blob: fad9339f19442ccad4d4dd24cbb5e2c31c679fd5 [file] [log] [blame]
Steve Block1e0659c2011-05-24 12:43:12 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_ARM)
31
32#include "bootstrapper.h"
33#include "code-stubs.h"
34#include "regexp-macro-assembler.h"
35
36namespace v8 {
37namespace internal {
38
39
40#define __ ACCESS_MASM(masm)
41
42static void EmitIdenticalObjectComparison(MacroAssembler* masm,
43 Label* slow,
Steve Block1e0659c2011-05-24 12:43:12 +010044 Condition cond,
Kristian Monsen80d68ea2010-09-08 11:05:35 +010045 bool never_nan_nan);
46static void EmitSmiNonsmiComparison(MacroAssembler* masm,
47 Register lhs,
48 Register rhs,
49 Label* lhs_not_nan,
50 Label* slow,
51 bool strict);
Steve Block1e0659c2011-05-24 12:43:12 +010052static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond);
Kristian Monsen80d68ea2010-09-08 11:05:35 +010053static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
54 Register lhs,
55 Register rhs);
56
57
Steve Block1e0659c2011-05-24 12:43:12 +010058void ToNumberStub::Generate(MacroAssembler* masm) {
59 // The ToNumber stub takes one argument in eax.
60 Label check_heap_number, call_builtin;
61 __ tst(r0, Operand(kSmiTagMask));
62 __ b(ne, &check_heap_number);
63 __ Ret();
64
65 __ bind(&check_heap_number);
66 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
67 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
68 __ cmp(r1, ip);
69 __ b(ne, &call_builtin);
70 __ Ret();
71
72 __ bind(&call_builtin);
73 __ push(r0);
74 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_JS);
75}
76
77
Kristian Monsen80d68ea2010-09-08 11:05:35 +010078void FastNewClosureStub::Generate(MacroAssembler* masm) {
79 // Create a new closure from the given function info in new
80 // space. Set the context to the current context in cp.
81 Label gc;
82
83 // Pop the function info from the stack.
84 __ pop(r3);
85
86 // Attempt to allocate new JSFunction in new space.
87 __ AllocateInNewSpace(JSFunction::kSize,
88 r0,
89 r1,
90 r2,
91 &gc,
92 TAG_OBJECT);
93
Steve Block44f0eee2011-05-26 01:26:41 +010094 int map_index = strict_mode_ == kStrictMode
95 ? Context::STRICT_MODE_FUNCTION_MAP_INDEX
96 : Context::FUNCTION_MAP_INDEX;
97
Kristian Monsen80d68ea2010-09-08 11:05:35 +010098 // Compute the function map in the current global context and set that
99 // as the map of the allocated object.
100 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
101 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
Steve Block44f0eee2011-05-26 01:26:41 +0100102 __ ldr(r2, MemOperand(r2, Context::SlotOffset(map_index)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100103 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
104
105 // Initialize the rest of the function. We don't have to update the
106 // write barrier because the allocated object is in new space.
107 __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
108 __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100109 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100110 __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
111 __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
112 __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
113 __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
114 __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
115 __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
Ben Murdochb0fe1622011-05-05 13:52:32 +0100116 __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset));
117
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100118
119 // Initialize the code pointer in the function to be the one
120 // found in the shared function info object.
121 __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
122 __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
123 __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
124
125 // Return result. The argument function info has been popped already.
126 __ Ret();
127
128 // Create a new closure through the slower runtime call.
129 __ bind(&gc);
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800130 __ LoadRoot(r4, Heap::kFalseValueRootIndex);
131 __ Push(cp, r3, r4);
132 __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100133}
134
135
136void FastNewContextStub::Generate(MacroAssembler* masm) {
137 // Try to allocate the context in new space.
138 Label gc;
139 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
140
141 // Attempt to allocate the context in new space.
142 __ AllocateInNewSpace(FixedArray::SizeFor(length),
143 r0,
144 r1,
145 r2,
146 &gc,
147 TAG_OBJECT);
148
149 // Load the function from the stack.
150 __ ldr(r3, MemOperand(sp, 0));
151
152 // Setup the object header.
153 __ LoadRoot(r2, Heap::kContextMapRootIndex);
154 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
155 __ mov(r2, Operand(Smi::FromInt(length)));
156 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
157
158 // Setup the fixed slots.
159 __ mov(r1, Operand(Smi::FromInt(0)));
160 __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
161 __ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX)));
162 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
163 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
164
165 // Copy the global object from the surrounding context.
166 __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
167 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX)));
168
169 // Initialize the rest of the slots to undefined.
170 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
171 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
172 __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
173 }
174
175 // Remove the on-stack argument and return.
176 __ mov(cp, r0);
177 __ pop();
178 __ Ret();
179
180 // Need to collect. Call into runtime system.
181 __ bind(&gc);
182 __ TailCallRuntime(Runtime::kNewContext, 1, 1);
183}
184
185
186void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
187 // Stack layout on entry:
188 //
189 // [sp]: constant elements.
190 // [sp + kPointerSize]: literal index.
191 // [sp + (2 * kPointerSize)]: literals array.
192
193 // All sizes here are multiples of kPointerSize.
194 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
195 int size = JSArray::kSize + elements_size;
196
197 // Load boilerplate object into r3 and check if we need to create a
198 // boilerplate.
199 Label slow_case;
200 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
201 __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
202 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
203 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
204 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
205 __ cmp(r3, ip);
206 __ b(eq, &slow_case);
207
208 if (FLAG_debug_code) {
209 const char* message;
210 Heap::RootListIndex expected_map_index;
211 if (mode_ == CLONE_ELEMENTS) {
212 message = "Expected (writable) fixed array";
213 expected_map_index = Heap::kFixedArrayMapRootIndex;
214 } else {
215 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
216 message = "Expected copy-on-write fixed array";
217 expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
218 }
219 __ push(r3);
220 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
221 __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
222 __ LoadRoot(ip, expected_map_index);
223 __ cmp(r3, ip);
224 __ Assert(eq, message);
225 __ pop(r3);
226 }
227
228 // Allocate both the JS array and the elements array in one big
229 // allocation. This avoids multiple limit checks.
230 __ AllocateInNewSpace(size,
231 r0,
232 r1,
233 r2,
234 &slow_case,
235 TAG_OBJECT);
236
237 // Copy the JS array part.
238 for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
239 if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
240 __ ldr(r1, FieldMemOperand(r3, i));
241 __ str(r1, FieldMemOperand(r0, i));
242 }
243 }
244
245 if (length_ > 0) {
246 // Get hold of the elements array of the boilerplate and setup the
247 // elements pointer in the resulting object.
248 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
249 __ add(r2, r0, Operand(JSArray::kSize));
250 __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
251
252 // Copy the elements array.
253 __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize);
254 }
255
256 // Return and remove the on-stack parameters.
257 __ add(sp, sp, Operand(3 * kPointerSize));
258 __ Ret();
259
260 __ bind(&slow_case);
261 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
262}
263
264
265// Takes a Smi and converts to an IEEE 64 bit floating point value in two
266// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
267// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
268// scratch register. Destroys the source register. No GC occurs during this
269// stub so you don't have to set up the frame.
270class ConvertToDoubleStub : public CodeStub {
271 public:
272 ConvertToDoubleStub(Register result_reg_1,
273 Register result_reg_2,
274 Register source_reg,
275 Register scratch_reg)
276 : result1_(result_reg_1),
277 result2_(result_reg_2),
278 source_(source_reg),
279 zeros_(scratch_reg) { }
280
281 private:
282 Register result1_;
283 Register result2_;
284 Register source_;
285 Register zeros_;
286
287 // Minor key encoding in 16 bits.
288 class ModeBits: public BitField<OverwriteMode, 0, 2> {};
289 class OpBits: public BitField<Token::Value, 2, 14> {};
290
291 Major MajorKey() { return ConvertToDouble; }
292 int MinorKey() {
293 // Encode the parameters in a unique 16 bit value.
294 return result1_.code() +
295 (result2_.code() << 4) +
296 (source_.code() << 8) +
297 (zeros_.code() << 12);
298 }
299
300 void Generate(MacroAssembler* masm);
301
302 const char* GetName() { return "ConvertToDoubleStub"; }
303
304#ifdef DEBUG
305 void Print() { PrintF("ConvertToDoubleStub\n"); }
306#endif
307};
308
309
310void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100311 Register exponent = result1_;
312 Register mantissa = result2_;
Ben Murdoch8b112d22011-06-08 16:22:53 +0100313
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100314 Label not_special;
315 // Convert from Smi to integer.
316 __ mov(source_, Operand(source_, ASR, kSmiTagSize));
317 // Move sign bit from source to destination. This works because the sign bit
318 // in the exponent word of the double has the same position and polarity as
319 // the 2's complement sign bit in a Smi.
320 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
321 __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
322 // Subtract from 0 if source was negative.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100323 __ rsb(source_, source_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100324
325 // We have -1, 0 or 1, which we treat specially. Register source_ contains
326 // absolute value: it is either equal to 1 (special case of -1 and 1),
327 // greater than 1 (not a special case) or less than 1 (special case of 0).
328 __ cmp(source_, Operand(1));
329 __ b(gt, &not_special);
330
331 // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
332 static const uint32_t exponent_word_for_1 =
333 HeapNumber::kExponentBias << HeapNumber::kExponentShift;
334 __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
335 // 1, 0 and -1 all have 0 for the second word.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100336 __ mov(mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100337 __ Ret();
338
339 __ bind(&not_special);
340 // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5.
341 // Gets the wrong answer for 0, but we already checked for that case above.
342 __ CountLeadingZeros(zeros_, source_, mantissa);
343 // Compute exponent and or it into the exponent register.
344 // We use mantissa as a scratch register here. Use a fudge factor to
345 // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
346 // that fit in the ARM's constant field.
347 int fudge = 0x400;
348 __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
349 __ add(mantissa, mantissa, Operand(fudge));
350 __ orr(exponent,
351 exponent,
352 Operand(mantissa, LSL, HeapNumber::kExponentShift));
353 // Shift up the source chopping the top bit off.
354 __ add(zeros_, zeros_, Operand(1));
355 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
356 __ mov(source_, Operand(source_, LSL, zeros_));
357 // Compute lower part of fraction (last 12 bits).
358 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
359 // And the top (top 20 bits).
360 __ orr(exponent,
361 exponent,
362 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
363 __ Ret();
364}
365
366
Steve Block1e0659c2011-05-24 12:43:12 +0100367class FloatingPointHelper : public AllStatic {
368 public:
369
370 enum Destination {
371 kVFPRegisters,
372 kCoreRegisters
373 };
374
375
376 // Loads smis from r0 and r1 (right and left in binary operations) into
377 // floating point registers. Depending on the destination the values ends up
378 // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is
379 // floating point registers VFP3 must be supported. If core registers are
380 // requested when VFP3 is supported d6 and d7 will be scratched.
381 static void LoadSmis(MacroAssembler* masm,
382 Destination destination,
383 Register scratch1,
384 Register scratch2);
385
386 // Loads objects from r0 and r1 (right and left in binary operations) into
387 // floating point registers. Depending on the destination the values ends up
388 // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is
389 // floating point registers VFP3 must be supported. If core registers are
390 // requested when VFP3 is supported d6 and d7 will still be scratched. If
391 // either r0 or r1 is not a number (not smi and not heap number object) the
392 // not_number label is jumped to with r0 and r1 intact.
393 static void LoadOperands(MacroAssembler* masm,
394 FloatingPointHelper::Destination destination,
395 Register heap_number_map,
396 Register scratch1,
397 Register scratch2,
398 Label* not_number);
399
Steve Block44f0eee2011-05-26 01:26:41 +0100400 // Convert the smi or heap number in object to an int32 using the rules
401 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
402 // and brought into the range -2^31 .. +2^31 - 1.
403 static void ConvertNumberToInt32(MacroAssembler* masm,
404 Register object,
405 Register dst,
406 Register heap_number_map,
407 Register scratch1,
408 Register scratch2,
409 Register scratch3,
410 DwVfpRegister double_scratch,
411 Label* not_int32);
Steve Block1e0659c2011-05-24 12:43:12 +0100412
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100413 // Load the number from object into double_dst in the double format.
414 // Control will jump to not_int32 if the value cannot be exactly represented
415 // by a 32-bit integer.
416 // Floating point value in the 32-bit integer range that are not exact integer
417 // won't be loaded.
418 static void LoadNumberAsInt32Double(MacroAssembler* masm,
419 Register object,
420 Destination destination,
421 DwVfpRegister double_dst,
422 Register dst1,
423 Register dst2,
424 Register heap_number_map,
425 Register scratch1,
426 Register scratch2,
427 SwVfpRegister single_scratch,
428 Label* not_int32);
429
430 // Loads the number from object into dst as a 32-bit integer.
431 // Control will jump to not_int32 if the object cannot be exactly represented
432 // by a 32-bit integer.
433 // Floating point value in the 32-bit integer range that are not exact integer
434 // won't be converted.
435 // scratch3 is not used when VFP3 is supported.
436 static void LoadNumberAsInt32(MacroAssembler* masm,
437 Register object,
438 Register dst,
439 Register heap_number_map,
440 Register scratch1,
441 Register scratch2,
442 Register scratch3,
443 DwVfpRegister double_scratch,
444 Label* not_int32);
445
446 // Generate non VFP3 code to check if a double can be exactly represented by a
447 // 32-bit integer. This does not check for 0 or -0, which need
448 // to be checked for separately.
449 // Control jumps to not_int32 if the value is not a 32-bit integer, and falls
450 // through otherwise.
451 // src1 and src2 will be cloberred.
452 //
453 // Expected input:
454 // - src1: higher (exponent) part of the double value.
455 // - src2: lower (mantissa) part of the double value.
456 // Output status:
457 // - dst: 32 higher bits of the mantissa. (mantissa[51:20])
458 // - src2: contains 1.
459 // - other registers are clobbered.
460 static void DoubleIs32BitInteger(MacroAssembler* masm,
461 Register src1,
462 Register src2,
463 Register dst,
464 Register scratch,
465 Label* not_int32);
466
467 // Generates code to call a C function to do a double operation using core
468 // registers. (Used when VFP3 is not supported.)
469 // This code never falls through, but returns with a heap number containing
470 // the result in r0.
471 // Register heapnumber_result must be a heap number in which the
472 // result of the operation will be stored.
473 // Requires the following layout on entry:
474 // r0: Left value (least significant part of mantissa).
475 // r1: Left value (sign, exponent, top of mantissa).
476 // r2: Right value (least significant part of mantissa).
477 // r3: Right value (sign, exponent, top of mantissa).
478 static void CallCCodeForDoubleOperation(MacroAssembler* masm,
479 Token::Value op,
480 Register heap_number_result,
481 Register scratch);
482
Steve Block1e0659c2011-05-24 12:43:12 +0100483 private:
484 static void LoadNumber(MacroAssembler* masm,
485 FloatingPointHelper::Destination destination,
486 Register object,
487 DwVfpRegister dst,
488 Register dst1,
489 Register dst2,
490 Register heap_number_map,
491 Register scratch1,
492 Register scratch2,
493 Label* not_number);
494};
495
496
497void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
498 FloatingPointHelper::Destination destination,
499 Register scratch1,
500 Register scratch2) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100501 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +0100502 CpuFeatures::Scope scope(VFP3);
503 __ mov(scratch1, Operand(r0, ASR, kSmiTagSize));
504 __ vmov(d7.high(), scratch1);
505 __ vcvt_f64_s32(d7, d7.high());
506 __ mov(scratch1, Operand(r1, ASR, kSmiTagSize));
507 __ vmov(d6.high(), scratch1);
508 __ vcvt_f64_s32(d6, d6.high());
509 if (destination == kCoreRegisters) {
510 __ vmov(r2, r3, d7);
511 __ vmov(r0, r1, d6);
512 }
513 } else {
514 ASSERT(destination == kCoreRegisters);
515 // Write Smi from r0 to r3 and r2 in double format.
516 __ mov(scratch1, Operand(r0));
517 ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2);
518 __ push(lr);
519 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100520 // Write Smi from r1 to r1 and r0 in double format.
Steve Block1e0659c2011-05-24 12:43:12 +0100521 __ mov(scratch1, Operand(r1));
522 ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2);
523 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
524 __ pop(lr);
525 }
526}
527
528
529void FloatingPointHelper::LoadOperands(
530 MacroAssembler* masm,
531 FloatingPointHelper::Destination destination,
532 Register heap_number_map,
533 Register scratch1,
534 Register scratch2,
535 Label* slow) {
536
537 // Load right operand (r0) to d6 or r2/r3.
538 LoadNumber(masm, destination,
539 r0, d7, r2, r3, heap_number_map, scratch1, scratch2, slow);
540
541 // Load left operand (r1) to d7 or r0/r1.
542 LoadNumber(masm, destination,
543 r1, d6, r0, r1, heap_number_map, scratch1, scratch2, slow);
544}
545
546
547void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
548 Destination destination,
549 Register object,
550 DwVfpRegister dst,
551 Register dst1,
552 Register dst2,
553 Register heap_number_map,
554 Register scratch1,
555 Register scratch2,
556 Label* not_number) {
557 if (FLAG_debug_code) {
558 __ AbortIfNotRootValue(heap_number_map,
559 Heap::kHeapNumberMapRootIndex,
560 "HeapNumberMap register clobbered.");
561 }
562
563 Label is_smi, done;
564
565 __ JumpIfSmi(object, &is_smi);
566 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
567
568 // Handle loading a double from a heap number.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100569 if (CpuFeatures::IsSupported(VFP3) &&
Steve Block44f0eee2011-05-26 01:26:41 +0100570 destination == kVFPRegisters) {
Steve Block1e0659c2011-05-24 12:43:12 +0100571 CpuFeatures::Scope scope(VFP3);
572 // Load the double from tagged HeapNumber to double register.
573 __ sub(scratch1, object, Operand(kHeapObjectTag));
574 __ vldr(dst, scratch1, HeapNumber::kValueOffset);
575 } else {
576 ASSERT(destination == kCoreRegisters);
577 // Load the double from heap number to dst1 and dst2 in double format.
578 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
579 }
580 __ jmp(&done);
581
582 // Handle loading a double from a smi.
583 __ bind(&is_smi);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100584 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +0100585 CpuFeatures::Scope scope(VFP3);
586 // Convert smi to double using VFP instructions.
587 __ SmiUntag(scratch1, object);
588 __ vmov(dst.high(), scratch1);
589 __ vcvt_f64_s32(dst, dst.high());
590 if (destination == kCoreRegisters) {
591 // Load the converted smi to dst1 and dst2 in double format.
592 __ vmov(dst1, dst2, dst);
593 }
594 } else {
595 ASSERT(destination == kCoreRegisters);
596 // Write smi to dst1 and dst2 double format.
597 __ mov(scratch1, Operand(object));
598 ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
599 __ push(lr);
600 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
601 __ pop(lr);
602 }
603
604 __ bind(&done);
605}
606
607
Steve Block44f0eee2011-05-26 01:26:41 +0100608void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
609 Register object,
610 Register dst,
611 Register heap_number_map,
612 Register scratch1,
613 Register scratch2,
614 Register scratch3,
615 DwVfpRegister double_scratch,
616 Label* not_number) {
Steve Block1e0659c2011-05-24 12:43:12 +0100617 if (FLAG_debug_code) {
618 __ AbortIfNotRootValue(heap_number_map,
619 Heap::kHeapNumberMapRootIndex,
620 "HeapNumberMap register clobbered.");
621 }
Steve Block44f0eee2011-05-26 01:26:41 +0100622 Label is_smi;
623 Label done;
624 Label not_in_int32_range;
625
Steve Block1e0659c2011-05-24 12:43:12 +0100626 __ JumpIfSmi(object, &is_smi);
627 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
628 __ cmp(scratch1, heap_number_map);
Steve Block44f0eee2011-05-26 01:26:41 +0100629 __ b(ne, not_number);
630 __ ConvertToInt32(object,
631 dst,
632 scratch1,
633 scratch2,
634 double_scratch,
635 &not_in_int32_range);
Steve Block1e0659c2011-05-24 12:43:12 +0100636 __ jmp(&done);
Steve Block44f0eee2011-05-26 01:26:41 +0100637
638 __ bind(&not_in_int32_range);
639 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
640 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
641
642 __ EmitOutOfInt32RangeTruncate(dst,
643 scratch1,
644 scratch2,
645 scratch3);
646 __ jmp(&done);
647
Steve Block1e0659c2011-05-24 12:43:12 +0100648 __ bind(&is_smi);
649 __ SmiUntag(dst, object);
650 __ bind(&done);
651}
652
653
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100654void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
655 Register object,
656 Destination destination,
657 DwVfpRegister double_dst,
658 Register dst1,
659 Register dst2,
660 Register heap_number_map,
661 Register scratch1,
662 Register scratch2,
663 SwVfpRegister single_scratch,
664 Label* not_int32) {
665 ASSERT(!scratch1.is(object) && !scratch2.is(object));
666 ASSERT(!scratch1.is(scratch2));
667 ASSERT(!heap_number_map.is(object) &&
668 !heap_number_map.is(scratch1) &&
669 !heap_number_map.is(scratch2));
670
671 Label done, obj_is_not_smi;
672
673 __ JumpIfNotSmi(object, &obj_is_not_smi);
674 __ SmiUntag(scratch1, object);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100675 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100676 CpuFeatures::Scope scope(VFP3);
677 __ vmov(single_scratch, scratch1);
678 __ vcvt_f64_s32(double_dst, single_scratch);
679 if (destination == kCoreRegisters) {
680 __ vmov(dst1, dst2, double_dst);
681 }
682 } else {
683 Label fewer_than_20_useful_bits;
684 // Expected output:
Ben Murdoch8b112d22011-06-08 16:22:53 +0100685 // | dst2 | dst1 |
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100686 // | s | exp | mantissa |
687
688 // Check for zero.
689 __ cmp(scratch1, Operand(0));
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100690 __ mov(dst2, scratch1);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100691 __ mov(dst1, scratch1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100692 __ b(eq, &done);
693
694 // Preload the sign of the value.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100695 __ and_(dst2, scratch1, Operand(HeapNumber::kSignMask), SetCC);
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100696 // Get the absolute value of the object (as an unsigned integer).
697 __ rsb(scratch1, scratch1, Operand(0), SetCC, mi);
698
699 // Get mantisssa[51:20].
700
701 // Get the position of the first set bit.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100702 __ CountLeadingZeros(dst1, scratch1, scratch2);
703 __ rsb(dst1, dst1, Operand(31));
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100704
705 // Set the exponent.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100706 __ add(scratch2, dst1, Operand(HeapNumber::kExponentBias));
707 __ Bfi(dst2, scratch2, scratch2,
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100708 HeapNumber::kExponentShift, HeapNumber::kExponentBits);
709
710 // Clear the first non null bit.
711 __ mov(scratch2, Operand(1));
Ben Murdoch8b112d22011-06-08 16:22:53 +0100712 __ bic(scratch1, scratch1, Operand(scratch2, LSL, dst1));
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100713
Ben Murdoch8b112d22011-06-08 16:22:53 +0100714 __ cmp(dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100715 // Get the number of bits to set in the lower part of the mantissa.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100716 __ sub(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100717 __ b(mi, &fewer_than_20_useful_bits);
718 // Set the higher 20 bits of the mantissa.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100719 __ orr(dst2, dst2, Operand(scratch1, LSR, scratch2));
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100720 __ rsb(scratch2, scratch2, Operand(32));
Ben Murdoch8b112d22011-06-08 16:22:53 +0100721 __ mov(dst1, Operand(scratch1, LSL, scratch2));
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100722 __ b(&done);
723
724 __ bind(&fewer_than_20_useful_bits);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100725 __ rsb(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100726 __ mov(scratch2, Operand(scratch1, LSL, scratch2));
Ben Murdoch8b112d22011-06-08 16:22:53 +0100727 __ orr(dst2, dst2, scratch2);
728 // Set dst1 to 0.
729 __ mov(dst1, Operand(0));
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100730 }
731
732 __ b(&done);
733
734 __ bind(&obj_is_not_smi);
735 if (FLAG_debug_code) {
736 __ AbortIfNotRootValue(heap_number_map,
737 Heap::kHeapNumberMapRootIndex,
738 "HeapNumberMap register clobbered.");
739 }
740 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
741
742 // Load the number.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100743 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100744 CpuFeatures::Scope scope(VFP3);
745 // Load the double value.
746 __ sub(scratch1, object, Operand(kHeapObjectTag));
747 __ vldr(double_dst, scratch1, HeapNumber::kValueOffset);
748
749 __ EmitVFPTruncate(kRoundToZero,
750 single_scratch,
751 double_dst,
752 scratch1,
753 scratch2,
754 kCheckForInexactConversion);
755
756 // Jump to not_int32 if the operation did not succeed.
757 __ b(ne, not_int32);
758
759 if (destination == kCoreRegisters) {
760 __ vmov(dst1, dst2, double_dst);
761 }
762
763 } else {
764 ASSERT(!scratch1.is(object) && !scratch2.is(object));
765 // Load the double value in the destination registers..
766 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
767
768 // Check for 0 and -0.
769 __ bic(scratch1, dst1, Operand(HeapNumber::kSignMask));
770 __ orr(scratch1, scratch1, Operand(dst2));
771 __ cmp(scratch1, Operand(0));
772 __ b(eq, &done);
773
774 // Check that the value can be exactly represented by a 32-bit integer.
775 // Jump to not_int32 if that's not the case.
776 DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
777
778 // dst1 and dst2 were trashed. Reload the double value.
779 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
780 }
781
782 __ bind(&done);
783}
784
785
786void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
787 Register object,
788 Register dst,
789 Register heap_number_map,
790 Register scratch1,
791 Register scratch2,
792 Register scratch3,
793 DwVfpRegister double_scratch,
794 Label* not_int32) {
795 ASSERT(!dst.is(object));
796 ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
797 ASSERT(!scratch1.is(scratch2) &&
798 !scratch1.is(scratch3) &&
799 !scratch2.is(scratch3));
800
801 Label done;
802
803 // Untag the object into the destination register.
804 __ SmiUntag(dst, object);
805 // Just return if the object is a smi.
806 __ JumpIfSmi(object, &done);
807
808 if (FLAG_debug_code) {
809 __ AbortIfNotRootValue(heap_number_map,
810 Heap::kHeapNumberMapRootIndex,
811 "HeapNumberMap register clobbered.");
812 }
813 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
814
815 // Object is a heap number.
816 // Convert the floating point value to a 32-bit integer.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100817 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100818 CpuFeatures::Scope scope(VFP3);
819 SwVfpRegister single_scratch = double_scratch.low();
820 // Load the double value.
821 __ sub(scratch1, object, Operand(kHeapObjectTag));
822 __ vldr(double_scratch, scratch1, HeapNumber::kValueOffset);
823
824 __ EmitVFPTruncate(kRoundToZero,
825 single_scratch,
826 double_scratch,
827 scratch1,
828 scratch2,
829 kCheckForInexactConversion);
830
831 // Jump to not_int32 if the operation did not succeed.
832 __ b(ne, not_int32);
833 // Get the result in the destination register.
834 __ vmov(dst, single_scratch);
835
836 } else {
837 // Load the double value in the destination registers.
838 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
839 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
840
841 // Check for 0 and -0.
842 __ bic(dst, scratch1, Operand(HeapNumber::kSignMask));
843 __ orr(dst, scratch2, Operand(dst));
844 __ cmp(dst, Operand(0));
845 __ b(eq, &done);
846
847 DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
848
849 // Registers state after DoubleIs32BitInteger.
850 // dst: mantissa[51:20].
851 // scratch2: 1
852
853 // Shift back the higher bits of the mantissa.
854 __ mov(dst, Operand(dst, LSR, scratch3));
855 // Set the implicit first bit.
856 __ rsb(scratch3, scratch3, Operand(32));
857 __ orr(dst, dst, Operand(scratch2, LSL, scratch3));
858 // Set the sign.
859 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
860 __ tst(scratch1, Operand(HeapNumber::kSignMask));
861 __ rsb(dst, dst, Operand(0), LeaveCC, mi);
862 }
863
864 __ bind(&done);
865}
866
867
868void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
869 Register src1,
870 Register src2,
871 Register dst,
872 Register scratch,
873 Label* not_int32) {
874 // Get exponent alone in scratch.
875 __ Ubfx(scratch,
876 src1,
877 HeapNumber::kExponentShift,
878 HeapNumber::kExponentBits);
879
880 // Substract the bias from the exponent.
881 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC);
882
883 // src1: higher (exponent) part of the double value.
884 // src2: lower (mantissa) part of the double value.
885 // scratch: unbiased exponent.
886
887 // Fast cases. Check for obvious non 32-bit integer values.
888 // Negative exponent cannot yield 32-bit integers.
889 __ b(mi, not_int32);
890 // Exponent greater than 31 cannot yield 32-bit integers.
891 // Also, a positive value with an exponent equal to 31 is outside of the
892 // signed 32-bit integer range.
893 // Another way to put it is that if (exponent - signbit) > 30 then the
894 // number cannot be represented as an int32.
895 Register tmp = dst;
896 __ sub(tmp, scratch, Operand(src1, LSR, 31));
897 __ cmp(tmp, Operand(30));
898 __ b(gt, not_int32);
899 // - Bits [21:0] in the mantissa are not null.
900 __ tst(src2, Operand(0x3fffff));
901 __ b(ne, not_int32);
902
903 // Otherwise the exponent needs to be big enough to shift left all the
904 // non zero bits left. So we need the (30 - exponent) last bits of the
905 // 31 higher bits of the mantissa to be null.
906 // Because bits [21:0] are null, we can check instead that the
907 // (32 - exponent) last bits of the 32 higher bits of the mantisssa are null.
908
909 // Get the 32 higher bits of the mantissa in dst.
910 __ Ubfx(dst,
911 src2,
912 HeapNumber::kMantissaBitsInTopWord,
913 32 - HeapNumber::kMantissaBitsInTopWord);
914 __ orr(dst,
915 dst,
916 Operand(src1, LSL, HeapNumber::kNonMantissaBitsInTopWord));
917
918 // Create the mask and test the lower bits (of the higher bits).
919 __ rsb(scratch, scratch, Operand(32));
920 __ mov(src2, Operand(1));
921 __ mov(src1, Operand(src2, LSL, scratch));
922 __ sub(src1, src1, Operand(1));
923 __ tst(dst, src1);
924 __ b(ne, not_int32);
925}
926
927
928void FloatingPointHelper::CallCCodeForDoubleOperation(
929 MacroAssembler* masm,
930 Token::Value op,
931 Register heap_number_result,
932 Register scratch) {
933 // Using core registers:
934 // r0: Left value (least significant part of mantissa).
935 // r1: Left value (sign, exponent, top of mantissa).
936 // r2: Right value (least significant part of mantissa).
937 // r3: Right value (sign, exponent, top of mantissa).
938
939 // Assert that heap_number_result is callee-saved.
940 // We currently always use r5 to pass it.
941 ASSERT(heap_number_result.is(r5));
942
943 // Push the current return address before the C call. Return will be
944 // through pop(pc) below.
945 __ push(lr);
946 __ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments.
947 // Call C routine that may not cause GC or other trouble.
Steve Block44f0eee2011-05-26 01:26:41 +0100948 __ CallCFunction(ExternalReference::double_fp_operation(op, masm->isolate()),
949 4);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100950 // Store answer in the overwritable heap number. Double returned in
951 // registers r0 and r1.
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100952 __ Strd(r0, r1, FieldMemOperand(heap_number_result,
953 HeapNumber::kValueOffset));
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100954 // Place heap_number_result in r0 and return to the pushed return address.
955 __ mov(r0, Operand(heap_number_result));
956 __ pop(pc);
957}
958
Steve Block1e0659c2011-05-24 12:43:12 +0100959
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100960// See comment for class.
961void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
962 Label max_negative_int;
963 // the_int_ has the answer which is a signed int32 but not a Smi.
964 // We test for the special value that has a different exponent. This test
965 // has the neat side effect of setting the flags according to the sign.
966 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
967 __ cmp(the_int_, Operand(0x80000000u));
968 __ b(eq, &max_negative_int);
969 // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
970 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
971 uint32_t non_smi_exponent =
972 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
973 __ mov(scratch_, Operand(non_smi_exponent));
974 // Set the sign bit in scratch_ if the value was negative.
975 __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
976 // Subtract from 0 if the value was negative.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100977 __ rsb(the_int_, the_int_, Operand(0, RelocInfo::NONE), LeaveCC, cs);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100978 // We should be masking the implict first digit of the mantissa away here,
979 // but it just ends up combining harmlessly with the last digit of the
980 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
981 // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
982 ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
983 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
984 __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
985 __ str(scratch_, FieldMemOperand(the_heap_number_,
986 HeapNumber::kExponentOffset));
987 __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
988 __ str(scratch_, FieldMemOperand(the_heap_number_,
989 HeapNumber::kMantissaOffset));
990 __ Ret();
991
992 __ bind(&max_negative_int);
993 // The max negative int32 is stored as a positive number in the mantissa of
994 // a double because it uses a sign bit instead of using two's complement.
995 // The actual mantissa bits stored are all 0 because the implicit most
996 // significant 1 bit is not stored.
997 non_smi_exponent += 1 << HeapNumber::kExponentShift;
998 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
999 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
Iain Merrick9ac36c92010-09-13 15:29:50 +01001000 __ mov(ip, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001001 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
1002 __ Ret();
1003}
1004
1005
1006// Handle the case where the lhs and rhs are the same object.
1007// Equality is almost reflexive (everything but NaN), so this is a test
1008// for "identity and not NaN".
1009static void EmitIdenticalObjectComparison(MacroAssembler* masm,
1010 Label* slow,
Steve Block1e0659c2011-05-24 12:43:12 +01001011 Condition cond,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001012 bool never_nan_nan) {
1013 Label not_identical;
1014 Label heap_number, return_equal;
1015 __ cmp(r0, r1);
1016 __ b(ne, &not_identical);
1017
1018 // The two objects are identical. If we know that one of them isn't NaN then
1019 // we now know they test equal.
Steve Block1e0659c2011-05-24 12:43:12 +01001020 if (cond != eq || !never_nan_nan) {
Steve Block44f0eee2011-05-26 01:26:41 +01001021 // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001022 // so we do the second best thing - test it ourselves.
1023 // They are both equal and they are not both Smis so both of them are not
1024 // Smis. If it's not a heap number, then return equal.
Steve Block1e0659c2011-05-24 12:43:12 +01001025 if (cond == lt || cond == gt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001026 __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE);
1027 __ b(ge, slow);
1028 } else {
1029 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
1030 __ b(eq, &heap_number);
1031 // Comparing JS objects with <=, >= is complicated.
Steve Block1e0659c2011-05-24 12:43:12 +01001032 if (cond != eq) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001033 __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE));
1034 __ b(ge, slow);
1035 // Normally here we fall through to return_equal, but undefined is
1036 // special: (undefined == undefined) == true, but
1037 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
Steve Block1e0659c2011-05-24 12:43:12 +01001038 if (cond == le || cond == ge) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001039 __ cmp(r4, Operand(ODDBALL_TYPE));
1040 __ b(ne, &return_equal);
1041 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
1042 __ cmp(r0, r2);
1043 __ b(ne, &return_equal);
Steve Block1e0659c2011-05-24 12:43:12 +01001044 if (cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001045 // undefined <= undefined should fail.
1046 __ mov(r0, Operand(GREATER));
1047 } else {
1048 // undefined >= undefined should fail.
1049 __ mov(r0, Operand(LESS));
1050 }
1051 __ Ret();
1052 }
1053 }
1054 }
1055 }
1056
1057 __ bind(&return_equal);
Steve Block1e0659c2011-05-24 12:43:12 +01001058 if (cond == lt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001059 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
Steve Block1e0659c2011-05-24 12:43:12 +01001060 } else if (cond == gt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001061 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
1062 } else {
1063 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
1064 }
1065 __ Ret();
1066
Steve Block1e0659c2011-05-24 12:43:12 +01001067 if (cond != eq || !never_nan_nan) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001068 // For less and greater we don't have to check for NaN since the result of
1069 // x < x is false regardless. For the others here is some code to check
1070 // for NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001071 if (cond != lt && cond != gt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001072 __ bind(&heap_number);
1073 // It is a heap number, so return non-equal if it's NaN and equal if it's
1074 // not NaN.
1075
1076 // The representation of NaN values has all exponent bits (52..62) set,
1077 // and not all mantissa bits (0..51) clear.
1078 // Read top bits of double representation (second word of value).
1079 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
1080 // Test that exponent bits are all set.
1081 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
1082 // NaNs have all-one exponents so they sign extend to -1.
1083 __ cmp(r3, Operand(-1));
1084 __ b(ne, &return_equal);
1085
1086 // Shift out flag and all exponent bits, retaining only mantissa.
1087 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
1088 // Or with all low-bits of mantissa.
1089 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
1090 __ orr(r0, r3, Operand(r2), SetCC);
1091 // For equal we already have the right value in r0: Return zero (equal)
1092 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
1093 // not (it's a NaN). For <= and >= we need to load r0 with the failing
1094 // value if it's a NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001095 if (cond != eq) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001096 // All-zero means Infinity means equal.
1097 __ Ret(eq);
Steve Block1e0659c2011-05-24 12:43:12 +01001098 if (cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001099 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
1100 } else {
1101 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
1102 }
1103 }
1104 __ Ret();
1105 }
1106 // No fall through here.
1107 }
1108
1109 __ bind(&not_identical);
1110}
1111
1112
1113// See comment at call site.
1114static void EmitSmiNonsmiComparison(MacroAssembler* masm,
1115 Register lhs,
1116 Register rhs,
1117 Label* lhs_not_nan,
1118 Label* slow,
1119 bool strict) {
1120 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1121 (lhs.is(r1) && rhs.is(r0)));
1122
1123 Label rhs_is_smi;
1124 __ tst(rhs, Operand(kSmiTagMask));
1125 __ b(eq, &rhs_is_smi);
1126
1127 // Lhs is a Smi. Check whether the rhs is a heap number.
1128 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
1129 if (strict) {
1130 // If rhs is not a number and lhs is a Smi then strict equality cannot
1131 // succeed. Return non-equal
1132 // If rhs is r0 then there is already a non zero value in it.
1133 if (!rhs.is(r0)) {
1134 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1135 }
1136 __ Ret(ne);
1137 } else {
1138 // Smi compared non-strictly with a non-Smi non-heap-number. Call
1139 // the runtime.
1140 __ b(ne, slow);
1141 }
1142
1143 // Lhs is a smi, rhs is a number.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001144 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001145 // Convert lhs to a double in d7.
1146 CpuFeatures::Scope scope(VFP3);
1147 __ SmiToDoubleVFPRegister(lhs, d7, r7, s15);
1148 // Load the double from rhs, tagged HeapNumber r0, to d6.
1149 __ sub(r7, rhs, Operand(kHeapObjectTag));
1150 __ vldr(d6, r7, HeapNumber::kValueOffset);
1151 } else {
1152 __ push(lr);
1153 // Convert lhs to a double in r2, r3.
1154 __ mov(r7, Operand(lhs));
1155 ConvertToDoubleStub stub1(r3, r2, r7, r6);
1156 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
1157 // Load rhs to a double in r0, r1.
1158 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1159 __ pop(lr);
1160 }
1161
1162 // We now have both loaded as doubles but we can skip the lhs nan check
1163 // since it's a smi.
1164 __ jmp(lhs_not_nan);
1165
1166 __ bind(&rhs_is_smi);
1167 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
1168 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
1169 if (strict) {
1170 // If lhs is not a number and rhs is a smi then strict equality cannot
1171 // succeed. Return non-equal.
1172 // If lhs is r0 then there is already a non zero value in it.
1173 if (!lhs.is(r0)) {
1174 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1175 }
1176 __ Ret(ne);
1177 } else {
1178 // Smi compared non-strictly with a non-smi non-heap-number. Call
1179 // the runtime.
1180 __ b(ne, slow);
1181 }
1182
1183 // Rhs is a smi, lhs is a heap number.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001184 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001185 CpuFeatures::Scope scope(VFP3);
1186 // Load the double from lhs, tagged HeapNumber r1, to d7.
1187 __ sub(r7, lhs, Operand(kHeapObjectTag));
1188 __ vldr(d7, r7, HeapNumber::kValueOffset);
1189 // Convert rhs to a double in d6 .
1190 __ SmiToDoubleVFPRegister(rhs, d6, r7, s13);
1191 } else {
1192 __ push(lr);
1193 // Load lhs to a double in r2, r3.
1194 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1195 // Convert rhs to a double in r0, r1.
1196 __ mov(r7, Operand(rhs));
1197 ConvertToDoubleStub stub2(r1, r0, r7, r6);
1198 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
1199 __ pop(lr);
1200 }
1201 // Fall through to both_loaded_as_doubles.
1202}
1203
1204
Steve Block1e0659c2011-05-24 12:43:12 +01001205void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001206 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1207 Register rhs_exponent = exp_first ? r0 : r1;
1208 Register lhs_exponent = exp_first ? r2 : r3;
1209 Register rhs_mantissa = exp_first ? r1 : r0;
1210 Register lhs_mantissa = exp_first ? r3 : r2;
1211 Label one_is_nan, neither_is_nan;
1212
1213 __ Sbfx(r4,
1214 lhs_exponent,
1215 HeapNumber::kExponentShift,
1216 HeapNumber::kExponentBits);
1217 // NaNs have all-one exponents so they sign extend to -1.
1218 __ cmp(r4, Operand(-1));
1219 __ b(ne, lhs_not_nan);
1220 __ mov(r4,
1221 Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1222 SetCC);
1223 __ b(ne, &one_is_nan);
Iain Merrick9ac36c92010-09-13 15:29:50 +01001224 __ cmp(lhs_mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001225 __ b(ne, &one_is_nan);
1226
1227 __ bind(lhs_not_nan);
1228 __ Sbfx(r4,
1229 rhs_exponent,
1230 HeapNumber::kExponentShift,
1231 HeapNumber::kExponentBits);
1232 // NaNs have all-one exponents so they sign extend to -1.
1233 __ cmp(r4, Operand(-1));
1234 __ b(ne, &neither_is_nan);
1235 __ mov(r4,
1236 Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1237 SetCC);
1238 __ b(ne, &one_is_nan);
Iain Merrick9ac36c92010-09-13 15:29:50 +01001239 __ cmp(rhs_mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001240 __ b(eq, &neither_is_nan);
1241
1242 __ bind(&one_is_nan);
1243 // NaN comparisons always fail.
1244 // Load whatever we need in r0 to make the comparison fail.
Steve Block1e0659c2011-05-24 12:43:12 +01001245 if (cond == lt || cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001246 __ mov(r0, Operand(GREATER));
1247 } else {
1248 __ mov(r0, Operand(LESS));
1249 }
1250 __ Ret();
1251
1252 __ bind(&neither_is_nan);
1253}
1254
1255
1256// See comment at call site.
Steve Block1e0659c2011-05-24 12:43:12 +01001257static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm,
1258 Condition cond) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001259 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1260 Register rhs_exponent = exp_first ? r0 : r1;
1261 Register lhs_exponent = exp_first ? r2 : r3;
1262 Register rhs_mantissa = exp_first ? r1 : r0;
1263 Register lhs_mantissa = exp_first ? r3 : r2;
1264
1265 // r0, r1, r2, r3 have the two doubles. Neither is a NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001266 if (cond == eq) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001267 // Doubles are not equal unless they have the same bit pattern.
1268 // Exception: 0 and -0.
1269 __ cmp(rhs_mantissa, Operand(lhs_mantissa));
1270 __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
1271 // Return non-zero if the numbers are unequal.
1272 __ Ret(ne);
1273
1274 __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
1275 // If exponents are equal then return 0.
1276 __ Ret(eq);
1277
1278 // Exponents are unequal. The only way we can return that the numbers
1279 // are equal is if one is -0 and the other is 0. We already dealt
1280 // with the case where both are -0 or both are 0.
1281 // We start by seeing if the mantissas (that are equal) or the bottom
1282 // 31 bits of the rhs exponent are non-zero. If so we return not
1283 // equal.
1284 __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
1285 __ mov(r0, Operand(r4), LeaveCC, ne);
1286 __ Ret(ne);
1287 // Now they are equal if and only if the lhs exponent is zero in its
1288 // low 31 bits.
1289 __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
1290 __ Ret();
1291 } else {
1292 // Call a native function to do a comparison between two non-NaNs.
1293 // Call C routine that may not cause GC or other trouble.
1294 __ push(lr);
1295 __ PrepareCallCFunction(4, r5); // Two doubles count as 4 arguments.
Steve Block44f0eee2011-05-26 01:26:41 +01001296 __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()), 4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001297 __ pop(pc); // Return.
1298 }
1299}
1300
1301
1302// See comment at call site.
1303static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
1304 Register lhs,
1305 Register rhs) {
1306 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1307 (lhs.is(r1) && rhs.is(r0)));
1308
1309 // If either operand is a JSObject or an oddball value, then they are
1310 // not equal since their pointers are different.
1311 // There is no test for undetectability in strict equality.
1312 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
1313 Label first_non_object;
1314 // Get the type of the first operand into r2 and compare it with
1315 // FIRST_JS_OBJECT_TYPE.
1316 __ CompareObjectType(rhs, r2, r2, FIRST_JS_OBJECT_TYPE);
1317 __ b(lt, &first_non_object);
1318
1319 // Return non-zero (r0 is not zero)
1320 Label return_not_equal;
1321 __ bind(&return_not_equal);
1322 __ Ret();
1323
1324 __ bind(&first_non_object);
1325 // Check for oddballs: true, false, null, undefined.
1326 __ cmp(r2, Operand(ODDBALL_TYPE));
1327 __ b(eq, &return_not_equal);
1328
1329 __ CompareObjectType(lhs, r3, r3, FIRST_JS_OBJECT_TYPE);
1330 __ b(ge, &return_not_equal);
1331
1332 // Check for oddballs: true, false, null, undefined.
1333 __ cmp(r3, Operand(ODDBALL_TYPE));
1334 __ b(eq, &return_not_equal);
1335
1336 // Now that we have the types we might as well check for symbol-symbol.
1337 // Ensure that no non-strings have the symbol bit set.
1338 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
1339 STATIC_ASSERT(kSymbolTag != 0);
1340 __ and_(r2, r2, Operand(r3));
1341 __ tst(r2, Operand(kIsSymbolMask));
1342 __ b(ne, &return_not_equal);
1343}
1344
1345
1346// See comment at call site.
1347static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
1348 Register lhs,
1349 Register rhs,
1350 Label* both_loaded_as_doubles,
1351 Label* not_heap_numbers,
1352 Label* slow) {
1353 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1354 (lhs.is(r1) && rhs.is(r0)));
1355
1356 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
1357 __ b(ne, not_heap_numbers);
1358 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
1359 __ cmp(r2, r3);
1360 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
1361
1362 // Both are heap numbers. Load them up then jump to the code we have
1363 // for that.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001364 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001365 CpuFeatures::Scope scope(VFP3);
1366 __ sub(r7, rhs, Operand(kHeapObjectTag));
1367 __ vldr(d6, r7, HeapNumber::kValueOffset);
1368 __ sub(r7, lhs, Operand(kHeapObjectTag));
1369 __ vldr(d7, r7, HeapNumber::kValueOffset);
1370 } else {
1371 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1372 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1373 }
1374 __ jmp(both_loaded_as_doubles);
1375}
1376
1377
1378// Fast negative check for symbol-to-symbol equality.
1379static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
1380 Register lhs,
1381 Register rhs,
1382 Label* possible_strings,
1383 Label* not_both_strings) {
1384 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1385 (lhs.is(r1) && rhs.is(r0)));
1386
1387 // r2 is object type of rhs.
1388 // Ensure that no non-strings have the symbol bit set.
1389 Label object_test;
1390 STATIC_ASSERT(kSymbolTag != 0);
1391 __ tst(r2, Operand(kIsNotStringMask));
1392 __ b(ne, &object_test);
1393 __ tst(r2, Operand(kIsSymbolMask));
1394 __ b(eq, possible_strings);
1395 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
1396 __ b(ge, not_both_strings);
1397 __ tst(r3, Operand(kIsSymbolMask));
1398 __ b(eq, possible_strings);
1399
1400 // Both are symbols. We already checked they weren't the same pointer
1401 // so they are not equal.
1402 __ mov(r0, Operand(NOT_EQUAL));
1403 __ Ret();
1404
1405 __ bind(&object_test);
1406 __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
1407 __ b(lt, not_both_strings);
1408 __ CompareObjectType(lhs, r2, r3, FIRST_JS_OBJECT_TYPE);
1409 __ b(lt, not_both_strings);
1410 // If both objects are undetectable, they are equal. Otherwise, they
1411 // are not equal, since they are different objects and an object is not
1412 // equal to undefined.
1413 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
1414 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
1415 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
1416 __ and_(r0, r2, Operand(r3));
1417 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
1418 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
1419 __ Ret();
1420}
1421
1422
1423void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
1424 Register object,
1425 Register result,
1426 Register scratch1,
1427 Register scratch2,
1428 Register scratch3,
1429 bool object_is_smi,
1430 Label* not_found) {
1431 // Use of registers. Register result is used as a temporary.
1432 Register number_string_cache = result;
1433 Register mask = scratch3;
1434
1435 // Load the number string cache.
1436 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
1437
1438 // Make the hash mask from the length of the number string cache. It
1439 // contains two elements (number and string) for each cache entry.
1440 __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
1441 // Divide length by two (length is a smi).
1442 __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
1443 __ sub(mask, mask, Operand(1)); // Make mask.
1444
1445 // Calculate the entry in the number string cache. The hash value in the
1446 // number string cache for smis is just the smi value, and the hash for
1447 // doubles is the xor of the upper and lower words. See
1448 // Heap::GetNumberStringCache.
Steve Block44f0eee2011-05-26 01:26:41 +01001449 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001450 Label is_smi;
1451 Label load_result_from_cache;
1452 if (!object_is_smi) {
Steve Block1e0659c2011-05-24 12:43:12 +01001453 __ JumpIfSmi(object, &is_smi);
Ben Murdoch8b112d22011-06-08 16:22:53 +01001454 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001455 CpuFeatures::Scope scope(VFP3);
1456 __ CheckMap(object,
1457 scratch1,
1458 Heap::kHeapNumberMapRootIndex,
1459 not_found,
1460 true);
1461
1462 STATIC_ASSERT(8 == kDoubleSize);
1463 __ add(scratch1,
1464 object,
1465 Operand(HeapNumber::kValueOffset - kHeapObjectTag));
1466 __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
1467 __ eor(scratch1, scratch1, Operand(scratch2));
1468 __ and_(scratch1, scratch1, Operand(mask));
1469
1470 // Calculate address of entry in string cache: each entry consists
1471 // of two pointer sized fields.
1472 __ add(scratch1,
1473 number_string_cache,
1474 Operand(scratch1, LSL, kPointerSizeLog2 + 1));
1475
1476 Register probe = mask;
1477 __ ldr(probe,
1478 FieldMemOperand(scratch1, FixedArray::kHeaderSize));
Steve Block1e0659c2011-05-24 12:43:12 +01001479 __ JumpIfSmi(probe, not_found);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001480 __ sub(scratch2, object, Operand(kHeapObjectTag));
1481 __ vldr(d0, scratch2, HeapNumber::kValueOffset);
1482 __ sub(probe, probe, Operand(kHeapObjectTag));
1483 __ vldr(d1, probe, HeapNumber::kValueOffset);
Ben Murdochb8e0da22011-05-16 14:20:40 +01001484 __ VFPCompareAndSetFlags(d0, d1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001485 __ b(ne, not_found); // The cache did not contain this value.
1486 __ b(&load_result_from_cache);
1487 } else {
1488 __ b(not_found);
1489 }
1490 }
1491
1492 __ bind(&is_smi);
1493 Register scratch = scratch1;
1494 __ and_(scratch, mask, Operand(object, ASR, 1));
1495 // Calculate address of entry in string cache: each entry consists
1496 // of two pointer sized fields.
1497 __ add(scratch,
1498 number_string_cache,
1499 Operand(scratch, LSL, kPointerSizeLog2 + 1));
1500
1501 // Check if the entry is the smi we are looking for.
1502 Register probe = mask;
1503 __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
1504 __ cmp(object, probe);
1505 __ b(ne, not_found);
1506
1507 // Get the result from the cache.
1508 __ bind(&load_result_from_cache);
1509 __ ldr(result,
1510 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01001511 __ IncrementCounter(isolate->counters()->number_to_string_native(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001512 1,
1513 scratch1,
1514 scratch2);
1515}
1516
1517
1518void NumberToStringStub::Generate(MacroAssembler* masm) {
1519 Label runtime;
1520
1521 __ ldr(r1, MemOperand(sp, 0));
1522
1523 // Generate code to lookup number in the number string cache.
1524 GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
1525 __ add(sp, sp, Operand(1 * kPointerSize));
1526 __ Ret();
1527
1528 __ bind(&runtime);
1529 // Handle number to string in the runtime system if not found in the cache.
1530 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
1531}
1532
1533
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001534// On entry lhs_ and rhs_ are the values to be compared.
1535// On exit r0 is 0, positive or negative to indicate the result of
1536// the comparison.
1537void CompareStub::Generate(MacroAssembler* masm) {
1538 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
1539 (lhs_.is(r1) && rhs_.is(r0)));
1540
1541 Label slow; // Call builtin.
1542 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
1543
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001544 if (include_smi_compare_) {
1545 Label not_two_smis, smi_done;
1546 __ orr(r2, r1, r0);
1547 __ tst(r2, Operand(kSmiTagMask));
1548 __ b(ne, &not_two_smis);
Ben Murdochf87a2032010-10-22 12:50:53 +01001549 __ mov(r1, Operand(r1, ASR, 1));
1550 __ sub(r0, r1, Operand(r0, ASR, 1));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001551 __ Ret();
1552 __ bind(&not_two_smis);
1553 } else if (FLAG_debug_code) {
1554 __ orr(r2, r1, r0);
1555 __ tst(r2, Operand(kSmiTagMask));
Steve Block1e0659c2011-05-24 12:43:12 +01001556 __ Assert(ne, "CompareStub: unexpected smi operands.");
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001557 }
1558
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001559 // NOTICE! This code is only reached after a smi-fast-case check, so
1560 // it is certain that at least one operand isn't a smi.
1561
1562 // Handle the case where the objects are identical. Either returns the answer
1563 // or goes to slow. Only falls through if the objects were not identical.
1564 EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
1565
1566 // If either is a Smi (we know that not both are), then they can only
1567 // be strictly equal if the other is a HeapNumber.
1568 STATIC_ASSERT(kSmiTag == 0);
1569 ASSERT_EQ(0, Smi::FromInt(0));
1570 __ and_(r2, lhs_, Operand(rhs_));
1571 __ tst(r2, Operand(kSmiTagMask));
1572 __ b(ne, &not_smis);
1573 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
1574 // 1) Return the answer.
1575 // 2) Go to slow.
1576 // 3) Fall through to both_loaded_as_doubles.
1577 // 4) Jump to lhs_not_nan.
1578 // In cases 3 and 4 we have found out we were dealing with a number-number
1579 // comparison. If VFP3 is supported the double values of the numbers have
1580 // been loaded into d7 and d6. Otherwise, the double values have been loaded
1581 // into r0, r1, r2, and r3.
1582 EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_);
1583
1584 __ bind(&both_loaded_as_doubles);
1585 // The arguments have been converted to doubles and stored in d6 and d7, if
1586 // VFP3 is supported, or in r0, r1, r2, and r3.
Steve Block44f0eee2011-05-26 01:26:41 +01001587 Isolate* isolate = masm->isolate();
Ben Murdoch8b112d22011-06-08 16:22:53 +01001588 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001589 __ bind(&lhs_not_nan);
1590 CpuFeatures::Scope scope(VFP3);
1591 Label no_nan;
1592 // ARMv7 VFP3 instructions to implement double precision comparison.
Ben Murdochb8e0da22011-05-16 14:20:40 +01001593 __ VFPCompareAndSetFlags(d7, d6);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001594 Label nan;
1595 __ b(vs, &nan);
1596 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
1597 __ mov(r0, Operand(LESS), LeaveCC, lt);
1598 __ mov(r0, Operand(GREATER), LeaveCC, gt);
1599 __ Ret();
1600
1601 __ bind(&nan);
1602 // If one of the sides was a NaN then the v flag is set. Load r0 with
1603 // whatever it takes to make the comparison fail, since comparisons with NaN
1604 // always fail.
1605 if (cc_ == lt || cc_ == le) {
1606 __ mov(r0, Operand(GREATER));
1607 } else {
1608 __ mov(r0, Operand(LESS));
1609 }
1610 __ Ret();
1611 } else {
1612 // Checks for NaN in the doubles we have loaded. Can return the answer or
1613 // fall through if neither is a NaN. Also binds lhs_not_nan.
1614 EmitNanCheck(masm, &lhs_not_nan, cc_);
1615 // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
1616 // answer. Never falls through.
1617 EmitTwoNonNanDoubleComparison(masm, cc_);
1618 }
1619
1620 __ bind(&not_smis);
1621 // At this point we know we are dealing with two different objects,
1622 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
1623 if (strict_) {
1624 // This returns non-equal for some object types, or falls through if it
1625 // was not lucky.
1626 EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
1627 }
1628
1629 Label check_for_symbols;
1630 Label flat_string_check;
1631 // Check for heap-number-heap-number comparison. Can jump to slow case,
1632 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
1633 // that case. If the inputs are not doubles then jumps to check_for_symbols.
1634 // In this case r2 will contain the type of rhs_. Never falls through.
1635 EmitCheckForTwoHeapNumbers(masm,
1636 lhs_,
1637 rhs_,
1638 &both_loaded_as_doubles,
1639 &check_for_symbols,
1640 &flat_string_check);
1641
1642 __ bind(&check_for_symbols);
1643 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
1644 // symbols.
1645 if (cc_ == eq && !strict_) {
1646 // Returns an answer for two symbols or two detectable objects.
1647 // Otherwise jumps to string case or not both strings case.
1648 // Assumes that r2 is the type of rhs_ on entry.
1649 EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
1650 }
1651
1652 // Check for both being sequential ASCII strings, and inline if that is the
1653 // case.
1654 __ bind(&flat_string_check);
1655
1656 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow);
1657
Steve Block44f0eee2011-05-26 01:26:41 +01001658 __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001659 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
1660 lhs_,
1661 rhs_,
1662 r2,
1663 r3,
1664 r4,
1665 r5);
1666 // Never falls through to here.
1667
1668 __ bind(&slow);
1669
1670 __ Push(lhs_, rhs_);
1671 // Figure out which native to call and setup the arguments.
1672 Builtins::JavaScript native;
1673 if (cc_ == eq) {
1674 native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1675 } else {
1676 native = Builtins::COMPARE;
1677 int ncr; // NaN compare result
1678 if (cc_ == lt || cc_ == le) {
1679 ncr = GREATER;
1680 } else {
1681 ASSERT(cc_ == gt || cc_ == ge); // remaining cases
1682 ncr = LESS;
1683 }
1684 __ mov(r0, Operand(Smi::FromInt(ncr)));
1685 __ push(r0);
1686 }
1687
1688 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1689 // tagged as a small integer.
1690 __ InvokeBuiltin(native, JUMP_JS);
1691}
1692
1693
1694// This stub does not handle the inlined cases (Smis, Booleans, undefined).
1695// The stub returns zero for false, and a non-zero value for true.
1696void ToBooleanStub::Generate(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001697 // This stub uses VFP3 instructions.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001698 ASSERT(CpuFeatures::IsEnabled(VFP3));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001699
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001700 Label false_result;
1701 Label not_heap_number;
Steve Block1e0659c2011-05-24 12:43:12 +01001702 Register scratch = r9.is(tos_) ? r7 : r9;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001703
Ben Murdochb0fe1622011-05-05 13:52:32 +01001704 __ LoadRoot(ip, Heap::kNullValueRootIndex);
1705 __ cmp(tos_, ip);
1706 __ b(eq, &false_result);
1707
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001708 // HeapNumber => false iff +0, -0, or NaN.
1709 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset));
1710 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
1711 __ cmp(scratch, ip);
1712 __ b(&not_heap_number, ne);
1713
1714 __ sub(ip, tos_, Operand(kHeapObjectTag));
1715 __ vldr(d1, ip, HeapNumber::kValueOffset);
Ben Murdochb8e0da22011-05-16 14:20:40 +01001716 __ VFPCompareAndSetFlags(d1, 0.0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001717 // "tos_" is a register, and contains a non zero value by default.
1718 // Hence we only need to overwrite "tos_" with zero to return false for
1719 // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
Iain Merrick9ac36c92010-09-13 15:29:50 +01001720 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq); // for FP_ZERO
1721 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, vs); // for FP_NAN
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001722 __ Ret();
1723
1724 __ bind(&not_heap_number);
1725
1726 // Check if the value is 'null'.
1727 // 'null' => false.
1728 __ LoadRoot(ip, Heap::kNullValueRootIndex);
1729 __ cmp(tos_, ip);
1730 __ b(&false_result, eq);
1731
1732 // It can be an undetectable object.
1733 // Undetectable => false.
1734 __ ldr(ip, FieldMemOperand(tos_, HeapObject::kMapOffset));
1735 __ ldrb(scratch, FieldMemOperand(ip, Map::kBitFieldOffset));
1736 __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable));
1737 __ cmp(scratch, Operand(1 << Map::kIsUndetectable));
1738 __ b(&false_result, eq);
1739
1740 // JavaScript object => true.
1741 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset));
1742 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1743 __ cmp(scratch, Operand(FIRST_JS_OBJECT_TYPE));
1744 // "tos_" is a register and contains a non-zero value.
1745 // Hence we implicitly return true if the greater than
1746 // condition is satisfied.
1747 __ Ret(gt);
1748
1749 // Check for string
1750 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset));
1751 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1752 __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE));
1753 // "tos_" is a register and contains a non-zero value.
1754 // Hence we implicitly return true if the greater than
1755 // condition is satisfied.
1756 __ Ret(gt);
1757
1758 // String value => false iff empty, i.e., length is zero
1759 __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset));
1760 // If length is zero, "tos_" contains zero ==> false.
1761 // If length is not zero, "tos_" contains a non-zero value ==> true.
1762 __ Ret();
1763
1764 // Return 0 in "tos_" for false .
1765 __ bind(&false_result);
Iain Merrick9ac36c92010-09-13 15:29:50 +01001766 __ mov(tos_, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001767 __ Ret();
1768}
1769
1770
Ben Murdochb0fe1622011-05-05 13:52:32 +01001771Handle<Code> GetTypeRecordingBinaryOpStub(int key,
1772 TRBinaryOpIC::TypeInfo type_info,
1773 TRBinaryOpIC::TypeInfo result_type_info) {
Steve Block1e0659c2011-05-24 12:43:12 +01001774 TypeRecordingBinaryOpStub stub(key, type_info, result_type_info);
1775 return stub.GetCode();
1776}
1777
1778
1779void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
1780 Label get_result;
1781
1782 __ Push(r1, r0);
1783
1784 __ mov(r2, Operand(Smi::FromInt(MinorKey())));
1785 __ mov(r1, Operand(Smi::FromInt(op_)));
1786 __ mov(r0, Operand(Smi::FromInt(operands_type_)));
1787 __ Push(r2, r1, r0);
1788
1789 __ TailCallExternalReference(
Steve Block44f0eee2011-05-26 01:26:41 +01001790 ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch),
1791 masm->isolate()),
Steve Block1e0659c2011-05-24 12:43:12 +01001792 5,
1793 1);
1794}
1795
1796
1797void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs(
1798 MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001799 UNIMPLEMENTED();
Steve Block1e0659c2011-05-24 12:43:12 +01001800}
1801
1802
1803void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) {
1804 switch (operands_type_) {
1805 case TRBinaryOpIC::UNINITIALIZED:
1806 GenerateTypeTransition(masm);
1807 break;
1808 case TRBinaryOpIC::SMI:
1809 GenerateSmiStub(masm);
1810 break;
1811 case TRBinaryOpIC::INT32:
1812 GenerateInt32Stub(masm);
1813 break;
1814 case TRBinaryOpIC::HEAP_NUMBER:
1815 GenerateHeapNumberStub(masm);
1816 break;
Steve Block44f0eee2011-05-26 01:26:41 +01001817 case TRBinaryOpIC::ODDBALL:
1818 GenerateOddballStub(masm);
1819 break;
Steve Block1e0659c2011-05-24 12:43:12 +01001820 case TRBinaryOpIC::STRING:
1821 GenerateStringStub(masm);
1822 break;
1823 case TRBinaryOpIC::GENERIC:
1824 GenerateGeneric(masm);
1825 break;
1826 default:
1827 UNREACHABLE();
1828 }
1829}
1830
1831
1832const char* TypeRecordingBinaryOpStub::GetName() {
1833 if (name_ != NULL) return name_;
1834 const int kMaxNameLength = 100;
Steve Block44f0eee2011-05-26 01:26:41 +01001835 name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(
1836 kMaxNameLength);
Steve Block1e0659c2011-05-24 12:43:12 +01001837 if (name_ == NULL) return "OOM";
1838 const char* op_name = Token::Name(op_);
1839 const char* overwrite_name;
1840 switch (mode_) {
1841 case NO_OVERWRITE: overwrite_name = "Alloc"; break;
1842 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
1843 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
1844 default: overwrite_name = "UnknownOverwrite"; break;
1845 }
1846
1847 OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
1848 "TypeRecordingBinaryOpStub_%s_%s_%s",
1849 op_name,
1850 overwrite_name,
1851 TRBinaryOpIC::GetName(operands_type_));
1852 return name_;
1853}
1854
1855
1856void TypeRecordingBinaryOpStub::GenerateSmiSmiOperation(
1857 MacroAssembler* masm) {
1858 Register left = r1;
1859 Register right = r0;
1860 Register scratch1 = r7;
1861 Register scratch2 = r9;
1862
1863 ASSERT(right.is(r0));
1864 STATIC_ASSERT(kSmiTag == 0);
1865
1866 Label not_smi_result;
1867 switch (op_) {
1868 case Token::ADD:
1869 __ add(right, left, Operand(right), SetCC); // Add optimistically.
1870 __ Ret(vc);
1871 __ sub(right, right, Operand(left)); // Revert optimistic add.
1872 break;
1873 case Token::SUB:
1874 __ sub(right, left, Operand(right), SetCC); // Subtract optimistically.
1875 __ Ret(vc);
1876 __ sub(right, left, Operand(right)); // Revert optimistic subtract.
1877 break;
1878 case Token::MUL:
1879 // Remove tag from one of the operands. This way the multiplication result
1880 // will be a smi if it fits the smi range.
1881 __ SmiUntag(ip, right);
1882 // Do multiplication
1883 // scratch1 = lower 32 bits of ip * left.
1884 // scratch2 = higher 32 bits of ip * left.
1885 __ smull(scratch1, scratch2, left, ip);
1886 // Check for overflowing the smi range - no overflow if higher 33 bits of
1887 // the result are identical.
1888 __ mov(ip, Operand(scratch1, ASR, 31));
1889 __ cmp(ip, Operand(scratch2));
1890 __ b(ne, &not_smi_result);
1891 // Go slow on zero result to handle -0.
1892 __ tst(scratch1, Operand(scratch1));
1893 __ mov(right, Operand(scratch1), LeaveCC, ne);
1894 __ Ret(ne);
1895 // We need -0 if we were multiplying a negative number with 0 to get 0.
1896 // We know one of them was zero.
1897 __ add(scratch2, right, Operand(left), SetCC);
1898 __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
1899 __ Ret(pl); // Return smi 0 if the non-zero one was positive.
1900 // We fall through here if we multiplied a negative number with 0, because
1901 // that would mean we should produce -0.
1902 break;
1903 case Token::DIV:
1904 // Check for power of two on the right hand side.
1905 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
1906 // Check for positive and no remainder (scratch1 contains right - 1).
1907 __ orr(scratch2, scratch1, Operand(0x80000000u));
1908 __ tst(left, scratch2);
1909 __ b(ne, &not_smi_result);
1910
1911 // Perform division by shifting.
1912 __ CountLeadingZeros(scratch1, scratch1, scratch2);
1913 __ rsb(scratch1, scratch1, Operand(31));
1914 __ mov(right, Operand(left, LSR, scratch1));
1915 __ Ret();
1916 break;
1917 case Token::MOD:
1918 // Check for two positive smis.
1919 __ orr(scratch1, left, Operand(right));
1920 __ tst(scratch1, Operand(0x80000000u | kSmiTagMask));
1921 __ b(ne, &not_smi_result);
1922
1923 // Check for power of two on the right hand side.
1924 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
1925
1926 // Perform modulus by masking.
1927 __ and_(right, left, Operand(scratch1));
1928 __ Ret();
1929 break;
1930 case Token::BIT_OR:
1931 __ orr(right, left, Operand(right));
1932 __ Ret();
1933 break;
1934 case Token::BIT_AND:
1935 __ and_(right, left, Operand(right));
1936 __ Ret();
1937 break;
1938 case Token::BIT_XOR:
1939 __ eor(right, left, Operand(right));
1940 __ Ret();
1941 break;
1942 case Token::SAR:
1943 // Remove tags from right operand.
1944 __ GetLeastBitsFromSmi(scratch1, right, 5);
1945 __ mov(right, Operand(left, ASR, scratch1));
1946 // Smi tag result.
1947 __ bic(right, right, Operand(kSmiTagMask));
1948 __ Ret();
1949 break;
1950 case Token::SHR:
1951 // Remove tags from operands. We can't do this on a 31 bit number
1952 // because then the 0s get shifted into bit 30 instead of bit 31.
1953 __ SmiUntag(scratch1, left);
1954 __ GetLeastBitsFromSmi(scratch2, right, 5);
1955 __ mov(scratch1, Operand(scratch1, LSR, scratch2));
1956 // Unsigned shift is not allowed to produce a negative number, so
1957 // check the sign bit and the sign bit after Smi tagging.
1958 __ tst(scratch1, Operand(0xc0000000));
1959 __ b(ne, &not_smi_result);
1960 // Smi tag result.
1961 __ SmiTag(right, scratch1);
1962 __ Ret();
1963 break;
1964 case Token::SHL:
1965 // Remove tags from operands.
1966 __ SmiUntag(scratch1, left);
1967 __ GetLeastBitsFromSmi(scratch2, right, 5);
1968 __ mov(scratch1, Operand(scratch1, LSL, scratch2));
1969 // Check that the signed result fits in a Smi.
1970 __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
1971 __ b(mi, &not_smi_result);
1972 __ SmiTag(right, scratch1);
1973 __ Ret();
1974 break;
1975 default:
1976 UNREACHABLE();
1977 }
1978 __ bind(&not_smi_result);
1979}
1980
1981
1982void TypeRecordingBinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
1983 bool smi_operands,
1984 Label* not_numbers,
1985 Label* gc_required) {
1986 Register left = r1;
1987 Register right = r0;
1988 Register scratch1 = r7;
1989 Register scratch2 = r9;
Steve Block44f0eee2011-05-26 01:26:41 +01001990 Register scratch3 = r4;
Steve Block1e0659c2011-05-24 12:43:12 +01001991
1992 ASSERT(smi_operands || (not_numbers != NULL));
1993 if (smi_operands && FLAG_debug_code) {
1994 __ AbortIfNotSmi(left);
1995 __ AbortIfNotSmi(right);
1996 }
1997
1998 Register heap_number_map = r6;
1999 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2000
2001 switch (op_) {
2002 case Token::ADD:
2003 case Token::SUB:
2004 case Token::MUL:
2005 case Token::DIV:
2006 case Token::MOD: {
2007 // Load left and right operands into d6 and d7 or r0/r1 and r2/r3
2008 // depending on whether VFP3 is available or not.
2009 FloatingPointHelper::Destination destination =
Ben Murdoch8b112d22011-06-08 16:22:53 +01002010 CpuFeatures::IsSupported(VFP3) &&
Steve Block44f0eee2011-05-26 01:26:41 +01002011 op_ != Token::MOD ?
Steve Block1e0659c2011-05-24 12:43:12 +01002012 FloatingPointHelper::kVFPRegisters :
2013 FloatingPointHelper::kCoreRegisters;
2014
2015 // Allocate new heap number for result.
2016 Register result = r5;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002017 GenerateHeapResultAllocation(
2018 masm, result, heap_number_map, scratch1, scratch2, gc_required);
Steve Block1e0659c2011-05-24 12:43:12 +01002019
2020 // Load the operands.
2021 if (smi_operands) {
2022 FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
2023 } else {
2024 FloatingPointHelper::LoadOperands(masm,
2025 destination,
2026 heap_number_map,
2027 scratch1,
2028 scratch2,
2029 not_numbers);
2030 }
2031
2032 // Calculate the result.
2033 if (destination == FloatingPointHelper::kVFPRegisters) {
2034 // Using VFP registers:
2035 // d6: Left value
2036 // d7: Right value
2037 CpuFeatures::Scope scope(VFP3);
2038 switch (op_) {
2039 case Token::ADD:
2040 __ vadd(d5, d6, d7);
2041 break;
2042 case Token::SUB:
2043 __ vsub(d5, d6, d7);
2044 break;
2045 case Token::MUL:
2046 __ vmul(d5, d6, d7);
2047 break;
2048 case Token::DIV:
2049 __ vdiv(d5, d6, d7);
2050 break;
2051 default:
2052 UNREACHABLE();
2053 }
2054
2055 __ sub(r0, result, Operand(kHeapObjectTag));
2056 __ vstr(d5, r0, HeapNumber::kValueOffset);
2057 __ add(r0, r0, Operand(kHeapObjectTag));
2058 __ Ret();
2059 } else {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002060 // Call the C function to handle the double operation.
2061 FloatingPointHelper::CallCCodeForDoubleOperation(masm,
2062 op_,
2063 result,
2064 scratch1);
Ben Murdoch8b112d22011-06-08 16:22:53 +01002065 if (FLAG_debug_code) {
2066 __ stop("Unreachable code.");
2067 }
Steve Block1e0659c2011-05-24 12:43:12 +01002068 }
2069 break;
2070 }
2071 case Token::BIT_OR:
2072 case Token::BIT_XOR:
2073 case Token::BIT_AND:
2074 case Token::SAR:
2075 case Token::SHR:
2076 case Token::SHL: {
2077 if (smi_operands) {
2078 __ SmiUntag(r3, left);
2079 __ SmiUntag(r2, right);
2080 } else {
2081 // Convert operands to 32-bit integers. Right in r2 and left in r3.
Steve Block44f0eee2011-05-26 01:26:41 +01002082 FloatingPointHelper::ConvertNumberToInt32(masm,
2083 left,
2084 r3,
2085 heap_number_map,
2086 scratch1,
2087 scratch2,
2088 scratch3,
2089 d0,
2090 not_numbers);
2091 FloatingPointHelper::ConvertNumberToInt32(masm,
2092 right,
2093 r2,
2094 heap_number_map,
2095 scratch1,
2096 scratch2,
2097 scratch3,
2098 d0,
2099 not_numbers);
Steve Block1e0659c2011-05-24 12:43:12 +01002100 }
2101
2102 Label result_not_a_smi;
2103 switch (op_) {
2104 case Token::BIT_OR:
2105 __ orr(r2, r3, Operand(r2));
2106 break;
2107 case Token::BIT_XOR:
2108 __ eor(r2, r3, Operand(r2));
2109 break;
2110 case Token::BIT_AND:
2111 __ and_(r2, r3, Operand(r2));
2112 break;
2113 case Token::SAR:
2114 // Use only the 5 least significant bits of the shift count.
Steve Block1e0659c2011-05-24 12:43:12 +01002115 __ GetLeastBitsFromInt32(r2, r2, 5);
2116 __ mov(r2, Operand(r3, ASR, r2));
2117 break;
2118 case Token::SHR:
2119 // Use only the 5 least significant bits of the shift count.
2120 __ GetLeastBitsFromInt32(r2, r2, 5);
2121 __ mov(r2, Operand(r3, LSR, r2), SetCC);
2122 // SHR is special because it is required to produce a positive answer.
2123 // The code below for writing into heap numbers isn't capable of
2124 // writing the register as an unsigned int so we go to slow case if we
2125 // hit this case.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002126 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +01002127 __ b(mi, &result_not_a_smi);
2128 } else {
2129 __ b(mi, not_numbers);
2130 }
2131 break;
2132 case Token::SHL:
2133 // Use only the 5 least significant bits of the shift count.
2134 __ GetLeastBitsFromInt32(r2, r2, 5);
2135 __ mov(r2, Operand(r3, LSL, r2));
2136 break;
2137 default:
2138 UNREACHABLE();
2139 }
2140
2141 // Check that the *signed* result fits in a smi.
2142 __ add(r3, r2, Operand(0x40000000), SetCC);
2143 __ b(mi, &result_not_a_smi);
2144 __ SmiTag(r0, r2);
2145 __ Ret();
2146
2147 // Allocate new heap number for result.
2148 __ bind(&result_not_a_smi);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002149 Register result = r5;
2150 if (smi_operands) {
2151 __ AllocateHeapNumber(
2152 result, scratch1, scratch2, heap_number_map, gc_required);
2153 } else {
2154 GenerateHeapResultAllocation(
2155 masm, result, heap_number_map, scratch1, scratch2, gc_required);
2156 }
Steve Block1e0659c2011-05-24 12:43:12 +01002157
2158 // r2: Answer as signed int32.
2159 // r5: Heap number to write answer into.
2160
2161 // Nothing can go wrong now, so move the heap number to r0, which is the
2162 // result.
2163 __ mov(r0, Operand(r5));
2164
Ben Murdoch8b112d22011-06-08 16:22:53 +01002165 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block1e0659c2011-05-24 12:43:12 +01002166 // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As
2167 // mentioned above SHR needs to always produce a positive result.
2168 CpuFeatures::Scope scope(VFP3);
2169 __ vmov(s0, r2);
2170 if (op_ == Token::SHR) {
2171 __ vcvt_f64_u32(d0, s0);
2172 } else {
2173 __ vcvt_f64_s32(d0, s0);
2174 }
2175 __ sub(r3, r0, Operand(kHeapObjectTag));
2176 __ vstr(d0, r3, HeapNumber::kValueOffset);
2177 __ Ret();
2178 } else {
2179 // Tail call that writes the int32 in r2 to the heap number in r0, using
2180 // r3 as scratch. r0 is preserved and returned.
2181 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
2182 __ TailCallStub(&stub);
2183 }
2184 break;
2185 }
2186 default:
2187 UNREACHABLE();
2188 }
2189}
2190
2191
2192// Generate the smi code. If the operation on smis are successful this return is
2193// generated. If the result is not a smi and heap number allocation is not
2194// requested the code falls through. If number allocation is requested but a
2195// heap number cannot be allocated the code jumps to the lable gc_required.
2196void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm,
Ben Murdoch8b112d22011-06-08 16:22:53 +01002197 Label* use_runtime,
Steve Block1e0659c2011-05-24 12:43:12 +01002198 Label* gc_required,
2199 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
2200 Label not_smis;
2201
2202 Register left = r1;
2203 Register right = r0;
2204 Register scratch1 = r7;
2205 Register scratch2 = r9;
2206
2207 // Perform combined smi check on both operands.
2208 __ orr(scratch1, left, Operand(right));
2209 STATIC_ASSERT(kSmiTag == 0);
2210 __ tst(scratch1, Operand(kSmiTagMask));
2211 __ b(ne, &not_smis);
2212
2213 // If the smi-smi operation results in a smi return is generated.
2214 GenerateSmiSmiOperation(masm);
2215
2216 // If heap number results are possible generate the result in an allocated
2217 // heap number.
2218 if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002219 GenerateFPOperation(masm, true, use_runtime, gc_required);
Steve Block1e0659c2011-05-24 12:43:12 +01002220 }
2221 __ bind(&not_smis);
2222}
2223
2224
2225void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
2226 Label not_smis, call_runtime;
2227
2228 if (result_type_ == TRBinaryOpIC::UNINITIALIZED ||
2229 result_type_ == TRBinaryOpIC::SMI) {
2230 // Only allow smi results.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002231 GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS);
Steve Block1e0659c2011-05-24 12:43:12 +01002232 } else {
2233 // Allow heap number result and don't make a transition if a heap number
2234 // cannot be allocated.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002235 GenerateSmiCode(masm,
2236 &call_runtime,
2237 &call_runtime,
2238 ALLOW_HEAPNUMBER_RESULTS);
Steve Block1e0659c2011-05-24 12:43:12 +01002239 }
2240
2241 // Code falls through if the result is not returned as either a smi or heap
2242 // number.
2243 GenerateTypeTransition(masm);
2244
2245 __ bind(&call_runtime);
2246 GenerateCallRuntime(masm);
2247}
2248
2249
2250void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
2251 ASSERT(operands_type_ == TRBinaryOpIC::STRING);
2252 ASSERT(op_ == Token::ADD);
2253 // Try to add arguments as strings, otherwise, transition to the generic
2254 // TRBinaryOpIC type.
2255 GenerateAddStrings(masm);
2256 GenerateTypeTransition(masm);
2257}
2258
2259
2260void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
2261 ASSERT(operands_type_ == TRBinaryOpIC::INT32);
2262
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002263 Register left = r1;
2264 Register right = r0;
2265 Register scratch1 = r7;
2266 Register scratch2 = r9;
2267 DwVfpRegister double_scratch = d0;
2268 SwVfpRegister single_scratch = s3;
2269
2270 Register heap_number_result = no_reg;
2271 Register heap_number_map = r6;
2272 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2273
2274 Label call_runtime;
2275 // Labels for type transition, used for wrong input or output types.
2276 // Both label are currently actually bound to the same position. We use two
2277 // different label to differentiate the cause leading to type transition.
2278 Label transition;
2279
2280 // Smi-smi fast case.
2281 Label skip;
2282 __ orr(scratch1, left, right);
2283 __ JumpIfNotSmi(scratch1, &skip);
2284 GenerateSmiSmiOperation(masm);
2285 // Fall through if the result is not a smi.
2286 __ bind(&skip);
2287
2288 switch (op_) {
2289 case Token::ADD:
2290 case Token::SUB:
2291 case Token::MUL:
2292 case Token::DIV:
2293 case Token::MOD: {
2294 // Load both operands and check that they are 32-bit integer.
2295 // Jump to type transition if they are not. The registers r0 and r1 (right
2296 // and left) are preserved for the runtime call.
2297 FloatingPointHelper::Destination destination =
Ben Murdoch8b112d22011-06-08 16:22:53 +01002298 CpuFeatures::IsSupported(VFP3) &&
Steve Block44f0eee2011-05-26 01:26:41 +01002299 op_ != Token::MOD ?
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002300 FloatingPointHelper::kVFPRegisters :
2301 FloatingPointHelper::kCoreRegisters;
2302
2303 FloatingPointHelper::LoadNumberAsInt32Double(masm,
2304 right,
2305 destination,
2306 d7,
2307 r2,
2308 r3,
2309 heap_number_map,
2310 scratch1,
2311 scratch2,
2312 s0,
2313 &transition);
2314 FloatingPointHelper::LoadNumberAsInt32Double(masm,
2315 left,
2316 destination,
2317 d6,
2318 r4,
2319 r5,
2320 heap_number_map,
2321 scratch1,
2322 scratch2,
2323 s0,
2324 &transition);
2325
2326 if (destination == FloatingPointHelper::kVFPRegisters) {
2327 CpuFeatures::Scope scope(VFP3);
2328 Label return_heap_number;
2329 switch (op_) {
2330 case Token::ADD:
2331 __ vadd(d5, d6, d7);
2332 break;
2333 case Token::SUB:
2334 __ vsub(d5, d6, d7);
2335 break;
2336 case Token::MUL:
2337 __ vmul(d5, d6, d7);
2338 break;
2339 case Token::DIV:
2340 __ vdiv(d5, d6, d7);
2341 break;
2342 default:
2343 UNREACHABLE();
2344 }
2345
2346 if (op_ != Token::DIV) {
2347 // These operations produce an integer result.
2348 // Try to return a smi if we can.
2349 // Otherwise return a heap number if allowed, or jump to type
2350 // transition.
2351
2352 __ EmitVFPTruncate(kRoundToZero,
2353 single_scratch,
2354 d5,
2355 scratch1,
2356 scratch2);
2357
2358 if (result_type_ <= TRBinaryOpIC::INT32) {
2359 // If the ne condition is set, result does
2360 // not fit in a 32-bit integer.
2361 __ b(ne, &transition);
2362 }
2363
2364 // Check if the result fits in a smi.
2365 __ vmov(scratch1, single_scratch);
2366 __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
2367 // If not try to return a heap number.
2368 __ b(mi, &return_heap_number);
Steve Block44f0eee2011-05-26 01:26:41 +01002369 // Check for minus zero. Return heap number for minus zero.
2370 Label not_zero;
2371 __ cmp(scratch1, Operand(0));
2372 __ b(ne, &not_zero);
2373 __ vmov(scratch2, d5.high());
2374 __ tst(scratch2, Operand(HeapNumber::kSignMask));
2375 __ b(ne, &return_heap_number);
2376 __ bind(&not_zero);
2377
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002378 // Tag the result and return.
2379 __ SmiTag(r0, scratch1);
2380 __ Ret();
Steve Block44f0eee2011-05-26 01:26:41 +01002381 } else {
2382 // DIV just falls through to allocating a heap number.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002383 }
2384
2385 if (result_type_ >= (op_ == Token::DIV) ? TRBinaryOpIC::HEAP_NUMBER
2386 : TRBinaryOpIC::INT32) {
2387 __ bind(&return_heap_number);
2388 // We are using vfp registers so r5 is available.
2389 heap_number_result = r5;
2390 GenerateHeapResultAllocation(masm,
2391 heap_number_result,
2392 heap_number_map,
2393 scratch1,
2394 scratch2,
2395 &call_runtime);
2396 __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
2397 __ vstr(d5, r0, HeapNumber::kValueOffset);
2398 __ mov(r0, heap_number_result);
2399 __ Ret();
2400 }
2401
2402 // A DIV operation expecting an integer result falls through
2403 // to type transition.
2404
2405 } else {
2406 // We preserved r0 and r1 to be able to call runtime.
2407 // Save the left value on the stack.
2408 __ Push(r5, r4);
2409
Steve Block053d10c2011-06-13 19:13:29 +01002410 Label pop_and_call_runtime;
2411
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002412 // Allocate a heap number to store the result.
2413 heap_number_result = r5;
2414 GenerateHeapResultAllocation(masm,
2415 heap_number_result,
2416 heap_number_map,
2417 scratch1,
2418 scratch2,
Steve Block053d10c2011-06-13 19:13:29 +01002419 &pop_and_call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002420
2421 // Load the left value from the value saved on the stack.
2422 __ Pop(r1, r0);
2423
2424 // Call the C function to handle the double operation.
2425 FloatingPointHelper::CallCCodeForDoubleOperation(
2426 masm, op_, heap_number_result, scratch1);
Ben Murdoch8b112d22011-06-08 16:22:53 +01002427 if (FLAG_debug_code) {
2428 __ stop("Unreachable code.");
2429 }
Steve Block053d10c2011-06-13 19:13:29 +01002430
2431 __ bind(&pop_and_call_runtime);
2432 __ Drop(2);
2433 __ b(&call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002434 }
2435
2436 break;
2437 }
2438
2439 case Token::BIT_OR:
2440 case Token::BIT_XOR:
2441 case Token::BIT_AND:
2442 case Token::SAR:
2443 case Token::SHR:
2444 case Token::SHL: {
2445 Label return_heap_number;
2446 Register scratch3 = r5;
2447 // Convert operands to 32-bit integers. Right in r2 and left in r3. The
2448 // registers r0 and r1 (right and left) are preserved for the runtime
2449 // call.
2450 FloatingPointHelper::LoadNumberAsInt32(masm,
2451 left,
2452 r3,
2453 heap_number_map,
2454 scratch1,
2455 scratch2,
2456 scratch3,
2457 d0,
2458 &transition);
2459 FloatingPointHelper::LoadNumberAsInt32(masm,
2460 right,
2461 r2,
2462 heap_number_map,
2463 scratch1,
2464 scratch2,
2465 scratch3,
2466 d0,
2467 &transition);
2468
2469 // The ECMA-262 standard specifies that, for shift operations, only the
2470 // 5 least significant bits of the shift value should be used.
2471 switch (op_) {
2472 case Token::BIT_OR:
2473 __ orr(r2, r3, Operand(r2));
2474 break;
2475 case Token::BIT_XOR:
2476 __ eor(r2, r3, Operand(r2));
2477 break;
2478 case Token::BIT_AND:
2479 __ and_(r2, r3, Operand(r2));
2480 break;
2481 case Token::SAR:
2482 __ and_(r2, r2, Operand(0x1f));
2483 __ mov(r2, Operand(r3, ASR, r2));
2484 break;
2485 case Token::SHR:
2486 __ and_(r2, r2, Operand(0x1f));
2487 __ mov(r2, Operand(r3, LSR, r2), SetCC);
2488 // SHR is special because it is required to produce a positive answer.
2489 // We only get a negative result if the shift value (r2) is 0.
2490 // This result cannot be respresented as a signed 32-bit integer, try
2491 // to return a heap number if we can.
2492 // The non vfp3 code does not support this special case, so jump to
2493 // runtime if we don't support it.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002494 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002495 __ b(mi,
2496 (result_type_ <= TRBinaryOpIC::INT32) ? &transition
2497 : &return_heap_number);
2498 } else {
2499 __ b(mi, (result_type_ <= TRBinaryOpIC::INT32) ? &transition
2500 : &call_runtime);
2501 }
2502 break;
2503 case Token::SHL:
2504 __ and_(r2, r2, Operand(0x1f));
2505 __ mov(r2, Operand(r3, LSL, r2));
2506 break;
2507 default:
2508 UNREACHABLE();
2509 }
2510
2511 // Check if the result fits in a smi.
2512 __ add(scratch1, r2, Operand(0x40000000), SetCC);
2513 // If not try to return a heap number. (We know the result is an int32.)
2514 __ b(mi, &return_heap_number);
2515 // Tag the result and return.
2516 __ SmiTag(r0, r2);
2517 __ Ret();
2518
2519 __ bind(&return_heap_number);
Ben Murdoch8b112d22011-06-08 16:22:53 +01002520 heap_number_result = r5;
2521 GenerateHeapResultAllocation(masm,
2522 heap_number_result,
2523 heap_number_map,
2524 scratch1,
2525 scratch2,
2526 &call_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002527
Ben Murdoch8b112d22011-06-08 16:22:53 +01002528 if (CpuFeatures::IsSupported(VFP3)) {
2529 CpuFeatures::Scope scope(VFP3);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002530 if (op_ != Token::SHR) {
2531 // Convert the result to a floating point value.
2532 __ vmov(double_scratch.low(), r2);
2533 __ vcvt_f64_s32(double_scratch, double_scratch.low());
2534 } else {
2535 // The result must be interpreted as an unsigned 32-bit integer.
2536 __ vmov(double_scratch.low(), r2);
2537 __ vcvt_f64_u32(double_scratch, double_scratch.low());
2538 }
2539
2540 // Store the result.
2541 __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
2542 __ vstr(double_scratch, r0, HeapNumber::kValueOffset);
2543 __ mov(r0, heap_number_result);
2544 __ Ret();
2545 } else {
2546 // Tail call that writes the int32 in r2 to the heap number in r0, using
2547 // r3 as scratch. r0 is preserved and returned.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002548 __ mov(r0, r5);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002549 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
2550 __ TailCallStub(&stub);
2551 }
2552
2553 break;
2554 }
2555
2556 default:
2557 UNREACHABLE();
2558 }
2559
2560 if (transition.is_linked()) {
2561 __ bind(&transition);
2562 GenerateTypeTransition(masm);
2563 }
2564
2565 __ bind(&call_runtime);
2566 GenerateCallRuntime(masm);
Steve Block1e0659c2011-05-24 12:43:12 +01002567}
2568
2569
Steve Block44f0eee2011-05-26 01:26:41 +01002570void TypeRecordingBinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
2571 Label call_runtime;
2572
2573 if (op_ == Token::ADD) {
2574 // Handle string addition here, because it is the only operation
2575 // that does not do a ToNumber conversion on the operands.
2576 GenerateAddStrings(masm);
2577 }
2578
2579 // Convert oddball arguments to numbers.
2580 Label check, done;
2581 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
2582 __ b(ne, &check);
2583 if (Token::IsBitOp(op_)) {
2584 __ mov(r1, Operand(Smi::FromInt(0)));
2585 } else {
2586 __ LoadRoot(r1, Heap::kNanValueRootIndex);
2587 }
2588 __ jmp(&done);
2589 __ bind(&check);
2590 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
2591 __ b(ne, &done);
2592 if (Token::IsBitOp(op_)) {
2593 __ mov(r0, Operand(Smi::FromInt(0)));
2594 } else {
2595 __ LoadRoot(r0, Heap::kNanValueRootIndex);
2596 }
2597 __ bind(&done);
2598
2599 GenerateHeapNumberStub(masm);
2600}
2601
2602
Steve Block1e0659c2011-05-24 12:43:12 +01002603void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
Steve Block44f0eee2011-05-26 01:26:41 +01002604 Label call_runtime;
2605 GenerateFPOperation(masm, false, &call_runtime, &call_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01002606
2607 __ bind(&call_runtime);
2608 GenerateCallRuntime(masm);
2609}
2610
2611
2612void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002613 Label call_runtime, call_string_add_or_runtime;
Steve Block1e0659c2011-05-24 12:43:12 +01002614
Ben Murdoch8b112d22011-06-08 16:22:53 +01002615 GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
Steve Block1e0659c2011-05-24 12:43:12 +01002616
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002617 GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01002618
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002619 __ bind(&call_string_add_or_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01002620 if (op_ == Token::ADD) {
2621 GenerateAddStrings(masm);
2622 }
2623
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002624 __ bind(&call_runtime);
2625 GenerateCallRuntime(masm);
Steve Block1e0659c2011-05-24 12:43:12 +01002626}
2627
2628
2629void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
2630 ASSERT(op_ == Token::ADD);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002631 Label left_not_string, call_runtime;
Steve Block1e0659c2011-05-24 12:43:12 +01002632
2633 Register left = r1;
2634 Register right = r0;
Steve Block1e0659c2011-05-24 12:43:12 +01002635
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002636 // Check if left argument is a string.
2637 __ JumpIfSmi(left, &left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01002638 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002639 __ b(ge, &left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01002640
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002641 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
2642 GenerateRegisterArgsPush(masm);
2643 __ TailCallStub(&string_add_left_stub);
2644
2645 // Left operand is not a string, test right.
2646 __ bind(&left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01002647 __ JumpIfSmi(right, &call_runtime);
2648 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
2649 __ b(ge, &call_runtime);
2650
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002651 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
Steve Block1e0659c2011-05-24 12:43:12 +01002652 GenerateRegisterArgsPush(masm);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002653 __ TailCallStub(&string_add_right_stub);
Steve Block1e0659c2011-05-24 12:43:12 +01002654
2655 // At least one argument is not a string.
2656 __ bind(&call_runtime);
2657}
2658
2659
2660void TypeRecordingBinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
2661 GenerateRegisterArgsPush(masm);
2662 switch (op_) {
2663 case Token::ADD:
2664 __ InvokeBuiltin(Builtins::ADD, JUMP_JS);
2665 break;
2666 case Token::SUB:
2667 __ InvokeBuiltin(Builtins::SUB, JUMP_JS);
2668 break;
2669 case Token::MUL:
2670 __ InvokeBuiltin(Builtins::MUL, JUMP_JS);
2671 break;
2672 case Token::DIV:
2673 __ InvokeBuiltin(Builtins::DIV, JUMP_JS);
2674 break;
2675 case Token::MOD:
2676 __ InvokeBuiltin(Builtins::MOD, JUMP_JS);
2677 break;
2678 case Token::BIT_OR:
2679 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
2680 break;
2681 case Token::BIT_AND:
2682 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
2683 break;
2684 case Token::BIT_XOR:
2685 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
2686 break;
2687 case Token::SAR:
2688 __ InvokeBuiltin(Builtins::SAR, JUMP_JS);
2689 break;
2690 case Token::SHR:
2691 __ InvokeBuiltin(Builtins::SHR, JUMP_JS);
2692 break;
2693 case Token::SHL:
2694 __ InvokeBuiltin(Builtins::SHL, JUMP_JS);
2695 break;
2696 default:
2697 UNREACHABLE();
2698 }
2699}
2700
2701
2702void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation(
2703 MacroAssembler* masm,
2704 Register result,
2705 Register heap_number_map,
2706 Register scratch1,
2707 Register scratch2,
2708 Label* gc_required) {
2709
2710 // Code below will scratch result if allocation fails. To keep both arguments
2711 // intact for the runtime call result cannot be one of these.
2712 ASSERT(!result.is(r0) && !result.is(r1));
2713
2714 if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
2715 Label skip_allocation, allocated;
2716 Register overwritable_operand = mode_ == OVERWRITE_LEFT ? r1 : r0;
2717 // If the overwritable operand is already an object, we skip the
2718 // allocation of a heap number.
2719 __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
2720 // Allocate a heap number for the result.
2721 __ AllocateHeapNumber(
2722 result, scratch1, scratch2, heap_number_map, gc_required);
2723 __ b(&allocated);
2724 __ bind(&skip_allocation);
2725 // Use object holding the overwritable operand for result.
2726 __ mov(result, Operand(overwritable_operand));
2727 __ bind(&allocated);
2728 } else {
2729 ASSERT(mode_ == NO_OVERWRITE);
2730 __ AllocateHeapNumber(
2731 result, scratch1, scratch2, heap_number_map, gc_required);
2732 }
2733}
2734
2735
2736void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
2737 __ Push(r1, r0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002738}
2739
2740
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002741void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002742 // Untagged case: double input in d2, double result goes
2743 // into d2.
2744 // Tagged case: tagged input on top of stack and in r0,
2745 // tagged result (heap number) goes into r0.
2746
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002747 Label input_not_smi;
2748 Label loaded;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002749 Label calculate;
2750 Label invalid_cache;
2751 const Register scratch0 = r9;
2752 const Register scratch1 = r7;
2753 const Register cache_entry = r0;
2754 const bool tagged = (argument_type_ == TAGGED);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002755
Ben Murdoch8b112d22011-06-08 16:22:53 +01002756 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002757 CpuFeatures::Scope scope(VFP3);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002758 if (tagged) {
2759 // Argument is a number and is on stack and in r0.
2760 // Load argument and check if it is a smi.
2761 __ JumpIfNotSmi(r0, &input_not_smi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002762
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002763 // Input is a smi. Convert to double and load the low and high words
2764 // of the double into r2, r3.
2765 __ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
2766 __ b(&loaded);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002767
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002768 __ bind(&input_not_smi);
2769 // Check if input is a HeapNumber.
2770 __ CheckMap(r0,
2771 r1,
2772 Heap::kHeapNumberMapRootIndex,
2773 &calculate,
2774 true);
2775 // Input is a HeapNumber. Load it to a double register and store the
2776 // low and high words into r2, r3.
2777 __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset));
2778 __ vmov(r2, r3, d0);
2779 } else {
2780 // Input is untagged double in d2. Output goes to d2.
2781 __ vmov(r2, r3, d2);
2782 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002783 __ bind(&loaded);
2784 // r2 = low 32 bits of double value
2785 // r3 = high 32 bits of double value
2786 // Compute hash (the shifts are arithmetic):
2787 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
2788 __ eor(r1, r2, Operand(r3));
2789 __ eor(r1, r1, Operand(r1, ASR, 16));
2790 __ eor(r1, r1, Operand(r1, ASR, 8));
Steve Block44f0eee2011-05-26 01:26:41 +01002791 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
2792 __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002793
2794 // r2 = low 32 bits of double value.
2795 // r3 = high 32 bits of double value.
2796 // r1 = TranscendentalCache::hash(double value).
Steve Block44f0eee2011-05-26 01:26:41 +01002797 Isolate* isolate = masm->isolate();
2798 ExternalReference cache_array =
2799 ExternalReference::transcendental_cache_array_address(isolate);
2800 __ mov(cache_entry, Operand(cache_array));
2801 // cache_entry points to cache array.
2802 int cache_array_index
2803 = type_ * sizeof(isolate->transcendental_cache()->caches_[0]);
2804 __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002805 // r0 points to the cache for the type type_.
2806 // If NULL, the cache hasn't been initialized yet, so go through runtime.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002807 __ cmp(cache_entry, Operand(0, RelocInfo::NONE));
2808 __ b(eq, &invalid_cache);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002809
2810#ifdef DEBUG
2811 // Check that the layout of cache elements match expectations.
Steve Block44f0eee2011-05-26 01:26:41 +01002812 { TranscendentalCache::SubCache::Element test_elem[2];
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002813 char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
2814 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
2815 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
2816 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
2817 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
2818 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
2819 CHECK_EQ(0, elem_in0 - elem_start);
2820 CHECK_EQ(kIntSize, elem_in1 - elem_start);
2821 CHECK_EQ(2 * kIntSize, elem_out - elem_start);
2822 }
2823#endif
2824
2825 // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
2826 __ add(r1, r1, Operand(r1, LSL, 1));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002827 __ add(cache_entry, cache_entry, Operand(r1, LSL, 2));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002828 // Check if cache matches: Double value is stored in uint32_t[2] array.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002829 __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002830 __ cmp(r2, r4);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002831 __ b(ne, &calculate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002832 __ cmp(r3, r5);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002833 __ b(ne, &calculate);
2834 // Cache hit. Load result, cleanup and return.
2835 if (tagged) {
2836 // Pop input value from stack and load result into r0.
2837 __ pop();
2838 __ mov(r0, Operand(r6));
2839 } else {
2840 // Load result into d2.
2841 __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
2842 }
2843 __ Ret();
Ben Murdoch8b112d22011-06-08 16:22:53 +01002844 } // if (CpuFeatures::IsSupported(VFP3))
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002845
2846 __ bind(&calculate);
2847 if (tagged) {
2848 __ bind(&invalid_cache);
Steve Block44f0eee2011-05-26 01:26:41 +01002849 ExternalReference runtime_function =
2850 ExternalReference(RuntimeFunction(), masm->isolate());
2851 __ TailCallExternalReference(runtime_function, 1, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002852 } else {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002853 if (!CpuFeatures::IsSupported(VFP3)) UNREACHABLE();
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002854 CpuFeatures::Scope scope(VFP3);
2855
2856 Label no_update;
2857 Label skip_cache;
2858 const Register heap_number_map = r5;
2859
2860 // Call C function to calculate the result and update the cache.
2861 // Register r0 holds precalculated cache entry address; preserve
2862 // it on the stack and pop it into register cache_entry after the
2863 // call.
2864 __ push(cache_entry);
2865 GenerateCallCFunction(masm, scratch0);
2866 __ GetCFunctionDoubleResult(d2);
2867
2868 // Try to update the cache. If we cannot allocate a
2869 // heap number, we return the result without updating.
2870 __ pop(cache_entry);
2871 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
2872 __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update);
2873 __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
2874 __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit());
2875 __ Ret();
2876
2877 __ bind(&invalid_cache);
2878 // The cache is invalid. Call runtime which will recreate the
2879 // cache.
2880 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
2881 __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache);
2882 __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
2883 __ EnterInternalFrame();
2884 __ push(r0);
2885 __ CallRuntime(RuntimeFunction(), 1);
2886 __ LeaveInternalFrame();
2887 __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
2888 __ Ret();
2889
2890 __ bind(&skip_cache);
2891 // Call C function to calculate the result and answer directly
2892 // without updating the cache.
2893 GenerateCallCFunction(masm, scratch0);
2894 __ GetCFunctionDoubleResult(d2);
2895 __ bind(&no_update);
2896
2897 // We return the value in d2 without adding it to the cache, but
2898 // we cause a scavenging GC so that future allocations will succeed.
2899 __ EnterInternalFrame();
2900
2901 // Allocate an aligned object larger than a HeapNumber.
2902 ASSERT(4 * kPointerSize >= HeapNumber::kSize);
2903 __ mov(scratch0, Operand(4 * kPointerSize));
2904 __ push(scratch0);
2905 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
2906 __ LeaveInternalFrame();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002907 __ Ret();
2908 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002909}
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002910
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002911
2912void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
2913 Register scratch) {
Steve Block44f0eee2011-05-26 01:26:41 +01002914 Isolate* isolate = masm->isolate();
2915
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002916 __ push(lr);
2917 __ PrepareCallCFunction(2, scratch);
2918 __ vmov(r0, r1, d2);
2919 switch (type_) {
2920 case TranscendentalCache::SIN:
Steve Block44f0eee2011-05-26 01:26:41 +01002921 __ CallCFunction(ExternalReference::math_sin_double_function(isolate), 2);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002922 break;
2923 case TranscendentalCache::COS:
Steve Block44f0eee2011-05-26 01:26:41 +01002924 __ CallCFunction(ExternalReference::math_cos_double_function(isolate), 2);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002925 break;
2926 case TranscendentalCache::LOG:
Steve Block44f0eee2011-05-26 01:26:41 +01002927 __ CallCFunction(ExternalReference::math_log_double_function(isolate), 2);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002928 break;
2929 default:
2930 UNIMPLEMENTED();
2931 break;
2932 }
2933 __ pop(lr);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002934}
2935
2936
2937Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
2938 switch (type_) {
2939 // Add more cases when necessary.
2940 case TranscendentalCache::SIN: return Runtime::kMath_sin;
2941 case TranscendentalCache::COS: return Runtime::kMath_cos;
Ben Murdochb0fe1622011-05-05 13:52:32 +01002942 case TranscendentalCache::LOG: return Runtime::kMath_log;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002943 default:
2944 UNIMPLEMENTED();
2945 return Runtime::kAbort;
2946 }
2947}
2948
2949
2950void StackCheckStub::Generate(MacroAssembler* masm) {
Ben Murdochf87a2032010-10-22 12:50:53 +01002951 __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002952}
2953
2954
2955void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
2956 Label slow, done;
2957
2958 Register heap_number_map = r6;
2959 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2960
2961 if (op_ == Token::SUB) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002962 if (include_smi_code_) {
2963 // Check whether the value is a smi.
2964 Label try_float;
2965 __ tst(r0, Operand(kSmiTagMask));
2966 __ b(ne, &try_float);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002967
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002968 // Go slow case if the value of the expression is zero
2969 // to make sure that we switch between 0 and -0.
2970 if (negative_zero_ == kStrictNegativeZero) {
2971 // If we have to check for zero, then we can check for the max negative
2972 // smi while we are at it.
2973 __ bic(ip, r0, Operand(0x80000000), SetCC);
2974 __ b(eq, &slow);
2975 __ rsb(r0, r0, Operand(0, RelocInfo::NONE));
2976 __ Ret();
2977 } else {
2978 // The value of the expression is a smi and 0 is OK for -0. Try
2979 // optimistic subtraction '0 - value'.
2980 __ rsb(r0, r0, Operand(0, RelocInfo::NONE), SetCC);
2981 __ Ret(vc);
2982 // We don't have to reverse the optimistic neg since the only case
2983 // where we fall through is the minimum negative Smi, which is the case
2984 // where the neg leaves the register unchanged.
2985 __ jmp(&slow); // Go slow on max negative Smi.
2986 }
2987 __ bind(&try_float);
2988 } else if (FLAG_debug_code) {
2989 __ tst(r0, Operand(kSmiTagMask));
2990 __ Assert(ne, "Unexpected smi operand.");
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002991 }
2992
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002993 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
2994 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2995 __ cmp(r1, heap_number_map);
2996 __ b(ne, &slow);
2997 // r0 is a heap number. Get a new heap number in r1.
2998 if (overwrite_ == UNARY_OVERWRITE) {
2999 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
3000 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
3001 __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
3002 } else {
3003 __ AllocateHeapNumber(r1, r2, r3, r6, &slow);
3004 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
3005 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
3006 __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
3007 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
3008 __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
3009 __ mov(r0, Operand(r1));
3010 }
3011 } else if (op_ == Token::BIT_NOT) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003012 if (include_smi_code_) {
3013 Label non_smi;
Steve Block1e0659c2011-05-24 12:43:12 +01003014 __ JumpIfNotSmi(r0, &non_smi);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003015 __ mvn(r0, Operand(r0));
3016 // Bit-clear inverted smi-tag.
3017 __ bic(r0, r0, Operand(kSmiTagMask));
3018 __ Ret();
3019 __ bind(&non_smi);
3020 } else if (FLAG_debug_code) {
3021 __ tst(r0, Operand(kSmiTagMask));
3022 __ Assert(ne, "Unexpected smi operand.");
3023 }
3024
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003025 // Check if the operand is a heap number.
3026 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
3027 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
3028 __ cmp(r1, heap_number_map);
3029 __ b(ne, &slow);
3030
3031 // Convert the heap number is r0 to an untagged integer in r1.
Steve Block1e0659c2011-05-24 12:43:12 +01003032 __ ConvertToInt32(r0, r1, r2, r3, d0, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003033
3034 // Do the bitwise operation (move negated) and check if the result
3035 // fits in a smi.
3036 Label try_float;
3037 __ mvn(r1, Operand(r1));
3038 __ add(r2, r1, Operand(0x40000000), SetCC);
3039 __ b(mi, &try_float);
3040 __ mov(r0, Operand(r1, LSL, kSmiTagSize));
3041 __ b(&done);
3042
3043 __ bind(&try_float);
3044 if (!overwrite_ == UNARY_OVERWRITE) {
3045 // Allocate a fresh heap number, but don't overwrite r0 until
3046 // we're sure we can do it without going through the slow case
3047 // that needs the value in r0.
3048 __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
3049 __ mov(r0, Operand(r2));
3050 }
3051
Ben Murdoch8b112d22011-06-08 16:22:53 +01003052 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003053 // Convert the int32 in r1 to the heap number in r0. r2 is corrupted.
3054 CpuFeatures::Scope scope(VFP3);
3055 __ vmov(s0, r1);
3056 __ vcvt_f64_s32(d0, s0);
3057 __ sub(r2, r0, Operand(kHeapObjectTag));
3058 __ vstr(d0, r2, HeapNumber::kValueOffset);
3059 } else {
3060 // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
3061 // have to set up a frame.
3062 WriteInt32ToHeapNumberStub stub(r1, r0, r2);
3063 __ push(lr);
3064 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
3065 __ pop(lr);
3066 }
3067 } else {
3068 UNIMPLEMENTED();
3069 }
3070
3071 __ bind(&done);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003072 __ Ret();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003073
3074 // Handle the slow case by jumping to the JavaScript builtin.
3075 __ bind(&slow);
3076 __ push(r0);
3077 switch (op_) {
3078 case Token::SUB:
3079 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
3080 break;
3081 case Token::BIT_NOT:
3082 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS);
3083 break;
3084 default:
3085 UNREACHABLE();
3086 }
3087}
3088
3089
Steve Block44f0eee2011-05-26 01:26:41 +01003090void MathPowStub::Generate(MacroAssembler* masm) {
3091 Label call_runtime;
3092
Ben Murdoch8b112d22011-06-08 16:22:53 +01003093 if (CpuFeatures::IsSupported(VFP3)) {
Steve Block44f0eee2011-05-26 01:26:41 +01003094 CpuFeatures::Scope scope(VFP3);
3095
3096 Label base_not_smi;
3097 Label exponent_not_smi;
3098 Label convert_exponent;
3099
3100 const Register base = r0;
3101 const Register exponent = r1;
3102 const Register heapnumbermap = r5;
3103 const Register heapnumber = r6;
3104 const DoubleRegister double_base = d0;
3105 const DoubleRegister double_exponent = d1;
3106 const DoubleRegister double_result = d2;
3107 const SwVfpRegister single_scratch = s0;
3108 const Register scratch = r9;
3109 const Register scratch2 = r7;
3110
3111 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
3112 __ ldr(base, MemOperand(sp, 1 * kPointerSize));
3113 __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
3114
3115 // Convert base to double value and store it in d0.
3116 __ JumpIfNotSmi(base, &base_not_smi);
3117 // Base is a Smi. Untag and convert it.
3118 __ SmiUntag(base);
3119 __ vmov(single_scratch, base);
3120 __ vcvt_f64_s32(double_base, single_scratch);
3121 __ b(&convert_exponent);
3122
3123 __ bind(&base_not_smi);
3124 __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
3125 __ cmp(scratch, heapnumbermap);
3126 __ b(ne, &call_runtime);
3127 // Base is a heapnumber. Load it into double register.
3128 __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
3129
3130 __ bind(&convert_exponent);
3131 __ JumpIfNotSmi(exponent, &exponent_not_smi);
3132 __ SmiUntag(exponent);
3133
3134 // The base is in a double register and the exponent is
3135 // an untagged smi. Allocate a heap number and call a
3136 // C function for integer exponents. The register containing
3137 // the heap number is callee-saved.
3138 __ AllocateHeapNumber(heapnumber,
3139 scratch,
3140 scratch2,
3141 heapnumbermap,
3142 &call_runtime);
3143 __ push(lr);
3144 __ PrepareCallCFunction(3, scratch);
3145 __ mov(r2, exponent);
3146 __ vmov(r0, r1, double_base);
3147 __ CallCFunction(
3148 ExternalReference::power_double_int_function(masm->isolate()), 3);
3149 __ pop(lr);
3150 __ GetCFunctionDoubleResult(double_result);
3151 __ vstr(double_result,
3152 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
3153 __ mov(r0, heapnumber);
3154 __ Ret(2 * kPointerSize);
3155
3156 __ bind(&exponent_not_smi);
3157 __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
3158 __ cmp(scratch, heapnumbermap);
3159 __ b(ne, &call_runtime);
3160 // Exponent is a heapnumber. Load it into double register.
3161 __ vldr(double_exponent,
3162 FieldMemOperand(exponent, HeapNumber::kValueOffset));
3163
3164 // The base and the exponent are in double registers.
3165 // Allocate a heap number and call a C function for
3166 // double exponents. The register containing
3167 // the heap number is callee-saved.
3168 __ AllocateHeapNumber(heapnumber,
3169 scratch,
3170 scratch2,
3171 heapnumbermap,
3172 &call_runtime);
3173 __ push(lr);
3174 __ PrepareCallCFunction(4, scratch);
3175 __ vmov(r0, r1, double_base);
3176 __ vmov(r2, r3, double_exponent);
3177 __ CallCFunction(
3178 ExternalReference::power_double_double_function(masm->isolate()), 4);
3179 __ pop(lr);
3180 __ GetCFunctionDoubleResult(double_result);
3181 __ vstr(double_result,
3182 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
3183 __ mov(r0, heapnumber);
3184 __ Ret(2 * kPointerSize);
3185 }
3186
3187 __ bind(&call_runtime);
3188 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
3189}
3190
3191
3192bool CEntryStub::NeedsImmovableCode() {
3193 return true;
3194}
3195
3196
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003197void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003198 __ Throw(r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003199}
3200
3201
3202void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
3203 UncatchableExceptionType type) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003204 __ ThrowUncatchable(type, r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003205}
3206
3207
3208void CEntryStub::GenerateCore(MacroAssembler* masm,
3209 Label* throw_normal_exception,
3210 Label* throw_termination_exception,
3211 Label* throw_out_of_memory_exception,
3212 bool do_gc,
Steve Block1e0659c2011-05-24 12:43:12 +01003213 bool always_allocate) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003214 // r0: result parameter for PerformGC, if any
3215 // r4: number of arguments including receiver (C callee-saved)
3216 // r5: pointer to builtin function (C callee-saved)
3217 // r6: pointer to the first argument (C callee-saved)
Steve Block44f0eee2011-05-26 01:26:41 +01003218 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003219
3220 if (do_gc) {
3221 // Passing r0.
3222 __ PrepareCallCFunction(1, r1);
Steve Block44f0eee2011-05-26 01:26:41 +01003223 __ CallCFunction(ExternalReference::perform_gc_function(isolate), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003224 }
3225
3226 ExternalReference scope_depth =
Steve Block44f0eee2011-05-26 01:26:41 +01003227 ExternalReference::heap_always_allocate_scope_depth(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003228 if (always_allocate) {
3229 __ mov(r0, Operand(scope_depth));
3230 __ ldr(r1, MemOperand(r0));
3231 __ add(r1, r1, Operand(1));
3232 __ str(r1, MemOperand(r0));
3233 }
3234
3235 // Call C built-in.
3236 // r0 = argc, r1 = argv
3237 __ mov(r0, Operand(r4));
3238 __ mov(r1, Operand(r6));
3239
Steve Block1e0659c2011-05-24 12:43:12 +01003240#if defined(V8_HOST_ARCH_ARM)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003241 int frame_alignment = MacroAssembler::ActivationFrameAlignment();
3242 int frame_alignment_mask = frame_alignment - 1;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003243 if (FLAG_debug_code) {
3244 if (frame_alignment > kPointerSize) {
3245 Label alignment_as_expected;
3246 ASSERT(IsPowerOf2(frame_alignment));
Steve Block1e0659c2011-05-24 12:43:12 +01003247 __ tst(sp, Operand(frame_alignment_mask));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003248 __ b(eq, &alignment_as_expected);
3249 // Don't use Check here, as it will call Runtime_Abort re-entering here.
3250 __ stop("Unexpected alignment");
3251 __ bind(&alignment_as_expected);
3252 }
3253 }
3254#endif
3255
Steve Block44f0eee2011-05-26 01:26:41 +01003256 __ mov(r2, Operand(ExternalReference::isolate_address()));
3257
3258
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003259 // TODO(1242173): To let the GC traverse the return address of the exit
3260 // frames, we need to know where the return address is. Right now,
Steve Block1e0659c2011-05-24 12:43:12 +01003261 // we store it on the stack to be able to find it again, but we never
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003262 // restore from it in case of changes, which makes it impossible to
3263 // support moving the C entry code stub. This should be fixed, but currently
3264 // this is OK because the CEntryStub gets generated so early in the V8 boot
3265 // sequence that it is not moving ever.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003266
Steve Block1e0659c2011-05-24 12:43:12 +01003267 // Compute the return address in lr to return to after the jump below. Pc is
3268 // already at '+ 8' from the current instruction but return is after three
3269 // instructions so add another 4 to pc to get the return address.
3270 masm->add(lr, pc, Operand(4));
3271 __ str(lr, MemOperand(sp, 0));
3272 masm->Jump(r5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003273
3274 if (always_allocate) {
3275 // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
3276 // though (contain the result).
3277 __ mov(r2, Operand(scope_depth));
3278 __ ldr(r3, MemOperand(r2));
3279 __ sub(r3, r3, Operand(1));
3280 __ str(r3, MemOperand(r2));
3281 }
3282
3283 // check for failure result
3284 Label failure_returned;
3285 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
3286 // Lower 2 bits of r2 are 0 iff r0 has failure tag.
3287 __ add(r2, r0, Operand(1));
3288 __ tst(r2, Operand(kFailureTagMask));
3289 __ b(eq, &failure_returned);
3290
3291 // Exit C frame and return.
3292 // r0:r1: result
3293 // sp: stack pointer
3294 // fp: frame pointer
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003295 // Callee-saved register r4 still holds argc.
3296 __ LeaveExitFrame(save_doubles_, r4);
3297 __ mov(pc, lr);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003298
3299 // check if we should retry or throw exception
3300 Label retry;
3301 __ bind(&failure_returned);
3302 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
3303 __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
3304 __ b(eq, &retry);
3305
3306 // Special handling of out of memory exceptions.
3307 Failure* out_of_memory = Failure::OutOfMemoryException();
3308 __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
3309 __ b(eq, throw_out_of_memory_exception);
3310
3311 // Retrieve the pending exception and clear the variable.
Steve Block44f0eee2011-05-26 01:26:41 +01003312 __ mov(ip, Operand(ExternalReference::the_hole_value_location(isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003313 __ ldr(r3, MemOperand(ip));
Steve Block44f0eee2011-05-26 01:26:41 +01003314 __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address,
3315 isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003316 __ ldr(r0, MemOperand(ip));
3317 __ str(r3, MemOperand(ip));
3318
3319 // Special handling of termination exceptions which are uncatchable
3320 // by javascript code.
Steve Block44f0eee2011-05-26 01:26:41 +01003321 __ cmp(r0, Operand(isolate->factory()->termination_exception()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003322 __ b(eq, throw_termination_exception);
3323
3324 // Handle normal exception.
3325 __ jmp(throw_normal_exception);
3326
3327 __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
3328}
3329
3330
3331void CEntryStub::Generate(MacroAssembler* masm) {
3332 // Called from JavaScript; parameters are on stack as if calling JS function
3333 // r0: number of arguments including receiver
3334 // r1: pointer to builtin function
3335 // fp: frame pointer (restored after C call)
3336 // sp: stack pointer (restored as callee's sp after C call)
3337 // cp: current context (C callee-saved)
3338
3339 // Result returned in r0 or r0+r1 by default.
3340
3341 // NOTE: Invocations of builtins may return failure objects
3342 // instead of a proper result. The builtin entry handles
3343 // this by performing a garbage collection and retrying the
3344 // builtin once.
3345
Steve Block1e0659c2011-05-24 12:43:12 +01003346 // Compute the argv pointer in a callee-saved register.
3347 __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
3348 __ sub(r6, r6, Operand(kPointerSize));
3349
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003350 // Enter the exit frame that transitions from JavaScript to C++.
Ben Murdochb0fe1622011-05-05 13:52:32 +01003351 __ EnterExitFrame(save_doubles_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003352
Steve Block1e0659c2011-05-24 12:43:12 +01003353 // Setup argc and the builtin function in callee-saved registers.
3354 __ mov(r4, Operand(r0));
3355 __ mov(r5, Operand(r1));
3356
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003357 // r4: number of arguments (C callee-saved)
3358 // r5: pointer to builtin function (C callee-saved)
3359 // r6: pointer to first argument (C callee-saved)
3360
3361 Label throw_normal_exception;
3362 Label throw_termination_exception;
3363 Label throw_out_of_memory_exception;
3364
3365 // Call into the runtime system.
3366 GenerateCore(masm,
3367 &throw_normal_exception,
3368 &throw_termination_exception,
3369 &throw_out_of_memory_exception,
3370 false,
Steve Block1e0659c2011-05-24 12:43:12 +01003371 false);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003372
3373 // Do space-specific GC and retry runtime call.
3374 GenerateCore(masm,
3375 &throw_normal_exception,
3376 &throw_termination_exception,
3377 &throw_out_of_memory_exception,
3378 true,
Steve Block1e0659c2011-05-24 12:43:12 +01003379 false);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003380
3381 // Do full GC and retry runtime call one final time.
3382 Failure* failure = Failure::InternalError();
3383 __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
3384 GenerateCore(masm,
3385 &throw_normal_exception,
3386 &throw_termination_exception,
3387 &throw_out_of_memory_exception,
3388 true,
Steve Block1e0659c2011-05-24 12:43:12 +01003389 true);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003390
3391 __ bind(&throw_out_of_memory_exception);
3392 GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
3393
3394 __ bind(&throw_termination_exception);
3395 GenerateThrowUncatchable(masm, TERMINATION);
3396
3397 __ bind(&throw_normal_exception);
3398 GenerateThrowTOS(masm);
3399}
3400
3401
3402void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
3403 // r0: code entry
3404 // r1: function
3405 // r2: receiver
3406 // r3: argc
3407 // [sp+0]: argv
3408
3409 Label invoke, exit;
3410
3411 // Called from C, so do not pop argc and args on exit (preserve sp)
3412 // No need to save register-passed args
3413 // Save callee-saved registers (incl. cp and fp), sp, and lr
3414 __ stm(db_w, sp, kCalleeSaved | lr.bit());
3415
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003416 if (CpuFeatures::IsSupported(VFP3)) {
3417 CpuFeatures::Scope scope(VFP3);
3418 // Save callee-saved vfp registers.
3419 __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
3420 }
3421
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003422 // Get address of argv, see stm above.
3423 // r0: code entry
3424 // r1: function
3425 // r2: receiver
3426 // r3: argc
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003427
3428 // Setup argv in r4.
3429 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
3430 if (CpuFeatures::IsSupported(VFP3)) {
3431 offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
3432 }
3433 __ ldr(r4, MemOperand(sp, offset_to_argv));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003434
3435 // Push a frame with special values setup to mark it as an entry frame.
3436 // r0: code entry
3437 // r1: function
3438 // r2: receiver
3439 // r3: argc
3440 // r4: argv
Steve Block44f0eee2011-05-26 01:26:41 +01003441 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003442 __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
3443 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
3444 __ mov(r7, Operand(Smi::FromInt(marker)));
3445 __ mov(r6, Operand(Smi::FromInt(marker)));
Steve Block44f0eee2011-05-26 01:26:41 +01003446 __ mov(r5,
3447 Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003448 __ ldr(r5, MemOperand(r5));
3449 __ Push(r8, r7, r6, r5);
3450
3451 // Setup frame pointer for the frame to be pushed.
3452 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
3453
Ben Murdochb0fe1622011-05-05 13:52:32 +01003454#ifdef ENABLE_LOGGING_AND_PROFILING
3455 // If this is the outermost JS call, set js_entry_sp value.
Steve Block053d10c2011-06-13 19:13:29 +01003456 Label non_outermost_js;
Steve Block44f0eee2011-05-26 01:26:41 +01003457 ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address, isolate);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003458 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
3459 __ ldr(r6, MemOperand(r5));
Steve Block053d10c2011-06-13 19:13:29 +01003460 __ cmp(r6, Operand(0));
3461 __ b(ne, &non_outermost_js);
3462 __ str(fp, MemOperand(r5));
3463 __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
3464 Label cont;
3465 __ b(&cont);
3466 __ bind(&non_outermost_js);
3467 __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
3468 __ bind(&cont);
3469 __ push(ip);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003470#endif
3471
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003472 // Call a faked try-block that does the invoke.
3473 __ bl(&invoke);
3474
3475 // Caught exception: Store result (exception) in the pending
3476 // exception field in the JSEnv and return a failure sentinel.
3477 // Coming in here the fp will be invalid because the PushTryHandler below
3478 // sets it to 0 to signal the existence of the JSEntry frame.
Steve Block44f0eee2011-05-26 01:26:41 +01003479 __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address,
3480 isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003481 __ str(r0, MemOperand(ip));
3482 __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
3483 __ b(&exit);
3484
3485 // Invoke: Link this frame into the handler chain.
3486 __ bind(&invoke);
3487 // Must preserve r0-r4, r5-r7 are available.
3488 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
3489 // If an exception not caught by another handler occurs, this handler
3490 // returns control to the code after the bl(&invoke) above, which
3491 // restores all kCalleeSaved registers (including cp and fp) to their
3492 // saved values before returning a failure to C.
3493
3494 // Clear any pending exceptions.
Steve Block44f0eee2011-05-26 01:26:41 +01003495 __ mov(ip, Operand(ExternalReference::the_hole_value_location(isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003496 __ ldr(r5, MemOperand(ip));
Steve Block44f0eee2011-05-26 01:26:41 +01003497 __ mov(ip, Operand(ExternalReference(Isolate::k_pending_exception_address,
3498 isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003499 __ str(r5, MemOperand(ip));
3500
3501 // Invoke the function by calling through JS entry trampoline builtin.
3502 // Notice that we cannot store a reference to the trampoline code directly in
3503 // this stub, because runtime stubs are not traversed when doing GC.
3504
3505 // Expected registers by Builtins::JSEntryTrampoline
3506 // r0: code entry
3507 // r1: function
3508 // r2: receiver
3509 // r3: argc
3510 // r4: argv
3511 if (is_construct) {
Steve Block44f0eee2011-05-26 01:26:41 +01003512 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
3513 isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003514 __ mov(ip, Operand(construct_entry));
3515 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01003516 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003517 __ mov(ip, Operand(entry));
3518 }
3519 __ ldr(ip, MemOperand(ip)); // deref address
3520
3521 // Branch and link to JSEntryTrampoline. We don't use the double underscore
3522 // macro for the add instruction because we don't want the coverage tool
3523 // inserting instructions here after we read the pc.
3524 __ mov(lr, Operand(pc));
3525 masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
3526
Steve Block053d10c2011-06-13 19:13:29 +01003527 // Unlink this frame from the handler chain.
3528 __ PopTryHandler();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003529
3530 __ bind(&exit); // r0 holds result
Steve Block053d10c2011-06-13 19:13:29 +01003531#ifdef ENABLE_LOGGING_AND_PROFILING
3532 // Check if the current stack frame is marked as the outermost JS frame.
3533 Label non_outermost_js_2;
3534 __ pop(r5);
3535 __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
3536 __ b(ne, &non_outermost_js_2);
3537 __ mov(r6, Operand(0));
3538 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
3539 __ str(r6, MemOperand(r5));
3540 __ bind(&non_outermost_js_2);
3541#endif
3542
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003543 // Restore the top frame descriptors from the stack.
3544 __ pop(r3);
Steve Block44f0eee2011-05-26 01:26:41 +01003545 __ mov(ip,
3546 Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003547 __ str(r3, MemOperand(ip));
3548
3549 // Reset the stack to the callee saved registers.
3550 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
3551
3552 // Restore callee-saved registers and return.
3553#ifdef DEBUG
3554 if (FLAG_debug_code) {
3555 __ mov(lr, Operand(pc));
3556 }
3557#endif
Ben Murdoch7d3e7fc2011-07-12 16:37:06 +01003558
3559 if (CpuFeatures::IsSupported(VFP3)) {
3560 CpuFeatures::Scope scope(VFP3);
3561 // Restore callee-saved vfp registers.
3562 __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
3563 }
3564
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003565 __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
3566}
3567
3568
Steve Block1e0659c2011-05-24 12:43:12 +01003569// Uses registers r0 to r4.
3570// Expected input (depending on whether args are in registers or on the stack):
3571// * object: r0 or at sp + 1 * kPointerSize.
3572// * function: r1 or at sp.
3573//
3574// An inlined call site may have been generated before calling this stub.
3575// In this case the offset to the inline site to patch is passed on the stack,
3576// in the safepoint slot for register r4.
3577// (See LCodeGen::DoInstanceOfKnownGlobal)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003578void InstanceofStub::Generate(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01003579 // Call site inlining and patching implies arguments in registers.
3580 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
3581 // ReturnTrueFalse is only implemented for inlined call sites.
3582 ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
3583
Ben Murdochb0fe1622011-05-05 13:52:32 +01003584 // Fixed register usage throughout the stub:
Steve Block9fac8402011-05-12 15:51:54 +01003585 const Register object = r0; // Object (lhs).
Steve Block1e0659c2011-05-24 12:43:12 +01003586 Register map = r3; // Map of the object.
Steve Block9fac8402011-05-12 15:51:54 +01003587 const Register function = r1; // Function (rhs).
Ben Murdochb0fe1622011-05-05 13:52:32 +01003588 const Register prototype = r4; // Prototype of the function.
Steve Block1e0659c2011-05-24 12:43:12 +01003589 const Register inline_site = r9;
Ben Murdochb0fe1622011-05-05 13:52:32 +01003590 const Register scratch = r2;
Steve Block1e0659c2011-05-24 12:43:12 +01003591
3592 const int32_t kDeltaToLoadBoolResult = 3 * kPointerSize;
3593
Ben Murdochb0fe1622011-05-05 13:52:32 +01003594 Label slow, loop, is_instance, is_not_instance, not_js_object;
Steve Block1e0659c2011-05-24 12:43:12 +01003595
Ben Murdoch086aeea2011-05-13 15:57:08 +01003596 if (!HasArgsInRegisters()) {
Steve Block9fac8402011-05-12 15:51:54 +01003597 __ ldr(object, MemOperand(sp, 1 * kPointerSize));
3598 __ ldr(function, MemOperand(sp, 0));
Ben Murdochb0fe1622011-05-05 13:52:32 +01003599 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003600
Ben Murdochb0fe1622011-05-05 13:52:32 +01003601 // Check that the left hand is a JS object and load map.
Steve Block1e0659c2011-05-24 12:43:12 +01003602 __ JumpIfSmi(object, &not_js_object);
Steve Block9fac8402011-05-12 15:51:54 +01003603 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003604
Steve Block1e0659c2011-05-24 12:43:12 +01003605 // If there is a call site cache don't look in the global cache, but do the
3606 // real lookup and update the call site cache.
3607 if (!HasCallSiteInlineCheck()) {
3608 Label miss;
3609 __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex);
3610 __ cmp(function, ip);
3611 __ b(ne, &miss);
3612 __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex);
3613 __ cmp(map, ip);
3614 __ b(ne, &miss);
3615 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
3616 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003617
Steve Block1e0659c2011-05-24 12:43:12 +01003618 __ bind(&miss);
3619 }
3620
3621 // Get the prototype of the function.
Steve Block9fac8402011-05-12 15:51:54 +01003622 __ TryGetFunctionPrototype(function, prototype, scratch, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003623
3624 // Check that the function prototype is a JS object.
Steve Block1e0659c2011-05-24 12:43:12 +01003625 __ JumpIfSmi(prototype, &slow);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003626 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003627
Steve Block1e0659c2011-05-24 12:43:12 +01003628 // Update the global instanceof or call site inlined cache with the current
3629 // map and function. The cached answer will be set when it is known below.
3630 if (!HasCallSiteInlineCheck()) {
3631 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
3632 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
3633 } else {
3634 ASSERT(HasArgsInRegisters());
3635 // Patch the (relocated) inlined map check.
3636
3637 // The offset was stored in r4 safepoint slot.
3638 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003639 __ LoadFromSafepointRegisterSlot(scratch, r4);
Steve Block1e0659c2011-05-24 12:43:12 +01003640 __ sub(inline_site, lr, scratch);
3641 // Get the map location in scratch and patch it.
3642 __ GetRelocatedValueLocation(inline_site, scratch);
3643 __ str(map, MemOperand(scratch));
3644 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003645
3646 // Register mapping: r3 is object map and r4 is function prototype.
3647 // Get prototype of object into r2.
Ben Murdochb0fe1622011-05-05 13:52:32 +01003648 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003649
Steve Block1e0659c2011-05-24 12:43:12 +01003650 // We don't need map any more. Use it as a scratch register.
3651 Register scratch2 = map;
3652 map = no_reg;
3653
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003654 // Loop through the prototype chain looking for the function prototype.
Steve Block1e0659c2011-05-24 12:43:12 +01003655 __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003656 __ bind(&loop);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003657 __ cmp(scratch, Operand(prototype));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003658 __ b(eq, &is_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01003659 __ cmp(scratch, scratch2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003660 __ b(eq, &is_not_instance);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003661 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
3662 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003663 __ jmp(&loop);
3664
3665 __ bind(&is_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01003666 if (!HasCallSiteInlineCheck()) {
3667 __ mov(r0, Operand(Smi::FromInt(0)));
3668 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
3669 } else {
3670 // Patch the call site to return true.
3671 __ LoadRoot(r0, Heap::kTrueValueRootIndex);
3672 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
3673 // Get the boolean result location in scratch and patch it.
3674 __ GetRelocatedValueLocation(inline_site, scratch);
3675 __ str(r0, MemOperand(scratch));
3676
3677 if (!ReturnTrueFalseObject()) {
3678 __ mov(r0, Operand(Smi::FromInt(0)));
3679 }
3680 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01003681 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003682
3683 __ bind(&is_not_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01003684 if (!HasCallSiteInlineCheck()) {
3685 __ mov(r0, Operand(Smi::FromInt(1)));
3686 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
3687 } else {
3688 // Patch the call site to return false.
3689 __ LoadRoot(r0, Heap::kFalseValueRootIndex);
3690 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
3691 // Get the boolean result location in scratch and patch it.
3692 __ GetRelocatedValueLocation(inline_site, scratch);
3693 __ str(r0, MemOperand(scratch));
3694
3695 if (!ReturnTrueFalseObject()) {
3696 __ mov(r0, Operand(Smi::FromInt(1)));
3697 }
3698 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01003699 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003700
3701 Label object_not_null, object_not_null_or_smi;
3702 __ bind(&not_js_object);
3703 // Before null, smi and string value checks, check that the rhs is a function
3704 // as for a non-function rhs an exception needs to be thrown.
Steve Block1e0659c2011-05-24 12:43:12 +01003705 __ JumpIfSmi(function, &slow);
3706 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003707 __ b(ne, &slow);
3708
3709 // Null is not instance of anything.
Steve Block053d10c2011-06-13 19:13:29 +01003710 __ cmp(scratch, Operand(FACTORY->null_value()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01003711 __ b(ne, &object_not_null);
3712 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01003713 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003714
3715 __ bind(&object_not_null);
3716 // Smi values are not instances of anything.
Steve Block1e0659c2011-05-24 12:43:12 +01003717 __ JumpIfNotSmi(object, &object_not_null_or_smi);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003718 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01003719 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003720
3721 __ bind(&object_not_null_or_smi);
3722 // String values are not instances of anything.
3723 __ IsObjectJSStringType(object, scratch, &slow);
3724 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01003725 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003726
3727 // Slow-case. Tail call builtin.
Ben Murdoch086aeea2011-05-13 15:57:08 +01003728 __ bind(&slow);
Steve Block1e0659c2011-05-24 12:43:12 +01003729 if (!ReturnTrueFalseObject()) {
3730 if (HasArgsInRegisters()) {
3731 __ Push(r0, r1);
3732 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003733 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS);
Steve Block1e0659c2011-05-24 12:43:12 +01003734 } else {
3735 __ EnterInternalFrame();
3736 __ Push(r0, r1);
3737 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_JS);
3738 __ LeaveInternalFrame();
3739 __ cmp(r0, Operand(0));
3740 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
3741 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
3742 __ Ret(HasArgsInRegisters() ? 0 : 2);
3743 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003744}
3745
3746
Steve Block1e0659c2011-05-24 12:43:12 +01003747Register InstanceofStub::left() { return r0; }
3748
3749
3750Register InstanceofStub::right() { return r1; }
3751
3752
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003753void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
3754 // The displacement is the offset of the last parameter (if any)
3755 // relative to the frame pointer.
3756 static const int kDisplacement =
3757 StandardFrameConstants::kCallerSPOffset - kPointerSize;
3758
3759 // Check that the key is a smi.
3760 Label slow;
Steve Block1e0659c2011-05-24 12:43:12 +01003761 __ JumpIfNotSmi(r1, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003762
3763 // Check if the calling frame is an arguments adaptor frame.
3764 Label adaptor;
3765 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3766 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
3767 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3768 __ b(eq, &adaptor);
3769
3770 // Check index against formal parameters count limit passed in
3771 // through register r0. Use unsigned comparison to get negative
3772 // check for free.
3773 __ cmp(r1, r0);
Ben Murdoch086aeea2011-05-13 15:57:08 +01003774 __ b(hs, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003775
3776 // Read the argument from the stack and return it.
3777 __ sub(r3, r0, r1);
3778 __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
3779 __ ldr(r0, MemOperand(r3, kDisplacement));
3780 __ Jump(lr);
3781
3782 // Arguments adaptor case: Check index against actual arguments
3783 // limit found in the arguments adaptor frame. Use unsigned
3784 // comparison to get negative check for free.
3785 __ bind(&adaptor);
3786 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
3787 __ cmp(r1, r0);
3788 __ b(cs, &slow);
3789
3790 // Read the argument from the adaptor frame and return it.
3791 __ sub(r3, r0, r1);
3792 __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
3793 __ ldr(r0, MemOperand(r3, kDisplacement));
3794 __ Jump(lr);
3795
3796 // Slow-case: Handle non-smi or out-of-bounds access to arguments
3797 // by calling the runtime system.
3798 __ bind(&slow);
3799 __ push(r1);
3800 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
3801}
3802
3803
3804void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
3805 // sp[0] : number of parameters
3806 // sp[4] : receiver displacement
3807 // sp[8] : function
3808
3809 // Check if the calling frame is an arguments adaptor frame.
3810 Label adaptor_frame, try_allocate, runtime;
3811 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3812 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
3813 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3814 __ b(eq, &adaptor_frame);
3815
3816 // Get the length from the frame.
3817 __ ldr(r1, MemOperand(sp, 0));
3818 __ b(&try_allocate);
3819
3820 // Patch the arguments.length and the parameters pointer.
3821 __ bind(&adaptor_frame);
3822 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
3823 __ str(r1, MemOperand(sp, 0));
3824 __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
3825 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
3826 __ str(r3, MemOperand(sp, 1 * kPointerSize));
3827
3828 // Try the new space allocation. Start out with computing the size
3829 // of the arguments object and the elements array in words.
3830 Label add_arguments_object;
3831 __ bind(&try_allocate);
Iain Merrick9ac36c92010-09-13 15:29:50 +01003832 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003833 __ b(eq, &add_arguments_object);
3834 __ mov(r1, Operand(r1, LSR, kSmiTagSize));
3835 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
3836 __ bind(&add_arguments_object);
Steve Block44f0eee2011-05-26 01:26:41 +01003837 __ add(r1, r1, Operand(GetArgumentsObjectSize() / kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003838
3839 // Do the allocation of both objects in one go.
3840 __ AllocateInNewSpace(
3841 r1,
3842 r0,
3843 r2,
3844 r3,
3845 &runtime,
3846 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
3847
3848 // Get the arguments boilerplate from the current (global) context.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003849 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
3850 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01003851 __ ldr(r4, MemOperand(r4,
3852 Context::SlotOffset(GetArgumentsBoilerplateIndex())));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003853
3854 // Copy the JS object part.
3855 __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize);
3856
Steve Block44f0eee2011-05-26 01:26:41 +01003857 if (type_ == NEW_NON_STRICT) {
3858 // Setup the callee in-object property.
3859 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
3860 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
3861 const int kCalleeOffset = JSObject::kHeaderSize +
3862 Heap::kArgumentsCalleeIndex * kPointerSize;
3863 __ str(r3, FieldMemOperand(r0, kCalleeOffset));
3864 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003865
3866 // Get the length (smi tagged) and set that as an in-object property too.
Steve Block44f0eee2011-05-26 01:26:41 +01003867 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003868 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01003869 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
3870 Heap::kArgumentsLengthIndex * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003871
3872 // If there are no actual arguments, we're done.
3873 Label done;
Iain Merrick9ac36c92010-09-13 15:29:50 +01003874 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003875 __ b(eq, &done);
3876
3877 // Get the parameters pointer from the stack.
3878 __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
3879
3880 // Setup the elements pointer in the allocated arguments object and
3881 // initialize the header in the elements fixed array.
Steve Block44f0eee2011-05-26 01:26:41 +01003882 __ add(r4, r0, Operand(GetArgumentsObjectSize()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003883 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
3884 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
3885 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
3886 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
3887 __ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Untag the length for the loop.
3888
3889 // Copy the fixed array slots.
3890 Label loop;
3891 // Setup r4 to point to the first array slot.
3892 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3893 __ bind(&loop);
3894 // Pre-decrement r2 with kPointerSize on each iteration.
3895 // Pre-decrement in order to skip receiver.
3896 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
3897 // Post-increment r4 with kPointerSize on each iteration.
3898 __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
3899 __ sub(r1, r1, Operand(1));
Iain Merrick9ac36c92010-09-13 15:29:50 +01003900 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003901 __ b(ne, &loop);
3902
3903 // Return and remove the on-stack parameters.
3904 __ bind(&done);
3905 __ add(sp, sp, Operand(3 * kPointerSize));
3906 __ Ret();
3907
3908 // Do the runtime call to allocate the arguments object.
3909 __ bind(&runtime);
3910 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
3911}
3912
3913
3914void RegExpExecStub::Generate(MacroAssembler* masm) {
3915 // Just jump directly to runtime if native RegExp is not selected at compile
3916 // time or if regexp entry in generated code is turned off runtime switch or
3917 // at compilation.
3918#ifdef V8_INTERPRETED_REGEXP
3919 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
3920#else // V8_INTERPRETED_REGEXP
3921 if (!FLAG_regexp_entry_native) {
3922 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
3923 return;
3924 }
3925
3926 // Stack frame on entry.
3927 // sp[0]: last_match_info (expected JSArray)
3928 // sp[4]: previous index
3929 // sp[8]: subject string
3930 // sp[12]: JSRegExp object
3931
3932 static const int kLastMatchInfoOffset = 0 * kPointerSize;
3933 static const int kPreviousIndexOffset = 1 * kPointerSize;
3934 static const int kSubjectOffset = 2 * kPointerSize;
3935 static const int kJSRegExpOffset = 3 * kPointerSize;
3936
3937 Label runtime, invoke_regexp;
3938
3939 // Allocation of registers for this function. These are in callee save
3940 // registers and will be preserved by the call to the native RegExp code, as
3941 // this code is called using the normal C calling convention. When calling
3942 // directly from generated code the native RegExp code will not do a GC and
3943 // therefore the content of these registers are safe to use after the call.
3944 Register subject = r4;
3945 Register regexp_data = r5;
3946 Register last_match_info_elements = r6;
3947
3948 // Ensure that a RegExp stack is allocated.
Steve Block44f0eee2011-05-26 01:26:41 +01003949 Isolate* isolate = masm->isolate();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003950 ExternalReference address_of_regexp_stack_memory_address =
Steve Block44f0eee2011-05-26 01:26:41 +01003951 ExternalReference::address_of_regexp_stack_memory_address(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003952 ExternalReference address_of_regexp_stack_memory_size =
Steve Block44f0eee2011-05-26 01:26:41 +01003953 ExternalReference::address_of_regexp_stack_memory_size(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003954 __ mov(r0, Operand(address_of_regexp_stack_memory_size));
3955 __ ldr(r0, MemOperand(r0, 0));
3956 __ tst(r0, Operand(r0));
3957 __ b(eq, &runtime);
3958
3959 // Check that the first argument is a JSRegExp object.
3960 __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
3961 STATIC_ASSERT(kSmiTag == 0);
3962 __ tst(r0, Operand(kSmiTagMask));
3963 __ b(eq, &runtime);
3964 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
3965 __ b(ne, &runtime);
3966
3967 // Check that the RegExp has been compiled (data contains a fixed array).
3968 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
3969 if (FLAG_debug_code) {
3970 __ tst(regexp_data, Operand(kSmiTagMask));
Steve Block1e0659c2011-05-24 12:43:12 +01003971 __ Check(ne, "Unexpected type for RegExp data, FixedArray expected");
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003972 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
3973 __ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
3974 }
3975
3976 // regexp_data: RegExp data (FixedArray)
3977 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
3978 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
3979 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
3980 __ b(ne, &runtime);
3981
3982 // regexp_data: RegExp data (FixedArray)
3983 // Check that the number of captures fit in the static offsets vector buffer.
3984 __ ldr(r2,
3985 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
3986 // Calculate number of capture registers (number_of_captures + 1) * 2. This
3987 // uses the asumption that smis are 2 * their untagged value.
3988 STATIC_ASSERT(kSmiTag == 0);
3989 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3990 __ add(r2, r2, Operand(2)); // r2 was a smi.
3991 // Check that the static offsets vector buffer is large enough.
3992 __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
3993 __ b(hi, &runtime);
3994
3995 // r2: Number of capture registers
3996 // regexp_data: RegExp data (FixedArray)
3997 // Check that the second argument is a string.
3998 __ ldr(subject, MemOperand(sp, kSubjectOffset));
3999 __ tst(subject, Operand(kSmiTagMask));
4000 __ b(eq, &runtime);
4001 Condition is_string = masm->IsObjectStringType(subject, r0);
4002 __ b(NegateCondition(is_string), &runtime);
4003 // Get the length of the string to r3.
4004 __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset));
4005
4006 // r2: Number of capture registers
4007 // r3: Length of subject string as a smi
4008 // subject: Subject string
4009 // regexp_data: RegExp data (FixedArray)
4010 // Check that the third argument is a positive smi less than the subject
4011 // string length. A negative value will be greater (unsigned comparison).
4012 __ ldr(r0, MemOperand(sp, kPreviousIndexOffset));
4013 __ tst(r0, Operand(kSmiTagMask));
4014 __ b(ne, &runtime);
4015 __ cmp(r3, Operand(r0));
4016 __ b(ls, &runtime);
4017
4018 // r2: Number of capture registers
4019 // subject: Subject string
4020 // regexp_data: RegExp data (FixedArray)
4021 // Check that the fourth object is a JSArray object.
4022 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
4023 __ tst(r0, Operand(kSmiTagMask));
4024 __ b(eq, &runtime);
4025 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
4026 __ b(ne, &runtime);
4027 // Check that the JSArray is in fast case.
4028 __ ldr(last_match_info_elements,
4029 FieldMemOperand(r0, JSArray::kElementsOffset));
4030 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
4031 __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
4032 __ cmp(r0, ip);
4033 __ b(ne, &runtime);
4034 // Check that the last match info has space for the capture registers and the
4035 // additional information.
4036 __ ldr(r0,
4037 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
4038 __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead));
4039 __ cmp(r2, Operand(r0, ASR, kSmiTagSize));
4040 __ b(gt, &runtime);
4041
4042 // subject: Subject string
4043 // regexp_data: RegExp data (FixedArray)
4044 // Check the representation and encoding of the subject string.
4045 Label seq_string;
4046 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
4047 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
4048 // First check for flat string.
4049 __ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask));
4050 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
4051 __ b(eq, &seq_string);
4052
4053 // subject: Subject string
4054 // regexp_data: RegExp data (FixedArray)
4055 // Check for flat cons string.
4056 // A flat cons string is a cons string where the second part is the empty
4057 // string. In that case the subject string is just the first part of the cons
4058 // string. Also in this case the first part of the cons string is known to be
4059 // a sequential string or an external string.
4060 STATIC_ASSERT(kExternalStringTag !=0);
4061 STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
4062 __ tst(r0, Operand(kIsNotStringMask | kExternalStringTag));
4063 __ b(ne, &runtime);
4064 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
4065 __ LoadRoot(r1, Heap::kEmptyStringRootIndex);
4066 __ cmp(r0, r1);
4067 __ b(ne, &runtime);
4068 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
4069 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
4070 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
4071 // Is first part a flat string?
4072 STATIC_ASSERT(kSeqStringTag == 0);
4073 __ tst(r0, Operand(kStringRepresentationMask));
Steve Block1e0659c2011-05-24 12:43:12 +01004074 __ b(ne, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004075
4076 __ bind(&seq_string);
4077 // subject: Subject string
4078 // regexp_data: RegExp data (FixedArray)
4079 // r0: Instance type of subject string
4080 STATIC_ASSERT(4 == kAsciiStringTag);
4081 STATIC_ASSERT(kTwoByteStringTag == 0);
4082 // Find the code object based on the assumptions above.
4083 __ and_(r0, r0, Operand(kStringEncodingMask));
4084 __ mov(r3, Operand(r0, ASR, 2), SetCC);
4085 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
4086 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
4087
4088 // Check that the irregexp code has been generated for the actual string
4089 // encoding. If it has, the field contains a code object otherwise it contains
4090 // the hole.
4091 __ CompareObjectType(r7, r0, r0, CODE_TYPE);
4092 __ b(ne, &runtime);
4093
Steve Block44f0eee2011-05-26 01:26:41 +01004094 // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004095 // r7: code
4096 // subject: Subject string
4097 // regexp_data: RegExp data (FixedArray)
4098 // Load used arguments before starting to push arguments for call to native
4099 // RegExp code to avoid handling changing stack height.
4100 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
4101 __ mov(r1, Operand(r1, ASR, kSmiTagSize));
4102
4103 // r1: previous index
Steve Block44f0eee2011-05-26 01:26:41 +01004104 // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004105 // r7: code
4106 // subject: Subject string
4107 // regexp_data: RegExp data (FixedArray)
4108 // All checks done. Now push arguments for native regexp code.
Steve Block44f0eee2011-05-26 01:26:41 +01004109 __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004110
Steve Block44f0eee2011-05-26 01:26:41 +01004111 // Isolates: note we add an additional parameter here (isolate pointer).
4112 static const int kRegExpExecuteArguments = 8;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004113 static const int kParameterRegisters = 4;
4114 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004115
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004116 // Stack pointer now points to cell where return address is to be written.
4117 // Arguments are before that on the stack or in registers.
4118
Steve Block44f0eee2011-05-26 01:26:41 +01004119 // Argument 8 (sp[16]): Pass current isolate address.
4120 __ mov(r0, Operand(ExternalReference::isolate_address()));
4121 __ str(r0, MemOperand(sp, 4 * kPointerSize));
4122
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004123 // Argument 7 (sp[12]): Indicate that this is a direct call from JavaScript.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004124 __ mov(r0, Operand(1));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004125 __ str(r0, MemOperand(sp, 3 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004126
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004127 // Argument 6 (sp[8]): Start (high end) of backtracking stack memory area.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004128 __ mov(r0, Operand(address_of_regexp_stack_memory_address));
4129 __ ldr(r0, MemOperand(r0, 0));
4130 __ mov(r2, Operand(address_of_regexp_stack_memory_size));
4131 __ ldr(r2, MemOperand(r2, 0));
4132 __ add(r0, r0, Operand(r2));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004133 __ str(r0, MemOperand(sp, 2 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004134
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004135 // Argument 5 (sp[4]): static offsets vector buffer.
Steve Block44f0eee2011-05-26 01:26:41 +01004136 __ mov(r0,
4137 Operand(ExternalReference::address_of_static_offsets_vector(isolate)));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004138 __ str(r0, MemOperand(sp, 1 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004139
4140 // For arguments 4 and 3 get string length, calculate start of string data and
4141 // calculate the shift of the index (0 for ASCII and 1 for two byte).
4142 __ ldr(r0, FieldMemOperand(subject, String::kLengthOffset));
4143 __ mov(r0, Operand(r0, ASR, kSmiTagSize));
4144 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
4145 __ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
4146 __ eor(r3, r3, Operand(1));
4147 // Argument 4 (r3): End of string data
4148 // Argument 3 (r2): Start of string data
4149 __ add(r2, r9, Operand(r1, LSL, r3));
4150 __ add(r3, r9, Operand(r0, LSL, r3));
4151
4152 // Argument 2 (r1): Previous index.
4153 // Already there
4154
4155 // Argument 1 (r0): Subject string.
4156 __ mov(r0, subject);
4157
4158 // Locate the code entry and call it.
4159 __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004160 DirectCEntryStub stub;
4161 stub.GenerateCall(masm, r7);
4162
4163 __ LeaveExitFrame(false, no_reg);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004164
4165 // r0: result
4166 // subject: subject string (callee saved)
4167 // regexp_data: RegExp data (callee saved)
4168 // last_match_info_elements: Last match info elements (callee saved)
4169
4170 // Check the result.
4171 Label success;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004172
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004173 __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS));
4174 __ b(eq, &success);
4175 Label failure;
4176 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
4177 __ b(eq, &failure);
4178 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
4179 // If not exception it can only be retry. Handle that in the runtime system.
4180 __ b(ne, &runtime);
4181 // Result must now be exception. If there is no pending exception already a
4182 // stack overflow (on the backtrack stack) was detected in RegExp code but
4183 // haven't created the exception yet. Handle that in the runtime system.
4184 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
Steve Block44f0eee2011-05-26 01:26:41 +01004185 __ mov(r1, Operand(ExternalReference::the_hole_value_location(isolate)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004186 __ ldr(r1, MemOperand(r1, 0));
Steve Block44f0eee2011-05-26 01:26:41 +01004187 __ mov(r2, Operand(ExternalReference(Isolate::k_pending_exception_address,
4188 isolate)));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004189 __ ldr(r0, MemOperand(r2, 0));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004190 __ cmp(r0, r1);
4191 __ b(eq, &runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004192
4193 __ str(r1, MemOperand(r2, 0)); // Clear pending exception.
4194
4195 // Check if the exception is a termination. If so, throw as uncatchable.
4196 __ LoadRoot(ip, Heap::kTerminationExceptionRootIndex);
4197 __ cmp(r0, ip);
4198 Label termination_exception;
4199 __ b(eq, &termination_exception);
4200
4201 __ Throw(r0); // Expects thrown value in r0.
4202
4203 __ bind(&termination_exception);
4204 __ ThrowUncatchable(TERMINATION, r0); // Expects thrown value in r0.
4205
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004206 __ bind(&failure);
4207 // For failure and exception return null.
Steve Block053d10c2011-06-13 19:13:29 +01004208 __ mov(r0, Operand(FACTORY->null_value()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004209 __ add(sp, sp, Operand(4 * kPointerSize));
4210 __ Ret();
4211
4212 // Process the result from the native regexp code.
4213 __ bind(&success);
4214 __ ldr(r1,
4215 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
4216 // Calculate number of capture registers (number_of_captures + 1) * 2.
4217 STATIC_ASSERT(kSmiTag == 0);
4218 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4219 __ add(r1, r1, Operand(2)); // r1 was a smi.
4220
4221 // r1: number of capture registers
4222 // r4: subject string
4223 // Store the capture count.
4224 __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi.
4225 __ str(r2, FieldMemOperand(last_match_info_elements,
4226 RegExpImpl::kLastCaptureCountOffset));
4227 // Store last subject and last input.
4228 __ mov(r3, last_match_info_elements); // Moved up to reduce latency.
4229 __ str(subject,
4230 FieldMemOperand(last_match_info_elements,
4231 RegExpImpl::kLastSubjectOffset));
4232 __ RecordWrite(r3, Operand(RegExpImpl::kLastSubjectOffset), r2, r7);
4233 __ str(subject,
4234 FieldMemOperand(last_match_info_elements,
4235 RegExpImpl::kLastInputOffset));
4236 __ mov(r3, last_match_info_elements);
4237 __ RecordWrite(r3, Operand(RegExpImpl::kLastInputOffset), r2, r7);
4238
4239 // Get the static offsets vector filled by the native regexp code.
4240 ExternalReference address_of_static_offsets_vector =
Steve Block44f0eee2011-05-26 01:26:41 +01004241 ExternalReference::address_of_static_offsets_vector(isolate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004242 __ mov(r2, Operand(address_of_static_offsets_vector));
4243
4244 // r1: number of capture registers
4245 // r2: offsets vector
4246 Label next_capture, done;
4247 // Capture register counter starts from number of capture registers and
4248 // counts down until wraping after zero.
4249 __ add(r0,
4250 last_match_info_elements,
4251 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
4252 __ bind(&next_capture);
4253 __ sub(r1, r1, Operand(1), SetCC);
4254 __ b(mi, &done);
4255 // Read the value from the static offsets vector buffer.
4256 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
4257 // Store the smi value in the last match info.
4258 __ mov(r3, Operand(r3, LSL, kSmiTagSize));
4259 __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
4260 __ jmp(&next_capture);
4261 __ bind(&done);
4262
4263 // Return last match info.
4264 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
4265 __ add(sp, sp, Operand(4 * kPointerSize));
4266 __ Ret();
4267
4268 // Do the runtime call to execute the regexp.
4269 __ bind(&runtime);
4270 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
4271#endif // V8_INTERPRETED_REGEXP
4272}
4273
4274
Ben Murdochb0fe1622011-05-05 13:52:32 +01004275void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
4276 const int kMaxInlineLength = 100;
4277 Label slowcase;
4278 Label done;
4279 __ ldr(r1, MemOperand(sp, kPointerSize * 2));
4280 STATIC_ASSERT(kSmiTag == 0);
4281 STATIC_ASSERT(kSmiTagSize == 1);
4282 __ tst(r1, Operand(kSmiTagMask));
4283 __ b(ne, &slowcase);
4284 __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
4285 __ b(hi, &slowcase);
4286 // Smi-tagging is equivalent to multiplying by 2.
4287 // Allocate RegExpResult followed by FixedArray with size in ebx.
4288 // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
4289 // Elements: [Map][Length][..elements..]
4290 // Size of JSArray with two in-object properties and the header of a
4291 // FixedArray.
4292 int objects_size =
4293 (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
4294 __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize));
4295 __ add(r2, r5, Operand(objects_size));
4296 __ AllocateInNewSpace(
4297 r2, // In: Size, in words.
4298 r0, // Out: Start of allocation (tagged).
4299 r3, // Scratch register.
4300 r4, // Scratch register.
4301 &slowcase,
4302 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
4303 // r0: Start of allocated area, object-tagged.
4304 // r1: Number of elements in array, as smi.
4305 // r5: Number of elements, untagged.
4306
4307 // Set JSArray map to global.regexp_result_map().
4308 // Set empty properties FixedArray.
4309 // Set elements to point to FixedArray allocated right after the JSArray.
4310 // Interleave operations for better latency.
4311 __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX));
4312 __ add(r3, r0, Operand(JSRegExpResult::kSize));
Steve Block053d10c2011-06-13 19:13:29 +01004313 __ mov(r4, Operand(FACTORY->empty_fixed_array()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01004314 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
4315 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
4316 __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
4317 __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
4318 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
4319
4320 // Set input, index and length fields from arguments.
4321 __ ldr(r1, MemOperand(sp, kPointerSize * 0));
4322 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
4323 __ ldr(r1, MemOperand(sp, kPointerSize * 1));
4324 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
4325 __ ldr(r1, MemOperand(sp, kPointerSize * 2));
4326 __ str(r1, FieldMemOperand(r0, JSArray::kLengthOffset));
4327
4328 // Fill out the elements FixedArray.
4329 // r0: JSArray, tagged.
4330 // r3: FixedArray, tagged.
4331 // r5: Number of elements in array, untagged.
4332
4333 // Set map.
Steve Block053d10c2011-06-13 19:13:29 +01004334 __ mov(r2, Operand(FACTORY->fixed_array_map()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01004335 __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
4336 // Set FixedArray length.
4337 __ mov(r6, Operand(r5, LSL, kSmiTagSize));
4338 __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
4339 // Fill contents of fixed-array with the-hole.
Steve Block053d10c2011-06-13 19:13:29 +01004340 __ mov(r2, Operand(FACTORY->the_hole_value()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01004341 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4342 // Fill fixed array elements with hole.
4343 // r0: JSArray, tagged.
4344 // r2: the hole.
4345 // r3: Start of elements in FixedArray.
4346 // r5: Number of elements to fill.
4347 Label loop;
4348 __ tst(r5, Operand(r5));
4349 __ bind(&loop);
4350 __ b(le, &done); // Jump if r1 is negative or zero.
4351 __ sub(r5, r5, Operand(1), SetCC);
4352 __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
4353 __ jmp(&loop);
4354
4355 __ bind(&done);
4356 __ add(sp, sp, Operand(3 * kPointerSize));
4357 __ Ret();
4358
4359 __ bind(&slowcase);
4360 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
4361}
4362
4363
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004364void CallFunctionStub::Generate(MacroAssembler* masm) {
4365 Label slow;
4366
4367 // If the receiver might be a value (string, number or boolean) check for this
4368 // and box it if it is.
4369 if (ReceiverMightBeValue()) {
4370 // Get the receiver from the stack.
4371 // function, receiver [, arguments]
4372 Label receiver_is_value, receiver_is_js_object;
4373 __ ldr(r1, MemOperand(sp, argc_ * kPointerSize));
4374
4375 // Check if receiver is a smi (which is a number value).
Steve Block1e0659c2011-05-24 12:43:12 +01004376 __ JumpIfSmi(r1, &receiver_is_value);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004377
4378 // Check if the receiver is a valid JS object.
4379 __ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE);
4380 __ b(ge, &receiver_is_js_object);
4381
4382 // Call the runtime to box the value.
4383 __ bind(&receiver_is_value);
4384 __ EnterInternalFrame();
4385 __ push(r1);
4386 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
4387 __ LeaveInternalFrame();
4388 __ str(r0, MemOperand(sp, argc_ * kPointerSize));
4389
4390 __ bind(&receiver_is_js_object);
4391 }
4392
4393 // Get the function to call from the stack.
4394 // function, receiver [, arguments]
4395 __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
4396
4397 // Check that the function is really a JavaScript function.
4398 // r1: pushed function (to be verified)
Steve Block1e0659c2011-05-24 12:43:12 +01004399 __ JumpIfSmi(r1, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004400 // Get the map of the function object.
4401 __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
4402 __ b(ne, &slow);
4403
4404 // Fast-case: Invoke the function now.
4405 // r1: pushed function
4406 ParameterCount actual(argc_);
4407 __ InvokeFunction(r1, actual, JUMP_FUNCTION);
4408
4409 // Slow-case: Non-function called.
4410 __ bind(&slow);
4411 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
4412 // of the original receiver from the call site).
4413 __ str(r1, MemOperand(sp, argc_ * kPointerSize));
4414 __ mov(r0, Operand(argc_)); // Setup the number of arguments.
Iain Merrick9ac36c92010-09-13 15:29:50 +01004415 __ mov(r2, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004416 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
Steve Block44f0eee2011-05-26 01:26:41 +01004417 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004418 RelocInfo::CODE_TARGET);
4419}
4420
4421
4422// Unfortunately you have to run without snapshots to see most of these
4423// names in the profile since most compare stubs end up in the snapshot.
4424const char* CompareStub::GetName() {
4425 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
4426 (lhs_.is(r1) && rhs_.is(r0)));
4427
4428 if (name_ != NULL) return name_;
4429 const int kMaxNameLength = 100;
Steve Block44f0eee2011-05-26 01:26:41 +01004430 name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(
4431 kMaxNameLength);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004432 if (name_ == NULL) return "OOM";
4433
4434 const char* cc_name;
4435 switch (cc_) {
4436 case lt: cc_name = "LT"; break;
4437 case gt: cc_name = "GT"; break;
4438 case le: cc_name = "LE"; break;
4439 case ge: cc_name = "GE"; break;
4440 case eq: cc_name = "EQ"; break;
4441 case ne: cc_name = "NE"; break;
4442 default: cc_name = "UnknownCondition"; break;
4443 }
4444
4445 const char* lhs_name = lhs_.is(r0) ? "_r0" : "_r1";
4446 const char* rhs_name = rhs_.is(r0) ? "_r0" : "_r1";
4447
4448 const char* strict_name = "";
4449 if (strict_ && (cc_ == eq || cc_ == ne)) {
4450 strict_name = "_STRICT";
4451 }
4452
4453 const char* never_nan_nan_name = "";
4454 if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) {
4455 never_nan_nan_name = "_NO_NAN";
4456 }
4457
4458 const char* include_number_compare_name = "";
4459 if (!include_number_compare_) {
4460 include_number_compare_name = "_NO_NUMBER";
4461 }
4462
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004463 const char* include_smi_compare_name = "";
4464 if (!include_smi_compare_) {
4465 include_smi_compare_name = "_NO_SMI";
4466 }
4467
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004468 OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
4469 "CompareStub_%s%s%s%s%s%s",
4470 cc_name,
4471 lhs_name,
4472 rhs_name,
4473 strict_name,
4474 never_nan_nan_name,
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004475 include_number_compare_name,
4476 include_smi_compare_name);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004477 return name_;
4478}
4479
4480
4481int CompareStub::MinorKey() {
4482 // Encode the three parameters in a unique 16 bit value. To avoid duplicate
4483 // stubs the never NaN NaN condition is only taken into account if the
4484 // condition is equals.
4485 ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12));
4486 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
4487 (lhs_.is(r1) && rhs_.is(r0)));
4488 return ConditionField::encode(static_cast<unsigned>(cc_) >> 28)
4489 | RegisterField::encode(lhs_.is(r0))
4490 | StrictField::encode(strict_)
4491 | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004492 | IncludeNumberCompareField::encode(include_number_compare_)
4493 | IncludeSmiCompareField::encode(include_smi_compare_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004494}
4495
4496
4497// StringCharCodeAtGenerator
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004498void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
4499 Label flat_string;
4500 Label ascii_string;
4501 Label got_char_code;
4502
4503 // If the receiver is a smi trigger the non-string case.
Steve Block1e0659c2011-05-24 12:43:12 +01004504 __ JumpIfSmi(object_, receiver_not_string_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004505
4506 // Fetch the instance type of the receiver into result register.
4507 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
4508 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
4509 // If the receiver is not a string trigger the non-string case.
4510 __ tst(result_, Operand(kIsNotStringMask));
4511 __ b(ne, receiver_not_string_);
4512
4513 // If the index is non-smi trigger the non-smi case.
Steve Block1e0659c2011-05-24 12:43:12 +01004514 __ JumpIfNotSmi(index_, &index_not_smi_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004515
4516 // Put smi-tagged index into scratch register.
4517 __ mov(scratch_, index_);
4518 __ bind(&got_smi_index_);
4519
4520 // Check for index out of range.
4521 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
4522 __ cmp(ip, Operand(scratch_));
4523 __ b(ls, index_out_of_range_);
4524
4525 // We need special handling for non-flat strings.
4526 STATIC_ASSERT(kSeqStringTag == 0);
4527 __ tst(result_, Operand(kStringRepresentationMask));
4528 __ b(eq, &flat_string);
4529
4530 // Handle non-flat strings.
4531 __ tst(result_, Operand(kIsConsStringMask));
4532 __ b(eq, &call_runtime_);
4533
4534 // ConsString.
4535 // Check whether the right hand side is the empty string (i.e. if
4536 // this is really a flat string in a cons string). If that is not
4537 // the case we would rather go to the runtime system now to flatten
4538 // the string.
4539 __ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset));
4540 __ LoadRoot(ip, Heap::kEmptyStringRootIndex);
4541 __ cmp(result_, Operand(ip));
4542 __ b(ne, &call_runtime_);
4543 // Get the first of the two strings and load its instance type.
4544 __ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset));
4545 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
4546 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
4547 // If the first cons component is also non-flat, then go to runtime.
4548 STATIC_ASSERT(kSeqStringTag == 0);
4549 __ tst(result_, Operand(kStringRepresentationMask));
Steve Block1e0659c2011-05-24 12:43:12 +01004550 __ b(ne, &call_runtime_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004551
4552 // Check for 1-byte or 2-byte string.
4553 __ bind(&flat_string);
4554 STATIC_ASSERT(kAsciiStringTag != 0);
4555 __ tst(result_, Operand(kStringEncodingMask));
Steve Block1e0659c2011-05-24 12:43:12 +01004556 __ b(ne, &ascii_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004557
4558 // 2-byte string.
4559 // Load the 2-byte character code into the result register. We can
4560 // add without shifting since the smi tag size is the log2 of the
4561 // number of bytes in a two-byte character.
4562 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0);
4563 __ add(scratch_, object_, Operand(scratch_));
4564 __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize));
4565 __ jmp(&got_char_code);
4566
4567 // ASCII string.
4568 // Load the byte into the result register.
4569 __ bind(&ascii_string);
4570 __ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize));
4571 __ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize));
4572
4573 __ bind(&got_char_code);
4574 __ mov(result_, Operand(result_, LSL, kSmiTagSize));
4575 __ bind(&exit_);
4576}
4577
4578
4579void StringCharCodeAtGenerator::GenerateSlow(
4580 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
4581 __ Abort("Unexpected fallthrough to CharCodeAt slow case");
4582
4583 // Index is not a smi.
4584 __ bind(&index_not_smi_);
4585 // If index is a heap number, try converting it to an integer.
4586 __ CheckMap(index_,
4587 scratch_,
4588 Heap::kHeapNumberMapRootIndex,
4589 index_not_number_,
4590 true);
4591 call_helper.BeforeCall(masm);
4592 __ Push(object_, index_);
4593 __ push(index_); // Consumed by runtime conversion function.
4594 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
4595 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
4596 } else {
4597 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
4598 // NumberToSmi discards numbers that are not exact integers.
4599 __ CallRuntime(Runtime::kNumberToSmi, 1);
4600 }
4601 // Save the conversion result before the pop instructions below
4602 // have a chance to overwrite it.
4603 __ Move(scratch_, r0);
4604 __ pop(index_);
4605 __ pop(object_);
4606 // Reload the instance type.
4607 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
4608 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
4609 call_helper.AfterCall(masm);
4610 // If index is still not a smi, it must be out of range.
Steve Block1e0659c2011-05-24 12:43:12 +01004611 __ JumpIfNotSmi(scratch_, index_out_of_range_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004612 // Otherwise, return to the fast path.
4613 __ jmp(&got_smi_index_);
4614
4615 // Call runtime. We get here when the receiver is a string and the
4616 // index is a number, but the code of getting the actual character
4617 // is too complex (e.g., when the string needs to be flattened).
4618 __ bind(&call_runtime_);
4619 call_helper.BeforeCall(masm);
4620 __ Push(object_, index_);
4621 __ CallRuntime(Runtime::kStringCharCodeAt, 2);
4622 __ Move(result_, r0);
4623 call_helper.AfterCall(masm);
4624 __ jmp(&exit_);
4625
4626 __ Abort("Unexpected fallthrough from CharCodeAt slow case");
4627}
4628
4629
4630// -------------------------------------------------------------------------
4631// StringCharFromCodeGenerator
4632
4633void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
4634 // Fast case of Heap::LookupSingleCharacterStringFromCode.
4635 STATIC_ASSERT(kSmiTag == 0);
4636 STATIC_ASSERT(kSmiShiftSize == 0);
4637 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
4638 __ tst(code_,
4639 Operand(kSmiTagMask |
4640 ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
Steve Block1e0659c2011-05-24 12:43:12 +01004641 __ b(ne, &slow_case_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004642
4643 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
Steve Block44f0eee2011-05-26 01:26:41 +01004644 // At this point code register contains smi tagged ASCII char code.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004645 STATIC_ASSERT(kSmiTag == 0);
4646 __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
4647 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
4648 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4649 __ cmp(result_, Operand(ip));
4650 __ b(eq, &slow_case_);
4651 __ bind(&exit_);
4652}
4653
4654
4655void StringCharFromCodeGenerator::GenerateSlow(
4656 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
4657 __ Abort("Unexpected fallthrough to CharFromCode slow case");
4658
4659 __ bind(&slow_case_);
4660 call_helper.BeforeCall(masm);
4661 __ push(code_);
4662 __ CallRuntime(Runtime::kCharFromCode, 1);
4663 __ Move(result_, r0);
4664 call_helper.AfterCall(masm);
4665 __ jmp(&exit_);
4666
4667 __ Abort("Unexpected fallthrough from CharFromCode slow case");
4668}
4669
4670
4671// -------------------------------------------------------------------------
4672// StringCharAtGenerator
4673
4674void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
4675 char_code_at_generator_.GenerateFast(masm);
4676 char_from_code_generator_.GenerateFast(masm);
4677}
4678
4679
4680void StringCharAtGenerator::GenerateSlow(
4681 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
4682 char_code_at_generator_.GenerateSlow(masm, call_helper);
4683 char_from_code_generator_.GenerateSlow(masm, call_helper);
4684}
4685
4686
4687class StringHelper : public AllStatic {
4688 public:
4689 // Generate code for copying characters using a simple loop. This should only
4690 // be used in places where the number of characters is small and the
4691 // additional setup and checking in GenerateCopyCharactersLong adds too much
4692 // overhead. Copying of overlapping regions is not supported.
4693 // Dest register ends at the position after the last character written.
4694 static void GenerateCopyCharacters(MacroAssembler* masm,
4695 Register dest,
4696 Register src,
4697 Register count,
4698 Register scratch,
4699 bool ascii);
4700
4701 // Generate code for copying a large number of characters. This function
4702 // is allowed to spend extra time setting up conditions to make copying
4703 // faster. Copying of overlapping regions is not supported.
4704 // Dest register ends at the position after the last character written.
4705 static void GenerateCopyCharactersLong(MacroAssembler* masm,
4706 Register dest,
4707 Register src,
4708 Register count,
4709 Register scratch1,
4710 Register scratch2,
4711 Register scratch3,
4712 Register scratch4,
4713 Register scratch5,
4714 int flags);
4715
4716
4717 // Probe the symbol table for a two character string. If the string is
4718 // not found by probing a jump to the label not_found is performed. This jump
4719 // does not guarantee that the string is not in the symbol table. If the
4720 // string is found the code falls through with the string in register r0.
4721 // Contents of both c1 and c2 registers are modified. At the exit c1 is
4722 // guaranteed to contain halfword with low and high bytes equal to
4723 // initial contents of c1 and c2 respectively.
4724 static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
4725 Register c1,
4726 Register c2,
4727 Register scratch1,
4728 Register scratch2,
4729 Register scratch3,
4730 Register scratch4,
4731 Register scratch5,
4732 Label* not_found);
4733
4734 // Generate string hash.
4735 static void GenerateHashInit(MacroAssembler* masm,
4736 Register hash,
4737 Register character);
4738
4739 static void GenerateHashAddCharacter(MacroAssembler* masm,
4740 Register hash,
4741 Register character);
4742
4743 static void GenerateHashGetHash(MacroAssembler* masm,
4744 Register hash);
4745
4746 private:
4747 DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
4748};
4749
4750
4751void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
4752 Register dest,
4753 Register src,
4754 Register count,
4755 Register scratch,
4756 bool ascii) {
4757 Label loop;
4758 Label done;
4759 // This loop just copies one character at a time, as it is only used for very
4760 // short strings.
4761 if (!ascii) {
4762 __ add(count, count, Operand(count), SetCC);
4763 } else {
Iain Merrick9ac36c92010-09-13 15:29:50 +01004764 __ cmp(count, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004765 }
4766 __ b(eq, &done);
4767
4768 __ bind(&loop);
4769 __ ldrb(scratch, MemOperand(src, 1, PostIndex));
4770 // Perform sub between load and dependent store to get the load time to
4771 // complete.
4772 __ sub(count, count, Operand(1), SetCC);
4773 __ strb(scratch, MemOperand(dest, 1, PostIndex));
4774 // last iteration.
4775 __ b(gt, &loop);
4776
4777 __ bind(&done);
4778}
4779
4780
4781enum CopyCharactersFlags {
4782 COPY_ASCII = 1,
4783 DEST_ALWAYS_ALIGNED = 2
4784};
4785
4786
4787void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
4788 Register dest,
4789 Register src,
4790 Register count,
4791 Register scratch1,
4792 Register scratch2,
4793 Register scratch3,
4794 Register scratch4,
4795 Register scratch5,
4796 int flags) {
4797 bool ascii = (flags & COPY_ASCII) != 0;
4798 bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
4799
4800 if (dest_always_aligned && FLAG_debug_code) {
4801 // Check that destination is actually word aligned if the flag says
4802 // that it is.
4803 __ tst(dest, Operand(kPointerAlignmentMask));
4804 __ Check(eq, "Destination of copy not aligned.");
4805 }
4806
4807 const int kReadAlignment = 4;
4808 const int kReadAlignmentMask = kReadAlignment - 1;
4809 // Ensure that reading an entire aligned word containing the last character
4810 // of a string will not read outside the allocated area (because we pad up
4811 // to kObjectAlignment).
4812 STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
4813 // Assumes word reads and writes are little endian.
4814 // Nothing to do for zero characters.
4815 Label done;
4816 if (!ascii) {
4817 __ add(count, count, Operand(count), SetCC);
4818 } else {
Iain Merrick9ac36c92010-09-13 15:29:50 +01004819 __ cmp(count, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004820 }
4821 __ b(eq, &done);
4822
4823 // Assume that you cannot read (or write) unaligned.
4824 Label byte_loop;
4825 // Must copy at least eight bytes, otherwise just do it one byte at a time.
4826 __ cmp(count, Operand(8));
4827 __ add(count, dest, Operand(count));
4828 Register limit = count; // Read until src equals this.
4829 __ b(lt, &byte_loop);
4830
4831 if (!dest_always_aligned) {
4832 // Align dest by byte copying. Copies between zero and three bytes.
4833 __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
4834 Label dest_aligned;
4835 __ b(eq, &dest_aligned);
4836 __ cmp(scratch4, Operand(2));
4837 __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
4838 __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
4839 __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
4840 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
4841 __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
4842 __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
4843 __ bind(&dest_aligned);
4844 }
4845
4846 Label simple_loop;
4847
4848 __ sub(scratch4, dest, Operand(src));
4849 __ and_(scratch4, scratch4, Operand(0x03), SetCC);
4850 __ b(eq, &simple_loop);
4851 // Shift register is number of bits in a source word that
4852 // must be combined with bits in the next source word in order
4853 // to create a destination word.
4854
4855 // Complex loop for src/dst that are not aligned the same way.
4856 {
4857 Label loop;
4858 __ mov(scratch4, Operand(scratch4, LSL, 3));
4859 Register left_shift = scratch4;
4860 __ and_(src, src, Operand(~3)); // Round down to load previous word.
4861 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
4862 // Store the "shift" most significant bits of scratch in the least
4863 // signficant bits (i.e., shift down by (32-shift)).
4864 __ rsb(scratch2, left_shift, Operand(32));
4865 Register right_shift = scratch2;
4866 __ mov(scratch1, Operand(scratch1, LSR, right_shift));
4867
4868 __ bind(&loop);
4869 __ ldr(scratch3, MemOperand(src, 4, PostIndex));
4870 __ sub(scratch5, limit, Operand(dest));
4871 __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
4872 __ str(scratch1, MemOperand(dest, 4, PostIndex));
4873 __ mov(scratch1, Operand(scratch3, LSR, right_shift));
4874 // Loop if four or more bytes left to copy.
4875 // Compare to eight, because we did the subtract before increasing dst.
4876 __ sub(scratch5, scratch5, Operand(8), SetCC);
4877 __ b(ge, &loop);
4878 }
4879 // There is now between zero and three bytes left to copy (negative that
4880 // number is in scratch5), and between one and three bytes already read into
4881 // scratch1 (eight times that number in scratch4). We may have read past
4882 // the end of the string, but because objects are aligned, we have not read
4883 // past the end of the object.
4884 // Find the minimum of remaining characters to move and preloaded characters
4885 // and write those as bytes.
4886 __ add(scratch5, scratch5, Operand(4), SetCC);
4887 __ b(eq, &done);
4888 __ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
4889 // Move minimum of bytes read and bytes left to copy to scratch4.
4890 __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
4891 // Between one and three (value in scratch5) characters already read into
4892 // scratch ready to write.
4893 __ cmp(scratch5, Operand(2));
4894 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
4895 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
4896 __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
4897 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
4898 __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
4899 // Copy any remaining bytes.
4900 __ b(&byte_loop);
4901
4902 // Simple loop.
4903 // Copy words from src to dst, until less than four bytes left.
4904 // Both src and dest are word aligned.
4905 __ bind(&simple_loop);
4906 {
4907 Label loop;
4908 __ bind(&loop);
4909 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
4910 __ sub(scratch3, limit, Operand(dest));
4911 __ str(scratch1, MemOperand(dest, 4, PostIndex));
4912 // Compare to 8, not 4, because we do the substraction before increasing
4913 // dest.
4914 __ cmp(scratch3, Operand(8));
4915 __ b(ge, &loop);
4916 }
4917
4918 // Copy bytes from src to dst until dst hits limit.
4919 __ bind(&byte_loop);
4920 __ cmp(dest, Operand(limit));
4921 __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
4922 __ b(ge, &done);
4923 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
4924 __ b(&byte_loop);
4925
4926 __ bind(&done);
4927}
4928
4929
4930void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
4931 Register c1,
4932 Register c2,
4933 Register scratch1,
4934 Register scratch2,
4935 Register scratch3,
4936 Register scratch4,
4937 Register scratch5,
4938 Label* not_found) {
4939 // Register scratch3 is the general scratch register in this function.
4940 Register scratch = scratch3;
4941
4942 // Make sure that both characters are not digits as such strings has a
4943 // different hash algorithm. Don't try to look for these in the symbol table.
4944 Label not_array_index;
4945 __ sub(scratch, c1, Operand(static_cast<int>('0')));
4946 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
4947 __ b(hi, &not_array_index);
4948 __ sub(scratch, c2, Operand(static_cast<int>('0')));
4949 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
4950
4951 // If check failed combine both characters into single halfword.
4952 // This is required by the contract of the method: code at the
4953 // not_found branch expects this combination in c1 register
4954 __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
4955 __ b(ls, not_found);
4956
4957 __ bind(&not_array_index);
4958 // Calculate the two character string hash.
4959 Register hash = scratch1;
4960 StringHelper::GenerateHashInit(masm, hash, c1);
4961 StringHelper::GenerateHashAddCharacter(masm, hash, c2);
4962 StringHelper::GenerateHashGetHash(masm, hash);
4963
4964 // Collect the two characters in a register.
4965 Register chars = c1;
4966 __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
4967
4968 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
4969 // hash: hash of two character string.
4970
4971 // Load symbol table
4972 // Load address of first element of the symbol table.
4973 Register symbol_table = c2;
4974 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
4975
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004976 Register undefined = scratch4;
4977 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
4978
4979 // Calculate capacity mask from the symbol table capacity.
4980 Register mask = scratch2;
4981 __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
4982 __ mov(mask, Operand(mask, ASR, 1));
4983 __ sub(mask, mask, Operand(1));
4984
4985 // Calculate untagged address of the first element of the symbol table.
4986 Register first_symbol_table_element = symbol_table;
4987 __ add(first_symbol_table_element, symbol_table,
4988 Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
4989
4990 // Registers
4991 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
4992 // hash: hash of two character string
4993 // mask: capacity mask
4994 // first_symbol_table_element: address of the first element of
4995 // the symbol table
Steve Block44f0eee2011-05-26 01:26:41 +01004996 // undefined: the undefined object
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004997 // scratch: -
4998
4999 // Perform a number of probes in the symbol table.
5000 static const int kProbes = 4;
5001 Label found_in_symbol_table;
5002 Label next_probe[kProbes];
5003 for (int i = 0; i < kProbes; i++) {
5004 Register candidate = scratch5; // Scratch register contains candidate.
5005
5006 // Calculate entry in symbol table.
5007 if (i > 0) {
5008 __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
5009 } else {
5010 __ mov(candidate, hash);
5011 }
5012
5013 __ and_(candidate, candidate, Operand(mask));
5014
5015 // Load the entry from the symble table.
5016 STATIC_ASSERT(SymbolTable::kEntrySize == 1);
5017 __ ldr(candidate,
5018 MemOperand(first_symbol_table_element,
5019 candidate,
5020 LSL,
5021 kPointerSizeLog2));
5022
5023 // If entry is undefined no string with this hash can be found.
Steve Block44f0eee2011-05-26 01:26:41 +01005024 Label is_string;
5025 __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE);
5026 __ b(ne, &is_string);
5027
5028 __ cmp(undefined, candidate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005029 __ b(eq, not_found);
Steve Block44f0eee2011-05-26 01:26:41 +01005030 // Must be null (deleted entry).
5031 if (FLAG_debug_code) {
5032 __ LoadRoot(ip, Heap::kNullValueRootIndex);
5033 __ cmp(ip, candidate);
5034 __ Assert(eq, "oddball in symbol table is not undefined or null");
5035 }
5036 __ jmp(&next_probe[i]);
5037
5038 __ bind(&is_string);
5039
5040 // Check that the candidate is a non-external ASCII string. The instance
5041 // type is still in the scratch register from the CompareObjectType
5042 // operation.
5043 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005044
5045 // If length is not 2 the string is not a candidate.
5046 __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
5047 __ cmp(scratch, Operand(Smi::FromInt(2)));
5048 __ b(ne, &next_probe[i]);
5049
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005050 // Check if the two characters match.
5051 // Assumes that word load is little endian.
5052 __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
5053 __ cmp(chars, scratch);
5054 __ b(eq, &found_in_symbol_table);
5055 __ bind(&next_probe[i]);
5056 }
5057
5058 // No matching 2 character string found by probing.
5059 __ jmp(not_found);
5060
5061 // Scratch register contains result when we fall through to here.
5062 Register result = scratch;
5063 __ bind(&found_in_symbol_table);
5064 __ Move(r0, result);
5065}
5066
5067
5068void StringHelper::GenerateHashInit(MacroAssembler* masm,
5069 Register hash,
5070 Register character) {
5071 // hash = character + (character << 10);
5072 __ add(hash, character, Operand(character, LSL, 10));
5073 // hash ^= hash >> 6;
5074 __ eor(hash, hash, Operand(hash, ASR, 6));
5075}
5076
5077
5078void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
5079 Register hash,
5080 Register character) {
5081 // hash += character;
5082 __ add(hash, hash, Operand(character));
5083 // hash += hash << 10;
5084 __ add(hash, hash, Operand(hash, LSL, 10));
5085 // hash ^= hash >> 6;
5086 __ eor(hash, hash, Operand(hash, ASR, 6));
5087}
5088
5089
5090void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
5091 Register hash) {
5092 // hash += hash << 3;
5093 __ add(hash, hash, Operand(hash, LSL, 3));
5094 // hash ^= hash >> 11;
5095 __ eor(hash, hash, Operand(hash, ASR, 11));
5096 // hash += hash << 15;
5097 __ add(hash, hash, Operand(hash, LSL, 15), SetCC);
5098
5099 // if (hash == 0) hash = 27;
Steve Block1e0659c2011-05-24 12:43:12 +01005100 __ mov(hash, Operand(27), LeaveCC, ne);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005101}
5102
5103
5104void SubStringStub::Generate(MacroAssembler* masm) {
5105 Label runtime;
5106
5107 // Stack frame on entry.
5108 // lr: return address
5109 // sp[0]: to
5110 // sp[4]: from
5111 // sp[8]: string
5112
5113 // This stub is called from the native-call %_SubString(...), so
5114 // nothing can be assumed about the arguments. It is tested that:
5115 // "string" is a sequential string,
5116 // both "from" and "to" are smis, and
5117 // 0 <= from <= to <= string.length.
5118 // If any of these assumptions fail, we call the runtime system.
5119
5120 static const int kToOffset = 0 * kPointerSize;
5121 static const int kFromOffset = 1 * kPointerSize;
5122 static const int kStringOffset = 2 * kPointerSize;
5123
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005124 // Check bounds and smi-ness.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005125 Register to = r6;
5126 Register from = r7;
5127 __ Ldrd(to, from, MemOperand(sp, kToOffset));
5128 STATIC_ASSERT(kFromOffset == kToOffset + 4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005129 STATIC_ASSERT(kSmiTag == 0);
5130 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
5131 // I.e., arithmetic shift right by one un-smi-tags.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005132 __ mov(r2, Operand(to, ASR, 1), SetCC);
5133 __ mov(r3, Operand(from, ASR, 1), SetCC, cc);
5134 // If either to or from had the smi tag bit set, then carry is set now.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005135 __ b(cs, &runtime); // Either "from" or "to" is not a smi.
5136 __ b(mi, &runtime); // From is negative.
5137
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005138 // Both to and from are smis.
5139
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005140 __ sub(r2, r2, Operand(r3), SetCC);
5141 __ b(mi, &runtime); // Fail if from > to.
5142 // Special handling of sub-strings of length 1 and 2. One character strings
5143 // are handled in the runtime system (looked up in the single character
5144 // cache). Two character strings are looked for in the symbol cache.
5145 __ cmp(r2, Operand(2));
5146 __ b(lt, &runtime);
5147
5148 // r2: length
5149 // r3: from index (untaged smi)
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005150 // r6 (a.k.a. to): to (smi)
5151 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005152
5153 // Make sure first argument is a sequential (or flat) string.
5154 __ ldr(r5, MemOperand(sp, kStringOffset));
5155 STATIC_ASSERT(kSmiTag == 0);
5156 __ tst(r5, Operand(kSmiTagMask));
5157 __ b(eq, &runtime);
5158 Condition is_string = masm->IsObjectStringType(r5, r1);
5159 __ b(NegateCondition(is_string), &runtime);
5160
5161 // r1: instance type
5162 // r2: length
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005163 // r3: from index (untagged smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005164 // r5: string
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005165 // r6 (a.k.a. to): to (smi)
5166 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005167 Label seq_string;
5168 __ and_(r4, r1, Operand(kStringRepresentationMask));
5169 STATIC_ASSERT(kSeqStringTag < kConsStringTag);
5170 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
5171 __ cmp(r4, Operand(kConsStringTag));
5172 __ b(gt, &runtime); // External strings go to runtime.
5173 __ b(lt, &seq_string); // Sequential strings are handled directly.
5174
5175 // Cons string. Try to recurse (once) on the first substring.
5176 // (This adds a little more generality than necessary to handle flattened
5177 // cons strings, but not much).
5178 __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset));
5179 __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
5180 __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset));
5181 __ tst(r1, Operand(kStringRepresentationMask));
5182 STATIC_ASSERT(kSeqStringTag == 0);
5183 __ b(ne, &runtime); // Cons and External strings go to runtime.
5184
5185 // Definitly a sequential string.
5186 __ bind(&seq_string);
5187
5188 // r1: instance type.
5189 // r2: length
5190 // r3: from index (untaged smi)
5191 // r5: string
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005192 // r6 (a.k.a. to): to (smi)
5193 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005194 __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005195 __ cmp(r4, Operand(to));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005196 __ b(lt, &runtime); // Fail if to > length.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005197 to = no_reg;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005198
5199 // r1: instance type.
5200 // r2: result string length.
5201 // r3: from index (untaged smi)
5202 // r5: string.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005203 // r7 (a.k.a. from): from offset (smi)
Steve Block44f0eee2011-05-26 01:26:41 +01005204 // Check for flat ASCII string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005205 Label non_ascii_flat;
5206 __ tst(r1, Operand(kStringEncodingMask));
5207 STATIC_ASSERT(kTwoByteStringTag == 0);
5208 __ b(eq, &non_ascii_flat);
5209
5210 Label result_longer_than_two;
5211 __ cmp(r2, Operand(2));
5212 __ b(gt, &result_longer_than_two);
5213
5214 // Sub string of length 2 requested.
5215 // Get the two characters forming the sub string.
5216 __ add(r5, r5, Operand(r3));
5217 __ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize));
5218 __ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1));
5219
5220 // Try to lookup two character string in symbol table.
5221 Label make_two_character_string;
5222 StringHelper::GenerateTwoCharacterSymbolTableProbe(
5223 masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string);
Steve Block44f0eee2011-05-26 01:26:41 +01005224 Counters* counters = masm->isolate()->counters();
5225 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005226 __ add(sp, sp, Operand(3 * kPointerSize));
5227 __ Ret();
5228
5229 // r2: result string length.
5230 // r3: two characters combined into halfword in little endian byte order.
5231 __ bind(&make_two_character_string);
5232 __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime);
5233 __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
Steve Block44f0eee2011-05-26 01:26:41 +01005234 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005235 __ add(sp, sp, Operand(3 * kPointerSize));
5236 __ Ret();
5237
5238 __ bind(&result_longer_than_two);
5239
5240 // Allocate the result.
5241 __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime);
5242
5243 // r0: result string.
5244 // r2: result string length.
5245 // r5: string.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005246 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005247 // Locate first character of result.
5248 __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5249 // Locate 'from' character of string.
5250 __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005251 __ add(r5, r5, Operand(from, ASR, 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005252
5253 // r0: result string.
5254 // r1: first character of result string.
5255 // r2: result string length.
5256 // r5: first character of sub string to copy.
5257 STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
5258 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
5259 COPY_ASCII | DEST_ALWAYS_ALIGNED);
Steve Block44f0eee2011-05-26 01:26:41 +01005260 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005261 __ add(sp, sp, Operand(3 * kPointerSize));
5262 __ Ret();
5263
5264 __ bind(&non_ascii_flat);
5265 // r2: result string length.
5266 // r5: string.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005267 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005268 // Check for flat two byte string.
5269
5270 // Allocate the result.
5271 __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime);
5272
5273 // r0: result string.
5274 // r2: result string length.
5275 // r5: string.
5276 // Locate first character of result.
5277 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5278 // Locate 'from' character of string.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005279 __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005280 // As "from" is a smi it is 2 times the value which matches the size of a two
5281 // byte character.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005282 __ add(r5, r5, Operand(from));
5283 from = no_reg;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005284
5285 // r0: result string.
5286 // r1: first character of result.
5287 // r2: result length.
5288 // r5: first character of string to copy.
5289 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005290 StringHelper::GenerateCopyCharactersLong(
5291 masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED);
Steve Block44f0eee2011-05-26 01:26:41 +01005292 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005293 __ add(sp, sp, Operand(3 * kPointerSize));
5294 __ Ret();
5295
5296 // Just jump to runtime to create the sub string.
5297 __ bind(&runtime);
5298 __ TailCallRuntime(Runtime::kSubString, 3, 1);
5299}
5300
5301
5302void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
5303 Register left,
5304 Register right,
5305 Register scratch1,
5306 Register scratch2,
5307 Register scratch3,
5308 Register scratch4) {
5309 Label compare_lengths;
5310 // Find minimum length and length difference.
5311 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
5312 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
5313 __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
5314 Register length_delta = scratch3;
5315 __ mov(scratch1, scratch2, LeaveCC, gt);
5316 Register min_length = scratch1;
5317 STATIC_ASSERT(kSmiTag == 0);
5318 __ tst(min_length, Operand(min_length));
5319 __ b(eq, &compare_lengths);
5320
5321 // Untag smi.
5322 __ mov(min_length, Operand(min_length, ASR, kSmiTagSize));
5323
5324 // Setup registers so that we only need to increment one register
5325 // in the loop.
5326 __ add(scratch2, min_length,
5327 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5328 __ add(left, left, Operand(scratch2));
5329 __ add(right, right, Operand(scratch2));
5330 // Registers left and right points to the min_length character of strings.
5331 __ rsb(min_length, min_length, Operand(-1));
5332 Register index = min_length;
5333 // Index starts at -min_length.
5334
5335 {
5336 // Compare loop.
5337 Label loop;
5338 __ bind(&loop);
5339 // Compare characters.
5340 __ add(index, index, Operand(1), SetCC);
5341 __ ldrb(scratch2, MemOperand(left, index), ne);
5342 __ ldrb(scratch4, MemOperand(right, index), ne);
5343 // Skip to compare lengths with eq condition true.
5344 __ b(eq, &compare_lengths);
5345 __ cmp(scratch2, scratch4);
5346 __ b(eq, &loop);
5347 // Fallthrough with eq condition false.
5348 }
5349 // Compare lengths - strings up to min-length are equal.
5350 __ bind(&compare_lengths);
5351 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
5352 // Use zero length_delta as result.
5353 __ mov(r0, Operand(length_delta), SetCC, eq);
5354 // Fall through to here if characters compare not-equal.
5355 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
5356 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
5357 __ Ret();
5358}
5359
5360
5361void StringCompareStub::Generate(MacroAssembler* masm) {
5362 Label runtime;
5363
Steve Block44f0eee2011-05-26 01:26:41 +01005364 Counters* counters = masm->isolate()->counters();
5365
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005366 // Stack frame on entry.
5367 // sp[0]: right string
5368 // sp[4]: left string
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005369 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005370
5371 Label not_same;
5372 __ cmp(r0, r1);
5373 __ b(ne, &not_same);
5374 STATIC_ASSERT(EQUAL == 0);
5375 STATIC_ASSERT(kSmiTag == 0);
5376 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
Steve Block44f0eee2011-05-26 01:26:41 +01005377 __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005378 __ add(sp, sp, Operand(2 * kPointerSize));
5379 __ Ret();
5380
5381 __ bind(&not_same);
5382
Steve Block44f0eee2011-05-26 01:26:41 +01005383 // Check that both objects are sequential ASCII strings.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005384 __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005385
Steve Block44f0eee2011-05-26 01:26:41 +01005386 // Compare flat ASCII strings natively. Remove arguments from stack first.
5387 __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005388 __ add(sp, sp, Operand(2 * kPointerSize));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005389 GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005390
5391 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
5392 // tagged as a small integer.
5393 __ bind(&runtime);
5394 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
5395}
5396
5397
5398void StringAddStub::Generate(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005399 Label string_add_runtime, call_builtin;
5400 Builtins::JavaScript builtin_id = Builtins::ADD;
5401
Steve Block44f0eee2011-05-26 01:26:41 +01005402 Counters* counters = masm->isolate()->counters();
5403
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005404 // Stack on entry:
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005405 // sp[0]: second argument (right).
5406 // sp[4]: first argument (left).
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005407
5408 // Load the two arguments.
5409 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument.
5410 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
5411
5412 // Make sure that both arguments are strings if not known in advance.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005413 if (flags_ == NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005414 __ JumpIfEitherSmi(r0, r1, &string_add_runtime);
5415 // Load instance types.
5416 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
5417 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
5418 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
5419 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
5420 STATIC_ASSERT(kStringTag == 0);
5421 // If either is not a string, go to runtime.
5422 __ tst(r4, Operand(kIsNotStringMask));
5423 __ tst(r5, Operand(kIsNotStringMask), eq);
5424 __ b(ne, &string_add_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005425 } else {
5426 // Here at least one of the arguments is definitely a string.
5427 // We convert the one that is not known to be a string.
5428 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
5429 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
5430 GenerateConvertArgument(
5431 masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin);
5432 builtin_id = Builtins::STRING_ADD_RIGHT;
5433 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
5434 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
5435 GenerateConvertArgument(
5436 masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin);
5437 builtin_id = Builtins::STRING_ADD_LEFT;
5438 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005439 }
5440
5441 // Both arguments are strings.
5442 // r0: first string
5443 // r1: second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005444 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
5445 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005446 {
5447 Label strings_not_empty;
5448 // Check if either of the strings are empty. In that case return the other.
5449 __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
5450 __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
5451 STATIC_ASSERT(kSmiTag == 0);
5452 __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
5453 __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
5454 STATIC_ASSERT(kSmiTag == 0);
5455 // Else test if second string is empty.
5456 __ cmp(r3, Operand(Smi::FromInt(0)), ne);
5457 __ b(ne, &strings_not_empty); // If either string was empty, return r0.
5458
Steve Block44f0eee2011-05-26 01:26:41 +01005459 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005460 __ add(sp, sp, Operand(2 * kPointerSize));
5461 __ Ret();
5462
5463 __ bind(&strings_not_empty);
5464 }
5465
5466 __ mov(r2, Operand(r2, ASR, kSmiTagSize));
5467 __ mov(r3, Operand(r3, ASR, kSmiTagSize));
5468 // Both strings are non-empty.
5469 // r0: first string
5470 // r1: second string
5471 // r2: length of first string
5472 // r3: length of second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005473 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
5474 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005475 // Look at the length of the result of adding the two strings.
5476 Label string_add_flat_result, longer_than_two;
5477 // Adding two lengths can't overflow.
5478 STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
5479 __ add(r6, r2, Operand(r3));
Steve Block44f0eee2011-05-26 01:26:41 +01005480 // Use the symbol table when adding two one character strings, as it
5481 // helps later optimizations to return a symbol here.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005482 __ cmp(r6, Operand(2));
5483 __ b(ne, &longer_than_two);
5484
Steve Block44f0eee2011-05-26 01:26:41 +01005485 // Check that both strings are non-external ASCII strings.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005486 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005487 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
5488 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
5489 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
5490 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
5491 }
5492 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
5493 &string_add_runtime);
5494
5495 // Get the two characters forming the sub string.
5496 __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
5497 __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize));
5498
5499 // Try to lookup two character string in symbol table. If it is not found
5500 // just allocate a new one.
5501 Label make_two_character_string;
5502 StringHelper::GenerateTwoCharacterSymbolTableProbe(
5503 masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
Steve Block44f0eee2011-05-26 01:26:41 +01005504 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005505 __ add(sp, sp, Operand(2 * kPointerSize));
5506 __ Ret();
5507
5508 __ bind(&make_two_character_string);
5509 // Resulting string has length 2 and first chars of two strings
5510 // are combined into single halfword in r2 register.
5511 // So we can fill resulting string without two loops by a single
5512 // halfword store instruction (which assumes that processor is
5513 // in a little endian mode)
5514 __ mov(r6, Operand(2));
5515 __ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime);
5516 __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
Steve Block44f0eee2011-05-26 01:26:41 +01005517 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005518 __ add(sp, sp, Operand(2 * kPointerSize));
5519 __ Ret();
5520
5521 __ bind(&longer_than_two);
5522 // Check if resulting string will be flat.
5523 __ cmp(r6, Operand(String::kMinNonFlatLength));
5524 __ b(lt, &string_add_flat_result);
5525 // Handle exceptionally long strings in the runtime system.
5526 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
5527 ASSERT(IsPowerOf2(String::kMaxLength + 1));
5528 // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
5529 __ cmp(r6, Operand(String::kMaxLength + 1));
5530 __ b(hs, &string_add_runtime);
5531
5532 // If result is not supposed to be flat, allocate a cons string object.
Steve Block44f0eee2011-05-26 01:26:41 +01005533 // If both strings are ASCII the result is an ASCII cons string.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005534 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005535 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
5536 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
5537 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
5538 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
5539 }
5540 Label non_ascii, allocated, ascii_data;
5541 STATIC_ASSERT(kTwoByteStringTag == 0);
5542 __ tst(r4, Operand(kStringEncodingMask));
5543 __ tst(r5, Operand(kStringEncodingMask), ne);
5544 __ b(eq, &non_ascii);
5545
5546 // Allocate an ASCII cons string.
5547 __ bind(&ascii_data);
5548 __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime);
5549 __ bind(&allocated);
5550 // Fill the fields of the cons string.
5551 __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
5552 __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
5553 __ mov(r0, Operand(r7));
Steve Block44f0eee2011-05-26 01:26:41 +01005554 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005555 __ add(sp, sp, Operand(2 * kPointerSize));
5556 __ Ret();
5557
5558 __ bind(&non_ascii);
5559 // At least one of the strings is two-byte. Check whether it happens
Steve Block44f0eee2011-05-26 01:26:41 +01005560 // to contain only ASCII characters.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005561 // r4: first instance type.
5562 // r5: second instance type.
5563 __ tst(r4, Operand(kAsciiDataHintMask));
5564 __ tst(r5, Operand(kAsciiDataHintMask), ne);
5565 __ b(ne, &ascii_data);
5566 __ eor(r4, r4, Operand(r5));
5567 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
5568 __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
5569 __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
5570 __ b(eq, &ascii_data);
5571
5572 // Allocate a two byte cons string.
5573 __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime);
5574 __ jmp(&allocated);
5575
5576 // Handle creating a flat result. First check that both strings are
5577 // sequential and that they have the same encoding.
5578 // r0: first string
5579 // r1: second string
5580 // r2: length of first string
5581 // r3: length of second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005582 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
5583 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005584 // r6: sum of lengths.
5585 __ bind(&string_add_flat_result);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005586 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005587 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
5588 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
5589 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
5590 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
5591 }
5592 // Check that both strings are sequential.
5593 STATIC_ASSERT(kSeqStringTag == 0);
5594 __ tst(r4, Operand(kStringRepresentationMask));
5595 __ tst(r5, Operand(kStringRepresentationMask), eq);
5596 __ b(ne, &string_add_runtime);
5597 // Now check if both strings have the same encoding (ASCII/Two-byte).
5598 // r0: first string.
5599 // r1: second string.
5600 // r2: length of first string.
5601 // r3: length of second string.
5602 // r6: sum of lengths..
5603 Label non_ascii_string_add_flat_result;
5604 ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test.
5605 __ eor(r7, r4, Operand(r5));
5606 __ tst(r7, Operand(kStringEncodingMask));
5607 __ b(ne, &string_add_runtime);
5608 // And see if it's ASCII or two-byte.
5609 __ tst(r4, Operand(kStringEncodingMask));
5610 __ b(eq, &non_ascii_string_add_flat_result);
5611
5612 // Both strings are sequential ASCII strings. We also know that they are
5613 // short (since the sum of the lengths is less than kMinNonFlatLength).
5614 // r6: length of resulting flat string
5615 __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime);
5616 // Locate first character of result.
5617 __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5618 // Locate first character of first argument.
5619 __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5620 // r0: first character of first string.
5621 // r1: second string.
5622 // r2: length of first string.
5623 // r3: length of second string.
5624 // r6: first character of result.
5625 // r7: result string.
5626 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true);
5627
5628 // Load second argument and locate first character.
5629 __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5630 // r1: first character of second string.
5631 // r3: length of second string.
5632 // r6: next character of result.
5633 // r7: result string.
5634 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
5635 __ mov(r0, Operand(r7));
Steve Block44f0eee2011-05-26 01:26:41 +01005636 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005637 __ add(sp, sp, Operand(2 * kPointerSize));
5638 __ Ret();
5639
5640 __ bind(&non_ascii_string_add_flat_result);
5641 // Both strings are sequential two byte strings.
5642 // r0: first string.
5643 // r1: second string.
5644 // r2: length of first string.
5645 // r3: length of second string.
5646 // r6: sum of length of strings.
5647 __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime);
5648 // r0: first string.
5649 // r1: second string.
5650 // r2: length of first string.
5651 // r3: length of second string.
5652 // r7: result string.
5653
5654 // Locate first character of result.
5655 __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5656 // Locate first character of first argument.
5657 __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5658
5659 // r0: first character of first string.
5660 // r1: second string.
5661 // r2: length of first string.
5662 // r3: length of second string.
5663 // r6: first character of result.
5664 // r7: result string.
5665 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false);
5666
5667 // Locate first character of second argument.
5668 __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5669
5670 // r1: first character of second string.
5671 // r3: length of second string.
5672 // r6: next character of result (after copy of first string).
5673 // r7: result string.
5674 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
5675
5676 __ mov(r0, Operand(r7));
Steve Block44f0eee2011-05-26 01:26:41 +01005677 __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005678 __ add(sp, sp, Operand(2 * kPointerSize));
5679 __ Ret();
5680
5681 // Just jump to runtime to add the two strings.
5682 __ bind(&string_add_runtime);
5683 __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005684
5685 if (call_builtin.is_linked()) {
5686 __ bind(&call_builtin);
5687 __ InvokeBuiltin(builtin_id, JUMP_JS);
5688 }
5689}
5690
5691
5692void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
5693 int stack_offset,
5694 Register arg,
5695 Register scratch1,
5696 Register scratch2,
5697 Register scratch3,
5698 Register scratch4,
5699 Label* slow) {
5700 // First check if the argument is already a string.
5701 Label not_string, done;
5702 __ JumpIfSmi(arg, &not_string);
5703 __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE);
5704 __ b(lt, &done);
5705
5706 // Check the number to string cache.
5707 Label not_cached;
5708 __ bind(&not_string);
5709 // Puts the cached result into scratch1.
5710 NumberToStringStub::GenerateLookupNumberStringCache(masm,
5711 arg,
5712 scratch1,
5713 scratch2,
5714 scratch3,
5715 scratch4,
5716 false,
5717 &not_cached);
5718 __ mov(arg, scratch1);
5719 __ str(arg, MemOperand(sp, stack_offset));
5720 __ jmp(&done);
5721
5722 // Check if the argument is a safe string wrapper.
5723 __ bind(&not_cached);
5724 __ JumpIfSmi(arg, slow);
5725 __ CompareObjectType(
5726 arg, scratch1, scratch2, JS_VALUE_TYPE); // map -> scratch1.
5727 __ b(ne, slow);
5728 __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
5729 __ and_(scratch2,
5730 scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
5731 __ cmp(scratch2,
5732 Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
5733 __ b(ne, slow);
5734 __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset));
5735 __ str(arg, MemOperand(sp, stack_offset));
5736
5737 __ bind(&done);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005738}
5739
5740
Ben Murdochb0fe1622011-05-05 13:52:32 +01005741void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
5742 ASSERT(state_ == CompareIC::SMIS);
5743 Label miss;
5744 __ orr(r2, r1, r0);
5745 __ tst(r2, Operand(kSmiTagMask));
5746 __ b(ne, &miss);
5747
5748 if (GetCondition() == eq) {
5749 // For equality we do not care about the sign of the result.
5750 __ sub(r0, r0, r1, SetCC);
5751 } else {
Steve Block1e0659c2011-05-24 12:43:12 +01005752 // Untag before subtracting to avoid handling overflow.
5753 __ SmiUntag(r1);
5754 __ sub(r0, r1, SmiUntagOperand(r0));
Ben Murdochb0fe1622011-05-05 13:52:32 +01005755 }
5756 __ Ret();
5757
5758 __ bind(&miss);
5759 GenerateMiss(masm);
5760}
5761
5762
5763void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
5764 ASSERT(state_ == CompareIC::HEAP_NUMBERS);
5765
5766 Label generic_stub;
5767 Label unordered;
5768 Label miss;
5769 __ and_(r2, r1, Operand(r0));
5770 __ tst(r2, Operand(kSmiTagMask));
5771 __ b(eq, &generic_stub);
5772
5773 __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE);
5774 __ b(ne, &miss);
5775 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
5776 __ b(ne, &miss);
5777
5778 // Inlining the double comparison and falling back to the general compare
5779 // stub if NaN is involved or VFP3 is unsupported.
Ben Murdoch8b112d22011-06-08 16:22:53 +01005780 if (CpuFeatures::IsSupported(VFP3)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01005781 CpuFeatures::Scope scope(VFP3);
5782
5783 // Load left and right operand
5784 __ sub(r2, r1, Operand(kHeapObjectTag));
5785 __ vldr(d0, r2, HeapNumber::kValueOffset);
5786 __ sub(r2, r0, Operand(kHeapObjectTag));
5787 __ vldr(d1, r2, HeapNumber::kValueOffset);
5788
5789 // Compare operands
Ben Murdochb8e0da22011-05-16 14:20:40 +01005790 __ VFPCompareAndSetFlags(d0, d1);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005791
5792 // Don't base result on status bits when a NaN is involved.
5793 __ b(vs, &unordered);
5794
5795 // Return a result of -1, 0, or 1, based on status bits.
5796 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
5797 __ mov(r0, Operand(LESS), LeaveCC, lt);
5798 __ mov(r0, Operand(GREATER), LeaveCC, gt);
5799 __ Ret();
5800
5801 __ bind(&unordered);
5802 }
5803
5804 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0);
5805 __ bind(&generic_stub);
5806 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
5807
5808 __ bind(&miss);
5809 GenerateMiss(masm);
5810}
5811
5812
5813void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
5814 ASSERT(state_ == CompareIC::OBJECTS);
5815 Label miss;
5816 __ and_(r2, r1, Operand(r0));
5817 __ tst(r2, Operand(kSmiTagMask));
5818 __ b(eq, &miss);
5819
5820 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
5821 __ b(ne, &miss);
5822 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
5823 __ b(ne, &miss);
5824
5825 ASSERT(GetCondition() == eq);
5826 __ sub(r0, r0, Operand(r1));
5827 __ Ret();
5828
5829 __ bind(&miss);
5830 GenerateMiss(masm);
5831}
5832
5833
5834void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
5835 __ Push(r1, r0);
5836 __ push(lr);
5837
5838 // Call the runtime system in a fresh internal frame.
Steve Block44f0eee2011-05-26 01:26:41 +01005839 ExternalReference miss =
5840 ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
Ben Murdochb0fe1622011-05-05 13:52:32 +01005841 __ EnterInternalFrame();
5842 __ Push(r1, r0);
5843 __ mov(ip, Operand(Smi::FromInt(op_)));
5844 __ push(ip);
5845 __ CallExternalReference(miss, 3);
5846 __ LeaveInternalFrame();
5847 // Compute the entry point of the rewritten stub.
5848 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
5849 // Restore registers.
5850 __ pop(lr);
5851 __ pop(r0);
5852 __ pop(r1);
5853 __ Jump(r2);
5854}
5855
5856
Steve Block1e0659c2011-05-24 12:43:12 +01005857void DirectCEntryStub::Generate(MacroAssembler* masm) {
5858 __ ldr(pc, MemOperand(sp, 0));
5859}
5860
5861
5862void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005863 ExternalReference function) {
5864 __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
5865 RelocInfo::CODE_TARGET));
5866 __ mov(r2, Operand(function));
5867 // Push return address (accessible to GC through exit frame pc).
5868 __ str(pc, MemOperand(sp, 0));
5869 __ Jump(r2); // Call the api function.
5870}
5871
5872
5873void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
5874 Register target) {
Steve Block1e0659c2011-05-24 12:43:12 +01005875 __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
5876 RelocInfo::CODE_TARGET));
5877 // Push return address (accessible to GC through exit frame pc).
Steve Block1e0659c2011-05-24 12:43:12 +01005878 __ str(pc, MemOperand(sp, 0));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005879 __ Jump(target); // Call the C++ function.
Steve Block1e0659c2011-05-24 12:43:12 +01005880}
5881
5882
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005883#undef __
5884
5885} } // namespace v8::internal
5886
5887#endif // V8_TARGET_ARCH_ARM