blob: a1fa3317d4534afae90c20f52352133e2479f959 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_X87
8
9#include "src/base/bits.h"
10#include "src/base/division-by-constant.h"
11#include "src/bootstrapper.h"
12#include "src/codegen.h"
13#include "src/cpu-profiler.h"
14#include "src/debug.h"
15#include "src/isolate-inl.h"
16#include "src/runtime.h"
17#include "src/serialize.h"
18
19namespace v8 {
20namespace internal {
21
22// -------------------------------------------------------------------------
23// MacroAssembler implementation.
24
25MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
26 : Assembler(arg_isolate, buffer, size),
27 generating_stub_(false),
28 has_frame_(false) {
29 if (isolate() != NULL) {
30 // TODO(titzer): should we just use a null handle here instead?
31 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
32 isolate());
33 }
34}
35
36
37void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
38 DCHECK(!r.IsDouble());
39 if (r.IsInteger8()) {
40 movsx_b(dst, src);
41 } else if (r.IsUInteger8()) {
42 movzx_b(dst, src);
43 } else if (r.IsInteger16()) {
44 movsx_w(dst, src);
45 } else if (r.IsUInteger16()) {
46 movzx_w(dst, src);
47 } else {
48 mov(dst, src);
49 }
50}
51
52
53void MacroAssembler::Store(Register src, const Operand& dst, Representation r) {
54 DCHECK(!r.IsDouble());
55 if (r.IsInteger8() || r.IsUInteger8()) {
56 mov_b(dst, src);
57 } else if (r.IsInteger16() || r.IsUInteger16()) {
58 mov_w(dst, src);
59 } else {
60 if (r.IsHeapObject()) {
61 AssertNotSmi(src);
62 } else if (r.IsSmi()) {
63 AssertSmi(src);
64 }
65 mov(dst, src);
66 }
67}
68
69
70void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
71 if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) {
72 Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
73 mov(destination, value);
74 return;
75 }
76 ExternalReference roots_array_start =
77 ExternalReference::roots_array_start(isolate());
78 mov(destination, Immediate(index));
79 mov(destination, Operand::StaticArray(destination,
80 times_pointer_size,
81 roots_array_start));
82}
83
84
85void MacroAssembler::StoreRoot(Register source,
86 Register scratch,
87 Heap::RootListIndex index) {
88 DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
89 ExternalReference roots_array_start =
90 ExternalReference::roots_array_start(isolate());
91 mov(scratch, Immediate(index));
92 mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
93 source);
94}
95
96
97void MacroAssembler::CompareRoot(Register with,
98 Register scratch,
99 Heap::RootListIndex index) {
100 ExternalReference roots_array_start =
101 ExternalReference::roots_array_start(isolate());
102 mov(scratch, Immediate(index));
103 cmp(with, Operand::StaticArray(scratch,
104 times_pointer_size,
105 roots_array_start));
106}
107
108
109void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
110 DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
111 Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
112 cmp(with, value);
113}
114
115
116void MacroAssembler::CompareRoot(const Operand& with,
117 Heap::RootListIndex index) {
118 DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
119 Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
120 cmp(with, value);
121}
122
123
124void MacroAssembler::InNewSpace(
125 Register object,
126 Register scratch,
127 Condition cc,
128 Label* condition_met,
129 Label::Distance condition_met_distance) {
130 DCHECK(cc == equal || cc == not_equal);
131 if (scratch.is(object)) {
132 and_(scratch, Immediate(~Page::kPageAlignmentMask));
133 } else {
134 mov(scratch, Immediate(~Page::kPageAlignmentMask));
135 and_(scratch, object);
136 }
137 // Check that we can use a test_b.
138 DCHECK(MemoryChunk::IN_FROM_SPACE < 8);
139 DCHECK(MemoryChunk::IN_TO_SPACE < 8);
140 int mask = (1 << MemoryChunk::IN_FROM_SPACE)
141 | (1 << MemoryChunk::IN_TO_SPACE);
142 // If non-zero, the page belongs to new-space.
143 test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
144 static_cast<uint8_t>(mask));
145 j(cc, condition_met, condition_met_distance);
146}
147
148
149void MacroAssembler::RememberedSetHelper(
150 Register object, // Only used for debug checks.
151 Register addr, Register scratch, SaveFPRegsMode save_fp,
152 MacroAssembler::RememberedSetFinalAction and_then) {
153 Label done;
154 if (emit_debug_code()) {
155 Label ok;
156 JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
157 int3();
158 bind(&ok);
159 }
160 // Load store buffer top.
161 ExternalReference store_buffer =
162 ExternalReference::store_buffer_top(isolate());
163 mov(scratch, Operand::StaticVariable(store_buffer));
164 // Store pointer to buffer.
165 mov(Operand(scratch, 0), addr);
166 // Increment buffer top.
167 add(scratch, Immediate(kPointerSize));
168 // Write back new top of buffer.
169 mov(Operand::StaticVariable(store_buffer), scratch);
170 // Call stub on end of buffer.
171 // Check for end of buffer.
172 test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
173 if (and_then == kReturnAtEnd) {
174 Label buffer_overflowed;
175 j(not_equal, &buffer_overflowed, Label::kNear);
176 ret(0);
177 bind(&buffer_overflowed);
178 } else {
179 DCHECK(and_then == kFallThroughAtEnd);
180 j(equal, &done, Label::kNear);
181 }
182 StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp);
183 CallStub(&store_buffer_overflow);
184 if (and_then == kReturnAtEnd) {
185 ret(0);
186 } else {
187 DCHECK(and_then == kFallThroughAtEnd);
188 bind(&done);
189 }
190}
191
192
193void MacroAssembler::ClampTOSToUint8(Register result_reg) {
194 Label done, conv_failure;
195 sub(esp, Immediate(kPointerSize));
196 fnclex();
197 fist_s(Operand(esp, 0));
198 pop(result_reg);
199 X87CheckIA();
200 j(equal, &conv_failure, Label::kNear);
201 test(result_reg, Immediate(0xFFFFFF00));
202 j(zero, &done, Label::kNear);
203 setcc(sign, result_reg);
204 sub(result_reg, Immediate(1));
205 and_(result_reg, Immediate(255));
206 jmp(&done, Label::kNear);
207 bind(&conv_failure);
208 fnclex();
209 fldz();
210 fld(1);
211 FCmp();
212 setcc(below, result_reg); // 1 if negative, 0 if positive.
213 dec_b(result_reg); // 0 if negative, 255 if positive.
214 bind(&done);
215}
216
217
218void MacroAssembler::ClampUint8(Register reg) {
219 Label done;
220 test(reg, Immediate(0xFFFFFF00));
221 j(zero, &done, Label::kNear);
222 setcc(negative, reg); // 1 if negative, 0 if positive.
223 dec_b(reg); // 0 if negative, 255 if positive.
224 bind(&done);
225}
226
227
228void MacroAssembler::SlowTruncateToI(Register result_reg,
229 Register input_reg,
230 int offset) {
231 DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
232 call(stub.GetCode(), RelocInfo::CODE_TARGET);
233}
234
235
236void MacroAssembler::TruncateX87TOSToI(Register result_reg) {
237 sub(esp, Immediate(kDoubleSize));
238 fst_d(MemOperand(esp, 0));
239 SlowTruncateToI(result_reg, esp, 0);
240 add(esp, Immediate(kDoubleSize));
241}
242
243
244void MacroAssembler::X87TOSToI(Register result_reg,
245 MinusZeroMode minus_zero_mode,
246 Label* lost_precision, Label* is_nan,
247 Label* minus_zero, Label::Distance dst) {
248 Label done;
249 sub(esp, Immediate(kPointerSize));
250 fld(0);
251 fist_s(MemOperand(esp, 0));
252 fild_s(MemOperand(esp, 0));
253 pop(result_reg);
254 FCmp();
255 j(not_equal, lost_precision, dst);
256 j(parity_even, is_nan, dst);
257 if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
258 test(result_reg, Operand(result_reg));
259 j(not_zero, &done, Label::kNear);
260 // To check for minus zero, we load the value again as float, and check
261 // if that is still 0.
262 sub(esp, Immediate(kPointerSize));
263 fst_s(MemOperand(esp, 0));
264 pop(result_reg);
265 test(result_reg, Operand(result_reg));
266 j(not_zero, minus_zero, dst);
267 }
268 bind(&done);
269}
270
271
272void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
273 Register input_reg) {
274 Label done, slow_case;
275
276 SlowTruncateToI(result_reg, input_reg);
277 bind(&done);
278}
279
280
281void MacroAssembler::LoadUint32NoSSE2(Register src) {
282 Label done;
283 push(src);
284 fild_s(Operand(esp, 0));
285 cmp(src, Immediate(0));
286 j(not_sign, &done, Label::kNear);
287 ExternalReference uint32_bias =
288 ExternalReference::address_of_uint32_bias();
289 fld_d(Operand::StaticVariable(uint32_bias));
290 faddp(1);
291 bind(&done);
292 add(esp, Immediate(kPointerSize));
293}
294
295
296void MacroAssembler::RecordWriteArray(
297 Register object, Register value, Register index, SaveFPRegsMode save_fp,
298 RememberedSetAction remembered_set_action, SmiCheck smi_check,
299 PointersToHereCheck pointers_to_here_check_for_value) {
300 // First, check if a write barrier is even needed. The tests below
301 // catch stores of Smis.
302 Label done;
303
304 // Skip barrier if writing a smi.
305 if (smi_check == INLINE_SMI_CHECK) {
306 DCHECK_EQ(0, kSmiTag);
307 test(value, Immediate(kSmiTagMask));
308 j(zero, &done);
309 }
310
311 // Array access: calculate the destination address in the same manner as
312 // KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset
313 // into an array of words.
314 Register dst = index;
315 lea(dst, Operand(object, index, times_half_pointer_size,
316 FixedArray::kHeaderSize - kHeapObjectTag));
317
318 RecordWrite(object, dst, value, save_fp, remembered_set_action,
319 OMIT_SMI_CHECK, pointers_to_here_check_for_value);
320
321 bind(&done);
322
323 // Clobber clobbered input registers when running with the debug-code flag
324 // turned on to provoke errors.
325 if (emit_debug_code()) {
326 mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
327 mov(index, Immediate(bit_cast<int32_t>(kZapValue)));
328 }
329}
330
331
332void MacroAssembler::RecordWriteField(
333 Register object, int offset, Register value, Register dst,
334 SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action,
335 SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) {
336 // First, check if a write barrier is even needed. The tests below
337 // catch stores of Smis.
338 Label done;
339
340 // Skip barrier if writing a smi.
341 if (smi_check == INLINE_SMI_CHECK) {
342 JumpIfSmi(value, &done, Label::kNear);
343 }
344
345 // Although the object register is tagged, the offset is relative to the start
346 // of the object, so so offset must be a multiple of kPointerSize.
347 DCHECK(IsAligned(offset, kPointerSize));
348
349 lea(dst, FieldOperand(object, offset));
350 if (emit_debug_code()) {
351 Label ok;
352 test_b(dst, (1 << kPointerSizeLog2) - 1);
353 j(zero, &ok, Label::kNear);
354 int3();
355 bind(&ok);
356 }
357
358 RecordWrite(object, dst, value, save_fp, remembered_set_action,
359 OMIT_SMI_CHECK, pointers_to_here_check_for_value);
360
361 bind(&done);
362
363 // Clobber clobbered input registers when running with the debug-code flag
364 // turned on to provoke errors.
365 if (emit_debug_code()) {
366 mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
367 mov(dst, Immediate(bit_cast<int32_t>(kZapValue)));
368 }
369}
370
371
372void MacroAssembler::RecordWriteForMap(Register object, Handle<Map> map,
373 Register scratch1, Register scratch2,
374 SaveFPRegsMode save_fp) {
375 Label done;
376
377 Register address = scratch1;
378 Register value = scratch2;
379 if (emit_debug_code()) {
380 Label ok;
381 lea(address, FieldOperand(object, HeapObject::kMapOffset));
382 test_b(address, (1 << kPointerSizeLog2) - 1);
383 j(zero, &ok, Label::kNear);
384 int3();
385 bind(&ok);
386 }
387
388 DCHECK(!object.is(value));
389 DCHECK(!object.is(address));
390 DCHECK(!value.is(address));
391 AssertNotSmi(object);
392
393 if (!FLAG_incremental_marking) {
394 return;
395 }
396
397 // Compute the address.
398 lea(address, FieldOperand(object, HeapObject::kMapOffset));
399
400 // A single check of the map's pages interesting flag suffices, since it is
401 // only set during incremental collection, and then it's also guaranteed that
402 // the from object's page's interesting flag is also set. This optimization
403 // relies on the fact that maps can never be in new space.
404 DCHECK(!isolate()->heap()->InNewSpace(*map));
405 CheckPageFlagForMap(map,
406 MemoryChunk::kPointersToHereAreInterestingMask,
407 zero,
408 &done,
409 Label::kNear);
410
411 RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET,
412 save_fp);
413 CallStub(&stub);
414
415 bind(&done);
416
417 // Count number of write barriers in generated code.
418 isolate()->counters()->write_barriers_static()->Increment();
419 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
420
421 // Clobber clobbered input registers when running with the debug-code flag
422 // turned on to provoke errors.
423 if (emit_debug_code()) {
424 mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
425 mov(scratch1, Immediate(bit_cast<int32_t>(kZapValue)));
426 mov(scratch2, Immediate(bit_cast<int32_t>(kZapValue)));
427 }
428}
429
430
431void MacroAssembler::RecordWrite(
432 Register object, Register address, Register value, SaveFPRegsMode fp_mode,
433 RememberedSetAction remembered_set_action, SmiCheck smi_check,
434 PointersToHereCheck pointers_to_here_check_for_value) {
435 DCHECK(!object.is(value));
436 DCHECK(!object.is(address));
437 DCHECK(!value.is(address));
438 AssertNotSmi(object);
439
440 if (remembered_set_action == OMIT_REMEMBERED_SET &&
441 !FLAG_incremental_marking) {
442 return;
443 }
444
445 if (emit_debug_code()) {
446 Label ok;
447 cmp(value, Operand(address, 0));
448 j(equal, &ok, Label::kNear);
449 int3();
450 bind(&ok);
451 }
452
453 // First, check if a write barrier is even needed. The tests below
454 // catch stores of Smis and stores into young gen.
455 Label done;
456
457 if (smi_check == INLINE_SMI_CHECK) {
458 // Skip barrier if writing a smi.
459 JumpIfSmi(value, &done, Label::kNear);
460 }
461
462 if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
463 CheckPageFlag(value,
464 value, // Used as scratch.
465 MemoryChunk::kPointersToHereAreInterestingMask,
466 zero,
467 &done,
468 Label::kNear);
469 }
470 CheckPageFlag(object,
471 value, // Used as scratch.
472 MemoryChunk::kPointersFromHereAreInterestingMask,
473 zero,
474 &done,
475 Label::kNear);
476
477 RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
478 fp_mode);
479 CallStub(&stub);
480
481 bind(&done);
482
483 // Count number of write barriers in generated code.
484 isolate()->counters()->write_barriers_static()->Increment();
485 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
486
487 // Clobber clobbered registers when running with the debug-code flag
488 // turned on to provoke errors.
489 if (emit_debug_code()) {
490 mov(address, Immediate(bit_cast<int32_t>(kZapValue)));
491 mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
492 }
493}
494
495
496void MacroAssembler::DebugBreak() {
497 Move(eax, Immediate(0));
498 mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate())));
499 CEntryStub ces(isolate(), 1);
500 call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
501}
502
503
504bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
505 static const int kMaxImmediateBits = 17;
506 if (!RelocInfo::IsNone(x.rmode_)) return false;
507 return !is_intn(x.x_, kMaxImmediateBits);
508}
509
510
511void MacroAssembler::SafeMove(Register dst, const Immediate& x) {
512 if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
513 Move(dst, Immediate(x.x_ ^ jit_cookie()));
514 xor_(dst, jit_cookie());
515 } else {
516 Move(dst, x);
517 }
518}
519
520
521void MacroAssembler::SafePush(const Immediate& x) {
522 if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
523 push(Immediate(x.x_ ^ jit_cookie()));
524 xor_(Operand(esp, 0), Immediate(jit_cookie()));
525 } else {
526 push(x);
527 }
528}
529
530
531void MacroAssembler::CmpObjectType(Register heap_object,
532 InstanceType type,
533 Register map) {
534 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
535 CmpInstanceType(map, type);
536}
537
538
539void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
540 cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
541 static_cast<int8_t>(type));
542}
543
544
545void MacroAssembler::CheckFastElements(Register map,
546 Label* fail,
547 Label::Distance distance) {
548 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
549 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
550 STATIC_ASSERT(FAST_ELEMENTS == 2);
551 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
552 cmpb(FieldOperand(map, Map::kBitField2Offset),
553 Map::kMaximumBitField2FastHoleyElementValue);
554 j(above, fail, distance);
555}
556
557
558void MacroAssembler::CheckFastObjectElements(Register map,
559 Label* fail,
560 Label::Distance distance) {
561 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
562 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
563 STATIC_ASSERT(FAST_ELEMENTS == 2);
564 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
565 cmpb(FieldOperand(map, Map::kBitField2Offset),
566 Map::kMaximumBitField2FastHoleySmiElementValue);
567 j(below_equal, fail, distance);
568 cmpb(FieldOperand(map, Map::kBitField2Offset),
569 Map::kMaximumBitField2FastHoleyElementValue);
570 j(above, fail, distance);
571}
572
573
574void MacroAssembler::CheckFastSmiElements(Register map,
575 Label* fail,
576 Label::Distance distance) {
577 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
578 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
579 cmpb(FieldOperand(map, Map::kBitField2Offset),
580 Map::kMaximumBitField2FastHoleySmiElementValue);
581 j(above, fail, distance);
582}
583
584
585void MacroAssembler::StoreNumberToDoubleElements(
586 Register maybe_number,
587 Register elements,
588 Register key,
589 Register scratch,
590 Label* fail,
591 int elements_offset) {
592 Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value;
593 JumpIfSmi(maybe_number, &smi_value, Label::kNear);
594
595 CheckMap(maybe_number,
596 isolate()->factory()->heap_number_map(),
597 fail,
598 DONT_DO_SMI_CHECK);
599
600 // Double value, canonicalize NaN.
601 uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
602 cmp(FieldOperand(maybe_number, offset),
603 Immediate(kNaNOrInfinityLowerBoundUpper32));
604 j(greater_equal, &maybe_nan, Label::kNear);
605
606 bind(&not_nan);
607 ExternalReference canonical_nan_reference =
608 ExternalReference::address_of_canonical_non_hole_nan();
609 fld_d(FieldOperand(maybe_number, HeapNumber::kValueOffset));
610 bind(&have_double_value);
611 fstp_d(FieldOperand(elements, key, times_4,
612 FixedDoubleArray::kHeaderSize - elements_offset));
613 jmp(&done);
614
615 bind(&maybe_nan);
616 // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
617 // it's an Infinity, and the non-NaN code path applies.
618 j(greater, &is_nan, Label::kNear);
619 cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
620 j(zero, &not_nan);
621 bind(&is_nan);
622 fld_d(Operand::StaticVariable(canonical_nan_reference));
623 jmp(&have_double_value, Label::kNear);
624
625 bind(&smi_value);
626 // Value is a smi. Convert to a double and store.
627 // Preserve original value.
628 mov(scratch, maybe_number);
629 SmiUntag(scratch);
630 push(scratch);
631 fild_s(Operand(esp, 0));
632 pop(scratch);
633 fstp_d(FieldOperand(elements, key, times_4,
634 FixedDoubleArray::kHeaderSize - elements_offset));
635 bind(&done);
636}
637
638
639void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
640 cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
641}
642
643
644void MacroAssembler::CheckMap(Register obj,
645 Handle<Map> map,
646 Label* fail,
647 SmiCheckType smi_check_type) {
648 if (smi_check_type == DO_SMI_CHECK) {
649 JumpIfSmi(obj, fail);
650 }
651
652 CompareMap(obj, map);
653 j(not_equal, fail);
654}
655
656
657void MacroAssembler::DispatchMap(Register obj,
658 Register unused,
659 Handle<Map> map,
660 Handle<Code> success,
661 SmiCheckType smi_check_type) {
662 Label fail;
663 if (smi_check_type == DO_SMI_CHECK) {
664 JumpIfSmi(obj, &fail);
665 }
666 cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
667 j(equal, success);
668
669 bind(&fail);
670}
671
672
673Condition MacroAssembler::IsObjectStringType(Register heap_object,
674 Register map,
675 Register instance_type) {
676 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
677 movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
678 STATIC_ASSERT(kNotStringTag != 0);
679 test(instance_type, Immediate(kIsNotStringMask));
680 return zero;
681}
682
683
684Condition MacroAssembler::IsObjectNameType(Register heap_object,
685 Register map,
686 Register instance_type) {
687 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
688 movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
689 cmpb(instance_type, static_cast<uint8_t>(LAST_NAME_TYPE));
690 return below_equal;
691}
692
693
694void MacroAssembler::IsObjectJSObjectType(Register heap_object,
695 Register map,
696 Register scratch,
697 Label* fail) {
698 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
699 IsInstanceJSObjectType(map, scratch, fail);
700}
701
702
703void MacroAssembler::IsInstanceJSObjectType(Register map,
704 Register scratch,
705 Label* fail) {
706 movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset));
707 sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
708 cmp(scratch,
709 LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
710 j(above, fail);
711}
712
713
714void MacroAssembler::FCmp() {
715 fucompp();
716 push(eax);
717 fnstsw_ax();
718 sahf();
719 pop(eax);
720}
721
722
723void MacroAssembler::FXamMinusZero() {
724 fxam();
725 push(eax);
726 fnstsw_ax();
727 and_(eax, Immediate(0x4700));
728 // For minus zero, C3 == 1 && C1 == 1.
729 cmp(eax, Immediate(0x4200));
730 pop(eax);
731 fstp(0);
732}
733
734
735void MacroAssembler::FXamSign() {
736 fxam();
737 push(eax);
738 fnstsw_ax();
739 // For negative value (including -0.0), C1 == 1.
740 and_(eax, Immediate(0x0200));
741 pop(eax);
742 fstp(0);
743}
744
745
746void MacroAssembler::X87CheckIA() {
747 push(eax);
748 fnstsw_ax();
749 // For #IA, IE == 1 && SF == 0.
750 and_(eax, Immediate(0x0041));
751 cmp(eax, Immediate(0x0001));
752 pop(eax);
753}
754
755
756// rc=00B, round to nearest.
757// rc=01B, round down.
758// rc=10B, round up.
759// rc=11B, round toward zero.
760void MacroAssembler::X87SetRC(int rc) {
761 sub(esp, Immediate(kPointerSize));
762 fnstcw(MemOperand(esp, 0));
763 and_(MemOperand(esp, 0), Immediate(0xF3FF));
764 or_(MemOperand(esp, 0), Immediate(rc));
765 fldcw(MemOperand(esp, 0));
766 add(esp, Immediate(kPointerSize));
767}
768
769
770void MacroAssembler::X87SetFPUCW(int cw) {
771 push(Immediate(cw));
772 fldcw(MemOperand(esp, 0));
773 add(esp, Immediate(kPointerSize));
774}
775
776
777void MacroAssembler::AssertNumber(Register object) {
778 if (emit_debug_code()) {
779 Label ok;
780 JumpIfSmi(object, &ok);
781 cmp(FieldOperand(object, HeapObject::kMapOffset),
782 isolate()->factory()->heap_number_map());
783 Check(equal, kOperandNotANumber);
784 bind(&ok);
785 }
786}
787
788
789void MacroAssembler::AssertSmi(Register object) {
790 if (emit_debug_code()) {
791 test(object, Immediate(kSmiTagMask));
792 Check(equal, kOperandIsNotASmi);
793 }
794}
795
796
797void MacroAssembler::AssertString(Register object) {
798 if (emit_debug_code()) {
799 test(object, Immediate(kSmiTagMask));
800 Check(not_equal, kOperandIsASmiAndNotAString);
801 push(object);
802 mov(object, FieldOperand(object, HeapObject::kMapOffset));
803 CmpInstanceType(object, FIRST_NONSTRING_TYPE);
804 pop(object);
805 Check(below, kOperandIsNotAString);
806 }
807}
808
809
810void MacroAssembler::AssertName(Register object) {
811 if (emit_debug_code()) {
812 test(object, Immediate(kSmiTagMask));
813 Check(not_equal, kOperandIsASmiAndNotAName);
814 push(object);
815 mov(object, FieldOperand(object, HeapObject::kMapOffset));
816 CmpInstanceType(object, LAST_NAME_TYPE);
817 pop(object);
818 Check(below_equal, kOperandIsNotAName);
819 }
820}
821
822
823void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
824 if (emit_debug_code()) {
825 Label done_checking;
826 AssertNotSmi(object);
827 cmp(object, isolate()->factory()->undefined_value());
828 j(equal, &done_checking);
829 cmp(FieldOperand(object, 0),
830 Immediate(isolate()->factory()->allocation_site_map()));
831 Assert(equal, kExpectedUndefinedOrCell);
832 bind(&done_checking);
833 }
834}
835
836
837void MacroAssembler::AssertNotSmi(Register object) {
838 if (emit_debug_code()) {
839 test(object, Immediate(kSmiTagMask));
840 Check(not_equal, kOperandIsASmi);
841 }
842}
843
844
845void MacroAssembler::StubPrologue() {
846 push(ebp); // Caller's frame pointer.
847 mov(ebp, esp);
848 push(esi); // Callee's context.
849 push(Immediate(Smi::FromInt(StackFrame::STUB)));
850}
851
852
853void MacroAssembler::Prologue(bool code_pre_aging) {
854 PredictableCodeSizeScope predictible_code_size_scope(this,
855 kNoCodeAgeSequenceLength);
856 if (code_pre_aging) {
857 // Pre-age the code.
858 call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
859 RelocInfo::CODE_AGE_SEQUENCE);
860 Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength);
861 } else {
862 push(ebp); // Caller's frame pointer.
863 mov(ebp, esp);
864 push(esi); // Callee's context.
865 push(edi); // Callee's JS function.
866 }
867}
868
869
870void MacroAssembler::EnterFrame(StackFrame::Type type) {
871 push(ebp);
872 mov(ebp, esp);
873 push(esi);
874 push(Immediate(Smi::FromInt(type)));
875 push(Immediate(CodeObject()));
876 if (emit_debug_code()) {
877 cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
878 Check(not_equal, kCodeObjectNotProperlyPatched);
879 }
880}
881
882
883void MacroAssembler::LeaveFrame(StackFrame::Type type) {
884 if (emit_debug_code()) {
885 cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
886 Immediate(Smi::FromInt(type)));
887 Check(equal, kStackFrameTypesMustMatch);
888 }
889 leave();
890}
891
892
893void MacroAssembler::EnterExitFramePrologue() {
894 // Set up the frame structure on the stack.
895 DCHECK(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
896 DCHECK(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
897 DCHECK(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
898 push(ebp);
899 mov(ebp, esp);
900
901 // Reserve room for entry stack pointer and push the code object.
902 DCHECK(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
903 push(Immediate(0)); // Saved entry sp, patched before call.
904 push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot.
905
906 // Save the frame pointer and the context in top.
907 ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
908 ExternalReference context_address(Isolate::kContextAddress, isolate());
909 mov(Operand::StaticVariable(c_entry_fp_address), ebp);
910 mov(Operand::StaticVariable(context_address), esi);
911}
912
913
914void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
915 // Optionally save FPU state.
916 if (save_doubles) {
917 // Store FPU state to m108byte.
918 int space = 108 + argc * kPointerSize;
919 sub(esp, Immediate(space));
920 const int offset = -2 * kPointerSize; // entry fp + code object.
921 fnsave(MemOperand(ebp, offset - 108));
922 } else {
923 sub(esp, Immediate(argc * kPointerSize));
924 }
925
926 // Get the required frame alignment for the OS.
927 const int kFrameAlignment = base::OS::ActivationFrameAlignment();
928 if (kFrameAlignment > 0) {
929 DCHECK(base::bits::IsPowerOfTwo32(kFrameAlignment));
930 and_(esp, -kFrameAlignment);
931 }
932
933 // Patch the saved entry sp.
934 mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
935}
936
937
938void MacroAssembler::EnterExitFrame(bool save_doubles) {
939 EnterExitFramePrologue();
940
941 // Set up argc and argv in callee-saved registers.
942 int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
943 mov(edi, eax);
944 lea(esi, Operand(ebp, eax, times_4, offset));
945
946 // Reserve space for argc, argv and isolate.
947 EnterExitFrameEpilogue(3, save_doubles);
948}
949
950
951void MacroAssembler::EnterApiExitFrame(int argc) {
952 EnterExitFramePrologue();
953 EnterExitFrameEpilogue(argc, false);
954}
955
956
957void MacroAssembler::LeaveExitFrame(bool save_doubles) {
958 // Optionally restore FPU state.
959 if (save_doubles) {
960 const int offset = -2 * kPointerSize;
961 frstor(MemOperand(ebp, offset - 108));
962 }
963
964 // Get the return address from the stack and restore the frame pointer.
965 mov(ecx, Operand(ebp, 1 * kPointerSize));
966 mov(ebp, Operand(ebp, 0 * kPointerSize));
967
968 // Pop the arguments and the receiver from the caller stack.
969 lea(esp, Operand(esi, 1 * kPointerSize));
970
971 // Push the return address to get ready to return.
972 push(ecx);
973
974 LeaveExitFrameEpilogue(true);
975}
976
977
978void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
979 // Restore current context from top and clear it in debug mode.
980 ExternalReference context_address(Isolate::kContextAddress, isolate());
981 if (restore_context) {
982 mov(esi, Operand::StaticVariable(context_address));
983 }
984#ifdef DEBUG
985 mov(Operand::StaticVariable(context_address), Immediate(0));
986#endif
987
988 // Clear the top frame.
989 ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
990 isolate());
991 mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
992}
993
994
995void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
996 mov(esp, ebp);
997 pop(ebp);
998
999 LeaveExitFrameEpilogue(restore_context);
1000}
1001
1002
1003void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
1004 int handler_index) {
1005 // Adjust this code if not the case.
1006 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1007 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1008 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1009 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1010 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1011 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1012
1013 // We will build up the handler from the bottom by pushing on the stack.
1014 // First push the frame pointer and context.
1015 if (kind == StackHandler::JS_ENTRY) {
1016 // The frame pointer does not point to a JS frame so we save NULL for
1017 // ebp. We expect the code throwing an exception to check ebp before
1018 // dereferencing it to restore the context.
1019 push(Immediate(0)); // NULL frame pointer.
1020 push(Immediate(Smi::FromInt(0))); // No context.
1021 } else {
1022 push(ebp);
1023 push(esi);
1024 }
1025 // Push the state and the code object.
1026 unsigned state =
1027 StackHandler::IndexField::encode(handler_index) |
1028 StackHandler::KindField::encode(kind);
1029 push(Immediate(state));
1030 Push(CodeObject());
1031
1032 // Link the current handler as the next handler.
1033 ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1034 push(Operand::StaticVariable(handler_address));
1035 // Set this new handler as the current one.
1036 mov(Operand::StaticVariable(handler_address), esp);
1037}
1038
1039
1040void MacroAssembler::PopTryHandler() {
1041 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1042 ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1043 pop(Operand::StaticVariable(handler_address));
1044 add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
1045}
1046
1047
1048void MacroAssembler::JumpToHandlerEntry() {
1049 // Compute the handler entry address and jump to it. The handler table is
1050 // a fixed array of (smi-tagged) code offsets.
1051 // eax = exception, edi = code object, edx = state.
1052 mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset));
1053 shr(edx, StackHandler::kKindWidth);
1054 mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize));
1055 SmiUntag(edx);
1056 lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
1057 jmp(edi);
1058}
1059
1060
1061void MacroAssembler::Throw(Register value) {
1062 // Adjust this code if not the case.
1063 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1064 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1065 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1066 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1067 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1068 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1069
1070 // The exception is expected in eax.
1071 if (!value.is(eax)) {
1072 mov(eax, value);
1073 }
1074 // Drop the stack pointer to the top of the top handler.
1075 ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1076 mov(esp, Operand::StaticVariable(handler_address));
1077 // Restore the next handler.
1078 pop(Operand::StaticVariable(handler_address));
1079
1080 // Remove the code object and state, compute the handler address in edi.
1081 pop(edi); // Code object.
1082 pop(edx); // Index and state.
1083
1084 // Restore the context and frame pointer.
1085 pop(esi); // Context.
1086 pop(ebp); // Frame pointer.
1087
1088 // If the handler is a JS frame, restore the context to the frame.
1089 // (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either
1090 // ebp or esi.
1091 Label skip;
1092 test(esi, esi);
1093 j(zero, &skip, Label::kNear);
1094 mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
1095 bind(&skip);
1096
1097 JumpToHandlerEntry();
1098}
1099
1100
1101void MacroAssembler::ThrowUncatchable(Register value) {
1102 // Adjust this code if not the case.
1103 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1104 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1105 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1106 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1107 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1108 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1109
1110 // The exception is expected in eax.
1111 if (!value.is(eax)) {
1112 mov(eax, value);
1113 }
1114 // Drop the stack pointer to the top of the top stack handler.
1115 ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1116 mov(esp, Operand::StaticVariable(handler_address));
1117
1118 // Unwind the handlers until the top ENTRY handler is found.
1119 Label fetch_next, check_kind;
1120 jmp(&check_kind, Label::kNear);
1121 bind(&fetch_next);
1122 mov(esp, Operand(esp, StackHandlerConstants::kNextOffset));
1123
1124 bind(&check_kind);
1125 STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1126 test(Operand(esp, StackHandlerConstants::kStateOffset),
1127 Immediate(StackHandler::KindField::kMask));
1128 j(not_zero, &fetch_next);
1129
1130 // Set the top handler address to next handler past the top ENTRY handler.
1131 pop(Operand::StaticVariable(handler_address));
1132
1133 // Remove the code object and state, compute the handler address in edi.
1134 pop(edi); // Code object.
1135 pop(edx); // Index and state.
1136
1137 // Clear the context pointer and frame pointer (0 was saved in the handler).
1138 pop(esi);
1139 pop(ebp);
1140
1141 JumpToHandlerEntry();
1142}
1143
1144
1145void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
1146 Register scratch1,
1147 Register scratch2,
1148 Label* miss) {
1149 Label same_contexts;
1150
1151 DCHECK(!holder_reg.is(scratch1));
1152 DCHECK(!holder_reg.is(scratch2));
1153 DCHECK(!scratch1.is(scratch2));
1154
1155 // Load current lexical context from the stack frame.
1156 mov(scratch1, Operand(ebp, StandardFrameConstants::kContextOffset));
1157
1158 // When generating debug code, make sure the lexical context is set.
1159 if (emit_debug_code()) {
1160 cmp(scratch1, Immediate(0));
1161 Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
1162 }
1163 // Load the native context of the current context.
1164 int offset =
1165 Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
1166 mov(scratch1, FieldOperand(scratch1, offset));
1167 mov(scratch1, FieldOperand(scratch1, GlobalObject::kNativeContextOffset));
1168
1169 // Check the context is a native context.
1170 if (emit_debug_code()) {
1171 // Read the first word and compare to native_context_map.
1172 cmp(FieldOperand(scratch1, HeapObject::kMapOffset),
1173 isolate()->factory()->native_context_map());
1174 Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
1175 }
1176
1177 // Check if both contexts are the same.
1178 cmp(scratch1, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1179 j(equal, &same_contexts);
1180
1181 // Compare security tokens, save holder_reg on the stack so we can use it
1182 // as a temporary register.
1183 //
1184 // Check that the security token in the calling global object is
1185 // compatible with the security token in the receiving global
1186 // object.
1187 mov(scratch2,
1188 FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1189
1190 // Check the context is a native context.
1191 if (emit_debug_code()) {
1192 cmp(scratch2, isolate()->factory()->null_value());
1193 Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
1194
1195 // Read the first word and compare to native_context_map(),
1196 cmp(FieldOperand(scratch2, HeapObject::kMapOffset),
1197 isolate()->factory()->native_context_map());
1198 Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
1199 }
1200
1201 int token_offset = Context::kHeaderSize +
1202 Context::SECURITY_TOKEN_INDEX * kPointerSize;
1203 mov(scratch1, FieldOperand(scratch1, token_offset));
1204 cmp(scratch1, FieldOperand(scratch2, token_offset));
1205 j(not_equal, miss);
1206
1207 bind(&same_contexts);
1208}
1209
1210
1211// Compute the hash code from the untagged key. This must be kept in sync with
1212// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
1213// code-stub-hydrogen.cc
1214//
1215// Note: r0 will contain hash code
1216void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
1217 // Xor original key with a seed.
1218 if (serializer_enabled()) {
1219 ExternalReference roots_array_start =
1220 ExternalReference::roots_array_start(isolate());
1221 mov(scratch, Immediate(Heap::kHashSeedRootIndex));
1222 mov(scratch,
1223 Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
1224 SmiUntag(scratch);
1225 xor_(r0, scratch);
1226 } else {
1227 int32_t seed = isolate()->heap()->HashSeed();
1228 xor_(r0, Immediate(seed));
1229 }
1230
1231 // hash = ~hash + (hash << 15);
1232 mov(scratch, r0);
1233 not_(r0);
1234 shl(scratch, 15);
1235 add(r0, scratch);
1236 // hash = hash ^ (hash >> 12);
1237 mov(scratch, r0);
1238 shr(scratch, 12);
1239 xor_(r0, scratch);
1240 // hash = hash + (hash << 2);
1241 lea(r0, Operand(r0, r0, times_4, 0));
1242 // hash = hash ^ (hash >> 4);
1243 mov(scratch, r0);
1244 shr(scratch, 4);
1245 xor_(r0, scratch);
1246 // hash = hash * 2057;
1247 imul(r0, r0, 2057);
1248 // hash = hash ^ (hash >> 16);
1249 mov(scratch, r0);
1250 shr(scratch, 16);
1251 xor_(r0, scratch);
1252}
1253
1254
1255
1256void MacroAssembler::LoadFromNumberDictionary(Label* miss,
1257 Register elements,
1258 Register key,
1259 Register r0,
1260 Register r1,
1261 Register r2,
1262 Register result) {
1263 // Register use:
1264 //
1265 // elements - holds the slow-case elements of the receiver and is unchanged.
1266 //
1267 // key - holds the smi key on entry and is unchanged.
1268 //
1269 // Scratch registers:
1270 //
1271 // r0 - holds the untagged key on entry and holds the hash once computed.
1272 //
1273 // r1 - used to hold the capacity mask of the dictionary
1274 //
1275 // r2 - used for the index into the dictionary.
1276 //
1277 // result - holds the result on exit if the load succeeds and we fall through.
1278
1279 Label done;
1280
1281 GetNumberHash(r0, r1);
1282
1283 // Compute capacity mask.
1284 mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset));
1285 shr(r1, kSmiTagSize); // convert smi to int
1286 dec(r1);
1287
1288 // Generate an unrolled loop that performs a few probes before giving up.
1289 for (int i = 0; i < kNumberDictionaryProbes; i++) {
1290 // Use r2 for index calculations and keep the hash intact in r0.
1291 mov(r2, r0);
1292 // Compute the masked index: (hash + i + i * i) & mask.
1293 if (i > 0) {
1294 add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
1295 }
1296 and_(r2, r1);
1297
1298 // Scale the index by multiplying by the entry size.
1299 DCHECK(SeededNumberDictionary::kEntrySize == 3);
1300 lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3
1301
1302 // Check if the key matches.
1303 cmp(key, FieldOperand(elements,
1304 r2,
1305 times_pointer_size,
1306 SeededNumberDictionary::kElementsStartOffset));
1307 if (i != (kNumberDictionaryProbes - 1)) {
1308 j(equal, &done);
1309 } else {
1310 j(not_equal, miss);
1311 }
1312 }
1313
1314 bind(&done);
1315 // Check that the value is a normal propety.
1316 const int kDetailsOffset =
1317 SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
1318 DCHECK_EQ(NORMAL, 0);
1319 test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
1320 Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
1321 j(not_zero, miss);
1322
1323 // Get the value at the masked, scaled index.
1324 const int kValueOffset =
1325 SeededNumberDictionary::kElementsStartOffset + kPointerSize;
1326 mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
1327}
1328
1329
1330void MacroAssembler::LoadAllocationTopHelper(Register result,
1331 Register scratch,
1332 AllocationFlags flags) {
1333 ExternalReference allocation_top =
1334 AllocationUtils::GetAllocationTopReference(isolate(), flags);
1335
1336 // Just return if allocation top is already known.
1337 if ((flags & RESULT_CONTAINS_TOP) != 0) {
1338 // No use of scratch if allocation top is provided.
1339 DCHECK(scratch.is(no_reg));
1340#ifdef DEBUG
1341 // Assert that result actually contains top on entry.
1342 cmp(result, Operand::StaticVariable(allocation_top));
1343 Check(equal, kUnexpectedAllocationTop);
1344#endif
1345 return;
1346 }
1347
1348 // Move address of new object to result. Use scratch register if available.
1349 if (scratch.is(no_reg)) {
1350 mov(result, Operand::StaticVariable(allocation_top));
1351 } else {
1352 mov(scratch, Immediate(allocation_top));
1353 mov(result, Operand(scratch, 0));
1354 }
1355}
1356
1357
1358void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
1359 Register scratch,
1360 AllocationFlags flags) {
1361 if (emit_debug_code()) {
1362 test(result_end, Immediate(kObjectAlignmentMask));
1363 Check(zero, kUnalignedAllocationInNewSpace);
1364 }
1365
1366 ExternalReference allocation_top =
1367 AllocationUtils::GetAllocationTopReference(isolate(), flags);
1368
1369 // Update new top. Use scratch if available.
1370 if (scratch.is(no_reg)) {
1371 mov(Operand::StaticVariable(allocation_top), result_end);
1372 } else {
1373 mov(Operand(scratch, 0), result_end);
1374 }
1375}
1376
1377
1378void MacroAssembler::Allocate(int object_size,
1379 Register result,
1380 Register result_end,
1381 Register scratch,
1382 Label* gc_required,
1383 AllocationFlags flags) {
1384 DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
1385 DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
1386 if (!FLAG_inline_new) {
1387 if (emit_debug_code()) {
1388 // Trash the registers to simulate an allocation failure.
1389 mov(result, Immediate(0x7091));
1390 if (result_end.is_valid()) {
1391 mov(result_end, Immediate(0x7191));
1392 }
1393 if (scratch.is_valid()) {
1394 mov(scratch, Immediate(0x7291));
1395 }
1396 }
1397 jmp(gc_required);
1398 return;
1399 }
1400 DCHECK(!result.is(result_end));
1401
1402 // Load address of new object into result.
1403 LoadAllocationTopHelper(result, scratch, flags);
1404
1405 ExternalReference allocation_limit =
1406 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1407
1408 // Align the next allocation. Storing the filler map without checking top is
1409 // safe in new-space because the limit of the heap is aligned there.
1410 if ((flags & DOUBLE_ALIGNMENT) != 0) {
1411 DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1412 DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1413 Label aligned;
1414 test(result, Immediate(kDoubleAlignmentMask));
1415 j(zero, &aligned, Label::kNear);
1416 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1417 cmp(result, Operand::StaticVariable(allocation_limit));
1418 j(above_equal, gc_required);
1419 }
1420 mov(Operand(result, 0),
1421 Immediate(isolate()->factory()->one_pointer_filler_map()));
1422 add(result, Immediate(kDoubleSize / 2));
1423 bind(&aligned);
1424 }
1425
1426 // Calculate new top and bail out if space is exhausted.
1427 Register top_reg = result_end.is_valid() ? result_end : result;
1428 if (!top_reg.is(result)) {
1429 mov(top_reg, result);
1430 }
1431 add(top_reg, Immediate(object_size));
1432 j(carry, gc_required);
1433 cmp(top_reg, Operand::StaticVariable(allocation_limit));
1434 j(above, gc_required);
1435
1436 // Update allocation top.
1437 UpdateAllocationTopHelper(top_reg, scratch, flags);
1438
1439 // Tag result if requested.
1440 bool tag_result = (flags & TAG_OBJECT) != 0;
1441 if (top_reg.is(result)) {
1442 if (tag_result) {
1443 sub(result, Immediate(object_size - kHeapObjectTag));
1444 } else {
1445 sub(result, Immediate(object_size));
1446 }
1447 } else if (tag_result) {
1448 DCHECK(kHeapObjectTag == 1);
1449 inc(result);
1450 }
1451}
1452
1453
1454void MacroAssembler::Allocate(int header_size,
1455 ScaleFactor element_size,
1456 Register element_count,
1457 RegisterValueType element_count_type,
1458 Register result,
1459 Register result_end,
1460 Register scratch,
1461 Label* gc_required,
1462 AllocationFlags flags) {
1463 DCHECK((flags & SIZE_IN_WORDS) == 0);
1464 if (!FLAG_inline_new) {
1465 if (emit_debug_code()) {
1466 // Trash the registers to simulate an allocation failure.
1467 mov(result, Immediate(0x7091));
1468 mov(result_end, Immediate(0x7191));
1469 if (scratch.is_valid()) {
1470 mov(scratch, Immediate(0x7291));
1471 }
1472 // Register element_count is not modified by the function.
1473 }
1474 jmp(gc_required);
1475 return;
1476 }
1477 DCHECK(!result.is(result_end));
1478
1479 // Load address of new object into result.
1480 LoadAllocationTopHelper(result, scratch, flags);
1481
1482 ExternalReference allocation_limit =
1483 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1484
1485 // Align the next allocation. Storing the filler map without checking top is
1486 // safe in new-space because the limit of the heap is aligned there.
1487 if ((flags & DOUBLE_ALIGNMENT) != 0) {
1488 DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1489 DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1490 Label aligned;
1491 test(result, Immediate(kDoubleAlignmentMask));
1492 j(zero, &aligned, Label::kNear);
1493 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1494 cmp(result, Operand::StaticVariable(allocation_limit));
1495 j(above_equal, gc_required);
1496 }
1497 mov(Operand(result, 0),
1498 Immediate(isolate()->factory()->one_pointer_filler_map()));
1499 add(result, Immediate(kDoubleSize / 2));
1500 bind(&aligned);
1501 }
1502
1503 // Calculate new top and bail out if space is exhausted.
1504 // We assume that element_count*element_size + header_size does not
1505 // overflow.
1506 if (element_count_type == REGISTER_VALUE_IS_SMI) {
1507 STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1);
1508 STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2);
1509 STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4);
1510 DCHECK(element_size >= times_2);
1511 DCHECK(kSmiTagSize == 1);
1512 element_size = static_cast<ScaleFactor>(element_size - 1);
1513 } else {
1514 DCHECK(element_count_type == REGISTER_VALUE_IS_INT32);
1515 }
1516 lea(result_end, Operand(element_count, element_size, header_size));
1517 add(result_end, result);
1518 j(carry, gc_required);
1519 cmp(result_end, Operand::StaticVariable(allocation_limit));
1520 j(above, gc_required);
1521
1522 if ((flags & TAG_OBJECT) != 0) {
1523 DCHECK(kHeapObjectTag == 1);
1524 inc(result);
1525 }
1526
1527 // Update allocation top.
1528 UpdateAllocationTopHelper(result_end, scratch, flags);
1529}
1530
1531
1532void MacroAssembler::Allocate(Register object_size,
1533 Register result,
1534 Register result_end,
1535 Register scratch,
1536 Label* gc_required,
1537 AllocationFlags flags) {
1538 DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
1539 if (!FLAG_inline_new) {
1540 if (emit_debug_code()) {
1541 // Trash the registers to simulate an allocation failure.
1542 mov(result, Immediate(0x7091));
1543 mov(result_end, Immediate(0x7191));
1544 if (scratch.is_valid()) {
1545 mov(scratch, Immediate(0x7291));
1546 }
1547 // object_size is left unchanged by this function.
1548 }
1549 jmp(gc_required);
1550 return;
1551 }
1552 DCHECK(!result.is(result_end));
1553
1554 // Load address of new object into result.
1555 LoadAllocationTopHelper(result, scratch, flags);
1556
1557 ExternalReference allocation_limit =
1558 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1559
1560 // Align the next allocation. Storing the filler map without checking top is
1561 // safe in new-space because the limit of the heap is aligned there.
1562 if ((flags & DOUBLE_ALIGNMENT) != 0) {
1563 DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1564 DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1565 Label aligned;
1566 test(result, Immediate(kDoubleAlignmentMask));
1567 j(zero, &aligned, Label::kNear);
1568 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1569 cmp(result, Operand::StaticVariable(allocation_limit));
1570 j(above_equal, gc_required);
1571 }
1572 mov(Operand(result, 0),
1573 Immediate(isolate()->factory()->one_pointer_filler_map()));
1574 add(result, Immediate(kDoubleSize / 2));
1575 bind(&aligned);
1576 }
1577
1578 // Calculate new top and bail out if space is exhausted.
1579 if (!object_size.is(result_end)) {
1580 mov(result_end, object_size);
1581 }
1582 add(result_end, result);
1583 j(carry, gc_required);
1584 cmp(result_end, Operand::StaticVariable(allocation_limit));
1585 j(above, gc_required);
1586
1587 // Tag result if requested.
1588 if ((flags & TAG_OBJECT) != 0) {
1589 DCHECK(kHeapObjectTag == 1);
1590 inc(result);
1591 }
1592
1593 // Update allocation top.
1594 UpdateAllocationTopHelper(result_end, scratch, flags);
1595}
1596
1597
1598void MacroAssembler::UndoAllocationInNewSpace(Register object) {
1599 ExternalReference new_space_allocation_top =
1600 ExternalReference::new_space_allocation_top_address(isolate());
1601
1602 // Make sure the object has no tag before resetting top.
1603 and_(object, Immediate(~kHeapObjectTagMask));
1604#ifdef DEBUG
1605 cmp(object, Operand::StaticVariable(new_space_allocation_top));
1606 Check(below, kUndoAllocationOfNonAllocatedMemory);
1607#endif
1608 mov(Operand::StaticVariable(new_space_allocation_top), object);
1609}
1610
1611
1612void MacroAssembler::AllocateHeapNumber(Register result,
1613 Register scratch1,
1614 Register scratch2,
1615 Label* gc_required,
1616 MutableMode mode) {
1617 // Allocate heap number in new space.
1618 Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
1619 TAG_OBJECT);
1620
1621 Handle<Map> map = mode == MUTABLE
1622 ? isolate()->factory()->mutable_heap_number_map()
1623 : isolate()->factory()->heap_number_map();
1624
1625 // Set the map.
1626 mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(map));
1627}
1628
1629
1630void MacroAssembler::AllocateTwoByteString(Register result,
1631 Register length,
1632 Register scratch1,
1633 Register scratch2,
1634 Register scratch3,
1635 Label* gc_required) {
1636 // Calculate the number of bytes needed for the characters in the string while
1637 // observing object alignment.
1638 DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1639 DCHECK(kShortSize == 2);
1640 // scratch1 = length * 2 + kObjectAlignmentMask.
1641 lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
1642 and_(scratch1, Immediate(~kObjectAlignmentMask));
1643
1644 // Allocate two byte string in new space.
1645 Allocate(SeqTwoByteString::kHeaderSize,
1646 times_1,
1647 scratch1,
1648 REGISTER_VALUE_IS_INT32,
1649 result,
1650 scratch2,
1651 scratch3,
1652 gc_required,
1653 TAG_OBJECT);
1654
1655 // Set the map, length and hash field.
1656 mov(FieldOperand(result, HeapObject::kMapOffset),
1657 Immediate(isolate()->factory()->string_map()));
1658 mov(scratch1, length);
1659 SmiTag(scratch1);
1660 mov(FieldOperand(result, String::kLengthOffset), scratch1);
1661 mov(FieldOperand(result, String::kHashFieldOffset),
1662 Immediate(String::kEmptyHashField));
1663}
1664
1665
1666void MacroAssembler::AllocateOneByteString(Register result, Register length,
1667 Register scratch1, Register scratch2,
1668 Register scratch3,
1669 Label* gc_required) {
1670 // Calculate the number of bytes needed for the characters in the string while
1671 // observing object alignment.
1672 DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1673 mov(scratch1, length);
1674 DCHECK(kCharSize == 1);
1675 add(scratch1, Immediate(kObjectAlignmentMask));
1676 and_(scratch1, Immediate(~kObjectAlignmentMask));
1677
1678 // Allocate one-byte string in new space.
1679 Allocate(SeqOneByteString::kHeaderSize,
1680 times_1,
1681 scratch1,
1682 REGISTER_VALUE_IS_INT32,
1683 result,
1684 scratch2,
1685 scratch3,
1686 gc_required,
1687 TAG_OBJECT);
1688
1689 // Set the map, length and hash field.
1690 mov(FieldOperand(result, HeapObject::kMapOffset),
1691 Immediate(isolate()->factory()->one_byte_string_map()));
1692 mov(scratch1, length);
1693 SmiTag(scratch1);
1694 mov(FieldOperand(result, String::kLengthOffset), scratch1);
1695 mov(FieldOperand(result, String::kHashFieldOffset),
1696 Immediate(String::kEmptyHashField));
1697}
1698
1699
1700void MacroAssembler::AllocateOneByteString(Register result, int length,
1701 Register scratch1, Register scratch2,
1702 Label* gc_required) {
1703 DCHECK(length > 0);
1704
1705 // Allocate one-byte string in new space.
1706 Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2,
1707 gc_required, TAG_OBJECT);
1708
1709 // Set the map, length and hash field.
1710 mov(FieldOperand(result, HeapObject::kMapOffset),
1711 Immediate(isolate()->factory()->one_byte_string_map()));
1712 mov(FieldOperand(result, String::kLengthOffset),
1713 Immediate(Smi::FromInt(length)));
1714 mov(FieldOperand(result, String::kHashFieldOffset),
1715 Immediate(String::kEmptyHashField));
1716}
1717
1718
1719void MacroAssembler::AllocateTwoByteConsString(Register result,
1720 Register scratch1,
1721 Register scratch2,
1722 Label* gc_required) {
1723 // Allocate heap number in new space.
1724 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
1725 TAG_OBJECT);
1726
1727 // Set the map. The other fields are left uninitialized.
1728 mov(FieldOperand(result, HeapObject::kMapOffset),
1729 Immediate(isolate()->factory()->cons_string_map()));
1730}
1731
1732
1733void MacroAssembler::AllocateOneByteConsString(Register result,
1734 Register scratch1,
1735 Register scratch2,
1736 Label* gc_required) {
1737 Allocate(ConsString::kSize,
1738 result,
1739 scratch1,
1740 scratch2,
1741 gc_required,
1742 TAG_OBJECT);
1743
1744 // Set the map. The other fields are left uninitialized.
1745 mov(FieldOperand(result, HeapObject::kMapOffset),
1746 Immediate(isolate()->factory()->cons_one_byte_string_map()));
1747}
1748
1749
1750void MacroAssembler::AllocateTwoByteSlicedString(Register result,
1751 Register scratch1,
1752 Register scratch2,
1753 Label* gc_required) {
1754 // Allocate heap number in new space.
1755 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
1756 TAG_OBJECT);
1757
1758 // Set the map. The other fields are left uninitialized.
1759 mov(FieldOperand(result, HeapObject::kMapOffset),
1760 Immediate(isolate()->factory()->sliced_string_map()));
1761}
1762
1763
1764void MacroAssembler::AllocateOneByteSlicedString(Register result,
1765 Register scratch1,
1766 Register scratch2,
1767 Label* gc_required) {
1768 // Allocate heap number in new space.
1769 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
1770 TAG_OBJECT);
1771
1772 // Set the map. The other fields are left uninitialized.
1773 mov(FieldOperand(result, HeapObject::kMapOffset),
1774 Immediate(isolate()->factory()->sliced_one_byte_string_map()));
1775}
1776
1777
1778// Copy memory, byte-by-byte, from source to destination. Not optimized for
1779// long or aligned copies. The contents of scratch and length are destroyed.
1780// Source and destination are incremented by length.
1781// Many variants of movsb, loop unrolling, word moves, and indexed operands
1782// have been tried here already, and this is fastest.
1783// A simpler loop is faster on small copies, but 30% slower on large ones.
1784// The cld() instruction must have been emitted, to set the direction flag(),
1785// before calling this function.
1786void MacroAssembler::CopyBytes(Register source,
1787 Register destination,
1788 Register length,
1789 Register scratch) {
1790 Label short_loop, len4, len8, len12, done, short_string;
1791 DCHECK(source.is(esi));
1792 DCHECK(destination.is(edi));
1793 DCHECK(length.is(ecx));
1794 cmp(length, Immediate(4));
1795 j(below, &short_string, Label::kNear);
1796
1797 // Because source is 4-byte aligned in our uses of this function,
1798 // we keep source aligned for the rep_movs call by copying the odd bytes
1799 // at the end of the ranges.
1800 mov(scratch, Operand(source, length, times_1, -4));
1801 mov(Operand(destination, length, times_1, -4), scratch);
1802
1803 cmp(length, Immediate(8));
1804 j(below_equal, &len4, Label::kNear);
1805 cmp(length, Immediate(12));
1806 j(below_equal, &len8, Label::kNear);
1807 cmp(length, Immediate(16));
1808 j(below_equal, &len12, Label::kNear);
1809
1810 mov(scratch, ecx);
1811 shr(ecx, 2);
1812 rep_movs();
1813 and_(scratch, Immediate(0x3));
1814 add(destination, scratch);
1815 jmp(&done, Label::kNear);
1816
1817 bind(&len12);
1818 mov(scratch, Operand(source, 8));
1819 mov(Operand(destination, 8), scratch);
1820 bind(&len8);
1821 mov(scratch, Operand(source, 4));
1822 mov(Operand(destination, 4), scratch);
1823 bind(&len4);
1824 mov(scratch, Operand(source, 0));
1825 mov(Operand(destination, 0), scratch);
1826 add(destination, length);
1827 jmp(&done, Label::kNear);
1828
1829 bind(&short_string);
1830 test(length, length);
1831 j(zero, &done, Label::kNear);
1832
1833 bind(&short_loop);
1834 mov_b(scratch, Operand(source, 0));
1835 mov_b(Operand(destination, 0), scratch);
1836 inc(source);
1837 inc(destination);
1838 dec(length);
1839 j(not_zero, &short_loop);
1840
1841 bind(&done);
1842}
1843
1844
1845void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
1846 Register end_offset,
1847 Register filler) {
1848 Label loop, entry;
1849 jmp(&entry);
1850 bind(&loop);
1851 mov(Operand(start_offset, 0), filler);
1852 add(start_offset, Immediate(kPointerSize));
1853 bind(&entry);
1854 cmp(start_offset, end_offset);
1855 j(less, &loop);
1856}
1857
1858
1859void MacroAssembler::BooleanBitTest(Register object,
1860 int field_offset,
1861 int bit_index) {
1862 bit_index += kSmiTagSize + kSmiShiftSize;
1863 DCHECK(base::bits::IsPowerOfTwo32(kBitsPerByte));
1864 int byte_index = bit_index / kBitsPerByte;
1865 int byte_bit_index = bit_index & (kBitsPerByte - 1);
1866 test_b(FieldOperand(object, field_offset + byte_index),
1867 static_cast<byte>(1 << byte_bit_index));
1868}
1869
1870
1871
1872void MacroAssembler::NegativeZeroTest(Register result,
1873 Register op,
1874 Label* then_label) {
1875 Label ok;
1876 test(result, result);
1877 j(not_zero, &ok);
1878 test(op, op);
1879 j(sign, then_label);
1880 bind(&ok);
1881}
1882
1883
1884void MacroAssembler::NegativeZeroTest(Register result,
1885 Register op1,
1886 Register op2,
1887 Register scratch,
1888 Label* then_label) {
1889 Label ok;
1890 test(result, result);
1891 j(not_zero, &ok);
1892 mov(scratch, op1);
1893 or_(scratch, op2);
1894 j(sign, then_label);
1895 bind(&ok);
1896}
1897
1898
1899void MacroAssembler::TryGetFunctionPrototype(Register function,
1900 Register result,
1901 Register scratch,
1902 Label* miss,
1903 bool miss_on_bound_function) {
1904 Label non_instance;
1905 if (miss_on_bound_function) {
1906 // Check that the receiver isn't a smi.
1907 JumpIfSmi(function, miss);
1908
1909 // Check that the function really is a function.
1910 CmpObjectType(function, JS_FUNCTION_TYPE, result);
1911 j(not_equal, miss);
1912
1913 // If a bound function, go to miss label.
1914 mov(scratch,
1915 FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
1916 BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset,
1917 SharedFunctionInfo::kBoundFunction);
1918 j(not_zero, miss);
1919
1920 // Make sure that the function has an instance prototype.
1921 movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
1922 test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
1923 j(not_zero, &non_instance);
1924 }
1925
1926 // Get the prototype or initial map from the function.
1927 mov(result,
1928 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1929
1930 // If the prototype or initial map is the hole, don't return it and
1931 // simply miss the cache instead. This will allow us to allocate a
1932 // prototype object on-demand in the runtime system.
1933 cmp(result, Immediate(isolate()->factory()->the_hole_value()));
1934 j(equal, miss);
1935
1936 // If the function does not have an initial map, we're done.
1937 Label done;
1938 CmpObjectType(result, MAP_TYPE, scratch);
1939 j(not_equal, &done);
1940
1941 // Get the prototype from the initial map.
1942 mov(result, FieldOperand(result, Map::kPrototypeOffset));
1943
1944 if (miss_on_bound_function) {
1945 jmp(&done);
1946
1947 // Non-instance prototype: Fetch prototype from constructor field
1948 // in initial map.
1949 bind(&non_instance);
1950 mov(result, FieldOperand(result, Map::kConstructorOffset));
1951 }
1952
1953 // All done.
1954 bind(&done);
1955}
1956
1957
1958void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
1959 DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs.
1960 call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1961}
1962
1963
1964void MacroAssembler::TailCallStub(CodeStub* stub) {
1965 jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
1966}
1967
1968
1969void MacroAssembler::StubReturn(int argc) {
1970 DCHECK(argc >= 1 && generating_stub());
1971 ret((argc - 1) * kPointerSize);
1972}
1973
1974
1975bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
1976 return has_frame_ || !stub->SometimesSetsUpAFrame();
1977}
1978
1979
1980void MacroAssembler::IndexFromHash(Register hash, Register index) {
1981 // The assert checks that the constants for the maximum number of digits
1982 // for an array index cached in the hash field and the number of bits
1983 // reserved for it does not conflict.
1984 DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
1985 (1 << String::kArrayIndexValueBits));
1986 if (!index.is(hash)) {
1987 mov(index, hash);
1988 }
1989 DecodeFieldToSmi<String::ArrayIndexValueBits>(index);
1990}
1991
1992
1993void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
1994 SaveFPRegsMode save_doubles) {
1995 // If the expected number of arguments of the runtime function is
1996 // constant, we check that the actual number of arguments match the
1997 // expectation.
1998 CHECK(f->nargs < 0 || f->nargs == num_arguments);
1999
2000 // TODO(1236192): Most runtime routines don't need the number of
2001 // arguments passed in because it is constant. At some point we
2002 // should remove this need and make the runtime routine entry code
2003 // smarter.
2004 Move(eax, Immediate(num_arguments));
2005 mov(ebx, Immediate(ExternalReference(f, isolate())));
2006 CEntryStub ces(isolate(), 1, save_doubles);
2007 CallStub(&ces);
2008}
2009
2010
2011void MacroAssembler::CallExternalReference(ExternalReference ref,
2012 int num_arguments) {
2013 mov(eax, Immediate(num_arguments));
2014 mov(ebx, Immediate(ref));
2015
2016 CEntryStub stub(isolate(), 1);
2017 CallStub(&stub);
2018}
2019
2020
2021void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
2022 int num_arguments,
2023 int result_size) {
2024 // TODO(1236192): Most runtime routines don't need the number of
2025 // arguments passed in because it is constant. At some point we
2026 // should remove this need and make the runtime routine entry code
2027 // smarter.
2028 Move(eax, Immediate(num_arguments));
2029 JumpToExternalReference(ext);
2030}
2031
2032
2033void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
2034 int num_arguments,
2035 int result_size) {
2036 TailCallExternalReference(ExternalReference(fid, isolate()),
2037 num_arguments,
2038 result_size);
2039}
2040
2041
2042Operand ApiParameterOperand(int index) {
2043 return Operand(esp, index * kPointerSize);
2044}
2045
2046
2047void MacroAssembler::PrepareCallApiFunction(int argc) {
2048 EnterApiExitFrame(argc);
2049 if (emit_debug_code()) {
2050 mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
2051 }
2052}
2053
2054
2055void MacroAssembler::CallApiFunctionAndReturn(
2056 Register function_address,
2057 ExternalReference thunk_ref,
2058 Operand thunk_last_arg,
2059 int stack_space,
2060 Operand return_value_operand,
2061 Operand* context_restore_operand) {
2062 ExternalReference next_address =
2063 ExternalReference::handle_scope_next_address(isolate());
2064 ExternalReference limit_address =
2065 ExternalReference::handle_scope_limit_address(isolate());
2066 ExternalReference level_address =
2067 ExternalReference::handle_scope_level_address(isolate());
2068
2069 DCHECK(edx.is(function_address));
2070 // Allocate HandleScope in callee-save registers.
2071 mov(ebx, Operand::StaticVariable(next_address));
2072 mov(edi, Operand::StaticVariable(limit_address));
2073 add(Operand::StaticVariable(level_address), Immediate(1));
2074
2075 if (FLAG_log_timer_events) {
2076 FrameScope frame(this, StackFrame::MANUAL);
2077 PushSafepointRegisters();
2078 PrepareCallCFunction(1, eax);
2079 mov(Operand(esp, 0),
2080 Immediate(ExternalReference::isolate_address(isolate())));
2081 CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
2082 PopSafepointRegisters();
2083 }
2084
2085
2086 Label profiler_disabled;
2087 Label end_profiler_check;
2088 mov(eax, Immediate(ExternalReference::is_profiling_address(isolate())));
2089 cmpb(Operand(eax, 0), 0);
2090 j(zero, &profiler_disabled);
2091
2092 // Additional parameter is the address of the actual getter function.
2093 mov(thunk_last_arg, function_address);
2094 // Call the api function.
2095 mov(eax, Immediate(thunk_ref));
2096 call(eax);
2097 jmp(&end_profiler_check);
2098
2099 bind(&profiler_disabled);
2100 // Call the api function.
2101 call(function_address);
2102 bind(&end_profiler_check);
2103
2104 if (FLAG_log_timer_events) {
2105 FrameScope frame(this, StackFrame::MANUAL);
2106 PushSafepointRegisters();
2107 PrepareCallCFunction(1, eax);
2108 mov(Operand(esp, 0),
2109 Immediate(ExternalReference::isolate_address(isolate())));
2110 CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
2111 PopSafepointRegisters();
2112 }
2113
2114 Label prologue;
2115 // Load the value from ReturnValue
2116 mov(eax, return_value_operand);
2117
2118 Label promote_scheduled_exception;
2119 Label exception_handled;
2120 Label delete_allocated_handles;
2121 Label leave_exit_frame;
2122
2123 bind(&prologue);
2124 // No more valid handles (the result handle was the last one). Restore
2125 // previous handle scope.
2126 mov(Operand::StaticVariable(next_address), ebx);
2127 sub(Operand::StaticVariable(level_address), Immediate(1));
2128 Assert(above_equal, kInvalidHandleScopeLevel);
2129 cmp(edi, Operand::StaticVariable(limit_address));
2130 j(not_equal, &delete_allocated_handles);
2131 bind(&leave_exit_frame);
2132
2133 // Check if the function scheduled an exception.
2134 ExternalReference scheduled_exception_address =
2135 ExternalReference::scheduled_exception_address(isolate());
2136 cmp(Operand::StaticVariable(scheduled_exception_address),
2137 Immediate(isolate()->factory()->the_hole_value()));
2138 j(not_equal, &promote_scheduled_exception);
2139 bind(&exception_handled);
2140
2141#if ENABLE_EXTRA_CHECKS
2142 // Check if the function returned a valid JavaScript value.
2143 Label ok;
2144 Register return_value = eax;
2145 Register map = ecx;
2146
2147 JumpIfSmi(return_value, &ok, Label::kNear);
2148 mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
2149
2150 CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2151 j(below, &ok, Label::kNear);
2152
2153 CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
2154 j(above_equal, &ok, Label::kNear);
2155
2156 cmp(map, isolate()->factory()->heap_number_map());
2157 j(equal, &ok, Label::kNear);
2158
2159 cmp(return_value, isolate()->factory()->undefined_value());
2160 j(equal, &ok, Label::kNear);
2161
2162 cmp(return_value, isolate()->factory()->true_value());
2163 j(equal, &ok, Label::kNear);
2164
2165 cmp(return_value, isolate()->factory()->false_value());
2166 j(equal, &ok, Label::kNear);
2167
2168 cmp(return_value, isolate()->factory()->null_value());
2169 j(equal, &ok, Label::kNear);
2170
2171 Abort(kAPICallReturnedInvalidObject);
2172
2173 bind(&ok);
2174#endif
2175
2176 bool restore_context = context_restore_operand != NULL;
2177 if (restore_context) {
2178 mov(esi, *context_restore_operand);
2179 }
2180 LeaveApiExitFrame(!restore_context);
2181 ret(stack_space * kPointerSize);
2182
2183 bind(&promote_scheduled_exception);
2184 {
2185 FrameScope frame(this, StackFrame::INTERNAL);
2186 CallRuntime(Runtime::kPromoteScheduledException, 0);
2187 }
2188 jmp(&exception_handled);
2189
2190 // HandleScope limit has changed. Delete allocated extensions.
2191 ExternalReference delete_extensions =
2192 ExternalReference::delete_handle_scope_extensions(isolate());
2193 bind(&delete_allocated_handles);
2194 mov(Operand::StaticVariable(limit_address), edi);
2195 mov(edi, eax);
2196 mov(Operand(esp, 0),
2197 Immediate(ExternalReference::isolate_address(isolate())));
2198 mov(eax, Immediate(delete_extensions));
2199 call(eax);
2200 mov(eax, edi);
2201 jmp(&leave_exit_frame);
2202}
2203
2204
2205void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
2206 // Set the entry point and jump to the C entry runtime stub.
2207 mov(ebx, Immediate(ext));
2208 CEntryStub ces(isolate(), 1);
2209 jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
2210}
2211
2212
2213void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2214 const ParameterCount& actual,
2215 Handle<Code> code_constant,
2216 const Operand& code_operand,
2217 Label* done,
2218 bool* definitely_mismatches,
2219 InvokeFlag flag,
2220 Label::Distance done_near,
2221 const CallWrapper& call_wrapper) {
2222 bool definitely_matches = false;
2223 *definitely_mismatches = false;
2224 Label invoke;
2225 if (expected.is_immediate()) {
2226 DCHECK(actual.is_immediate());
2227 if (expected.immediate() == actual.immediate()) {
2228 definitely_matches = true;
2229 } else {
2230 mov(eax, actual.immediate());
2231 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
2232 if (expected.immediate() == sentinel) {
2233 // Don't worry about adapting arguments for builtins that
2234 // don't want that done. Skip adaption code by making it look
2235 // like we have a match between expected and actual number of
2236 // arguments.
2237 definitely_matches = true;
2238 } else {
2239 *definitely_mismatches = true;
2240 mov(ebx, expected.immediate());
2241 }
2242 }
2243 } else {
2244 if (actual.is_immediate()) {
2245 // Expected is in register, actual is immediate. This is the
2246 // case when we invoke function values without going through the
2247 // IC mechanism.
2248 cmp(expected.reg(), actual.immediate());
2249 j(equal, &invoke);
2250 DCHECK(expected.reg().is(ebx));
2251 mov(eax, actual.immediate());
2252 } else if (!expected.reg().is(actual.reg())) {
2253 // Both expected and actual are in (different) registers. This
2254 // is the case when we invoke functions using call and apply.
2255 cmp(expected.reg(), actual.reg());
2256 j(equal, &invoke);
2257 DCHECK(actual.reg().is(eax));
2258 DCHECK(expected.reg().is(ebx));
2259 }
2260 }
2261
2262 if (!definitely_matches) {
2263 Handle<Code> adaptor =
2264 isolate()->builtins()->ArgumentsAdaptorTrampoline();
2265 if (!code_constant.is_null()) {
2266 mov(edx, Immediate(code_constant));
2267 add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
2268 } else if (!code_operand.is_reg(edx)) {
2269 mov(edx, code_operand);
2270 }
2271
2272 if (flag == CALL_FUNCTION) {
2273 call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
2274 call(adaptor, RelocInfo::CODE_TARGET);
2275 call_wrapper.AfterCall();
2276 if (!*definitely_mismatches) {
2277 jmp(done, done_near);
2278 }
2279 } else {
2280 jmp(adaptor, RelocInfo::CODE_TARGET);
2281 }
2282 bind(&invoke);
2283 }
2284}
2285
2286
2287void MacroAssembler::InvokeCode(const Operand& code,
2288 const ParameterCount& expected,
2289 const ParameterCount& actual,
2290 InvokeFlag flag,
2291 const CallWrapper& call_wrapper) {
2292 // You can't call a function without a valid frame.
2293 DCHECK(flag == JUMP_FUNCTION || has_frame());
2294
2295 Label done;
2296 bool definitely_mismatches = false;
2297 InvokePrologue(expected, actual, Handle<Code>::null(), code,
2298 &done, &definitely_mismatches, flag, Label::kNear,
2299 call_wrapper);
2300 if (!definitely_mismatches) {
2301 if (flag == CALL_FUNCTION) {
2302 call_wrapper.BeforeCall(CallSize(code));
2303 call(code);
2304 call_wrapper.AfterCall();
2305 } else {
2306 DCHECK(flag == JUMP_FUNCTION);
2307 jmp(code);
2308 }
2309 bind(&done);
2310 }
2311}
2312
2313
2314void MacroAssembler::InvokeFunction(Register fun,
2315 const ParameterCount& actual,
2316 InvokeFlag flag,
2317 const CallWrapper& call_wrapper) {
2318 // You can't call a function without a valid frame.
2319 DCHECK(flag == JUMP_FUNCTION || has_frame());
2320
2321 DCHECK(fun.is(edi));
2322 mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2323 mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2324 mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
2325 SmiUntag(ebx);
2326
2327 ParameterCount expected(ebx);
2328 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2329 expected, actual, flag, call_wrapper);
2330}
2331
2332
2333void MacroAssembler::InvokeFunction(Register fun,
2334 const ParameterCount& expected,
2335 const ParameterCount& actual,
2336 InvokeFlag flag,
2337 const CallWrapper& call_wrapper) {
2338 // You can't call a function without a valid frame.
2339 DCHECK(flag == JUMP_FUNCTION || has_frame());
2340
2341 DCHECK(fun.is(edi));
2342 mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2343
2344 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2345 expected, actual, flag, call_wrapper);
2346}
2347
2348
2349void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2350 const ParameterCount& expected,
2351 const ParameterCount& actual,
2352 InvokeFlag flag,
2353 const CallWrapper& call_wrapper) {
2354 LoadHeapObject(edi, function);
2355 InvokeFunction(edi, expected, actual, flag, call_wrapper);
2356}
2357
2358
2359void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
2360 InvokeFlag flag,
2361 const CallWrapper& call_wrapper) {
2362 // You can't call a builtin without a valid frame.
2363 DCHECK(flag == JUMP_FUNCTION || has_frame());
2364
2365 // Rely on the assertion to check that the number of provided
2366 // arguments match the expected number of arguments. Fake a
2367 // parameter count to avoid emitting code to do the check.
2368 ParameterCount expected(0);
2369 GetBuiltinFunction(edi, id);
2370 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2371 expected, expected, flag, call_wrapper);
2372}
2373
2374
2375void MacroAssembler::GetBuiltinFunction(Register target,
2376 Builtins::JavaScript id) {
2377 // Load the JavaScript builtin function from the builtins object.
2378 mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2379 mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
2380 mov(target, FieldOperand(target,
2381 JSBuiltinsObject::OffsetOfFunctionWithId(id)));
2382}
2383
2384
2385void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
2386 DCHECK(!target.is(edi));
2387 // Load the JavaScript builtin function from the builtins object.
2388 GetBuiltinFunction(edi, id);
2389 // Load the code entry point from the function into the target register.
2390 mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset));
2391}
2392
2393
2394void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2395 if (context_chain_length > 0) {
2396 // Move up the chain of contexts to the context containing the slot.
2397 mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2398 for (int i = 1; i < context_chain_length; i++) {
2399 mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2400 }
2401 } else {
2402 // Slot is in the current function context. Move it into the
2403 // destination register in case we store into it (the write barrier
2404 // cannot be allowed to destroy the context in esi).
2405 mov(dst, esi);
2406 }
2407
2408 // We should not have found a with context by walking the context chain
2409 // (i.e., the static scope chain and runtime context chain do not agree).
2410 // A variable occurring in such a scope should have slot type LOOKUP and
2411 // not CONTEXT.
2412 if (emit_debug_code()) {
2413 cmp(FieldOperand(dst, HeapObject::kMapOffset),
2414 isolate()->factory()->with_context_map());
2415 Check(not_equal, kVariableResolvedToWithContext);
2416 }
2417}
2418
2419
2420void MacroAssembler::LoadTransitionedArrayMapConditional(
2421 ElementsKind expected_kind,
2422 ElementsKind transitioned_kind,
2423 Register map_in_out,
2424 Register scratch,
2425 Label* no_map_match) {
2426 // Load the global or builtins object from the current context.
2427 mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2428 mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
2429
2430 // Check that the function's map is the same as the expected cached map.
2431 mov(scratch, Operand(scratch,
2432 Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
2433
2434 size_t offset = expected_kind * kPointerSize +
2435 FixedArrayBase::kHeaderSize;
2436 cmp(map_in_out, FieldOperand(scratch, offset));
2437 j(not_equal, no_map_match);
2438
2439 // Use the transitioned cached map.
2440 offset = transitioned_kind * kPointerSize +
2441 FixedArrayBase::kHeaderSize;
2442 mov(map_in_out, FieldOperand(scratch, offset));
2443}
2444
2445
2446void MacroAssembler::LoadGlobalFunction(int index, Register function) {
2447 // Load the global or builtins object from the current context.
2448 mov(function,
2449 Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2450 // Load the native context from the global or builtins object.
2451 mov(function,
2452 FieldOperand(function, GlobalObject::kNativeContextOffset));
2453 // Load the function from the native context.
2454 mov(function, Operand(function, Context::SlotOffset(index)));
2455}
2456
2457
2458void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
2459 Register map) {
2460 // Load the initial map. The global functions all have initial maps.
2461 mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2462 if (emit_debug_code()) {
2463 Label ok, fail;
2464 CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
2465 jmp(&ok);
2466 bind(&fail);
2467 Abort(kGlobalFunctionsMustHaveInitialMap);
2468 bind(&ok);
2469 }
2470}
2471
2472
2473// Store the value in register src in the safepoint register stack
2474// slot for register dst.
2475void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
2476 mov(SafepointRegisterSlot(dst), src);
2477}
2478
2479
2480void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
2481 mov(SafepointRegisterSlot(dst), src);
2482}
2483
2484
2485void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
2486 mov(dst, SafepointRegisterSlot(src));
2487}
2488
2489
2490Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
2491 return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
2492}
2493
2494
2495int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
2496 // The registers are pushed starting with the lowest encoding,
2497 // which means that lowest encodings are furthest away from
2498 // the stack pointer.
2499 DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters);
2500 return kNumSafepointRegisters - reg_code - 1;
2501}
2502
2503
2504void MacroAssembler::LoadHeapObject(Register result,
2505 Handle<HeapObject> object) {
2506 AllowDeferredHandleDereference embedding_raw_address;
2507 if (isolate()->heap()->InNewSpace(*object)) {
2508 Handle<Cell> cell = isolate()->factory()->NewCell(object);
2509 mov(result, Operand::ForCell(cell));
2510 } else {
2511 mov(result, object);
2512 }
2513}
2514
2515
2516void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) {
2517 AllowDeferredHandleDereference using_raw_address;
2518 if (isolate()->heap()->InNewSpace(*object)) {
2519 Handle<Cell> cell = isolate()->factory()->NewCell(object);
2520 cmp(reg, Operand::ForCell(cell));
2521 } else {
2522 cmp(reg, object);
2523 }
2524}
2525
2526
2527void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
2528 AllowDeferredHandleDereference using_raw_address;
2529 if (isolate()->heap()->InNewSpace(*object)) {
2530 Handle<Cell> cell = isolate()->factory()->NewCell(object);
2531 push(Operand::ForCell(cell));
2532 } else {
2533 Push(object);
2534 }
2535}
2536
2537
2538void MacroAssembler::Ret() {
2539 ret(0);
2540}
2541
2542
2543void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
2544 if (is_uint16(bytes_dropped)) {
2545 ret(bytes_dropped);
2546 } else {
2547 pop(scratch);
2548 add(esp, Immediate(bytes_dropped));
2549 push(scratch);
2550 ret(0);
2551 }
2552}
2553
2554
2555void MacroAssembler::VerifyX87StackDepth(uint32_t depth) {
2556 // Turn off the stack depth check when serializer is enabled to reduce the
2557 // code size.
2558 if (serializer_enabled()) return;
2559 // Make sure the floating point stack is either empty or has depth items.
2560 DCHECK(depth <= 7);
2561 // This is very expensive.
2562 DCHECK(FLAG_debug_code && FLAG_enable_slow_asserts);
2563
2564 // The top-of-stack (tos) is 7 if there is one item pushed.
2565 int tos = (8 - depth) % 8;
2566 const int kTopMask = 0x3800;
2567 push(eax);
2568 fwait();
2569 fnstsw_ax();
2570 and_(eax, kTopMask);
2571 shr(eax, 11);
2572 cmp(eax, Immediate(tos));
2573 Check(equal, kUnexpectedFPUStackDepthAfterInstruction);
2574 fnclex();
2575 pop(eax);
2576}
2577
2578
2579void MacroAssembler::Drop(int stack_elements) {
2580 if (stack_elements > 0) {
2581 add(esp, Immediate(stack_elements * kPointerSize));
2582 }
2583}
2584
2585
2586void MacroAssembler::Move(Register dst, Register src) {
2587 if (!dst.is(src)) {
2588 mov(dst, src);
2589 }
2590}
2591
2592
2593void MacroAssembler::Move(Register dst, const Immediate& x) {
2594 if (x.is_zero()) {
2595 xor_(dst, dst); // Shorter than mov of 32-bit immediate 0.
2596 } else {
2597 mov(dst, x);
2598 }
2599}
2600
2601
2602void MacroAssembler::Move(const Operand& dst, const Immediate& x) {
2603 mov(dst, x);
2604}
2605
2606
2607void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
2608 if (FLAG_native_code_counters && counter->Enabled()) {
2609 mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
2610 }
2611}
2612
2613
2614void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
2615 DCHECK(value > 0);
2616 if (FLAG_native_code_counters && counter->Enabled()) {
2617 Operand operand = Operand::StaticVariable(ExternalReference(counter));
2618 if (value == 1) {
2619 inc(operand);
2620 } else {
2621 add(operand, Immediate(value));
2622 }
2623 }
2624}
2625
2626
2627void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
2628 DCHECK(value > 0);
2629 if (FLAG_native_code_counters && counter->Enabled()) {
2630 Operand operand = Operand::StaticVariable(ExternalReference(counter));
2631 if (value == 1) {
2632 dec(operand);
2633 } else {
2634 sub(operand, Immediate(value));
2635 }
2636 }
2637}
2638
2639
2640void MacroAssembler::IncrementCounter(Condition cc,
2641 StatsCounter* counter,
2642 int value) {
2643 DCHECK(value > 0);
2644 if (FLAG_native_code_counters && counter->Enabled()) {
2645 Label skip;
2646 j(NegateCondition(cc), &skip);
2647 pushfd();
2648 IncrementCounter(counter, value);
2649 popfd();
2650 bind(&skip);
2651 }
2652}
2653
2654
2655void MacroAssembler::DecrementCounter(Condition cc,
2656 StatsCounter* counter,
2657 int value) {
2658 DCHECK(value > 0);
2659 if (FLAG_native_code_counters && counter->Enabled()) {
2660 Label skip;
2661 j(NegateCondition(cc), &skip);
2662 pushfd();
2663 DecrementCounter(counter, value);
2664 popfd();
2665 bind(&skip);
2666 }
2667}
2668
2669
2670void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
2671 if (emit_debug_code()) Check(cc, reason);
2672}
2673
2674
2675void MacroAssembler::AssertFastElements(Register elements) {
2676 if (emit_debug_code()) {
2677 Factory* factory = isolate()->factory();
2678 Label ok;
2679 cmp(FieldOperand(elements, HeapObject::kMapOffset),
2680 Immediate(factory->fixed_array_map()));
2681 j(equal, &ok);
2682 cmp(FieldOperand(elements, HeapObject::kMapOffset),
2683 Immediate(factory->fixed_double_array_map()));
2684 j(equal, &ok);
2685 cmp(FieldOperand(elements, HeapObject::kMapOffset),
2686 Immediate(factory->fixed_cow_array_map()));
2687 j(equal, &ok);
2688 Abort(kJSObjectWithFastElementsMapHasSlowElements);
2689 bind(&ok);
2690 }
2691}
2692
2693
2694void MacroAssembler::Check(Condition cc, BailoutReason reason) {
2695 Label L;
2696 j(cc, &L);
2697 Abort(reason);
2698 // will not return here
2699 bind(&L);
2700}
2701
2702
2703void MacroAssembler::CheckStackAlignment() {
2704 int frame_alignment = base::OS::ActivationFrameAlignment();
2705 int frame_alignment_mask = frame_alignment - 1;
2706 if (frame_alignment > kPointerSize) {
2707 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
2708 Label alignment_as_expected;
2709 test(esp, Immediate(frame_alignment_mask));
2710 j(zero, &alignment_as_expected);
2711 // Abort if stack is not aligned.
2712 int3();
2713 bind(&alignment_as_expected);
2714 }
2715}
2716
2717
2718void MacroAssembler::Abort(BailoutReason reason) {
2719#ifdef DEBUG
2720 const char* msg = GetBailoutReason(reason);
2721 if (msg != NULL) {
2722 RecordComment("Abort message: ");
2723 RecordComment(msg);
2724 }
2725
2726 if (FLAG_trap_on_abort) {
2727 int3();
2728 return;
2729 }
2730#endif
2731
2732 push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(reason))));
2733 // Disable stub call restrictions to always allow calls to abort.
2734 if (!has_frame_) {
2735 // We don't actually want to generate a pile of code for this, so just
2736 // claim there is a stack frame, without generating one.
2737 FrameScope scope(this, StackFrame::NONE);
2738 CallRuntime(Runtime::kAbort, 1);
2739 } else {
2740 CallRuntime(Runtime::kAbort, 1);
2741 }
2742 // will not return here
2743 int3();
2744}
2745
2746
2747void MacroAssembler::LoadInstanceDescriptors(Register map,
2748 Register descriptors) {
2749 mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
2750}
2751
2752
2753void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
2754 mov(dst, FieldOperand(map, Map::kBitField3Offset));
2755 DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
2756}
2757
2758
2759void MacroAssembler::LookupNumberStringCache(Register object,
2760 Register result,
2761 Register scratch1,
2762 Register scratch2,
2763 Label* not_found) {
2764 // Use of registers. Register result is used as a temporary.
2765 Register number_string_cache = result;
2766 Register mask = scratch1;
2767 Register scratch = scratch2;
2768
2769 // Load the number string cache.
2770 LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
2771 // Make the hash mask from the length of the number string cache. It
2772 // contains two elements (number and string) for each cache entry.
2773 mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
2774 shr(mask, kSmiTagSize + 1); // Untag length and divide it by two.
2775 sub(mask, Immediate(1)); // Make mask.
2776
2777 // Calculate the entry in the number string cache. The hash value in the
2778 // number string cache for smis is just the smi value, and the hash for
2779 // doubles is the xor of the upper and lower words. See
2780 // Heap::GetNumberStringCache.
2781 Label smi_hash_calculated;
2782 Label load_result_from_cache;
2783 Label not_smi;
2784 STATIC_ASSERT(kSmiTag == 0);
2785 JumpIfNotSmi(object, &not_smi, Label::kNear);
2786 mov(scratch, object);
2787 SmiUntag(scratch);
2788 jmp(&smi_hash_calculated, Label::kNear);
2789 bind(&not_smi);
2790 cmp(FieldOperand(object, HeapObject::kMapOffset),
2791 isolate()->factory()->heap_number_map());
2792 j(not_equal, not_found);
2793 STATIC_ASSERT(8 == kDoubleSize);
2794 mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
2795 xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
2796 // Object is heap number and hash is now in scratch. Calculate cache index.
2797 and_(scratch, mask);
2798 Register index = scratch;
2799 Register probe = mask;
2800 mov(probe,
2801 FieldOperand(number_string_cache,
2802 index,
2803 times_twice_pointer_size,
2804 FixedArray::kHeaderSize));
2805 JumpIfSmi(probe, not_found);
2806 fld_d(FieldOperand(object, HeapNumber::kValueOffset));
2807 fld_d(FieldOperand(probe, HeapNumber::kValueOffset));
2808 FCmp();
2809 j(parity_even, not_found); // Bail out if NaN is involved.
2810 j(not_equal, not_found); // The cache did not contain this value.
2811 jmp(&load_result_from_cache, Label::kNear);
2812
2813 bind(&smi_hash_calculated);
2814 // Object is smi and hash is now in scratch. Calculate cache index.
2815 and_(scratch, mask);
2816 // Check if the entry is the smi we are looking for.
2817 cmp(object,
2818 FieldOperand(number_string_cache,
2819 index,
2820 times_twice_pointer_size,
2821 FixedArray::kHeaderSize));
2822 j(not_equal, not_found);
2823
2824 // Get the result from the cache.
2825 bind(&load_result_from_cache);
2826 mov(result,
2827 FieldOperand(number_string_cache,
2828 index,
2829 times_twice_pointer_size,
2830 FixedArray::kHeaderSize + kPointerSize));
2831 IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
2832}
2833
2834
2835void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(
2836 Register instance_type, Register scratch, Label* failure) {
2837 if (!scratch.is(instance_type)) {
2838 mov(scratch, instance_type);
2839 }
2840 and_(scratch,
2841 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
2842 cmp(scratch, kStringTag | kSeqStringTag | kOneByteStringTag);
2843 j(not_equal, failure);
2844}
2845
2846
2847void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register object1,
2848 Register object2,
2849 Register scratch1,
2850 Register scratch2,
2851 Label* failure) {
2852 // Check that both objects are not smis.
2853 STATIC_ASSERT(kSmiTag == 0);
2854 mov(scratch1, object1);
2855 and_(scratch1, object2);
2856 JumpIfSmi(scratch1, failure);
2857
2858 // Load instance type for both strings.
2859 mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
2860 mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
2861 movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
2862 movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
2863
2864 // Check that both are flat one-byte strings.
2865 const int kFlatOneByteStringMask =
2866 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
2867 const int kFlatOneByteStringTag =
2868 kStringTag | kOneByteStringTag | kSeqStringTag;
2869 // Interleave bits from both instance types and compare them in one check.
2870 DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
2871 and_(scratch1, kFlatOneByteStringMask);
2872 and_(scratch2, kFlatOneByteStringMask);
2873 lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
2874 cmp(scratch1, kFlatOneByteStringTag | (kFlatOneByteStringTag << 3));
2875 j(not_equal, failure);
2876}
2877
2878
2879void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand,
2880 Label* not_unique_name,
2881 Label::Distance distance) {
2882 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2883 Label succeed;
2884 test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
2885 j(zero, &succeed);
2886 cmpb(operand, static_cast<uint8_t>(SYMBOL_TYPE));
2887 j(not_equal, not_unique_name, distance);
2888
2889 bind(&succeed);
2890}
2891
2892
2893void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
2894 Register index,
2895 Register value,
2896 uint32_t encoding_mask) {
2897 Label is_object;
2898 JumpIfNotSmi(string, &is_object, Label::kNear);
2899 Abort(kNonObject);
2900 bind(&is_object);
2901
2902 push(value);
2903 mov(value, FieldOperand(string, HeapObject::kMapOffset));
2904 movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset));
2905
2906 and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
2907 cmp(value, Immediate(encoding_mask));
2908 pop(value);
2909 Check(equal, kUnexpectedStringType);
2910
2911 // The index is assumed to be untagged coming in, tag it to compare with the
2912 // string length without using a temp register, it is restored at the end of
2913 // this function.
2914 SmiTag(index);
2915 Check(no_overflow, kIndexIsTooLarge);
2916
2917 cmp(index, FieldOperand(string, String::kLengthOffset));
2918 Check(less, kIndexIsTooLarge);
2919
2920 cmp(index, Immediate(Smi::FromInt(0)));
2921 Check(greater_equal, kIndexIsNegative);
2922
2923 // Restore the index
2924 SmiUntag(index);
2925}
2926
2927
2928void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
2929 int frame_alignment = base::OS::ActivationFrameAlignment();
2930 if (frame_alignment != 0) {
2931 // Make stack end at alignment and make room for num_arguments words
2932 // and the original value of esp.
2933 mov(scratch, esp);
2934 sub(esp, Immediate((num_arguments + 1) * kPointerSize));
2935 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
2936 and_(esp, -frame_alignment);
2937 mov(Operand(esp, num_arguments * kPointerSize), scratch);
2938 } else {
2939 sub(esp, Immediate(num_arguments * kPointerSize));
2940 }
2941}
2942
2943
2944void MacroAssembler::CallCFunction(ExternalReference function,
2945 int num_arguments) {
2946 // Trashing eax is ok as it will be the return value.
2947 mov(eax, Immediate(function));
2948 CallCFunction(eax, num_arguments);
2949}
2950
2951
2952void MacroAssembler::CallCFunction(Register function,
2953 int num_arguments) {
2954 DCHECK(has_frame());
2955 // Check stack alignment.
2956 if (emit_debug_code()) {
2957 CheckStackAlignment();
2958 }
2959
2960 call(function);
2961 if (base::OS::ActivationFrameAlignment() != 0) {
2962 mov(esp, Operand(esp, num_arguments * kPointerSize));
2963 } else {
2964 add(esp, Immediate(num_arguments * kPointerSize));
2965 }
2966}
2967
2968
2969#ifdef DEBUG
2970bool AreAliased(Register reg1,
2971 Register reg2,
2972 Register reg3,
2973 Register reg4,
2974 Register reg5,
2975 Register reg6,
2976 Register reg7,
2977 Register reg8) {
2978 int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
2979 reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
2980 reg7.is_valid() + reg8.is_valid();
2981
2982 RegList regs = 0;
2983 if (reg1.is_valid()) regs |= reg1.bit();
2984 if (reg2.is_valid()) regs |= reg2.bit();
2985 if (reg3.is_valid()) regs |= reg3.bit();
2986 if (reg4.is_valid()) regs |= reg4.bit();
2987 if (reg5.is_valid()) regs |= reg5.bit();
2988 if (reg6.is_valid()) regs |= reg6.bit();
2989 if (reg7.is_valid()) regs |= reg7.bit();
2990 if (reg8.is_valid()) regs |= reg8.bit();
2991 int n_of_non_aliasing_regs = NumRegs(regs);
2992
2993 return n_of_valid_regs != n_of_non_aliasing_regs;
2994}
2995#endif
2996
2997
2998CodePatcher::CodePatcher(byte* address, int size)
2999 : address_(address),
3000 size_(size),
3001 masm_(NULL, address, size + Assembler::kGap) {
3002 // Create a new macro assembler pointing to the address of the code to patch.
3003 // The size is adjusted with kGap on order for the assembler to generate size
3004 // bytes of instructions without failing with buffer size constraints.
3005 DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3006}
3007
3008
3009CodePatcher::~CodePatcher() {
3010 // Indicate that code has changed.
3011 CpuFeatures::FlushICache(address_, size_);
3012
3013 // Check that the code was patched as expected.
3014 DCHECK(masm_.pc_ == address_ + size_);
3015 DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3016}
3017
3018
3019void MacroAssembler::CheckPageFlag(
3020 Register object,
3021 Register scratch,
3022 int mask,
3023 Condition cc,
3024 Label* condition_met,
3025 Label::Distance condition_met_distance) {
3026 DCHECK(cc == zero || cc == not_zero);
3027 if (scratch.is(object)) {
3028 and_(scratch, Immediate(~Page::kPageAlignmentMask));
3029 } else {
3030 mov(scratch, Immediate(~Page::kPageAlignmentMask));
3031 and_(scratch, object);
3032 }
3033 if (mask < (1 << kBitsPerByte)) {
3034 test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
3035 static_cast<uint8_t>(mask));
3036 } else {
3037 test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
3038 }
3039 j(cc, condition_met, condition_met_distance);
3040}
3041
3042
3043void MacroAssembler::CheckPageFlagForMap(
3044 Handle<Map> map,
3045 int mask,
3046 Condition cc,
3047 Label* condition_met,
3048 Label::Distance condition_met_distance) {
3049 DCHECK(cc == zero || cc == not_zero);
3050 Page* page = Page::FromAddress(map->address());
3051 DCHECK(!serializer_enabled()); // Serializer cannot match page_flags.
3052 ExternalReference reference(ExternalReference::page_flags(page));
3053 // The inlined static address check of the page's flags relies
3054 // on maps never being compacted.
3055 DCHECK(!isolate()->heap()->mark_compact_collector()->
3056 IsOnEvacuationCandidate(*map));
3057 if (mask < (1 << kBitsPerByte)) {
3058 test_b(Operand::StaticVariable(reference), static_cast<uint8_t>(mask));
3059 } else {
3060 test(Operand::StaticVariable(reference), Immediate(mask));
3061 }
3062 j(cc, condition_met, condition_met_distance);
3063}
3064
3065
3066void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
3067 Register scratch,
3068 Label* if_deprecated) {
3069 if (map->CanBeDeprecated()) {
3070 mov(scratch, map);
3071 mov(scratch, FieldOperand(scratch, Map::kBitField3Offset));
3072 and_(scratch, Immediate(Map::Deprecated::kMask));
3073 j(not_zero, if_deprecated);
3074 }
3075}
3076
3077
3078void MacroAssembler::JumpIfBlack(Register object,
3079 Register scratch0,
3080 Register scratch1,
3081 Label* on_black,
3082 Label::Distance on_black_near) {
3083 HasColor(object, scratch0, scratch1,
3084 on_black, on_black_near,
3085 1, 0); // kBlackBitPattern.
3086 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
3087}
3088
3089
3090void MacroAssembler::HasColor(Register object,
3091 Register bitmap_scratch,
3092 Register mask_scratch,
3093 Label* has_color,
3094 Label::Distance has_color_distance,
3095 int first_bit,
3096 int second_bit) {
3097 DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, ecx));
3098
3099 GetMarkBits(object, bitmap_scratch, mask_scratch);
3100
3101 Label other_color, word_boundary;
3102 test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3103 j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear);
3104 add(mask_scratch, mask_scratch); // Shift left 1 by adding.
3105 j(zero, &word_boundary, Label::kNear);
3106 test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3107 j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
3108 jmp(&other_color, Label::kNear);
3109
3110 bind(&word_boundary);
3111 test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), 1);
3112
3113 j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
3114 bind(&other_color);
3115}
3116
3117
3118void MacroAssembler::GetMarkBits(Register addr_reg,
3119 Register bitmap_reg,
3120 Register mask_reg) {
3121 DCHECK(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx));
3122 mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
3123 and_(bitmap_reg, addr_reg);
3124 mov(ecx, addr_reg);
3125 int shift =
3126 Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
3127 shr(ecx, shift);
3128 and_(ecx,
3129 (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1));
3130
3131 add(bitmap_reg, ecx);
3132 mov(ecx, addr_reg);
3133 shr(ecx, kPointerSizeLog2);
3134 and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1);
3135 mov(mask_reg, Immediate(1));
3136 shl_cl(mask_reg);
3137}
3138
3139
3140void MacroAssembler::EnsureNotWhite(
3141 Register value,
3142 Register bitmap_scratch,
3143 Register mask_scratch,
3144 Label* value_is_white_and_not_data,
3145 Label::Distance distance) {
3146 DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ecx));
3147 GetMarkBits(value, bitmap_scratch, mask_scratch);
3148
3149 // If the value is black or grey we don't need to do anything.
3150 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
3151 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
3152 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
3153 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
3154
3155 Label done;
3156
3157 // Since both black and grey have a 1 in the first position and white does
3158 // not have a 1 there we only need to check one bit.
3159 test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3160 j(not_zero, &done, Label::kNear);
3161
3162 if (emit_debug_code()) {
3163 // Check for impossible bit pattern.
3164 Label ok;
3165 push(mask_scratch);
3166 // shl. May overflow making the check conservative.
3167 add(mask_scratch, mask_scratch);
3168 test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3169 j(zero, &ok, Label::kNear);
3170 int3();
3171 bind(&ok);
3172 pop(mask_scratch);
3173 }
3174
3175 // Value is white. We check whether it is data that doesn't need scanning.
3176 // Currently only checks for HeapNumber and non-cons strings.
3177 Register map = ecx; // Holds map while checking type.
3178 Register length = ecx; // Holds length of object after checking type.
3179 Label not_heap_number;
3180 Label is_data_object;
3181
3182 // Check for heap-number
3183 mov(map, FieldOperand(value, HeapObject::kMapOffset));
3184 cmp(map, isolate()->factory()->heap_number_map());
3185 j(not_equal, &not_heap_number, Label::kNear);
3186 mov(length, Immediate(HeapNumber::kSize));
3187 jmp(&is_data_object, Label::kNear);
3188
3189 bind(&not_heap_number);
3190 // Check for strings.
3191 DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
3192 DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
3193 // If it's a string and it's not a cons string then it's an object containing
3194 // no GC pointers.
3195 Register instance_type = ecx;
3196 movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
3197 test_b(instance_type, kIsIndirectStringMask | kIsNotStringMask);
3198 j(not_zero, value_is_white_and_not_data);
3199 // It's a non-indirect (non-cons and non-slice) string.
3200 // If it's external, the length is just ExternalString::kSize.
3201 // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
3202 Label not_external;
3203 // External strings are the only ones with the kExternalStringTag bit
3204 // set.
3205 DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
3206 DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
3207 test_b(instance_type, kExternalStringTag);
3208 j(zero, &not_external, Label::kNear);
3209 mov(length, Immediate(ExternalString::kSize));
3210 jmp(&is_data_object, Label::kNear);
3211
3212 bind(&not_external);
3213 // Sequential string, either Latin1 or UC16.
3214 DCHECK(kOneByteStringTag == 0x04);
3215 and_(length, Immediate(kStringEncodingMask));
3216 xor_(length, Immediate(kStringEncodingMask));
3217 add(length, Immediate(0x04));
3218 // Value now either 4 (if Latin1) or 8 (if UC16), i.e., char-size shifted
3219 // by 2. If we multiply the string length as smi by this, it still
3220 // won't overflow a 32-bit value.
3221 DCHECK_EQ(SeqOneByteString::kMaxSize, SeqTwoByteString::kMaxSize);
3222 DCHECK(SeqOneByteString::kMaxSize <=
3223 static_cast<int>(0xffffffffu >> (2 + kSmiTagSize)));
3224 imul(length, FieldOperand(value, String::kLengthOffset));
3225 shr(length, 2 + kSmiTagSize + kSmiShiftSize);
3226 add(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
3227 and_(length, Immediate(~kObjectAlignmentMask));
3228
3229 bind(&is_data_object);
3230 // Value is a data object, and it is white. Mark it black. Since we know
3231 // that the object is white we can make it black by flipping one bit.
3232 or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
3233
3234 and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
3235 add(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset),
3236 length);
3237 if (emit_debug_code()) {
3238 mov(length, Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
3239 cmp(length, Operand(bitmap_scratch, MemoryChunk::kSizeOffset));
3240 Check(less_equal, kLiveBytesCountOverflowChunkSize);
3241 }
3242
3243 bind(&done);
3244}
3245
3246
3247void MacroAssembler::EnumLength(Register dst, Register map) {
3248 STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
3249 mov(dst, FieldOperand(map, Map::kBitField3Offset));
3250 and_(dst, Immediate(Map::EnumLengthBits::kMask));
3251 SmiTag(dst);
3252}
3253
3254
3255void MacroAssembler::CheckEnumCache(Label* call_runtime) {
3256 Label next, start;
3257 mov(ecx, eax);
3258
3259 // Check if the enum length field is properly initialized, indicating that
3260 // there is an enum cache.
3261 mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
3262
3263 EnumLength(edx, ebx);
3264 cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel)));
3265 j(equal, call_runtime);
3266
3267 jmp(&start);
3268
3269 bind(&next);
3270 mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
3271
3272 // For all objects but the receiver, check that the cache is empty.
3273 EnumLength(edx, ebx);
3274 cmp(edx, Immediate(Smi::FromInt(0)));
3275 j(not_equal, call_runtime);
3276
3277 bind(&start);
3278
3279 // Check that there are no elements. Register rcx contains the current JS
3280 // object we've reached through the prototype chain.
3281 Label no_elements;
3282 mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset));
3283 cmp(ecx, isolate()->factory()->empty_fixed_array());
3284 j(equal, &no_elements);
3285
3286 // Second chance, the object may be using the empty slow element dictionary.
3287 cmp(ecx, isolate()->factory()->empty_slow_element_dictionary());
3288 j(not_equal, call_runtime);
3289
3290 bind(&no_elements);
3291 mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
3292 cmp(ecx, isolate()->factory()->null_value());
3293 j(not_equal, &next);
3294}
3295
3296
3297void MacroAssembler::TestJSArrayForAllocationMemento(
3298 Register receiver_reg,
3299 Register scratch_reg,
3300 Label* no_memento_found) {
3301 ExternalReference new_space_start =
3302 ExternalReference::new_space_start(isolate());
3303 ExternalReference new_space_allocation_top =
3304 ExternalReference::new_space_allocation_top_address(isolate());
3305
3306 lea(scratch_reg, Operand(receiver_reg,
3307 JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
3308 cmp(scratch_reg, Immediate(new_space_start));
3309 j(less, no_memento_found);
3310 cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
3311 j(greater, no_memento_found);
3312 cmp(MemOperand(scratch_reg, -AllocationMemento::kSize),
3313 Immediate(isolate()->factory()->allocation_memento_map()));
3314}
3315
3316
3317void MacroAssembler::JumpIfDictionaryInPrototypeChain(
3318 Register object,
3319 Register scratch0,
3320 Register scratch1,
3321 Label* found) {
3322 DCHECK(!scratch1.is(scratch0));
3323 Factory* factory = isolate()->factory();
3324 Register current = scratch0;
3325 Label loop_again;
3326
3327 // scratch contained elements pointer.
3328 mov(current, object);
3329
3330 // Loop based on the map going up the prototype chain.
3331 bind(&loop_again);
3332 mov(current, FieldOperand(current, HeapObject::kMapOffset));
3333 mov(scratch1, FieldOperand(current, Map::kBitField2Offset));
3334 DecodeField<Map::ElementsKindBits>(scratch1);
3335 cmp(scratch1, Immediate(DICTIONARY_ELEMENTS));
3336 j(equal, found);
3337 mov(current, FieldOperand(current, Map::kPrototypeOffset));
3338 cmp(current, Immediate(factory->null_value()));
3339 j(not_equal, &loop_again);
3340}
3341
3342
3343void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) {
3344 DCHECK(!dividend.is(eax));
3345 DCHECK(!dividend.is(edx));
3346 base::MagicNumbersForDivision<uint32_t> mag =
3347 base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
3348 mov(eax, Immediate(mag.multiplier));
3349 imul(dividend);
3350 bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
3351 if (divisor > 0 && neg) add(edx, dividend);
3352 if (divisor < 0 && !neg && mag.multiplier > 0) sub(edx, dividend);
3353 if (mag.shift > 0) sar(edx, mag.shift);
3354 mov(eax, dividend);
3355 shr(eax, 31);
3356 add(edx, eax);
3357}
3358
3359
3360} } // namespace v8::internal
3361
3362#endif // V8_TARGET_ARCH_X87