize));
4797 // FunctionCallbackInfo::values_
4798 __ addi(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
4799 __ StoreP(ip, MemOperand(r3, 1 * kPointerSize));
4800 // FunctionCallbackInfo::length_ = argc
4801 __ li(ip, Operand(argc));
4802 __ stw(ip, MemOperand(r3, 2 * kPointerSize));
4803 // FunctionCallbackInfo::is_construct_call = 0
4804 __ li(ip, Operand::Zero());
4805 __ stw(ip, MemOperand(r3, 2 * kPointerSize + kIntSize));
4806
4807 const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
4808 ExternalReference thunk_ref =
4809 ExternalReference::invoke_function_callback(isolate());
4810
4811 AllowExternalCallThatCantCauseGC scope(masm);
4812 MemOperand context_restore_operand(
4813 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
4814 // Stores return the first js argument
4815 int return_value_offset = 0;
4816 if (is_store) {
4817 return_value_offset = 2 + FCA::kArgsLength;
4818 } else {
4819 return_value_offset = 2 + FCA::kReturnValueOffset;
4820 }
4821 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
4822
4823 __ CallApiFunctionAndReturn(api_function_address, thunk_ref,
4824 kStackUnwindSpace, return_value_operand,
4825 &context_restore_operand);
4826}
4827
4828
4829void CallApiGetterStub::Generate(MacroAssembler* masm) {
4830 // ----------- S t a t e -------------
4831 // -- sp[0] : name
4832 // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object
4833 // -- ...
4834 // -- r5 : api_function_address
4835 // -----------------------------------
4836
4837 Register api_function_address = ApiGetterDescriptor::function_address();
4838 DCHECK(api_function_address.is(r5));
4839
4840 __ mr(r3, sp); // r0 = Handle<Name>
4841 __ addi(r4, r3, Operand(1 * kPointerSize)); // r4 = PCA
4842
4843// If ABI passes Handles (pointer-sized struct) in a register:
4844//
4845// Create 2 extra slots on stack:
4846// [0] space for DirectCEntryStub's LR save
4847// [1] AccessorInfo&
4848//
4849// Otherwise:
4850//
4851// Create 3 extra slots on stack:
4852// [0] space for DirectCEntryStub's LR save
4853// [1] copy of Handle (first arg)
4854// [2] AccessorInfo&
4855#if ABI_PASSES_HANDLES_IN_REGS
4856 const int kAccessorInfoSlot = kStackFrameExtraParamSlot + 1;
4857 const int kApiStackSpace = 2;
4858#else
4859 const int kArg0Slot = kStackFrameExtraParamSlot + 1;
4860 const int kAccessorInfoSlot = kArg0Slot + 1;
4861 const int kApiStackSpace = 3;
4862#endif
4863
4864 FrameScope frame_scope(masm, StackFrame::MANUAL);
4865 __ EnterExitFrame(false, kApiStackSpace);
4866
4867#if !ABI_PASSES_HANDLES_IN_REGS
4868 // pass 1st arg by reference
4869 __ StoreP(r3, MemOperand(sp, kArg0Slot * kPointerSize));
4870 __ addi(r3, sp, Operand(kArg0Slot * kPointerSize));
4871#endif
4872
4873 // Create PropertyAccessorInfo instance on the stack above the exit frame with
4874 // r4 (internal::Object** args_) as the data.
4875 __ StoreP(r4, MemOperand(sp, kAccessorInfoSlot * kPointerSize));
4876 // r4 = AccessorInfo&
4877 __ addi(r4, sp, Operand(kAccessorInfoSlot * kPointerSize));
4878
4879 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
4880
4881 ExternalReference thunk_ref =
4882 ExternalReference::invoke_accessor_getter_callback(isolate());
4883 __ CallApiFunctionAndReturn(api_function_address, thunk_ref,
4884 kStackUnwindSpace,
4885 MemOperand(fp, 6 * kPointerSize), NULL);
4886}
4887
4888
4889#undef __
4890}
4891} // namespace v8::internal
4892
4893#endif // V8_TARGET_ARCH_PPC