blob: 3bdca38ebad3e658d3fdb215e3d4a8ac0ce0f762 [file] [log] [blame]
Leon Clarked91b9f72010-01-27 17:25:45 +00001// Copyright 2010 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include <stdlib.h>
29#include <cstdarg>
30#include "v8.h"
31
Leon Clarkef7060e22010-06-03 12:02:55 +010032#if defined(V8_TARGET_ARCH_ARM)
33
Steve Blocka7e24c12009-10-30 11:49:00 +000034#include "disasm.h"
35#include "assembler.h"
36#include "arm/constants-arm.h"
37#include "arm/simulator-arm.h"
38
39#if !defined(__arm__)
40
41// Only build the simulator if not compiling for real ARM hardware.
42namespace assembler {
43namespace arm {
44
45using ::v8::internal::Object;
46using ::v8::internal::PrintF;
47using ::v8::internal::OS;
48using ::v8::internal::ReadLine;
49using ::v8::internal::DeleteArray;
50
51// This macro provides a platform independent use of sscanf. The reason for
Leon Clarked91b9f72010-01-27 17:25:45 +000052// SScanF not being implemented in a platform independent way through
53// ::v8::internal::OS in the same way as SNPrintF is that the
54// Windows C Run-Time Library does not provide vsscanf.
Steve Blocka7e24c12009-10-30 11:49:00 +000055#define SScanF sscanf // NOLINT
56
57// The Debugger class is used by the simulator while debugging simulated ARM
58// code.
59class Debugger {
60 public:
61 explicit Debugger(Simulator* sim);
62 ~Debugger();
63
64 void Stop(Instr* instr);
65 void Debug();
66
67 private:
68 static const instr_t kBreakpointInstr =
69 ((AL << 28) | (7 << 25) | (1 << 24) | break_point);
70 static const instr_t kNopInstr =
71 ((AL << 28) | (13 << 21));
72
73 Simulator* sim_;
74
75 int32_t GetRegisterValue(int regnum);
76 bool GetValue(const char* desc, int32_t* value);
Steve Block6ded16b2010-05-10 14:33:55 +010077 bool GetVFPSingleValue(const char* desc, float* value);
78 bool GetVFPDoubleValue(const char* desc, double* value);
Steve Blocka7e24c12009-10-30 11:49:00 +000079
80 // Set or delete a breakpoint. Returns true if successful.
81 bool SetBreakpoint(Instr* breakpc);
82 bool DeleteBreakpoint(Instr* breakpc);
83
84 // Undo and redo all breakpoints. This is needed to bracket disassembly and
85 // execution to skip past breakpoints when run from the debugger.
86 void UndoBreakpoints();
87 void RedoBreakpoints();
88};
89
90
91Debugger::Debugger(Simulator* sim) {
92 sim_ = sim;
93}
94
95
96Debugger::~Debugger() {
97}
98
99
100
101#ifdef GENERATED_CODE_COVERAGE
102static FILE* coverage_log = NULL;
103
104
105static void InitializeCoverage() {
106 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
107 if (file_name != NULL) {
108 coverage_log = fopen(file_name, "aw+");
109 }
110}
111
112
113void Debugger::Stop(Instr* instr) {
114 char* str = reinterpret_cast<char*>(instr->InstructionBits() & 0x0fffffff);
115 if (strlen(str) > 0) {
116 if (coverage_log != NULL) {
117 fprintf(coverage_log, "%s\n", str);
118 fflush(coverage_log);
119 }
120 instr->SetInstructionBits(0xe1a00000); // Overwrite with nop.
121 }
122 sim_->set_pc(sim_->get_pc() + Instr::kInstrSize);
123}
124
125#else // ndef GENERATED_CODE_COVERAGE
126
127static void InitializeCoverage() {
128}
129
130
131void Debugger::Stop(Instr* instr) {
132 const char* str = (const char*)(instr->InstructionBits() & 0x0fffffff);
133 PrintF("Simulator hit %s\n", str);
134 sim_->set_pc(sim_->get_pc() + Instr::kInstrSize);
135 Debug();
136}
137#endif
138
139
140int32_t Debugger::GetRegisterValue(int regnum) {
141 if (regnum == kPCRegister) {
142 return sim_->get_pc();
143 } else {
144 return sim_->get_register(regnum);
145 }
146}
147
148
149bool Debugger::GetValue(const char* desc, int32_t* value) {
150 int regnum = Registers::Number(desc);
151 if (regnum != kNoRegister) {
152 *value = GetRegisterValue(regnum);
153 return true;
154 } else {
Steve Block6ded16b2010-05-10 14:33:55 +0100155 if (strncmp(desc, "0x", 2) == 0) {
156 return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
157 } else {
158 return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1;
159 }
160 }
161 return false;
162}
163
164
165bool Debugger::GetVFPSingleValue(const char* desc, float* value) {
166 bool is_double;
167 int regnum = VFPRegisters::Number(desc, &is_double);
168 if (regnum != kNoRegister && !is_double) {
169 *value = sim_->get_float_from_s_register(regnum);
170 return true;
171 }
172 return false;
173}
174
175
176bool Debugger::GetVFPDoubleValue(const char* desc, double* value) {
177 bool is_double;
178 int regnum = VFPRegisters::Number(desc, &is_double);
179 if (regnum != kNoRegister && is_double) {
180 *value = sim_->get_double_from_d_register(regnum);
181 return true;
Steve Blocka7e24c12009-10-30 11:49:00 +0000182 }
183 return false;
184}
185
186
187bool Debugger::SetBreakpoint(Instr* breakpc) {
188 // Check if a breakpoint can be set. If not return without any side-effects.
189 if (sim_->break_pc_ != NULL) {
190 return false;
191 }
192
193 // Set the breakpoint.
194 sim_->break_pc_ = breakpc;
195 sim_->break_instr_ = breakpc->InstructionBits();
196 // Not setting the breakpoint instruction in the code itself. It will be set
197 // when the debugger shell continues.
198 return true;
199}
200
201
202bool Debugger::DeleteBreakpoint(Instr* breakpc) {
203 if (sim_->break_pc_ != NULL) {
204 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
205 }
206
207 sim_->break_pc_ = NULL;
208 sim_->break_instr_ = 0;
209 return true;
210}
211
212
213void Debugger::UndoBreakpoints() {
214 if (sim_->break_pc_ != NULL) {
215 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
216 }
217}
218
219
220void Debugger::RedoBreakpoints() {
221 if (sim_->break_pc_ != NULL) {
222 sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
223 }
224}
225
226
227void Debugger::Debug() {
228 intptr_t last_pc = -1;
229 bool done = false;
230
231#define COMMAND_SIZE 63
232#define ARG_SIZE 255
233
234#define STR(a) #a
235#define XSTR(a) STR(a)
236
237 char cmd[COMMAND_SIZE + 1];
238 char arg1[ARG_SIZE + 1];
239 char arg2[ARG_SIZE + 1];
Steve Block6ded16b2010-05-10 14:33:55 +0100240 char* argv[3] = { cmd, arg1, arg2 };
Steve Blocka7e24c12009-10-30 11:49:00 +0000241
242 // make sure to have a proper terminating character if reaching the limit
243 cmd[COMMAND_SIZE] = 0;
244 arg1[ARG_SIZE] = 0;
245 arg2[ARG_SIZE] = 0;
246
247 // Undo all set breakpoints while running in the debugger shell. This will
248 // make them invisible to all commands.
249 UndoBreakpoints();
250
251 while (!done) {
252 if (last_pc != sim_->get_pc()) {
253 disasm::NameConverter converter;
254 disasm::Disassembler dasm(converter);
255 // use a reasonably large buffer
256 v8::internal::EmbeddedVector<char, 256> buffer;
257 dasm.InstructionDecode(buffer,
258 reinterpret_cast<byte*>(sim_->get_pc()));
259 PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start());
260 last_pc = sim_->get_pc();
261 }
262 char* line = ReadLine("sim> ");
263 if (line == NULL) {
264 break;
265 } else {
266 // Use sscanf to parse the individual parts of the command line. At the
267 // moment no command expects more than two parameters.
Steve Block6ded16b2010-05-10 14:33:55 +0100268 int argc = SScanF(line,
Steve Blocka7e24c12009-10-30 11:49:00 +0000269 "%" XSTR(COMMAND_SIZE) "s "
270 "%" XSTR(ARG_SIZE) "s "
271 "%" XSTR(ARG_SIZE) "s",
272 cmd, arg1, arg2);
273 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
274 sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc()));
275 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
276 // Execute the one instruction we broke at with breakpoints disabled.
277 sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc()));
278 // Leave the debugger shell.
279 done = true;
280 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
Steve Block6ded16b2010-05-10 14:33:55 +0100281 if (argc == 2) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000282 int32_t value;
Steve Block6ded16b2010-05-10 14:33:55 +0100283 float svalue;
284 double dvalue;
Steve Blocka7e24c12009-10-30 11:49:00 +0000285 if (strcmp(arg1, "all") == 0) {
286 for (int i = 0; i < kNumRegisters; i++) {
287 value = GetRegisterValue(i);
288 PrintF("%3s: 0x%08x %10d\n", Registers::Name(i), value, value);
289 }
290 } else {
291 if (GetValue(arg1, &value)) {
292 PrintF("%s: 0x%08x %d \n", arg1, value, value);
Steve Block6ded16b2010-05-10 14:33:55 +0100293 } else if (GetVFPSingleValue(arg1, &svalue)) {
294 PrintF("%s: %f \n", arg1, svalue);
295 } else if (GetVFPDoubleValue(arg1, &dvalue)) {
296 PrintF("%s: %lf \n", arg1, dvalue);
Steve Blocka7e24c12009-10-30 11:49:00 +0000297 } else {
298 PrintF("%s unrecognized\n", arg1);
299 }
300 }
301 } else {
302 PrintF("print <register>\n");
303 }
304 } else if ((strcmp(cmd, "po") == 0)
305 || (strcmp(cmd, "printobject") == 0)) {
Steve Block6ded16b2010-05-10 14:33:55 +0100306 if (argc == 2) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000307 int32_t value;
308 if (GetValue(arg1, &value)) {
309 Object* obj = reinterpret_cast<Object*>(value);
310 PrintF("%s: \n", arg1);
311#ifdef DEBUG
312 obj->PrintLn();
313#else
314 obj->ShortPrint();
315 PrintF("\n");
316#endif
317 } else {
318 PrintF("%s unrecognized\n", arg1);
319 }
320 } else {
321 PrintF("printobject <value>\n");
322 }
Steve Block6ded16b2010-05-10 14:33:55 +0100323 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
324 int32_t* cur = NULL;
325 int32_t* end = NULL;
326 int next_arg = 1;
327
328 if (strcmp(cmd, "stack") == 0) {
329 cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
330 } else { // "mem"
331 int32_t value;
332 if (!GetValue(arg1, &value)) {
333 PrintF("%s unrecognized\n", arg1);
334 continue;
335 }
336 cur = reinterpret_cast<int32_t*>(value);
337 next_arg++;
338 }
339
340 int32_t words;
341 if (argc == next_arg) {
342 words = 10;
343 } else if (argc == next_arg + 1) {
344 if (!GetValue(argv[next_arg], &words)) {
345 words = 10;
346 }
347 }
348 end = cur + words;
349
350 while (cur < end) {
351 PrintF(" 0x%08x: 0x%08x %10d\n", cur, *cur, *cur);
352 cur++;
353 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000354 } else if (strcmp(cmd, "disasm") == 0) {
355 disasm::NameConverter converter;
356 disasm::Disassembler dasm(converter);
357 // use a reasonably large buffer
358 v8::internal::EmbeddedVector<char, 256> buffer;
359
360 byte* cur = NULL;
361 byte* end = NULL;
362
Steve Block6ded16b2010-05-10 14:33:55 +0100363 if (argc == 1) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000364 cur = reinterpret_cast<byte*>(sim_->get_pc());
365 end = cur + (10 * Instr::kInstrSize);
Steve Block6ded16b2010-05-10 14:33:55 +0100366 } else if (argc == 2) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000367 int32_t value;
368 if (GetValue(arg1, &value)) {
369 cur = reinterpret_cast<byte*>(value);
370 // no length parameter passed, assume 10 instructions
371 end = cur + (10 * Instr::kInstrSize);
372 }
373 } else {
374 int32_t value1;
375 int32_t value2;
376 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
377 cur = reinterpret_cast<byte*>(value1);
378 end = cur + (value2 * Instr::kInstrSize);
379 }
380 }
381
382 while (cur < end) {
383 dasm.InstructionDecode(buffer, cur);
384 PrintF(" 0x%08x %s\n", cur, buffer.start());
385 cur += Instr::kInstrSize;
386 }
387 } else if (strcmp(cmd, "gdb") == 0) {
388 PrintF("relinquishing control to gdb\n");
389 v8::internal::OS::DebugBreak();
390 PrintF("regaining control from gdb\n");
391 } else if (strcmp(cmd, "break") == 0) {
Steve Block6ded16b2010-05-10 14:33:55 +0100392 if (argc == 2) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000393 int32_t value;
394 if (GetValue(arg1, &value)) {
395 if (!SetBreakpoint(reinterpret_cast<Instr*>(value))) {
396 PrintF("setting breakpoint failed\n");
397 }
398 } else {
399 PrintF("%s unrecognized\n", arg1);
400 }
401 } else {
402 PrintF("break <address>\n");
403 }
404 } else if (strcmp(cmd, "del") == 0) {
405 if (!DeleteBreakpoint(NULL)) {
406 PrintF("deleting breakpoint failed\n");
407 }
408 } else if (strcmp(cmd, "flags") == 0) {
409 PrintF("N flag: %d; ", sim_->n_flag_);
410 PrintF("Z flag: %d; ", sim_->z_flag_);
411 PrintF("C flag: %d; ", sim_->c_flag_);
412 PrintF("V flag: %d\n", sim_->v_flag_);
Steve Blockd0582a62009-12-15 09:54:21 +0000413 PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_);
414 PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_);
415 PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_);
416 PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_);
417 PrintF("INEXACT flag: %d; ", sim_->inexact_vfp_flag_);
Steve Blocka7e24c12009-10-30 11:49:00 +0000418 } else if (strcmp(cmd, "unstop") == 0) {
419 intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize;
420 Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc);
421 if (stop_instr->ConditionField() == special_condition) {
422 stop_instr->SetInstructionBits(kNopInstr);
423 } else {
424 PrintF("Not at debugger stop.");
425 }
Leon Clarkee46be812010-01-19 14:06:41 +0000426 } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
427 ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
428 PrintF("Trace of executed instructions is %s\n",
429 ::v8::internal::FLAG_trace_sim ? "on" : "off");
Steve Blocka7e24c12009-10-30 11:49:00 +0000430 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
431 PrintF("cont\n");
432 PrintF(" continue execution (alias 'c')\n");
433 PrintF("stepi\n");
434 PrintF(" step one instruction (alias 'si')\n");
435 PrintF("print <register>\n");
436 PrintF(" print register content (alias 'p')\n");
437 PrintF(" use register name 'all' to print all registers\n");
438 PrintF("printobject <register>\n");
439 PrintF(" print an object from a register (alias 'po')\n");
440 PrintF("flags\n");
441 PrintF(" print flags\n");
Steve Block6ded16b2010-05-10 14:33:55 +0100442 PrintF("stack [<words>]\n");
443 PrintF(" dump stack content, default dump 10 words)\n");
444 PrintF("mem <address> [<words>]\n");
445 PrintF(" dump memory content, default dump 10 words)\n");
Steve Blocka7e24c12009-10-30 11:49:00 +0000446 PrintF("disasm [<instructions>]\n");
447 PrintF("disasm [[<address>] <instructions>]\n");
448 PrintF(" disassemble code, default is 10 instructions from pc\n");
449 PrintF("gdb\n");
450 PrintF(" enter gdb\n");
451 PrintF("break <address>\n");
452 PrintF(" set a break point on the address\n");
453 PrintF("del\n");
454 PrintF(" delete the breakpoint\n");
455 PrintF("unstop\n");
456 PrintF(" ignore the stop instruction at the current location");
Leon Clarkee46be812010-01-19 14:06:41 +0000457 PrintF(" from now on\n");
458 PrintF("trace (alias 't')\n");
Steve Block6ded16b2010-05-10 14:33:55 +0100459 PrintF(" toogle the tracing of all executed statements\n");
Steve Blocka7e24c12009-10-30 11:49:00 +0000460 } else {
461 PrintF("Unknown command: %s\n", cmd);
462 }
463 }
464 DeleteArray(line);
465 }
466
467 // Add all the breakpoints back to stop execution and enter the debugger
468 // shell when hit.
469 RedoBreakpoints();
470
471#undef COMMAND_SIZE
472#undef ARG_SIZE
473
474#undef STR
475#undef XSTR
476}
477
478
Steve Block6ded16b2010-05-10 14:33:55 +0100479static bool ICacheMatch(void* one, void* two) {
480 ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
481 ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
482 return one == two;
483}
484
485
486static uint32_t ICacheHash(void* key) {
487 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
488}
489
490
491static bool AllOnOnePage(uintptr_t start, int size) {
492 intptr_t start_page = (start & ~CachePage::kPageMask);
493 intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
494 return start_page == end_page;
495}
496
497
498void Simulator::FlushICache(void* start_addr, size_t size) {
499 intptr_t start = reinterpret_cast<intptr_t>(start_addr);
500 int intra_line = (start & CachePage::kLineMask);
501 start -= intra_line;
502 size += intra_line;
503 size = ((size - 1) | CachePage::kLineMask) + 1;
504 int offset = (start & CachePage::kPageMask);
505 while (!AllOnOnePage(start, size - 1)) {
506 int bytes_to_flush = CachePage::kPageSize - offset;
507 FlushOnePage(start, bytes_to_flush);
508 start += bytes_to_flush;
509 size -= bytes_to_flush;
510 ASSERT_EQ(0, start & CachePage::kPageMask);
511 offset = 0;
512 }
513 if (size != 0) {
514 FlushOnePage(start, size);
515 }
516}
517
518
519CachePage* Simulator::GetCachePage(void* page) {
520 v8::internal::HashMap::Entry* entry = i_cache_->Lookup(page,
521 ICacheHash(page),
522 true);
523 if (entry->value == NULL) {
524 CachePage* new_page = new CachePage();
525 entry->value = new_page;
526 }
527 return reinterpret_cast<CachePage*>(entry->value);
528}
529
530
531// Flush from start up to and not including start + size.
532void Simulator::FlushOnePage(intptr_t start, int size) {
533 ASSERT(size <= CachePage::kPageSize);
534 ASSERT(AllOnOnePage(start, size - 1));
535 ASSERT((start & CachePage::kLineMask) == 0);
536 ASSERT((size & CachePage::kLineMask) == 0);
537 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
538 int offset = (start & CachePage::kPageMask);
539 CachePage* cache_page = GetCachePage(page);
540 char* valid_bytemap = cache_page->ValidityByte(offset);
541 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
542}
543
544
545void Simulator::CheckICache(Instr* instr) {
546 intptr_t address = reinterpret_cast<intptr_t>(instr);
547 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
548 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
549 int offset = (address & CachePage::kPageMask);
550 CachePage* cache_page = GetCachePage(page);
551 char* cache_valid_byte = cache_page->ValidityByte(offset);
552 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
553 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
554 if (cache_hit) {
555 // Check that the data in memory matches the contents of the I-cache.
556 CHECK(memcmp(reinterpret_cast<void*>(instr),
557 cache_page->CachedData(offset),
558 Instr::kInstrSize) == 0);
559 } else {
560 // Cache miss. Load memory into the cache.
561 memcpy(cached_line, line, CachePage::kLineLength);
562 *cache_valid_byte = CachePage::LINE_VALID;
563 }
564}
565
566
Steve Blocka7e24c12009-10-30 11:49:00 +0000567// Create one simulator per thread and keep it in thread local storage.
568static v8::internal::Thread::LocalStorageKey simulator_key;
569
570
571bool Simulator::initialized_ = false;
572
573
574void Simulator::Initialize() {
575 if (initialized_) return;
576 simulator_key = v8::internal::Thread::CreateThreadLocalKey();
577 initialized_ = true;
578 ::v8::internal::ExternalReference::set_redirector(&RedirectExternalReference);
579}
580
581
Steve Block6ded16b2010-05-10 14:33:55 +0100582v8::internal::HashMap* Simulator::i_cache_ = NULL;
583
584
Steve Blocka7e24c12009-10-30 11:49:00 +0000585Simulator::Simulator() {
Steve Block6ded16b2010-05-10 14:33:55 +0100586 if (i_cache_ == NULL) {
587 i_cache_ = new v8::internal::HashMap(&ICacheMatch);
588 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000589 Initialize();
590 // Setup simulator support first. Some of this information is needed to
591 // setup the architecture state.
592 size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack
593 stack_ = reinterpret_cast<char*>(malloc(stack_size));
594 pc_modified_ = false;
595 icount_ = 0;
596 break_pc_ = NULL;
597 break_instr_ = 0;
598
599 // Setup architecture state.
600 // All registers are initialized to zero to start with.
601 for (int i = 0; i < num_registers; i++) {
602 registers_[i] = 0;
603 }
604 n_flag_ = false;
605 z_flag_ = false;
606 c_flag_ = false;
607 v_flag_ = false;
608
Steve Blockd0582a62009-12-15 09:54:21 +0000609 // Initializing VFP registers.
610 // All registers are initialized to zero to start with
611 // even though s_registers_ & d_registers_ share the same
612 // physical registers in the target.
613 for (int i = 0; i < num_s_registers; i++) {
614 vfp_register[i] = 0;
615 }
616 n_flag_FPSCR_ = false;
617 z_flag_FPSCR_ = false;
618 c_flag_FPSCR_ = false;
619 v_flag_FPSCR_ = false;
620
621 inv_op_vfp_flag_ = false;
622 div_zero_vfp_flag_ = false;
623 overflow_vfp_flag_ = false;
624 underflow_vfp_flag_ = false;
625 inexact_vfp_flag_ = false;
626
Steve Blocka7e24c12009-10-30 11:49:00 +0000627 // The sp is initialized to point to the bottom (high address) of the
628 // allocated stack area. To be safe in potential stack underflows we leave
629 // some buffer below.
630 registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64;
631 // The lr and pc are initialized to a known bad value that will cause an
632 // access violation if the simulator ever tries to execute it.
633 registers_[pc] = bad_lr;
634 registers_[lr] = bad_lr;
635 InitializeCoverage();
636}
637
638
639// When the generated code calls an external reference we need to catch that in
640// the simulator. The external reference will be a function compiled for the
641// host architecture. We need to call that function instead of trying to
642// execute it with the simulator. We do that by redirecting the external
643// reference to a swi (software-interrupt) instruction that is handled by
644// the simulator. We write the original destination of the jump just at a known
645// offset from the swi instruction so the simulator knows what to call.
646class Redirection {
647 public:
648 Redirection(void* external_function, bool fp_return)
649 : external_function_(external_function),
650 swi_instruction_((AL << 28) | (0xf << 24) | call_rt_redirected),
651 fp_return_(fp_return),
652 next_(list_) {
Steve Block6ded16b2010-05-10 14:33:55 +0100653 Simulator::current()->
654 FlushICache(reinterpret_cast<void*>(&swi_instruction_),
655 Instr::kInstrSize);
Steve Blocka7e24c12009-10-30 11:49:00 +0000656 list_ = this;
657 }
658
659 void* address_of_swi_instruction() {
660 return reinterpret_cast<void*>(&swi_instruction_);
661 }
662
663 void* external_function() { return external_function_; }
664 bool fp_return() { return fp_return_; }
665
666 static Redirection* Get(void* external_function, bool fp_return) {
667 Redirection* current;
668 for (current = list_; current != NULL; current = current->next_) {
669 if (current->external_function_ == external_function) return current;
670 }
671 return new Redirection(external_function, fp_return);
672 }
673
674 static Redirection* FromSwiInstruction(Instr* swi_instruction) {
675 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
676 char* addr_of_redirection =
677 addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
678 return reinterpret_cast<Redirection*>(addr_of_redirection);
679 }
680
681 private:
682 void* external_function_;
683 uint32_t swi_instruction_;
684 bool fp_return_;
685 Redirection* next_;
686 static Redirection* list_;
687};
688
689
690Redirection* Redirection::list_ = NULL;
691
692
693void* Simulator::RedirectExternalReference(void* external_function,
694 bool fp_return) {
695 Redirection* redirection = Redirection::Get(external_function, fp_return);
696 return redirection->address_of_swi_instruction();
697}
698
699
700// Get the active Simulator for the current thread.
701Simulator* Simulator::current() {
702 Initialize();
703 Simulator* sim = reinterpret_cast<Simulator*>(
704 v8::internal::Thread::GetThreadLocal(simulator_key));
705 if (sim == NULL) {
706 // TODO(146): delete the simulator object when a thread goes away.
707 sim = new Simulator();
708 v8::internal::Thread::SetThreadLocal(simulator_key, sim);
709 }
710 return sim;
711}
712
713
714// Sets the register in the architecture state. It will also deal with updating
715// Simulator internal state for special registers such as PC.
716void Simulator::set_register(int reg, int32_t value) {
717 ASSERT((reg >= 0) && (reg < num_registers));
718 if (reg == pc) {
719 pc_modified_ = true;
720 }
721 registers_[reg] = value;
722}
723
724
725// Get the register from the architecture state. This function does handle
726// the special case of accessing the PC register.
727int32_t Simulator::get_register(int reg) const {
728 ASSERT((reg >= 0) && (reg < num_registers));
729 return registers_[reg] + ((reg == pc) ? Instr::kPCReadOffset : 0);
730}
731
732
Kristian Monsen25f61362010-05-21 11:50:48 +0100733void Simulator::set_dw_register(int dreg, const int* dbl) {
734 ASSERT((dreg >= 0) && (dreg < num_d_registers));
735 registers_[dreg] = dbl[0];
736 registers_[dreg + 1] = dbl[1];
737}
738
739
Steve Blocka7e24c12009-10-30 11:49:00 +0000740// Raw access to the PC register.
741void Simulator::set_pc(int32_t value) {
742 pc_modified_ = true;
743 registers_[pc] = value;
744}
745
746
747// Raw access to the PC register without the special adjustment when reading.
748int32_t Simulator::get_pc() const {
749 return registers_[pc];
750}
751
752
Steve Blockd0582a62009-12-15 09:54:21 +0000753// Getting from and setting into VFP registers.
754void Simulator::set_s_register(int sreg, unsigned int value) {
755 ASSERT((sreg >= 0) && (sreg < num_s_registers));
756 vfp_register[sreg] = value;
757}
758
759
760unsigned int Simulator::get_s_register(int sreg) const {
761 ASSERT((sreg >= 0) && (sreg < num_s_registers));
762 return vfp_register[sreg];
763}
764
765
766void Simulator::set_s_register_from_float(int sreg, const float flt) {
767 ASSERT((sreg >= 0) && (sreg < num_s_registers));
768 // Read the bits from the single precision floating point value
769 // into the unsigned integer element of vfp_register[] given by index=sreg.
770 char buffer[sizeof(vfp_register[0])];
771 memcpy(buffer, &flt, sizeof(vfp_register[0]));
772 memcpy(&vfp_register[sreg], buffer, sizeof(vfp_register[0]));
773}
774
775
776void Simulator::set_s_register_from_sinteger(int sreg, const int sint) {
777 ASSERT((sreg >= 0) && (sreg < num_s_registers));
778 // Read the bits from the integer value into the unsigned integer element of
779 // vfp_register[] given by index=sreg.
780 char buffer[sizeof(vfp_register[0])];
781 memcpy(buffer, &sint, sizeof(vfp_register[0]));
782 memcpy(&vfp_register[sreg], buffer, sizeof(vfp_register[0]));
783}
784
785
786void Simulator::set_d_register_from_double(int dreg, const double& dbl) {
787 ASSERT((dreg >= 0) && (dreg < num_d_registers));
788 // Read the bits from the double precision floating point value into the two
789 // consecutive unsigned integer elements of vfp_register[] given by index
790 // 2*sreg and 2*sreg+1.
791 char buffer[2 * sizeof(vfp_register[0])];
792 memcpy(buffer, &dbl, 2 * sizeof(vfp_register[0]));
793#ifndef BIG_ENDIAN_FLOATING_POINT
794 memcpy(&vfp_register[dreg * 2], buffer, 2 * sizeof(vfp_register[0]));
795#else
796 memcpy(&vfp_register[dreg * 2], &buffer[4], sizeof(vfp_register[0]));
797 memcpy(&vfp_register[dreg * 2 + 1], &buffer[0], sizeof(vfp_register[0]));
798#endif
799}
800
801
802float Simulator::get_float_from_s_register(int sreg) {
803 ASSERT((sreg >= 0) && (sreg < num_s_registers));
804
805 float sm_val = 0.0;
806 // Read the bits from the unsigned integer vfp_register[] array
807 // into the single precision floating point value and return it.
808 char buffer[sizeof(vfp_register[0])];
809 memcpy(buffer, &vfp_register[sreg], sizeof(vfp_register[0]));
810 memcpy(&sm_val, buffer, sizeof(vfp_register[0]));
811 return(sm_val);
812}
813
814
815int Simulator::get_sinteger_from_s_register(int sreg) {
816 ASSERT((sreg >= 0) && (sreg < num_s_registers));
817
818 int sm_val = 0;
819 // Read the bits from the unsigned integer vfp_register[] array
820 // into the single precision floating point value and return it.
821 char buffer[sizeof(vfp_register[0])];
822 memcpy(buffer, &vfp_register[sreg], sizeof(vfp_register[0]));
823 memcpy(&sm_val, buffer, sizeof(vfp_register[0]));
824 return(sm_val);
825}
826
827
828double Simulator::get_double_from_d_register(int dreg) {
829 ASSERT((dreg >= 0) && (dreg < num_d_registers));
830
831 double dm_val = 0.0;
832 // Read the bits from the unsigned integer vfp_register[] array
833 // into the double precision floating point value and return it.
834 char buffer[2 * sizeof(vfp_register[0])];
835#ifdef BIG_ENDIAN_FLOATING_POINT
836 memcpy(&buffer[0], &vfp_register[2 * dreg + 1], sizeof(vfp_register[0]));
837 memcpy(&buffer[4], &vfp_register[2 * dreg], sizeof(vfp_register[0]));
838#else
839 memcpy(buffer, &vfp_register[2 * dreg], 2 * sizeof(vfp_register[0]));
840#endif
841 memcpy(&dm_val, buffer, 2 * sizeof(vfp_register[0]));
842 return(dm_val);
843}
844
845
Steve Blocka7e24c12009-10-30 11:49:00 +0000846// For use in calls that take two double values, constructed from r0, r1, r2
847// and r3.
848void Simulator::GetFpArgs(double* x, double* y) {
849 // We use a char buffer to get around the strict-aliasing rules which
850 // otherwise allow the compiler to optimize away the copy.
851 char buffer[2 * sizeof(registers_[0])];
852 // Registers 0 and 1 -> x.
853 memcpy(buffer, registers_, sizeof(buffer));
854 memcpy(x, buffer, sizeof(buffer));
855 // Registers 2 and 3 -> y.
856 memcpy(buffer, registers_ + 2, sizeof(buffer));
857 memcpy(y, buffer, sizeof(buffer));
858}
859
860
861void Simulator::SetFpResult(const double& result) {
862 char buffer[2 * sizeof(registers_[0])];
863 memcpy(buffer, &result, sizeof(buffer));
864 // result -> registers 0 and 1.
865 memcpy(registers_, buffer, sizeof(buffer));
866}
867
868
869void Simulator::TrashCallerSaveRegisters() {
870 // We don't trash the registers with the return value.
871 registers_[2] = 0x50Bad4U;
872 registers_[3] = 0x50Bad4U;
873 registers_[12] = 0x50Bad4U;
874}
875
Kristian Monsen25f61362010-05-21 11:50:48 +0100876// Some Operating Systems allow unaligned access on ARMv7 targets. We
877// assume that unaligned accesses are not allowed unless the v8 build system
878// defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero.
879// The following statements below describes the behavior of the ARM CPUs
880// that don't support unaligned access.
881// Some ARM platforms raise an interrupt on detecting unaligned access.
882// On others it does a funky rotation thing. For now we
883// simply disallow unaligned reads. Note that simulator runs have the runtime
Steve Blocka7e24c12009-10-30 11:49:00 +0000884// system running directly on the host system and only generated code is
885// executed in the simulator. Since the host is typically IA32 we will not
Kristian Monsen25f61362010-05-21 11:50:48 +0100886// get the correct ARM-like behaviour on unaligned accesses for those ARM
887// targets that don't support unaligned loads and stores.
888
Steve Blocka7e24c12009-10-30 11:49:00 +0000889
890int Simulator::ReadW(int32_t addr, Instr* instr) {
Kristian Monsen25f61362010-05-21 11:50:48 +0100891#if V8_TARGET_CAN_READ_UNALIGNED
892 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
893 return *ptr;
894#else
Steve Blocka7e24c12009-10-30 11:49:00 +0000895 if ((addr & 3) == 0) {
896 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
897 return *ptr;
898 }
Kristian Monsen25f61362010-05-21 11:50:48 +0100899 PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr);
Steve Blocka7e24c12009-10-30 11:49:00 +0000900 UNIMPLEMENTED();
901 return 0;
Kristian Monsen25f61362010-05-21 11:50:48 +0100902#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000903}
904
905
906void Simulator::WriteW(int32_t addr, int value, Instr* instr) {
Kristian Monsen25f61362010-05-21 11:50:48 +0100907#if V8_TARGET_CAN_READ_UNALIGNED
908 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
909 *ptr = value;
910 return;
911#else
Steve Blocka7e24c12009-10-30 11:49:00 +0000912 if ((addr & 3) == 0) {
913 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
914 *ptr = value;
915 return;
916 }
917 PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr);
918 UNIMPLEMENTED();
Kristian Monsen25f61362010-05-21 11:50:48 +0100919#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000920}
921
922
923uint16_t Simulator::ReadHU(int32_t addr, Instr* instr) {
Kristian Monsen25f61362010-05-21 11:50:48 +0100924#if V8_TARGET_CAN_READ_UNALIGNED
925 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
926 return *ptr;
927#else
Steve Blocka7e24c12009-10-30 11:49:00 +0000928 if ((addr & 1) == 0) {
929 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
930 return *ptr;
931 }
932 PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr);
933 UNIMPLEMENTED();
934 return 0;
Kristian Monsen25f61362010-05-21 11:50:48 +0100935#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000936}
937
938
939int16_t Simulator::ReadH(int32_t addr, Instr* instr) {
Kristian Monsen25f61362010-05-21 11:50:48 +0100940#if V8_TARGET_CAN_READ_UNALIGNED
941 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
942 return *ptr;
943#else
Steve Blocka7e24c12009-10-30 11:49:00 +0000944 if ((addr & 1) == 0) {
945 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
946 return *ptr;
947 }
948 PrintF("Unaligned signed halfword read at 0x%08x\n", addr);
949 UNIMPLEMENTED();
950 return 0;
Kristian Monsen25f61362010-05-21 11:50:48 +0100951#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000952}
953
954
955void Simulator::WriteH(int32_t addr, uint16_t value, Instr* instr) {
Kristian Monsen25f61362010-05-21 11:50:48 +0100956#if V8_TARGET_CAN_READ_UNALIGNED
957 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
958 *ptr = value;
959 return;
960#else
Steve Blocka7e24c12009-10-30 11:49:00 +0000961 if ((addr & 1) == 0) {
962 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
963 *ptr = value;
964 return;
965 }
966 PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr);
967 UNIMPLEMENTED();
Kristian Monsen25f61362010-05-21 11:50:48 +0100968#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000969}
970
971
972void Simulator::WriteH(int32_t addr, int16_t value, Instr* instr) {
Kristian Monsen25f61362010-05-21 11:50:48 +0100973#if V8_TARGET_CAN_READ_UNALIGNED
974 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
975 *ptr = value;
976 return;
977#else
Steve Blocka7e24c12009-10-30 11:49:00 +0000978 if ((addr & 1) == 0) {
979 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
980 *ptr = value;
981 return;
982 }
983 PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr);
984 UNIMPLEMENTED();
Kristian Monsen25f61362010-05-21 11:50:48 +0100985#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000986}
987
988
989uint8_t Simulator::ReadBU(int32_t addr) {
990 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
991 return *ptr;
992}
993
994
995int8_t Simulator::ReadB(int32_t addr) {
996 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
997 return *ptr;
998}
999
1000
1001void Simulator::WriteB(int32_t addr, uint8_t value) {
1002 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1003 *ptr = value;
1004}
1005
1006
1007void Simulator::WriteB(int32_t addr, int8_t value) {
1008 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1009 *ptr = value;
1010}
1011
1012
Kristian Monsen25f61362010-05-21 11:50:48 +01001013int32_t* Simulator::ReadDW(int32_t addr) {
1014#if V8_TARGET_CAN_READ_UNALIGNED
1015 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1016 return ptr;
1017#else
1018 if ((addr & 3) == 0) {
1019 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1020 return ptr;
1021 }
1022 PrintF("Unaligned read at 0x%08x\n", addr);
1023 UNIMPLEMENTED();
1024 return 0;
1025#endif
1026}
1027
1028
1029void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) {
1030#if V8_TARGET_CAN_READ_UNALIGNED
1031 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1032 *ptr++ = value1;
1033 *ptr = value2;
1034 return;
1035#else
1036 if ((addr & 3) == 0) {
1037 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1038 *ptr++ = value1;
1039 *ptr = value2;
1040 return;
1041 }
1042 PrintF("Unaligned write at 0x%08x\n", addr);
1043 UNIMPLEMENTED();
1044#endif
1045}
1046
1047
Steve Blocka7e24c12009-10-30 11:49:00 +00001048// Returns the limit of the stack area to enable checking for stack overflows.
1049uintptr_t Simulator::StackLimit() const {
1050 // Leave a safety margin of 256 bytes to prevent overrunning the stack when
1051 // pushing values.
1052 return reinterpret_cast<uintptr_t>(stack_) + 256;
1053}
1054
1055
1056// Unsupported instructions use Format to print an error and stop execution.
1057void Simulator::Format(Instr* instr, const char* format) {
1058 PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n",
1059 instr, format);
1060 UNIMPLEMENTED();
1061}
1062
1063
1064// Checks if the current instruction should be executed based on its
1065// condition bits.
1066bool Simulator::ConditionallyExecute(Instr* instr) {
1067 switch (instr->ConditionField()) {
1068 case EQ: return z_flag_;
1069 case NE: return !z_flag_;
1070 case CS: return c_flag_;
1071 case CC: return !c_flag_;
1072 case MI: return n_flag_;
1073 case PL: return !n_flag_;
1074 case VS: return v_flag_;
1075 case VC: return !v_flag_;
1076 case HI: return c_flag_ && !z_flag_;
1077 case LS: return !c_flag_ || z_flag_;
1078 case GE: return n_flag_ == v_flag_;
1079 case LT: return n_flag_ != v_flag_;
1080 case GT: return !z_flag_ && (n_flag_ == v_flag_);
1081 case LE: return z_flag_ || (n_flag_ != v_flag_);
1082 case AL: return true;
1083 default: UNREACHABLE();
1084 }
1085 return false;
1086}
1087
1088
1089// Calculate and set the Negative and Zero flags.
1090void Simulator::SetNZFlags(int32_t val) {
1091 n_flag_ = (val < 0);
1092 z_flag_ = (val == 0);
1093}
1094
1095
1096// Set the Carry flag.
1097void Simulator::SetCFlag(bool val) {
1098 c_flag_ = val;
1099}
1100
1101
1102// Set the oVerflow flag.
1103void Simulator::SetVFlag(bool val) {
1104 v_flag_ = val;
1105}
1106
1107
1108// Calculate C flag value for additions.
1109bool Simulator::CarryFrom(int32_t left, int32_t right) {
1110 uint32_t uleft = static_cast<uint32_t>(left);
1111 uint32_t uright = static_cast<uint32_t>(right);
1112 uint32_t urest = 0xffffffffU - uleft;
1113
1114 return (uright > urest);
1115}
1116
1117
1118// Calculate C flag value for subtractions.
1119bool Simulator::BorrowFrom(int32_t left, int32_t right) {
1120 uint32_t uleft = static_cast<uint32_t>(left);
1121 uint32_t uright = static_cast<uint32_t>(right);
1122
1123 return (uright > uleft);
1124}
1125
1126
1127// Calculate V flag value for additions and subtractions.
1128bool Simulator::OverflowFrom(int32_t alu_out,
1129 int32_t left, int32_t right, bool addition) {
1130 bool overflow;
1131 if (addition) {
1132 // operands have the same sign
1133 overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
1134 // and operands and result have different sign
1135 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1136 } else {
1137 // operands have different signs
1138 overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
1139 // and first operand and result have different signs
1140 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1141 }
1142 return overflow;
1143}
1144
1145
Steve Blockd0582a62009-12-15 09:54:21 +00001146// Support for VFP comparisons.
1147void Simulator::Compute_FPSCR_Flags(double val1, double val2) {
Leon Clarkee46be812010-01-19 14:06:41 +00001148 if (isnan(val1) || isnan(val2)) {
1149 n_flag_FPSCR_ = false;
1150 z_flag_FPSCR_ = false;
1151 c_flag_FPSCR_ = true;
1152 v_flag_FPSCR_ = true;
Steve Blockd0582a62009-12-15 09:54:21 +00001153 // All non-NaN cases.
Leon Clarkee46be812010-01-19 14:06:41 +00001154 } else if (val1 == val2) {
Steve Blockd0582a62009-12-15 09:54:21 +00001155 n_flag_FPSCR_ = false;
1156 z_flag_FPSCR_ = true;
1157 c_flag_FPSCR_ = true;
1158 v_flag_FPSCR_ = false;
1159 } else if (val1 < val2) {
1160 n_flag_FPSCR_ = true;
1161 z_flag_FPSCR_ = false;
1162 c_flag_FPSCR_ = false;
1163 v_flag_FPSCR_ = false;
1164 } else {
1165 // Case when (val1 > val2).
1166 n_flag_FPSCR_ = false;
1167 z_flag_FPSCR_ = false;
1168 c_flag_FPSCR_ = true;
1169 v_flag_FPSCR_ = false;
1170 }
1171}
1172
1173
1174void Simulator::Copy_FPSCR_to_APSR() {
1175 n_flag_ = n_flag_FPSCR_;
1176 z_flag_ = z_flag_FPSCR_;
1177 c_flag_ = c_flag_FPSCR_;
1178 v_flag_ = v_flag_FPSCR_;
1179}
1180
1181
Steve Blocka7e24c12009-10-30 11:49:00 +00001182// Addressing Mode 1 - Data-processing operands:
1183// Get the value based on the shifter_operand with register.
1184int32_t Simulator::GetShiftRm(Instr* instr, bool* carry_out) {
1185 Shift shift = instr->ShiftField();
1186 int shift_amount = instr->ShiftAmountField();
1187 int32_t result = get_register(instr->RmField());
1188 if (instr->Bit(4) == 0) {
1189 // by immediate
1190 if ((shift == ROR) && (shift_amount == 0)) {
1191 UNIMPLEMENTED();
1192 return result;
1193 } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
1194 shift_amount = 32;
1195 }
1196 switch (shift) {
1197 case ASR: {
1198 if (shift_amount == 0) {
1199 if (result < 0) {
1200 result = 0xffffffff;
1201 *carry_out = true;
1202 } else {
1203 result = 0;
1204 *carry_out = false;
1205 }
1206 } else {
1207 result >>= (shift_amount - 1);
1208 *carry_out = (result & 1) == 1;
1209 result >>= 1;
1210 }
1211 break;
1212 }
1213
1214 case LSL: {
1215 if (shift_amount == 0) {
1216 *carry_out = c_flag_;
1217 } else {
1218 result <<= (shift_amount - 1);
1219 *carry_out = (result < 0);
1220 result <<= 1;
1221 }
1222 break;
1223 }
1224
1225 case LSR: {
1226 if (shift_amount == 0) {
1227 result = 0;
1228 *carry_out = c_flag_;
1229 } else {
1230 uint32_t uresult = static_cast<uint32_t>(result);
1231 uresult >>= (shift_amount - 1);
1232 *carry_out = (uresult & 1) == 1;
1233 uresult >>= 1;
1234 result = static_cast<int32_t>(uresult);
1235 }
1236 break;
1237 }
1238
1239 case ROR: {
1240 UNIMPLEMENTED();
1241 break;
1242 }
1243
1244 default: {
1245 UNREACHABLE();
1246 break;
1247 }
1248 }
1249 } else {
1250 // by register
1251 int rs = instr->RsField();
1252 shift_amount = get_register(rs) &0xff;
1253 switch (shift) {
1254 case ASR: {
1255 if (shift_amount == 0) {
1256 *carry_out = c_flag_;
1257 } else if (shift_amount < 32) {
1258 result >>= (shift_amount - 1);
1259 *carry_out = (result & 1) == 1;
1260 result >>= 1;
1261 } else {
1262 ASSERT(shift_amount >= 32);
1263 if (result < 0) {
1264 *carry_out = true;
1265 result = 0xffffffff;
1266 } else {
1267 *carry_out = false;
1268 result = 0;
1269 }
1270 }
1271 break;
1272 }
1273
1274 case LSL: {
1275 if (shift_amount == 0) {
1276 *carry_out = c_flag_;
1277 } else if (shift_amount < 32) {
1278 result <<= (shift_amount - 1);
1279 *carry_out = (result < 0);
1280 result <<= 1;
1281 } else if (shift_amount == 32) {
1282 *carry_out = (result & 1) == 1;
1283 result = 0;
1284 } else {
1285 ASSERT(shift_amount > 32);
1286 *carry_out = false;
1287 result = 0;
1288 }
1289 break;
1290 }
1291
1292 case LSR: {
1293 if (shift_amount == 0) {
1294 *carry_out = c_flag_;
1295 } else if (shift_amount < 32) {
1296 uint32_t uresult = static_cast<uint32_t>(result);
1297 uresult >>= (shift_amount - 1);
1298 *carry_out = (uresult & 1) == 1;
1299 uresult >>= 1;
1300 result = static_cast<int32_t>(uresult);
1301 } else if (shift_amount == 32) {
1302 *carry_out = (result < 0);
1303 result = 0;
1304 } else {
1305 *carry_out = false;
1306 result = 0;
1307 }
1308 break;
1309 }
1310
1311 case ROR: {
1312 UNIMPLEMENTED();
1313 break;
1314 }
1315
1316 default: {
1317 UNREACHABLE();
1318 break;
1319 }
1320 }
1321 }
1322 return result;
1323}
1324
1325
1326// Addressing Mode 1 - Data-processing operands:
1327// Get the value based on the shifter_operand with immediate.
1328int32_t Simulator::GetImm(Instr* instr, bool* carry_out) {
1329 int rotate = instr->RotateField() * 2;
1330 int immed8 = instr->Immed8Field();
1331 int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
1332 *carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
1333 return imm;
1334}
1335
1336
1337static int count_bits(int bit_vector) {
1338 int count = 0;
1339 while (bit_vector != 0) {
1340 if ((bit_vector & 1) != 0) {
1341 count++;
1342 }
1343 bit_vector >>= 1;
1344 }
1345 return count;
1346}
1347
1348
1349// Addressing Mode 4 - Load and Store Multiple
1350void Simulator::HandleRList(Instr* instr, bool load) {
1351 int rn = instr->RnField();
1352 int32_t rn_val = get_register(rn);
1353 int rlist = instr->RlistField();
1354 int num_regs = count_bits(rlist);
1355
1356 intptr_t start_address = 0;
1357 intptr_t end_address = 0;
1358 switch (instr->PUField()) {
1359 case 0: {
1360 // Print("da");
1361 UNIMPLEMENTED();
1362 break;
1363 }
1364 case 1: {
1365 // Print("ia");
1366 start_address = rn_val;
1367 end_address = rn_val + (num_regs * 4) - 4;
1368 rn_val = rn_val + (num_regs * 4);
1369 break;
1370 }
1371 case 2: {
1372 // Print("db");
1373 start_address = rn_val - (num_regs * 4);
1374 end_address = rn_val - 4;
1375 rn_val = start_address;
1376 break;
1377 }
1378 case 3: {
1379 // Print("ib");
1380 UNIMPLEMENTED();
1381 break;
1382 }
1383 default: {
1384 UNREACHABLE();
1385 break;
1386 }
1387 }
1388 if (instr->HasW()) {
1389 set_register(rn, rn_val);
1390 }
1391 intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
1392 int reg = 0;
1393 while (rlist != 0) {
1394 if ((rlist & 1) != 0) {
1395 if (load) {
1396 set_register(reg, *address);
1397 } else {
1398 *address = get_register(reg);
1399 }
1400 address += 1;
1401 }
1402 reg++;
1403 rlist >>= 1;
1404 }
1405 ASSERT(end_address == ((intptr_t)address) - 4);
1406}
1407
1408
1409// Calls into the V8 runtime are based on this very simple interface.
1410// Note: To be able to return two values from some calls the code in runtime.cc
1411// uses the ObjectPair which is essentially two 32-bit values stuffed into a
1412// 64-bit value. With the code below we assume that all runtime calls return
1413// 64 bits of result. If they don't, the r1 result register contains a bogus
1414// value, which is fine because it is caller-saved.
1415typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0,
1416 int32_t arg1,
1417 int32_t arg2,
1418 int32_t arg3);
1419typedef double (*SimulatorRuntimeFPCall)(int32_t arg0,
1420 int32_t arg1,
1421 int32_t arg2,
1422 int32_t arg3);
1423
1424
1425// Software interrupt instructions are used by the simulator to call into the
1426// C-based V8 runtime.
1427void Simulator::SoftwareInterrupt(Instr* instr) {
1428 int swi = instr->SwiField();
1429 switch (swi) {
1430 case call_rt_redirected: {
Steve Block6ded16b2010-05-10 14:33:55 +01001431 // Check if stack is aligned. Error if not aligned is reported below to
1432 // include information on the function called.
1433 bool stack_aligned =
1434 (get_register(sp)
1435 & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0;
Steve Blocka7e24c12009-10-30 11:49:00 +00001436 Redirection* redirection = Redirection::FromSwiInstruction(instr);
1437 int32_t arg0 = get_register(r0);
1438 int32_t arg1 = get_register(r1);
1439 int32_t arg2 = get_register(r2);
1440 int32_t arg3 = get_register(r3);
1441 // This is dodgy but it works because the C entry stubs are never moved.
1442 // See comment in codegen-arm.cc and bug 1242173.
1443 int32_t saved_lr = get_register(lr);
1444 if (redirection->fp_return()) {
1445 intptr_t external =
1446 reinterpret_cast<intptr_t>(redirection->external_function());
1447 SimulatorRuntimeFPCall target =
1448 reinterpret_cast<SimulatorRuntimeFPCall>(external);
Steve Block6ded16b2010-05-10 14:33:55 +01001449 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001450 double x, y;
1451 GetFpArgs(&x, &y);
Steve Block6ded16b2010-05-10 14:33:55 +01001452 PrintF("Call to host function at %p with args %f, %f",
Steve Blocka7e24c12009-10-30 11:49:00 +00001453 FUNCTION_ADDR(target), x, y);
Steve Block6ded16b2010-05-10 14:33:55 +01001454 if (!stack_aligned) {
1455 PrintF(" with unaligned stack %08x\n", get_register(sp));
1456 }
1457 PrintF("\n");
Steve Blocka7e24c12009-10-30 11:49:00 +00001458 }
Steve Block6ded16b2010-05-10 14:33:55 +01001459 CHECK(stack_aligned);
Steve Blocka7e24c12009-10-30 11:49:00 +00001460 double result = target(arg0, arg1, arg2, arg3);
1461 SetFpResult(result);
1462 } else {
1463 intptr_t external =
1464 reinterpret_cast<int32_t>(redirection->external_function());
1465 SimulatorRuntimeCall target =
1466 reinterpret_cast<SimulatorRuntimeCall>(external);
Steve Block6ded16b2010-05-10 14:33:55 +01001467 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001468 PrintF(
Steve Block6ded16b2010-05-10 14:33:55 +01001469 "Call to host function at %p with args %08x, %08x, %08x, %08x",
Steve Blocka7e24c12009-10-30 11:49:00 +00001470 FUNCTION_ADDR(target),
1471 arg0,
1472 arg1,
1473 arg2,
1474 arg3);
Steve Block6ded16b2010-05-10 14:33:55 +01001475 if (!stack_aligned) {
1476 PrintF(" with unaligned stack %08x\n", get_register(sp));
1477 }
1478 PrintF("\n");
Steve Blocka7e24c12009-10-30 11:49:00 +00001479 }
Steve Block6ded16b2010-05-10 14:33:55 +01001480 CHECK(stack_aligned);
Steve Blocka7e24c12009-10-30 11:49:00 +00001481 int64_t result = target(arg0, arg1, arg2, arg3);
1482 int32_t lo_res = static_cast<int32_t>(result);
1483 int32_t hi_res = static_cast<int32_t>(result >> 32);
1484 if (::v8::internal::FLAG_trace_sim) {
1485 PrintF("Returned %08x\n", lo_res);
1486 }
1487 set_register(r0, lo_res);
1488 set_register(r1, hi_res);
1489 }
1490 set_register(lr, saved_lr);
1491 set_pc(get_register(lr));
1492 break;
1493 }
1494 case break_point: {
1495 Debugger dbg(this);
1496 dbg.Debug();
1497 break;
1498 }
1499 default: {
1500 UNREACHABLE();
1501 break;
1502 }
1503 }
1504}
1505
1506
1507// Handle execution based on instruction types.
1508
1509// Instruction types 0 and 1 are both rolled into one function because they
1510// only differ in the handling of the shifter_operand.
1511void Simulator::DecodeType01(Instr* instr) {
1512 int type = instr->TypeField();
1513 if ((type == 0) && instr->IsSpecialType0()) {
1514 // multiply instruction or extra loads and stores
1515 if (instr->Bits(7, 4) == 9) {
1516 if (instr->Bit(24) == 0) {
1517 // Raw field decoding here. Multiply instructions have their Rd in
1518 // funny places.
1519 int rn = instr->RnField();
1520 int rm = instr->RmField();
1521 int rs = instr->RsField();
1522 int32_t rs_val = get_register(rs);
1523 int32_t rm_val = get_register(rm);
1524 if (instr->Bit(23) == 0) {
1525 if (instr->Bit(21) == 0) {
1526 // The MUL instruction description (A 4.1.33) refers to Rd as being
1527 // the destination for the operation, but it confusingly uses the
1528 // Rn field to encode it.
1529 // Format(instr, "mul'cond's 'rn, 'rm, 'rs");
1530 int rd = rn; // Remap the rn field to the Rd register.
1531 int32_t alu_out = rm_val * rs_val;
1532 set_register(rd, alu_out);
1533 if (instr->HasS()) {
1534 SetNZFlags(alu_out);
1535 }
1536 } else {
1537 // The MLA instruction description (A 4.1.28) refers to the order
1538 // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
1539 // Rn field to encode the Rd register and the Rd field to encode
1540 // the Rn register.
1541 Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
1542 }
1543 } else {
1544 // The signed/long multiply instructions use the terms RdHi and RdLo
1545 // when referring to the target registers. They are mapped to the Rn
1546 // and Rd fields as follows:
1547 // RdLo == Rd
1548 // RdHi == Rn (This is confusingly stored in variable rd here
1549 // because the mul instruction from above uses the
1550 // Rn field to encode the Rd register. Good luck figuring
1551 // this out without reading the ARM instruction manual
1552 // at a very detailed level.)
1553 // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm");
1554 int rd_hi = rn; // Remap the rn field to the RdHi register.
1555 int rd_lo = instr->RdField();
1556 int32_t hi_res = 0;
1557 int32_t lo_res = 0;
1558 if (instr->Bit(22) == 1) {
1559 int64_t left_op = static_cast<int32_t>(rm_val);
1560 int64_t right_op = static_cast<int32_t>(rs_val);
1561 uint64_t result = left_op * right_op;
1562 hi_res = static_cast<int32_t>(result >> 32);
1563 lo_res = static_cast<int32_t>(result & 0xffffffff);
1564 } else {
1565 // unsigned multiply
1566 uint64_t left_op = static_cast<uint32_t>(rm_val);
1567 uint64_t right_op = static_cast<uint32_t>(rs_val);
1568 uint64_t result = left_op * right_op;
1569 hi_res = static_cast<int32_t>(result >> 32);
1570 lo_res = static_cast<int32_t>(result & 0xffffffff);
1571 }
1572 set_register(rd_lo, lo_res);
1573 set_register(rd_hi, hi_res);
1574 if (instr->HasS()) {
1575 UNIMPLEMENTED();
1576 }
1577 }
1578 } else {
Steve Blockd0582a62009-12-15 09:54:21 +00001579 UNIMPLEMENTED(); // Not used by V8.
Steve Blocka7e24c12009-10-30 11:49:00 +00001580 }
1581 } else {
1582 // extra load/store instructions
1583 int rd = instr->RdField();
1584 int rn = instr->RnField();
1585 int32_t rn_val = get_register(rn);
1586 int32_t addr = 0;
1587 if (instr->Bit(22) == 0) {
1588 int rm = instr->RmField();
1589 int32_t rm_val = get_register(rm);
1590 switch (instr->PUField()) {
1591 case 0: {
1592 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
1593 ASSERT(!instr->HasW());
1594 addr = rn_val;
1595 rn_val -= rm_val;
1596 set_register(rn, rn_val);
1597 break;
1598 }
1599 case 1: {
1600 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
1601 ASSERT(!instr->HasW());
1602 addr = rn_val;
1603 rn_val += rm_val;
1604 set_register(rn, rn_val);
1605 break;
1606 }
1607 case 2: {
1608 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
1609 rn_val -= rm_val;
1610 addr = rn_val;
1611 if (instr->HasW()) {
1612 set_register(rn, rn_val);
1613 }
1614 break;
1615 }
1616 case 3: {
1617 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
1618 rn_val += rm_val;
1619 addr = rn_val;
1620 if (instr->HasW()) {
1621 set_register(rn, rn_val);
1622 }
1623 break;
1624 }
1625 default: {
1626 // The PU field is a 2-bit field.
1627 UNREACHABLE();
1628 break;
1629 }
1630 }
1631 } else {
1632 int32_t imm_val = (instr->ImmedHField() << 4) | instr->ImmedLField();
1633 switch (instr->PUField()) {
1634 case 0: {
1635 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
1636 ASSERT(!instr->HasW());
1637 addr = rn_val;
1638 rn_val -= imm_val;
1639 set_register(rn, rn_val);
1640 break;
1641 }
1642 case 1: {
1643 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
1644 ASSERT(!instr->HasW());
1645 addr = rn_val;
1646 rn_val += imm_val;
1647 set_register(rn, rn_val);
1648 break;
1649 }
1650 case 2: {
1651 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
1652 rn_val -= imm_val;
1653 addr = rn_val;
1654 if (instr->HasW()) {
1655 set_register(rn, rn_val);
1656 }
1657 break;
1658 }
1659 case 3: {
1660 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
1661 rn_val += imm_val;
1662 addr = rn_val;
1663 if (instr->HasW()) {
1664 set_register(rn, rn_val);
1665 }
1666 break;
1667 }
1668 default: {
1669 // The PU field is a 2-bit field.
1670 UNREACHABLE();
1671 break;
1672 }
1673 }
1674 }
Kristian Monsen25f61362010-05-21 11:50:48 +01001675 if (((instr->Bits(7, 4) & 0xd) == 0xd) && (instr->Bit(20) == 0)) {
1676 ASSERT((rd % 2) == 0);
1677 if (instr->HasH()) {
1678 // The strd instruction.
1679 int32_t value1 = get_register(rd);
1680 int32_t value2 = get_register(rd+1);
1681 WriteDW(addr, value1, value2);
1682 } else {
1683 // The ldrd instruction.
1684 int* rn_data = ReadDW(addr);
1685 set_dw_register(rd, rn_data);
1686 }
1687 } else if (instr->HasH()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001688 if (instr->HasSign()) {
1689 if (instr->HasL()) {
1690 int16_t val = ReadH(addr, instr);
1691 set_register(rd, val);
1692 } else {
1693 int16_t val = get_register(rd);
1694 WriteH(addr, val, instr);
1695 }
1696 } else {
1697 if (instr->HasL()) {
1698 uint16_t val = ReadHU(addr, instr);
1699 set_register(rd, val);
1700 } else {
1701 uint16_t val = get_register(rd);
1702 WriteH(addr, val, instr);
1703 }
1704 }
1705 } else {
1706 // signed byte loads
1707 ASSERT(instr->HasSign());
1708 ASSERT(instr->HasL());
1709 int8_t val = ReadB(addr);
1710 set_register(rd, val);
1711 }
1712 return;
1713 }
Steve Block6ded16b2010-05-10 14:33:55 +01001714 } else if ((type == 0) && instr->IsMiscType0()) {
1715 if (instr->Bits(22, 21) == 1) {
1716 int rm = instr->RmField();
1717 switch (instr->Bits(7, 4)) {
1718 case BX:
1719 set_pc(get_register(rm));
1720 break;
1721 case BLX: {
1722 uint32_t old_pc = get_pc();
1723 set_pc(get_register(rm));
1724 set_register(lr, old_pc + Instr::kInstrSize);
1725 break;
1726 }
1727 case BKPT:
1728 v8::internal::OS::DebugBreak();
1729 break;
1730 default:
1731 UNIMPLEMENTED();
1732 }
1733 } else if (instr->Bits(22, 21) == 3) {
1734 int rm = instr->RmField();
1735 int rd = instr->RdField();
1736 switch (instr->Bits(7, 4)) {
1737 case CLZ: {
1738 uint32_t bits = get_register(rm);
1739 int leading_zeros = 0;
1740 if (bits == 0) {
1741 leading_zeros = 32;
1742 } else {
1743 while ((bits & 0x80000000u) == 0) {
1744 bits <<= 1;
1745 leading_zeros++;
1746 }
1747 }
1748 set_register(rd, leading_zeros);
1749 break;
1750 }
1751 default:
1752 UNIMPLEMENTED();
1753 }
1754 } else {
1755 PrintF("%08x\n", instr->InstructionBits());
1756 UNIMPLEMENTED();
1757 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001758 } else {
1759 int rd = instr->RdField();
1760 int rn = instr->RnField();
1761 int32_t rn_val = get_register(rn);
1762 int32_t shifter_operand = 0;
1763 bool shifter_carry_out = 0;
1764 if (type == 0) {
1765 shifter_operand = GetShiftRm(instr, &shifter_carry_out);
1766 } else {
1767 ASSERT(instr->TypeField() == 1);
1768 shifter_operand = GetImm(instr, &shifter_carry_out);
1769 }
1770 int32_t alu_out;
1771
1772 switch (instr->OpcodeField()) {
1773 case AND: {
1774 // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm");
1775 // Format(instr, "and'cond's 'rd, 'rn, 'imm");
1776 alu_out = rn_val & shifter_operand;
1777 set_register(rd, alu_out);
1778 if (instr->HasS()) {
1779 SetNZFlags(alu_out);
1780 SetCFlag(shifter_carry_out);
1781 }
1782 break;
1783 }
1784
1785 case EOR: {
1786 // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm");
1787 // Format(instr, "eor'cond's 'rd, 'rn, 'imm");
1788 alu_out = rn_val ^ shifter_operand;
1789 set_register(rd, alu_out);
1790 if (instr->HasS()) {
1791 SetNZFlags(alu_out);
1792 SetCFlag(shifter_carry_out);
1793 }
1794 break;
1795 }
1796
1797 case SUB: {
1798 // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm");
1799 // Format(instr, "sub'cond's 'rd, 'rn, 'imm");
1800 alu_out = rn_val - shifter_operand;
1801 set_register(rd, alu_out);
1802 if (instr->HasS()) {
1803 SetNZFlags(alu_out);
1804 SetCFlag(!BorrowFrom(rn_val, shifter_operand));
1805 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
1806 }
1807 break;
1808 }
1809
1810 case RSB: {
1811 // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm");
1812 // Format(instr, "rsb'cond's 'rd, 'rn, 'imm");
1813 alu_out = shifter_operand - rn_val;
1814 set_register(rd, alu_out);
1815 if (instr->HasS()) {
1816 SetNZFlags(alu_out);
1817 SetCFlag(!BorrowFrom(shifter_operand, rn_val));
1818 SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false));
1819 }
1820 break;
1821 }
1822
1823 case ADD: {
1824 // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm");
1825 // Format(instr, "add'cond's 'rd, 'rn, 'imm");
1826 alu_out = rn_val + shifter_operand;
1827 set_register(rd, alu_out);
1828 if (instr->HasS()) {
1829 SetNZFlags(alu_out);
1830 SetCFlag(CarryFrom(rn_val, shifter_operand));
1831 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
1832 }
1833 break;
1834 }
1835
1836 case ADC: {
1837 Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm");
1838 Format(instr, "adc'cond's 'rd, 'rn, 'imm");
1839 break;
1840 }
1841
1842 case SBC: {
1843 Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm");
1844 Format(instr, "sbc'cond's 'rd, 'rn, 'imm");
1845 break;
1846 }
1847
1848 case RSC: {
1849 Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm");
1850 Format(instr, "rsc'cond's 'rd, 'rn, 'imm");
1851 break;
1852 }
1853
1854 case TST: {
1855 if (instr->HasS()) {
1856 // Format(instr, "tst'cond 'rn, 'shift_rm");
1857 // Format(instr, "tst'cond 'rn, 'imm");
1858 alu_out = rn_val & shifter_operand;
1859 SetNZFlags(alu_out);
1860 SetCFlag(shifter_carry_out);
1861 } else {
1862 UNIMPLEMENTED();
1863 }
1864 break;
1865 }
1866
1867 case TEQ: {
1868 if (instr->HasS()) {
1869 // Format(instr, "teq'cond 'rn, 'shift_rm");
1870 // Format(instr, "teq'cond 'rn, 'imm");
1871 alu_out = rn_val ^ shifter_operand;
1872 SetNZFlags(alu_out);
1873 SetCFlag(shifter_carry_out);
1874 } else {
Steve Block6ded16b2010-05-10 14:33:55 +01001875 // Other instructions matching this pattern are handled in the
1876 // miscellaneous instructions part above.
1877 UNREACHABLE();
Steve Blocka7e24c12009-10-30 11:49:00 +00001878 }
1879 break;
1880 }
1881
1882 case CMP: {
1883 if (instr->HasS()) {
1884 // Format(instr, "cmp'cond 'rn, 'shift_rm");
1885 // Format(instr, "cmp'cond 'rn, 'imm");
1886 alu_out = rn_val - shifter_operand;
1887 SetNZFlags(alu_out);
1888 SetCFlag(!BorrowFrom(rn_val, shifter_operand));
1889 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
1890 } else {
1891 UNIMPLEMENTED();
1892 }
1893 break;
1894 }
1895
1896 case CMN: {
1897 if (instr->HasS()) {
1898 // Format(instr, "cmn'cond 'rn, 'shift_rm");
1899 // Format(instr, "cmn'cond 'rn, 'imm");
1900 alu_out = rn_val + shifter_operand;
1901 SetNZFlags(alu_out);
1902 SetCFlag(!CarryFrom(rn_val, shifter_operand));
1903 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
1904 } else {
Steve Block6ded16b2010-05-10 14:33:55 +01001905 // Other instructions matching this pattern are handled in the
1906 // miscellaneous instructions part above.
1907 UNREACHABLE();
Steve Blocka7e24c12009-10-30 11:49:00 +00001908 }
1909 break;
1910 }
1911
1912 case ORR: {
1913 // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm");
1914 // Format(instr, "orr'cond's 'rd, 'rn, 'imm");
1915 alu_out = rn_val | shifter_operand;
1916 set_register(rd, alu_out);
1917 if (instr->HasS()) {
1918 SetNZFlags(alu_out);
1919 SetCFlag(shifter_carry_out);
1920 }
1921 break;
1922 }
1923
1924 case MOV: {
1925 // Format(instr, "mov'cond's 'rd, 'shift_rm");
1926 // Format(instr, "mov'cond's 'rd, 'imm");
1927 alu_out = shifter_operand;
1928 set_register(rd, alu_out);
1929 if (instr->HasS()) {
1930 SetNZFlags(alu_out);
1931 SetCFlag(shifter_carry_out);
1932 }
1933 break;
1934 }
1935
1936 case BIC: {
1937 // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm");
1938 // Format(instr, "bic'cond's 'rd, 'rn, 'imm");
1939 alu_out = rn_val & ~shifter_operand;
1940 set_register(rd, alu_out);
1941 if (instr->HasS()) {
1942 SetNZFlags(alu_out);
1943 SetCFlag(shifter_carry_out);
1944 }
1945 break;
1946 }
1947
1948 case MVN: {
1949 // Format(instr, "mvn'cond's 'rd, 'shift_rm");
1950 // Format(instr, "mvn'cond's 'rd, 'imm");
1951 alu_out = ~shifter_operand;
1952 set_register(rd, alu_out);
1953 if (instr->HasS()) {
1954 SetNZFlags(alu_out);
1955 SetCFlag(shifter_carry_out);
1956 }
1957 break;
1958 }
1959
1960 default: {
1961 UNREACHABLE();
1962 break;
1963 }
1964 }
1965 }
1966}
1967
1968
1969void Simulator::DecodeType2(Instr* instr) {
1970 int rd = instr->RdField();
1971 int rn = instr->RnField();
1972 int32_t rn_val = get_register(rn);
1973 int32_t im_val = instr->Offset12Field();
1974 int32_t addr = 0;
1975 switch (instr->PUField()) {
1976 case 0: {
1977 // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
1978 ASSERT(!instr->HasW());
1979 addr = rn_val;
1980 rn_val -= im_val;
1981 set_register(rn, rn_val);
1982 break;
1983 }
1984 case 1: {
1985 // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
1986 ASSERT(!instr->HasW());
1987 addr = rn_val;
1988 rn_val += im_val;
1989 set_register(rn, rn_val);
1990 break;
1991 }
1992 case 2: {
1993 // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
1994 rn_val -= im_val;
1995 addr = rn_val;
1996 if (instr->HasW()) {
1997 set_register(rn, rn_val);
1998 }
1999 break;
2000 }
2001 case 3: {
2002 // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
2003 rn_val += im_val;
2004 addr = rn_val;
2005 if (instr->HasW()) {
2006 set_register(rn, rn_val);
2007 }
2008 break;
2009 }
2010 default: {
2011 UNREACHABLE();
2012 break;
2013 }
2014 }
2015 if (instr->HasB()) {
2016 if (instr->HasL()) {
2017 byte val = ReadBU(addr);
2018 set_register(rd, val);
2019 } else {
2020 byte val = get_register(rd);
2021 WriteB(addr, val);
2022 }
2023 } else {
2024 if (instr->HasL()) {
2025 set_register(rd, ReadW(addr, instr));
2026 } else {
2027 WriteW(addr, get_register(rd), instr);
2028 }
2029 }
2030}
2031
2032
2033void Simulator::DecodeType3(Instr* instr) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002034 int rd = instr->RdField();
2035 int rn = instr->RnField();
2036 int32_t rn_val = get_register(rn);
2037 bool shifter_carry_out = 0;
2038 int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out);
2039 int32_t addr = 0;
2040 switch (instr->PUField()) {
2041 case 0: {
2042 ASSERT(!instr->HasW());
2043 Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
2044 break;
2045 }
2046 case 1: {
2047 ASSERT(!instr->HasW());
2048 Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
2049 break;
2050 }
2051 case 2: {
2052 // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
2053 addr = rn_val - shifter_operand;
2054 if (instr->HasW()) {
2055 set_register(rn, addr);
2056 }
2057 break;
2058 }
2059 case 3: {
Andrei Popescu31002712010-02-23 13:46:05 +00002060 if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
2061 uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002062 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
Andrei Popescu31002712010-02-23 13:46:05 +00002063 uint32_t msbit = widthminus1 + lsbit;
2064 if (msbit <= 31) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002065 if (instr->Bit(22)) {
2066 // ubfx - unsigned bitfield extract.
2067 uint32_t rm_val =
2068 static_cast<uint32_t>(get_register(instr->RmField()));
2069 uint32_t extr_val = rm_val << (31 - msbit);
2070 extr_val = extr_val >> (31 - widthminus1);
2071 set_register(instr->RdField(), extr_val);
2072 } else {
2073 // sbfx - signed bitfield extract.
2074 int32_t rm_val = get_register(instr->RmField());
2075 int32_t extr_val = rm_val << (31 - msbit);
2076 extr_val = extr_val >> (31 - widthminus1);
2077 set_register(instr->RdField(), extr_val);
2078 }
2079 } else {
2080 UNREACHABLE();
2081 }
2082 return;
2083 } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
2084 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
2085 uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
2086 if (msbit >= lsbit) {
2087 // bfc or bfi - bitfield clear/insert.
2088 uint32_t rd_val =
2089 static_cast<uint32_t>(get_register(instr->RdField()));
2090 uint32_t bitcount = msbit - lsbit + 1;
2091 uint32_t mask = (1 << bitcount) - 1;
2092 rd_val &= ~(mask << lsbit);
2093 if (instr->RmField() != 15) {
2094 // bfi - bitfield insert.
2095 uint32_t rm_val =
2096 static_cast<uint32_t>(get_register(instr->RmField()));
2097 rm_val &= mask;
2098 rd_val |= rm_val << lsbit;
2099 }
2100 set_register(instr->RdField(), rd_val);
Andrei Popescu31002712010-02-23 13:46:05 +00002101 } else {
2102 UNREACHABLE();
2103 }
2104 return;
2105 } else {
2106 // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
2107 addr = rn_val + shifter_operand;
2108 if (instr->HasW()) {
2109 set_register(rn, addr);
2110 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002111 }
2112 break;
2113 }
2114 default: {
2115 UNREACHABLE();
2116 break;
2117 }
2118 }
2119 if (instr->HasB()) {
2120 if (instr->HasL()) {
2121 uint8_t byte = ReadB(addr);
2122 set_register(rd, byte);
2123 } else {
Andrei Popescu31002712010-02-23 13:46:05 +00002124 uint8_t byte = get_register(rd);
2125 WriteB(addr, byte);
Steve Blocka7e24c12009-10-30 11:49:00 +00002126 }
2127 } else {
2128 if (instr->HasL()) {
2129 set_register(rd, ReadW(addr, instr));
2130 } else {
2131 WriteW(addr, get_register(rd), instr);
2132 }
2133 }
2134}
2135
2136
2137void Simulator::DecodeType4(Instr* instr) {
2138 ASSERT(instr->Bit(22) == 0); // only allowed to be set in privileged mode
2139 if (instr->HasL()) {
2140 // Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
2141 HandleRList(instr, true);
2142 } else {
2143 // Format(instr, "stm'cond'pu 'rn'w, 'rlist");
2144 HandleRList(instr, false);
2145 }
2146}
2147
2148
2149void Simulator::DecodeType5(Instr* instr) {
2150 // Format(instr, "b'l'cond 'target");
2151 int off = (instr->SImmed24Field() << 2);
2152 intptr_t pc_address = get_pc();
2153 if (instr->HasLink()) {
2154 set_register(lr, pc_address + Instr::kInstrSize);
2155 }
2156 int pc_reg = get_register(pc);
2157 set_pc(pc_reg + off);
2158}
2159
2160
2161void Simulator::DecodeType6(Instr* instr) {
Steve Blockd0582a62009-12-15 09:54:21 +00002162 DecodeType6CoprocessorIns(instr);
Steve Blocka7e24c12009-10-30 11:49:00 +00002163}
2164
2165
2166void Simulator::DecodeType7(Instr* instr) {
2167 if (instr->Bit(24) == 1) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002168 SoftwareInterrupt(instr);
2169 } else {
Steve Blockd0582a62009-12-15 09:54:21 +00002170 DecodeTypeVFP(instr);
Steve Blocka7e24c12009-10-30 11:49:00 +00002171 }
2172}
2173
2174
2175void Simulator::DecodeUnconditional(Instr* instr) {
2176 if (instr->Bits(7, 4) == 0x0B && instr->Bits(27, 25) == 0 && instr->HasL()) {
2177 // Load halfword instruction, either register or immediate offset.
2178 int rd = instr->RdField();
2179 int rn = instr->RnField();
2180 int32_t rn_val = get_register(rn);
2181 int32_t addr = 0;
2182 int32_t offset;
2183 if (instr->Bit(22) == 0) {
2184 // Register offset.
2185 int rm = instr->RmField();
2186 offset = get_register(rm);
2187 } else {
2188 // Immediate offset
2189 offset = instr->Bits(3, 0) + (instr->Bits(11, 8) << 4);
2190 }
2191 switch (instr->PUField()) {
2192 case 0: {
2193 // Post index, negative.
2194 ASSERT(!instr->HasW());
2195 addr = rn_val;
2196 rn_val -= offset;
2197 set_register(rn, rn_val);
2198 break;
2199 }
2200 case 1: {
2201 // Post index, positive.
2202 ASSERT(!instr->HasW());
2203 addr = rn_val;
2204 rn_val += offset;
2205 set_register(rn, rn_val);
2206 break;
2207 }
2208 case 2: {
2209 // Pre index or offset, negative.
2210 rn_val -= offset;
2211 addr = rn_val;
2212 if (instr->HasW()) {
2213 set_register(rn, rn_val);
2214 }
2215 break;
2216 }
2217 case 3: {
2218 // Pre index or offset, positive.
2219 rn_val += offset;
2220 addr = rn_val;
2221 if (instr->HasW()) {
2222 set_register(rn, rn_val);
2223 }
2224 break;
2225 }
2226 default: {
2227 // The PU field is a 2-bit field.
2228 UNREACHABLE();
2229 break;
2230 }
2231 }
2232 // Not sign extending, so load as unsigned.
2233 uint16_t halfword = ReadH(addr, instr);
2234 set_register(rd, halfword);
2235 } else {
2236 Debugger dbg(this);
2237 dbg.Stop(instr);
2238 }
2239}
2240
2241
Steve Block6ded16b2010-05-10 14:33:55 +01002242// Depending on value of last_bit flag glue register code from vm and m values
2243// (where m is expected to be a single bit).
2244static int GlueRegCode(bool last_bit, int vm, int m) {
2245 return last_bit ? ((vm << 1) | m) : ((m << 4) | vm);
2246}
2247
2248
Steve Blockd0582a62009-12-15 09:54:21 +00002249// void Simulator::DecodeTypeVFP(Instr* instr)
2250// The Following ARMv7 VFPv instructions are currently supported.
Leon Clarkee46be812010-01-19 14:06:41 +00002251// vmov :Sn = Rt
2252// vmov :Rt = Sn
2253// vcvt: Dd = Sm
2254// vcvt: Sd = Dm
2255// Dd = vadd(Dn, Dm)
2256// Dd = vsub(Dn, Dm)
2257// Dd = vmul(Dn, Dm)
2258// Dd = vdiv(Dn, Dm)
Steve Blockd0582a62009-12-15 09:54:21 +00002259// vcmp(Dd, Dm)
2260// VMRS
2261void Simulator::DecodeTypeVFP(Instr* instr) {
2262 ASSERT((instr->TypeField() == 7) && (instr->Bit(24) == 0x0) );
Steve Block6ded16b2010-05-10 14:33:55 +01002263 ASSERT(instr->Bits(11, 9) == 0x5);
Steve Blockd0582a62009-12-15 09:54:21 +00002264
Steve Blockd0582a62009-12-15 09:54:21 +00002265 int vm = instr->VmField();
Steve Blockd0582a62009-12-15 09:54:21 +00002266 int vd = instr->VdField();
Steve Block6ded16b2010-05-10 14:33:55 +01002267 int vn = instr->VnField();
Steve Blockd0582a62009-12-15 09:54:21 +00002268
Steve Block6ded16b2010-05-10 14:33:55 +01002269 if (instr->Bit(4) == 0) {
2270 if (instr->Opc1Field() == 0x7) {
2271 // Other data processing instructions
2272 if ((instr->Opc2Field() == 0x7) && (instr->Opc3Field() == 0x3)) {
2273 DecodeVCVTBetweenDoubleAndSingle(instr);
2274 } else if ((instr->Opc2Field() == 0x8) && (instr->Opc3Field() & 0x1)) {
2275 DecodeVCVTBetweenFloatingPointAndInteger(instr);
2276 } else if (((instr->Opc2Field() >> 1) == 0x6) &&
2277 (instr->Opc3Field() & 0x1)) {
2278 DecodeVCVTBetweenFloatingPointAndInteger(instr);
2279 } else if (((instr->Opc2Field() == 0x4) || (instr->Opc2Field() == 0x5)) &&
2280 (instr->Opc3Field() & 0x1)) {
2281 DecodeVCMP(instr);
2282 } else {
2283 UNREACHABLE(); // Not used by V8.
2284 }
2285 } else if (instr->Opc1Field() == 0x3) {
2286 if (instr->SzField() != 0x1) {
2287 UNREACHABLE(); // Not used by V8.
2288 }
2289
2290 if (instr->Opc3Field() & 0x1) {
2291 // vsub
2292 double dn_value = get_double_from_d_register(vn);
2293 double dm_value = get_double_from_d_register(vm);
2294 double dd_value = dn_value - dm_value;
2295 set_d_register_from_double(vd, dd_value);
2296 } else {
2297 // vadd
2298 double dn_value = get_double_from_d_register(vn);
2299 double dm_value = get_double_from_d_register(vm);
2300 double dd_value = dn_value + dm_value;
2301 set_d_register_from_double(vd, dd_value);
2302 }
2303 } else if ((instr->Opc1Field() == 0x2) && !(instr->Opc3Field() & 0x1)) {
2304 // vmul
2305 if (instr->SzField() != 0x1) {
2306 UNREACHABLE(); // Not used by V8.
2307 }
2308
2309 double dn_value = get_double_from_d_register(vn);
2310 double dm_value = get_double_from_d_register(vm);
2311 double dd_value = dn_value * dm_value;
2312 set_d_register_from_double(vd, dd_value);
2313 } else if ((instr->Opc1Field() == 0x4) && !(instr->Opc3Field() & 0x1)) {
2314 // vdiv
2315 if (instr->SzField() != 0x1) {
2316 UNREACHABLE(); // Not used by V8.
2317 }
2318
Steve Blockd0582a62009-12-15 09:54:21 +00002319 double dn_value = get_double_from_d_register(vn);
2320 double dm_value = get_double_from_d_register(vm);
2321 double dd_value = dn_value / dm_value;
2322 set_d_register_from_double(vd, dd_value);
Steve Block6ded16b2010-05-10 14:33:55 +01002323 } else {
2324 UNIMPLEMENTED(); // Not used by V8.
2325 }
2326 } else {
2327 if ((instr->VCField() == 0x0) &&
2328 (instr->VAField() == 0x0)) {
2329 DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
2330 } else if ((instr->VLField() == 0x1) &&
2331 (instr->VCField() == 0x0) &&
2332 (instr->VAField() == 0x7) &&
2333 (instr->Bits(19, 16) == 0x1)) {
2334 // vmrs
2335 if (instr->RtField() == 0xF)
Steve Blockd0582a62009-12-15 09:54:21 +00002336 Copy_FPSCR_to_APSR();
2337 else
2338 UNIMPLEMENTED(); // Not used by V8.
2339 } else {
2340 UNIMPLEMENTED(); // Not used by V8.
2341 }
Steve Block6ded16b2010-05-10 14:33:55 +01002342 }
2343}
2344
2345
2346void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instr* instr) {
2347 ASSERT((instr->Bit(4) == 1) && (instr->VCField() == 0x0) &&
2348 (instr->VAField() == 0x0));
2349
2350 int t = instr->RtField();
2351 int n = GlueRegCode(true, instr->VnField(), instr->NField());
2352 bool to_arm_register = (instr->VLField() == 0x1);
2353
2354 if (to_arm_register) {
2355 int32_t int_value = get_sinteger_from_s_register(n);
2356 set_register(t, int_value);
2357 } else {
2358 int32_t rs_val = get_register(t);
2359 set_s_register_from_sinteger(n, rs_val);
2360 }
2361}
2362
2363
2364void Simulator::DecodeVCMP(Instr* instr) {
2365 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Field() == 0x7));
2366 ASSERT(((instr->Opc2Field() == 0x4) || (instr->Opc2Field() == 0x5)) &&
2367 (instr->Opc3Field() & 0x1));
2368
2369 // Comparison.
2370 bool dp_operation = (instr->SzField() == 1);
2371
2372 if (instr->Bit(7) != 0) {
2373 // Raising exceptions for quiet NaNs are not supported.
2374 UNIMPLEMENTED(); // Not used by V8.
2375 }
2376
2377 int d = GlueRegCode(!dp_operation, instr->VdField(), instr->DField());
2378 int m = GlueRegCode(!dp_operation, instr->VmField(), instr->MField());
2379
2380 if (dp_operation) {
2381 double dd_value = get_double_from_d_register(d);
2382 double dm_value = get_double_from_d_register(m);
2383
2384 Compute_FPSCR_Flags(dd_value, dm_value);
2385 } else {
2386 UNIMPLEMENTED(); // Not used by V8.
2387 }
2388}
2389
2390
2391void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instr* instr) {
2392 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Field() == 0x7));
2393 ASSERT((instr->Opc2Field() == 0x7) && (instr->Opc3Field() == 0x3));
2394
2395 bool double_to_single = (instr->SzField() == 1);
2396 int dst = GlueRegCode(double_to_single, instr->VdField(), instr->DField());
2397 int src = GlueRegCode(!double_to_single, instr->VmField(), instr->MField());
2398
2399 if (double_to_single) {
2400 double val = get_double_from_d_register(src);
2401 set_s_register_from_float(dst, static_cast<float>(val));
2402 } else {
2403 float val = get_float_from_s_register(src);
2404 set_d_register_from_double(dst, static_cast<double>(val));
2405 }
2406}
2407
2408
2409void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instr* instr) {
2410 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Field() == 0x7));
2411 ASSERT(((instr->Opc2Field() == 0x8) && (instr->Opc3Field() & 0x1)) ||
2412 (((instr->Opc2Field() >> 1) == 0x6) && (instr->Opc3Field() & 0x1)));
2413
2414 // Conversion between floating-point and integer.
2415 int vd = instr->VdField();
2416 int d = instr->DField();
2417 int vm = instr->VmField();
2418 int m = instr->MField();
2419
2420 bool to_integer = (instr->Bit(18) == 1);
2421 bool dp_operation = (instr->SzField() == 1);
2422 if (to_integer) {
2423 bool unsigned_integer = (instr->Bit(16) == 0);
2424 if (instr->Bit(7) != 1) {
2425 // Only rounding towards zero supported.
Steve Blockd0582a62009-12-15 09:54:21 +00002426 UNIMPLEMENTED(); // Not used by V8.
2427 }
Steve Block6ded16b2010-05-10 14:33:55 +01002428
2429 int dst = GlueRegCode(true, vd, d);
2430 int src = GlueRegCode(!dp_operation, vm, m);
2431
2432 if (dp_operation) {
2433 double val = get_double_from_d_register(src);
2434
2435 int sint = unsigned_integer ? static_cast<uint32_t>(val) :
2436 static_cast<int32_t>(val);
2437
2438 set_s_register_from_sinteger(dst, sint);
Steve Blockd0582a62009-12-15 09:54:21 +00002439 } else {
Steve Block6ded16b2010-05-10 14:33:55 +01002440 float val = get_float_from_s_register(src);
2441
2442 int sint = unsigned_integer ? static_cast<uint32_t>(val) :
2443 static_cast<int32_t>(val);
2444
2445 set_s_register_from_sinteger(dst, sint);
2446 }
2447 } else {
2448 bool unsigned_integer = (instr->Bit(7) == 0);
2449
2450 int dst = GlueRegCode(!dp_operation, vd, d);
2451 int src = GlueRegCode(true, vm, m);
2452
2453 int val = get_sinteger_from_s_register(src);
2454
2455 if (dp_operation) {
2456 if (unsigned_integer) {
2457 set_d_register_from_double(dst,
2458 static_cast<double>((uint32_t)val));
2459 } else {
2460 set_d_register_from_double(dst, static_cast<double>(val));
2461 }
2462 } else {
2463 if (unsigned_integer) {
2464 set_s_register_from_float(dst,
2465 static_cast<float>((uint32_t)val));
2466 } else {
2467 set_s_register_from_float(dst, static_cast<float>(val));
2468 }
Steve Blockd0582a62009-12-15 09:54:21 +00002469 }
2470 }
2471}
2472
2473
2474// void Simulator::DecodeType6CoprocessorIns(Instr* instr)
2475// Decode Type 6 coprocessor instructions.
Leon Clarkee46be812010-01-19 14:06:41 +00002476// Dm = vmov(Rt, Rt2)
2477// <Rt, Rt2> = vmov(Dm)
Leon Clarked91b9f72010-01-27 17:25:45 +00002478// Ddst = MEM(Rbase + 4*offset).
2479// MEM(Rbase + 4*offset) = Dsrc.
Steve Blockd0582a62009-12-15 09:54:21 +00002480void Simulator::DecodeType6CoprocessorIns(Instr* instr) {
2481 ASSERT((instr->TypeField() == 6));
2482
Steve Block6ded16b2010-05-10 14:33:55 +01002483 if (instr->CoprocessorField() == 0xA) {
2484 switch (instr->OpcodeField()) {
2485 case 0x8:
2486 case 0xC: { // Load and store float to memory.
2487 int rn = instr->RnField();
2488 int vd = instr->VdField();
2489 int offset = instr->Immed8Field();
2490 if (!instr->HasU()) {
2491 offset = -offset;
2492 }
2493
2494 int32_t address = get_register(rn) + 4 * offset;
2495 if (instr->HasL()) {
2496 // Load double from memory: vldr.
2497 set_s_register_from_sinteger(vd, ReadW(address, instr));
2498 } else {
2499 // Store double to memory: vstr.
2500 WriteW(address, get_sinteger_from_s_register(vd), instr);
2501 }
2502 break;
2503 }
2504 default:
2505 UNIMPLEMENTED(); // Not used by V8.
2506 break;
2507 }
2508 } else if (instr->CoprocessorField() == 0xB) {
Leon Clarked91b9f72010-01-27 17:25:45 +00002509 switch (instr->OpcodeField()) {
2510 case 0x2:
2511 // Load and store double to two GP registers
2512 if (instr->Bits(7, 4) != 0x1) {
2513 UNIMPLEMENTED(); // Not used by V8.
2514 } else {
2515 int rt = instr->RtField();
2516 int rn = instr->RnField();
2517 int vm = instr->VmField();
2518 if (instr->HasL()) {
2519 int32_t rt_int_value = get_sinteger_from_s_register(2*vm);
2520 int32_t rn_int_value = get_sinteger_from_s_register(2*vm+1);
2521
2522 set_register(rt, rt_int_value);
2523 set_register(rn, rn_int_value);
2524 } else {
2525 int32_t rs_val = get_register(rt);
2526 int32_t rn_val = get_register(rn);
2527
2528 set_s_register_from_sinteger(2*vm, rs_val);
2529 set_s_register_from_sinteger((2*vm+1), rn_val);
2530 }
2531 }
2532 break;
2533 case 0x8:
2534 case 0xC: { // Load and store double to memory.
2535 int rn = instr->RnField();
2536 int vd = instr->VdField();
2537 int offset = instr->Immed8Field();
2538 if (!instr->HasU()) {
2539 offset = -offset;
2540 }
2541 int32_t address = get_register(rn) + 4 * offset;
2542 if (instr->HasL()) {
2543 // Load double from memory: vldr.
2544 set_s_register_from_sinteger(2*vd, ReadW(address, instr));
2545 set_s_register_from_sinteger(2*vd + 1, ReadW(address + 4, instr));
2546 } else {
2547 // Store double to memory: vstr.
2548 WriteW(address, get_sinteger_from_s_register(2*vd), instr);
2549 WriteW(address + 4, get_sinteger_from_s_register(2*vd + 1), instr);
2550 }
2551 break;
2552 }
2553 default:
2554 UNIMPLEMENTED(); // Not used by V8.
2555 break;
2556 }
Steve Block6ded16b2010-05-10 14:33:55 +01002557 } else {
2558 UNIMPLEMENTED(); // Not used by V8.
Steve Blockd0582a62009-12-15 09:54:21 +00002559 }
2560}
2561
2562
Steve Blocka7e24c12009-10-30 11:49:00 +00002563// Executes the current instruction.
2564void Simulator::InstructionDecode(Instr* instr) {
Steve Block6ded16b2010-05-10 14:33:55 +01002565 if (v8::internal::FLAG_check_icache) {
2566 CheckICache(instr);
2567 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002568 pc_modified_ = false;
2569 if (::v8::internal::FLAG_trace_sim) {
2570 disasm::NameConverter converter;
2571 disasm::Disassembler dasm(converter);
2572 // use a reasonably large buffer
2573 v8::internal::EmbeddedVector<char, 256> buffer;
2574 dasm.InstructionDecode(buffer,
2575 reinterpret_cast<byte*>(instr));
2576 PrintF(" 0x%08x %s\n", instr, buffer.start());
2577 }
2578 if (instr->ConditionField() == special_condition) {
2579 DecodeUnconditional(instr);
2580 } else if (ConditionallyExecute(instr)) {
2581 switch (instr->TypeField()) {
2582 case 0:
2583 case 1: {
2584 DecodeType01(instr);
2585 break;
2586 }
2587 case 2: {
2588 DecodeType2(instr);
2589 break;
2590 }
2591 case 3: {
2592 DecodeType3(instr);
2593 break;
2594 }
2595 case 4: {
2596 DecodeType4(instr);
2597 break;
2598 }
2599 case 5: {
2600 DecodeType5(instr);
2601 break;
2602 }
2603 case 6: {
2604 DecodeType6(instr);
2605 break;
2606 }
2607 case 7: {
2608 DecodeType7(instr);
2609 break;
2610 }
2611 default: {
2612 UNIMPLEMENTED();
2613 break;
2614 }
2615 }
2616 }
2617 if (!pc_modified_) {
2618 set_register(pc, reinterpret_cast<int32_t>(instr) + Instr::kInstrSize);
2619 }
2620}
2621
2622
Steve Blocka7e24c12009-10-30 11:49:00 +00002623void Simulator::Execute() {
2624 // Get the PC to simulate. Cannot use the accessor here as we need the
2625 // raw PC value and not the one used as input to arithmetic instructions.
2626 int program_counter = get_pc();
2627
2628 if (::v8::internal::FLAG_stop_sim_at == 0) {
2629 // Fast version of the dispatch loop without checking whether the simulator
2630 // should be stopping at a particular executed instruction.
2631 while (program_counter != end_sim_pc) {
2632 Instr* instr = reinterpret_cast<Instr*>(program_counter);
2633 icount_++;
2634 InstructionDecode(instr);
2635 program_counter = get_pc();
2636 }
2637 } else {
2638 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
2639 // we reach the particular instuction count.
2640 while (program_counter != end_sim_pc) {
2641 Instr* instr = reinterpret_cast<Instr*>(program_counter);
2642 icount_++;
2643 if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
2644 Debugger dbg(this);
2645 dbg.Debug();
2646 } else {
2647 InstructionDecode(instr);
2648 }
2649 program_counter = get_pc();
2650 }
2651 }
2652}
2653
2654
2655int32_t Simulator::Call(byte* entry, int argument_count, ...) {
2656 va_list parameters;
2657 va_start(parameters, argument_count);
2658 // Setup arguments
2659
2660 // First four arguments passed in registers.
2661 ASSERT(argument_count >= 4);
2662 set_register(r0, va_arg(parameters, int32_t));
2663 set_register(r1, va_arg(parameters, int32_t));
2664 set_register(r2, va_arg(parameters, int32_t));
2665 set_register(r3, va_arg(parameters, int32_t));
2666
2667 // Remaining arguments passed on stack.
2668 int original_stack = get_register(sp);
2669 // Compute position of stack on entry to generated code.
2670 int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t));
2671 if (OS::ActivationFrameAlignment() != 0) {
2672 entry_stack &= -OS::ActivationFrameAlignment();
2673 }
2674 // Store remaining arguments on stack, from low to high memory.
2675 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
2676 for (int i = 4; i < argument_count; i++) {
2677 stack_argument[i - 4] = va_arg(parameters, int32_t);
2678 }
2679 va_end(parameters);
2680 set_register(sp, entry_stack);
2681
2682 // Prepare to execute the code at entry
2683 set_register(pc, reinterpret_cast<int32_t>(entry));
2684 // Put down marker for end of simulation. The simulator will stop simulation
2685 // when the PC reaches this value. By saving the "end simulation" value into
2686 // the LR the simulation stops when returning to this call point.
2687 set_register(lr, end_sim_pc);
2688
2689 // Remember the values of callee-saved registers.
2690 // The code below assumes that r9 is not used as sb (static base) in
2691 // simulator code and therefore is regarded as a callee-saved register.
2692 int32_t r4_val = get_register(r4);
2693 int32_t r5_val = get_register(r5);
2694 int32_t r6_val = get_register(r6);
2695 int32_t r7_val = get_register(r7);
2696 int32_t r8_val = get_register(r8);
2697 int32_t r9_val = get_register(r9);
2698 int32_t r10_val = get_register(r10);
2699 int32_t r11_val = get_register(r11);
2700
2701 // Setup the callee-saved registers with a known value. To be able to check
2702 // that they are preserved properly across JS execution.
2703 int32_t callee_saved_value = icount_;
2704 set_register(r4, callee_saved_value);
2705 set_register(r5, callee_saved_value);
2706 set_register(r6, callee_saved_value);
2707 set_register(r7, callee_saved_value);
2708 set_register(r8, callee_saved_value);
2709 set_register(r9, callee_saved_value);
2710 set_register(r10, callee_saved_value);
2711 set_register(r11, callee_saved_value);
2712
2713 // Start the simulation
2714 Execute();
2715
2716 // Check that the callee-saved registers have been preserved.
2717 CHECK_EQ(callee_saved_value, get_register(r4));
2718 CHECK_EQ(callee_saved_value, get_register(r5));
2719 CHECK_EQ(callee_saved_value, get_register(r6));
2720 CHECK_EQ(callee_saved_value, get_register(r7));
2721 CHECK_EQ(callee_saved_value, get_register(r8));
2722 CHECK_EQ(callee_saved_value, get_register(r9));
2723 CHECK_EQ(callee_saved_value, get_register(r10));
2724 CHECK_EQ(callee_saved_value, get_register(r11));
2725
2726 // Restore callee-saved registers with the original value.
2727 set_register(r4, r4_val);
2728 set_register(r5, r5_val);
2729 set_register(r6, r6_val);
2730 set_register(r7, r7_val);
2731 set_register(r8, r8_val);
2732 set_register(r9, r9_val);
2733 set_register(r10, r10_val);
2734 set_register(r11, r11_val);
2735
2736 // Pop stack passed arguments.
2737 CHECK_EQ(entry_stack, get_register(sp));
2738 set_register(sp, original_stack);
2739
2740 int32_t result = get_register(r0);
2741 return result;
2742}
2743
Steve Blockd0582a62009-12-15 09:54:21 +00002744
2745uintptr_t Simulator::PushAddress(uintptr_t address) {
2746 int new_sp = get_register(sp) - sizeof(uintptr_t);
2747 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
2748 *stack_slot = address;
2749 set_register(sp, new_sp);
2750 return new_sp;
2751}
2752
2753
2754uintptr_t Simulator::PopAddress() {
2755 int current_sp = get_register(sp);
2756 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
2757 uintptr_t address = *stack_slot;
2758 set_register(sp, current_sp + sizeof(uintptr_t));
2759 return address;
2760}
2761
Steve Blocka7e24c12009-10-30 11:49:00 +00002762} } // namespace assembler::arm
2763
Steve Block6ded16b2010-05-10 14:33:55 +01002764#endif // __arm__
Leon Clarkef7060e22010-06-03 12:02:55 +01002765
2766#endif // V8_TARGET_ARCH_ARM