blob: d4c383be8f00f7797aa5fd4a86d98e0a97a3d65c [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_X87
8
9#include "src/base/bits.h"
10#include "src/bootstrapper.h"
11#include "src/code-stubs.h"
12#include "src/codegen.h"
13#include "src/ic/handler-compiler.h"
14#include "src/ic/ic.h"
15#include "src/isolate.h"
16#include "src/jsregexp.h"
17#include "src/regexp-macro-assembler.h"
18#include "src/runtime.h"
19
20namespace v8 {
21namespace internal {
22
23
24static void InitializeArrayConstructorDescriptor(
25 Isolate* isolate, CodeStubDescriptor* descriptor,
26 int constant_stack_parameter_count) {
27 // register state
28 // eax -- number of arguments
29 // edi -- function
30 // ebx -- allocation site with elements kind
31 Address deopt_handler = Runtime::FunctionForId(
32 Runtime::kArrayConstructor)->entry;
33
34 if (constant_stack_parameter_count == 0) {
35 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
36 JS_FUNCTION_STUB_MODE);
37 } else {
38 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
39 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
40 }
41}
42
43
44static void InitializeInternalArrayConstructorDescriptor(
45 Isolate* isolate, CodeStubDescriptor* descriptor,
46 int constant_stack_parameter_count) {
47 // register state
48 // eax -- number of arguments
49 // edi -- constructor function
50 Address deopt_handler = Runtime::FunctionForId(
51 Runtime::kInternalArrayConstructor)->entry;
52
53 if (constant_stack_parameter_count == 0) {
54 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
55 JS_FUNCTION_STUB_MODE);
56 } else {
57 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
58 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
59 }
60}
61
62
63void ArrayNoArgumentConstructorStub::InitializeDescriptor(
64 CodeStubDescriptor* descriptor) {
65 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
66}
67
68
69void ArraySingleArgumentConstructorStub::InitializeDescriptor(
70 CodeStubDescriptor* descriptor) {
71 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
72}
73
74
75void ArrayNArgumentsConstructorStub::InitializeDescriptor(
76 CodeStubDescriptor* descriptor) {
77 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
78}
79
80
81void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
82 CodeStubDescriptor* descriptor) {
83 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
84}
85
86
87void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
88 CodeStubDescriptor* descriptor) {
89 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
90}
91
92
93void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
94 CodeStubDescriptor* descriptor) {
95 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
96}
97
98
99#define __ ACCESS_MASM(masm)
100
101
102void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
103 ExternalReference miss) {
104 // Update the static counter each time a new code stub is generated.
105 isolate()->counters()->code_stubs()->Increment();
106
107 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
108 int param_count = descriptor.GetEnvironmentParameterCount();
109 {
110 // Call the runtime system in a fresh internal frame.
111 FrameScope scope(masm, StackFrame::INTERNAL);
112 DCHECK(param_count == 0 ||
113 eax.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
114 // Push arguments
115 for (int i = 0; i < param_count; ++i) {
116 __ push(descriptor.GetEnvironmentParameterRegister(i));
117 }
118 __ CallExternalReference(miss, param_count);
119 }
120
121 __ ret(0);
122}
123
124
125void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
126 // We don't allow a GC during a store buffer overflow so there is no need to
127 // store the registers in any particular way, but we do have to store and
128 // restore them.
129 __ pushad();
130 if (save_doubles()) {
131 // Save FPU stat in m108byte.
132 __ sub(esp, Immediate(108));
133 __ fnsave(Operand(esp, 0));
134 }
135 const int argument_count = 1;
136
137 AllowExternalCallThatCantCauseGC scope(masm);
138 __ PrepareCallCFunction(argument_count, ecx);
139 __ mov(Operand(esp, 0 * kPointerSize),
140 Immediate(ExternalReference::isolate_address(isolate())));
141 __ CallCFunction(
142 ExternalReference::store_buffer_overflow_function(isolate()),
143 argument_count);
144 if (save_doubles()) {
145 // Restore FPU stat in m108byte.
146 __ frstor(Operand(esp, 0));
147 __ add(esp, Immediate(108));
148 }
149 __ popad();
150 __ ret(0);
151}
152
153
154class FloatingPointHelper : public AllStatic {
155 public:
156 enum ArgLocation {
157 ARGS_ON_STACK,
158 ARGS_IN_REGISTERS
159 };
160
161 // Code pattern for loading a floating point value. Input value must
162 // be either a smi or a heap number object (fp value). Requirements:
163 // operand in register number. Returns operand as floating point number
164 // on FPU stack.
165 static void LoadFloatOperand(MacroAssembler* masm, Register number);
166
167 // Test if operands are smi or number objects (fp). Requirements:
168 // operand_1 in eax, operand_2 in edx; falls through on float
169 // operands, jumps to the non_float label otherwise.
170 static void CheckFloatOperands(MacroAssembler* masm,
171 Label* non_float,
172 Register scratch);
173};
174
175
176void DoubleToIStub::Generate(MacroAssembler* masm) {
177 Register input_reg = this->source();
178 Register final_result_reg = this->destination();
179 DCHECK(is_truncating());
180
181 Label check_negative, process_64_bits, done, done_no_stash;
182
183 int double_offset = offset();
184
185 // Account for return address and saved regs if input is esp.
186 if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
187
188 MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
189 MemOperand exponent_operand(MemOperand(input_reg,
190 double_offset + kDoubleSize / 2));
191
192 Register scratch1;
193 {
194 Register scratch_candidates[3] = { ebx, edx, edi };
195 for (int i = 0; i < 3; i++) {
196 scratch1 = scratch_candidates[i];
197 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
198 }
199 }
200 // Since we must use ecx for shifts below, use some other register (eax)
201 // to calculate the result if ecx is the requested return register.
202 Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
203 // Save ecx if it isn't the return register and therefore volatile, or if it
204 // is the return register, then save the temp register we use in its stead for
205 // the result.
206 Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
207 __ push(scratch1);
208 __ push(save_reg);
209
210 bool stash_exponent_copy = !input_reg.is(esp);
211 __ mov(scratch1, mantissa_operand);
212 __ mov(ecx, exponent_operand);
213 if (stash_exponent_copy) __ push(ecx);
214
215 __ and_(ecx, HeapNumber::kExponentMask);
216 __ shr(ecx, HeapNumber::kExponentShift);
217 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
218 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
219 __ j(below, &process_64_bits);
220
221 // Result is entirely in lower 32-bits of mantissa
222 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
223 __ sub(ecx, Immediate(delta));
224 __ xor_(result_reg, result_reg);
225 __ cmp(ecx, Immediate(31));
226 __ j(above, &done);
227 __ shl_cl(scratch1);
228 __ jmp(&check_negative);
229
230 __ bind(&process_64_bits);
231 // Result must be extracted from shifted 32-bit mantissa
232 __ sub(ecx, Immediate(delta));
233 __ neg(ecx);
234 if (stash_exponent_copy) {
235 __ mov(result_reg, MemOperand(esp, 0));
236 } else {
237 __ mov(result_reg, exponent_operand);
238 }
239 __ and_(result_reg,
240 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
241 __ add(result_reg,
242 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
243 __ shrd(result_reg, scratch1);
244 __ shr_cl(result_reg);
245 __ test(ecx, Immediate(32));
246 {
247 Label skip_mov;
248 __ j(equal, &skip_mov, Label::kNear);
249 __ mov(scratch1, result_reg);
250 __ bind(&skip_mov);
251 }
252
253 // If the double was negative, negate the integer result.
254 __ bind(&check_negative);
255 __ mov(result_reg, scratch1);
256 __ neg(result_reg);
257 if (stash_exponent_copy) {
258 __ cmp(MemOperand(esp, 0), Immediate(0));
259 } else {
260 __ cmp(exponent_operand, Immediate(0));
261 }
262 {
263 Label skip_mov;
264 __ j(less_equal, &skip_mov, Label::kNear);
265 __ mov(result_reg, scratch1);
266 __ bind(&skip_mov);
267 }
268
269 // Restore registers
270 __ bind(&done);
271 if (stash_exponent_copy) {
272 __ add(esp, Immediate(kDoubleSize / 2));
273 }
274 __ bind(&done_no_stash);
275 if (!final_result_reg.is(result_reg)) {
276 DCHECK(final_result_reg.is(ecx));
277 __ mov(final_result_reg, result_reg);
278 }
279 __ pop(save_reg);
280 __ pop(scratch1);
281 __ ret(0);
282}
283
284
285void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
286 Register number) {
287 Label load_smi, done;
288
289 __ JumpIfSmi(number, &load_smi, Label::kNear);
290 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
291 __ jmp(&done, Label::kNear);
292
293 __ bind(&load_smi);
294 __ SmiUntag(number);
295 __ push(number);
296 __ fild_s(Operand(esp, 0));
297 __ pop(number);
298
299 __ bind(&done);
300}
301
302
303void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
304 Label* non_float,
305 Register scratch) {
306 Label test_other, done;
307 // Test if both operands are floats or smi -> scratch=k_is_float;
308 // Otherwise scratch = k_not_float.
309 __ JumpIfSmi(edx, &test_other, Label::kNear);
310 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
311 Factory* factory = masm->isolate()->factory();
312 __ cmp(scratch, factory->heap_number_map());
313 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
314
315 __ bind(&test_other);
316 __ JumpIfSmi(eax, &done, Label::kNear);
317 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
318 __ cmp(scratch, factory->heap_number_map());
319 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
320
321 // Fall-through: Both operands are numbers.
322 __ bind(&done);
323}
324
325
326void MathPowStub::Generate(MacroAssembler* masm) {
327 // No SSE2 support
328 UNREACHABLE();
329}
330
331
332void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
333 Label miss;
334 Register receiver = LoadDescriptor::ReceiverRegister();
335
336 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, eax,
337 ebx, &miss);
338 __ bind(&miss);
339 PropertyAccessCompiler::TailCallBuiltin(
340 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
341}
342
343
344void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
345 // Return address is on the stack.
346 Label slow;
347
348 Register receiver = LoadDescriptor::ReceiverRegister();
349 Register key = LoadDescriptor::NameRegister();
350 Register scratch = eax;
351 DCHECK(!scratch.is(receiver) && !scratch.is(key));
352
353 // Check that the key is an array index, that is Uint32.
354 __ test(key, Immediate(kSmiTagMask | kSmiSignMask));
355 __ j(not_zero, &slow);
356
357 // Everything is fine, call runtime.
358 __ pop(scratch);
359 __ push(receiver); // receiver
360 __ push(key); // key
361 __ push(scratch); // return address
362
363 // Perform tail call to the entry.
364 ExternalReference ref = ExternalReference(
365 IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate());
366 __ TailCallExternalReference(ref, 2, 1);
367
368 __ bind(&slow);
369 PropertyAccessCompiler::TailCallBuiltin(
370 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
371}
372
373
374void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
375 // The key is in edx and the parameter count is in eax.
376 DCHECK(edx.is(ArgumentsAccessReadDescriptor::index()));
377 DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count()));
378
379 // The displacement is used for skipping the frame pointer on the
380 // stack. It is the offset of the last parameter (if any) relative
381 // to the frame pointer.
382 static const int kDisplacement = 1 * kPointerSize;
383
384 // Check that the key is a smi.
385 Label slow;
386 __ JumpIfNotSmi(edx, &slow, Label::kNear);
387
388 // Check if the calling frame is an arguments adaptor frame.
389 Label adaptor;
390 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
391 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
392 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
393 __ j(equal, &adaptor, Label::kNear);
394
395 // Check index against formal parameters count limit passed in
396 // through register eax. Use unsigned comparison to get negative
397 // check for free.
398 __ cmp(edx, eax);
399 __ j(above_equal, &slow, Label::kNear);
400
401 // Read the argument from the stack and return it.
402 STATIC_ASSERT(kSmiTagSize == 1);
403 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
404 __ lea(ebx, Operand(ebp, eax, times_2, 0));
405 __ neg(edx);
406 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
407 __ ret(0);
408
409 // Arguments adaptor case: Check index against actual arguments
410 // limit found in the arguments adaptor frame. Use unsigned
411 // comparison to get negative check for free.
412 __ bind(&adaptor);
413 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
414 __ cmp(edx, ecx);
415 __ j(above_equal, &slow, Label::kNear);
416
417 // Read the argument from the stack and return it.
418 STATIC_ASSERT(kSmiTagSize == 1);
419 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
420 __ lea(ebx, Operand(ebx, ecx, times_2, 0));
421 __ neg(edx);
422 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
423 __ ret(0);
424
425 // Slow-case: Handle non-smi or out-of-bounds access to arguments
426 // by calling the runtime system.
427 __ bind(&slow);
428 __ pop(ebx); // Return address.
429 __ push(edx);
430 __ push(ebx);
431 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
432}
433
434
435void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
436 // esp[0] : return address
437 // esp[4] : number of parameters
438 // esp[8] : receiver displacement
439 // esp[12] : function
440
441 // Check if the calling frame is an arguments adaptor frame.
442 Label runtime;
443 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
444 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
445 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
446 __ j(not_equal, &runtime, Label::kNear);
447
448 // Patch the arguments.length and the parameters pointer.
449 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
450 __ mov(Operand(esp, 1 * kPointerSize), ecx);
451 __ lea(edx, Operand(edx, ecx, times_2,
452 StandardFrameConstants::kCallerSPOffset));
453 __ mov(Operand(esp, 2 * kPointerSize), edx);
454
455 __ bind(&runtime);
456 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
457}
458
459
460void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
461 // esp[0] : return address
462 // esp[4] : number of parameters (tagged)
463 // esp[8] : receiver displacement
464 // esp[12] : function
465
466 // ebx = parameter count (tagged)
467 __ mov(ebx, Operand(esp, 1 * kPointerSize));
468
469 // Check if the calling frame is an arguments adaptor frame.
470 // TODO(rossberg): Factor out some of the bits that are shared with the other
471 // Generate* functions.
472 Label runtime;
473 Label adaptor_frame, try_allocate;
474 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
475 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
476 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
477 __ j(equal, &adaptor_frame, Label::kNear);
478
479 // No adaptor, parameter count = argument count.
480 __ mov(ecx, ebx);
481 __ jmp(&try_allocate, Label::kNear);
482
483 // We have an adaptor frame. Patch the parameters pointer.
484 __ bind(&adaptor_frame);
485 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
486 __ lea(edx, Operand(edx, ecx, times_2,
487 StandardFrameConstants::kCallerSPOffset));
488 __ mov(Operand(esp, 2 * kPointerSize), edx);
489
490 // ebx = parameter count (tagged)
491 // ecx = argument count (smi-tagged)
492 // esp[4] = parameter count (tagged)
493 // esp[8] = address of receiver argument
494 // Compute the mapped parameter count = min(ebx, ecx) in ebx.
495 __ cmp(ebx, ecx);
496 __ j(less_equal, &try_allocate, Label::kNear);
497 __ mov(ebx, ecx);
498
499 __ bind(&try_allocate);
500
501 // Save mapped parameter count.
502 __ push(ebx);
503
504 // Compute the sizes of backing store, parameter map, and arguments object.
505 // 1. Parameter map, has 2 extra words containing context and backing store.
506 const int kParameterMapHeaderSize =
507 FixedArray::kHeaderSize + 2 * kPointerSize;
508 Label no_parameter_map;
509 __ test(ebx, ebx);
510 __ j(zero, &no_parameter_map, Label::kNear);
511 __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
512 __ bind(&no_parameter_map);
513
514 // 2. Backing store.
515 __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
516
517 // 3. Arguments object.
518 __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
519
520 // Do the allocation of all three objects in one go.
521 __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
522
523 // eax = address of new object(s) (tagged)
524 // ecx = argument count (smi-tagged)
525 // esp[0] = mapped parameter count (tagged)
526 // esp[8] = parameter count (tagged)
527 // esp[12] = address of receiver argument
528 // Get the arguments map from the current native context into edi.
529 Label has_mapped_parameters, instantiate;
530 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
531 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
532 __ mov(ebx, Operand(esp, 0 * kPointerSize));
533 __ test(ebx, ebx);
534 __ j(not_zero, &has_mapped_parameters, Label::kNear);
535 __ mov(
536 edi,
537 Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
538 __ jmp(&instantiate, Label::kNear);
539
540 __ bind(&has_mapped_parameters);
541 __ mov(
542 edi,
543 Operand(edi, Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX)));
544 __ bind(&instantiate);
545
546 // eax = address of new object (tagged)
547 // ebx = mapped parameter count (tagged)
548 // ecx = argument count (smi-tagged)
549 // edi = address of arguments map (tagged)
550 // esp[0] = mapped parameter count (tagged)
551 // esp[8] = parameter count (tagged)
552 // esp[12] = address of receiver argument
553 // Copy the JS object part.
554 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
555 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
556 masm->isolate()->factory()->empty_fixed_array());
557 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
558 masm->isolate()->factory()->empty_fixed_array());
559
560 // Set up the callee in-object property.
561 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
562 __ mov(edx, Operand(esp, 4 * kPointerSize));
563 __ AssertNotSmi(edx);
564 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
565 Heap::kArgumentsCalleeIndex * kPointerSize),
566 edx);
567
568 // Use the length (smi tagged) and set that as an in-object property too.
569 __ AssertSmi(ecx);
570 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
571 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
572 Heap::kArgumentsLengthIndex * kPointerSize),
573 ecx);
574
575 // Set up the elements pointer in the allocated arguments object.
576 // If we allocated a parameter map, edi will point there, otherwise to the
577 // backing store.
578 __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
579 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
580
581 // eax = address of new object (tagged)
582 // ebx = mapped parameter count (tagged)
583 // ecx = argument count (tagged)
584 // edi = address of parameter map or backing store (tagged)
585 // esp[0] = mapped parameter count (tagged)
586 // esp[8] = parameter count (tagged)
587 // esp[12] = address of receiver argument
588 // Free a register.
589 __ push(eax);
590
591 // Initialize parameter map. If there are no mapped arguments, we're done.
592 Label skip_parameter_map;
593 __ test(ebx, ebx);
594 __ j(zero, &skip_parameter_map);
595
596 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
597 Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
598 __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
599 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
600 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
601 __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
602 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
603
604 // Copy the parameter slots and the holes in the arguments.
605 // We need to fill in mapped_parameter_count slots. They index the context,
606 // where parameters are stored in reverse order, at
607 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
608 // The mapped parameter thus need to get indices
609 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
610 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
611 // We loop from right to left.
612 Label parameters_loop, parameters_test;
613 __ push(ecx);
614 __ mov(eax, Operand(esp, 2 * kPointerSize));
615 __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
616 __ add(ebx, Operand(esp, 4 * kPointerSize));
617 __ sub(ebx, eax);
618 __ mov(ecx, isolate()->factory()->the_hole_value());
619 __ mov(edx, edi);
620 __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
621 // eax = loop variable (tagged)
622 // ebx = mapping index (tagged)
623 // ecx = the hole value
624 // edx = address of parameter map (tagged)
625 // edi = address of backing store (tagged)
626 // esp[0] = argument count (tagged)
627 // esp[4] = address of new object (tagged)
628 // esp[8] = mapped parameter count (tagged)
629 // esp[16] = parameter count (tagged)
630 // esp[20] = address of receiver argument
631 __ jmp(&parameters_test, Label::kNear);
632
633 __ bind(&parameters_loop);
634 __ sub(eax, Immediate(Smi::FromInt(1)));
635 __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
636 __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
637 __ add(ebx, Immediate(Smi::FromInt(1)));
638 __ bind(&parameters_test);
639 __ test(eax, eax);
640 __ j(not_zero, &parameters_loop, Label::kNear);
641 __ pop(ecx);
642
643 __ bind(&skip_parameter_map);
644
645 // ecx = argument count (tagged)
646 // edi = address of backing store (tagged)
647 // esp[0] = address of new object (tagged)
648 // esp[4] = mapped parameter count (tagged)
649 // esp[12] = parameter count (tagged)
650 // esp[16] = address of receiver argument
651 // Copy arguments header and remaining slots (if there are any).
652 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
653 Immediate(isolate()->factory()->fixed_array_map()));
654 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
655
656 Label arguments_loop, arguments_test;
657 __ mov(ebx, Operand(esp, 1 * kPointerSize));
658 __ mov(edx, Operand(esp, 4 * kPointerSize));
659 __ sub(edx, ebx); // Is there a smarter way to do negative scaling?
660 __ sub(edx, ebx);
661 __ jmp(&arguments_test, Label::kNear);
662
663 __ bind(&arguments_loop);
664 __ sub(edx, Immediate(kPointerSize));
665 __ mov(eax, Operand(edx, 0));
666 __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
667 __ add(ebx, Immediate(Smi::FromInt(1)));
668
669 __ bind(&arguments_test);
670 __ cmp(ebx, ecx);
671 __ j(less, &arguments_loop, Label::kNear);
672
673 // Restore.
674 __ pop(eax); // Address of arguments object.
675 __ pop(ebx); // Parameter count.
676
677 // Return and remove the on-stack parameters.
678 __ ret(3 * kPointerSize);
679
680 // Do the runtime call to allocate the arguments object.
681 __ bind(&runtime);
682 __ pop(eax); // Remove saved parameter count.
683 __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count.
684 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
685}
686
687
688void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
689 // esp[0] : return address
690 // esp[4] : number of parameters
691 // esp[8] : receiver displacement
692 // esp[12] : function
693
694 // Check if the calling frame is an arguments adaptor frame.
695 Label adaptor_frame, try_allocate, runtime;
696 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
697 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
698 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
699 __ j(equal, &adaptor_frame, Label::kNear);
700
701 // Get the length from the frame.
702 __ mov(ecx, Operand(esp, 1 * kPointerSize));
703 __ jmp(&try_allocate, Label::kNear);
704
705 // Patch the arguments.length and the parameters pointer.
706 __ bind(&adaptor_frame);
707 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
708 __ mov(Operand(esp, 1 * kPointerSize), ecx);
709 __ lea(edx, Operand(edx, ecx, times_2,
710 StandardFrameConstants::kCallerSPOffset));
711 __ mov(Operand(esp, 2 * kPointerSize), edx);
712
713 // Try the new space allocation. Start out with computing the size of
714 // the arguments object and the elements array.
715 Label add_arguments_object;
716 __ bind(&try_allocate);
717 __ test(ecx, ecx);
718 __ j(zero, &add_arguments_object, Label::kNear);
719 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
720 __ bind(&add_arguments_object);
721 __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
722
723 // Do the allocation of both objects in one go.
724 __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
725
726 // Get the arguments map from the current native context.
727 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
728 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
729 const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
730 __ mov(edi, Operand(edi, offset));
731
732 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
733 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
734 masm->isolate()->factory()->empty_fixed_array());
735 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
736 masm->isolate()->factory()->empty_fixed_array());
737
738 // Get the length (smi tagged) and set that as an in-object property too.
739 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
740 __ mov(ecx, Operand(esp, 1 * kPointerSize));
741 __ AssertSmi(ecx);
742 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
743 Heap::kArgumentsLengthIndex * kPointerSize),
744 ecx);
745
746 // If there are no actual arguments, we're done.
747 Label done;
748 __ test(ecx, ecx);
749 __ j(zero, &done, Label::kNear);
750
751 // Get the parameters pointer from the stack.
752 __ mov(edx, Operand(esp, 2 * kPointerSize));
753
754 // Set up the elements pointer in the allocated arguments object and
755 // initialize the header in the elements fixed array.
756 __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
757 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
758 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
759 Immediate(isolate()->factory()->fixed_array_map()));
760
761 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
762 // Untag the length for the loop below.
763 __ SmiUntag(ecx);
764
765 // Copy the fixed array slots.
766 Label loop;
767 __ bind(&loop);
768 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
769 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
770 __ add(edi, Immediate(kPointerSize));
771 __ sub(edx, Immediate(kPointerSize));
772 __ dec(ecx);
773 __ j(not_zero, &loop);
774
775 // Return and remove the on-stack parameters.
776 __ bind(&done);
777 __ ret(3 * kPointerSize);
778
779 // Do the runtime call to allocate the arguments object.
780 __ bind(&runtime);
781 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
782}
783
784
785void RegExpExecStub::Generate(MacroAssembler* masm) {
786 // Just jump directly to runtime if native RegExp is not selected at compile
787 // time or if regexp entry in generated code is turned off runtime switch or
788 // at compilation.
789#ifdef V8_INTERPRETED_REGEXP
790 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
791#else // V8_INTERPRETED_REGEXP
792
793 // Stack frame on entry.
794 // esp[0]: return address
795 // esp[4]: last_match_info (expected JSArray)
796 // esp[8]: previous index
797 // esp[12]: subject string
798 // esp[16]: JSRegExp object
799
800 static const int kLastMatchInfoOffset = 1 * kPointerSize;
801 static const int kPreviousIndexOffset = 2 * kPointerSize;
802 static const int kSubjectOffset = 3 * kPointerSize;
803 static const int kJSRegExpOffset = 4 * kPointerSize;
804
805 Label runtime;
806 Factory* factory = isolate()->factory();
807
808 // Ensure that a RegExp stack is allocated.
809 ExternalReference address_of_regexp_stack_memory_address =
810 ExternalReference::address_of_regexp_stack_memory_address(isolate());
811 ExternalReference address_of_regexp_stack_memory_size =
812 ExternalReference::address_of_regexp_stack_memory_size(isolate());
813 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
814 __ test(ebx, ebx);
815 __ j(zero, &runtime);
816
817 // Check that the first argument is a JSRegExp object.
818 __ mov(eax, Operand(esp, kJSRegExpOffset));
819 STATIC_ASSERT(kSmiTag == 0);
820 __ JumpIfSmi(eax, &runtime);
821 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
822 __ j(not_equal, &runtime);
823
824 // Check that the RegExp has been compiled (data contains a fixed array).
825 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
826 if (FLAG_debug_code) {
827 __ test(ecx, Immediate(kSmiTagMask));
828 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
829 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
830 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
831 }
832
833 // ecx: RegExp data (FixedArray)
834 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
835 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
836 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
837 __ j(not_equal, &runtime);
838
839 // ecx: RegExp data (FixedArray)
840 // Check that the number of captures fit in the static offsets vector buffer.
841 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
842 // Check (number_of_captures + 1) * 2 <= offsets vector size
843 // Or number_of_captures * 2 <= offsets vector size - 2
844 // Multiplying by 2 comes for free since edx is smi-tagged.
845 STATIC_ASSERT(kSmiTag == 0);
846 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
847 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
848 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
849 __ j(above, &runtime);
850
851 // Reset offset for possibly sliced string.
852 __ Move(edi, Immediate(0));
853 __ mov(eax, Operand(esp, kSubjectOffset));
854 __ JumpIfSmi(eax, &runtime);
855 __ mov(edx, eax); // Make a copy of the original subject string.
856 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
857 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
858
859 // eax: subject string
860 // edx: subject string
861 // ebx: subject string instance type
862 // ecx: RegExp data (FixedArray)
863 // Handle subject string according to its encoding and representation:
864 // (1) Sequential two byte? If yes, go to (9).
865 // (2) Sequential one byte? If yes, go to (6).
866 // (3) Anything but sequential or cons? If yes, go to (7).
867 // (4) Cons string. If the string is flat, replace subject with first string.
868 // Otherwise bailout.
869 // (5a) Is subject sequential two byte? If yes, go to (9).
870 // (5b) Is subject external? If yes, go to (8).
871 // (6) One byte sequential. Load regexp code for one byte.
872 // (E) Carry on.
873 /// [...]
874
875 // Deferred code at the end of the stub:
876 // (7) Not a long external string? If yes, go to (10).
877 // (8) External string. Make it, offset-wise, look like a sequential string.
878 // (8a) Is the external string one byte? If yes, go to (6).
879 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
880 // (10) Short external string or not a string? If yes, bail out to runtime.
881 // (11) Sliced string. Replace subject with parent. Go to (5a).
882
883 Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
884 external_string /* 8 */, check_underlying /* 5a */,
885 not_seq_nor_cons /* 7 */, check_code /* E */,
886 not_long_external /* 10 */;
887
888 // (1) Sequential two byte? If yes, go to (9).
889 __ and_(ebx, kIsNotStringMask |
890 kStringRepresentationMask |
891 kStringEncodingMask |
892 kShortExternalStringMask);
893 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
894 __ j(zero, &seq_two_byte_string); // Go to (9).
895
896 // (2) Sequential one byte? If yes, go to (6).
897 // Any other sequential string must be one byte.
898 __ and_(ebx, Immediate(kIsNotStringMask |
899 kStringRepresentationMask |
900 kShortExternalStringMask));
901 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6).
902
903 // (3) Anything but sequential or cons? If yes, go to (7).
904 // We check whether the subject string is a cons, since sequential strings
905 // have already been covered.
906 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
907 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
908 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
909 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
910 __ cmp(ebx, Immediate(kExternalStringTag));
911 __ j(greater_equal, &not_seq_nor_cons); // Go to (7).
912
913 // (4) Cons string. Check that it's flat.
914 // Replace subject with first string and reload instance type.
915 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
916 __ j(not_equal, &runtime);
917 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
918 __ bind(&check_underlying);
919 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
920 __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
921
922 // (5a) Is subject sequential two byte? If yes, go to (9).
923 __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
924 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
925 __ j(zero, &seq_two_byte_string); // Go to (9).
926 // (5b) Is subject external? If yes, go to (8).
927 __ test_b(ebx, kStringRepresentationMask);
928 // The underlying external string is never a short external string.
929 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
930 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
931 __ j(not_zero, &external_string); // Go to (8).
932
933 // eax: sequential subject string (or look-alike, external string)
934 // edx: original subject string
935 // ecx: RegExp data (FixedArray)
936 // (6) One byte sequential. Load regexp code for one byte.
937 __ bind(&seq_one_byte_string);
938 // Load previous index and check range before edx is overwritten. We have
939 // to use edx instead of eax here because it might have been only made to
940 // look like a sequential string when it actually is an external string.
941 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
942 __ JumpIfNotSmi(ebx, &runtime);
943 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
944 __ j(above_equal, &runtime);
945 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
946 __ Move(ecx, Immediate(1)); // Type is one byte.
947
948 // (E) Carry on. String handling is done.
949 __ bind(&check_code);
950 // edx: irregexp code
951 // Check that the irregexp code has been generated for the actual string
952 // encoding. If it has, the field contains a code object otherwise it contains
953 // a smi (code flushing support).
954 __ JumpIfSmi(edx, &runtime);
955
956 // eax: subject string
957 // ebx: previous index (smi)
958 // edx: code
959 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
960 // All checks done. Now push arguments for native regexp code.
961 Counters* counters = isolate()->counters();
962 __ IncrementCounter(counters->regexp_entry_native(), 1);
963
964 // Isolates: note we add an additional parameter here (isolate pointer).
965 static const int kRegExpExecuteArguments = 9;
966 __ EnterApiExitFrame(kRegExpExecuteArguments);
967
968 // Argument 9: Pass current isolate address.
969 __ mov(Operand(esp, 8 * kPointerSize),
970 Immediate(ExternalReference::isolate_address(isolate())));
971
972 // Argument 8: Indicate that this is a direct call from JavaScript.
973 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
974
975 // Argument 7: Start (high end) of backtracking stack memory area.
976 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
977 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
978 __ mov(Operand(esp, 6 * kPointerSize), esi);
979
980 // Argument 6: Set the number of capture registers to zero to force global
981 // regexps to behave as non-global. This does not affect non-global regexps.
982 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
983
984 // Argument 5: static offsets vector buffer.
985 __ mov(Operand(esp, 4 * kPointerSize),
986 Immediate(ExternalReference::address_of_static_offsets_vector(
987 isolate())));
988
989 // Argument 2: Previous index.
990 __ SmiUntag(ebx);
991 __ mov(Operand(esp, 1 * kPointerSize), ebx);
992
993 // Argument 1: Original subject string.
994 // The original subject is in the previous stack frame. Therefore we have to
995 // use ebp, which points exactly to one pointer size below the previous esp.
996 // (Because creating a new stack frame pushes the previous ebp onto the stack
997 // and thereby moves up esp by one kPointerSize.)
998 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
999 __ mov(Operand(esp, 0 * kPointerSize), esi);
1000
1001 // esi: original subject string
1002 // eax: underlying subject string
1003 // ebx: previous index
1004 // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
1005 // edx: code
1006 // Argument 4: End of string data
1007 // Argument 3: Start of string data
1008 // Prepare start and end index of the input.
1009 // Load the length from the original sliced string if that is the case.
1010 __ mov(esi, FieldOperand(esi, String::kLengthOffset));
1011 __ add(esi, edi); // Calculate input end wrt offset.
1012 __ SmiUntag(edi);
1013 __ add(ebx, edi); // Calculate input start wrt offset.
1014
1015 // ebx: start index of the input string
1016 // esi: end index of the input string
1017 Label setup_two_byte, setup_rest;
1018 __ test(ecx, ecx);
1019 __ j(zero, &setup_two_byte, Label::kNear);
1020 __ SmiUntag(esi);
1021 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
1022 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1023 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
1024 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1025 __ jmp(&setup_rest, Label::kNear);
1026
1027 __ bind(&setup_two_byte);
1028 STATIC_ASSERT(kSmiTag == 0);
1029 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
1030 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
1031 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1032 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
1033 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1034
1035 __ bind(&setup_rest);
1036
1037 // Locate the code entry and call it.
1038 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1039 __ call(edx);
1040
1041 // Drop arguments and come back to JS mode.
1042 __ LeaveApiExitFrame(true);
1043
1044 // Check the result.
1045 Label success;
1046 __ cmp(eax, 1);
1047 // We expect exactly one result since we force the called regexp to behave
1048 // as non-global.
1049 __ j(equal, &success);
1050 Label failure;
1051 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
1052 __ j(equal, &failure);
1053 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
1054 // If not exception it can only be retry. Handle that in the runtime system.
1055 __ j(not_equal, &runtime);
1056 // Result must now be exception. If there is no pending exception already a
1057 // stack overflow (on the backtrack stack) was detected in RegExp code but
1058 // haven't created the exception yet. Handle that in the runtime system.
1059 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1060 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
1061 isolate());
1062 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
1063 __ mov(eax, Operand::StaticVariable(pending_exception));
1064 __ cmp(edx, eax);
1065 __ j(equal, &runtime);
1066 // For exception, throw the exception again.
1067
1068 // Clear the pending exception variable.
1069 __ mov(Operand::StaticVariable(pending_exception), edx);
1070
1071 // Special handling of termination exceptions which are uncatchable
1072 // by javascript code.
1073 __ cmp(eax, factory->termination_exception());
1074 Label throw_termination_exception;
1075 __ j(equal, &throw_termination_exception, Label::kNear);
1076
1077 // Handle normal exception by following handler chain.
1078 __ Throw(eax);
1079
1080 __ bind(&throw_termination_exception);
1081 __ ThrowUncatchable(eax);
1082
1083 __ bind(&failure);
1084 // For failure to match, return null.
1085 __ mov(eax, factory->null_value());
1086 __ ret(4 * kPointerSize);
1087
1088 // Load RegExp data.
1089 __ bind(&success);
1090 __ mov(eax, Operand(esp, kJSRegExpOffset));
1091 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1092 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1093 // Calculate number of capture registers (number_of_captures + 1) * 2.
1094 STATIC_ASSERT(kSmiTag == 0);
1095 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1096 __ add(edx, Immediate(2)); // edx was a smi.
1097
1098 // edx: Number of capture registers
1099 // Load last_match_info which is still known to be a fast case JSArray.
1100 // Check that the fourth object is a JSArray object.
1101 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1102 __ JumpIfSmi(eax, &runtime);
1103 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
1104 __ j(not_equal, &runtime);
1105 // Check that the JSArray is in fast case.
1106 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
1107 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
1108 __ cmp(eax, factory->fixed_array_map());
1109 __ j(not_equal, &runtime);
1110 // Check that the last match info has space for the capture registers and the
1111 // additional information.
1112 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
1113 __ SmiUntag(eax);
1114 __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
1115 __ cmp(edx, eax);
1116 __ j(greater, &runtime);
1117
1118 // ebx: last_match_info backing store (FixedArray)
1119 // edx: number of capture registers
1120 // Store the capture count.
1121 __ SmiTag(edx); // Number of capture registers to smi.
1122 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
1123 __ SmiUntag(edx); // Number of capture registers back from smi.
1124 // Store last subject and last input.
1125 __ mov(eax, Operand(esp, kSubjectOffset));
1126 __ mov(ecx, eax);
1127 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
1128 __ RecordWriteField(ebx, RegExpImpl::kLastSubjectOffset, eax, edi,
1129 kDontSaveFPRegs);
1130 __ mov(eax, ecx);
1131 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
1132 __ RecordWriteField(ebx, RegExpImpl::kLastInputOffset, eax, edi,
1133 kDontSaveFPRegs);
1134
1135 // Get the static offsets vector filled by the native regexp code.
1136 ExternalReference address_of_static_offsets_vector =
1137 ExternalReference::address_of_static_offsets_vector(isolate());
1138 __ mov(ecx, Immediate(address_of_static_offsets_vector));
1139
1140 // ebx: last_match_info backing store (FixedArray)
1141 // ecx: offsets vector
1142 // edx: number of capture registers
1143 Label next_capture, done;
1144 // Capture register counter starts from number of capture registers and
1145 // counts down until wraping after zero.
1146 __ bind(&next_capture);
1147 __ sub(edx, Immediate(1));
1148 __ j(negative, &done, Label::kNear);
1149 // Read the value from the static offsets vector buffer.
1150 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
1151 __ SmiTag(edi);
1152 // Store the smi value in the last match info.
1153 __ mov(FieldOperand(ebx,
1154 edx,
1155 times_pointer_size,
1156 RegExpImpl::kFirstCaptureOffset),
1157 edi);
1158 __ jmp(&next_capture);
1159 __ bind(&done);
1160
1161 // Return last match info.
1162 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1163 __ ret(4 * kPointerSize);
1164
1165 // Do the runtime call to execute the regexp.
1166 __ bind(&runtime);
1167 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
1168
1169 // Deferred code for string handling.
1170 // (7) Not a long external string? If yes, go to (10).
1171 __ bind(&not_seq_nor_cons);
1172 // Compare flags are still set from (3).
1173 __ j(greater, &not_long_external, Label::kNear); // Go to (10).
1174
1175 // (8) External string. Short external strings have been ruled out.
1176 __ bind(&external_string);
1177 // Reload instance type.
1178 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1179 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1180 if (FLAG_debug_code) {
1181 // Assert that we do not have a cons or slice (indirect strings) here.
1182 // Sequential strings have already been ruled out.
1183 __ test_b(ebx, kIsIndirectStringMask);
1184 __ Assert(zero, kExternalStringExpectedButNotFound);
1185 }
1186 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
1187 // Move the pointer so that offset-wise, it looks like a sequential string.
1188 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1189 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1190 STATIC_ASSERT(kTwoByteStringTag == 0);
1191 // (8a) Is the external string one byte? If yes, go to (6).
1192 __ test_b(ebx, kStringEncodingMask);
1193 __ j(not_zero, &seq_one_byte_string); // Goto (6).
1194
1195 // eax: sequential subject string (or look-alike, external string)
1196 // edx: original subject string
1197 // ecx: RegExp data (FixedArray)
1198 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1199 __ bind(&seq_two_byte_string);
1200 // Load previous index and check range before edx is overwritten. We have
1201 // to use edx instead of eax here because it might have been only made to
1202 // look like a sequential string when it actually is an external string.
1203 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1204 __ JumpIfNotSmi(ebx, &runtime);
1205 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1206 __ j(above_equal, &runtime);
1207 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
1208 __ Move(ecx, Immediate(0)); // Type is two byte.
1209 __ jmp(&check_code); // Go to (E).
1210
1211 // (10) Not a string or a short external string? If yes, bail out to runtime.
1212 __ bind(&not_long_external);
1213 // Catch non-string subject or short external string.
1214 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1215 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
1216 __ j(not_zero, &runtime);
1217
1218 // (11) Sliced string. Replace subject with parent. Go to (5a).
1219 // Load offset into edi and replace subject string with parent.
1220 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
1221 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
1222 __ jmp(&check_underlying); // Go to (5a).
1223#endif // V8_INTERPRETED_REGEXP
1224}
1225
1226
1227static int NegativeComparisonResult(Condition cc) {
1228 DCHECK(cc != equal);
1229 DCHECK((cc == less) || (cc == less_equal)
1230 || (cc == greater) || (cc == greater_equal));
1231 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
1232}
1233
1234
1235static void CheckInputType(MacroAssembler* masm, Register input,
1236 CompareICState::State expected, Label* fail) {
1237 Label ok;
1238 if (expected == CompareICState::SMI) {
1239 __ JumpIfNotSmi(input, fail);
1240 } else if (expected == CompareICState::NUMBER) {
1241 __ JumpIfSmi(input, &ok);
1242 __ cmp(FieldOperand(input, HeapObject::kMapOffset),
1243 Immediate(masm->isolate()->factory()->heap_number_map()));
1244 __ j(not_equal, fail);
1245 }
1246 // We could be strict about internalized/non-internalized here, but as long as
1247 // hydrogen doesn't care, the stub doesn't have to care either.
1248 __ bind(&ok);
1249}
1250
1251
1252static void BranchIfNotInternalizedString(MacroAssembler* masm,
1253 Label* label,
1254 Register object,
1255 Register scratch) {
1256 __ JumpIfSmi(object, label);
1257 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
1258 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
1259 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
1260 __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
1261 __ j(not_zero, label);
1262}
1263
1264
1265void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
1266 Label check_unequal_objects;
1267 Condition cc = GetCondition();
1268
1269 Label miss;
1270 CheckInputType(masm, edx, left(), &miss);
1271 CheckInputType(masm, eax, right(), &miss);
1272
1273 // Compare two smis.
1274 Label non_smi, smi_done;
1275 __ mov(ecx, edx);
1276 __ or_(ecx, eax);
1277 __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
1278 __ sub(edx, eax); // Return on the result of the subtraction.
1279 __ j(no_overflow, &smi_done, Label::kNear);
1280 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
1281 __ bind(&smi_done);
1282 __ mov(eax, edx);
1283 __ ret(0);
1284 __ bind(&non_smi);
1285
1286 // NOTICE! This code is only reached after a smi-fast-case check, so
1287 // it is certain that at least one operand isn't a smi.
1288
1289 // Identical objects can be compared fast, but there are some tricky cases
1290 // for NaN and undefined.
1291 Label generic_heap_number_comparison;
1292 {
1293 Label not_identical;
1294 __ cmp(eax, edx);
1295 __ j(not_equal, &not_identical);
1296
1297 if (cc != equal) {
1298 // Check for undefined. undefined OP undefined is false even though
1299 // undefined == undefined.
1300 Label check_for_nan;
1301 __ cmp(edx, isolate()->factory()->undefined_value());
1302 __ j(not_equal, &check_for_nan, Label::kNear);
1303 __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1304 __ ret(0);
1305 __ bind(&check_for_nan);
1306 }
1307
1308 // Test for NaN. Compare heap numbers in a general way,
1309 // to hanlde NaNs correctly.
1310 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
1311 Immediate(isolate()->factory()->heap_number_map()));
1312 __ j(equal, &generic_heap_number_comparison, Label::kNear);
1313 if (cc != equal) {
1314 // Call runtime on identical JSObjects. Otherwise return equal.
1315 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1316 __ j(above_equal, &not_identical);
1317 }
1318 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1319 __ ret(0);
1320
1321
1322 __ bind(&not_identical);
1323 }
1324
1325 // Strict equality can quickly decide whether objects are equal.
1326 // Non-strict object equality is slower, so it is handled later in the stub.
1327 if (cc == equal && strict()) {
1328 Label slow; // Fallthrough label.
1329 Label not_smis;
1330 // If we're doing a strict equality comparison, we don't have to do
1331 // type conversion, so we generate code to do fast comparison for objects
1332 // and oddballs. Non-smi numbers and strings still go through the usual
1333 // slow-case code.
1334 // If either is a Smi (we know that not both are), then they can only
1335 // be equal if the other is a HeapNumber. If so, use the slow case.
1336 STATIC_ASSERT(kSmiTag == 0);
1337 DCHECK_EQ(0, Smi::FromInt(0));
1338 __ mov(ecx, Immediate(kSmiTagMask));
1339 __ and_(ecx, eax);
1340 __ test(ecx, edx);
1341 __ j(not_zero, &not_smis, Label::kNear);
1342 // One operand is a smi.
1343
1344 // Check whether the non-smi is a heap number.
1345 STATIC_ASSERT(kSmiTagMask == 1);
1346 // ecx still holds eax & kSmiTag, which is either zero or one.
1347 __ sub(ecx, Immediate(0x01));
1348 __ mov(ebx, edx);
1349 __ xor_(ebx, eax);
1350 __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
1351 __ xor_(ebx, eax);
1352 // if eax was smi, ebx is now edx, else eax.
1353
1354 // Check if the non-smi operand is a heap number.
1355 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
1356 Immediate(isolate()->factory()->heap_number_map()));
1357 // If heap number, handle it in the slow case.
1358 __ j(equal, &slow, Label::kNear);
1359 // Return non-equal (ebx is not zero)
1360 __ mov(eax, ebx);
1361 __ ret(0);
1362
1363 __ bind(&not_smis);
1364 // If either operand is a JSObject or an oddball value, then they are not
1365 // equal since their pointers are different
1366 // There is no test for undetectability in strict equality.
1367
1368 // Get the type of the first operand.
1369 // If the first object is a JS object, we have done pointer comparison.
1370 Label first_non_object;
1371 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1372 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1373 __ j(below, &first_non_object, Label::kNear);
1374
1375 // Return non-zero (eax is not zero)
1376 Label return_not_equal;
1377 STATIC_ASSERT(kHeapObjectTag != 0);
1378 __ bind(&return_not_equal);
1379 __ ret(0);
1380
1381 __ bind(&first_non_object);
1382 // Check for oddballs: true, false, null, undefined.
1383 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1384 __ j(equal, &return_not_equal);
1385
1386 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
1387 __ j(above_equal, &return_not_equal);
1388
1389 // Check for oddballs: true, false, null, undefined.
1390 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1391 __ j(equal, &return_not_equal);
1392
1393 // Fall through to the general case.
1394 __ bind(&slow);
1395 }
1396
1397 // Generate the number comparison code.
1398 Label non_number_comparison;
1399 Label unordered;
1400 __ bind(&generic_heap_number_comparison);
1401 FloatingPointHelper::CheckFloatOperands(
1402 masm, &non_number_comparison, ebx);
1403 FloatingPointHelper::LoadFloatOperand(masm, eax);
1404 FloatingPointHelper::LoadFloatOperand(masm, edx);
1405 __ FCmp();
1406
1407 // Don't base result on EFLAGS when a NaN is involved.
1408 __ j(parity_even, &unordered, Label::kNear);
1409
1410 Label below_label, above_label;
1411 // Return a result of -1, 0, or 1, based on EFLAGS.
1412 __ j(below, &below_label, Label::kNear);
1413 __ j(above, &above_label, Label::kNear);
1414
1415 __ Move(eax, Immediate(0));
1416 __ ret(0);
1417
1418 __ bind(&below_label);
1419 __ mov(eax, Immediate(Smi::FromInt(-1)));
1420 __ ret(0);
1421
1422 __ bind(&above_label);
1423 __ mov(eax, Immediate(Smi::FromInt(1)));
1424 __ ret(0);
1425
1426 // If one of the numbers was NaN, then the result is always false.
1427 // The cc is never not-equal.
1428 __ bind(&unordered);
1429 DCHECK(cc != not_equal);
1430 if (cc == less || cc == less_equal) {
1431 __ mov(eax, Immediate(Smi::FromInt(1)));
1432 } else {
1433 __ mov(eax, Immediate(Smi::FromInt(-1)));
1434 }
1435 __ ret(0);
1436
1437 // The number comparison code did not provide a valid result.
1438 __ bind(&non_number_comparison);
1439
1440 // Fast negative check for internalized-to-internalized equality.
1441 Label check_for_strings;
1442 if (cc == equal) {
1443 BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
1444 BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
1445
1446 // We've already checked for object identity, so if both operands
1447 // are internalized they aren't equal. Register eax already holds a
1448 // non-zero value, which indicates not equal, so just return.
1449 __ ret(0);
1450 }
1451
1452 __ bind(&check_for_strings);
1453
1454 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
1455 &check_unequal_objects);
1456
1457 // Inline comparison of one-byte strings.
1458 if (cc == equal) {
1459 StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
1460 } else {
1461 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
1462 edi);
1463 }
1464#ifdef DEBUG
1465 __ Abort(kUnexpectedFallThroughFromStringComparison);
1466#endif
1467
1468 __ bind(&check_unequal_objects);
1469 if (cc == equal && !strict()) {
1470 // Non-strict equality. Objects are unequal if
1471 // they are both JSObjects and not undetectable,
1472 // and their pointers are different.
1473 Label not_both_objects;
1474 Label return_unequal;
1475 // At most one is a smi, so we can test for smi by adding the two.
1476 // A smi plus a heap object has the low bit set, a heap object plus
1477 // a heap object has the low bit clear.
1478 STATIC_ASSERT(kSmiTag == 0);
1479 STATIC_ASSERT(kSmiTagMask == 1);
1480 __ lea(ecx, Operand(eax, edx, times_1, 0));
1481 __ test(ecx, Immediate(kSmiTagMask));
1482 __ j(not_zero, &not_both_objects, Label::kNear);
1483 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1484 __ j(below, &not_both_objects, Label::kNear);
1485 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
1486 __ j(below, &not_both_objects, Label::kNear);
1487 // We do not bail out after this point. Both are JSObjects, and
1488 // they are equal if and only if both are undetectable.
1489 // The and of the undetectable flags is 1 if and only if they are equal.
1490 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1491 1 << Map::kIsUndetectable);
1492 __ j(zero, &return_unequal, Label::kNear);
1493 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1494 1 << Map::kIsUndetectable);
1495 __ j(zero, &return_unequal, Label::kNear);
1496 // The objects are both undetectable, so they both compare as the value
1497 // undefined, and are equal.
1498 __ Move(eax, Immediate(EQUAL));
1499 __ bind(&return_unequal);
1500 // Return non-equal by returning the non-zero object pointer in eax,
1501 // or return equal if we fell through to here.
1502 __ ret(0); // rax, rdx were pushed
1503 __ bind(&not_both_objects);
1504 }
1505
1506 // Push arguments below the return address.
1507 __ pop(ecx);
1508 __ push(edx);
1509 __ push(eax);
1510
1511 // Figure out which native to call and setup the arguments.
1512 Builtins::JavaScript builtin;
1513 if (cc == equal) {
1514 builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1515 } else {
1516 builtin = Builtins::COMPARE;
1517 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1518 }
1519
1520 // Restore return address on the stack.
1521 __ push(ecx);
1522
1523 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1524 // tagged as a small integer.
1525 __ InvokeBuiltin(builtin, JUMP_FUNCTION);
1526
1527 __ bind(&miss);
1528 GenerateMiss(masm);
1529}
1530
1531
1532static void GenerateRecordCallTarget(MacroAssembler* masm) {
1533 // Cache the called function in a feedback vector slot. Cache states
1534 // are uninitialized, monomorphic (indicated by a JSFunction), and
1535 // megamorphic.
1536 // eax : number of arguments to the construct function
1537 // ebx : Feedback vector
1538 // edx : slot in feedback vector (Smi)
1539 // edi : the function to call
1540 Isolate* isolate = masm->isolate();
1541 Label initialize, done, miss, megamorphic, not_array_function;
1542
1543 // Load the cache state into ecx.
1544 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1545 FixedArray::kHeaderSize));
1546
1547 // A monomorphic cache hit or an already megamorphic state: invoke the
1548 // function without changing the state.
1549 __ cmp(ecx, edi);
1550 __ j(equal, &done, Label::kFar);
1551 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1552 __ j(equal, &done, Label::kFar);
1553
1554 if (!FLAG_pretenuring_call_new) {
1555 // If we came here, we need to see if we are the array function.
1556 // If we didn't have a matching function, and we didn't find the megamorph
1557 // sentinel, then we have in the slot either some other function or an
1558 // AllocationSite. Do a map check on the object in ecx.
1559 Handle<Map> allocation_site_map = isolate->factory()->allocation_site_map();
1560 __ cmp(FieldOperand(ecx, 0), Immediate(allocation_site_map));
1561 __ j(not_equal, &miss);
1562
1563 // Make sure the function is the Array() function
1564 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1565 __ cmp(edi, ecx);
1566 __ j(not_equal, &megamorphic);
1567 __ jmp(&done, Label::kFar);
1568 }
1569
1570 __ bind(&miss);
1571
1572 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1573 // megamorphic.
1574 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
1575 __ j(equal, &initialize);
1576 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1577 // write-barrier is needed.
1578 __ bind(&megamorphic);
1579 __ mov(
1580 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
1581 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1582 __ jmp(&done, Label::kFar);
1583
1584 // An uninitialized cache is patched with the function or sentinel to
1585 // indicate the ElementsKind if function is the Array constructor.
1586 __ bind(&initialize);
1587 if (!FLAG_pretenuring_call_new) {
1588 // Make sure the function is the Array() function
1589 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1590 __ cmp(edi, ecx);
1591 __ j(not_equal, &not_array_function);
1592
1593 // The target function is the Array constructor,
1594 // Create an AllocationSite if we don't already have it, store it in the
1595 // slot.
1596 {
1597 FrameScope scope(masm, StackFrame::INTERNAL);
1598
1599 // Arguments register must be smi-tagged to call out.
1600 __ SmiTag(eax);
1601 __ push(eax);
1602 __ push(edi);
1603 __ push(edx);
1604 __ push(ebx);
1605
1606 CreateAllocationSiteStub create_stub(isolate);
1607 __ CallStub(&create_stub);
1608
1609 __ pop(ebx);
1610 __ pop(edx);
1611 __ pop(edi);
1612 __ pop(eax);
1613 __ SmiUntag(eax);
1614 }
1615 __ jmp(&done);
1616
1617 __ bind(&not_array_function);
1618 }
1619
1620 __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
1621 FixedArray::kHeaderSize),
1622 edi);
1623 // We won't need edx or ebx anymore, just save edi
1624 __ push(edi);
1625 __ push(ebx);
1626 __ push(edx);
1627 __ RecordWriteArray(ebx, edi, edx, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
1628 OMIT_SMI_CHECK);
1629 __ pop(edx);
1630 __ pop(ebx);
1631 __ pop(edi);
1632
1633 __ bind(&done);
1634}
1635
1636
1637static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
1638 // Do not transform the receiver for strict mode functions.
1639 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1640 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
1641 1 << SharedFunctionInfo::kStrictModeBitWithinByte);
1642 __ j(not_equal, cont);
1643
1644 // Do not transform the receiver for natives (shared already in ecx).
1645 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
1646 1 << SharedFunctionInfo::kNativeBitWithinByte);
1647 __ j(not_equal, cont);
1648}
1649
1650
1651static void EmitSlowCase(Isolate* isolate,
1652 MacroAssembler* masm,
1653 int argc,
1654 Label* non_function) {
1655 // Check for function proxy.
1656 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
1657 __ j(not_equal, non_function);
1658 __ pop(ecx);
1659 __ push(edi); // put proxy as additional argument under return address
1660 __ push(ecx);
1661 __ Move(eax, Immediate(argc + 1));
1662 __ Move(ebx, Immediate(0));
1663 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
1664 {
1665 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
1666 __ jmp(adaptor, RelocInfo::CODE_TARGET);
1667 }
1668
1669 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
1670 // of the original receiver from the call site).
1671 __ bind(non_function);
1672 __ mov(Operand(esp, (argc + 1) * kPointerSize), edi);
1673 __ Move(eax, Immediate(argc));
1674 __ Move(ebx, Immediate(0));
1675 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
1676 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
1677 __ jmp(adaptor, RelocInfo::CODE_TARGET);
1678}
1679
1680
1681static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
1682 // Wrap the receiver and patch it back onto the stack.
1683 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
1684 __ push(edi);
1685 __ push(eax);
1686 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1687 __ pop(edi);
1688 }
1689 __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
1690 __ jmp(cont);
1691}
1692
1693
1694static void CallFunctionNoFeedback(MacroAssembler* masm,
1695 int argc, bool needs_checks,
1696 bool call_as_method) {
1697 // edi : the function to call
1698 Label slow, non_function, wrap, cont;
1699
1700 if (needs_checks) {
1701 // Check that the function really is a JavaScript function.
1702 __ JumpIfSmi(edi, &non_function);
1703
1704 // Goto slow case if we do not have a function.
1705 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
1706 __ j(not_equal, &slow);
1707 }
1708
1709 // Fast-case: Just invoke the function.
1710 ParameterCount actual(argc);
1711
1712 if (call_as_method) {
1713 if (needs_checks) {
1714 EmitContinueIfStrictOrNative(masm, &cont);
1715 }
1716
1717 // Load the receiver from the stack.
1718 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
1719
1720 if (needs_checks) {
1721 __ JumpIfSmi(eax, &wrap);
1722
1723 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1724 __ j(below, &wrap);
1725 } else {
1726 __ jmp(&wrap);
1727 }
1728
1729 __ bind(&cont);
1730 }
1731
1732 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
1733
1734 if (needs_checks) {
1735 // Slow-case: Non-function called.
1736 __ bind(&slow);
1737 // (non_function is bound in EmitSlowCase)
1738 EmitSlowCase(masm->isolate(), masm, argc, &non_function);
1739 }
1740
1741 if (call_as_method) {
1742 __ bind(&wrap);
1743 EmitWrapCase(masm, argc, &cont);
1744 }
1745}
1746
1747
1748void CallFunctionStub::Generate(MacroAssembler* masm) {
1749 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
1750}
1751
1752
1753void CallConstructStub::Generate(MacroAssembler* masm) {
1754 // eax : number of arguments
1755 // ebx : feedback vector
1756 // edx : (only if ebx is not the megamorphic symbol) slot in feedback
1757 // vector (Smi)
1758 // edi : constructor function
1759 Label slow, non_function_call;
1760
1761 // Check that function is not a smi.
1762 __ JumpIfSmi(edi, &non_function_call);
1763 // Check that function is a JSFunction.
1764 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
1765 __ j(not_equal, &slow);
1766
1767 if (RecordCallTarget()) {
1768 GenerateRecordCallTarget(masm);
1769
1770 if (FLAG_pretenuring_call_new) {
1771 // Put the AllocationSite from the feedback vector into ebx.
1772 // By adding kPointerSize we encode that we know the AllocationSite
1773 // entry is at the feedback vector slot given by edx + 1.
1774 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
1775 FixedArray::kHeaderSize + kPointerSize));
1776 } else {
1777 Label feedback_register_initialized;
1778 // Put the AllocationSite from the feedback vector into ebx, or undefined.
1779 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
1780 FixedArray::kHeaderSize));
1781 Handle<Map> allocation_site_map =
1782 isolate()->factory()->allocation_site_map();
1783 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
1784 __ j(equal, &feedback_register_initialized);
1785 __ mov(ebx, isolate()->factory()->undefined_value());
1786 __ bind(&feedback_register_initialized);
1787 }
1788
1789 __ AssertUndefinedOrAllocationSite(ebx);
1790 }
1791
1792 // Jump to the function-specific construct stub.
1793 Register jmp_reg = ecx;
1794 __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1795 __ mov(jmp_reg, FieldOperand(jmp_reg,
1796 SharedFunctionInfo::kConstructStubOffset));
1797 __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
1798 __ jmp(jmp_reg);
1799
1800 // edi: called object
1801 // eax: number of arguments
1802 // ecx: object map
1803 Label do_call;
1804 __ bind(&slow);
1805 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
1806 __ j(not_equal, &non_function_call);
1807 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
1808 __ jmp(&do_call);
1809
1810 __ bind(&non_function_call);
1811 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
1812 __ bind(&do_call);
1813 // Set expected number of arguments to zero (not changing eax).
1814 __ Move(ebx, Immediate(0));
1815 Handle<Code> arguments_adaptor =
1816 isolate()->builtins()->ArgumentsAdaptorTrampoline();
1817 __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
1818}
1819
1820
1821static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
1822 __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1823 __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
1824 __ mov(vector, FieldOperand(vector,
1825 SharedFunctionInfo::kFeedbackVectorOffset));
1826}
1827
1828
1829void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
1830 // edi - function
1831 // edx - slot id
1832 Label miss;
1833 int argc = arg_count();
1834 ParameterCount actual(argc);
1835
1836 EmitLoadTypeFeedbackVector(masm, ebx);
1837
1838 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1839 __ cmp(edi, ecx);
1840 __ j(not_equal, &miss);
1841
1842 __ mov(eax, arg_count());
1843 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1844 FixedArray::kHeaderSize));
1845
1846 // Verify that ecx contains an AllocationSite
1847 Factory* factory = masm->isolate()->factory();
1848 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
1849 factory->allocation_site_map());
1850 __ j(not_equal, &miss);
1851
1852 __ mov(ebx, ecx);
1853 ArrayConstructorStub stub(masm->isolate(), arg_count());
1854 __ TailCallStub(&stub);
1855
1856 __ bind(&miss);
1857 GenerateMiss(masm);
1858
1859 // The slow case, we need this no matter what to complete a call after a miss.
1860 CallFunctionNoFeedback(masm,
1861 arg_count(),
1862 true,
1863 CallAsMethod());
1864
1865 // Unreachable.
1866 __ int3();
1867}
1868
1869
1870void CallICStub::Generate(MacroAssembler* masm) {
1871 // edi - function
1872 // edx - slot id
1873 Isolate* isolate = masm->isolate();
1874 Label extra_checks_or_miss, slow_start;
1875 Label slow, non_function, wrap, cont;
1876 Label have_js_function;
1877 int argc = arg_count();
1878 ParameterCount actual(argc);
1879
1880 EmitLoadTypeFeedbackVector(masm, ebx);
1881
1882 // The checks. First, does edi match the recorded monomorphic target?
1883 __ cmp(edi, FieldOperand(ebx, edx, times_half_pointer_size,
1884 FixedArray::kHeaderSize));
1885 __ j(not_equal, &extra_checks_or_miss);
1886
1887 __ bind(&have_js_function);
1888 if (CallAsMethod()) {
1889 EmitContinueIfStrictOrNative(masm, &cont);
1890
1891 // Load the receiver from the stack.
1892 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
1893
1894 __ JumpIfSmi(eax, &wrap);
1895
1896 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1897 __ j(below, &wrap);
1898
1899 __ bind(&cont);
1900 }
1901
1902 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
1903
1904 __ bind(&slow);
1905 EmitSlowCase(isolate, masm, argc, &non_function);
1906
1907 if (CallAsMethod()) {
1908 __ bind(&wrap);
1909 EmitWrapCase(masm, argc, &cont);
1910 }
1911
1912 __ bind(&extra_checks_or_miss);
1913 Label miss;
1914
1915 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1916 FixedArray::kHeaderSize));
1917 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1918 __ j(equal, &slow_start);
1919 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
1920 __ j(equal, &miss);
1921
1922 if (!FLAG_trace_ic) {
1923 // We are going megamorphic. If the feedback is a JSFunction, it is fine
1924 // to handle it here. More complex cases are dealt with in the runtime.
1925 __ AssertNotSmi(ecx);
1926 __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
1927 __ j(not_equal, &miss);
1928 __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
1929 FixedArray::kHeaderSize),
1930 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1931 __ jmp(&slow_start);
1932 }
1933
1934 // We are here because tracing is on or we are going monomorphic.
1935 __ bind(&miss);
1936 GenerateMiss(masm);
1937
1938 // the slow case
1939 __ bind(&slow_start);
1940
1941 // Check that the function really is a JavaScript function.
1942 __ JumpIfSmi(edi, &non_function);
1943
1944 // Goto slow case if we do not have a function.
1945 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
1946 __ j(not_equal, &slow);
1947 __ jmp(&have_js_function);
1948
1949 // Unreachable
1950 __ int3();
1951}
1952
1953
1954void CallICStub::GenerateMiss(MacroAssembler* masm) {
1955 // Get the receiver of the function from the stack; 1 ~ return address.
1956 __ mov(ecx, Operand(esp, (arg_count() + 1) * kPointerSize));
1957
1958 {
1959 FrameScope scope(masm, StackFrame::INTERNAL);
1960
1961 // Push the receiver and the function and feedback info.
1962 __ push(ecx);
1963 __ push(edi);
1964 __ push(ebx);
1965 __ push(edx);
1966
1967 // Call the entry.
1968 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
1969 : IC::kCallIC_Customization_Miss;
1970
1971 ExternalReference miss = ExternalReference(IC_Utility(id),
1972 masm->isolate());
1973 __ CallExternalReference(miss, 4);
1974
1975 // Move result to edi and exit the internal frame.
1976 __ mov(edi, eax);
1977 }
1978}
1979
1980
1981bool CEntryStub::NeedsImmovableCode() {
1982 return false;
1983}
1984
1985
1986void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
1987 CEntryStub::GenerateAheadOfTime(isolate);
1988 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
1989 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1990 // It is important that the store buffer overflow stubs are generated first.
1991 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
1992 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
1993 BinaryOpICStub::GenerateAheadOfTime(isolate);
1994 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
1995}
1996
1997
1998void CodeStub::GenerateFPStubs(Isolate* isolate) {
1999 CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
2000 // Stubs might already be in the snapshot, detect that and don't regenerate,
2001 // which would lead to code stub initialization state being messed up.
2002 Code* save_doubles_code;
2003 if (!save_doubles.FindCodeInCache(&save_doubles_code)) {
2004 save_doubles_code = *(save_doubles.GetCode());
2005 }
2006 isolate->set_fp_stubs_generated(true);
2007}
2008
2009
2010void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
2011 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
2012 stub.GetCode();
2013}
2014
2015
2016void CEntryStub::Generate(MacroAssembler* masm) {
2017 // eax: number of arguments including receiver
2018 // ebx: pointer to C function (C callee-saved)
2019 // ebp: frame pointer (restored after C call)
2020 // esp: stack pointer (restored after C call)
2021 // esi: current context (C callee-saved)
2022 // edi: JS function of the caller (C callee-saved)
2023
2024 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2025
2026 // Enter the exit frame that transitions from JavaScript to C++.
2027 __ EnterExitFrame(save_doubles());
2028
2029 // ebx: pointer to C function (C callee-saved)
2030 // ebp: frame pointer (restored after C call)
2031 // esp: stack pointer (restored after C call)
2032 // edi: number of arguments including receiver (C callee-saved)
2033 // esi: pointer to the first argument (C callee-saved)
2034
2035 // Result returned in eax, or eax+edx if result size is 2.
2036
2037 // Check stack alignment.
2038 if (FLAG_debug_code) {
2039 __ CheckStackAlignment();
2040 }
2041
2042 // Call C function.
2043 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
2044 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
2045 __ mov(Operand(esp, 2 * kPointerSize),
2046 Immediate(ExternalReference::isolate_address(isolate())));
2047 __ call(ebx);
2048 // Result is in eax or edx:eax - do not destroy these registers!
2049
2050 // Runtime functions should not return 'the hole'. Allowing it to escape may
2051 // lead to crashes in the IC code later.
2052 if (FLAG_debug_code) {
2053 Label okay;
2054 __ cmp(eax, isolate()->factory()->the_hole_value());
2055 __ j(not_equal, &okay, Label::kNear);
2056 __ int3();
2057 __ bind(&okay);
2058 }
2059
2060 // Check result for exception sentinel.
2061 Label exception_returned;
2062 __ cmp(eax, isolate()->factory()->exception());
2063 __ j(equal, &exception_returned);
2064
2065 ExternalReference pending_exception_address(
2066 Isolate::kPendingExceptionAddress, isolate());
2067
2068 // Check that there is no pending exception, otherwise we
2069 // should have returned the exception sentinel.
2070 if (FLAG_debug_code) {
2071 __ push(edx);
2072 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2073 Label okay;
2074 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
2075 // Cannot use check here as it attempts to generate call into runtime.
2076 __ j(equal, &okay, Label::kNear);
2077 __ int3();
2078 __ bind(&okay);
2079 __ pop(edx);
2080 }
2081
2082 // Exit the JavaScript to C++ exit frame.
2083 __ LeaveExitFrame(save_doubles());
2084 __ ret(0);
2085
2086 // Handling of exception.
2087 __ bind(&exception_returned);
2088
2089 // Retrieve the pending exception.
2090 __ mov(eax, Operand::StaticVariable(pending_exception_address));
2091
2092 // Clear the pending exception.
2093 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2094 __ mov(Operand::StaticVariable(pending_exception_address), edx);
2095
2096 // Special handling of termination exceptions which are uncatchable
2097 // by javascript code.
2098 Label throw_termination_exception;
2099 __ cmp(eax, isolate()->factory()->termination_exception());
2100 __ j(equal, &throw_termination_exception);
2101
2102 // Handle normal exception.
2103 __ Throw(eax);
2104
2105 __ bind(&throw_termination_exception);
2106 __ ThrowUncatchable(eax);
2107}
2108
2109
2110void JSEntryStub::Generate(MacroAssembler* masm) {
2111 Label invoke, handler_entry, exit;
2112 Label not_outermost_js, not_outermost_js_2;
2113
2114 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2115
2116 // Set up frame.
2117 __ push(ebp);
2118 __ mov(ebp, esp);
2119
2120 // Push marker in two places.
2121 int marker = type();
2122 __ push(Immediate(Smi::FromInt(marker))); // context slot
2123 __ push(Immediate(Smi::FromInt(marker))); // function slot
2124 // Save callee-saved registers (C calling conventions).
2125 __ push(edi);
2126 __ push(esi);
2127 __ push(ebx);
2128
2129 // Save copies of the top frame descriptor on the stack.
2130 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
2131 __ push(Operand::StaticVariable(c_entry_fp));
2132
2133 // If this is the outermost JS call, set js_entry_sp value.
2134 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
2135 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
2136 __ j(not_equal, &not_outermost_js, Label::kNear);
2137 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
2138 __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2139 __ jmp(&invoke, Label::kNear);
2140 __ bind(&not_outermost_js);
2141 __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
2142
2143 // Jump to a faked try block that does the invoke, with a faked catch
2144 // block that sets the pending exception.
2145 __ jmp(&invoke);
2146 __ bind(&handler_entry);
2147 handler_offset_ = handler_entry.pos();
2148 // Caught exception: Store result (exception) in the pending exception
2149 // field in the JSEnv and return a failure sentinel.
2150 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
2151 isolate());
2152 __ mov(Operand::StaticVariable(pending_exception), eax);
2153 __ mov(eax, Immediate(isolate()->factory()->exception()));
2154 __ jmp(&exit);
2155
2156 // Invoke: Link this frame into the handler chain. There's only one
2157 // handler block in this code object, so its index is 0.
2158 __ bind(&invoke);
2159 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
2160
2161 // Clear any pending exceptions.
2162 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2163 __ mov(Operand::StaticVariable(pending_exception), edx);
2164
2165 // Fake a receiver (NULL).
2166 __ push(Immediate(0)); // receiver
2167
2168 // Invoke the function by calling through JS entry trampoline builtin and
2169 // pop the faked function when we return. Notice that we cannot store a
2170 // reference to the trampoline code directly in this stub, because the
2171 // builtin stubs may not have been generated yet.
2172 if (type() == StackFrame::ENTRY_CONSTRUCT) {
2173 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2174 isolate());
2175 __ mov(edx, Immediate(construct_entry));
2176 } else {
2177 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
2178 __ mov(edx, Immediate(entry));
2179 }
2180 __ mov(edx, Operand(edx, 0)); // deref address
2181 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
2182 __ call(edx);
2183
2184 // Unlink this frame from the handler chain.
2185 __ PopTryHandler();
2186
2187 __ bind(&exit);
2188 // Check if the current stack frame is marked as the outermost JS frame.
2189 __ pop(ebx);
2190 __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2191 __ j(not_equal, &not_outermost_js_2);
2192 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
2193 __ bind(&not_outermost_js_2);
2194
2195 // Restore the top frame descriptor from the stack.
2196 __ pop(Operand::StaticVariable(ExternalReference(
2197 Isolate::kCEntryFPAddress, isolate())));
2198
2199 // Restore callee-saved registers (C calling conventions).
2200 __ pop(ebx);
2201 __ pop(esi);
2202 __ pop(edi);
2203 __ add(esp, Immediate(2 * kPointerSize)); // remove markers
2204
2205 // Restore frame pointer and return.
2206 __ pop(ebp);
2207 __ ret(0);
2208}
2209
2210
2211// Generate stub code for instanceof.
2212// This code can patch a call site inlined cache of the instance of check,
2213// which looks like this.
2214//
2215// 81 ff XX XX XX XX cmp edi, <the hole, patched to a map>
2216// 75 0a jne <some near label>
2217// b8 XX XX XX XX mov eax, <the hole, patched to either true or false>
2218//
2219// If call site patching is requested the stack will have the delta from the
2220// return address to the cmp instruction just below the return address. This
2221// also means that call site patching can only take place with arguments in
2222// registers. TOS looks like this when call site patching is requested
2223//
2224// esp[0] : return address
2225// esp[4] : delta from return address to cmp instruction
2226//
2227void InstanceofStub::Generate(MacroAssembler* masm) {
2228 // Call site inlining and patching implies arguments in registers.
2229 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
2230
2231 // Fixed register usage throughout the stub.
2232 Register object = eax; // Object (lhs).
2233 Register map = ebx; // Map of the object.
2234 Register function = edx; // Function (rhs).
2235 Register prototype = edi; // Prototype of the function.
2236 Register scratch = ecx;
2237
2238 // Constants describing the call site code to patch.
2239 static const int kDeltaToCmpImmediate = 2;
2240 static const int kDeltaToMov = 8;
2241 static const int kDeltaToMovImmediate = 9;
2242 static const int8_t kCmpEdiOperandByte1 = bit_cast<int8_t, uint8_t>(0x3b);
2243 static const int8_t kCmpEdiOperandByte2 = bit_cast<int8_t, uint8_t>(0x3d);
2244 static const int8_t kMovEaxImmediateByte = bit_cast<int8_t, uint8_t>(0xb8);
2245
2246 DCHECK_EQ(object.code(), InstanceofStub::left().code());
2247 DCHECK_EQ(function.code(), InstanceofStub::right().code());
2248
2249 // Get the object and function - they are always both needed.
2250 Label slow, not_js_object;
2251 if (!HasArgsInRegisters()) {
2252 __ mov(object, Operand(esp, 2 * kPointerSize));
2253 __ mov(function, Operand(esp, 1 * kPointerSize));
2254 }
2255
2256 // Check that the left hand is a JS object.
2257 __ JumpIfSmi(object, &not_js_object);
2258 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
2259
2260 // If there is a call site cache don't look in the global cache, but do the
2261 // real lookup and update the call site cache.
2262 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
2263 // Look up the function and the map in the instanceof cache.
2264 Label miss;
2265 __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2266 __ j(not_equal, &miss, Label::kNear);
2267 __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2268 __ j(not_equal, &miss, Label::kNear);
2269 __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
2270 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2271 __ bind(&miss);
2272 }
2273
2274 // Get the prototype of the function.
2275 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
2276
2277 // Check that the function prototype is a JS object.
2278 __ JumpIfSmi(prototype, &slow);
2279 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
2280
2281 // Update the global instanceof or call site inlined cache with the current
2282 // map and function. The cached answer will be set when it is known below.
2283 if (!HasCallSiteInlineCheck()) {
2284 __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2285 __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2286 } else {
2287 // The constants for the code patching are based on no push instructions
2288 // at the call site.
2289 DCHECK(HasArgsInRegisters());
2290 // Get return address and delta to inlined map check.
2291 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2292 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2293 if (FLAG_debug_code) {
2294 __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
2295 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1);
2296 __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
2297 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2);
2298 }
2299 __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
2300 __ mov(Operand(scratch, 0), map);
2301 }
2302
2303 // Loop through the prototype chain of the object looking for the function
2304 // prototype.
2305 __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
2306 Label loop, is_instance, is_not_instance;
2307 __ bind(&loop);
2308 __ cmp(scratch, prototype);
2309 __ j(equal, &is_instance, Label::kNear);
2310 Factory* factory = isolate()->factory();
2311 __ cmp(scratch, Immediate(factory->null_value()));
2312 __ j(equal, &is_not_instance, Label::kNear);
2313 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
2314 __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
2315 __ jmp(&loop);
2316
2317 __ bind(&is_instance);
2318 if (!HasCallSiteInlineCheck()) {
2319 __ mov(eax, Immediate(0));
2320 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2321 if (ReturnTrueFalseObject()) {
2322 __ mov(eax, factory->true_value());
2323 }
2324 } else {
2325 // Get return address and delta to inlined map check.
2326 __ mov(eax, factory->true_value());
2327 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2328 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2329 if (FLAG_debug_code) {
2330 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2331 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2332 }
2333 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2334 if (!ReturnTrueFalseObject()) {
2335 __ Move(eax, Immediate(0));
2336 }
2337 }
2338 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2339
2340 __ bind(&is_not_instance);
2341 if (!HasCallSiteInlineCheck()) {
2342 __ mov(eax, Immediate(Smi::FromInt(1)));
2343 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2344 if (ReturnTrueFalseObject()) {
2345 __ mov(eax, factory->false_value());
2346 }
2347 } else {
2348 // Get return address and delta to inlined map check.
2349 __ mov(eax, factory->false_value());
2350 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2351 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2352 if (FLAG_debug_code) {
2353 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2354 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2355 }
2356 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2357 if (!ReturnTrueFalseObject()) {
2358 __ Move(eax, Immediate(Smi::FromInt(1)));
2359 }
2360 }
2361 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2362
2363 Label object_not_null, object_not_null_or_smi;
2364 __ bind(&not_js_object);
2365 // Before null, smi and string value checks, check that the rhs is a function
2366 // as for a non-function rhs an exception needs to be thrown.
2367 __ JumpIfSmi(function, &slow, Label::kNear);
2368 __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
2369 __ j(not_equal, &slow, Label::kNear);
2370
2371 // Null is not instance of anything.
2372 __ cmp(object, factory->null_value());
2373 __ j(not_equal, &object_not_null, Label::kNear);
2374 if (ReturnTrueFalseObject()) {
2375 __ mov(eax, factory->false_value());
2376 } else {
2377 __ Move(eax, Immediate(Smi::FromInt(1)));
2378 }
2379 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2380
2381 __ bind(&object_not_null);
2382 // Smi values is not instance of anything.
2383 __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
2384 if (ReturnTrueFalseObject()) {
2385 __ mov(eax, factory->false_value());
2386 } else {
2387 __ Move(eax, Immediate(Smi::FromInt(1)));
2388 }
2389 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2390
2391 __ bind(&object_not_null_or_smi);
2392 // String values is not instance of anything.
2393 Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
2394 __ j(NegateCondition(is_string), &slow, Label::kNear);
2395 if (ReturnTrueFalseObject()) {
2396 __ mov(eax, factory->false_value());
2397 } else {
2398 __ Move(eax, Immediate(Smi::FromInt(1)));
2399 }
2400 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2401
2402 // Slow-case: Go through the JavaScript implementation.
2403 __ bind(&slow);
2404 if (!ReturnTrueFalseObject()) {
2405 // Tail call the builtin which returns 0 or 1.
2406 if (HasArgsInRegisters()) {
2407 // Push arguments below return address.
2408 __ pop(scratch);
2409 __ push(object);
2410 __ push(function);
2411 __ push(scratch);
2412 }
2413 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
2414 } else {
2415 // Call the builtin and convert 0/1 to true/false.
2416 {
2417 FrameScope scope(masm, StackFrame::INTERNAL);
2418 __ push(object);
2419 __ push(function);
2420 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
2421 }
2422 Label true_value, done;
2423 __ test(eax, eax);
2424 __ j(zero, &true_value, Label::kNear);
2425 __ mov(eax, factory->false_value());
2426 __ jmp(&done, Label::kNear);
2427 __ bind(&true_value);
2428 __ mov(eax, factory->true_value());
2429 __ bind(&done);
2430 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2431 }
2432}
2433
2434
2435// -------------------------------------------------------------------------
2436// StringCharCodeAtGenerator
2437
2438void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2439 // If the receiver is a smi trigger the non-string case.
2440 STATIC_ASSERT(kSmiTag == 0);
2441 __ JumpIfSmi(object_, receiver_not_string_);
2442
2443 // Fetch the instance type of the receiver into result register.
2444 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2445 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2446 // If the receiver is not a string trigger the non-string case.
2447 __ test(result_, Immediate(kIsNotStringMask));
2448 __ j(not_zero, receiver_not_string_);
2449
2450 // If the index is non-smi trigger the non-smi case.
2451 STATIC_ASSERT(kSmiTag == 0);
2452 __ JumpIfNotSmi(index_, &index_not_smi_);
2453 __ bind(&got_smi_index_);
2454
2455 // Check for index out of range.
2456 __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
2457 __ j(above_equal, index_out_of_range_);
2458
2459 __ SmiUntag(index_);
2460
2461 Factory* factory = masm->isolate()->factory();
2462 StringCharLoadGenerator::Generate(
2463 masm, factory, object_, index_, result_, &call_runtime_);
2464
2465 __ SmiTag(result_);
2466 __ bind(&exit_);
2467}
2468
2469
2470void StringCharCodeAtGenerator::GenerateSlow(
2471 MacroAssembler* masm,
2472 const RuntimeCallHelper& call_helper) {
2473 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2474
2475 // Index is not a smi.
2476 __ bind(&index_not_smi_);
2477 // If index is a heap number, try converting it to an integer.
2478 __ CheckMap(index_,
2479 masm->isolate()->factory()->heap_number_map(),
2480 index_not_number_,
2481 DONT_DO_SMI_CHECK);
2482 call_helper.BeforeCall(masm);
2483 __ push(object_);
2484 __ push(index_); // Consumed by runtime conversion function.
2485 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2486 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2487 } else {
2488 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2489 // NumberToSmi discards numbers that are not exact integers.
2490 __ CallRuntime(Runtime::kNumberToSmi, 1);
2491 }
2492 if (!index_.is(eax)) {
2493 // Save the conversion result before the pop instructions below
2494 // have a chance to overwrite it.
2495 __ mov(index_, eax);
2496 }
2497 __ pop(object_);
2498 // Reload the instance type.
2499 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2500 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2501 call_helper.AfterCall(masm);
2502 // If index is still not a smi, it must be out of range.
2503 STATIC_ASSERT(kSmiTag == 0);
2504 __ JumpIfNotSmi(index_, index_out_of_range_);
2505 // Otherwise, return to the fast path.
2506 __ jmp(&got_smi_index_);
2507
2508 // Call runtime. We get here when the receiver is a string and the
2509 // index is a number, but the code of getting the actual character
2510 // is too complex (e.g., when the string needs to be flattened).
2511 __ bind(&call_runtime_);
2512 call_helper.BeforeCall(masm);
2513 __ push(object_);
2514 __ SmiTag(index_);
2515 __ push(index_);
2516 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
2517 if (!result_.is(eax)) {
2518 __ mov(result_, eax);
2519 }
2520 call_helper.AfterCall(masm);
2521 __ jmp(&exit_);
2522
2523 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2524}
2525
2526
2527// -------------------------------------------------------------------------
2528// StringCharFromCodeGenerator
2529
2530void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2531 // Fast case of Heap::LookupSingleCharacterStringFromCode.
2532 STATIC_ASSERT(kSmiTag == 0);
2533 STATIC_ASSERT(kSmiShiftSize == 0);
2534 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
2535 __ test(code_,
2536 Immediate(kSmiTagMask |
2537 ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
2538 __ j(not_zero, &slow_case_);
2539
2540 Factory* factory = masm->isolate()->factory();
2541 __ Move(result_, Immediate(factory->single_character_string_cache()));
2542 STATIC_ASSERT(kSmiTag == 0);
2543 STATIC_ASSERT(kSmiTagSize == 1);
2544 STATIC_ASSERT(kSmiShiftSize == 0);
2545 // At this point code register contains smi tagged one byte char code.
2546 __ mov(result_, FieldOperand(result_,
2547 code_, times_half_pointer_size,
2548 FixedArray::kHeaderSize));
2549 __ cmp(result_, factory->undefined_value());
2550 __ j(equal, &slow_case_);
2551 __ bind(&exit_);
2552}
2553
2554
2555void StringCharFromCodeGenerator::GenerateSlow(
2556 MacroAssembler* masm,
2557 const RuntimeCallHelper& call_helper) {
2558 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2559
2560 __ bind(&slow_case_);
2561 call_helper.BeforeCall(masm);
2562 __ push(code_);
2563 __ CallRuntime(Runtime::kCharFromCode, 1);
2564 if (!result_.is(eax)) {
2565 __ mov(result_, eax);
2566 }
2567 call_helper.AfterCall(masm);
2568 __ jmp(&exit_);
2569
2570 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2571}
2572
2573
2574void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2575 Register dest,
2576 Register src,
2577 Register count,
2578 Register scratch,
2579 String::Encoding encoding) {
2580 DCHECK(!scratch.is(dest));
2581 DCHECK(!scratch.is(src));
2582 DCHECK(!scratch.is(count));
2583
2584 // Nothing to do for zero characters.
2585 Label done;
2586 __ test(count, count);
2587 __ j(zero, &done);
2588
2589 // Make count the number of bytes to copy.
2590 if (encoding == String::TWO_BYTE_ENCODING) {
2591 __ shl(count, 1);
2592 }
2593
2594 Label loop;
2595 __ bind(&loop);
2596 __ mov_b(scratch, Operand(src, 0));
2597 __ mov_b(Operand(dest, 0), scratch);
2598 __ inc(src);
2599 __ inc(dest);
2600 __ dec(count);
2601 __ j(not_zero, &loop);
2602
2603 __ bind(&done);
2604}
2605
2606
2607void SubStringStub::Generate(MacroAssembler* masm) {
2608 Label runtime;
2609
2610 // Stack frame on entry.
2611 // esp[0]: return address
2612 // esp[4]: to
2613 // esp[8]: from
2614 // esp[12]: string
2615
2616 // Make sure first argument is a string.
2617 __ mov(eax, Operand(esp, 3 * kPointerSize));
2618 STATIC_ASSERT(kSmiTag == 0);
2619 __ JumpIfSmi(eax, &runtime);
2620 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
2621 __ j(NegateCondition(is_string), &runtime);
2622
2623 // eax: string
2624 // ebx: instance type
2625
2626 // Calculate length of sub string using the smi values.
2627 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
2628 __ JumpIfNotSmi(ecx, &runtime);
2629 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
2630 __ JumpIfNotSmi(edx, &runtime);
2631 __ sub(ecx, edx);
2632 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
2633 Label not_original_string;
2634 // Shorter than original string's length: an actual substring.
2635 __ j(below, &not_original_string, Label::kNear);
2636 // Longer than original string's length or negative: unsafe arguments.
2637 __ j(above, &runtime);
2638 // Return original string.
2639 Counters* counters = isolate()->counters();
2640 __ IncrementCounter(counters->sub_string_native(), 1);
2641 __ ret(3 * kPointerSize);
2642 __ bind(&not_original_string);
2643
2644 Label single_char;
2645 __ cmp(ecx, Immediate(Smi::FromInt(1)));
2646 __ j(equal, &single_char);
2647
2648 // eax: string
2649 // ebx: instance type
2650 // ecx: sub string length (smi)
2651 // edx: from index (smi)
2652 // Deal with different string types: update the index if necessary
2653 // and put the underlying string into edi.
2654 Label underlying_unpacked, sliced_string, seq_or_external_string;
2655 // If the string is not indirect, it can only be sequential or external.
2656 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2657 STATIC_ASSERT(kIsIndirectStringMask != 0);
2658 __ test(ebx, Immediate(kIsIndirectStringMask));
2659 __ j(zero, &seq_or_external_string, Label::kNear);
2660
2661 Factory* factory = isolate()->factory();
2662 __ test(ebx, Immediate(kSlicedNotConsMask));
2663 __ j(not_zero, &sliced_string, Label::kNear);
2664 // Cons string. Check whether it is flat, then fetch first part.
2665 // Flat cons strings have an empty second part.
2666 __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
2667 factory->empty_string());
2668 __ j(not_equal, &runtime);
2669 __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
2670 // Update instance type.
2671 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
2672 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
2673 __ jmp(&underlying_unpacked, Label::kNear);
2674
2675 __ bind(&sliced_string);
2676 // Sliced string. Fetch parent and adjust start index by offset.
2677 __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
2678 __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
2679 // Update instance type.
2680 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
2681 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
2682 __ jmp(&underlying_unpacked, Label::kNear);
2683
2684 __ bind(&seq_or_external_string);
2685 // Sequential or external string. Just move string to the expected register.
2686 __ mov(edi, eax);
2687
2688 __ bind(&underlying_unpacked);
2689
2690 if (FLAG_string_slices) {
2691 Label copy_routine;
2692 // edi: underlying subject string
2693 // ebx: instance type of underlying subject string
2694 // edx: adjusted start index (smi)
2695 // ecx: length (smi)
2696 __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
2697 // Short slice. Copy instead of slicing.
2698 __ j(less, &copy_routine);
2699 // Allocate new sliced string. At this point we do not reload the instance
2700 // type including the string encoding because we simply rely on the info
2701 // provided by the original string. It does not matter if the original
2702 // string's encoding is wrong because we always have to recheck encoding of
2703 // the newly created string's parent anyways due to externalized strings.
2704 Label two_byte_slice, set_slice_header;
2705 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
2706 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
2707 __ test(ebx, Immediate(kStringEncodingMask));
2708 __ j(zero, &two_byte_slice, Label::kNear);
2709 __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
2710 __ jmp(&set_slice_header, Label::kNear);
2711 __ bind(&two_byte_slice);
2712 __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
2713 __ bind(&set_slice_header);
2714 __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
2715 __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
2716 Immediate(String::kEmptyHashField));
2717 __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
2718 __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
2719 __ IncrementCounter(counters->sub_string_native(), 1);
2720 __ ret(3 * kPointerSize);
2721
2722 __ bind(&copy_routine);
2723 }
2724
2725 // edi: underlying subject string
2726 // ebx: instance type of underlying subject string
2727 // edx: adjusted start index (smi)
2728 // ecx: length (smi)
2729 // The subject string can only be external or sequential string of either
2730 // encoding at this point.
2731 Label two_byte_sequential, runtime_drop_two, sequential_string;
2732 STATIC_ASSERT(kExternalStringTag != 0);
2733 STATIC_ASSERT(kSeqStringTag == 0);
2734 __ test_b(ebx, kExternalStringTag);
2735 __ j(zero, &sequential_string);
2736
2737 // Handle external string.
2738 // Rule out short external strings.
2739 STATIC_ASSERT(kShortExternalStringTag != 0);
2740 __ test_b(ebx, kShortExternalStringMask);
2741 __ j(not_zero, &runtime);
2742 __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
2743 // Move the pointer so that offset-wise, it looks like a sequential string.
2744 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2745 __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2746
2747 __ bind(&sequential_string);
2748 // Stash away (adjusted) index and (underlying) string.
2749 __ push(edx);
2750 __ push(edi);
2751 __ SmiUntag(ecx);
2752 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
2753 __ test_b(ebx, kStringEncodingMask);
2754 __ j(zero, &two_byte_sequential);
2755
2756 // Sequential one byte string. Allocate the result.
2757 __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
2758
2759 // eax: result string
2760 // ecx: result string length
2761 // Locate first character of result.
2762 __ mov(edi, eax);
2763 __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2764 // Load string argument and locate character of sub string start.
2765 __ pop(edx);
2766 __ pop(ebx);
2767 __ SmiUntag(ebx);
2768 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
2769
2770 // eax: result string
2771 // ecx: result length
2772 // edi: first character of result
2773 // edx: character of sub string start
2774 StringHelper::GenerateCopyCharacters(
2775 masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
2776 __ IncrementCounter(counters->sub_string_native(), 1);
2777 __ ret(3 * kPointerSize);
2778
2779 __ bind(&two_byte_sequential);
2780 // Sequential two-byte string. Allocate the result.
2781 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
2782
2783 // eax: result string
2784 // ecx: result string length
2785 // Locate first character of result.
2786 __ mov(edi, eax);
2787 __ add(edi,
2788 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2789 // Load string argument and locate character of sub string start.
2790 __ pop(edx);
2791 __ pop(ebx);
2792 // As from is a smi it is 2 times the value which matches the size of a two
2793 // byte character.
2794 STATIC_ASSERT(kSmiTag == 0);
2795 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2796 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
2797
2798 // eax: result string
2799 // ecx: result length
2800 // edi: first character of result
2801 // edx: character of sub string start
2802 StringHelper::GenerateCopyCharacters(
2803 masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
2804 __ IncrementCounter(counters->sub_string_native(), 1);
2805 __ ret(3 * kPointerSize);
2806
2807 // Drop pushed values on the stack before tail call.
2808 __ bind(&runtime_drop_two);
2809 __ Drop(2);
2810
2811 // Just jump to runtime to create the sub string.
2812 __ bind(&runtime);
2813 __ TailCallRuntime(Runtime::kSubString, 3, 1);
2814
2815 __ bind(&single_char);
2816 // eax: string
2817 // ebx: instance type
2818 // ecx: sub string length (smi)
2819 // edx: from index (smi)
2820 StringCharAtGenerator generator(
2821 eax, edx, ecx, eax, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
2822 generator.GenerateFast(masm);
2823 __ ret(3 * kPointerSize);
2824 generator.SkipSlow(masm, &runtime);
2825}
2826
2827
2828void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
2829 Register left,
2830 Register right,
2831 Register scratch1,
2832 Register scratch2) {
2833 Register length = scratch1;
2834
2835 // Compare lengths.
2836 Label strings_not_equal, check_zero_length;
2837 __ mov(length, FieldOperand(left, String::kLengthOffset));
2838 __ cmp(length, FieldOperand(right, String::kLengthOffset));
2839 __ j(equal, &check_zero_length, Label::kNear);
2840 __ bind(&strings_not_equal);
2841 __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
2842 __ ret(0);
2843
2844 // Check if the length is zero.
2845 Label compare_chars;
2846 __ bind(&check_zero_length);
2847 STATIC_ASSERT(kSmiTag == 0);
2848 __ test(length, length);
2849 __ j(not_zero, &compare_chars, Label::kNear);
2850 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2851 __ ret(0);
2852
2853 // Compare characters.
2854 __ bind(&compare_chars);
2855 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
2856 &strings_not_equal, Label::kNear);
2857
2858 // Characters are equal.
2859 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2860 __ ret(0);
2861}
2862
2863
2864void StringHelper::GenerateCompareFlatOneByteStrings(
2865 MacroAssembler* masm, Register left, Register right, Register scratch1,
2866 Register scratch2, Register scratch3) {
2867 Counters* counters = masm->isolate()->counters();
2868 __ IncrementCounter(counters->string_compare_native(), 1);
2869
2870 // Find minimum length.
2871 Label left_shorter;
2872 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
2873 __ mov(scratch3, scratch1);
2874 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
2875
2876 Register length_delta = scratch3;
2877
2878 __ j(less_equal, &left_shorter, Label::kNear);
2879 // Right string is shorter. Change scratch1 to be length of right string.
2880 __ sub(scratch1, length_delta);
2881 __ bind(&left_shorter);
2882
2883 Register min_length = scratch1;
2884
2885 // If either length is zero, just compare lengths.
2886 Label compare_lengths;
2887 __ test(min_length, min_length);
2888 __ j(zero, &compare_lengths, Label::kNear);
2889
2890 // Compare characters.
2891 Label result_not_equal;
2892 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
2893 &result_not_equal, Label::kNear);
2894
2895 // Compare lengths - strings up to min-length are equal.
2896 __ bind(&compare_lengths);
2897 __ test(length_delta, length_delta);
2898 Label length_not_equal;
2899 __ j(not_zero, &length_not_equal, Label::kNear);
2900
2901 // Result is EQUAL.
2902 STATIC_ASSERT(EQUAL == 0);
2903 STATIC_ASSERT(kSmiTag == 0);
2904 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2905 __ ret(0);
2906
2907 Label result_greater;
2908 Label result_less;
2909 __ bind(&length_not_equal);
2910 __ j(greater, &result_greater, Label::kNear);
2911 __ jmp(&result_less, Label::kNear);
2912 __ bind(&result_not_equal);
2913 __ j(above, &result_greater, Label::kNear);
2914 __ bind(&result_less);
2915
2916 // Result is LESS.
2917 __ Move(eax, Immediate(Smi::FromInt(LESS)));
2918 __ ret(0);
2919
2920 // Result is GREATER.
2921 __ bind(&result_greater);
2922 __ Move(eax, Immediate(Smi::FromInt(GREATER)));
2923 __ ret(0);
2924}
2925
2926
2927void StringHelper::GenerateOneByteCharsCompareLoop(
2928 MacroAssembler* masm, Register left, Register right, Register length,
2929 Register scratch, Label* chars_not_equal,
2930 Label::Distance chars_not_equal_near) {
2931 // Change index to run from -length to -1 by adding length to string
2932 // start. This means that loop ends when index reaches zero, which
2933 // doesn't need an additional compare.
2934 __ SmiUntag(length);
2935 __ lea(left,
2936 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
2937 __ lea(right,
2938 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
2939 __ neg(length);
2940 Register index = length; // index = -length;
2941
2942 // Compare loop.
2943 Label loop;
2944 __ bind(&loop);
2945 __ mov_b(scratch, Operand(left, index, times_1, 0));
2946 __ cmpb(scratch, Operand(right, index, times_1, 0));
2947 __ j(not_equal, chars_not_equal, chars_not_equal_near);
2948 __ inc(index);
2949 __ j(not_zero, &loop);
2950}
2951
2952
2953void StringCompareStub::Generate(MacroAssembler* masm) {
2954 Label runtime;
2955
2956 // Stack frame on entry.
2957 // esp[0]: return address
2958 // esp[4]: right string
2959 // esp[8]: left string
2960
2961 __ mov(edx, Operand(esp, 2 * kPointerSize)); // left
2962 __ mov(eax, Operand(esp, 1 * kPointerSize)); // right
2963
2964 Label not_same;
2965 __ cmp(edx, eax);
2966 __ j(not_equal, &not_same, Label::kNear);
2967 STATIC_ASSERT(EQUAL == 0);
2968 STATIC_ASSERT(kSmiTag == 0);
2969 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2970 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
2971 __ ret(2 * kPointerSize);
2972
2973 __ bind(&not_same);
2974
2975 // Check that both objects are sequential one-byte strings.
2976 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime);
2977
2978 // Compare flat one-byte strings.
2979 // Drop arguments from the stack.
2980 __ pop(ecx);
2981 __ add(esp, Immediate(2 * kPointerSize));
2982 __ push(ecx);
2983 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
2984 edi);
2985
2986 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
2987 // tagged as a small integer.
2988 __ bind(&runtime);
2989 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
2990}
2991
2992
2993void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
2994 // ----------- S t a t e -------------
2995 // -- edx : left
2996 // -- eax : right
2997 // -- esp[0] : return address
2998 // -----------------------------------
2999
3000 // Load ecx with the allocation site. We stick an undefined dummy value here
3001 // and replace it with the real allocation site later when we instantiate this
3002 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3003 __ mov(ecx, handle(isolate()->heap()->undefined_value()));
3004
3005 // Make sure that we actually patched the allocation site.
3006 if (FLAG_debug_code) {
3007 __ test(ecx, Immediate(kSmiTagMask));
3008 __ Assert(not_equal, kExpectedAllocationSite);
3009 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
3010 isolate()->factory()->allocation_site_map());
3011 __ Assert(equal, kExpectedAllocationSite);
3012 }
3013
3014 // Tail call into the stub that handles binary operations with allocation
3015 // sites.
3016 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3017 __ TailCallStub(&stub);
3018}
3019
3020
3021void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3022 DCHECK(state() == CompareICState::SMI);
3023 Label miss;
3024 __ mov(ecx, edx);
3025 __ or_(ecx, eax);
3026 __ JumpIfNotSmi(ecx, &miss, Label::kNear);
3027
3028 if (GetCondition() == equal) {
3029 // For equality we do not care about the sign of the result.
3030 __ sub(eax, edx);
3031 } else {
3032 Label done;
3033 __ sub(edx, eax);
3034 __ j(no_overflow, &done, Label::kNear);
3035 // Correct sign of result in case of overflow.
3036 __ not_(edx);
3037 __ bind(&done);
3038 __ mov(eax, edx);
3039 }
3040 __ ret(0);
3041
3042 __ bind(&miss);
3043 GenerateMiss(masm);
3044}
3045
3046
3047void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3048 DCHECK(state() == CompareICState::NUMBER);
3049
3050 Label generic_stub;
3051 Label unordered, maybe_undefined1, maybe_undefined2;
3052 Label miss;
3053
3054 if (left() == CompareICState::SMI) {
3055 __ JumpIfNotSmi(edx, &miss);
3056 }
3057 if (right() == CompareICState::SMI) {
3058 __ JumpIfNotSmi(eax, &miss);
3059 }
3060
3061 // Inlining the double comparison and falling back to the general compare
3062 // stub if NaN is involved or SSE2 or CMOV is unsupported.
3063 __ mov(ecx, edx);
3064 __ and_(ecx, eax);
3065 __ JumpIfSmi(ecx, &generic_stub, Label::kNear);
3066
3067 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
3068 isolate()->factory()->heap_number_map());
3069 __ j(not_equal, &maybe_undefined1, Label::kNear);
3070 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
3071 isolate()->factory()->heap_number_map());
3072 __ j(not_equal, &maybe_undefined2, Label::kNear);
3073
3074 __ bind(&unordered);
3075 __ bind(&generic_stub);
3076 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
3077 CompareICState::GENERIC, CompareICState::GENERIC);
3078 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3079
3080 __ bind(&maybe_undefined1);
3081 if (Token::IsOrderedRelationalCompareOp(op())) {
3082 __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
3083 __ j(not_equal, &miss);
3084 __ JumpIfSmi(edx, &unordered);
3085 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
3086 __ j(not_equal, &maybe_undefined2, Label::kNear);
3087 __ jmp(&unordered);
3088 }
3089
3090 __ bind(&maybe_undefined2);
3091 if (Token::IsOrderedRelationalCompareOp(op())) {
3092 __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
3093 __ j(equal, &unordered);
3094 }
3095
3096 __ bind(&miss);
3097 GenerateMiss(masm);
3098}
3099
3100
3101void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3102 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3103 DCHECK(GetCondition() == equal);
3104
3105 // Registers containing left and right operands respectively.
3106 Register left = edx;
3107 Register right = eax;
3108 Register tmp1 = ecx;
3109 Register tmp2 = ebx;
3110
3111 // Check that both operands are heap objects.
3112 Label miss;
3113 __ mov(tmp1, left);
3114 STATIC_ASSERT(kSmiTag == 0);
3115 __ and_(tmp1, right);
3116 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3117
3118 // Check that both operands are internalized strings.
3119 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3120 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3121 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3122 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3123 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3124 __ or_(tmp1, tmp2);
3125 __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3126 __ j(not_zero, &miss, Label::kNear);
3127
3128 // Internalized strings are compared by identity.
3129 Label done;
3130 __ cmp(left, right);
3131 // Make sure eax is non-zero. At this point input operands are
3132 // guaranteed to be non-zero.
3133 DCHECK(right.is(eax));
3134 __ j(not_equal, &done, Label::kNear);
3135 STATIC_ASSERT(EQUAL == 0);
3136 STATIC_ASSERT(kSmiTag == 0);
3137 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3138 __ bind(&done);
3139 __ ret(0);
3140
3141 __ bind(&miss);
3142 GenerateMiss(masm);
3143}
3144
3145
3146void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3147 DCHECK(state() == CompareICState::UNIQUE_NAME);
3148 DCHECK(GetCondition() == equal);
3149
3150 // Registers containing left and right operands respectively.
3151 Register left = edx;
3152 Register right = eax;
3153 Register tmp1 = ecx;
3154 Register tmp2 = ebx;
3155
3156 // Check that both operands are heap objects.
3157 Label miss;
3158 __ mov(tmp1, left);
3159 STATIC_ASSERT(kSmiTag == 0);
3160 __ and_(tmp1, right);
3161 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3162
3163 // Check that both operands are unique names. This leaves the instance
3164 // types loaded in tmp1 and tmp2.
3165 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3166 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3167 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3168 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3169
3170 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
3171 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
3172
3173 // Unique names are compared by identity.
3174 Label done;
3175 __ cmp(left, right);
3176 // Make sure eax is non-zero. At this point input operands are
3177 // guaranteed to be non-zero.
3178 DCHECK(right.is(eax));
3179 __ j(not_equal, &done, Label::kNear);
3180 STATIC_ASSERT(EQUAL == 0);
3181 STATIC_ASSERT(kSmiTag == 0);
3182 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3183 __ bind(&done);
3184 __ ret(0);
3185
3186 __ bind(&miss);
3187 GenerateMiss(masm);
3188}
3189
3190
3191void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3192 DCHECK(state() == CompareICState::STRING);
3193 Label miss;
3194
3195 bool equality = Token::IsEqualityOp(op());
3196
3197 // Registers containing left and right operands respectively.
3198 Register left = edx;
3199 Register right = eax;
3200 Register tmp1 = ecx;
3201 Register tmp2 = ebx;
3202 Register tmp3 = edi;
3203
3204 // Check that both operands are heap objects.
3205 __ mov(tmp1, left);
3206 STATIC_ASSERT(kSmiTag == 0);
3207 __ and_(tmp1, right);
3208 __ JumpIfSmi(tmp1, &miss);
3209
3210 // Check that both operands are strings. This leaves the instance
3211 // types loaded in tmp1 and tmp2.
3212 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3213 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3214 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3215 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3216 __ mov(tmp3, tmp1);
3217 STATIC_ASSERT(kNotStringTag != 0);
3218 __ or_(tmp3, tmp2);
3219 __ test(tmp3, Immediate(kIsNotStringMask));
3220 __ j(not_zero, &miss);
3221
3222 // Fast check for identical strings.
3223 Label not_same;
3224 __ cmp(left, right);
3225 __ j(not_equal, &not_same, Label::kNear);
3226 STATIC_ASSERT(EQUAL == 0);
3227 STATIC_ASSERT(kSmiTag == 0);
3228 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3229 __ ret(0);
3230
3231 // Handle not identical strings.
3232 __ bind(&not_same);
3233
3234 // Check that both strings are internalized. If they are, we're done
3235 // because we already know they are not identical. But in the case of
3236 // non-equality compare, we still need to determine the order. We
3237 // also know they are both strings.
3238 if (equality) {
3239 Label do_compare;
3240 STATIC_ASSERT(kInternalizedTag == 0);
3241 __ or_(tmp1, tmp2);
3242 __ test(tmp1, Immediate(kIsNotInternalizedMask));
3243 __ j(not_zero, &do_compare, Label::kNear);
3244 // Make sure eax is non-zero. At this point input operands are
3245 // guaranteed to be non-zero.
3246 DCHECK(right.is(eax));
3247 __ ret(0);
3248 __ bind(&do_compare);
3249 }
3250
3251 // Check that both strings are sequential one-byte.
3252 Label runtime;
3253 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
3254
3255 // Compare flat one byte strings. Returns when done.
3256 if (equality) {
3257 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3258 tmp2);
3259 } else {
3260 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3261 tmp2, tmp3);
3262 }
3263
3264 // Handle more complex cases in runtime.
3265 __ bind(&runtime);
3266 __ pop(tmp1); // Return address.
3267 __ push(left);
3268 __ push(right);
3269 __ push(tmp1);
3270 if (equality) {
3271 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3272 } else {
3273 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3274 }
3275
3276 __ bind(&miss);
3277 GenerateMiss(masm);
3278}
3279
3280
3281void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3282 DCHECK(state() == CompareICState::OBJECT);
3283 Label miss;
3284 __ mov(ecx, edx);
3285 __ and_(ecx, eax);
3286 __ JumpIfSmi(ecx, &miss, Label::kNear);
3287
3288 __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
3289 __ j(not_equal, &miss, Label::kNear);
3290 __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
3291 __ j(not_equal, &miss, Label::kNear);
3292
3293 DCHECK(GetCondition() == equal);
3294 __ sub(eax, edx);
3295 __ ret(0);
3296
3297 __ bind(&miss);
3298 GenerateMiss(masm);
3299}
3300
3301
3302void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3303 Label miss;
3304 __ mov(ecx, edx);
3305 __ and_(ecx, eax);
3306 __ JumpIfSmi(ecx, &miss, Label::kNear);
3307
3308 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
3309 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
3310 __ cmp(ecx, known_map_);
3311 __ j(not_equal, &miss, Label::kNear);
3312 __ cmp(ebx, known_map_);
3313 __ j(not_equal, &miss, Label::kNear);
3314
3315 __ sub(eax, edx);
3316 __ ret(0);
3317
3318 __ bind(&miss);
3319 GenerateMiss(masm);
3320}
3321
3322
3323void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3324 {
3325 // Call the runtime system in a fresh internal frame.
3326 ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
3327 isolate());
3328 FrameScope scope(masm, StackFrame::INTERNAL);
3329 __ push(edx); // Preserve edx and eax.
3330 __ push(eax);
3331 __ push(edx); // And also use them as the arguments.
3332 __ push(eax);
3333 __ push(Immediate(Smi::FromInt(op())));
3334 __ CallExternalReference(miss, 3);
3335 // Compute the entry point of the rewritten stub.
3336 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
3337 __ pop(eax);
3338 __ pop(edx);
3339 }
3340
3341 // Do a tail call to the rewritten stub.
3342 __ jmp(edi);
3343}
3344
3345
3346// Helper function used to check that the dictionary doesn't contain
3347// the property. This function may return false negatives, so miss_label
3348// must always call a backup property check that is complete.
3349// This function is safe to call if the receiver has fast properties.
3350// Name must be a unique name and receiver must be a heap object.
3351void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3352 Label* miss,
3353 Label* done,
3354 Register properties,
3355 Handle<Name> name,
3356 Register r0) {
3357 DCHECK(name->IsUniqueName());
3358
3359 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3360 // not equal to the name and kProbes-th slot is not used (its name is the
3361 // undefined value), it guarantees the hash table doesn't contain the
3362 // property. It's true even if some slots represent deleted properties
3363 // (their names are the hole value).
3364 for (int i = 0; i < kInlinedProbes; i++) {
3365 // Compute the masked index: (hash + i + i * i) & mask.
3366 Register index = r0;
3367 // Capacity is smi 2^n.
3368 __ mov(index, FieldOperand(properties, kCapacityOffset));
3369 __ dec(index);
3370 __ and_(index,
3371 Immediate(Smi::FromInt(name->Hash() +
3372 NameDictionary::GetProbeOffset(i))));
3373
3374 // Scale the index by multiplying by the entry size.
3375 DCHECK(NameDictionary::kEntrySize == 3);
3376 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
3377 Register entity_name = r0;
3378 // Having undefined at this place means the name is not contained.
3379 DCHECK_EQ(kSmiTagSize, 1);
3380 __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
3381 kElementsStartOffset - kHeapObjectTag));
3382 __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
3383 __ j(equal, done);
3384
3385 // Stop if found the property.
3386 __ cmp(entity_name, Handle<Name>(name));
3387 __ j(equal, miss);
3388
3389 Label good;
3390 // Check for the hole and skip.
3391 __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
3392 __ j(equal, &good, Label::kNear);
3393
3394 // Check if the entry name is not a unique name.
3395 __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
3396 __ JumpIfNotUniqueNameInstanceType(
3397 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
3398 __ bind(&good);
3399 }
3400
3401 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
3402 NEGATIVE_LOOKUP);
3403 __ push(Immediate(Handle<Object>(name)));
3404 __ push(Immediate(name->Hash()));
3405 __ CallStub(&stub);
3406 __ test(r0, r0);
3407 __ j(not_zero, miss);
3408 __ jmp(done);
3409}
3410
3411
3412// Probe the name dictionary in the |elements| register. Jump to the
3413// |done| label if a property with the given name is found leaving the
3414// index into the dictionary in |r0|. Jump to the |miss| label
3415// otherwise.
3416void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3417 Label* miss,
3418 Label* done,
3419 Register elements,
3420 Register name,
3421 Register r0,
3422 Register r1) {
3423 DCHECK(!elements.is(r0));
3424 DCHECK(!elements.is(r1));
3425 DCHECK(!name.is(r0));
3426 DCHECK(!name.is(r1));
3427
3428 __ AssertName(name);
3429
3430 __ mov(r1, FieldOperand(elements, kCapacityOffset));
3431 __ shr(r1, kSmiTagSize); // convert smi to int
3432 __ dec(r1);
3433
3434 // Generate an unrolled loop that performs a few probes before
3435 // giving up. Measurements done on Gmail indicate that 2 probes
3436 // cover ~93% of loads from dictionaries.
3437 for (int i = 0; i < kInlinedProbes; i++) {
3438 // Compute the masked index: (hash + i + i * i) & mask.
3439 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
3440 __ shr(r0, Name::kHashShift);
3441 if (i > 0) {
3442 __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
3443 }
3444 __ and_(r0, r1);
3445
3446 // Scale the index by multiplying by the entry size.
3447 DCHECK(NameDictionary::kEntrySize == 3);
3448 __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
3449
3450 // Check if the key is identical to the name.
3451 __ cmp(name, Operand(elements,
3452 r0,
3453 times_4,
3454 kElementsStartOffset - kHeapObjectTag));
3455 __ j(equal, done);
3456 }
3457
3458 NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
3459 POSITIVE_LOOKUP);
3460 __ push(name);
3461 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
3462 __ shr(r0, Name::kHashShift);
3463 __ push(r0);
3464 __ CallStub(&stub);
3465
3466 __ test(r1, r1);
3467 __ j(zero, miss);
3468 __ jmp(done);
3469}
3470
3471
3472void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3473 // This stub overrides SometimesSetsUpAFrame() to return false. That means
3474 // we cannot call anything that could cause a GC from this stub.
3475 // Stack frame on entry:
3476 // esp[0 * kPointerSize]: return address.
3477 // esp[1 * kPointerSize]: key's hash.
3478 // esp[2 * kPointerSize]: key.
3479 // Registers:
3480 // dictionary_: NameDictionary to probe.
3481 // result_: used as scratch.
3482 // index_: will hold an index of entry if lookup is successful.
3483 // might alias with result_.
3484 // Returns:
3485 // result_ is zero if lookup failed, non zero otherwise.
3486
3487 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3488
3489 Register scratch = result();
3490
3491 __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
3492 __ dec(scratch);
3493 __ SmiUntag(scratch);
3494 __ push(scratch);
3495
3496 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3497 // not equal to the name and kProbes-th slot is not used (its name is the
3498 // undefined value), it guarantees the hash table doesn't contain the
3499 // property. It's true even if some slots represent deleted properties
3500 // (their names are the null value).
3501 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3502 // Compute the masked index: (hash + i + i * i) & mask.
3503 __ mov(scratch, Operand(esp, 2 * kPointerSize));
3504 if (i > 0) {
3505 __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
3506 }
3507 __ and_(scratch, Operand(esp, 0));
3508
3509 // Scale the index by multiplying by the entry size.
3510 DCHECK(NameDictionary::kEntrySize == 3);
3511 __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
3512
3513 // Having undefined at this place means the name is not contained.
3514 DCHECK_EQ(kSmiTagSize, 1);
3515 __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
3516 kElementsStartOffset - kHeapObjectTag));
3517 __ cmp(scratch, isolate()->factory()->undefined_value());
3518 __ j(equal, &not_in_dictionary);
3519
3520 // Stop if found the property.
3521 __ cmp(scratch, Operand(esp, 3 * kPointerSize));
3522 __ j(equal, &in_dictionary);
3523
3524 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3525 // If we hit a key that is not a unique name during negative
3526 // lookup we have to bailout as this key might be equal to the
3527 // key we are looking for.
3528
3529 // Check if the entry name is not a unique name.
3530 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
3531 __ JumpIfNotUniqueNameInstanceType(
3532 FieldOperand(scratch, Map::kInstanceTypeOffset),
3533 &maybe_in_dictionary);
3534 }
3535 }
3536
3537 __ bind(&maybe_in_dictionary);
3538 // If we are doing negative lookup then probing failure should be
3539 // treated as a lookup success. For positive lookup probing failure
3540 // should be treated as lookup failure.
3541 if (mode() == POSITIVE_LOOKUP) {
3542 __ mov(result(), Immediate(0));
3543 __ Drop(1);
3544 __ ret(2 * kPointerSize);
3545 }
3546
3547 __ bind(&in_dictionary);
3548 __ mov(result(), Immediate(1));
3549 __ Drop(1);
3550 __ ret(2 * kPointerSize);
3551
3552 __ bind(&not_in_dictionary);
3553 __ mov(result(), Immediate(0));
3554 __ Drop(1);
3555 __ ret(2 * kPointerSize);
3556}
3557
3558
3559void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3560 Isolate* isolate) {
3561 StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
3562 stub.GetCode();
3563 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3564 stub2.GetCode();
3565}
3566
3567
3568// Takes the input in 3 registers: address_ value_ and object_. A pointer to
3569// the value has just been written into the object, now this stub makes sure
3570// we keep the GC informed. The word in the object where the value has been
3571// written is in the address register.
3572void RecordWriteStub::Generate(MacroAssembler* masm) {
3573 Label skip_to_incremental_noncompacting;
3574 Label skip_to_incremental_compacting;
3575
3576 // The first two instructions are generated with labels so as to get the
3577 // offset fixed up correctly by the bind(Label*) call. We patch it back and
3578 // forth between a compare instructions (a nop in this position) and the
3579 // real branch when we start and stop incremental heap marking.
3580 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
3581 __ jmp(&skip_to_incremental_compacting, Label::kFar);
3582
3583 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3584 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3585 MacroAssembler::kReturnAtEnd);
3586 } else {
3587 __ ret(0);
3588 }
3589
3590 __ bind(&skip_to_incremental_noncompacting);
3591 GenerateIncremental(masm, INCREMENTAL);
3592
3593 __ bind(&skip_to_incremental_compacting);
3594 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3595
3596 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3597 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3598 masm->set_byte_at(0, kTwoByteNopInstruction);
3599 masm->set_byte_at(2, kFiveByteNopInstruction);
3600}
3601
3602
3603void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3604 regs_.Save(masm);
3605
3606 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3607 Label dont_need_remembered_set;
3608
3609 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
3610 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
3611 regs_.scratch0(),
3612 &dont_need_remembered_set);
3613
3614 __ CheckPageFlag(regs_.object(),
3615 regs_.scratch0(),
3616 1 << MemoryChunk::SCAN_ON_SCAVENGE,
3617 not_zero,
3618 &dont_need_remembered_set);
3619
3620 // First notify the incremental marker if necessary, then update the
3621 // remembered set.
3622 CheckNeedsToInformIncrementalMarker(
3623 masm,
3624 kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
3625 mode);
3626 InformIncrementalMarker(masm);
3627 regs_.Restore(masm);
3628 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3629 MacroAssembler::kReturnAtEnd);
3630
3631 __ bind(&dont_need_remembered_set);
3632 }
3633
3634 CheckNeedsToInformIncrementalMarker(
3635 masm,
3636 kReturnOnNoNeedToInformIncrementalMarker,
3637 mode);
3638 InformIncrementalMarker(masm);
3639 regs_.Restore(masm);
3640 __ ret(0);
3641}
3642
3643
3644void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3645 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3646 int argument_count = 3;
3647 __ PrepareCallCFunction(argument_count, regs_.scratch0());
3648 __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
3649 __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
3650 __ mov(Operand(esp, 2 * kPointerSize),
3651 Immediate(ExternalReference::isolate_address(isolate())));
3652
3653 AllowExternalCallThatCantCauseGC scope(masm);
3654 __ CallCFunction(
3655 ExternalReference::incremental_marking_record_write_function(isolate()),
3656 argument_count);
3657
3658 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3659}
3660
3661
3662void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3663 MacroAssembler* masm,
3664 OnNoNeedToInformIncrementalMarker on_no_need,
3665 Mode mode) {
3666 Label object_is_black, need_incremental, need_incremental_pop_object;
3667
3668 __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
3669 __ and_(regs_.scratch0(), regs_.object());
3670 __ mov(regs_.scratch1(),
3671 Operand(regs_.scratch0(),
3672 MemoryChunk::kWriteBarrierCounterOffset));
3673 __ sub(regs_.scratch1(), Immediate(1));
3674 __ mov(Operand(regs_.scratch0(),
3675 MemoryChunk::kWriteBarrierCounterOffset),
3676 regs_.scratch1());
3677 __ j(negative, &need_incremental);
3678
3679 // Let's look at the color of the object: If it is not black we don't have
3680 // to inform the incremental marker.
3681 __ JumpIfBlack(regs_.object(),
3682 regs_.scratch0(),
3683 regs_.scratch1(),
3684 &object_is_black,
3685 Label::kNear);
3686
3687 regs_.Restore(masm);
3688 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3689 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3690 MacroAssembler::kReturnAtEnd);
3691 } else {
3692 __ ret(0);
3693 }
3694
3695 __ bind(&object_is_black);
3696
3697 // Get the value from the slot.
3698 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
3699
3700 if (mode == INCREMENTAL_COMPACTION) {
3701 Label ensure_not_white;
3702
3703 __ CheckPageFlag(regs_.scratch0(), // Contains value.
3704 regs_.scratch1(), // Scratch.
3705 MemoryChunk::kEvacuationCandidateMask,
3706 zero,
3707 &ensure_not_white,
3708 Label::kNear);
3709
3710 __ CheckPageFlag(regs_.object(),
3711 regs_.scratch1(), // Scratch.
3712 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
3713 not_zero,
3714 &ensure_not_white,
3715 Label::kNear);
3716
3717 __ jmp(&need_incremental);
3718
3719 __ bind(&ensure_not_white);
3720 }
3721
3722 // We need an extra register for this, so we push the object register
3723 // temporarily.
3724 __ push(regs_.object());
3725 __ EnsureNotWhite(regs_.scratch0(), // The value.
3726 regs_.scratch1(), // Scratch.
3727 regs_.object(), // Scratch.
3728 &need_incremental_pop_object,
3729 Label::kNear);
3730 __ pop(regs_.object());
3731
3732 regs_.Restore(masm);
3733 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3734 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3735 MacroAssembler::kReturnAtEnd);
3736 } else {
3737 __ ret(0);
3738 }
3739
3740 __ bind(&need_incremental_pop_object);
3741 __ pop(regs_.object());
3742
3743 __ bind(&need_incremental);
3744
3745 // Fall through when we need to inform the incremental marker.
3746}
3747
3748
3749void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
3750 // ----------- S t a t e -------------
3751 // -- eax : element value to store
3752 // -- ecx : element index as smi
3753 // -- esp[0] : return address
3754 // -- esp[4] : array literal index in function
3755 // -- esp[8] : array literal
3756 // clobbers ebx, edx, edi
3757 // -----------------------------------
3758
3759 Label element_done;
3760 Label double_elements;
3761 Label smi_element;
3762 Label slow_elements;
3763 Label slow_elements_from_double;
3764 Label fast_elements;
3765
3766 // Get array literal index, array literal and its map.
3767 __ mov(edx, Operand(esp, 1 * kPointerSize));
3768 __ mov(ebx, Operand(esp, 2 * kPointerSize));
3769 __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
3770
3771 __ CheckFastElements(edi, &double_elements);
3772
3773 // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
3774 __ JumpIfSmi(eax, &smi_element);
3775 __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
3776
3777 // Store into the array literal requires a elements transition. Call into
3778 // the runtime.
3779
3780 __ bind(&slow_elements);
3781 __ pop(edi); // Pop return address and remember to put back later for tail
3782 // call.
3783 __ push(ebx);
3784 __ push(ecx);
3785 __ push(eax);
3786 __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
3787 __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
3788 __ push(edx);
3789 __ push(edi); // Return return address so that tail call returns to right
3790 // place.
3791 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
3792
3793 __ bind(&slow_elements_from_double);
3794 __ pop(edx);
3795 __ jmp(&slow_elements);
3796
3797 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
3798 __ bind(&fast_elements);
3799 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
3800 __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
3801 FixedArrayBase::kHeaderSize));
3802 __ mov(Operand(ecx, 0), eax);
3803 // Update the write barrier for the array store.
3804 __ RecordWrite(ebx, ecx, eax, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
3805 OMIT_SMI_CHECK);
3806 __ ret(0);
3807
3808 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
3809 // and value is Smi.
3810 __ bind(&smi_element);
3811 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
3812 __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
3813 FixedArrayBase::kHeaderSize), eax);
3814 __ ret(0);
3815
3816 // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
3817 __ bind(&double_elements);
3818
3819 __ push(edx);
3820 __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
3821 __ StoreNumberToDoubleElements(eax,
3822 edx,
3823 ecx,
3824 edi,
3825 &slow_elements_from_double,
3826 false);
3827 __ pop(edx);
3828 __ ret(0);
3829}
3830
3831
3832void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
3833 CEntryStub ces(isolate(), 1, kSaveFPRegs);
3834 __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
3835 int parameter_count_offset =
3836 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
3837 __ mov(ebx, MemOperand(ebp, parameter_count_offset));
3838 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
3839 __ pop(ecx);
3840 int additional_offset =
3841 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
3842 __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
3843 __ jmp(ecx); // Return to IC Miss stub, continuation still on stack.
3844}
3845
3846
3847void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
3848 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
3849 VectorLoadStub stub(isolate(), state());
3850 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3851}
3852
3853
3854void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
3855 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
3856 VectorKeyedLoadStub stub(isolate());
3857 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3858}
3859
3860
3861void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
3862 if (masm->isolate()->function_entry_hook() != NULL) {
3863 ProfileEntryHookStub stub(masm->isolate());
3864 masm->CallStub(&stub);
3865 }
3866}
3867
3868
3869void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
3870 // Save volatile registers.
3871 const int kNumSavedRegisters = 3;
3872 __ push(eax);
3873 __ push(ecx);
3874 __ push(edx);
3875
3876 // Calculate and push the original stack pointer.
3877 __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
3878 __ push(eax);
3879
3880 // Retrieve our return address and use it to calculate the calling
3881 // function's address.
3882 __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
3883 __ sub(eax, Immediate(Assembler::kCallInstructionLength));
3884 __ push(eax);
3885
3886 // Call the entry hook.
3887 DCHECK(isolate()->function_entry_hook() != NULL);
3888 __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
3889 RelocInfo::RUNTIME_ENTRY);
3890 __ add(esp, Immediate(2 * kPointerSize));
3891
3892 // Restore ecx.
3893 __ pop(edx);
3894 __ pop(ecx);
3895 __ pop(eax);
3896
3897 __ ret(0);
3898}
3899
3900
3901template<class T>
3902static void CreateArrayDispatch(MacroAssembler* masm,
3903 AllocationSiteOverrideMode mode) {
3904 if (mode == DISABLE_ALLOCATION_SITES) {
3905 T stub(masm->isolate(),
3906 GetInitialFastElementsKind(),
3907 mode);
3908 __ TailCallStub(&stub);
3909 } else if (mode == DONT_OVERRIDE) {
3910 int last_index = GetSequenceIndexFromFastElementsKind(
3911 TERMINAL_FAST_ELEMENTS_KIND);
3912 for (int i = 0; i <= last_index; ++i) {
3913 Label next;
3914 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3915 __ cmp(edx, kind);
3916 __ j(not_equal, &next);
3917 T stub(masm->isolate(), kind);
3918 __ TailCallStub(&stub);
3919 __ bind(&next);
3920 }
3921
3922 // If we reached this point there is a problem.
3923 __ Abort(kUnexpectedElementsKindInArrayConstructor);
3924 } else {
3925 UNREACHABLE();
3926 }
3927}
3928
3929
3930static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
3931 AllocationSiteOverrideMode mode) {
3932 // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
3933 // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
3934 // eax - number of arguments
3935 // edi - constructor?
3936 // esp[0] - return address
3937 // esp[4] - last argument
3938 Label normal_sequence;
3939 if (mode == DONT_OVERRIDE) {
3940 DCHECK(FAST_SMI_ELEMENTS == 0);
3941 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
3942 DCHECK(FAST_ELEMENTS == 2);
3943 DCHECK(FAST_HOLEY_ELEMENTS == 3);
3944 DCHECK(FAST_DOUBLE_ELEMENTS == 4);
3945 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
3946
3947 // is the low bit set? If so, we are holey and that is good.
3948 __ test_b(edx, 1);
3949 __ j(not_zero, &normal_sequence);
3950 }
3951
3952 // look at the first argument
3953 __ mov(ecx, Operand(esp, kPointerSize));
3954 __ test(ecx, ecx);
3955 __ j(zero, &normal_sequence);
3956
3957 if (mode == DISABLE_ALLOCATION_SITES) {
3958 ElementsKind initial = GetInitialFastElementsKind();
3959 ElementsKind holey_initial = GetHoleyElementsKind(initial);
3960
3961 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
3962 holey_initial,
3963 DISABLE_ALLOCATION_SITES);
3964 __ TailCallStub(&stub_holey);
3965
3966 __ bind(&normal_sequence);
3967 ArraySingleArgumentConstructorStub stub(masm->isolate(),
3968 initial,
3969 DISABLE_ALLOCATION_SITES);
3970 __ TailCallStub(&stub);
3971 } else if (mode == DONT_OVERRIDE) {
3972 // We are going to create a holey array, but our kind is non-holey.
3973 // Fix kind and retry.
3974 __ inc(edx);
3975
3976 if (FLAG_debug_code) {
3977 Handle<Map> allocation_site_map =
3978 masm->isolate()->factory()->allocation_site_map();
3979 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
3980 __ Assert(equal, kExpectedAllocationSite);
3981 }
3982
3983 // Save the resulting elements kind in type info. We can't just store r3
3984 // in the AllocationSite::transition_info field because elements kind is
3985 // restricted to a portion of the field...upper bits need to be left alone.
3986 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
3987 __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
3988 Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
3989
3990 __ bind(&normal_sequence);
3991 int last_index = GetSequenceIndexFromFastElementsKind(
3992 TERMINAL_FAST_ELEMENTS_KIND);
3993 for (int i = 0; i <= last_index; ++i) {
3994 Label next;
3995 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3996 __ cmp(edx, kind);
3997 __ j(not_equal, &next);
3998 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
3999 __ TailCallStub(&stub);
4000 __ bind(&next);
4001 }
4002
4003 // If we reached this point there is a problem.
4004 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4005 } else {
4006 UNREACHABLE();
4007 }
4008}
4009
4010
4011template<class T>
4012static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4013 int to_index = GetSequenceIndexFromFastElementsKind(
4014 TERMINAL_FAST_ELEMENTS_KIND);
4015 for (int i = 0; i <= to_index; ++i) {
4016 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4017 T stub(isolate, kind);
4018 stub.GetCode();
4019 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4020 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4021 stub1.GetCode();
4022 }
4023 }
4024}
4025
4026
4027void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4028 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4029 isolate);
4030 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4031 isolate);
4032 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4033 isolate);
4034}
4035
4036
4037void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4038 Isolate* isolate) {
4039 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4040 for (int i = 0; i < 2; i++) {
4041 // For internal arrays we only need a few things
4042 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4043 stubh1.GetCode();
4044 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4045 stubh2.GetCode();
4046 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4047 stubh3.GetCode();
4048 }
4049}
4050
4051
4052void ArrayConstructorStub::GenerateDispatchToArrayStub(
4053 MacroAssembler* masm,
4054 AllocationSiteOverrideMode mode) {
4055 if (argument_count() == ANY) {
4056 Label not_zero_case, not_one_case;
4057 __ test(eax, eax);
4058 __ j(not_zero, &not_zero_case);
4059 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4060
4061 __ bind(&not_zero_case);
4062 __ cmp(eax, 1);
4063 __ j(greater, &not_one_case);
4064 CreateArrayDispatchOneArgument(masm, mode);
4065
4066 __ bind(&not_one_case);
4067 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4068 } else if (argument_count() == NONE) {
4069 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4070 } else if (argument_count() == ONE) {
4071 CreateArrayDispatchOneArgument(masm, mode);
4072 } else if (argument_count() == MORE_THAN_ONE) {
4073 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4074 } else {
4075 UNREACHABLE();
4076 }
4077}
4078
4079
4080void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4081 // ----------- S t a t e -------------
4082 // -- eax : argc (only if argument_count() == ANY)
4083 // -- ebx : AllocationSite or undefined
4084 // -- edi : constructor
4085 // -- esp[0] : return address
4086 // -- esp[4] : last argument
4087 // -----------------------------------
4088 if (FLAG_debug_code) {
4089 // The array construct code is only set for the global and natives
4090 // builtin Array functions which always have maps.
4091
4092 // Initial map for the builtin Array function should be a map.
4093 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4094 // Will both indicate a NULL and a Smi.
4095 __ test(ecx, Immediate(kSmiTagMask));
4096 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4097 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4098 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4099
4100 // We should either have undefined in ebx or a valid AllocationSite
4101 __ AssertUndefinedOrAllocationSite(ebx);
4102 }
4103
4104 Label no_info;
4105 // If the feedback vector is the undefined value call an array constructor
4106 // that doesn't use AllocationSites.
4107 __ cmp(ebx, isolate()->factory()->undefined_value());
4108 __ j(equal, &no_info);
4109
4110 // Only look at the lower 16 bits of the transition info.
4111 __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
4112 __ SmiUntag(edx);
4113 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4114 __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
4115 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4116
4117 __ bind(&no_info);
4118 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4119}
4120
4121
4122void InternalArrayConstructorStub::GenerateCase(
4123 MacroAssembler* masm, ElementsKind kind) {
4124 Label not_zero_case, not_one_case;
4125 Label normal_sequence;
4126
4127 __ test(eax, eax);
4128 __ j(not_zero, &not_zero_case);
4129 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4130 __ TailCallStub(&stub0);
4131
4132 __ bind(&not_zero_case);
4133 __ cmp(eax, 1);
4134 __ j(greater, &not_one_case);
4135
4136 if (IsFastPackedElementsKind(kind)) {
4137 // We might need to create a holey array
4138 // look at the first argument
4139 __ mov(ecx, Operand(esp, kPointerSize));
4140 __ test(ecx, ecx);
4141 __ j(zero, &normal_sequence);
4142
4143 InternalArraySingleArgumentConstructorStub
4144 stub1_holey(isolate(), GetHoleyElementsKind(kind));
4145 __ TailCallStub(&stub1_holey);
4146 }
4147
4148 __ bind(&normal_sequence);
4149 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4150 __ TailCallStub(&stub1);
4151
4152 __ bind(&not_one_case);
4153 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4154 __ TailCallStub(&stubN);
4155}
4156
4157
4158void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4159 // ----------- S t a t e -------------
4160 // -- eax : argc
4161 // -- edi : constructor
4162 // -- esp[0] : return address
4163 // -- esp[4] : last argument
4164 // -----------------------------------
4165
4166 if (FLAG_debug_code) {
4167 // The array construct code is only set for the global and natives
4168 // builtin Array functions which always have maps.
4169
4170 // Initial map for the builtin Array function should be a map.
4171 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4172 // Will both indicate a NULL and a Smi.
4173 __ test(ecx, Immediate(kSmiTagMask));
4174 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4175 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4176 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4177 }
4178
4179 // Figure out the right elements kind
4180 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4181
4182 // Load the map's "bit field 2" into |result|. We only need the first byte,
4183 // but the following masking takes care of that anyway.
4184 __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
4185 // Retrieve elements_kind from bit field 2.
4186 __ DecodeField<Map::ElementsKindBits>(ecx);
4187
4188 if (FLAG_debug_code) {
4189 Label done;
4190 __ cmp(ecx, Immediate(FAST_ELEMENTS));
4191 __ j(equal, &done);
4192 __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
4193 __ Assert(equal,
4194 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4195 __ bind(&done);
4196 }
4197
4198 Label fast_elements_case;
4199 __ cmp(ecx, Immediate(FAST_ELEMENTS));
4200 __ j(equal, &fast_elements_case);
4201 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4202
4203 __ bind(&fast_elements_case);
4204 GenerateCase(masm, FAST_ELEMENTS);
4205}
4206
4207
4208void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4209 // ----------- S t a t e -------------
4210 // -- eax : callee
4211 // -- ebx : call_data
4212 // -- ecx : holder
4213 // -- edx : api_function_address
4214 // -- esi : context
4215 // --
4216 // -- esp[0] : return address
4217 // -- esp[4] : last argument
4218 // -- ...
4219 // -- esp[argc * 4] : first argument
4220 // -- esp[(argc + 1) * 4] : receiver
4221 // -----------------------------------
4222
4223 Register callee = eax;
4224 Register call_data = ebx;
4225 Register holder = ecx;
4226 Register api_function_address = edx;
4227 Register return_address = edi;
4228 Register context = esi;
4229
4230 int argc = this->argc();
4231 bool is_store = this->is_store();
4232 bool call_data_undefined = this->call_data_undefined();
4233
4234 typedef FunctionCallbackArguments FCA;
4235
4236 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4237 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4238 STATIC_ASSERT(FCA::kDataIndex == 4);
4239 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4240 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4241 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4242 STATIC_ASSERT(FCA::kHolderIndex == 0);
4243 STATIC_ASSERT(FCA::kArgsLength == 7);
4244
4245 __ pop(return_address);
4246
4247 // context save
4248 __ push(context);
4249 // load context from callee
4250 __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
4251
4252 // callee
4253 __ push(callee);
4254
4255 // call data
4256 __ push(call_data);
4257
4258 Register scratch = call_data;
4259 if (!call_data_undefined) {
4260 // return value
4261 __ push(Immediate(isolate()->factory()->undefined_value()));
4262 // return value default
4263 __ push(Immediate(isolate()->factory()->undefined_value()));
4264 } else {
4265 // return value
4266 __ push(scratch);
4267 // return value default
4268 __ push(scratch);
4269 }
4270 // isolate
4271 __ push(Immediate(reinterpret_cast<int>(isolate())));
4272 // holder
4273 __ push(holder);
4274
4275 __ mov(scratch, esp);
4276
4277 // return address
4278 __ push(return_address);
4279
4280 // API function gets reference to the v8::Arguments. If CPU profiler
4281 // is enabled wrapper function will be called and we need to pass
4282 // address of the callback as additional parameter, always allocate
4283 // space for it.
4284 const int kApiArgc = 1 + 1;
4285
4286 // Allocate the v8::Arguments structure in the arguments' space since
4287 // it's not controlled by GC.
4288 const int kApiStackSpace = 4;
4289
4290 __ PrepareCallApiFunction(kApiArgc + kApiStackSpace);
4291
4292 // FunctionCallbackInfo::implicit_args_.
4293 __ mov(ApiParameterOperand(2), scratch);
4294 __ add(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
4295 // FunctionCallbackInfo::values_.
4296 __ mov(ApiParameterOperand(3), scratch);
4297 // FunctionCallbackInfo::length_.
4298 __ Move(ApiParameterOperand(4), Immediate(argc));
4299 // FunctionCallbackInfo::is_construct_call_.
4300 __ Move(ApiParameterOperand(5), Immediate(0));
4301
4302 // v8::InvocationCallback's argument.
4303 __ lea(scratch, ApiParameterOperand(2));
4304 __ mov(ApiParameterOperand(0), scratch);
4305
4306 ExternalReference thunk_ref =
4307 ExternalReference::invoke_function_callback(isolate());
4308
4309 Operand context_restore_operand(ebp,
4310 (2 + FCA::kContextSaveIndex) * kPointerSize);
4311 // Stores return the first js argument
4312 int return_value_offset = 0;
4313 if (is_store) {
4314 return_value_offset = 2 + FCA::kArgsLength;
4315 } else {
4316 return_value_offset = 2 + FCA::kReturnValueOffset;
4317 }
4318 Operand return_value_operand(ebp, return_value_offset * kPointerSize);
4319 __ CallApiFunctionAndReturn(api_function_address,
4320 thunk_ref,
4321 ApiParameterOperand(1),
4322 argc + FCA::kArgsLength + 1,
4323 return_value_operand,
4324 &context_restore_operand);
4325}
4326
4327
4328void CallApiGetterStub::Generate(MacroAssembler* masm) {
4329 // ----------- S t a t e -------------
4330 // -- esp[0] : return address
4331 // -- esp[4] : name
4332 // -- esp[8 - kArgsLength*4] : PropertyCallbackArguments object
4333 // -- ...
4334 // -- edx : api_function_address
4335 // -----------------------------------
4336 DCHECK(edx.is(ApiGetterDescriptor::function_address()));
4337
4338 // array for v8::Arguments::values_, handler for name and pointer
4339 // to the values (it considered as smi in GC).
4340 const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
4341 // Allocate space for opional callback address parameter in case
4342 // CPU profiler is active.
4343 const int kApiArgc = 2 + 1;
4344
4345 Register api_function_address = edx;
4346 Register scratch = ebx;
4347
4348 // load address of name
4349 __ lea(scratch, Operand(esp, 1 * kPointerSize));
4350
4351 __ PrepareCallApiFunction(kApiArgc);
4352 __ mov(ApiParameterOperand(0), scratch); // name.
4353 __ add(scratch, Immediate(kPointerSize));
4354 __ mov(ApiParameterOperand(1), scratch); // arguments pointer.
4355
4356 ExternalReference thunk_ref =
4357 ExternalReference::invoke_accessor_getter_callback(isolate());
4358
4359 __ CallApiFunctionAndReturn(api_function_address,
4360 thunk_ref,
4361 ApiParameterOperand(2),
4362 kStackSpace,
4363 Operand(ebp, 7 * kPointerSize),
4364 NULL);
4365}
4366
4367
4368#undef __
4369
4370} } // namespace v8::internal
4371
4372#endif // V8_TARGET_ARCH_X87