blob: 375ef89774f0ee683c70d4ccae8b664a18a5a06b [file] [log] [blame]
Ben Murdoch8b112d22011-06-08 16:22:53 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
Steve Blocka7e24c12009-10-30 11:49:00 +00004
5#ifndef V8_ARM_CONSTANTS_ARM_H_
6#define V8_ARM_CONSTANTS_ARM_H_
7
Ben Murdoch8b112d22011-06-08 16:22:53 +01008// ARM EABI is required.
9#if defined(__arm__) && !defined(__ARM_EABI__)
10#error ARM EABI support is required.
Steve Blocka7e24c12009-10-30 11:49:00 +000011#endif
12
Steve Block1e0659c2011-05-24 12:43:12 +010013namespace v8 {
14namespace internal {
Steve Blocka7e24c12009-10-30 11:49:00 +000015
Steve Block44f0eee2011-05-26 01:26:41 +010016// Constant pool marker.
Ben Murdochb8a8cc12014-11-26 15:28:44 +000017// Use UDF, the permanently undefined instruction.
18const int kConstantPoolMarkerMask = 0xfff000f0;
19const int kConstantPoolMarker = 0xe7f000f0;
20const int kConstantPoolLengthMaxMask = 0xffff;
21inline int EncodeConstantPoolLength(int length) {
22 DCHECK((length & kConstantPoolLengthMaxMask) == length);
23 return ((length & 0xfff0) << 4) | (length & 0xf);
24}
25inline int DecodeConstantPoolLength(int instr) {
26 DCHECK((instr & kConstantPoolMarkerMask) == kConstantPoolMarker);
27 return ((instr >> 4) & 0xfff0) | (instr & 0xf);
28}
29
30// Used in code age prologue - ldr(pc, MemOperand(pc, -4))
31const int kCodeAgeJumpInstruction = 0xe51ff004;
Steve Block44f0eee2011-05-26 01:26:41 +010032
Steve Blocka7e24c12009-10-30 11:49:00 +000033// Number of registers in normal ARM mode.
Ben Murdoch3ef787d2012-04-12 10:51:47 +010034const int kNumRegisters = 16;
Steve Blocka7e24c12009-10-30 11:49:00 +000035
Steve Blockd0582a62009-12-15 09:54:21 +000036// VFP support.
Ben Murdoch3ef787d2012-04-12 10:51:47 +010037const int kNumVFPSingleRegisters = 32;
Ben Murdochb8a8cc12014-11-26 15:28:44 +000038const int kNumVFPDoubleRegisters = 32;
Ben Murdoch3ef787d2012-04-12 10:51:47 +010039const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
Steve Blockd0582a62009-12-15 09:54:21 +000040
Steve Blocka7e24c12009-10-30 11:49:00 +000041// PC is register 15.
Ben Murdoch3ef787d2012-04-12 10:51:47 +010042const int kPCRegister = 15;
43const int kNoRegister = -1;
Steve Blocka7e24c12009-10-30 11:49:00 +000044
Steve Block1e0659c2011-05-24 12:43:12 +010045// -----------------------------------------------------------------------------
46// Conditions.
47
Steve Blocka7e24c12009-10-30 11:49:00 +000048// Defines constants and accessor classes to assemble, disassemble and
49// simulate ARM instructions.
50//
51// Section references in the code refer to the "ARM Architecture Reference
52// Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
53//
54// Constants for specific fields are defined in their respective named enums.
55// General constants are in an anonymous enum in class Instr.
56
Steve Blocka7e24c12009-10-30 11:49:00 +000057// Values for the condition field as defined in section A3.2
58enum Condition {
Steve Block1e0659c2011-05-24 12:43:12 +010059 kNoCondition = -1,
60
61 eq = 0 << 28, // Z set Equal.
62 ne = 1 << 28, // Z clear Not equal.
63 cs = 2 << 28, // C set Unsigned higher or same.
64 cc = 3 << 28, // C clear Unsigned lower.
65 mi = 4 << 28, // N set Negative.
66 pl = 5 << 28, // N clear Positive or zero.
67 vs = 6 << 28, // V set Overflow.
68 vc = 7 << 28, // V clear No overflow.
69 hi = 8 << 28, // C set, Z clear Unsigned higher.
70 ls = 9 << 28, // C clear or Z set Unsigned lower or same.
71 ge = 10 << 28, // N == V Greater or equal.
72 lt = 11 << 28, // N != V Less than.
73 gt = 12 << 28, // Z clear, N == V Greater than.
74 le = 13 << 28, // Z set or N != V Less then or equal
75 al = 14 << 28, // Always.
76
77 kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1).
78 kNumberOfConditions = 16,
79
80 // Aliases.
81 hs = cs, // C set Unsigned higher or same.
82 lo = cc // C clear Unsigned lower.
Steve Blocka7e24c12009-10-30 11:49:00 +000083};
84
85
Steve Block1e0659c2011-05-24 12:43:12 +010086inline Condition NegateCondition(Condition cond) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +000087 DCHECK(cond != al);
Steve Block1e0659c2011-05-24 12:43:12 +010088 return static_cast<Condition>(cond ^ ne);
89}
90
91
Ben Murdochb8a8cc12014-11-26 15:28:44 +000092// Commute a condition such that {a cond b == b cond' a}.
93inline Condition CommuteCondition(Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +010094 switch (cond) {
95 case lo:
96 return hi;
97 case hi:
98 return lo;
99 case hs:
100 return ls;
101 case ls:
102 return hs;
103 case lt:
104 return gt;
105 case gt:
106 return lt;
107 case ge:
108 return le;
109 case le:
110 return ge;
111 default:
112 return cond;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000113 }
Steve Block1e0659c2011-05-24 12:43:12 +0100114}
115
116
117// -----------------------------------------------------------------------------
118// Instructions encoding.
119
120// Instr is merely used by the Assembler to distinguish 32bit integers
121// representing instructions from usual 32 bit values.
122// Instruction objects are pointers to 32bit values, and provide methods to
123// access the various ISA fields.
124typedef int32_t Instr;
125
126
Steve Blocka7e24c12009-10-30 11:49:00 +0000127// Opcodes for Data-processing instructions (instructions with a type 0 and 1)
128// as defined in section A3.4
129enum Opcode {
Steve Block1e0659c2011-05-24 12:43:12 +0100130 AND = 0 << 21, // Logical AND.
131 EOR = 1 << 21, // Logical Exclusive OR.
132 SUB = 2 << 21, // Subtract.
133 RSB = 3 << 21, // Reverse Subtract.
134 ADD = 4 << 21, // Add.
135 ADC = 5 << 21, // Add with Carry.
136 SBC = 6 << 21, // Subtract with Carry.
137 RSC = 7 << 21, // Reverse Subtract with Carry.
138 TST = 8 << 21, // Test.
139 TEQ = 9 << 21, // Test Equivalence.
140 CMP = 10 << 21, // Compare.
141 CMN = 11 << 21, // Compare Negated.
142 ORR = 12 << 21, // Logical (inclusive) OR.
143 MOV = 13 << 21, // Move.
144 BIC = 14 << 21, // Bit Clear.
145 MVN = 15 << 21 // Move Not.
Steve Blocka7e24c12009-10-30 11:49:00 +0000146};
147
148
Steve Block6ded16b2010-05-10 14:33:55 +0100149// The bits for bit 7-4 for some type 0 miscellaneous instructions.
150enum MiscInstructionsBits74 {
151 // With bits 22-21 01.
Steve Block1e0659c2011-05-24 12:43:12 +0100152 BX = 1 << 4,
153 BXJ = 2 << 4,
154 BLX = 3 << 4,
155 BKPT = 7 << 4,
Steve Blocka7e24c12009-10-30 11:49:00 +0000156
Steve Block6ded16b2010-05-10 14:33:55 +0100157 // With bits 22-21 11.
Steve Block1e0659c2011-05-24 12:43:12 +0100158 CLZ = 1 << 4
159};
160
161
162// Instruction encoding bits and masks.
163enum {
164 H = 1 << 5, // Halfword (or byte).
165 S6 = 1 << 6, // Signed (or unsigned).
166 L = 1 << 20, // Load (or store).
167 S = 1 << 20, // Set condition code (or leave unchanged).
168 W = 1 << 21, // Writeback base register (or leave unchanged).
169 A = 1 << 21, // Accumulate in multiply instruction (or not).
170 B = 1 << 22, // Unsigned byte (or word).
171 N = 1 << 22, // Long (or short).
172 U = 1 << 23, // Positive (or negative) offset/index.
173 P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing).
174 I = 1 << 25, // Immediate shifter operand (or not).
175
176 B4 = 1 << 4,
177 B5 = 1 << 5,
178 B6 = 1 << 6,
179 B7 = 1 << 7,
180 B8 = 1 << 8,
181 B9 = 1 << 9,
182 B12 = 1 << 12,
183 B16 = 1 << 16,
184 B18 = 1 << 18,
185 B19 = 1 << 19,
186 B20 = 1 << 20,
187 B21 = 1 << 21,
188 B22 = 1 << 22,
189 B23 = 1 << 23,
190 B24 = 1 << 24,
191 B25 = 1 << 25,
192 B26 = 1 << 26,
193 B27 = 1 << 27,
194 B28 = 1 << 28,
195
196 // Instruction bit masks.
197 kCondMask = 15 << 28,
198 kALUMask = 0x6f << 21,
199 kRdMask = 15 << 12, // In str instruction.
200 kCoprocessorMask = 15 << 8,
201 kOpCodeMask = 15 << 21, // In data-processing instructions.
202 kImm24Mask = (1 << 24) - 1,
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000203 kImm16Mask = (1 << 16) - 1,
204 kImm8Mask = (1 << 8) - 1,
205 kOff12Mask = (1 << 12) - 1,
206 kOff8Mask = (1 << 8) - 1
Steve Block1e0659c2011-05-24 12:43:12 +0100207};
208
209
210// -----------------------------------------------------------------------------
211// Addressing modes and instruction variants.
212
213// Condition code updating mode.
214enum SBit {
215 SetCC = 1 << 20, // Set condition code.
216 LeaveCC = 0 << 20 // Leave condition code unchanged.
217};
218
219
220// Status register selection.
221enum SRegister {
222 CPSR = 0 << 22,
223 SPSR = 1 << 22
Steve Blocka7e24c12009-10-30 11:49:00 +0000224};
225
226
Steve Blocka7e24c12009-10-30 11:49:00 +0000227// Shifter types for Data-processing operands as defined in section A5.1.2.
Steve Block1e0659c2011-05-24 12:43:12 +0100228enum ShiftOp {
229 LSL = 0 << 5, // Logical shift left.
230 LSR = 1 << 5, // Logical shift right.
231 ASR = 2 << 5, // Arithmetic shift right.
232 ROR = 3 << 5, // Rotate right.
233
234 // RRX is encoded as ROR with shift_imm == 0.
235 // Use a special code to make the distinction. The RRX ShiftOp is only used
236 // as an argument, and will never actually be encoded. The Assembler will
237 // detect it and emit the correct ROR shift operand with shift_imm == 0.
238 RRX = -1,
239 kNumberOfShifts = 4
Steve Blocka7e24c12009-10-30 11:49:00 +0000240};
241
242
Steve Block1e0659c2011-05-24 12:43:12 +0100243// Status register fields.
244enum SRegisterField {
245 CPSR_c = CPSR | 1 << 16,
246 CPSR_x = CPSR | 1 << 17,
247 CPSR_s = CPSR | 1 << 18,
248 CPSR_f = CPSR | 1 << 19,
249 SPSR_c = SPSR | 1 << 16,
250 SPSR_x = SPSR | 1 << 17,
251 SPSR_s = SPSR | 1 << 18,
252 SPSR_f = SPSR | 1 << 19
253};
254
255// Status register field mask (or'ed SRegisterField enum values).
256typedef uint32_t SRegisterFieldMask;
257
258
259// Memory operand addressing mode.
260enum AddrMode {
261 // Bit encoding P U W.
262 Offset = (8|4|0) << 21, // Offset (without writeback to base).
263 PreIndex = (8|4|1) << 21, // Pre-indexed addressing with writeback.
264 PostIndex = (0|4|0) << 21, // Post-indexed addressing with writeback.
265 NegOffset = (8|0|0) << 21, // Negative offset (without writeback to base).
266 NegPreIndex = (8|0|1) << 21, // Negative pre-indexed with writeback.
267 NegPostIndex = (0|0|0) << 21 // Negative post-indexed with writeback.
268};
269
270
271// Load/store multiple addressing mode.
272enum BlockAddrMode {
273 // Bit encoding P U W .
274 da = (0|0|0) << 21, // Decrement after.
275 ia = (0|4|0) << 21, // Increment after.
276 db = (8|0|0) << 21, // Decrement before.
277 ib = (8|4|0) << 21, // Increment before.
278 da_w = (0|0|1) << 21, // Decrement after with writeback to base.
279 ia_w = (0|4|1) << 21, // Increment after with writeback to base.
280 db_w = (8|0|1) << 21, // Decrement before with writeback to base.
281 ib_w = (8|4|1) << 21, // Increment before with writeback to base.
282
283 // Alias modes for comparison when writeback does not matter.
284 da_x = (0|0|0) << 21, // Decrement after.
285 ia_x = (0|4|0) << 21, // Increment after.
286 db_x = (8|0|0) << 21, // Decrement before.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100287 ib_x = (8|4|0) << 21, // Increment before.
288
289 kBlockAddrModeMask = (8|4|1) << 21
Steve Block1e0659c2011-05-24 12:43:12 +0100290};
291
292
293// Coprocessor load/store operand size.
294enum LFlag {
295 Long = 1 << 22, // Long load/store coprocessor.
296 Short = 0 << 22 // Short load/store coprocessor.
297};
298
299
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000300// NEON data type
301enum NeonDataType {
302 NeonS8 = 0x1, // U = 0, imm3 = 0b001
303 NeonS16 = 0x2, // U = 0, imm3 = 0b010
304 NeonS32 = 0x4, // U = 0, imm3 = 0b100
305 NeonU8 = 1 << 24 | 0x1, // U = 1, imm3 = 0b001
306 NeonU16 = 1 << 24 | 0x2, // U = 1, imm3 = 0b010
307 NeonU32 = 1 << 24 | 0x4, // U = 1, imm3 = 0b100
308 NeonDataTypeSizeMask = 0x7,
309 NeonDataTypeUMask = 1 << 24
310};
311
312enum NeonListType {
313 nlt_1 = 0x7,
314 nlt_2 = 0xA,
315 nlt_3 = 0x6,
316 nlt_4 = 0x2
317};
318
319enum NeonSize {
320 Neon8 = 0x0,
321 Neon16 = 0x1,
322 Neon32 = 0x2,
323 Neon64 = 0x3
324};
325
Steve Block1e0659c2011-05-24 12:43:12 +0100326// -----------------------------------------------------------------------------
327// Supervisor Call (svc) specific support.
328
Steve Blocka7e24c12009-10-30 11:49:00 +0000329// Special Software Interrupt codes when used in the presence of the ARM
330// simulator.
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800331// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
332// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
Steve Blocka7e24c12009-10-30 11:49:00 +0000333enum SoftwareInterruptCodes {
334 // transition to C code
Steve Block1e0659c2011-05-24 12:43:12 +0100335 kCallRtRedirected= 0x10,
Steve Blocka7e24c12009-10-30 11:49:00 +0000336 // break point
Steve Block1e0659c2011-05-24 12:43:12 +0100337 kBreakpoint= 0x20,
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800338 // stop
Steve Block1e0659c2011-05-24 12:43:12 +0100339 kStopCode = 1 << 23
Steve Blocka7e24c12009-10-30 11:49:00 +0000340};
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100341const uint32_t kStopCodeMask = kStopCode - 1;
342const uint32_t kMaxStopCode = kStopCode - 1;
343const int32_t kDefaultStopCode = -1;
Steve Blocka7e24c12009-10-30 11:49:00 +0000344
345
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100346// Type of VFP register. Determines register encoding.
347enum VFPRegPrecision {
348 kSinglePrecision = 0,
349 kDoublePrecision = 1
350};
351
Steve Block1e0659c2011-05-24 12:43:12 +0100352
353// VFP FPSCR constants.
354enum VFPConversionMode {
355 kFPSCRRounding = 0,
356 kDefaultRoundToZero = 1
Russell Brenner90bac252010-11-18 13:33:46 -0800357};
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100358
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100359// This mask does not include the "inexact" or "input denormal" cumulative
360// exceptions flags, because we usually don't want to check for it.
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100361const uint32_t kVFPExceptionMask = 0xf;
362const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
363const uint32_t kVFPOverflowExceptionBit = 1 << 2;
364const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
365const uint32_t kVFPInexactExceptionBit = 1 << 4;
366const uint32_t kVFPFlushToZeroMask = 1 << 24;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000367const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
Steve Block1e0659c2011-05-24 12:43:12 +0100368
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100369const uint32_t kVFPNConditionFlagBit = 1 << 31;
370const uint32_t kVFPZConditionFlagBit = 1 << 30;
371const uint32_t kVFPCConditionFlagBit = 1 << 29;
372const uint32_t kVFPVConditionFlagBit = 1 << 28;
Steve Blocka7e24c12009-10-30 11:49:00 +0000373
374
Steve Block1e0659c2011-05-24 12:43:12 +0100375// VFP rounding modes. See ARM DDI 0406B Page A2-29.
376enum VFPRoundingMode {
377 RN = 0 << 22, // Round to Nearest.
378 RP = 1 << 22, // Round towards Plus Infinity.
379 RM = 2 << 22, // Round towards Minus Infinity.
380 RZ = 3 << 22, // Round towards zero.
381
382 // Aliases.
383 kRoundToNearest = RN,
384 kRoundToPlusInf = RP,
385 kRoundToMinusInf = RM,
386 kRoundToZero = RZ
387};
388
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100389const uint32_t kVFPRoundingModeMask = 3 << 22;
Steve Block1e0659c2011-05-24 12:43:12 +0100390
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100391enum CheckForInexactConversion {
392 kCheckForInexactConversion,
393 kDontCheckForInexactConversion
394};
395
Steve Block1e0659c2011-05-24 12:43:12 +0100396// -----------------------------------------------------------------------------
397// Hints.
398
399// Branch hints are not used on the ARM. They are defined so that they can
400// appear in shared function signatures, but will be ignored in ARM
401// implementations.
402enum Hint { no_hint };
403
404// Hints are not used on the arm. Negating is trivial.
405inline Hint NegateHint(Hint ignored) { return no_hint; }
406
407
408// -----------------------------------------------------------------------------
Steve Block1e0659c2011-05-24 12:43:12 +0100409// Instruction abstraction.
410
411// The class Instruction enables access to individual fields defined in the ARM
Steve Blocka7e24c12009-10-30 11:49:00 +0000412// architecture instruction set encoding as described in figure A3-1.
Steve Block1e0659c2011-05-24 12:43:12 +0100413// Note that the Assembler uses typedef int32_t Instr.
Steve Blocka7e24c12009-10-30 11:49:00 +0000414//
415// Example: Test whether the instruction at ptr does set the condition code
416// bits.
417//
418// bool InstructionSetsConditionCodes(byte* ptr) {
Steve Block1e0659c2011-05-24 12:43:12 +0100419// Instruction* instr = Instruction::At(ptr);
420// int type = instr->TypeValue();
Steve Blocka7e24c12009-10-30 11:49:00 +0000421// return ((type == 0) || (type == 1)) && instr->HasS();
422// }
423//
Steve Block1e0659c2011-05-24 12:43:12 +0100424class Instruction {
Steve Blocka7e24c12009-10-30 11:49:00 +0000425 public:
426 enum {
427 kInstrSize = 4,
428 kInstrSizeLog2 = 2,
429 kPCReadOffset = 8
430 };
431
Steve Block1e0659c2011-05-24 12:43:12 +0100432 // Helper macro to define static accessors.
433 // We use the cast to char* trick to bypass the strict anti-aliasing rules.
434 #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
435 static inline return_type Name(Instr instr) { \
436 char* temp = reinterpret_cast<char*>(&instr); \
437 return reinterpret_cast<Instruction*>(temp)->Name(); \
438 }
439
440 #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
441
Steve Blocka7e24c12009-10-30 11:49:00 +0000442 // Get the raw instruction bits.
Steve Block1e0659c2011-05-24 12:43:12 +0100443 inline Instr InstructionBits() const {
444 return *reinterpret_cast<const Instr*>(this);
Steve Blocka7e24c12009-10-30 11:49:00 +0000445 }
446
447 // Set the raw instruction bits to value.
Steve Block1e0659c2011-05-24 12:43:12 +0100448 inline void SetInstructionBits(Instr value) {
449 *reinterpret_cast<Instr*>(this) = value;
Steve Blocka7e24c12009-10-30 11:49:00 +0000450 }
451
452 // Read one particular bit out of the instruction bits.
453 inline int Bit(int nr) const {
454 return (InstructionBits() >> nr) & 1;
455 }
456
Steve Block1e0659c2011-05-24 12:43:12 +0100457 // Read a bit field's value out of the instruction bits.
Steve Blocka7e24c12009-10-30 11:49:00 +0000458 inline int Bits(int hi, int lo) const {
459 return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
460 }
461
Steve Block1e0659c2011-05-24 12:43:12 +0100462 // Read a bit field out of the instruction bits.
463 inline int BitField(int hi, int lo) const {
464 return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
465 }
466
467 // Static support.
468
469 // Read one particular bit out of the instruction bits.
470 static inline int Bit(Instr instr, int nr) {
471 return (instr >> nr) & 1;
472 }
473
474 // Read the value of a bit field out of the instruction bits.
475 static inline int Bits(Instr instr, int hi, int lo) {
476 return (instr >> lo) & ((2 << (hi - lo)) - 1);
477 }
478
479
480 // Read a bit field out of the instruction bits.
481 static inline int BitField(Instr instr, int hi, int lo) {
482 return instr & (((2 << (hi - lo)) - 1) << lo);
483 }
484
Steve Blocka7e24c12009-10-30 11:49:00 +0000485
486 // Accessors for the different named fields used in the ARM encoding.
487 // The naming of these accessor corresponds to figure A3-1.
Steve Block1e0659c2011-05-24 12:43:12 +0100488 //
489 // Two kind of accessors are declared:
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100490 // - <Name>Field() will return the raw field, i.e. the field's bits at their
Steve Block1e0659c2011-05-24 12:43:12 +0100491 // original place in the instruction encoding.
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100492 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
493 // 0xC0810002 ConditionField(instr) will return 0xC0000000.
Steve Block1e0659c2011-05-24 12:43:12 +0100494 // - <Name>Value() will return the field value, shifted back to bit 0.
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100495 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
496 // 0xC0810002 ConditionField(instr) will return 0xC.
Steve Block1e0659c2011-05-24 12:43:12 +0100497
498
Steve Blocka7e24c12009-10-30 11:49:00 +0000499 // Generally applicable fields
Steve Block1e0659c2011-05-24 12:43:12 +0100500 inline Condition ConditionValue() const {
Steve Blocka7e24c12009-10-30 11:49:00 +0000501 return static_cast<Condition>(Bits(31, 28));
502 }
Steve Block1e0659c2011-05-24 12:43:12 +0100503 inline Condition ConditionField() const {
504 return static_cast<Condition>(BitField(31, 28));
505 }
506 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
507 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
Steve Blocka7e24c12009-10-30 11:49:00 +0000508
Steve Block1e0659c2011-05-24 12:43:12 +0100509 inline int TypeValue() const { return Bits(27, 25); }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000510 inline int SpecialValue() const { return Bits(27, 23); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000511
Steve Block1e0659c2011-05-24 12:43:12 +0100512 inline int RnValue() const { return Bits(19, 16); }
513 DECLARE_STATIC_ACCESSOR(RnValue);
514 inline int RdValue() const { return Bits(15, 12); }
515 DECLARE_STATIC_ACCESSOR(RdValue);
516
517 inline int CoprocessorValue() const { return Bits(11, 8); }
Steve Blockd0582a62009-12-15 09:54:21 +0000518 // Support for VFP.
519 // Vn(19-16) | Vd(15-12) | Vm(3-0)
Steve Block1e0659c2011-05-24 12:43:12 +0100520 inline int VnValue() const { return Bits(19, 16); }
521 inline int VmValue() const { return Bits(3, 0); }
522 inline int VdValue() const { return Bits(15, 12); }
523 inline int NValue() const { return Bit(7); }
524 inline int MValue() const { return Bit(5); }
525 inline int DValue() const { return Bit(22); }
526 inline int RtValue() const { return Bits(15, 12); }
527 inline int PValue() const { return Bit(24); }
528 inline int UValue() const { return Bit(23); }
529 inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
530 inline int Opc2Value() const { return Bits(19, 16); }
531 inline int Opc3Value() const { return Bits(7, 6); }
532 inline int SzValue() const { return Bit(8); }
533 inline int VLValue() const { return Bit(20); }
534 inline int VCValue() const { return Bit(8); }
535 inline int VAValue() const { return Bits(23, 21); }
536 inline int VBValue() const { return Bits(6, 5); }
537 inline int VFPNRegValue(VFPRegPrecision pre) {
538 return VFPGlueRegValue(pre, 16, 7);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100539 }
Steve Block1e0659c2011-05-24 12:43:12 +0100540 inline int VFPMRegValue(VFPRegPrecision pre) {
541 return VFPGlueRegValue(pre, 0, 5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100542 }
Steve Block1e0659c2011-05-24 12:43:12 +0100543 inline int VFPDRegValue(VFPRegPrecision pre) {
544 return VFPGlueRegValue(pre, 12, 22);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100545 }
Steve Blockd0582a62009-12-15 09:54:21 +0000546
Steve Blocka7e24c12009-10-30 11:49:00 +0000547 // Fields used in Data processing instructions
Steve Block1e0659c2011-05-24 12:43:12 +0100548 inline int OpcodeValue() const {
Steve Blocka7e24c12009-10-30 11:49:00 +0000549 return static_cast<Opcode>(Bits(24, 21));
550 }
Steve Block1e0659c2011-05-24 12:43:12 +0100551 inline Opcode OpcodeField() const {
552 return static_cast<Opcode>(BitField(24, 21));
553 }
554 inline int SValue() const { return Bit(20); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000555 // with register
Steve Block1e0659c2011-05-24 12:43:12 +0100556 inline int RmValue() const { return Bits(3, 0); }
557 DECLARE_STATIC_ACCESSOR(RmValue);
558 inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
559 inline ShiftOp ShiftField() const {
560 return static_cast<ShiftOp>(BitField(6, 5));
561 }
562 inline int RegShiftValue() const { return Bit(4); }
563 inline int RsValue() const { return Bits(11, 8); }
564 inline int ShiftAmountValue() const { return Bits(11, 7); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000565 // with immediate
Steve Block1e0659c2011-05-24 12:43:12 +0100566 inline int RotateValue() const { return Bits(11, 8); }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000567 DECLARE_STATIC_ACCESSOR(RotateValue);
Steve Block1e0659c2011-05-24 12:43:12 +0100568 inline int Immed8Value() const { return Bits(7, 0); }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000569 DECLARE_STATIC_ACCESSOR(Immed8Value);
Steve Block1e0659c2011-05-24 12:43:12 +0100570 inline int Immed4Value() const { return Bits(19, 16); }
571 inline int ImmedMovwMovtValue() const {
572 return Immed4Value() << 12 | Offset12Value(); }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000573 DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
Steve Blocka7e24c12009-10-30 11:49:00 +0000574
575 // Fields used in Load/Store instructions
Steve Block1e0659c2011-05-24 12:43:12 +0100576 inline int PUValue() const { return Bits(24, 23); }
577 inline int PUField() const { return BitField(24, 23); }
578 inline int BValue() const { return Bit(22); }
579 inline int WValue() const { return Bit(21); }
580 inline int LValue() const { return Bit(20); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000581 // with register uses same fields as Data processing instructions above
582 // with immediate
Steve Block1e0659c2011-05-24 12:43:12 +0100583 inline int Offset12Value() const { return Bits(11, 0); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000584 // multiple
Steve Block1e0659c2011-05-24 12:43:12 +0100585 inline int RlistValue() const { return Bits(15, 0); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000586 // extra loads and stores
Steve Block1e0659c2011-05-24 12:43:12 +0100587 inline int SignValue() const { return Bit(6); }
588 inline int HValue() const { return Bit(5); }
589 inline int ImmedHValue() const { return Bits(11, 8); }
590 inline int ImmedLValue() const { return Bits(3, 0); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000591
592 // Fields used in Branch instructions
Steve Block1e0659c2011-05-24 12:43:12 +0100593 inline int LinkValue() const { return Bit(24); }
594 inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000595
596 // Fields used in Software interrupt instructions
Steve Block1e0659c2011-05-24 12:43:12 +0100597 inline SoftwareInterruptCodes SvcValue() const {
Steve Blocka7e24c12009-10-30 11:49:00 +0000598 return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
599 }
600
601 // Test for special encodings of type 0 instructions (extra loads and stores,
602 // as well as multiplications).
603 inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
604
Steve Block6ded16b2010-05-10 14:33:55 +0100605 // Test for miscellaneous instructions encodings of type 0 instructions.
606 inline bool IsMiscType0() const { return (Bit(24) == 1)
607 && (Bit(23) == 0)
608 && (Bit(20) == 0)
609 && ((Bit(7) == 0)); }
610
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000611 // Test for a nop instruction, which falls under type 1.
612 inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; }
613
Steve Block1e0659c2011-05-24 12:43:12 +0100614 // Test for a stop instruction.
615 inline bool IsStop() const {
616 return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
617 }
618
Steve Blocka7e24c12009-10-30 11:49:00 +0000619 // Special accessors that test for existence of a value.
Steve Block1e0659c2011-05-24 12:43:12 +0100620 inline bool HasS() const { return SValue() == 1; }
621 inline bool HasB() const { return BValue() == 1; }
622 inline bool HasW() const { return WValue() == 1; }
623 inline bool HasL() const { return LValue() == 1; }
624 inline bool HasU() const { return UValue() == 1; }
625 inline bool HasSign() const { return SignValue() == 1; }
626 inline bool HasH() const { return HValue() == 1; }
627 inline bool HasLink() const { return LinkValue() == 1; }
Steve Blocka7e24c12009-10-30 11:49:00 +0000628
Ben Murdoch3bec4d22010-07-22 14:51:16 +0100629 // Decoding the double immediate in the vmov instruction.
630 double DoubleImmedVmov() const;
631
Steve Blocka7e24c12009-10-30 11:49:00 +0000632 // Instructions are read of out a code stream. The only way to get a
633 // reference to an instruction is to convert a pointer. There is no way
Steve Block1e0659c2011-05-24 12:43:12 +0100634 // to allocate or create instances of class Instruction.
635 // Use the At(pc) function to create references to Instruction.
636 static Instruction* At(byte* pc) {
637 return reinterpret_cast<Instruction*>(pc);
638 }
639
Steve Blocka7e24c12009-10-30 11:49:00 +0000640
641 private:
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100642 // Join split register codes, depending on single or double precision.
643 // four_bit is the position of the least-significant bit of the four
644 // bit specifier. one_bit is the position of the additional single bit
645 // specifier.
Steve Block1e0659c2011-05-24 12:43:12 +0100646 inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100647 if (pre == kSinglePrecision) {
648 return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
649 }
650 return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
651 }
652
Steve Block1e0659c2011-05-24 12:43:12 +0100653 // We need to prevent the creation of instances of class Instruction.
654 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
Steve Blocka7e24c12009-10-30 11:49:00 +0000655};
656
657
658// Helper functions for converting between register numbers and names.
659class Registers {
660 public:
661 // Return the name of the register.
662 static const char* Name(int reg);
663
664 // Lookup the register number for the name provided.
665 static int Number(const char* name);
666
667 struct RegisterAlias {
668 int reg;
Steve Blockd0582a62009-12-15 09:54:21 +0000669 const char* name;
Steve Blocka7e24c12009-10-30 11:49:00 +0000670 };
671
672 private:
673 static const char* names_[kNumRegisters];
674 static const RegisterAlias aliases_[];
675};
676
Steve Blockd0582a62009-12-15 09:54:21 +0000677// Helper functions for converting between VFP register numbers and names.
678class VFPRegisters {
679 public:
680 // Return the name of the register.
Steve Block6ded16b2010-05-10 14:33:55 +0100681 static const char* Name(int reg, bool is_double);
682
683 // Lookup the register number for the name provided.
684 // Set flag pointed by is_double to true if register
685 // is double-precision.
686 static int Number(const char* name, bool* is_double);
Steve Blockd0582a62009-12-15 09:54:21 +0000687
688 private:
689 static const char* names_[kNumVFPRegisters];
690};
Steve Blocka7e24c12009-10-30 11:49:00 +0000691
692
Steve Block1e0659c2011-05-24 12:43:12 +0100693} } // namespace v8::internal
Steve Blocka7e24c12009-10-30 11:49:00 +0000694
695#endif // V8_ARM_CONSTANTS_ARM_H_