blob: c9d0f3135d3e023a93fb19dd1abf5157b89baa7c [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_HEAP_HEAP_H_
6#define V8_HEAP_HEAP_H_
7
8#include <cmath>
9
10#include "src/allocation.h"
11#include "src/assert-scope.h"
12#include "src/counters.h"
13#include "src/globals.h"
14#include "src/heap/gc-idle-time-handler.h"
15#include "src/heap/gc-tracer.h"
16#include "src/heap/incremental-marking.h"
17#include "src/heap/mark-compact.h"
18#include "src/heap/objects-visiting.h"
19#include "src/heap/spaces.h"
20#include "src/heap/store-buffer.h"
21#include "src/list.h"
22#include "src/splay-tree-inl.h"
23
24namespace v8 {
25namespace internal {
26
27// Defines all the roots in Heap.
28#define STRONG_ROOT_LIST(V) \
29 V(Map, byte_array_map, ByteArrayMap) \
30 V(Map, free_space_map, FreeSpaceMap) \
31 V(Map, one_pointer_filler_map, OnePointerFillerMap) \
32 V(Map, two_pointer_filler_map, TwoPointerFillerMap) \
33 /* Cluster the most popular ones in a few cache lines here at the top. */ \
34 V(Smi, store_buffer_top, StoreBufferTop) \
35 V(Oddball, undefined_value, UndefinedValue) \
36 V(Oddball, the_hole_value, TheHoleValue) \
37 V(Oddball, null_value, NullValue) \
38 V(Oddball, true_value, TrueValue) \
39 V(Oddball, false_value, FalseValue) \
40 V(Oddball, uninitialized_value, UninitializedValue) \
41 V(Oddball, exception, Exception) \
42 V(Map, cell_map, CellMap) \
43 V(Map, global_property_cell_map, GlobalPropertyCellMap) \
44 V(Map, shared_function_info_map, SharedFunctionInfoMap) \
45 V(Map, meta_map, MetaMap) \
46 V(Map, heap_number_map, HeapNumberMap) \
47 V(Map, mutable_heap_number_map, MutableHeapNumberMap) \
48 V(Map, native_context_map, NativeContextMap) \
49 V(Map, fixed_array_map, FixedArrayMap) \
50 V(Map, code_map, CodeMap) \
51 V(Map, scope_info_map, ScopeInfoMap) \
52 V(Map, fixed_cow_array_map, FixedCOWArrayMap) \
53 V(Map, fixed_double_array_map, FixedDoubleArrayMap) \
54 V(Map, constant_pool_array_map, ConstantPoolArrayMap) \
55 V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel) \
56 V(Map, hash_table_map, HashTableMap) \
57 V(Map, ordered_hash_table_map, OrderedHashTableMap) \
58 V(FixedArray, empty_fixed_array, EmptyFixedArray) \
59 V(ByteArray, empty_byte_array, EmptyByteArray) \
60 V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray) \
61 V(ConstantPoolArray, empty_constant_pool_array, EmptyConstantPoolArray) \
62 V(Oddball, arguments_marker, ArgumentsMarker) \
63 /* The roots above this line should be boring from a GC point of view. */ \
64 /* This means they are never in new space and never on a page that is */ \
65 /* being compacted. */ \
66 V(FixedArray, number_string_cache, NumberStringCache) \
67 V(Object, instanceof_cache_function, InstanceofCacheFunction) \
68 V(Object, instanceof_cache_map, InstanceofCacheMap) \
69 V(Object, instanceof_cache_answer, InstanceofCacheAnswer) \
70 V(FixedArray, single_character_string_cache, SingleCharacterStringCache) \
71 V(FixedArray, string_split_cache, StringSplitCache) \
72 V(FixedArray, regexp_multiple_cache, RegExpMultipleCache) \
73 V(Oddball, termination_exception, TerminationException) \
74 V(Smi, hash_seed, HashSeed) \
75 V(Map, symbol_map, SymbolMap) \
76 V(Map, string_map, StringMap) \
77 V(Map, one_byte_string_map, OneByteStringMap) \
78 V(Map, cons_string_map, ConsStringMap) \
79 V(Map, cons_one_byte_string_map, ConsOneByteStringMap) \
80 V(Map, sliced_string_map, SlicedStringMap) \
81 V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap) \
82 V(Map, external_string_map, ExternalStringMap) \
83 V(Map, external_string_with_one_byte_data_map, \
84 ExternalStringWithOneByteDataMap) \
85 V(Map, external_one_byte_string_map, ExternalOneByteStringMap) \
86 V(Map, short_external_string_map, ShortExternalStringMap) \
87 V(Map, short_external_string_with_one_byte_data_map, \
88 ShortExternalStringWithOneByteDataMap) \
89 V(Map, internalized_string_map, InternalizedStringMap) \
90 V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap) \
91 V(Map, external_internalized_string_map, ExternalInternalizedStringMap) \
92 V(Map, external_internalized_string_with_one_byte_data_map, \
93 ExternalInternalizedStringWithOneByteDataMap) \
94 V(Map, external_one_byte_internalized_string_map, \
95 ExternalOneByteInternalizedStringMap) \
96 V(Map, short_external_internalized_string_map, \
97 ShortExternalInternalizedStringMap) \
98 V(Map, short_external_internalized_string_with_one_byte_data_map, \
99 ShortExternalInternalizedStringWithOneByteDataMap) \
100 V(Map, short_external_one_byte_internalized_string_map, \
101 ShortExternalOneByteInternalizedStringMap) \
102 V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap) \
103 V(Map, undetectable_string_map, UndetectableStringMap) \
104 V(Map, undetectable_one_byte_string_map, UndetectableOneByteStringMap) \
105 V(Map, external_int8_array_map, ExternalInt8ArrayMap) \
106 V(Map, external_uint8_array_map, ExternalUint8ArrayMap) \
107 V(Map, external_int16_array_map, ExternalInt16ArrayMap) \
108 V(Map, external_uint16_array_map, ExternalUint16ArrayMap) \
109 V(Map, external_int32_array_map, ExternalInt32ArrayMap) \
110 V(Map, external_uint32_array_map, ExternalUint32ArrayMap) \
111 V(Map, external_float32_array_map, ExternalFloat32ArrayMap) \
112 V(Map, external_float64_array_map, ExternalFloat64ArrayMap) \
113 V(Map, external_uint8_clamped_array_map, ExternalUint8ClampedArrayMap) \
114 V(ExternalArray, empty_external_int8_array, EmptyExternalInt8Array) \
115 V(ExternalArray, empty_external_uint8_array, EmptyExternalUint8Array) \
116 V(ExternalArray, empty_external_int16_array, EmptyExternalInt16Array) \
117 V(ExternalArray, empty_external_uint16_array, EmptyExternalUint16Array) \
118 V(ExternalArray, empty_external_int32_array, EmptyExternalInt32Array) \
119 V(ExternalArray, empty_external_uint32_array, EmptyExternalUint32Array) \
120 V(ExternalArray, empty_external_float32_array, EmptyExternalFloat32Array) \
121 V(ExternalArray, empty_external_float64_array, EmptyExternalFloat64Array) \
122 V(ExternalArray, empty_external_uint8_clamped_array, \
123 EmptyExternalUint8ClampedArray) \
124 V(Map, fixed_uint8_array_map, FixedUint8ArrayMap) \
125 V(Map, fixed_int8_array_map, FixedInt8ArrayMap) \
126 V(Map, fixed_uint16_array_map, FixedUint16ArrayMap) \
127 V(Map, fixed_int16_array_map, FixedInt16ArrayMap) \
128 V(Map, fixed_uint32_array_map, FixedUint32ArrayMap) \
129 V(Map, fixed_int32_array_map, FixedInt32ArrayMap) \
130 V(Map, fixed_float32_array_map, FixedFloat32ArrayMap) \
131 V(Map, fixed_float64_array_map, FixedFloat64ArrayMap) \
132 V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap) \
133 V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array) \
134 V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array) \
135 V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array) \
136 V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array) \
137 V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array) \
138 V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array) \
139 V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array) \
140 V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array) \
141 V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array, \
142 EmptyFixedUint8ClampedArray) \
143 V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap) \
144 V(Map, function_context_map, FunctionContextMap) \
145 V(Map, catch_context_map, CatchContextMap) \
146 V(Map, with_context_map, WithContextMap) \
147 V(Map, block_context_map, BlockContextMap) \
148 V(Map, module_context_map, ModuleContextMap) \
149 V(Map, global_context_map, GlobalContextMap) \
150 V(Map, undefined_map, UndefinedMap) \
151 V(Map, the_hole_map, TheHoleMap) \
152 V(Map, null_map, NullMap) \
153 V(Map, boolean_map, BooleanMap) \
154 V(Map, uninitialized_map, UninitializedMap) \
155 V(Map, arguments_marker_map, ArgumentsMarkerMap) \
156 V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap) \
157 V(Map, exception_map, ExceptionMap) \
158 V(Map, termination_exception_map, TerminationExceptionMap) \
159 V(Map, message_object_map, JSMessageObjectMap) \
160 V(Map, foreign_map, ForeignMap) \
161 V(HeapNumber, nan_value, NanValue) \
162 V(HeapNumber, infinity_value, InfinityValue) \
163 V(HeapNumber, minus_zero_value, MinusZeroValue) \
164 V(Map, neander_map, NeanderMap) \
165 V(JSObject, message_listeners, MessageListeners) \
166 V(UnseededNumberDictionary, code_stubs, CodeStubs) \
167 V(UnseededNumberDictionary, non_monomorphic_cache, NonMonomorphicCache) \
168 V(PolymorphicCodeCache, polymorphic_code_cache, PolymorphicCodeCache) \
169 V(Code, js_entry_code, JsEntryCode) \
170 V(Code, js_construct_entry_code, JsConstructEntryCode) \
171 V(FixedArray, natives_source_cache, NativesSourceCache) \
172 V(Script, empty_script, EmptyScript) \
173 V(NameDictionary, intrinsic_function_names, IntrinsicFunctionNames) \
174 V(Cell, undefined_cell, UndefineCell) \
175 V(JSObject, observation_state, ObservationState) \
176 V(Map, external_map, ExternalMap) \
177 V(Object, symbol_registry, SymbolRegistry) \
178 V(Symbol, frozen_symbol, FrozenSymbol) \
179 V(Symbol, nonexistent_symbol, NonExistentSymbol) \
180 V(Symbol, elements_transition_symbol, ElementsTransitionSymbol) \
181 V(SeededNumberDictionary, empty_slow_element_dictionary, \
182 EmptySlowElementDictionary) \
183 V(Symbol, observed_symbol, ObservedSymbol) \
184 V(Symbol, uninitialized_symbol, UninitializedSymbol) \
185 V(Symbol, megamorphic_symbol, MegamorphicSymbol) \
186 V(Symbol, premonomorphic_symbol, PremonomorphicSymbol) \
187 V(Symbol, generic_symbol, GenericSymbol) \
188 V(Symbol, stack_trace_symbol, StackTraceSymbol) \
189 V(Symbol, detailed_stack_trace_symbol, DetailedStackTraceSymbol) \
190 V(Symbol, normal_ic_symbol, NormalICSymbol) \
191 V(Symbol, home_object_symbol, HomeObjectSymbol) \
192 V(FixedArray, materialized_objects, MaterializedObjects) \
193 V(FixedArray, allocation_sites_scratchpad, AllocationSitesScratchpad) \
194 V(FixedArray, microtask_queue, MicrotaskQueue)
195
196// Entries in this list are limited to Smis and are not visited during GC.
197#define SMI_ROOT_LIST(V) \
198 V(Smi, stack_limit, StackLimit) \
199 V(Smi, real_stack_limit, RealStackLimit) \
200 V(Smi, last_script_id, LastScriptId) \
201 V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset) \
202 V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset) \
203 V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset) \
204 V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset)
205
206#define ROOT_LIST(V) \
207 STRONG_ROOT_LIST(V) \
208 SMI_ROOT_LIST(V) \
209 V(StringTable, string_table, StringTable)
210
211// Heap roots that are known to be immortal immovable, for which we can safely
212// skip write barriers.
213#define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \
214 V(byte_array_map) \
215 V(free_space_map) \
216 V(one_pointer_filler_map) \
217 V(two_pointer_filler_map) \
218 V(undefined_value) \
219 V(the_hole_value) \
220 V(null_value) \
221 V(true_value) \
222 V(false_value) \
223 V(uninitialized_value) \
224 V(cell_map) \
225 V(global_property_cell_map) \
226 V(shared_function_info_map) \
227 V(meta_map) \
228 V(heap_number_map) \
229 V(mutable_heap_number_map) \
230 V(native_context_map) \
231 V(fixed_array_map) \
232 V(code_map) \
233 V(scope_info_map) \
234 V(fixed_cow_array_map) \
235 V(fixed_double_array_map) \
236 V(constant_pool_array_map) \
237 V(no_interceptor_result_sentinel) \
238 V(hash_table_map) \
239 V(ordered_hash_table_map) \
240 V(empty_fixed_array) \
241 V(empty_byte_array) \
242 V(empty_descriptor_array) \
243 V(empty_constant_pool_array) \
244 V(arguments_marker) \
245 V(symbol_map) \
246 V(sloppy_arguments_elements_map) \
247 V(function_context_map) \
248 V(catch_context_map) \
249 V(with_context_map) \
250 V(block_context_map) \
251 V(module_context_map) \
252 V(global_context_map) \
253 V(undefined_map) \
254 V(the_hole_map) \
255 V(null_map) \
256 V(boolean_map) \
257 V(uninitialized_map) \
258 V(message_object_map) \
259 V(foreign_map) \
260 V(neander_map)
261
262#define INTERNALIZED_STRING_LIST(V) \
263 V(Object_string, "Object") \
264 V(proto_string, "__proto__") \
265 V(arguments_string, "arguments") \
266 V(Arguments_string, "Arguments") \
267 V(caller_string, "caller") \
268 V(boolean_string, "boolean") \
269 V(Boolean_string, "Boolean") \
270 V(callee_string, "callee") \
271 V(constructor_string, "constructor") \
272 V(dot_result_string, ".result") \
273 V(dot_for_string, ".for.") \
274 V(eval_string, "eval") \
275 V(empty_string, "") \
276 V(function_string, "function") \
277 V(Function_string, "Function") \
278 V(length_string, "length") \
279 V(name_string, "name") \
280 V(null_string, "null") \
281 V(number_string, "number") \
282 V(Number_string, "Number") \
283 V(nan_string, "NaN") \
284 V(source_string, "source") \
285 V(source_url_string, "source_url") \
286 V(source_mapping_url_string, "source_mapping_url") \
287 V(global_string, "global") \
288 V(ignore_case_string, "ignoreCase") \
289 V(multiline_string, "multiline") \
290 V(sticky_string, "sticky") \
291 V(harmony_regexps_string, "harmony_regexps") \
292 V(input_string, "input") \
293 V(index_string, "index") \
294 V(last_index_string, "lastIndex") \
295 V(object_string, "object") \
296 V(prototype_string, "prototype") \
297 V(string_string, "string") \
298 V(String_string, "String") \
299 V(symbol_string, "symbol") \
300 V(Symbol_string, "Symbol") \
301 V(Map_string, "Map") \
302 V(Set_string, "Set") \
303 V(WeakMap_string, "WeakMap") \
304 V(WeakSet_string, "WeakSet") \
305 V(for_string, "for") \
306 V(for_api_string, "for_api") \
307 V(for_intern_string, "for_intern") \
308 V(private_api_string, "private_api") \
309 V(private_intern_string, "private_intern") \
310 V(Date_string, "Date") \
311 V(char_at_string, "CharAt") \
312 V(undefined_string, "undefined") \
313 V(value_of_string, "valueOf") \
314 V(stack_string, "stack") \
315 V(toJSON_string, "toJSON") \
316 V(KeyedLoadMonomorphic_string, "KeyedLoadMonomorphic") \
317 V(KeyedStoreMonomorphic_string, "KeyedStoreMonomorphic") \
318 V(stack_overflow_string, "kStackOverflowBoilerplate") \
319 V(illegal_access_string, "illegal access") \
320 V(cell_value_string, "%cell_value") \
321 V(illegal_argument_string, "illegal argument") \
322 V(identity_hash_string, "v8::IdentityHash") \
323 V(closure_string, "(closure)") \
324 V(dot_string, ".") \
325 V(compare_ic_string, "==") \
326 V(strict_compare_ic_string, "===") \
327 V(infinity_string, "Infinity") \
328 V(minus_infinity_string, "-Infinity") \
329 V(query_colon_string, "(?:)") \
330 V(Generator_string, "Generator") \
331 V(throw_string, "throw") \
332 V(done_string, "done") \
333 V(value_string, "value") \
334 V(next_string, "next") \
335 V(byte_length_string, "byteLength") \
336 V(byte_offset_string, "byteOffset") \
337 V(intl_initialized_marker_string, "v8::intl_initialized_marker") \
338 V(intl_impl_object_string, "v8::intl_object")
339
340// Forward declarations.
341class HeapStats;
342class Isolate;
343class WeakObjectRetainer;
344
345
346typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
347 Object** pointer);
348
349class StoreBufferRebuilder {
350 public:
351 explicit StoreBufferRebuilder(StoreBuffer* store_buffer)
352 : store_buffer_(store_buffer) {}
353
354 void Callback(MemoryChunk* page, StoreBufferEvent event);
355
356 private:
357 StoreBuffer* store_buffer_;
358
359 // We record in this variable how full the store buffer was when we started
360 // iterating over the current page, finding pointers to new space. If the
361 // store buffer overflows again we can exempt the page from the store buffer
362 // by rewinding to this point instead of having to search the store buffer.
363 Object*** start_of_current_page_;
364 // The current page we are scanning in the store buffer iterator.
365 MemoryChunk* current_page_;
366};
367
368
369// A queue of objects promoted during scavenge. Each object is accompanied
370// by it's size to avoid dereferencing a map pointer for scanning.
371class PromotionQueue {
372 public:
373 explicit PromotionQueue(Heap* heap)
374 : front_(NULL),
375 rear_(NULL),
376 limit_(NULL),
377 emergency_stack_(0),
378 heap_(heap) {}
379
380 void Initialize();
381
382 void Destroy() {
383 DCHECK(is_empty());
384 delete emergency_stack_;
385 emergency_stack_ = NULL;
386 }
387
388 Page* GetHeadPage() {
389 return Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
390 }
391
392 void SetNewLimit(Address limit) {
393 limit_ = reinterpret_cast<intptr_t*>(limit);
394
395 if (limit_ <= rear_) {
396 return;
397 }
398
399 RelocateQueueHead();
400 }
401
402 bool IsBelowPromotionQueue(Address to_space_top) {
403 // If the given to-space top pointer and the head of the promotion queue
404 // are not on the same page, then the to-space objects are below the
405 // promotion queue.
406 if (GetHeadPage() != Page::FromAddress(to_space_top)) {
407 return true;
408 }
409 // If the to space top pointer is smaller or equal than the promotion
410 // queue head, then the to-space objects are below the promotion queue.
411 return reinterpret_cast<intptr_t*>(to_space_top) <= rear_;
412 }
413
414 bool is_empty() {
415 return (front_ == rear_) &&
416 (emergency_stack_ == NULL || emergency_stack_->length() == 0);
417 }
418
419 inline void insert(HeapObject* target, int size);
420
421 void remove(HeapObject** target, int* size) {
422 DCHECK(!is_empty());
423 if (front_ == rear_) {
424 Entry e = emergency_stack_->RemoveLast();
425 *target = e.obj_;
426 *size = e.size_;
427 return;
428 }
429
430 if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(front_))) {
431 NewSpacePage* front_page =
432 NewSpacePage::FromAddress(reinterpret_cast<Address>(front_));
433 DCHECK(!front_page->prev_page()->is_anchor());
434 front_ = reinterpret_cast<intptr_t*>(front_page->prev_page()->area_end());
435 }
436 *target = reinterpret_cast<HeapObject*>(*(--front_));
437 *size = static_cast<int>(*(--front_));
438 // Assert no underflow.
439 SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
440 reinterpret_cast<Address>(front_));
441 }
442
443 private:
444 // The front of the queue is higher in the memory page chain than the rear.
445 intptr_t* front_;
446 intptr_t* rear_;
447 intptr_t* limit_;
448
449 static const int kEntrySizeInWords = 2;
450
451 struct Entry {
452 Entry(HeapObject* obj, int size) : obj_(obj), size_(size) {}
453
454 HeapObject* obj_;
455 int size_;
456 };
457 List<Entry>* emergency_stack_;
458
459 Heap* heap_;
460
461 void RelocateQueueHead();
462
463 DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
464};
465
466
467typedef void (*ScavengingCallback)(Map* map, HeapObject** slot,
468 HeapObject* object);
469
470
471// External strings table is a place where all external strings are
472// registered. We need to keep track of such strings to properly
473// finalize them.
474class ExternalStringTable {
475 public:
476 // Registers an external string.
477 inline void AddString(String* string);
478
479 inline void Iterate(ObjectVisitor* v);
480
481 // Restores internal invariant and gets rid of collected strings.
482 // Must be called after each Iterate() that modified the strings.
483 void CleanUp();
484
485 // Destroys all allocated memory.
486 void TearDown();
487
488 private:
489 explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
490
491 friend class Heap;
492
493 inline void Verify();
494
495 inline void AddOldString(String* string);
496
497 // Notifies the table that only a prefix of the new list is valid.
498 inline void ShrinkNewStrings(int position);
499
500 // To speed up scavenge collections new space string are kept
501 // separate from old space strings.
502 List<Object*> new_space_strings_;
503 List<Object*> old_space_strings_;
504
505 Heap* heap_;
506
507 DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
508};
509
510
511enum ArrayStorageAllocationMode {
512 DONT_INITIALIZE_ARRAY_ELEMENTS,
513 INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
514};
515
516
517class Heap {
518 public:
519 // Configure heap size in MB before setup. Return false if the heap has been
520 // set up already.
521 bool ConfigureHeap(int max_semi_space_size, int max_old_space_size,
522 int max_executable_size, size_t code_range_size);
523 bool ConfigureHeapDefault();
524
525 // Prepares the heap, setting up memory areas that are needed in the isolate
526 // without actually creating any objects.
527 bool SetUp();
528
529 // Bootstraps the object heap with the core set of objects required to run.
530 // Returns whether it succeeded.
531 bool CreateHeapObjects();
532
533 // Destroys all memory allocated by the heap.
534 void TearDown();
535
536 // Set the stack limit in the roots_ array. Some architectures generate
537 // code that looks here, because it is faster than loading from the static
538 // jslimit_/real_jslimit_ variable in the StackGuard.
539 void SetStackLimits();
540
541 // Returns whether SetUp has been called.
542 bool HasBeenSetUp();
543
544 // Returns the maximum amount of memory reserved for the heap. For
545 // the young generation, we reserve 4 times the amount needed for a
546 // semi space. The young generation consists of two semi spaces and
547 // we reserve twice the amount needed for those in order to ensure
548 // that new space can be aligned to its size.
549 intptr_t MaxReserved() {
550 return 4 * reserved_semispace_size_ + max_old_generation_size_;
551 }
552 int MaxSemiSpaceSize() { return max_semi_space_size_; }
553 int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
554 int InitialSemiSpaceSize() { return initial_semispace_size_; }
555 intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
556 intptr_t MaxExecutableSize() { return max_executable_size_; }
557
558 // Returns the capacity of the heap in bytes w/o growing. Heap grows when
559 // more spaces are needed until it reaches the limit.
560 intptr_t Capacity();
561
562 // Returns the amount of memory currently committed for the heap.
563 intptr_t CommittedMemory();
564
565 // Returns the amount of executable memory currently committed for the heap.
566 intptr_t CommittedMemoryExecutable();
567
568 // Returns the amount of phyical memory currently committed for the heap.
569 size_t CommittedPhysicalMemory();
570
571 // Returns the maximum amount of memory ever committed for the heap.
572 intptr_t MaximumCommittedMemory() { return maximum_committed_; }
573
574 // Updates the maximum committed memory for the heap. Should be called
575 // whenever a space grows.
576 void UpdateMaximumCommitted();
577
578 // Returns the available bytes in space w/o growing.
579 // Heap doesn't guarantee that it can allocate an object that requires
580 // all available bytes. Check MaxHeapObjectSize() instead.
581 intptr_t Available();
582
583 // Returns of size of all objects residing in the heap.
584 intptr_t SizeOfObjects();
585
586 // Return the starting address and a mask for the new space. And-masking an
587 // address with the mask will result in the start address of the new space
588 // for all addresses in either semispace.
589 Address NewSpaceStart() { return new_space_.start(); }
590 uintptr_t NewSpaceMask() { return new_space_.mask(); }
591 Address NewSpaceTop() { return new_space_.top(); }
592
593 NewSpace* new_space() { return &new_space_; }
594 OldSpace* old_pointer_space() { return old_pointer_space_; }
595 OldSpace* old_data_space() { return old_data_space_; }
596 OldSpace* code_space() { return code_space_; }
597 MapSpace* map_space() { return map_space_; }
598 CellSpace* cell_space() { return cell_space_; }
599 PropertyCellSpace* property_cell_space() { return property_cell_space_; }
600 LargeObjectSpace* lo_space() { return lo_space_; }
601 PagedSpace* paged_space(int idx) {
602 switch (idx) {
603 case OLD_POINTER_SPACE:
604 return old_pointer_space();
605 case OLD_DATA_SPACE:
606 return old_data_space();
607 case MAP_SPACE:
608 return map_space();
609 case CELL_SPACE:
610 return cell_space();
611 case PROPERTY_CELL_SPACE:
612 return property_cell_space();
613 case CODE_SPACE:
614 return code_space();
615 case NEW_SPACE:
616 case LO_SPACE:
617 UNREACHABLE();
618 }
619 return NULL;
620 }
621
622 bool always_allocate() { return always_allocate_scope_depth_ != 0; }
623 Address always_allocate_scope_depth_address() {
624 return reinterpret_cast<Address>(&always_allocate_scope_depth_);
625 }
626
627 Address* NewSpaceAllocationTopAddress() {
628 return new_space_.allocation_top_address();
629 }
630 Address* NewSpaceAllocationLimitAddress() {
631 return new_space_.allocation_limit_address();
632 }
633
634 Address* OldPointerSpaceAllocationTopAddress() {
635 return old_pointer_space_->allocation_top_address();
636 }
637 Address* OldPointerSpaceAllocationLimitAddress() {
638 return old_pointer_space_->allocation_limit_address();
639 }
640
641 Address* OldDataSpaceAllocationTopAddress() {
642 return old_data_space_->allocation_top_address();
643 }
644 Address* OldDataSpaceAllocationLimitAddress() {
645 return old_data_space_->allocation_limit_address();
646 }
647
648 // Returns a deep copy of the JavaScript object.
649 // Properties and elements are copied too.
650 // Optionally takes an AllocationSite to be appended in an AllocationMemento.
651 MUST_USE_RESULT AllocationResult
652 CopyJSObject(JSObject* source, AllocationSite* site = NULL);
653
654 // Clear the Instanceof cache (used when a prototype changes).
655 inline void ClearInstanceofCache();
656
657 // Iterates the whole code space to clear all ICs of the given kind.
658 void ClearAllICsByKind(Code::Kind kind);
659
660 // For use during bootup.
661 void RepairFreeListsAfterBoot();
662
663 template <typename T>
664 static inline bool IsOneByte(T t, int chars);
665
666 // Move len elements within a given array from src_index index to dst_index
667 // index.
668 void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
669
670 // Sloppy mode arguments object size.
671 static const int kSloppyArgumentsObjectSize =
672 JSObject::kHeaderSize + 2 * kPointerSize;
673 // Strict mode arguments has no callee so it is smaller.
674 static const int kStrictArgumentsObjectSize =
675 JSObject::kHeaderSize + 1 * kPointerSize;
676 // Indicies for direct access into argument objects.
677 static const int kArgumentsLengthIndex = 0;
678 // callee is only valid in sloppy mode.
679 static const int kArgumentsCalleeIndex = 1;
680
681 // Finalizes an external string by deleting the associated external
682 // data and clearing the resource pointer.
683 inline void FinalizeExternalString(String* string);
684
685 // Initialize a filler object to keep the ability to iterate over the heap
686 // when introducing gaps within pages.
687 void CreateFillerObjectAt(Address addr, int size);
688
689 bool CanMoveObjectStart(HeapObject* object);
690
691 // Indicates whether live bytes adjustment is triggered from within the GC
692 // code or from mutator code.
693 enum InvocationMode { FROM_GC, FROM_MUTATOR };
694
695 // Maintain consistency of live bytes during incremental marking.
696 void AdjustLiveBytes(Address address, int by, InvocationMode mode);
697
698 // Trim the given array from the left. Note that this relocates the object
699 // start and hence is only valid if there is only a single reference to it.
700 FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
701
702 // Trim the given array from the right.
703 template<Heap::InvocationMode mode>
704 void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
705
706 // Converts the given boolean condition to JavaScript boolean value.
707 inline Object* ToBoolean(bool condition);
708
709 // Performs garbage collection operation.
710 // Returns whether there is a chance that another major GC could
711 // collect more garbage.
712 inline bool CollectGarbage(
713 AllocationSpace space, const char* gc_reason = NULL,
714 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
715
716 static const int kNoGCFlags = 0;
717 static const int kReduceMemoryFootprintMask = 1;
718 static const int kAbortIncrementalMarkingMask = 2;
719
720 // Making the heap iterable requires us to abort incremental marking.
721 static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;
722
723 // Performs a full garbage collection. If (flags & kMakeHeapIterableMask) is
724 // non-zero, then the slower precise sweeper is used, which leaves the heap
725 // in a state where we can iterate over the heap visiting all objects.
726 void CollectAllGarbage(
727 int flags, const char* gc_reason = NULL,
728 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
729
730 // Last hope GC, should try to squeeze as much as possible.
731 void CollectAllAvailableGarbage(const char* gc_reason = NULL);
732
733 // Check whether the heap is currently iterable.
734 bool IsHeapIterable();
735
736 // Notify the heap that a context has been disposed.
737 int NotifyContextDisposed();
738
739 inline void increment_scan_on_scavenge_pages() {
740 scan_on_scavenge_pages_++;
741 if (FLAG_gc_verbose) {
742 PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
743 }
744 }
745
746 inline void decrement_scan_on_scavenge_pages() {
747 scan_on_scavenge_pages_--;
748 if (FLAG_gc_verbose) {
749 PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
750 }
751 }
752
753 PromotionQueue* promotion_queue() { return &promotion_queue_; }
754
755 void AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback,
756 GCType gc_type_filter, bool pass_isolate = true);
757 void RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback);
758
759 void AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback,
760 GCType gc_type_filter, bool pass_isolate = true);
761 void RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback);
762
763// Heap root getters. We have versions with and without type::cast() here.
764// You can't use type::cast during GC because the assert fails.
765// TODO(1490): Try removing the unchecked accessors, now that GC marking does
766// not corrupt the map.
767#define ROOT_ACCESSOR(type, name, camel_name) \
768 type* name() { return type::cast(roots_[k##camel_name##RootIndex]); } \
769 type* raw_unchecked_##name() { \
770 return reinterpret_cast<type*>(roots_[k##camel_name##RootIndex]); \
771 }
772 ROOT_LIST(ROOT_ACCESSOR)
773#undef ROOT_ACCESSOR
774
775// Utility type maps
776#define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
777 Map* name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); }
778 STRUCT_LIST(STRUCT_MAP_ACCESSOR)
779#undef STRUCT_MAP_ACCESSOR
780
781#define STRING_ACCESSOR(name, str) \
782 String* name() { return String::cast(roots_[k##name##RootIndex]); }
783 INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
784#undef STRING_ACCESSOR
785
786 // The hidden_string is special because it is the empty string, but does
787 // not match the empty string.
788 String* hidden_string() { return hidden_string_; }
789
790 void set_native_contexts_list(Object* object) {
791 native_contexts_list_ = object;
792 }
793 Object* native_contexts_list() const { return native_contexts_list_; }
794
795 void set_array_buffers_list(Object* object) { array_buffers_list_ = object; }
796 Object* array_buffers_list() const { return array_buffers_list_; }
797
798 void set_allocation_sites_list(Object* object) {
799 allocation_sites_list_ = object;
800 }
801 Object* allocation_sites_list() { return allocation_sites_list_; }
802
803 // Used in CreateAllocationSiteStub and the (de)serializer.
804 Object** allocation_sites_list_address() { return &allocation_sites_list_; }
805
806 Object* weak_object_to_code_table() { return weak_object_to_code_table_; }
807
808 void set_encountered_weak_collections(Object* weak_collection) {
809 encountered_weak_collections_ = weak_collection;
810 }
811 Object* encountered_weak_collections() const {
812 return encountered_weak_collections_;
813 }
814
815 // Number of mark-sweeps.
816 unsigned int ms_count() { return ms_count_; }
817
818 // Iterates over all roots in the heap.
819 void IterateRoots(ObjectVisitor* v, VisitMode mode);
820 // Iterates over all strong roots in the heap.
821 void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
822 // Iterates over entries in the smi roots list. Only interesting to the
823 // serializer/deserializer, since GC does not care about smis.
824 void IterateSmiRoots(ObjectVisitor* v);
825 // Iterates over all the other roots in the heap.
826 void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
827
828 // Iterate pointers to from semispace of new space found in memory interval
829 // from start to end.
830 void IterateAndMarkPointersToFromSpace(Address start, Address end,
831 ObjectSlotCallback callback);
832
833 // Returns whether the object resides in new space.
834 inline bool InNewSpace(Object* object);
835 inline bool InNewSpace(Address address);
836 inline bool InNewSpacePage(Address address);
837 inline bool InFromSpace(Object* object);
838 inline bool InToSpace(Object* object);
839
840 // Returns whether the object resides in old pointer space.
841 inline bool InOldPointerSpace(Address address);
842 inline bool InOldPointerSpace(Object* object);
843
844 // Returns whether the object resides in old data space.
845 inline bool InOldDataSpace(Address address);
846 inline bool InOldDataSpace(Object* object);
847
848 // Checks whether an address/object in the heap (including auxiliary
849 // area and unused area).
850 bool Contains(Address addr);
851 bool Contains(HeapObject* value);
852
853 // Checks whether an address/object in a space.
854 // Currently used by tests, serialization and heap verification only.
855 bool InSpace(Address addr, AllocationSpace space);
856 bool InSpace(HeapObject* value, AllocationSpace space);
857
858 // Finds out which space an object should get promoted to based on its type.
859 inline OldSpace* TargetSpace(HeapObject* object);
860 static inline AllocationSpace TargetSpaceId(InstanceType type);
861
862 // Checks whether the given object is allowed to be migrated from it's
863 // current space into the given destination space. Used for debugging.
864 inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
865
866 // Sets the stub_cache_ (only used when expanding the dictionary).
867 void public_set_code_stubs(UnseededNumberDictionary* value) {
868 roots_[kCodeStubsRootIndex] = value;
869 }
870
871 // Support for computing object sizes for old objects during GCs. Returns
872 // a function that is guaranteed to be safe for computing object sizes in
873 // the current GC phase.
874 HeapObjectCallback GcSafeSizeOfOldObjectFunction() {
875 return gc_safe_size_of_old_object_;
876 }
877
878 // Sets the non_monomorphic_cache_ (only used when expanding the dictionary).
879 void public_set_non_monomorphic_cache(UnseededNumberDictionary* value) {
880 roots_[kNonMonomorphicCacheRootIndex] = value;
881 }
882
883 void public_set_empty_script(Script* script) {
884 roots_[kEmptyScriptRootIndex] = script;
885 }
886
887 void public_set_store_buffer_top(Address* top) {
888 roots_[kStoreBufferTopRootIndex] = reinterpret_cast<Smi*>(top);
889 }
890
891 void public_set_materialized_objects(FixedArray* objects) {
892 roots_[kMaterializedObjectsRootIndex] = objects;
893 }
894
895 // Generated code can embed this address to get access to the roots.
896 Object** roots_array_start() { return roots_; }
897
898 Address* store_buffer_top_address() {
899 return reinterpret_cast<Address*>(&roots_[kStoreBufferTopRootIndex]);
900 }
901
902#ifdef VERIFY_HEAP
903 // Verify the heap is in its normal state before or after a GC.
904 void Verify();
905
906
907 bool weak_embedded_objects_verification_enabled() {
908 return no_weak_object_verification_scope_depth_ == 0;
909 }
910#endif
911
912#ifdef DEBUG
913 void Print();
914 void PrintHandles();
915
916 void OldPointerSpaceCheckStoreBuffer();
917 void MapSpaceCheckStoreBuffer();
918 void LargeObjectSpaceCheckStoreBuffer();
919
920 // Report heap statistics.
921 void ReportHeapStatistics(const char* title);
922 void ReportCodeStatistics(const char* title);
923#endif
924
925 // Zapping is needed for verify heap, and always done in debug builds.
926 static inline bool ShouldZapGarbage() {
927#ifdef DEBUG
928 return true;
929#else
930#ifdef VERIFY_HEAP
931 return FLAG_verify_heap;
932#else
933 return false;
934#endif
935#endif
936 }
937
938 // Number of "runtime allocations" done so far.
939 uint32_t allocations_count() { return allocations_count_; }
940
941 // Returns deterministic "time" value in ms. Works only with
942 // FLAG_verify_predictable.
943 double synthetic_time() { return allocations_count_ / 2.0; }
944
945 // Print short heap statistics.
946 void PrintShortHeapStatistics();
947
948 // Write barrier support for address[offset] = o.
949 INLINE(void RecordWrite(Address address, int offset));
950
951 // Write barrier support for address[start : start + len[ = o.
952 INLINE(void RecordWrites(Address address, int start, int len));
953
954 enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
955 inline HeapState gc_state() { return gc_state_; }
956
957 inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
958
959#ifdef DEBUG
960 void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
961
962 void TracePathToObjectFrom(Object* target, Object* root);
963 void TracePathToObject(Object* target);
964 void TracePathToGlobal();
965#endif
966
967 // Callback function passed to Heap::Iterate etc. Copies an object if
968 // necessary, the object might be promoted to an old space. The caller must
969 // ensure the precondition that the object is (a) a heap object and (b) in
970 // the heap's from space.
971 static inline void ScavengePointer(HeapObject** p);
972 static inline void ScavengeObject(HeapObject** p, HeapObject* object);
973
974 enum ScratchpadSlotMode { IGNORE_SCRATCHPAD_SLOT, RECORD_SCRATCHPAD_SLOT };
975
976 // If an object has an AllocationMemento trailing it, return it, otherwise
977 // return NULL;
978 inline AllocationMemento* FindAllocationMemento(HeapObject* object);
979
980 // An object may have an AllocationSite associated with it through a trailing
981 // AllocationMemento. Its feedback should be updated when objects are found
982 // in the heap.
983 static inline void UpdateAllocationSiteFeedback(HeapObject* object,
984 ScratchpadSlotMode mode);
985
986 // Support for partial snapshots. After calling this we have a linear
987 // space to write objects in each space.
988 void ReserveSpace(int* sizes, Address* addresses);
989
990 //
991 // Support for the API.
992 //
993
994 void CreateApiObjects();
995
996 inline intptr_t PromotedTotalSize() {
997 int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
998 if (total > kMaxInt) return static_cast<intptr_t>(kMaxInt);
999 if (total < 0) return 0;
1000 return static_cast<intptr_t>(total);
1001 }
1002
1003 inline intptr_t OldGenerationSpaceAvailable() {
1004 return old_generation_allocation_limit_ - PromotedTotalSize();
1005 }
1006
1007 inline intptr_t OldGenerationCapacityAvailable() {
1008 return max_old_generation_size_ - PromotedTotalSize();
1009 }
1010
1011 static const intptr_t kMinimumOldGenerationAllocationLimit =
1012 8 * (Page::kPageSize > MB ? Page::kPageSize : MB);
1013
1014 static const int kPointerMultiplier = i::kPointerSize / 4;
1015
1016 // The new space size has to be a power of 2. Sizes are in MB.
1017 static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier;
1018 static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier;
1019 static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier;
1020 static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier;
1021
1022 // The old space size has to be a multiple of Page::kPageSize.
1023 // Sizes are in MB.
1024 static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier;
1025 static const int kMaxOldSpaceSizeMediumMemoryDevice =
1026 256 * kPointerMultiplier;
1027 static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier;
1028 static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier;
1029
1030 // The executable size has to be a multiple of Page::kPageSize.
1031 // Sizes are in MB.
1032 static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
1033 static const int kMaxExecutableSizeMediumMemoryDevice =
1034 192 * kPointerMultiplier;
1035 static const int kMaxExecutableSizeHighMemoryDevice =
1036 256 * kPointerMultiplier;
1037 static const int kMaxExecutableSizeHugeMemoryDevice =
1038 256 * kPointerMultiplier;
1039
1040 intptr_t OldGenerationAllocationLimit(intptr_t old_gen_size,
1041 int freed_global_handles);
1042
1043 // Indicates whether inline bump-pointer allocation has been disabled.
1044 bool inline_allocation_disabled() { return inline_allocation_disabled_; }
1045
1046 // Switch whether inline bump-pointer allocation should be used.
1047 void EnableInlineAllocation();
1048 void DisableInlineAllocation();
1049
1050 // Implements the corresponding V8 API function.
1051 bool IdleNotification(int idle_time_in_ms);
1052
1053 // Declare all the root indices. This defines the root list order.
1054 enum RootListIndex {
1055#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
1056 STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
1057#undef ROOT_INDEX_DECLARATION
1058
1059#define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
1060 INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
1061#undef STRING_DECLARATION
1062
1063// Utility type maps
1064#define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
1065 STRUCT_LIST(DECLARE_STRUCT_MAP)
1066#undef DECLARE_STRUCT_MAP
1067 kStringTableRootIndex,
1068
1069#define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
1070 SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
1071#undef ROOT_INDEX_DECLARATION
1072 kRootListLength,
1073 kStrongRootListLength = kStringTableRootIndex,
1074 kSmiRootsStart = kStringTableRootIndex + 1
1075 };
1076
1077 STATIC_ASSERT(kUndefinedValueRootIndex ==
1078 Internals::kUndefinedValueRootIndex);
1079 STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
1080 STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
1081 STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
1082 STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
1083
1084 // Generated code can embed direct references to non-writable roots if
1085 // they are in new space.
1086 static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
1087 // Generated code can treat direct references to this root as constant.
1088 bool RootCanBeTreatedAsConstant(RootListIndex root_index);
1089
1090 Map* MapForFixedTypedArray(ExternalArrayType array_type);
1091 RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type);
1092
1093 Map* MapForExternalArrayType(ExternalArrayType array_type);
1094 RootListIndex RootIndexForExternalArrayType(ExternalArrayType array_type);
1095
1096 RootListIndex RootIndexForEmptyExternalArray(ElementsKind kind);
1097 RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind);
1098 ExternalArray* EmptyExternalArrayForMap(Map* map);
1099 FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map);
1100
1101 void RecordStats(HeapStats* stats, bool take_snapshot = false);
1102
1103 // Copy block of memory from src to dst. Size of block should be aligned
1104 // by pointer size.
1105 static inline void CopyBlock(Address dst, Address src, int byte_size);
1106
1107 // Optimized version of memmove for blocks with pointer size aligned sizes and
1108 // pointer size aligned addresses.
1109 static inline void MoveBlock(Address dst, Address src, int byte_size);
1110
1111 // Check new space expansion criteria and expand semispaces if it was hit.
1112 void CheckNewSpaceExpansionCriteria();
1113
1114 inline void IncrementPromotedObjectsSize(int object_size) {
1115 DCHECK(object_size > 0);
1116 promoted_objects_size_ += object_size;
1117 }
1118
1119 inline void IncrementSemiSpaceCopiedObjectSize(int object_size) {
1120 DCHECK(object_size > 0);
1121 semi_space_copied_object_size_ += object_size;
1122 }
1123
1124 inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
1125
1126 inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
1127
1128 inline void IncrementNodesPromoted() { nodes_promoted_++; }
1129
1130 inline void IncrementYoungSurvivorsCounter(int survived) {
1131 DCHECK(survived >= 0);
1132 survived_since_last_expansion_ += survived;
1133 }
1134
1135 inline bool NextGCIsLikelyToBeFull() {
1136 if (FLAG_gc_global) return true;
1137
1138 if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true;
1139
1140 intptr_t adjusted_allocation_limit =
1141 old_generation_allocation_limit_ - new_space_.Capacity();
1142
1143 if (PromotedTotalSize() >= adjusted_allocation_limit) return true;
1144
1145 return false;
1146 }
1147
1148 void UpdateNewSpaceReferencesInExternalStringTable(
1149 ExternalStringTableUpdaterCallback updater_func);
1150
1151 void UpdateReferencesInExternalStringTable(
1152 ExternalStringTableUpdaterCallback updater_func);
1153
1154 void ProcessWeakReferences(WeakObjectRetainer* retainer);
1155
1156 void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
1157
1158 // An object should be promoted if the object has survived a
1159 // scavenge operation.
1160 inline bool ShouldBePromoted(Address old_address, int object_size);
1161
1162 void ClearJSFunctionResultCaches();
1163
1164 void ClearNormalizedMapCaches();
1165
1166 GCTracer* tracer() { return &tracer_; }
1167
1168 // Returns the size of objects residing in non new spaces.
1169 intptr_t PromotedSpaceSizeOfObjects();
1170
1171 double total_regexp_code_generated() { return total_regexp_code_generated_; }
1172 void IncreaseTotalRegexpCodeGenerated(int size) {
1173 total_regexp_code_generated_ += size;
1174 }
1175
1176 void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
1177 if (is_crankshafted) {
1178 crankshaft_codegen_bytes_generated_ += size;
1179 } else {
1180 full_codegen_bytes_generated_ += size;
1181 }
1182 }
1183
1184 // Update GC statistics that are tracked on the Heap.
1185 void UpdateCumulativeGCStatistics(double duration, double spent_in_mutator,
1186 double marking_time);
1187
1188 // Returns maximum GC pause.
1189 double get_max_gc_pause() { return max_gc_pause_; }
1190
1191 // Returns maximum size of objects alive after GC.
1192 intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
1193
1194 // Returns minimal interval between two subsequent collections.
1195 double get_min_in_mutator() { return min_in_mutator_; }
1196
1197 MarkCompactCollector* mark_compact_collector() {
1198 return &mark_compact_collector_;
1199 }
1200
1201 StoreBuffer* store_buffer() { return &store_buffer_; }
1202
1203 Marking* marking() { return &marking_; }
1204
1205 IncrementalMarking* incremental_marking() { return &incremental_marking_; }
1206
1207 ExternalStringTable* external_string_table() {
1208 return &external_string_table_;
1209 }
1210
1211 // Returns the current sweep generation.
1212 int sweep_generation() { return sweep_generation_; }
1213
1214 inline Isolate* isolate();
1215
1216 void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
1217 void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
1218
1219 inline bool OldGenerationAllocationLimitReached();
1220
1221 inline void DoScavengeObject(Map* map, HeapObject** slot, HeapObject* obj) {
1222 scavenging_visitors_table_.GetVisitor(map)(map, slot, obj);
1223 }
1224
1225 void QueueMemoryChunkForFree(MemoryChunk* chunk);
1226 void FreeQueuedChunks();
1227
1228 int gc_count() const { return gc_count_; }
1229
1230 // Completely clear the Instanceof cache (to stop it keeping objects alive
1231 // around a GC).
1232 inline void CompletelyClearInstanceofCache();
1233
1234 // The roots that have an index less than this are always in old space.
1235 static const int kOldSpaceRoots = 0x20;
1236
1237 uint32_t HashSeed() {
1238 uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
1239 DCHECK(FLAG_randomize_hashes || seed == 0);
1240 return seed;
1241 }
1242
1243 void SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
1244 DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::FromInt(0));
1245 set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
1246 }
1247
1248 void SetConstructStubDeoptPCOffset(int pc_offset) {
1249 DCHECK(construct_stub_deopt_pc_offset() == Smi::FromInt(0));
1250 set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1251 }
1252
1253 void SetGetterStubDeoptPCOffset(int pc_offset) {
1254 DCHECK(getter_stub_deopt_pc_offset() == Smi::FromInt(0));
1255 set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1256 }
1257
1258 void SetSetterStubDeoptPCOffset(int pc_offset) {
1259 DCHECK(setter_stub_deopt_pc_offset() == Smi::FromInt(0));
1260 set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1261 }
1262
1263 // For post mortem debugging.
1264 void RememberUnmappedPage(Address page, bool compacted);
1265
1266 // Global inline caching age: it is incremented on some GCs after context
1267 // disposal. We use it to flush inline caches.
1268 int global_ic_age() { return global_ic_age_; }
1269
1270 void AgeInlineCaches() {
1271 global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
1272 }
1273
1274 bool flush_monomorphic_ics() { return flush_monomorphic_ics_; }
1275
1276 int64_t amount_of_external_allocated_memory() {
1277 return amount_of_external_allocated_memory_;
1278 }
1279
1280 void DeoptMarkedAllocationSites();
1281
1282 bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }
1283
1284 bool DeoptMaybeTenuredAllocationSites() {
1285 return new_space_.IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
1286 }
1287
1288 // ObjectStats are kept in two arrays, counts and sizes. Related stats are
1289 // stored in a contiguous linear buffer. Stats groups are stored one after
1290 // another.
1291 enum {
1292 FIRST_CODE_KIND_SUB_TYPE = LAST_TYPE + 1,
1293 FIRST_FIXED_ARRAY_SUB_TYPE =
1294 FIRST_CODE_KIND_SUB_TYPE + Code::NUMBER_OF_KINDS,
1295 FIRST_CODE_AGE_SUB_TYPE =
1296 FIRST_FIXED_ARRAY_SUB_TYPE + LAST_FIXED_ARRAY_SUB_TYPE + 1,
1297 OBJECT_STATS_COUNT = FIRST_CODE_AGE_SUB_TYPE + Code::kCodeAgeCount + 1
1298 };
1299
1300 void RecordObjectStats(InstanceType type, size_t size) {
1301 DCHECK(type <= LAST_TYPE);
1302 object_counts_[type]++;
1303 object_sizes_[type] += size;
1304 }
1305
1306 void RecordCodeSubTypeStats(int code_sub_type, int code_age, size_t size) {
1307 int code_sub_type_index = FIRST_CODE_KIND_SUB_TYPE + code_sub_type;
1308 int code_age_index =
1309 FIRST_CODE_AGE_SUB_TYPE + code_age - Code::kFirstCodeAge;
1310 DCHECK(code_sub_type_index >= FIRST_CODE_KIND_SUB_TYPE &&
1311 code_sub_type_index < FIRST_CODE_AGE_SUB_TYPE);
1312 DCHECK(code_age_index >= FIRST_CODE_AGE_SUB_TYPE &&
1313 code_age_index < OBJECT_STATS_COUNT);
1314 object_counts_[code_sub_type_index]++;
1315 object_sizes_[code_sub_type_index] += size;
1316 object_counts_[code_age_index]++;
1317 object_sizes_[code_age_index] += size;
1318 }
1319
1320 void RecordFixedArraySubTypeStats(int array_sub_type, size_t size) {
1321 DCHECK(array_sub_type <= LAST_FIXED_ARRAY_SUB_TYPE);
1322 object_counts_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type]++;
1323 object_sizes_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type] += size;
1324 }
1325
1326 void CheckpointObjectStats();
1327
1328 // We don't use a LockGuard here since we want to lock the heap
1329 // only when FLAG_concurrent_recompilation is true.
1330 class RelocationLock {
1331 public:
1332 explicit RelocationLock(Heap* heap) : heap_(heap) {
1333 heap_->relocation_mutex_.Lock();
1334 }
1335
1336
1337 ~RelocationLock() { heap_->relocation_mutex_.Unlock(); }
1338
1339 private:
1340 Heap* heap_;
1341 };
1342
1343 void AddWeakObjectToCodeDependency(Handle<Object> obj,
1344 Handle<DependentCode> dep);
1345
1346 DependentCode* LookupWeakObjectToCodeDependency(Handle<Object> obj);
1347
1348 void InitializeWeakObjectToCodeTable() {
1349 set_weak_object_to_code_table(undefined_value());
1350 }
1351
1352 void EnsureWeakObjectToCodeTable();
1353
1354 static void FatalProcessOutOfMemory(const char* location,
1355 bool take_snapshot = false);
1356
1357 // This event is triggered after successful allocation of a new object made
1358 // by runtime. Allocations of target space for object evacuation do not
1359 // trigger the event. In order to track ALL allocations one must turn off
1360 // FLAG_inline_new and FLAG_use_allocation_folding.
1361 inline void OnAllocationEvent(HeapObject* object, int size_in_bytes);
1362
1363 // This event is triggered after object is moved to a new place.
1364 inline void OnMoveEvent(HeapObject* target, HeapObject* source,
1365 int size_in_bytes);
1366
1367 protected:
1368 // Methods made available to tests.
1369
1370 // Allocates a JS Map in the heap.
1371 MUST_USE_RESULT AllocationResult
1372 AllocateMap(InstanceType instance_type, int instance_size,
1373 ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
1374
1375 // Allocates and initializes a new JavaScript object based on a
1376 // constructor.
1377 // If allocation_site is non-null, then a memento is emitted after the object
1378 // that points to the site.
1379 MUST_USE_RESULT AllocationResult
1380 AllocateJSObject(JSFunction* constructor,
1381 PretenureFlag pretenure = NOT_TENURED,
1382 AllocationSite* allocation_site = NULL);
1383
1384 // Allocates and initializes a new JavaScript object based on a map.
1385 // Passing an allocation site means that a memento will be created that
1386 // points to the site.
1387 MUST_USE_RESULT AllocationResult
1388 AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED,
1389 bool alloc_props = true,
1390 AllocationSite* allocation_site = NULL);
1391
1392 // Allocated a HeapNumber from value.
1393 MUST_USE_RESULT AllocationResult
1394 AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE,
1395 PretenureFlag pretenure = NOT_TENURED);
1396
1397 // Allocate a byte array of the specified length
1398 MUST_USE_RESULT AllocationResult
1399 AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED);
1400
1401 // Copy the code and scope info part of the code object, but insert
1402 // the provided data as the relocation information.
1403 MUST_USE_RESULT AllocationResult
1404 CopyCode(Code* code, Vector<byte> reloc_info);
1405
1406 MUST_USE_RESULT AllocationResult CopyCode(Code* code);
1407
1408 // Allocates a fixed array initialized with undefined values
1409 MUST_USE_RESULT AllocationResult
1410 AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED);
1411
1412 private:
1413 Heap();
1414
1415 // The amount of external memory registered through the API kept alive
1416 // by global handles
1417 int64_t amount_of_external_allocated_memory_;
1418
1419 // Caches the amount of external memory registered at the last global gc.
1420 int64_t amount_of_external_allocated_memory_at_last_global_gc_;
1421
1422 // This can be calculated directly from a pointer to the heap; however, it is
1423 // more expedient to get at the isolate directly from within Heap methods.
1424 Isolate* isolate_;
1425
1426 Object* roots_[kRootListLength];
1427
1428 size_t code_range_size_;
1429 int reserved_semispace_size_;
1430 int max_semi_space_size_;
1431 int initial_semispace_size_;
1432 intptr_t max_old_generation_size_;
1433 intptr_t max_executable_size_;
1434 intptr_t maximum_committed_;
1435
1436 // For keeping track of how much data has survived
1437 // scavenge since last new space expansion.
1438 int survived_since_last_expansion_;
1439
1440 // For keeping track on when to flush RegExp code.
1441 int sweep_generation_;
1442
1443 int always_allocate_scope_depth_;
1444
1445 // For keeping track of context disposals.
1446 int contexts_disposed_;
1447
1448 int global_ic_age_;
1449
1450 bool flush_monomorphic_ics_;
1451
1452 int scan_on_scavenge_pages_;
1453
1454 NewSpace new_space_;
1455 OldSpace* old_pointer_space_;
1456 OldSpace* old_data_space_;
1457 OldSpace* code_space_;
1458 MapSpace* map_space_;
1459 CellSpace* cell_space_;
1460 PropertyCellSpace* property_cell_space_;
1461 LargeObjectSpace* lo_space_;
1462 HeapState gc_state_;
1463 int gc_post_processing_depth_;
1464 Address new_space_top_after_last_gc_;
1465
1466 // Returns the amount of external memory registered since last global gc.
1467 int64_t PromotedExternalMemorySize();
1468
1469 // How many "runtime allocations" happened.
1470 uint32_t allocations_count_;
1471
1472 // Running hash over allocations performed.
1473 uint32_t raw_allocations_hash_;
1474
1475 // Countdown counter, dumps allocation hash when 0.
1476 uint32_t dump_allocations_hash_countdown_;
1477
1478 // How many mark-sweep collections happened.
1479 unsigned int ms_count_;
1480
1481 // How many gc happened.
1482 unsigned int gc_count_;
1483
1484 // For post mortem debugging.
1485 static const int kRememberedUnmappedPages = 128;
1486 int remembered_unmapped_pages_index_;
1487 Address remembered_unmapped_pages_[kRememberedUnmappedPages];
1488
1489 // Total length of the strings we failed to flatten since the last GC.
1490 int unflattened_strings_length_;
1491
1492#define ROOT_ACCESSOR(type, name, camel_name) \
1493 inline void set_##name(type* value) { \
1494 /* The deserializer makes use of the fact that these common roots are */ \
1495 /* never in new space and never on a page that is being compacted. */ \
1496 DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
1497 roots_[k##camel_name##RootIndex] = value; \
1498 }
1499 ROOT_LIST(ROOT_ACCESSOR)
1500#undef ROOT_ACCESSOR
1501
1502#ifdef DEBUG
1503 // If the --gc-interval flag is set to a positive value, this
1504 // variable holds the value indicating the number of allocations
1505 // remain until the next failure and garbage collection.
1506 int allocation_timeout_;
1507#endif // DEBUG
1508
1509 // Limit that triggers a global GC on the next (normally caused) GC. This
1510 // is checked when we have already decided to do a GC to help determine
1511 // which collector to invoke, before expanding a paged space in the old
1512 // generation and on every allocation in large object space.
1513 intptr_t old_generation_allocation_limit_;
1514
1515 // Indicates that an allocation has failed in the old generation since the
1516 // last GC.
1517 bool old_gen_exhausted_;
1518
1519 // Indicates that inline bump-pointer allocation has been globally disabled
1520 // for all spaces. This is used to disable allocations in generated code.
1521 bool inline_allocation_disabled_;
1522
1523 // Weak list heads, threaded through the objects.
1524 // List heads are initilized lazily and contain the undefined_value at start.
1525 Object* native_contexts_list_;
1526 Object* array_buffers_list_;
1527 Object* allocation_sites_list_;
1528
1529 // WeakHashTable that maps objects embedded in optimized code to dependent
1530 // code list. It is initilized lazily and contains the undefined_value at
1531 // start.
1532 Object* weak_object_to_code_table_;
1533
1534 // List of encountered weak collections (JSWeakMap and JSWeakSet) during
1535 // marking. It is initialized during marking, destroyed after marking and
1536 // contains Smi(0) while marking is not active.
1537 Object* encountered_weak_collections_;
1538
1539 StoreBufferRebuilder store_buffer_rebuilder_;
1540
1541 struct StringTypeTable {
1542 InstanceType type;
1543 int size;
1544 RootListIndex index;
1545 };
1546
1547 struct ConstantStringTable {
1548 const char* contents;
1549 RootListIndex index;
1550 };
1551
1552 struct StructTable {
1553 InstanceType type;
1554 int size;
1555 RootListIndex index;
1556 };
1557
1558 static const StringTypeTable string_type_table[];
1559 static const ConstantStringTable constant_string_table[];
1560 static const StructTable struct_table[];
1561
1562 // The special hidden string which is an empty string, but does not match
1563 // any string when looked up in properties.
1564 String* hidden_string_;
1565
1566 // GC callback function, called before and after mark-compact GC.
1567 // Allocations in the callback function are disallowed.
1568 struct GCPrologueCallbackPair {
1569 GCPrologueCallbackPair(v8::Isolate::GCPrologueCallback callback,
1570 GCType gc_type, bool pass_isolate)
1571 : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {}
1572 bool operator==(const GCPrologueCallbackPair& pair) const {
1573 return pair.callback == callback;
1574 }
1575 v8::Isolate::GCPrologueCallback callback;
1576 GCType gc_type;
1577 // TODO(dcarney): remove variable
1578 bool pass_isolate_;
1579 };
1580 List<GCPrologueCallbackPair> gc_prologue_callbacks_;
1581
1582 struct GCEpilogueCallbackPair {
1583 GCEpilogueCallbackPair(v8::Isolate::GCPrologueCallback callback,
1584 GCType gc_type, bool pass_isolate)
1585 : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {}
1586 bool operator==(const GCEpilogueCallbackPair& pair) const {
1587 return pair.callback == callback;
1588 }
1589 v8::Isolate::GCPrologueCallback callback;
1590 GCType gc_type;
1591 // TODO(dcarney): remove variable
1592 bool pass_isolate_;
1593 };
1594 List<GCEpilogueCallbackPair> gc_epilogue_callbacks_;
1595
1596 // Support for computing object sizes during GC.
1597 HeapObjectCallback gc_safe_size_of_old_object_;
1598 static int GcSafeSizeOfOldObject(HeapObject* object);
1599
1600 // Update the GC state. Called from the mark-compact collector.
1601 void MarkMapPointersAsEncoded(bool encoded) {
1602 DCHECK(!encoded);
1603 gc_safe_size_of_old_object_ = &GcSafeSizeOfOldObject;
1604 }
1605
1606 // Code that should be run before and after each GC. Includes some
1607 // reporting/verification activities when compiled with DEBUG set.
1608 void GarbageCollectionPrologue();
1609 void GarbageCollectionEpilogue();
1610
1611 // Pretenuring decisions are made based on feedback collected during new
1612 // space evacuation. Note that between feedback collection and calling this
1613 // method object in old space must not move.
1614 // Right now we only process pretenuring feedback in high promotion mode.
1615 void ProcessPretenuringFeedback();
1616
1617 // Checks whether a global GC is necessary
1618 GarbageCollector SelectGarbageCollector(AllocationSpace space,
1619 const char** reason);
1620
1621 // Make sure there is a filler value behind the top of the new space
1622 // so that the GC does not confuse some unintialized/stale memory
1623 // with the allocation memento of the object at the top
1624 void EnsureFillerObjectAtTop();
1625
1626 // Ensure that we have swept all spaces in such a way that we can iterate
1627 // over all objects. May cause a GC.
1628 void MakeHeapIterable();
1629
1630 // Performs garbage collection operation.
1631 // Returns whether there is a chance that another major GC could
1632 // collect more garbage.
1633 bool CollectGarbage(
1634 GarbageCollector collector, const char* gc_reason,
1635 const char* collector_reason,
1636 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1637
1638 // Performs garbage collection
1639 // Returns whether there is a chance another major GC could
1640 // collect more garbage.
1641 bool PerformGarbageCollection(
1642 GarbageCollector collector,
1643 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1644
1645 inline void UpdateOldSpaceLimits();
1646
1647 // Selects the proper allocation space depending on the given object
1648 // size, pretenuring decision, and preferred old-space.
1649 static AllocationSpace SelectSpace(int object_size,
1650 AllocationSpace preferred_old_space,
1651 PretenureFlag pretenure) {
1652 DCHECK(preferred_old_space == OLD_POINTER_SPACE ||
1653 preferred_old_space == OLD_DATA_SPACE);
1654 if (object_size > Page::kMaxRegularHeapObjectSize) return LO_SPACE;
1655 return (pretenure == TENURED) ? preferred_old_space : NEW_SPACE;
1656 }
1657
1658 // Allocate an uninitialized object. The memory is non-executable if the
1659 // hardware and OS allow. This is the single choke-point for allocations
1660 // performed by the runtime and should not be bypassed (to extend this to
1661 // inlined allocations, use the Heap::DisableInlineAllocation() support).
1662 MUST_USE_RESULT inline AllocationResult AllocateRaw(
1663 int size_in_bytes, AllocationSpace space, AllocationSpace retry_space);
1664
1665 // Allocates a heap object based on the map.
1666 MUST_USE_RESULT AllocationResult
1667 Allocate(Map* map, AllocationSpace space,
1668 AllocationSite* allocation_site = NULL);
1669
1670 // Allocates a partial map for bootstrapping.
1671 MUST_USE_RESULT AllocationResult
1672 AllocatePartialMap(InstanceType instance_type, int instance_size);
1673
1674 // Initializes a JSObject based on its map.
1675 void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties,
1676 Map* map);
1677 void InitializeAllocationMemento(AllocationMemento* memento,
1678 AllocationSite* allocation_site);
1679
1680 // Allocate a block of memory in the given space (filled with a filler).
1681 // Used as a fall-back for generated code when the space is full.
1682 MUST_USE_RESULT AllocationResult
1683 AllocateFillerObject(int size, bool double_align, AllocationSpace space);
1684
1685 // Allocate an uninitialized fixed array.
1686 MUST_USE_RESULT AllocationResult
1687 AllocateRawFixedArray(int length, PretenureFlag pretenure);
1688
1689 // Allocate an uninitialized fixed double array.
1690 MUST_USE_RESULT AllocationResult
1691 AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure);
1692
1693 // Allocate an initialized fixed array with the given filler value.
1694 MUST_USE_RESULT AllocationResult
1695 AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure,
1696 Object* filler);
1697
1698 // Allocate and partially initializes a String. There are two String
1699 // encodings: one-byte and two-byte. These functions allocate a string of
1700 // the given length and set its map and length fields. The characters of
1701 // the string are uninitialized.
1702 MUST_USE_RESULT AllocationResult
1703 AllocateRawOneByteString(int length, PretenureFlag pretenure);
1704 MUST_USE_RESULT AllocationResult
1705 AllocateRawTwoByteString(int length, PretenureFlag pretenure);
1706
1707 bool CreateInitialMaps();
1708 void CreateInitialObjects();
1709
1710 // Allocates an internalized string in old space based on the character
1711 // stream.
1712 MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8(
1713 Vector<const char> str, int chars, uint32_t hash_field);
1714
1715 MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString(
1716 Vector<const uint8_t> str, uint32_t hash_field);
1717
1718 MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString(
1719 Vector<const uc16> str, uint32_t hash_field);
1720
1721 template <bool is_one_byte, typename T>
1722 MUST_USE_RESULT AllocationResult
1723 AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field);
1724
1725 template <typename T>
1726 MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl(
1727 T t, int chars, uint32_t hash_field);
1728
1729 // Allocates an uninitialized fixed array. It must be filled by the caller.
1730 MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length);
1731
1732 // Make a copy of src and return it. Returns
1733 // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1734 MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src);
1735
1736 // Make a copy of src, set the map, and return the copy. Returns
1737 // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1738 MUST_USE_RESULT AllocationResult
1739 CopyFixedArrayWithMap(FixedArray* src, Map* map);
1740
1741 // Make a copy of src and return it. Returns
1742 // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1743 MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray(
1744 FixedDoubleArray* src);
1745
1746 // Make a copy of src and return it. Returns
1747 // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1748 MUST_USE_RESULT inline AllocationResult CopyConstantPoolArray(
1749 ConstantPoolArray* src);
1750
1751
1752 // Computes a single character string where the character has code.
1753 // A cache is used for one-byte (Latin1) codes.
1754 MUST_USE_RESULT AllocationResult
1755 LookupSingleCharacterStringFromCode(uint16_t code);
1756
1757 // Allocate a symbol in old space.
1758 MUST_USE_RESULT AllocationResult AllocateSymbol();
1759
1760 // Make a copy of src, set the map, and return the copy.
1761 MUST_USE_RESULT AllocationResult
1762 CopyConstantPoolArrayWithMap(ConstantPoolArray* src, Map* map);
1763
1764 MUST_USE_RESULT AllocationResult AllocateConstantPoolArray(
1765 const ConstantPoolArray::NumberOfEntries& small);
1766
1767 MUST_USE_RESULT AllocationResult AllocateExtendedConstantPoolArray(
1768 const ConstantPoolArray::NumberOfEntries& small,
1769 const ConstantPoolArray::NumberOfEntries& extended);
1770
1771 // Allocates an external array of the specified length and type.
1772 MUST_USE_RESULT AllocationResult
1773 AllocateExternalArray(int length, ExternalArrayType array_type,
1774 void* external_pointer, PretenureFlag pretenure);
1775
1776 // Allocates a fixed typed array of the specified length and type.
1777 MUST_USE_RESULT AllocationResult
1778 AllocateFixedTypedArray(int length, ExternalArrayType array_type,
1779 PretenureFlag pretenure);
1780
1781 // Make a copy of src and return it.
1782 MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src);
1783
1784 // Make a copy of src, set the map, and return the copy.
1785 MUST_USE_RESULT AllocationResult
1786 CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map);
1787
1788 // Allocates a fixed double array with uninitialized values. Returns
1789 MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray(
1790 int length, PretenureFlag pretenure = NOT_TENURED);
1791
1792 // These five Create*EntryStub functions are here and forced to not be inlined
1793 // because of a gcc-4.4 bug that assigns wrong vtable entries.
1794 NO_INLINE(void CreateJSEntryStub());
1795 NO_INLINE(void CreateJSConstructEntryStub());
1796
1797 void CreateFixedStubs();
1798
1799 // Allocate empty fixed array.
1800 MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray();
1801
1802 // Allocate empty external array of given type.
1803 MUST_USE_RESULT AllocationResult
1804 AllocateEmptyExternalArray(ExternalArrayType array_type);
1805
1806 // Allocate empty fixed typed array of given type.
1807 MUST_USE_RESULT AllocationResult
1808 AllocateEmptyFixedTypedArray(ExternalArrayType array_type);
1809
1810 // Allocate empty constant pool array.
1811 MUST_USE_RESULT AllocationResult AllocateEmptyConstantPoolArray();
1812
1813 // Allocate a tenured simple cell.
1814 MUST_USE_RESULT AllocationResult AllocateCell(Object* value);
1815
1816 // Allocate a tenured JS global property cell initialized with the hole.
1817 MUST_USE_RESULT AllocationResult AllocatePropertyCell();
1818
1819 // Allocates a new utility object in the old generation.
1820 MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type);
1821
1822 // Allocates a new foreign object.
1823 MUST_USE_RESULT AllocationResult
1824 AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED);
1825
1826 MUST_USE_RESULT AllocationResult
1827 AllocateCode(int object_size, bool immovable);
1828
1829 MUST_USE_RESULT AllocationResult InternalizeStringWithKey(HashTableKey* key);
1830
1831 MUST_USE_RESULT AllocationResult InternalizeString(String* str);
1832
1833 // Performs a minor collection in new generation.
1834 void Scavenge();
1835
1836 // Commits from space if it is uncommitted.
1837 void EnsureFromSpaceIsCommitted();
1838
1839 // Uncommit unused semi space.
1840 bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
1841
1842 // Fill in bogus values in from space
1843 void ZapFromSpace();
1844
1845 static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
1846 Heap* heap, Object** pointer);
1847
1848 Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
1849 static void ScavengeStoreBufferCallback(Heap* heap, MemoryChunk* page,
1850 StoreBufferEvent event);
1851
1852 // Performs a major collection in the whole heap.
1853 void MarkCompact();
1854
1855 // Code to be run before and after mark-compact.
1856 void MarkCompactPrologue();
1857
1858 void ProcessNativeContexts(WeakObjectRetainer* retainer);
1859 void ProcessArrayBuffers(WeakObjectRetainer* retainer);
1860 void ProcessAllocationSites(WeakObjectRetainer* retainer);
1861
1862 // Deopts all code that contains allocation instruction which are tenured or
1863 // not tenured. Moreover it clears the pretenuring allocation site statistics.
1864 void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
1865
1866 // Evaluates local pretenuring for the old space and calls
1867 // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
1868 // the old space.
1869 void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
1870
1871 // Called on heap tear-down.
1872 void TearDownArrayBuffers();
1873
1874 // Record statistics before and after garbage collection.
1875 void ReportStatisticsBeforeGC();
1876 void ReportStatisticsAfterGC();
1877
1878 // Slow part of scavenge object.
1879 static void ScavengeObjectSlow(HeapObject** p, HeapObject* object);
1880
1881 // Total RegExp code ever generated
1882 double total_regexp_code_generated_;
1883
1884 GCTracer tracer_;
1885
1886 // Creates and installs the full-sized number string cache.
1887 int FullSizeNumberStringCacheLength();
1888 // Flush the number to string cache.
1889 void FlushNumberStringCache();
1890
1891 // Sets used allocation sites entries to undefined.
1892 void FlushAllocationSitesScratchpad();
1893
1894 // Initializes the allocation sites scratchpad with undefined values.
1895 void InitializeAllocationSitesScratchpad();
1896
1897 // Adds an allocation site to the scratchpad if there is space left.
1898 void AddAllocationSiteToScratchpad(AllocationSite* site,
1899 ScratchpadSlotMode mode);
1900
1901 void UpdateSurvivalStatistics(int start_new_space_size);
1902
1903 static const int kYoungSurvivalRateHighThreshold = 90;
1904 static const int kYoungSurvivalRateAllowedDeviation = 15;
1905
1906 static const int kOldSurvivalRateLowThreshold = 10;
1907
1908 int high_survival_rate_period_length_;
1909 intptr_t promoted_objects_size_;
1910 double promotion_rate_;
1911 intptr_t semi_space_copied_object_size_;
1912 double semi_space_copied_rate_;
1913 int nodes_died_in_new_space_;
1914 int nodes_copied_in_new_space_;
1915 int nodes_promoted_;
1916
1917 // This is the pretenuring trigger for allocation sites that are in maybe
1918 // tenure state. When we switched to the maximum new space size we deoptimize
1919 // the code that belongs to the allocation site and derive the lifetime
1920 // of the allocation site.
1921 unsigned int maximum_size_scavenges_;
1922
1923 // TODO(hpayer): Allocation site pretenuring may make this method obsolete.
1924 // Re-visit incremental marking heuristics.
1925 bool IsHighSurvivalRate() { return high_survival_rate_period_length_ > 0; }
1926
1927 void SelectScavengingVisitorsTable();
1928
1929 void IdleMarkCompact(const char* message);
1930
1931 void AdvanceIdleIncrementalMarking(intptr_t step_size);
1932
1933 bool WorthActivatingIncrementalMarking();
1934
1935 void ClearObjectStats(bool clear_last_time_stats = false);
1936
1937 void set_weak_object_to_code_table(Object* value) {
1938 DCHECK(!InNewSpace(value));
1939 weak_object_to_code_table_ = value;
1940 }
1941
1942 Object** weak_object_to_code_table_address() {
1943 return &weak_object_to_code_table_;
1944 }
1945
1946 inline void UpdateAllocationsHash(HeapObject* object);
1947 inline void UpdateAllocationsHash(uint32_t value);
1948 inline void PrintAlloctionsHash();
1949
1950 static const int kInitialStringTableSize = 2048;
1951 static const int kInitialEvalCacheSize = 64;
1952 static const int kInitialNumberStringCacheSize = 256;
1953
1954 // Object counts and used memory by InstanceType
1955 size_t object_counts_[OBJECT_STATS_COUNT];
1956 size_t object_counts_last_time_[OBJECT_STATS_COUNT];
1957 size_t object_sizes_[OBJECT_STATS_COUNT];
1958 size_t object_sizes_last_time_[OBJECT_STATS_COUNT];
1959
1960 // Maximum GC pause.
1961 double max_gc_pause_;
1962
1963 // Total time spent in GC.
1964 double total_gc_time_ms_;
1965
1966 // Maximum size of objects alive after GC.
1967 intptr_t max_alive_after_gc_;
1968
1969 // Minimal interval between two subsequent collections.
1970 double min_in_mutator_;
1971
1972 // Cumulative GC time spent in marking
1973 double marking_time_;
1974
1975 // Cumulative GC time spent in sweeping
1976 double sweeping_time_;
1977
1978 MarkCompactCollector mark_compact_collector_;
1979
1980 StoreBuffer store_buffer_;
1981
1982 Marking marking_;
1983
1984 IncrementalMarking incremental_marking_;
1985
1986 GCIdleTimeHandler gc_idle_time_handler_;
1987 unsigned int gc_count_at_last_idle_gc_;
1988
1989 // These two counters are monotomically increasing and never reset.
1990 size_t full_codegen_bytes_generated_;
1991 size_t crankshaft_codegen_bytes_generated_;
1992
1993 // If the --deopt_every_n_garbage_collections flag is set to a positive value,
1994 // this variable holds the number of garbage collections since the last
1995 // deoptimization triggered by garbage collection.
1996 int gcs_since_last_deopt_;
1997
1998#ifdef VERIFY_HEAP
1999 int no_weak_object_verification_scope_depth_;
2000#endif
2001
2002 static const int kAllocationSiteScratchpadSize = 256;
2003 int allocation_sites_scratchpad_length_;
2004
2005 static const int kMaxMarkCompactsInIdleRound = 7;
2006 static const int kIdleScavengeThreshold = 5;
2007
2008 // Shared state read by the scavenge collector and set by ScavengeObject.
2009 PromotionQueue promotion_queue_;
2010
2011 // Flag is set when the heap has been configured. The heap can be repeatedly
2012 // configured through the API until it is set up.
2013 bool configured_;
2014
2015 ExternalStringTable external_string_table_;
2016
2017 VisitorDispatchTable<ScavengingCallback> scavenging_visitors_table_;
2018
2019 MemoryChunk* chunks_queued_for_free_;
2020
2021 base::Mutex relocation_mutex_;
2022
2023 int gc_callbacks_depth_;
2024
2025 friend class AlwaysAllocateScope;
2026 friend class Factory;
2027 friend class GCCallbacksScope;
2028 friend class GCTracer;
2029 friend class HeapIterator;
2030 friend class Isolate;
2031 friend class MarkCompactCollector;
2032 friend class MarkCompactMarkingVisitor;
2033 friend class MapCompact;
2034#ifdef VERIFY_HEAP
2035 friend class NoWeakObjectVerificationScope;
2036#endif
2037 friend class Page;
2038
2039 DISALLOW_COPY_AND_ASSIGN(Heap);
2040};
2041
2042
2043class HeapStats {
2044 public:
2045 static const int kStartMarker = 0xDECADE00;
2046 static const int kEndMarker = 0xDECADE01;
2047
2048 int* start_marker; // 0
2049 int* new_space_size; // 1
2050 int* new_space_capacity; // 2
2051 intptr_t* old_pointer_space_size; // 3
2052 intptr_t* old_pointer_space_capacity; // 4
2053 intptr_t* old_data_space_size; // 5
2054 intptr_t* old_data_space_capacity; // 6
2055 intptr_t* code_space_size; // 7
2056 intptr_t* code_space_capacity; // 8
2057 intptr_t* map_space_size; // 9
2058 intptr_t* map_space_capacity; // 10
2059 intptr_t* cell_space_size; // 11
2060 intptr_t* cell_space_capacity; // 12
2061 intptr_t* lo_space_size; // 13
2062 int* global_handle_count; // 14
2063 int* weak_global_handle_count; // 15
2064 int* pending_global_handle_count; // 16
2065 int* near_death_global_handle_count; // 17
2066 int* free_global_handle_count; // 18
2067 intptr_t* memory_allocator_size; // 19
2068 intptr_t* memory_allocator_capacity; // 20
2069 int* objects_per_type; // 21
2070 int* size_per_type; // 22
2071 int* os_error; // 23
2072 int* end_marker; // 24
2073 intptr_t* property_cell_space_size; // 25
2074 intptr_t* property_cell_space_capacity; // 26
2075};
2076
2077
2078class AlwaysAllocateScope {
2079 public:
2080 explicit inline AlwaysAllocateScope(Isolate* isolate);
2081 inline ~AlwaysAllocateScope();
2082
2083 private:
2084 // Implicitly disable artificial allocation failures.
2085 Heap* heap_;
2086 DisallowAllocationFailure daf_;
2087};
2088
2089
2090#ifdef VERIFY_HEAP
2091class NoWeakObjectVerificationScope {
2092 public:
2093 inline NoWeakObjectVerificationScope();
2094 inline ~NoWeakObjectVerificationScope();
2095};
2096#endif
2097
2098
2099class GCCallbacksScope {
2100 public:
2101 explicit inline GCCallbacksScope(Heap* heap);
2102 inline ~GCCallbacksScope();
2103
2104 inline bool CheckReenter();
2105
2106 private:
2107 Heap* heap_;
2108};
2109
2110
2111// Visitor class to verify interior pointers in spaces that do not contain
2112// or care about intergenerational references. All heap object pointers have to
2113// point into the heap to a location that has a map pointer at its first word.
2114// Caveat: Heap::Contains is an approximation because it can return true for
2115// objects in a heap space but above the allocation pointer.
2116class VerifyPointersVisitor : public ObjectVisitor {
2117 public:
2118 inline void VisitPointers(Object** start, Object** end);
2119};
2120
2121
2122// Verify that all objects are Smis.
2123class VerifySmisVisitor : public ObjectVisitor {
2124 public:
2125 inline void VisitPointers(Object** start, Object** end);
2126};
2127
2128
2129// Space iterator for iterating over all spaces of the heap. Returns each space
2130// in turn, and null when it is done.
2131class AllSpaces BASE_EMBEDDED {
2132 public:
2133 explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
2134 Space* next();
2135
2136 private:
2137 Heap* heap_;
2138 int counter_;
2139};
2140
2141
2142// Space iterator for iterating over all old spaces of the heap: Old pointer
2143// space, old data space and code space. Returns each space in turn, and null
2144// when it is done.
2145class OldSpaces BASE_EMBEDDED {
2146 public:
2147 explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
2148 OldSpace* next();
2149
2150 private:
2151 Heap* heap_;
2152 int counter_;
2153};
2154
2155
2156// Space iterator for iterating over all the paged spaces of the heap: Map
2157// space, old pointer space, old data space, code space and cell space. Returns
2158// each space in turn, and null when it is done.
2159class PagedSpaces BASE_EMBEDDED {
2160 public:
2161 explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
2162 PagedSpace* next();
2163
2164 private:
2165 Heap* heap_;
2166 int counter_;
2167};
2168
2169
2170// Space iterator for iterating over all spaces of the heap.
2171// For each space an object iterator is provided. The deallocation of the
2172// returned object iterators is handled by the space iterator.
2173class SpaceIterator : public Malloced {
2174 public:
2175 explicit SpaceIterator(Heap* heap);
2176 SpaceIterator(Heap* heap, HeapObjectCallback size_func);
2177 virtual ~SpaceIterator();
2178
2179 bool has_next();
2180 ObjectIterator* next();
2181
2182 private:
2183 ObjectIterator* CreateIterator();
2184
2185 Heap* heap_;
2186 int current_space_; // from enum AllocationSpace.
2187 ObjectIterator* iterator_; // object iterator for the current space.
2188 HeapObjectCallback size_func_;
2189};
2190
2191
2192// A HeapIterator provides iteration over the whole heap. It
2193// aggregates the specific iterators for the different spaces as
2194// these can only iterate over one space only.
2195//
2196// HeapIterator ensures there is no allocation during its lifetime
2197// (using an embedded DisallowHeapAllocation instance).
2198//
2199// HeapIterator can skip free list nodes (that is, de-allocated heap
2200// objects that still remain in the heap). As implementation of free
2201// nodes filtering uses GC marks, it can't be used during MS/MC GC
2202// phases. Also, it is forbidden to interrupt iteration in this mode,
2203// as this will leave heap objects marked (and thus, unusable).
2204class HeapObjectsFilter;
2205
2206class HeapIterator BASE_EMBEDDED {
2207 public:
2208 enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
2209
2210 explicit HeapIterator(Heap* heap);
2211 HeapIterator(Heap* heap, HeapObjectsFiltering filtering);
2212 ~HeapIterator();
2213
2214 HeapObject* next();
2215 void reset();
2216
2217 private:
2218 struct MakeHeapIterableHelper {
2219 explicit MakeHeapIterableHelper(Heap* heap) { heap->MakeHeapIterable(); }
2220 };
2221
2222 // Perform the initialization.
2223 void Init();
2224 // Perform all necessary shutdown (destruction) work.
2225 void Shutdown();
2226 HeapObject* NextObject();
2227
2228 MakeHeapIterableHelper make_heap_iterable_helper_;
2229 DisallowHeapAllocation no_heap_allocation_;
2230 Heap* heap_;
2231 HeapObjectsFiltering filtering_;
2232 HeapObjectsFilter* filter_;
2233 // Space iterator for iterating all the spaces.
2234 SpaceIterator* space_iterator_;
2235 // Object iterator for the space currently being iterated.
2236 ObjectIterator* object_iterator_;
2237};
2238
2239
2240// Cache for mapping (map, property name) into field offset.
2241// Cleared at startup and prior to mark sweep collection.
2242class KeyedLookupCache {
2243 public:
2244 // Lookup field offset for (map, name). If absent, -1 is returned.
2245 int Lookup(Handle<Map> map, Handle<Name> name);
2246
2247 // Update an element in the cache.
2248 void Update(Handle<Map> map, Handle<Name> name, int field_offset);
2249
2250 // Clear the cache.
2251 void Clear();
2252
2253 static const int kLength = 256;
2254 static const int kCapacityMask = kLength - 1;
2255 static const int kMapHashShift = 5;
2256 static const int kHashMask = -4; // Zero the last two bits.
2257 static const int kEntriesPerBucket = 4;
2258 static const int kEntryLength = 2;
2259 static const int kMapIndex = 0;
2260 static const int kKeyIndex = 1;
2261 static const int kNotFound = -1;
2262
2263 // kEntriesPerBucket should be a power of 2.
2264 STATIC_ASSERT((kEntriesPerBucket & (kEntriesPerBucket - 1)) == 0);
2265 STATIC_ASSERT(kEntriesPerBucket == -kHashMask);
2266
2267 private:
2268 KeyedLookupCache() {
2269 for (int i = 0; i < kLength; ++i) {
2270 keys_[i].map = NULL;
2271 keys_[i].name = NULL;
2272 field_offsets_[i] = kNotFound;
2273 }
2274 }
2275
2276 static inline int Hash(Handle<Map> map, Handle<Name> name);
2277
2278 // Get the address of the keys and field_offsets arrays. Used in
2279 // generated code to perform cache lookups.
2280 Address keys_address() { return reinterpret_cast<Address>(&keys_); }
2281
2282 Address field_offsets_address() {
2283 return reinterpret_cast<Address>(&field_offsets_);
2284 }
2285
2286 struct Key {
2287 Map* map;
2288 Name* name;
2289 };
2290
2291 Key keys_[kLength];
2292 int field_offsets_[kLength];
2293
2294 friend class ExternalReference;
2295 friend class Isolate;
2296 DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache);
2297};
2298
2299
2300// Cache for mapping (map, property name) into descriptor index.
2301// The cache contains both positive and negative results.
2302// Descriptor index equals kNotFound means the property is absent.
2303// Cleared at startup and prior to any gc.
2304class DescriptorLookupCache {
2305 public:
2306 // Lookup descriptor index for (map, name).
2307 // If absent, kAbsent is returned.
2308 int Lookup(Map* source, Name* name) {
2309 if (!name->IsUniqueName()) return kAbsent;
2310 int index = Hash(source, name);
2311 Key& key = keys_[index];
2312 if ((key.source == source) && (key.name == name)) return results_[index];
2313 return kAbsent;
2314 }
2315
2316 // Update an element in the cache.
2317 void Update(Map* source, Name* name, int result) {
2318 DCHECK(result != kAbsent);
2319 if (name->IsUniqueName()) {
2320 int index = Hash(source, name);
2321 Key& key = keys_[index];
2322 key.source = source;
2323 key.name = name;
2324 results_[index] = result;
2325 }
2326 }
2327
2328 // Clear the cache.
2329 void Clear();
2330
2331 static const int kAbsent = -2;
2332
2333 private:
2334 DescriptorLookupCache() {
2335 for (int i = 0; i < kLength; ++i) {
2336 keys_[i].source = NULL;
2337 keys_[i].name = NULL;
2338 results_[i] = kAbsent;
2339 }
2340 }
2341
2342 static int Hash(Object* source, Name* name) {
2343 // Uses only lower 32 bits if pointers are larger.
2344 uint32_t source_hash =
2345 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(source)) >>
2346 kPointerSizeLog2;
2347 uint32_t name_hash =
2348 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name)) >>
2349 kPointerSizeLog2;
2350 return (source_hash ^ name_hash) % kLength;
2351 }
2352
2353 static const int kLength = 64;
2354 struct Key {
2355 Map* source;
2356 Name* name;
2357 };
2358
2359 Key keys_[kLength];
2360 int results_[kLength];
2361
2362 friend class Isolate;
2363 DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache);
2364};
2365
2366
2367class RegExpResultsCache {
2368 public:
2369 enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
2370
2371 // Attempt to retrieve a cached result. On failure, 0 is returned as a Smi.
2372 // On success, the returned result is guaranteed to be a COW-array.
2373 static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern,
2374 ResultsCacheType type);
2375 // Attempt to add value_array to the cache specified by type. On success,
2376 // value_array is turned into a COW-array.
2377 static void Enter(Isolate* isolate, Handle<String> key_string,
2378 Handle<Object> key_pattern, Handle<FixedArray> value_array,
2379 ResultsCacheType type);
2380 static void Clear(FixedArray* cache);
2381 static const int kRegExpResultsCacheSize = 0x100;
2382
2383 private:
2384 static const int kArrayEntriesPerCacheEntry = 4;
2385 static const int kStringOffset = 0;
2386 static const int kPatternOffset = 1;
2387 static const int kArrayOffset = 2;
2388};
2389
2390
2391// Abstract base class for checking whether a weak object should be retained.
2392class WeakObjectRetainer {
2393 public:
2394 virtual ~WeakObjectRetainer() {}
2395
2396 // Return whether this object should be retained. If NULL is returned the
2397 // object has no references. Otherwise the address of the retained object
2398 // should be returned as in some GC situations the object has been moved.
2399 virtual Object* RetainAs(Object* object) = 0;
2400};
2401
2402
2403// Intrusive object marking uses least significant bit of
2404// heap object's map word to mark objects.
2405// Normally all map words have least significant bit set
2406// because they contain tagged map pointer.
2407// If the bit is not set object is marked.
2408// All objects should be unmarked before resuming
2409// JavaScript execution.
2410class IntrusiveMarking {
2411 public:
2412 static bool IsMarked(HeapObject* object) {
2413 return (object->map_word().ToRawValue() & kNotMarkedBit) == 0;
2414 }
2415
2416 static void ClearMark(HeapObject* object) {
2417 uintptr_t map_word = object->map_word().ToRawValue();
2418 object->set_map_word(MapWord::FromRawValue(map_word | kNotMarkedBit));
2419 DCHECK(!IsMarked(object));
2420 }
2421
2422 static void SetMark(HeapObject* object) {
2423 uintptr_t map_word = object->map_word().ToRawValue();
2424 object->set_map_word(MapWord::FromRawValue(map_word & ~kNotMarkedBit));
2425 DCHECK(IsMarked(object));
2426 }
2427
2428 static Map* MapOfMarkedObject(HeapObject* object) {
2429 uintptr_t map_word = object->map_word().ToRawValue();
2430 return MapWord::FromRawValue(map_word | kNotMarkedBit).ToMap();
2431 }
2432
2433 static int SizeOfMarkedObject(HeapObject* object) {
2434 return object->SizeFromMap(MapOfMarkedObject(object));
2435 }
2436
2437 private:
2438 static const uintptr_t kNotMarkedBit = 0x1;
2439 STATIC_ASSERT((kHeapObjectTag & kNotMarkedBit) != 0); // NOLINT
2440};
2441
2442
2443#ifdef DEBUG
2444// Helper class for tracing paths to a search target Object from all roots.
2445// The TracePathFrom() method can be used to trace paths from a specific
2446// object to the search target object.
2447class PathTracer : public ObjectVisitor {
2448 public:
2449 enum WhatToFind {
2450 FIND_ALL, // Will find all matches.
2451 FIND_FIRST // Will stop the search after first match.
2452 };
2453
2454 // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
2455 static const int kMarkTag = 2;
2456
2457 // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
2458 // after the first match. If FIND_ALL is specified, then tracing will be
2459 // done for all matches.
2460 PathTracer(Object* search_target, WhatToFind what_to_find,
2461 VisitMode visit_mode)
2462 : search_target_(search_target),
2463 found_target_(false),
2464 found_target_in_trace_(false),
2465 what_to_find_(what_to_find),
2466 visit_mode_(visit_mode),
2467 object_stack_(20),
2468 no_allocation() {}
2469
2470 virtual void VisitPointers(Object** start, Object** end);
2471
2472 void Reset();
2473 void TracePathFrom(Object** root);
2474
2475 bool found() const { return found_target_; }
2476
2477 static Object* const kAnyGlobalObject;
2478
2479 protected:
2480 class MarkVisitor;
2481 class UnmarkVisitor;
2482
2483 void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
2484 void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
2485 virtual void ProcessResults();
2486
2487 Object* search_target_;
2488 bool found_target_;
2489 bool found_target_in_trace_;
2490 WhatToFind what_to_find_;
2491 VisitMode visit_mode_;
2492 List<Object*> object_stack_;
2493
2494 DisallowHeapAllocation no_allocation; // i.e. no gc allowed.
2495
2496 private:
2497 DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
2498};
2499#endif // DEBUG
2500}
2501} // namespace v8::internal
2502
2503#endif // V8_HEAP_HEAP_H_