blob: 9c7f9b618de21dcc013a9f2cc794aa33b1e2bf7c [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_X64_ASSEMBLER_X64_INL_H_
29#define V8_X64_ASSEMBLER_X64_INL_H_
30
31#include "cpu.h"
32#include "memory.h"
33
34namespace v8 {
35namespace internal {
36
37Condition NegateCondition(Condition cc) {
38 return static_cast<Condition>(cc ^ 1);
39}
40
Steve Blocka7e24c12009-10-30 11:49:00 +000041
42// -----------------------------------------------------------------------------
43// Implementation of Assembler
44
45
46
47void Assembler::emitl(uint32_t x) {
48 Memory::uint32_at(pc_) = x;
49 pc_ += sizeof(uint32_t);
50}
51
52
53void Assembler::emitq(uint64_t x, RelocInfo::Mode rmode) {
54 Memory::uint64_at(pc_) = x;
55 if (rmode != RelocInfo::NONE) {
56 RecordRelocInfo(rmode, x);
57 }
58 pc_ += sizeof(uint64_t);
59}
60
61
62void Assembler::emitw(uint16_t x) {
63 Memory::uint16_at(pc_) = x;
64 pc_ += sizeof(uint16_t);
65}
66
67
Steve Block3ce2e202009-11-05 08:53:23 +000068void Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode) {
69 ASSERT(RelocInfo::IsCodeTarget(rmode));
70 RecordRelocInfo(rmode);
71 int current = code_targets_.length();
72 if (current > 0 && code_targets_.last().is_identical_to(target)) {
73 // Optimization if we keep jumping to the same code target.
74 emitl(current - 1);
75 } else {
76 code_targets_.Add(target);
77 emitl(current);
78 }
79}
80
81
Steve Blocka7e24c12009-10-30 11:49:00 +000082void Assembler::emit_rex_64(Register reg, Register rm_reg) {
83 emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
84}
85
86
87void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
88 emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
89}
90
91
92void Assembler::emit_rex_64(Register reg, const Operand& op) {
93 emit(0x48 | reg.high_bit() << 2 | op.rex_);
94}
95
96
97void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
98 emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
99}
100
101
102void Assembler::emit_rex_64(Register rm_reg) {
103 ASSERT_EQ(rm_reg.code() & 0xf, rm_reg.code());
104 emit(0x48 | rm_reg.high_bit());
105}
106
107
108void Assembler::emit_rex_64(const Operand& op) {
109 emit(0x48 | op.rex_);
110}
111
112
113void Assembler::emit_rex_32(Register reg, Register rm_reg) {
114 emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
115}
116
117
118void Assembler::emit_rex_32(Register reg, const Operand& op) {
119 emit(0x40 | reg.high_bit() << 2 | op.rex_);
120}
121
122
123void Assembler::emit_rex_32(Register rm_reg) {
124 emit(0x40 | rm_reg.high_bit());
125}
126
127
128void Assembler::emit_rex_32(const Operand& op) {
129 emit(0x40 | op.rex_);
130}
131
132
133void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
134 byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
135 if (rex_bits != 0) emit(0x40 | rex_bits);
136}
137
138
139void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
140 byte rex_bits = reg.high_bit() << 2 | op.rex_;
141 if (rex_bits != 0) emit(0x40 | rex_bits);
142}
143
144
145void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
146 byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_;
147 if (rex_bits != 0) emit(0x40 | rex_bits);
148}
149
150
151void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
152 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
153 if (rex_bits != 0) emit(0x40 | rex_bits);
154}
155
156
157void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
158 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
159 if (rex_bits != 0) emit(0x40 | rex_bits);
160}
161
162
163void Assembler::emit_optional_rex_32(Register rm_reg) {
164 if (rm_reg.high_bit()) emit(0x41);
165}
166
167
168void Assembler::emit_optional_rex_32(const Operand& op) {
169 if (op.rex_ != 0) emit(0x40 | op.rex_);
170}
171
172
173Address Assembler::target_address_at(Address pc) {
Steve Block3ce2e202009-11-05 08:53:23 +0000174 return Memory::int32_at(pc) + pc + 4;
Steve Blocka7e24c12009-10-30 11:49:00 +0000175}
176
177
178void Assembler::set_target_address_at(Address pc, Address target) {
Steve Blockd0582a62009-12-15 09:54:21 +0000179 Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
Steve Block3ce2e202009-11-05 08:53:23 +0000180 CPU::FlushICache(pc, sizeof(int32_t));
Steve Blocka7e24c12009-10-30 11:49:00 +0000181}
182
Steve Block3ce2e202009-11-05 08:53:23 +0000183Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
184 return code_targets_[Memory::int32_at(pc)];
185}
Steve Blocka7e24c12009-10-30 11:49:00 +0000186
187// -----------------------------------------------------------------------------
188// Implementation of RelocInfo
189
190// The modes possibly affected by apply must be in kApplyMask.
191void RelocInfo::apply(intptr_t delta) {
192 if (IsInternalReference(rmode_)) {
193 // absolute code pointer inside code object moves with the code object.
Steve Blockd0582a62009-12-15 09:54:21 +0000194 Memory::Address_at(pc_) += static_cast<int32_t>(delta);
Steve Block3ce2e202009-11-05 08:53:23 +0000195 } else if (IsCodeTarget(rmode_)) {
Steve Blockd0582a62009-12-15 09:54:21 +0000196 Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
Steve Block3ce2e202009-11-05 08:53:23 +0000197 } else if (rmode_ == JS_RETURN && IsPatchedReturnSequence()) {
198 // Special handling of js_return when a break point is set (call
199 // instruction has been inserted).
Steve Blockd0582a62009-12-15 09:54:21 +0000200 Memory::int32_at(pc_ + 1) -= static_cast<int32_t>(delta); // relocate entry
Steve Blocka7e24c12009-10-30 11:49:00 +0000201 }
202}
203
204
205Address RelocInfo::target_address() {
206 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
Steve Block3ce2e202009-11-05 08:53:23 +0000207 if (IsCodeTarget(rmode_)) {
208 return Assembler::target_address_at(pc_);
209 } else {
210 return Memory::Address_at(pc_);
211 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000212}
213
214
215Address RelocInfo::target_address_address() {
216 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
217 return reinterpret_cast<Address>(pc_);
218}
219
220
221void RelocInfo::set_target_address(Address target) {
222 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
Steve Block3ce2e202009-11-05 08:53:23 +0000223 if (IsCodeTarget(rmode_)) {
224 Assembler::set_target_address_at(pc_, target);
225 } else {
226 Memory::Address_at(pc_) = target;
227 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000228}
229
230
231Object* RelocInfo::target_object() {
232 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
Steve Block3ce2e202009-11-05 08:53:23 +0000233 return Memory::Object_at(pc_);
234}
235
236
237Handle<Object> RelocInfo::target_object_handle(Assembler *origin) {
238 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
239 if (rmode_ == EMBEDDED_OBJECT) {
240 return Memory::Object_Handle_at(pc_);
241 } else {
242 return origin->code_target_object_handle_at(pc_);
243 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000244}
245
246
247Object** RelocInfo::target_object_address() {
248 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
249 return reinterpret_cast<Object**>(pc_);
250}
251
252
253Address* RelocInfo::target_reference_address() {
254 ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
255 return reinterpret_cast<Address*>(pc_);
256}
257
258
259void RelocInfo::set_target_object(Object* target) {
260 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
261 *reinterpret_cast<Object**>(pc_) = target;
262}
263
264
Steve Block3ce2e202009-11-05 08:53:23 +0000265bool RelocInfo::IsPatchedReturnSequence() {
Steve Blocka7e24c12009-10-30 11:49:00 +0000266 // The recognized call sequence is:
267 // movq(kScratchRegister, immediate64); call(kScratchRegister);
268 // It only needs to be distinguished from a return sequence
269 // movq(rsp, rbp); pop(rbp); ret(n); int3 *6
270 // The 11th byte is int3 (0xCC) in the return sequence and
271 // REX.WB (0x48+register bit) for the call sequence.
Steve Block3ce2e202009-11-05 08:53:23 +0000272#ifdef ENABLE_DEBUGGER_SUPPORT
Steve Blocka7e24c12009-10-30 11:49:00 +0000273 return pc_[10] != 0xCC;
Steve Block3ce2e202009-11-05 08:53:23 +0000274#else
275 return false;
276#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000277}
278
279
280Address RelocInfo::call_address() {
Steve Block3ce2e202009-11-05 08:53:23 +0000281 ASSERT(IsPatchedReturnSequence());
282 return Memory::Address_at(
283 pc_ + Assembler::kRealPatchReturnSequenceAddressOffset);
Steve Blocka7e24c12009-10-30 11:49:00 +0000284}
285
286
287void RelocInfo::set_call_address(Address target) {
Steve Block3ce2e202009-11-05 08:53:23 +0000288 ASSERT(IsPatchedReturnSequence());
289 Memory::Address_at(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset) =
290 target;
Steve Blocka7e24c12009-10-30 11:49:00 +0000291}
292
293
294Object* RelocInfo::call_object() {
Steve Block3ce2e202009-11-05 08:53:23 +0000295 ASSERT(IsPatchedReturnSequence());
Steve Blocka7e24c12009-10-30 11:49:00 +0000296 return *call_object_address();
297}
298
299
300void RelocInfo::set_call_object(Object* target) {
Steve Block3ce2e202009-11-05 08:53:23 +0000301 ASSERT(IsPatchedReturnSequence());
Steve Blocka7e24c12009-10-30 11:49:00 +0000302 *call_object_address() = target;
303}
304
305
306Object** RelocInfo::call_object_address() {
Steve Block3ce2e202009-11-05 08:53:23 +0000307 ASSERT(IsPatchedReturnSequence());
Steve Blocka7e24c12009-10-30 11:49:00 +0000308 return reinterpret_cast<Object**>(
309 pc_ + Assembler::kPatchReturnSequenceAddressOffset);
310}
311
312// -----------------------------------------------------------------------------
313// Implementation of Operand
314
315void Operand::set_modrm(int mod, Register rm_reg) {
316 ASSERT(is_uint2(mod));
317 buf_[0] = mod << 6 | rm_reg.low_bits();
318 // Set REX.B to the high bit of rm.code().
319 rex_ |= rm_reg.high_bit();
320}
321
322
323void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
324 ASSERT(len_ == 1);
325 ASSERT(is_uint2(scale));
326 // Use SIB with no index register only for base rsp or r12. Otherwise we
327 // would skip the SIB byte entirely.
328 ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12));
329 buf_[1] = scale << 6 | index.low_bits() << 3 | base.low_bits();
330 rex_ |= index.high_bit() << 1 | base.high_bit();
331 len_ = 2;
332}
333
334void Operand::set_disp8(int disp) {
335 ASSERT(is_int8(disp));
336 ASSERT(len_ == 1 || len_ == 2);
337 int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
338 *p = disp;
339 len_ += sizeof(int8_t);
340}
341
342void Operand::set_disp32(int disp) {
343 ASSERT(len_ == 1 || len_ == 2);
344 int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
345 *p = disp;
346 len_ += sizeof(int32_t);
347}
348
349
350} } // namespace v8::internal
351
352#endif // V8_X64_ASSEMBLER_X64_INL_H_