blob: 0253e7cdccb326656ab20c1aa27875d45f8c7f47 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_ARM64
8
9#include "src/base/bits.h"
10#include "src/base/division-by-constant.h"
11#include "src/bootstrapper.h"
12#include "src/codegen.h"
13#include "src/cpu-profiler.h"
14#include "src/debug.h"
15#include "src/isolate-inl.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040016#include "src/runtime/runtime.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000017
18namespace v8 {
19namespace internal {
20
21// Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
22#define __
23
24
25MacroAssembler::MacroAssembler(Isolate* arg_isolate,
26 byte * buffer,
27 unsigned buffer_size)
28 : Assembler(arg_isolate, buffer, buffer_size),
29 generating_stub_(false),
30#if DEBUG
31 allow_macro_instructions_(true),
32#endif
33 has_frame_(false),
34 use_real_aborts_(true),
35 sp_(jssp),
36 tmp_list_(DefaultTmpList()),
37 fptmp_list_(DefaultFPTmpList()) {
38 if (isolate() != NULL) {
39 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
40 isolate());
41 }
42}
43
44
45CPURegList MacroAssembler::DefaultTmpList() {
46 return CPURegList(ip0, ip1);
47}
48
49
50CPURegList MacroAssembler::DefaultFPTmpList() {
51 return CPURegList(fp_scratch1, fp_scratch2);
52}
53
54
55void MacroAssembler::LogicalMacro(const Register& rd,
56 const Register& rn,
57 const Operand& operand,
58 LogicalOp op) {
59 UseScratchRegisterScope temps(this);
60
61 if (operand.NeedsRelocation(this)) {
62 Register temp = temps.AcquireX();
63 Ldr(temp, operand.immediate());
64 Logical(rd, rn, temp, op);
65
66 } else if (operand.IsImmediate()) {
67 int64_t immediate = operand.ImmediateValue();
68 unsigned reg_size = rd.SizeInBits();
69
70 // If the operation is NOT, invert the operation and immediate.
71 if ((op & NOT) == NOT) {
72 op = static_cast<LogicalOp>(op & ~NOT);
73 immediate = ~immediate;
74 }
75
76 // Ignore the top 32 bits of an immediate if we're moving to a W register.
77 if (rd.Is32Bits()) {
78 // Check that the top 32 bits are consistent.
79 DCHECK(((immediate >> kWRegSizeInBits) == 0) ||
80 ((immediate >> kWRegSizeInBits) == -1));
81 immediate &= kWRegMask;
82 }
83
84 DCHECK(rd.Is64Bits() || is_uint32(immediate));
85
86 // Special cases for all set or all clear immediates.
87 if (immediate == 0) {
88 switch (op) {
89 case AND:
90 Mov(rd, 0);
91 return;
92 case ORR: // Fall through.
93 case EOR:
94 Mov(rd, rn);
95 return;
96 case ANDS: // Fall through.
97 case BICS:
98 break;
99 default:
100 UNREACHABLE();
101 }
102 } else if ((rd.Is64Bits() && (immediate == -1L)) ||
103 (rd.Is32Bits() && (immediate == 0xffffffffL))) {
104 switch (op) {
105 case AND:
106 Mov(rd, rn);
107 return;
108 case ORR:
109 Mov(rd, immediate);
110 return;
111 case EOR:
112 Mvn(rd, rn);
113 return;
114 case ANDS: // Fall through.
115 case BICS:
116 break;
117 default:
118 UNREACHABLE();
119 }
120 }
121
122 unsigned n, imm_s, imm_r;
123 if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
124 // Immediate can be encoded in the instruction.
125 LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
126 } else {
127 // Immediate can't be encoded: synthesize using move immediate.
128 Register temp = temps.AcquireSameSizeAs(rn);
129 Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate);
130 if (rd.Is(csp)) {
131 // If rd is the stack pointer we cannot use it as the destination
132 // register so we use the temp register as an intermediate again.
133 Logical(temp, rn, imm_operand, op);
134 Mov(csp, temp);
135 AssertStackConsistency();
136 } else {
137 Logical(rd, rn, imm_operand, op);
138 }
139 }
140
141 } else if (operand.IsExtendedRegister()) {
142 DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
143 // Add/sub extended supports shift <= 4. We want to support exactly the
144 // same modes here.
145 DCHECK(operand.shift_amount() <= 4);
146 DCHECK(operand.reg().Is64Bits() ||
147 ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
148 Register temp = temps.AcquireSameSizeAs(rn);
149 EmitExtendShift(temp, operand.reg(), operand.extend(),
150 operand.shift_amount());
151 Logical(rd, rn, temp, op);
152
153 } else {
154 // The operand can be encoded in the instruction.
155 DCHECK(operand.IsShiftedRegister());
156 Logical(rd, rn, operand, op);
157 }
158}
159
160
161void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
162 DCHECK(allow_macro_instructions_);
163 DCHECK(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
164 DCHECK(!rd.IsZero());
165
166 // TODO(all) extend to support more immediates.
167 //
168 // Immediates on Aarch64 can be produced using an initial value, and zero to
169 // three move keep operations.
170 //
171 // Initial values can be generated with:
172 // 1. 64-bit move zero (movz).
173 // 2. 32-bit move inverted (movn).
174 // 3. 64-bit move inverted.
175 // 4. 32-bit orr immediate.
176 // 5. 64-bit orr immediate.
177 // Move-keep may then be used to modify each of the 16-bit half-words.
178 //
179 // The code below supports all five initial value generators, and
180 // applying move-keep operations to move-zero and move-inverted initial
181 // values.
182
183 // Try to move the immediate in one instruction, and if that fails, switch to
184 // using multiple instructions.
185 if (!TryOneInstrMoveImmediate(rd, imm)) {
186 unsigned reg_size = rd.SizeInBits();
187
188 // Generic immediate case. Imm will be represented by
189 // [imm3, imm2, imm1, imm0], where each imm is 16 bits.
190 // A move-zero or move-inverted is generated for the first non-zero or
191 // non-0xffff immX, and a move-keep for subsequent non-zero immX.
192
193 uint64_t ignored_halfword = 0;
194 bool invert_move = false;
195 // If the number of 0xffff halfwords is greater than the number of 0x0000
196 // halfwords, it's more efficient to use move-inverted.
197 if (CountClearHalfWords(~imm, reg_size) >
198 CountClearHalfWords(imm, reg_size)) {
199 ignored_halfword = 0xffffL;
200 invert_move = true;
201 }
202
203 // Mov instructions can't move immediate values into the stack pointer, so
204 // set up a temporary register, if needed.
205 UseScratchRegisterScope temps(this);
206 Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
207
208 // Iterate through the halfwords. Use movn/movz for the first non-ignored
209 // halfword, and movk for subsequent halfwords.
210 DCHECK((reg_size % 16) == 0);
211 bool first_mov_done = false;
212 for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) {
213 uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
214 if (imm16 != ignored_halfword) {
215 if (!first_mov_done) {
216 if (invert_move) {
217 movn(temp, (~imm16) & 0xffffL, 16 * i);
218 } else {
219 movz(temp, imm16, 16 * i);
220 }
221 first_mov_done = true;
222 } else {
223 // Construct a wider constant.
224 movk(temp, imm16, 16 * i);
225 }
226 }
227 }
228 DCHECK(first_mov_done);
229
230 // Move the temporary if the original destination register was the stack
231 // pointer.
232 if (rd.IsSP()) {
233 mov(rd, temp);
234 AssertStackConsistency();
235 }
236 }
237}
238
239
240void MacroAssembler::Mov(const Register& rd,
241 const Operand& operand,
242 DiscardMoveMode discard_mode) {
243 DCHECK(allow_macro_instructions_);
244 DCHECK(!rd.IsZero());
245
246 // Provide a swap register for instructions that need to write into the
247 // system stack pointer (and can't do this inherently).
248 UseScratchRegisterScope temps(this);
249 Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd;
250
251 if (operand.NeedsRelocation(this)) {
252 Ldr(dst, operand.immediate());
253
254 } else if (operand.IsImmediate()) {
255 // Call the macro assembler for generic immediates.
256 Mov(dst, operand.ImmediateValue());
257
258 } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
259 // Emit a shift instruction if moving a shifted register. This operation
260 // could also be achieved using an orr instruction (like orn used by Mvn),
261 // but using a shift instruction makes the disassembly clearer.
262 EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
263
264 } else if (operand.IsExtendedRegister()) {
265 // Emit an extend instruction if moving an extended register. This handles
266 // extend with post-shift operations, too.
267 EmitExtendShift(dst, operand.reg(), operand.extend(),
268 operand.shift_amount());
269
270 } else {
271 // Otherwise, emit a register move only if the registers are distinct, or
272 // if they are not X registers.
273 //
274 // Note that mov(w0, w0) is not a no-op because it clears the top word of
275 // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
276 // registers is not required to clear the top word of the X register. In
277 // this case, the instruction is discarded.
278 //
279 // If csp is an operand, add #0 is emitted, otherwise, orr #0.
280 if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
281 (discard_mode == kDontDiscardForSameWReg))) {
282 Assembler::mov(rd, operand.reg());
283 }
284 // This case can handle writes into the system stack pointer directly.
285 dst = rd;
286 }
287
288 // Copy the result to the system stack pointer.
289 if (!dst.Is(rd)) {
290 DCHECK(rd.IsSP());
291 Assembler::mov(rd, dst);
292 }
293}
294
295
296void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
297 DCHECK(allow_macro_instructions_);
298
299 if (operand.NeedsRelocation(this)) {
300 Ldr(rd, operand.immediate());
301 mvn(rd, rd);
302
303 } else if (operand.IsImmediate()) {
304 // Call the macro assembler for generic immediates.
305 Mov(rd, ~operand.ImmediateValue());
306
307 } else if (operand.IsExtendedRegister()) {
308 // Emit two instructions for the extend case. This differs from Mov, as
309 // the extend and invert can't be achieved in one instruction.
310 EmitExtendShift(rd, operand.reg(), operand.extend(),
311 operand.shift_amount());
312 mvn(rd, rd);
313
314 } else {
315 mvn(rd, operand);
316 }
317}
318
319
320unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
321 DCHECK((reg_size % 8) == 0);
322 int count = 0;
323 for (unsigned i = 0; i < (reg_size / 16); i++) {
324 if ((imm & 0xffff) == 0) {
325 count++;
326 }
327 imm >>= 16;
328 }
329 return count;
330}
331
332
333// The movz instruction can generate immediates containing an arbitrary 16-bit
334// half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
335bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
336 DCHECK((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
337 return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
338}
339
340
341// The movn instruction can generate immediates containing an arbitrary 16-bit
342// half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
343bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
344 return IsImmMovz(~imm, reg_size);
345}
346
347
348void MacroAssembler::ConditionalCompareMacro(const Register& rn,
349 const Operand& operand,
350 StatusFlags nzcv,
351 Condition cond,
352 ConditionalCompareOp op) {
353 DCHECK((cond != al) && (cond != nv));
354 if (operand.NeedsRelocation(this)) {
355 UseScratchRegisterScope temps(this);
356 Register temp = temps.AcquireX();
357 Ldr(temp, operand.immediate());
358 ConditionalCompareMacro(rn, temp, nzcv, cond, op);
359
360 } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
361 (operand.IsImmediate() &&
362 IsImmConditionalCompare(operand.ImmediateValue()))) {
363 // The immediate can be encoded in the instruction, or the operand is an
364 // unshifted register: call the assembler.
365 ConditionalCompare(rn, operand, nzcv, cond, op);
366
367 } else {
368 // The operand isn't directly supported by the instruction: perform the
369 // operation on a temporary register.
370 UseScratchRegisterScope temps(this);
371 Register temp = temps.AcquireSameSizeAs(rn);
372 Mov(temp, operand);
373 ConditionalCompare(rn, temp, nzcv, cond, op);
374 }
375}
376
377
378void MacroAssembler::Csel(const Register& rd,
379 const Register& rn,
380 const Operand& operand,
381 Condition cond) {
382 DCHECK(allow_macro_instructions_);
383 DCHECK(!rd.IsZero());
384 DCHECK((cond != al) && (cond != nv));
385 if (operand.IsImmediate()) {
386 // Immediate argument. Handle special cases of 0, 1 and -1 using zero
387 // register.
388 int64_t imm = operand.ImmediateValue();
389 Register zr = AppropriateZeroRegFor(rn);
390 if (imm == 0) {
391 csel(rd, rn, zr, cond);
392 } else if (imm == 1) {
393 csinc(rd, rn, zr, cond);
394 } else if (imm == -1) {
395 csinv(rd, rn, zr, cond);
396 } else {
397 UseScratchRegisterScope temps(this);
398 Register temp = temps.AcquireSameSizeAs(rn);
399 Mov(temp, imm);
400 csel(rd, rn, temp, cond);
401 }
402 } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
403 // Unshifted register argument.
404 csel(rd, rn, operand.reg(), cond);
405 } else {
406 // All other arguments.
407 UseScratchRegisterScope temps(this);
408 Register temp = temps.AcquireSameSizeAs(rn);
409 Mov(temp, operand);
410 csel(rd, rn, temp, cond);
411 }
412}
413
414
415bool MacroAssembler::TryOneInstrMoveImmediate(const Register& dst,
416 int64_t imm) {
417 unsigned n, imm_s, imm_r;
418 int reg_size = dst.SizeInBits();
419 if (IsImmMovz(imm, reg_size) && !dst.IsSP()) {
420 // Immediate can be represented in a move zero instruction. Movz can't write
421 // to the stack pointer.
422 movz(dst, imm);
423 return true;
424 } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) {
425 // Immediate can be represented in a move not instruction. Movn can't write
426 // to the stack pointer.
427 movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask));
428 return true;
429 } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
430 // Immediate can be represented in a logical orr instruction.
431 LogicalImmediate(dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR);
432 return true;
433 }
434 return false;
435}
436
437
438Operand MacroAssembler::MoveImmediateForShiftedOp(const Register& dst,
439 int64_t imm) {
440 int reg_size = dst.SizeInBits();
441
442 // Encode the immediate in a single move instruction, if possible.
443 if (TryOneInstrMoveImmediate(dst, imm)) {
444 // The move was successful; nothing to do here.
445 } else {
446 // Pre-shift the immediate to the least-significant bits of the register.
447 int shift_low = CountTrailingZeros(imm, reg_size);
448 int64_t imm_low = imm >> shift_low;
449
450 // Pre-shift the immediate to the most-significant bits of the register. We
451 // insert set bits in the least-significant bits, as this creates a
452 // different immediate that may be encodable using movn or orr-immediate.
453 // If this new immediate is encodable, the set bits will be eliminated by
454 // the post shift on the following instruction.
455 int shift_high = CountLeadingZeros(imm, reg_size);
456 int64_t imm_high = (imm << shift_high) | ((1 << shift_high) - 1);
457
458 if (TryOneInstrMoveImmediate(dst, imm_low)) {
459 // The new immediate has been moved into the destination's low bits:
460 // return a new leftward-shifting operand.
461 return Operand(dst, LSL, shift_low);
462 } else if (TryOneInstrMoveImmediate(dst, imm_high)) {
463 // The new immediate has been moved into the destination's high bits:
464 // return a new rightward-shifting operand.
465 return Operand(dst, LSR, shift_high);
466 } else {
467 // Use the generic move operation to set up the immediate.
468 Mov(dst, imm);
469 }
470 }
471 return Operand(dst);
472}
473
474
475void MacroAssembler::AddSubMacro(const Register& rd,
476 const Register& rn,
477 const Operand& operand,
478 FlagsUpdate S,
479 AddSubOp op) {
480 if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
481 !operand.NeedsRelocation(this) && (S == LeaveFlags)) {
482 // The instruction would be a nop. Avoid generating useless code.
483 return;
484 }
485
486 if (operand.NeedsRelocation(this)) {
487 UseScratchRegisterScope temps(this);
488 Register temp = temps.AcquireX();
489 Ldr(temp, operand.immediate());
490 AddSubMacro(rd, rn, temp, S, op);
491 } else if ((operand.IsImmediate() &&
492 !IsImmAddSub(operand.ImmediateValue())) ||
493 (rn.IsZero() && !operand.IsShiftedRegister()) ||
494 (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
495 UseScratchRegisterScope temps(this);
496 Register temp = temps.AcquireSameSizeAs(rn);
497 if (operand.IsImmediate()) {
498 Operand imm_operand =
499 MoveImmediateForShiftedOp(temp, operand.ImmediateValue());
500 AddSub(rd, rn, imm_operand, S, op);
501 } else {
502 Mov(temp, operand);
503 AddSub(rd, rn, temp, S, op);
504 }
505 } else {
506 AddSub(rd, rn, operand, S, op);
507 }
508}
509
510
511void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
512 const Register& rn,
513 const Operand& operand,
514 FlagsUpdate S,
515 AddSubWithCarryOp op) {
516 DCHECK(rd.SizeInBits() == rn.SizeInBits());
517 UseScratchRegisterScope temps(this);
518
519 if (operand.NeedsRelocation(this)) {
520 Register temp = temps.AcquireX();
521 Ldr(temp, operand.immediate());
522 AddSubWithCarryMacro(rd, rn, temp, S, op);
523
524 } else if (operand.IsImmediate() ||
525 (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
526 // Add/sub with carry (immediate or ROR shifted register.)
527 Register temp = temps.AcquireSameSizeAs(rn);
528 Mov(temp, operand);
529 AddSubWithCarry(rd, rn, temp, S, op);
530
531 } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
532 // Add/sub with carry (shifted register).
533 DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
534 DCHECK(operand.shift() != ROR);
535 DCHECK(is_uintn(operand.shift_amount(),
536 rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2
537 : kWRegSizeInBitsLog2));
538 Register temp = temps.AcquireSameSizeAs(rn);
539 EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
540 AddSubWithCarry(rd, rn, temp, S, op);
541
542 } else if (operand.IsExtendedRegister()) {
543 // Add/sub with carry (extended register).
544 DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
545 // Add/sub extended supports a shift <= 4. We want to support exactly the
546 // same modes.
547 DCHECK(operand.shift_amount() <= 4);
548 DCHECK(operand.reg().Is64Bits() ||
549 ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
550 Register temp = temps.AcquireSameSizeAs(rn);
551 EmitExtendShift(temp, operand.reg(), operand.extend(),
552 operand.shift_amount());
553 AddSubWithCarry(rd, rn, temp, S, op);
554
555 } else {
556 // The addressing mode is directly supported by the instruction.
557 AddSubWithCarry(rd, rn, operand, S, op);
558 }
559}
560
561
562void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
563 const MemOperand& addr,
564 LoadStoreOp op) {
565 int64_t offset = addr.offset();
566 LSDataSize size = CalcLSDataSize(op);
567
568 // Check if an immediate offset fits in the immediate field of the
569 // appropriate instruction. If not, emit two instructions to perform
570 // the operation.
571 if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
572 !IsImmLSUnscaled(offset)) {
573 // Immediate offset that can't be encoded using unsigned or unscaled
574 // addressing modes.
575 UseScratchRegisterScope temps(this);
576 Register temp = temps.AcquireSameSizeAs(addr.base());
577 Mov(temp, addr.offset());
578 LoadStore(rt, MemOperand(addr.base(), temp), op);
579 } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
580 // Post-index beyond unscaled addressing range.
581 LoadStore(rt, MemOperand(addr.base()), op);
582 add(addr.base(), addr.base(), offset);
583 } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
584 // Pre-index beyond unscaled addressing range.
585 add(addr.base(), addr.base(), offset);
586 LoadStore(rt, MemOperand(addr.base()), op);
587 } else {
588 // Encodable in one load/store instruction.
589 LoadStore(rt, addr, op);
590 }
591}
592
593void MacroAssembler::LoadStorePairMacro(const CPURegister& rt,
594 const CPURegister& rt2,
595 const MemOperand& addr,
596 LoadStorePairOp op) {
597 // TODO(all): Should we support register offset for load-store-pair?
598 DCHECK(!addr.IsRegisterOffset());
599
600 int64_t offset = addr.offset();
601 LSDataSize size = CalcLSPairDataSize(op);
602
603 // Check if the offset fits in the immediate field of the appropriate
604 // instruction. If not, emit two instructions to perform the operation.
605 if (IsImmLSPair(offset, size)) {
606 // Encodable in one load/store pair instruction.
607 LoadStorePair(rt, rt2, addr, op);
608 } else {
609 Register base = addr.base();
610 if (addr.IsImmediateOffset()) {
611 UseScratchRegisterScope temps(this);
612 Register temp = temps.AcquireSameSizeAs(base);
613 Add(temp, base, offset);
614 LoadStorePair(rt, rt2, MemOperand(temp), op);
615 } else if (addr.IsPostIndex()) {
616 LoadStorePair(rt, rt2, MemOperand(base), op);
617 Add(base, base, offset);
618 } else {
619 DCHECK(addr.IsPreIndex());
620 Add(base, base, offset);
621 LoadStorePair(rt, rt2, MemOperand(base), op);
622 }
623 }
624}
625
626
627void MacroAssembler::Load(const Register& rt,
628 const MemOperand& addr,
629 Representation r) {
630 DCHECK(!r.IsDouble());
631
632 if (r.IsInteger8()) {
633 Ldrsb(rt, addr);
634 } else if (r.IsUInteger8()) {
635 Ldrb(rt, addr);
636 } else if (r.IsInteger16()) {
637 Ldrsh(rt, addr);
638 } else if (r.IsUInteger16()) {
639 Ldrh(rt, addr);
640 } else if (r.IsInteger32()) {
641 Ldr(rt.W(), addr);
642 } else {
643 DCHECK(rt.Is64Bits());
644 Ldr(rt, addr);
645 }
646}
647
648
649void MacroAssembler::Store(const Register& rt,
650 const MemOperand& addr,
651 Representation r) {
652 DCHECK(!r.IsDouble());
653
654 if (r.IsInteger8() || r.IsUInteger8()) {
655 Strb(rt, addr);
656 } else if (r.IsInteger16() || r.IsUInteger16()) {
657 Strh(rt, addr);
658 } else if (r.IsInteger32()) {
659 Str(rt.W(), addr);
660 } else {
661 DCHECK(rt.Is64Bits());
662 if (r.IsHeapObject()) {
663 AssertNotSmi(rt);
664 } else if (r.IsSmi()) {
665 AssertSmi(rt);
666 }
667 Str(rt, addr);
668 }
669}
670
671
672bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch(
673 Label *label, ImmBranchType b_type) {
674 bool need_longer_range = false;
675 // There are two situations in which we care about the offset being out of
676 // range:
677 // - The label is bound but too far away.
678 // - The label is not bound but linked, and the previous branch
679 // instruction in the chain is too far away.
680 if (label->is_bound() || label->is_linked()) {
681 need_longer_range =
682 !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset());
683 }
684 if (!need_longer_range && !label->is_bound()) {
685 int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type);
686 unresolved_branches_.insert(
687 std::pair<int, FarBranchInfo>(max_reachable_pc,
688 FarBranchInfo(pc_offset(), label)));
689 // Also maintain the next pool check.
690 next_veneer_pool_check_ =
691 Min(next_veneer_pool_check_,
692 max_reachable_pc - kVeneerDistanceCheckMargin);
693 }
694 return need_longer_range;
695}
696
697
698void MacroAssembler::Adr(const Register& rd, Label* label, AdrHint hint) {
699 DCHECK(allow_macro_instructions_);
700 DCHECK(!rd.IsZero());
701
702 if (hint == kAdrNear) {
703 adr(rd, label);
704 return;
705 }
706
707 DCHECK(hint == kAdrFar);
708 if (label->is_bound()) {
709 int label_offset = label->pos() - pc_offset();
710 if (Instruction::IsValidPCRelOffset(label_offset)) {
711 adr(rd, label);
712 } else {
713 DCHECK(label_offset <= 0);
714 int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1));
715 adr(rd, min_adr_offset);
716 Add(rd, rd, label_offset - min_adr_offset);
717 }
718 } else {
719 UseScratchRegisterScope temps(this);
720 Register scratch = temps.AcquireX();
721
722 InstructionAccurateScope scope(
723 this, PatchingAssembler::kAdrFarPatchableNInstrs);
724 adr(rd, label);
725 for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) {
726 nop(ADR_FAR_NOP);
727 }
728 movz(scratch, 0);
729 }
730}
731
732
733void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
734 DCHECK((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) &&
735 (bit == -1 || type >= kBranchTypeFirstUsingBit));
736 if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
737 B(static_cast<Condition>(type), label);
738 } else {
739 switch (type) {
740 case always: B(label); break;
741 case never: break;
742 case reg_zero: Cbz(reg, label); break;
743 case reg_not_zero: Cbnz(reg, label); break;
744 case reg_bit_clear: Tbz(reg, bit, label); break;
745 case reg_bit_set: Tbnz(reg, bit, label); break;
746 default:
747 UNREACHABLE();
748 }
749 }
750}
751
752
753void MacroAssembler::B(Label* label, Condition cond) {
754 DCHECK(allow_macro_instructions_);
755 DCHECK((cond != al) && (cond != nv));
756
757 Label done;
758 bool need_extra_instructions =
759 NeedExtraInstructionsOrRegisterBranch(label, CondBranchType);
760
761 if (need_extra_instructions) {
762 b(&done, NegateCondition(cond));
763 B(label);
764 } else {
765 b(label, cond);
766 }
767 bind(&done);
768}
769
770
771void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
772 DCHECK(allow_macro_instructions_);
773
774 Label done;
775 bool need_extra_instructions =
776 NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
777
778 if (need_extra_instructions) {
779 tbz(rt, bit_pos, &done);
780 B(label);
781 } else {
782 tbnz(rt, bit_pos, label);
783 }
784 bind(&done);
785}
786
787
788void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
789 DCHECK(allow_macro_instructions_);
790
791 Label done;
792 bool need_extra_instructions =
793 NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
794
795 if (need_extra_instructions) {
796 tbnz(rt, bit_pos, &done);
797 B(label);
798 } else {
799 tbz(rt, bit_pos, label);
800 }
801 bind(&done);
802}
803
804
805void MacroAssembler::Cbnz(const Register& rt, Label* label) {
806 DCHECK(allow_macro_instructions_);
807
808 Label done;
809 bool need_extra_instructions =
810 NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
811
812 if (need_extra_instructions) {
813 cbz(rt, &done);
814 B(label);
815 } else {
816 cbnz(rt, label);
817 }
818 bind(&done);
819}
820
821
822void MacroAssembler::Cbz(const Register& rt, Label* label) {
823 DCHECK(allow_macro_instructions_);
824
825 Label done;
826 bool need_extra_instructions =
827 NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
828
829 if (need_extra_instructions) {
830 cbnz(rt, &done);
831 B(label);
832 } else {
833 cbz(rt, label);
834 }
835 bind(&done);
836}
837
838
839// Pseudo-instructions.
840
841
842void MacroAssembler::Abs(const Register& rd, const Register& rm,
843 Label* is_not_representable,
844 Label* is_representable) {
845 DCHECK(allow_macro_instructions_);
846 DCHECK(AreSameSizeAndType(rd, rm));
847
848 Cmp(rm, 1);
849 Cneg(rd, rm, lt);
850
851 // If the comparison sets the v flag, the input was the smallest value
852 // representable by rm, and the mathematical result of abs(rm) is not
853 // representable using two's complement.
854 if ((is_not_representable != NULL) && (is_representable != NULL)) {
855 B(is_not_representable, vs);
856 B(is_representable);
857 } else if (is_not_representable != NULL) {
858 B(is_not_representable, vs);
859 } else if (is_representable != NULL) {
860 B(is_representable, vc);
861 }
862}
863
864
865// Abstracted stack operations.
866
867
868void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
869 const CPURegister& src2, const CPURegister& src3) {
870 DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
871
872 int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
873 int size = src0.SizeInBytes();
874
875 PushPreamble(count, size);
876 PushHelper(count, size, src0, src1, src2, src3);
877}
878
879
880void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
881 const CPURegister& src2, const CPURegister& src3,
882 const CPURegister& src4, const CPURegister& src5,
883 const CPURegister& src6, const CPURegister& src7) {
884 DCHECK(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7));
885
886 int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid();
887 int size = src0.SizeInBytes();
888
889 PushPreamble(count, size);
890 PushHelper(4, size, src0, src1, src2, src3);
891 PushHelper(count - 4, size, src4, src5, src6, src7);
892}
893
894
895void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
896 const CPURegister& dst2, const CPURegister& dst3) {
897 // It is not valid to pop into the same register more than once in one
898 // instruction, not even into the zero register.
899 DCHECK(!AreAliased(dst0, dst1, dst2, dst3));
900 DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
901 DCHECK(dst0.IsValid());
902
903 int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
904 int size = dst0.SizeInBytes();
905
906 PopHelper(count, size, dst0, dst1, dst2, dst3);
907 PopPostamble(count, size);
908}
909
910
911void MacroAssembler::Push(const Register& src0, const FPRegister& src1) {
912 int size = src0.SizeInBytes() + src1.SizeInBytes();
913
914 PushPreamble(size);
915 // Reserve room for src0 and push src1.
916 str(src1, MemOperand(StackPointer(), -size, PreIndex));
917 // Fill the gap with src0.
918 str(src0, MemOperand(StackPointer(), src1.SizeInBytes()));
919}
920
921
922void MacroAssembler::PushPopQueue::PushQueued(
923 PreambleDirective preamble_directive) {
924 if (queued_.empty()) return;
925
926 if (preamble_directive == WITH_PREAMBLE) {
927 masm_->PushPreamble(size_);
928 }
929
930 int count = queued_.size();
931 int index = 0;
932 while (index < count) {
933 // PushHelper can only handle registers with the same size and type, and it
934 // can handle only four at a time. Batch them up accordingly.
935 CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
936 int batch_index = 0;
937 do {
938 batch[batch_index++] = queued_[index++];
939 } while ((batch_index < 4) && (index < count) &&
940 batch[0].IsSameSizeAndType(queued_[index]));
941
942 masm_->PushHelper(batch_index, batch[0].SizeInBytes(),
943 batch[0], batch[1], batch[2], batch[3]);
944 }
945
946 queued_.clear();
947}
948
949
950void MacroAssembler::PushPopQueue::PopQueued() {
951 if (queued_.empty()) return;
952
953 int count = queued_.size();
954 int index = 0;
955 while (index < count) {
956 // PopHelper can only handle registers with the same size and type, and it
957 // can handle only four at a time. Batch them up accordingly.
958 CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
959 int batch_index = 0;
960 do {
961 batch[batch_index++] = queued_[index++];
962 } while ((batch_index < 4) && (index < count) &&
963 batch[0].IsSameSizeAndType(queued_[index]));
964
965 masm_->PopHelper(batch_index, batch[0].SizeInBytes(),
966 batch[0], batch[1], batch[2], batch[3]);
967 }
968
969 masm_->PopPostamble(size_);
970 queued_.clear();
971}
972
973
974void MacroAssembler::PushCPURegList(CPURegList registers) {
975 int size = registers.RegisterSizeInBytes();
976
977 PushPreamble(registers.Count(), size);
978 // Push up to four registers at a time because if the current stack pointer is
979 // csp and reg_size is 32, registers must be pushed in blocks of four in order
980 // to maintain the 16-byte alignment for csp.
981 while (!registers.IsEmpty()) {
982 int count_before = registers.Count();
983 const CPURegister& src0 = registers.PopHighestIndex();
984 const CPURegister& src1 = registers.PopHighestIndex();
985 const CPURegister& src2 = registers.PopHighestIndex();
986 const CPURegister& src3 = registers.PopHighestIndex();
987 int count = count_before - registers.Count();
988 PushHelper(count, size, src0, src1, src2, src3);
989 }
990}
991
992
993void MacroAssembler::PopCPURegList(CPURegList registers) {
994 int size = registers.RegisterSizeInBytes();
995
996 // Pop up to four registers at a time because if the current stack pointer is
997 // csp and reg_size is 32, registers must be pushed in blocks of four in
998 // order to maintain the 16-byte alignment for csp.
999 while (!registers.IsEmpty()) {
1000 int count_before = registers.Count();
1001 const CPURegister& dst0 = registers.PopLowestIndex();
1002 const CPURegister& dst1 = registers.PopLowestIndex();
1003 const CPURegister& dst2 = registers.PopLowestIndex();
1004 const CPURegister& dst3 = registers.PopLowestIndex();
1005 int count = count_before - registers.Count();
1006 PopHelper(count, size, dst0, dst1, dst2, dst3);
1007 }
1008 PopPostamble(registers.Count(), size);
1009}
1010
1011
1012void MacroAssembler::PushMultipleTimes(CPURegister src, int count) {
1013 int size = src.SizeInBytes();
1014
1015 PushPreamble(count, size);
1016
1017 if (FLAG_optimize_for_size && count > 8) {
1018 UseScratchRegisterScope temps(this);
1019 Register temp = temps.AcquireX();
1020
1021 Label loop;
1022 __ Mov(temp, count / 2);
1023 __ Bind(&loop);
1024 PushHelper(2, size, src, src, NoReg, NoReg);
1025 __ Subs(temp, temp, 1);
1026 __ B(ne, &loop);
1027
1028 count %= 2;
1029 }
1030
1031 // Push up to four registers at a time if possible because if the current
1032 // stack pointer is csp and the register size is 32, registers must be pushed
1033 // in blocks of four in order to maintain the 16-byte alignment for csp.
1034 while (count >= 4) {
1035 PushHelper(4, size, src, src, src, src);
1036 count -= 4;
1037 }
1038 if (count >= 2) {
1039 PushHelper(2, size, src, src, NoReg, NoReg);
1040 count -= 2;
1041 }
1042 if (count == 1) {
1043 PushHelper(1, size, src, NoReg, NoReg, NoReg);
1044 count -= 1;
1045 }
1046 DCHECK(count == 0);
1047}
1048
1049
1050void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) {
1051 PushPreamble(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes())));
1052
1053 UseScratchRegisterScope temps(this);
1054 Register temp = temps.AcquireSameSizeAs(count);
1055
1056 if (FLAG_optimize_for_size) {
1057 Label loop, done;
1058
1059 Subs(temp, count, 1);
1060 B(mi, &done);
1061
1062 // Push all registers individually, to save code size.
1063 Bind(&loop);
1064 Subs(temp, temp, 1);
1065 PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1066 B(pl, &loop);
1067
1068 Bind(&done);
1069 } else {
1070 Label loop, leftover2, leftover1, done;
1071
1072 Subs(temp, count, 4);
1073 B(mi, &leftover2);
1074
1075 // Push groups of four first.
1076 Bind(&loop);
1077 Subs(temp, temp, 4);
1078 PushHelper(4, src.SizeInBytes(), src, src, src, src);
1079 B(pl, &loop);
1080
1081 // Push groups of two.
1082 Bind(&leftover2);
1083 Tbz(count, 1, &leftover1);
1084 PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg);
1085
1086 // Push the last one (if required).
1087 Bind(&leftover1);
1088 Tbz(count, 0, &done);
1089 PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1090
1091 Bind(&done);
1092 }
1093}
1094
1095
1096void MacroAssembler::PushHelper(int count, int size,
1097 const CPURegister& src0,
1098 const CPURegister& src1,
1099 const CPURegister& src2,
1100 const CPURegister& src3) {
1101 // Ensure that we don't unintentially modify scratch or debug registers.
1102 InstructionAccurateScope scope(this);
1103
1104 DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
1105 DCHECK(size == src0.SizeInBytes());
1106
1107 // When pushing multiple registers, the store order is chosen such that
1108 // Push(a, b) is equivalent to Push(a) followed by Push(b).
1109 switch (count) {
1110 case 1:
1111 DCHECK(src1.IsNone() && src2.IsNone() && src3.IsNone());
1112 str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
1113 break;
1114 case 2:
1115 DCHECK(src2.IsNone() && src3.IsNone());
1116 stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
1117 break;
1118 case 3:
1119 DCHECK(src3.IsNone());
1120 stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
1121 str(src0, MemOperand(StackPointer(), 2 * size));
1122 break;
1123 case 4:
1124 // Skip over 4 * size, then fill in the gap. This allows four W registers
1125 // to be pushed using csp, whilst maintaining 16-byte alignment for csp
1126 // at all times.
1127 stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
1128 stp(src1, src0, MemOperand(StackPointer(), 2 * size));
1129 break;
1130 default:
1131 UNREACHABLE();
1132 }
1133}
1134
1135
1136void MacroAssembler::PopHelper(int count, int size,
1137 const CPURegister& dst0,
1138 const CPURegister& dst1,
1139 const CPURegister& dst2,
1140 const CPURegister& dst3) {
1141 // Ensure that we don't unintentially modify scratch or debug registers.
1142 InstructionAccurateScope scope(this);
1143
1144 DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
1145 DCHECK(size == dst0.SizeInBytes());
1146
1147 // When popping multiple registers, the load order is chosen such that
1148 // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
1149 switch (count) {
1150 case 1:
1151 DCHECK(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
1152 ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
1153 break;
1154 case 2:
1155 DCHECK(dst2.IsNone() && dst3.IsNone());
1156 ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
1157 break;
1158 case 3:
1159 DCHECK(dst3.IsNone());
1160 ldr(dst2, MemOperand(StackPointer(), 2 * size));
1161 ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
1162 break;
1163 case 4:
1164 // Load the higher addresses first, then load the lower addresses and
1165 // skip the whole block in the second instruction. This allows four W
1166 // registers to be popped using csp, whilst maintaining 16-byte alignment
1167 // for csp at all times.
1168 ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
1169 ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
1170 break;
1171 default:
1172 UNREACHABLE();
1173 }
1174}
1175
1176
1177void MacroAssembler::PushPreamble(Operand total_size) {
1178 if (csp.Is(StackPointer())) {
1179 // If the current stack pointer is csp, then it must be aligned to 16 bytes
1180 // on entry and the total size of the specified registers must also be a
1181 // multiple of 16 bytes.
1182 if (total_size.IsImmediate()) {
1183 DCHECK((total_size.ImmediateValue() % 16) == 0);
1184 }
1185
1186 // Don't check access size for non-immediate sizes. It's difficult to do
1187 // well, and it will be caught by hardware (or the simulator) anyway.
1188 } else {
1189 // Even if the current stack pointer is not the system stack pointer (csp),
1190 // the system stack pointer will still be modified in order to comply with
1191 // ABI rules about accessing memory below the system stack pointer.
1192 BumpSystemStackPointer(total_size);
1193 }
1194}
1195
1196
1197void MacroAssembler::PopPostamble(Operand total_size) {
1198 if (csp.Is(StackPointer())) {
1199 // If the current stack pointer is csp, then it must be aligned to 16 bytes
1200 // on entry and the total size of the specified registers must also be a
1201 // multiple of 16 bytes.
1202 if (total_size.IsImmediate()) {
1203 DCHECK((total_size.ImmediateValue() % 16) == 0);
1204 }
1205
1206 // Don't check access size for non-immediate sizes. It's difficult to do
1207 // well, and it will be caught by hardware (or the simulator) anyway.
1208 } else if (emit_debug_code()) {
1209 // It is safe to leave csp where it is when unwinding the JavaScript stack,
1210 // but if we keep it matching StackPointer, the simulator can detect memory
1211 // accesses in the now-free part of the stack.
1212 SyncSystemStackPointer();
1213 }
1214}
1215
1216
1217void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
1218 if (offset.IsImmediate()) {
1219 DCHECK(offset.ImmediateValue() >= 0);
1220 } else if (emit_debug_code()) {
1221 Cmp(xzr, offset);
1222 Check(le, kStackAccessBelowStackPointer);
1223 }
1224
1225 Str(src, MemOperand(StackPointer(), offset));
1226}
1227
1228
1229void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
1230 if (offset.IsImmediate()) {
1231 DCHECK(offset.ImmediateValue() >= 0);
1232 } else if (emit_debug_code()) {
1233 Cmp(xzr, offset);
1234 Check(le, kStackAccessBelowStackPointer);
1235 }
1236
1237 Ldr(dst, MemOperand(StackPointer(), offset));
1238}
1239
1240
1241void MacroAssembler::PokePair(const CPURegister& src1,
1242 const CPURegister& src2,
1243 int offset) {
1244 DCHECK(AreSameSizeAndType(src1, src2));
1245 DCHECK((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
1246 Stp(src1, src2, MemOperand(StackPointer(), offset));
1247}
1248
1249
1250void MacroAssembler::PeekPair(const CPURegister& dst1,
1251 const CPURegister& dst2,
1252 int offset) {
1253 DCHECK(AreSameSizeAndType(dst1, dst2));
1254 DCHECK((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
1255 Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
1256}
1257
1258
1259void MacroAssembler::PushCalleeSavedRegisters() {
1260 // Ensure that the macro-assembler doesn't use any scratch registers.
1261 InstructionAccurateScope scope(this);
1262
1263 // This method must not be called unless the current stack pointer is the
1264 // system stack pointer (csp).
1265 DCHECK(csp.Is(StackPointer()));
1266
1267 MemOperand tos(csp, -2 * kXRegSize, PreIndex);
1268
1269 stp(d14, d15, tos);
1270 stp(d12, d13, tos);
1271 stp(d10, d11, tos);
1272 stp(d8, d9, tos);
1273
1274 stp(x29, x30, tos);
1275 stp(x27, x28, tos); // x28 = jssp
1276 stp(x25, x26, tos);
1277 stp(x23, x24, tos);
1278 stp(x21, x22, tos);
1279 stp(x19, x20, tos);
1280}
1281
1282
1283void MacroAssembler::PopCalleeSavedRegisters() {
1284 // Ensure that the macro-assembler doesn't use any scratch registers.
1285 InstructionAccurateScope scope(this);
1286
1287 // This method must not be called unless the current stack pointer is the
1288 // system stack pointer (csp).
1289 DCHECK(csp.Is(StackPointer()));
1290
1291 MemOperand tos(csp, 2 * kXRegSize, PostIndex);
1292
1293 ldp(x19, x20, tos);
1294 ldp(x21, x22, tos);
1295 ldp(x23, x24, tos);
1296 ldp(x25, x26, tos);
1297 ldp(x27, x28, tos); // x28 = jssp
1298 ldp(x29, x30, tos);
1299
1300 ldp(d8, d9, tos);
1301 ldp(d10, d11, tos);
1302 ldp(d12, d13, tos);
1303 ldp(d14, d15, tos);
1304}
1305
1306
1307void MacroAssembler::AssertStackConsistency() {
1308 // Avoid emitting code when !use_real_abort() since non-real aborts cause too
1309 // much code to be generated.
1310 if (emit_debug_code() && use_real_aborts()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001311 if (csp.Is(StackPointer())) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001312 // Always check the alignment of csp if ALWAYS_ALIGN_CSP is true. We
1313 // can't check the alignment of csp without using a scratch register (or
1314 // clobbering the flags), but the processor (or simulator) will abort if
1315 // it is not properly aligned during a load.
1316 ldr(xzr, MemOperand(csp, 0));
1317 }
1318 if (FLAG_enable_slow_asserts && !csp.Is(StackPointer())) {
1319 Label ok;
1320 // Check that csp <= StackPointer(), preserving all registers and NZCV.
1321 sub(StackPointer(), csp, StackPointer());
1322 cbz(StackPointer(), &ok); // Ok if csp == StackPointer().
1323 tbnz(StackPointer(), kXSignBit, &ok); // Ok if csp < StackPointer().
1324
1325 // Avoid generating AssertStackConsistency checks for the Push in Abort.
1326 { DontEmitDebugCodeScope dont_emit_debug_code_scope(this);
1327 Abort(kTheCurrentStackPointerIsBelowCsp);
1328 }
1329
1330 bind(&ok);
1331 // Restore StackPointer().
1332 sub(StackPointer(), csp, StackPointer());
1333 }
1334 }
1335}
1336
1337
1338void MacroAssembler::AssertFPCRState(Register fpcr) {
1339 if (emit_debug_code()) {
1340 Label unexpected_mode, done;
1341 UseScratchRegisterScope temps(this);
1342 if (fpcr.IsNone()) {
1343 fpcr = temps.AcquireX();
1344 Mrs(fpcr, FPCR);
1345 }
1346
1347 // Settings overridden by ConfiugreFPCR():
1348 // - Assert that default-NaN mode is set.
1349 Tbz(fpcr, DN_offset, &unexpected_mode);
1350
1351 // Settings left to their default values:
1352 // - Assert that flush-to-zero is not set.
1353 Tbnz(fpcr, FZ_offset, &unexpected_mode);
1354 // - Assert that the rounding mode is nearest-with-ties-to-even.
1355 STATIC_ASSERT(FPTieEven == 0);
1356 Tst(fpcr, RMode_mask);
1357 B(eq, &done);
1358
1359 Bind(&unexpected_mode);
1360 Abort(kUnexpectedFPCRMode);
1361
1362 Bind(&done);
1363 }
1364}
1365
1366
1367void MacroAssembler::ConfigureFPCR() {
1368 UseScratchRegisterScope temps(this);
1369 Register fpcr = temps.AcquireX();
1370 Mrs(fpcr, FPCR);
1371
1372 // If necessary, enable default-NaN mode. The default values of the other FPCR
1373 // options should be suitable, and AssertFPCRState will verify that.
1374 Label no_write_required;
1375 Tbnz(fpcr, DN_offset, &no_write_required);
1376
1377 Orr(fpcr, fpcr, DN_mask);
1378 Msr(FPCR, fpcr);
1379
1380 Bind(&no_write_required);
1381 AssertFPCRState(fpcr);
1382}
1383
1384
1385void MacroAssembler::CanonicalizeNaN(const FPRegister& dst,
1386 const FPRegister& src) {
1387 AssertFPCRState();
1388
1389 // With DN=1 and RMode=FPTieEven, subtracting 0.0 preserves all inputs except
1390 // for NaNs, which become the default NaN. We use fsub rather than fadd
1391 // because sub preserves -0.0 inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0.
1392 Fsub(dst, src, fp_zero);
1393}
1394
1395
1396void MacroAssembler::LoadRoot(CPURegister destination,
1397 Heap::RootListIndex index) {
1398 // TODO(jbramley): Most root values are constants, and can be synthesized
1399 // without a load. Refer to the ARM back end for details.
1400 Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
1401}
1402
1403
1404void MacroAssembler::StoreRoot(Register source,
1405 Heap::RootListIndex index) {
1406 Str(source, MemOperand(root, index << kPointerSizeLog2));
1407}
1408
1409
1410void MacroAssembler::LoadTrueFalseRoots(Register true_root,
1411 Register false_root) {
1412 STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
1413 Ldp(true_root, false_root,
1414 MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
1415}
1416
1417
1418void MacroAssembler::LoadHeapObject(Register result,
1419 Handle<HeapObject> object) {
1420 AllowDeferredHandleDereference using_raw_address;
1421 if (isolate()->heap()->InNewSpace(*object)) {
1422 Handle<Cell> cell = isolate()->factory()->NewCell(object);
1423 Mov(result, Operand(cell));
1424 Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
1425 } else {
1426 Mov(result, Operand(object));
1427 }
1428}
1429
1430
1431void MacroAssembler::LoadInstanceDescriptors(Register map,
1432 Register descriptors) {
1433 Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
1434}
1435
1436
1437void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
1438 Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
1439 DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
1440}
1441
1442
1443void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
1444 STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
1445 Ldrsw(dst, FieldMemOperand(map, Map::kBitField3Offset));
1446 And(dst, dst, Map::EnumLengthBits::kMask);
1447}
1448
1449
1450void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
1451 EnumLengthUntagged(dst, map);
1452 SmiTag(dst, dst);
1453}
1454
1455
1456void MacroAssembler::CheckEnumCache(Register object,
1457 Register null_value,
1458 Register scratch0,
1459 Register scratch1,
1460 Register scratch2,
1461 Register scratch3,
1462 Label* call_runtime) {
1463 DCHECK(!AreAliased(object, null_value, scratch0, scratch1, scratch2,
1464 scratch3));
1465
1466 Register empty_fixed_array_value = scratch0;
1467 Register current_object = scratch1;
1468
1469 LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
1470 Label next, start;
1471
1472 Mov(current_object, object);
1473
1474 // Check if the enum length field is properly initialized, indicating that
1475 // there is an enum cache.
1476 Register map = scratch2;
1477 Register enum_length = scratch3;
1478 Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1479
1480 EnumLengthUntagged(enum_length, map);
1481 Cmp(enum_length, kInvalidEnumCacheSentinel);
1482 B(eq, call_runtime);
1483
1484 B(&start);
1485
1486 Bind(&next);
1487 Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1488
1489 // For all objects but the receiver, check that the cache is empty.
1490 EnumLengthUntagged(enum_length, map);
1491 Cbnz(enum_length, call_runtime);
1492
1493 Bind(&start);
1494
1495 // Check that there are no elements. Register current_object contains the
1496 // current JS object we've reached through the prototype chain.
1497 Label no_elements;
1498 Ldr(current_object, FieldMemOperand(current_object,
1499 JSObject::kElementsOffset));
1500 Cmp(current_object, empty_fixed_array_value);
1501 B(eq, &no_elements);
1502
1503 // Second chance, the object may be using the empty slow element dictionary.
1504 CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
1505 B(ne, call_runtime);
1506
1507 Bind(&no_elements);
1508 Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
1509 Cmp(current_object, null_value);
1510 B(ne, &next);
1511}
1512
1513
1514void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
1515 Register scratch1,
1516 Register scratch2,
1517 Label* no_memento_found) {
1518 ExternalReference new_space_start =
1519 ExternalReference::new_space_start(isolate());
1520 ExternalReference new_space_allocation_top =
1521 ExternalReference::new_space_allocation_top_address(isolate());
1522
1523 Add(scratch1, receiver,
1524 JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag);
1525 Cmp(scratch1, new_space_start);
1526 B(lt, no_memento_found);
1527
1528 Mov(scratch2, new_space_allocation_top);
1529 Ldr(scratch2, MemOperand(scratch2));
1530 Cmp(scratch1, scratch2);
1531 B(gt, no_memento_found);
1532
1533 Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize));
1534 Cmp(scratch1,
1535 Operand(isolate()->factory()->allocation_memento_map()));
1536}
1537
1538
1539void MacroAssembler::JumpToHandlerEntry(Register exception,
1540 Register object,
1541 Register state,
1542 Register scratch1,
1543 Register scratch2) {
1544 // Handler expects argument in x0.
1545 DCHECK(exception.Is(x0));
1546
1547 // Compute the handler entry address and jump to it. The handler table is
1548 // a fixed array of (smi-tagged) code offsets.
1549 Ldr(scratch1, FieldMemOperand(object, Code::kHandlerTableOffset));
1550 Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
1551 STATIC_ASSERT(StackHandler::kKindWidth < kPointerSizeLog2);
1552 Lsr(scratch2, state, StackHandler::kKindWidth);
1553 Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
1554 Add(scratch1, object, Code::kHeaderSize - kHeapObjectTag);
1555 Add(scratch1, scratch1, Operand::UntagSmi(scratch2));
1556 Br(scratch1);
1557}
1558
1559
1560void MacroAssembler::InNewSpace(Register object,
1561 Condition cond,
1562 Label* branch) {
1563 DCHECK(cond == eq || cond == ne);
1564 UseScratchRegisterScope temps(this);
1565 Register temp = temps.AcquireX();
1566 And(temp, object, ExternalReference::new_space_mask(isolate()));
1567 Cmp(temp, ExternalReference::new_space_start(isolate()));
1568 B(cond, branch);
1569}
1570
1571
1572void MacroAssembler::Throw(Register value,
1573 Register scratch1,
1574 Register scratch2,
1575 Register scratch3,
1576 Register scratch4) {
1577 // Adjust this code if not the case.
1578 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1579 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1580 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1581 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1582 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1583 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1584
1585 // The handler expects the exception in x0.
1586 DCHECK(value.Is(x0));
1587
1588 // Drop the stack pointer to the top of the top handler.
1589 DCHECK(jssp.Is(StackPointer()));
1590 Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
1591 isolate())));
1592 Ldr(jssp, MemOperand(scratch1));
1593 // Restore the next handler.
1594 Pop(scratch2);
1595 Str(scratch2, MemOperand(scratch1));
1596
1597 // Get the code object and state. Restore the context and frame pointer.
1598 Register object = scratch1;
1599 Register state = scratch2;
1600 Pop(object, state, cp, fp);
1601
1602 // If the handler is a JS frame, restore the context to the frame.
1603 // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
1604 // or cp.
1605 Label not_js_frame;
1606 Cbz(cp, &not_js_frame);
1607 Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1608 Bind(&not_js_frame);
1609
1610 JumpToHandlerEntry(value, object, state, scratch3, scratch4);
1611}
1612
1613
1614void MacroAssembler::ThrowUncatchable(Register value,
1615 Register scratch1,
1616 Register scratch2,
1617 Register scratch3,
1618 Register scratch4) {
1619 // Adjust this code if not the case.
1620 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1621 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1622 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1623 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1624 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1625 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1626
1627 // The handler expects the exception in x0.
1628 DCHECK(value.Is(x0));
1629
1630 // Drop the stack pointer to the top of the top stack handler.
1631 DCHECK(jssp.Is(StackPointer()));
1632 Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
1633 isolate())));
1634 Ldr(jssp, MemOperand(scratch1));
1635
1636 // Unwind the handlers until the ENTRY handler is found.
1637 Label fetch_next, check_kind;
1638 B(&check_kind);
1639 Bind(&fetch_next);
1640 Peek(jssp, StackHandlerConstants::kNextOffset);
1641
1642 Bind(&check_kind);
1643 STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1644 Peek(scratch2, StackHandlerConstants::kStateOffset);
1645 TestAndBranchIfAnySet(scratch2, StackHandler::KindField::kMask, &fetch_next);
1646
1647 // Set the top handler address to next handler past the top ENTRY handler.
1648 Pop(scratch2);
1649 Str(scratch2, MemOperand(scratch1));
1650
1651 // Get the code object and state. Clear the context and frame pointer (0 was
1652 // saved in the handler).
1653 Register object = scratch1;
1654 Register state = scratch2;
1655 Pop(object, state, cp, fp);
1656
1657 JumpToHandlerEntry(value, object, state, scratch3, scratch4);
1658}
1659
1660
1661void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
1662 if (emit_debug_code()) {
1663 STATIC_ASSERT(kSmiTag == 0);
1664 Tst(object, kSmiTagMask);
1665 Check(eq, reason);
1666 }
1667}
1668
1669
1670void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
1671 if (emit_debug_code()) {
1672 STATIC_ASSERT(kSmiTag == 0);
1673 Tst(object, kSmiTagMask);
1674 Check(ne, reason);
1675 }
1676}
1677
1678
1679void MacroAssembler::AssertName(Register object) {
1680 if (emit_debug_code()) {
1681 AssertNotSmi(object, kOperandIsASmiAndNotAName);
1682
1683 UseScratchRegisterScope temps(this);
1684 Register temp = temps.AcquireX();
1685
1686 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1687 CompareInstanceType(temp, temp, LAST_NAME_TYPE);
1688 Check(ls, kOperandIsNotAName);
1689 }
1690}
1691
1692
1693void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
1694 Register scratch) {
1695 if (emit_debug_code()) {
1696 Label done_checking;
1697 AssertNotSmi(object);
1698 JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking);
1699 Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1700 CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
1701 Assert(eq, kExpectedUndefinedOrCell);
1702 Bind(&done_checking);
1703 }
1704}
1705
1706
1707void MacroAssembler::AssertString(Register object) {
1708 if (emit_debug_code()) {
1709 UseScratchRegisterScope temps(this);
1710 Register temp = temps.AcquireX();
1711 STATIC_ASSERT(kSmiTag == 0);
1712 Tst(object, kSmiTagMask);
1713 Check(ne, kOperandIsASmiAndNotAString);
1714 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1715 CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
1716 Check(lo, kOperandIsNotAString);
1717 }
1718}
1719
1720
1721void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
1722 DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
1723 Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1724}
1725
1726
1727void MacroAssembler::TailCallStub(CodeStub* stub) {
1728 Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
1729}
1730
1731
1732void MacroAssembler::CallRuntime(const Runtime::Function* f,
1733 int num_arguments,
1734 SaveFPRegsMode save_doubles) {
1735 // All arguments must be on the stack before this function is called.
1736 // x0 holds the return value after the call.
1737
1738 // Check that the number of arguments matches what the function expects.
1739 // If f->nargs is -1, the function can accept a variable number of arguments.
1740 CHECK(f->nargs < 0 || f->nargs == num_arguments);
1741
1742 // Place the necessary arguments.
1743 Mov(x0, num_arguments);
1744 Mov(x1, ExternalReference(f, isolate()));
1745
1746 CEntryStub stub(isolate(), 1, save_doubles);
1747 CallStub(&stub);
1748}
1749
1750
1751static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
1752 return ref0.address() - ref1.address();
1753}
1754
1755
1756void MacroAssembler::CallApiFunctionAndReturn(
1757 Register function_address,
1758 ExternalReference thunk_ref,
1759 int stack_space,
1760 int spill_offset,
1761 MemOperand return_value_operand,
1762 MemOperand* context_restore_operand) {
1763 ASM_LOCATION("CallApiFunctionAndReturn");
1764 ExternalReference next_address =
1765 ExternalReference::handle_scope_next_address(isolate());
1766 const int kNextOffset = 0;
1767 const int kLimitOffset = AddressOffset(
1768 ExternalReference::handle_scope_limit_address(isolate()),
1769 next_address);
1770 const int kLevelOffset = AddressOffset(
1771 ExternalReference::handle_scope_level_address(isolate()),
1772 next_address);
1773
1774 DCHECK(function_address.is(x1) || function_address.is(x2));
1775
1776 Label profiler_disabled;
1777 Label end_profiler_check;
1778 Mov(x10, ExternalReference::is_profiling_address(isolate()));
1779 Ldrb(w10, MemOperand(x10));
1780 Cbz(w10, &profiler_disabled);
1781 Mov(x3, thunk_ref);
1782 B(&end_profiler_check);
1783
1784 Bind(&profiler_disabled);
1785 Mov(x3, function_address);
1786 Bind(&end_profiler_check);
1787
1788 // Save the callee-save registers we are going to use.
1789 // TODO(all): Is this necessary? ARM doesn't do it.
1790 STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
1791 Poke(x19, (spill_offset + 0) * kXRegSize);
1792 Poke(x20, (spill_offset + 1) * kXRegSize);
1793 Poke(x21, (spill_offset + 2) * kXRegSize);
1794 Poke(x22, (spill_offset + 3) * kXRegSize);
1795
1796 // Allocate HandleScope in callee-save registers.
1797 // We will need to restore the HandleScope after the call to the API function,
1798 // by allocating it in callee-save registers they will be preserved by C code.
1799 Register handle_scope_base = x22;
1800 Register next_address_reg = x19;
1801 Register limit_reg = x20;
1802 Register level_reg = w21;
1803
1804 Mov(handle_scope_base, next_address);
1805 Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
1806 Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
1807 Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1808 Add(level_reg, level_reg, 1);
1809 Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1810
1811 if (FLAG_log_timer_events) {
1812 FrameScope frame(this, StackFrame::MANUAL);
1813 PushSafepointRegisters();
1814 Mov(x0, ExternalReference::isolate_address(isolate()));
1815 CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
1816 PopSafepointRegisters();
1817 }
1818
1819 // Native call returns to the DirectCEntry stub which redirects to the
1820 // return address pushed on stack (could have moved after GC).
1821 // DirectCEntry stub itself is generated early and never moves.
1822 DirectCEntryStub stub(isolate());
1823 stub.GenerateCall(this, x3);
1824
1825 if (FLAG_log_timer_events) {
1826 FrameScope frame(this, StackFrame::MANUAL);
1827 PushSafepointRegisters();
1828 Mov(x0, ExternalReference::isolate_address(isolate()));
1829 CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
1830 PopSafepointRegisters();
1831 }
1832
1833 Label promote_scheduled_exception;
1834 Label exception_handled;
1835 Label delete_allocated_handles;
1836 Label leave_exit_frame;
1837 Label return_value_loaded;
1838
1839 // Load value from ReturnValue.
1840 Ldr(x0, return_value_operand);
1841 Bind(&return_value_loaded);
1842 // No more valid handles (the result handle was the last one). Restore
1843 // previous handle scope.
1844 Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
1845 if (emit_debug_code()) {
1846 Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
1847 Cmp(w1, level_reg);
1848 Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
1849 }
1850 Sub(level_reg, level_reg, 1);
1851 Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1852 Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
1853 Cmp(limit_reg, x1);
1854 B(ne, &delete_allocated_handles);
1855
1856 Bind(&leave_exit_frame);
1857 // Restore callee-saved registers.
1858 Peek(x19, (spill_offset + 0) * kXRegSize);
1859 Peek(x20, (spill_offset + 1) * kXRegSize);
1860 Peek(x21, (spill_offset + 2) * kXRegSize);
1861 Peek(x22, (spill_offset + 3) * kXRegSize);
1862
1863 // Check if the function scheduled an exception.
1864 Mov(x5, ExternalReference::scheduled_exception_address(isolate()));
1865 Ldr(x5, MemOperand(x5));
1866 JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception);
1867 Bind(&exception_handled);
1868
1869 bool restore_context = context_restore_operand != NULL;
1870 if (restore_context) {
1871 Ldr(cp, *context_restore_operand);
1872 }
1873
1874 LeaveExitFrame(false, x1, !restore_context);
1875 Drop(stack_space);
1876 Ret();
1877
1878 Bind(&promote_scheduled_exception);
1879 {
1880 FrameScope frame(this, StackFrame::INTERNAL);
1881 CallExternalReference(
1882 ExternalReference(
1883 Runtime::kPromoteScheduledException, isolate()), 0);
1884 }
1885 B(&exception_handled);
1886
1887 // HandleScope limit has changed. Delete allocated extensions.
1888 Bind(&delete_allocated_handles);
1889 Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
1890 // Save the return value in a callee-save register.
1891 Register saved_result = x19;
1892 Mov(saved_result, x0);
1893 Mov(x0, ExternalReference::isolate_address(isolate()));
1894 CallCFunction(
1895 ExternalReference::delete_handle_scope_extensions(isolate()), 1);
1896 Mov(x0, saved_result);
1897 B(&leave_exit_frame);
1898}
1899
1900
1901void MacroAssembler::CallExternalReference(const ExternalReference& ext,
1902 int num_arguments) {
1903 Mov(x0, num_arguments);
1904 Mov(x1, ext);
1905
1906 CEntryStub stub(isolate(), 1);
1907 CallStub(&stub);
1908}
1909
1910
1911void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
1912 Mov(x1, builtin);
1913 CEntryStub stub(isolate(), 1);
1914 Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
1915}
1916
1917
1918void MacroAssembler::GetBuiltinFunction(Register target,
1919 Builtins::JavaScript id) {
1920 // Load the builtins object into target register.
1921 Ldr(target, GlobalObjectMemOperand());
1922 Ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
1923 // Load the JavaScript builtin function from the builtins object.
1924 Ldr(target, FieldMemOperand(target,
1925 JSBuiltinsObject::OffsetOfFunctionWithId(id)));
1926}
1927
1928
1929void MacroAssembler::GetBuiltinEntry(Register target,
1930 Register function,
1931 Builtins::JavaScript id) {
1932 DCHECK(!AreAliased(target, function));
1933 GetBuiltinFunction(function, id);
1934 // Load the code entry point from the builtins object.
1935 Ldr(target, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
1936}
1937
1938
1939void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
1940 InvokeFlag flag,
1941 const CallWrapper& call_wrapper) {
1942 ASM_LOCATION("MacroAssembler::InvokeBuiltin");
1943 // You can't call a builtin without a valid frame.
1944 DCHECK(flag == JUMP_FUNCTION || has_frame());
1945
1946 // Get the builtin entry in x2 and setup the function object in x1.
1947 GetBuiltinEntry(x2, x1, id);
1948 if (flag == CALL_FUNCTION) {
1949 call_wrapper.BeforeCall(CallSize(x2));
1950 Call(x2);
1951 call_wrapper.AfterCall();
1952 } else {
1953 DCHECK(flag == JUMP_FUNCTION);
1954 Jump(x2);
1955 }
1956}
1957
1958
1959void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
1960 int num_arguments,
1961 int result_size) {
1962 // TODO(1236192): Most runtime routines don't need the number of
1963 // arguments passed in because it is constant. At some point we
1964 // should remove this need and make the runtime routine entry code
1965 // smarter.
1966 Mov(x0, num_arguments);
1967 JumpToExternalReference(ext);
1968}
1969
1970
1971void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
1972 int num_arguments,
1973 int result_size) {
1974 TailCallExternalReference(ExternalReference(fid, isolate()),
1975 num_arguments,
1976 result_size);
1977}
1978
1979
1980void MacroAssembler::InitializeNewString(Register string,
1981 Register length,
1982 Heap::RootListIndex map_index,
1983 Register scratch1,
1984 Register scratch2) {
1985 DCHECK(!AreAliased(string, length, scratch1, scratch2));
1986 LoadRoot(scratch2, map_index);
1987 SmiTag(scratch1, length);
1988 Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
1989
1990 Mov(scratch2, String::kEmptyHashField);
1991 Str(scratch1, FieldMemOperand(string, String::kLengthOffset));
1992 Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset));
1993}
1994
1995
1996int MacroAssembler::ActivationFrameAlignment() {
1997#if V8_HOST_ARCH_ARM64
1998 // Running on the real platform. Use the alignment as mandated by the local
1999 // environment.
2000 // Note: This will break if we ever start generating snapshots on one ARM
2001 // platform for another ARM platform with a different alignment.
2002 return base::OS::ActivationFrameAlignment();
2003#else // V8_HOST_ARCH_ARM64
2004 // If we are using the simulator then we should always align to the expected
2005 // alignment. As the simulator is used to generate snapshots we do not know
2006 // if the target platform will need alignment, so this is controlled from a
2007 // flag.
2008 return FLAG_sim_stack_alignment;
2009#endif // V8_HOST_ARCH_ARM64
2010}
2011
2012
2013void MacroAssembler::CallCFunction(ExternalReference function,
2014 int num_of_reg_args) {
2015 CallCFunction(function, num_of_reg_args, 0);
2016}
2017
2018
2019void MacroAssembler::CallCFunction(ExternalReference function,
2020 int num_of_reg_args,
2021 int num_of_double_args) {
2022 UseScratchRegisterScope temps(this);
2023 Register temp = temps.AcquireX();
2024 Mov(temp, function);
2025 CallCFunction(temp, num_of_reg_args, num_of_double_args);
2026}
2027
2028
2029void MacroAssembler::CallCFunction(Register function,
2030 int num_of_reg_args,
2031 int num_of_double_args) {
2032 DCHECK(has_frame());
2033 // We can pass 8 integer arguments in registers. If we need to pass more than
2034 // that, we'll need to implement support for passing them on the stack.
2035 DCHECK(num_of_reg_args <= 8);
2036
2037 // If we're passing doubles, we're limited to the following prototypes
2038 // (defined by ExternalReference::Type):
2039 // BUILTIN_COMPARE_CALL: int f(double, double)
2040 // BUILTIN_FP_FP_CALL: double f(double, double)
2041 // BUILTIN_FP_CALL: double f(double)
2042 // BUILTIN_FP_INT_CALL: double f(double, int)
2043 if (num_of_double_args > 0) {
2044 DCHECK(num_of_reg_args <= 1);
2045 DCHECK((num_of_double_args + num_of_reg_args) <= 2);
2046 }
2047
2048
2049 // If the stack pointer is not csp, we need to derive an aligned csp from the
2050 // current stack pointer.
2051 const Register old_stack_pointer = StackPointer();
2052 if (!csp.Is(old_stack_pointer)) {
2053 AssertStackConsistency();
2054
2055 int sp_alignment = ActivationFrameAlignment();
2056 // The ABI mandates at least 16-byte alignment.
2057 DCHECK(sp_alignment >= 16);
2058 DCHECK(base::bits::IsPowerOfTwo32(sp_alignment));
2059
2060 // The current stack pointer is a callee saved register, and is preserved
2061 // across the call.
2062 DCHECK(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
2063
2064 // Align and synchronize the system stack pointer with jssp.
2065 Bic(csp, old_stack_pointer, sp_alignment - 1);
2066 SetStackPointer(csp);
2067 }
2068
2069 // Call directly. The function called cannot cause a GC, or allow preemption,
2070 // so the return address in the link register stays correct.
2071 Call(function);
2072
2073 if (!csp.Is(old_stack_pointer)) {
2074 if (emit_debug_code()) {
2075 // Because the stack pointer must be aligned on a 16-byte boundary, the
2076 // aligned csp can be up to 12 bytes below the jssp. This is the case
2077 // where we only pushed one W register on top of an aligned jssp.
2078 UseScratchRegisterScope temps(this);
2079 Register temp = temps.AcquireX();
2080 DCHECK(ActivationFrameAlignment() == 16);
2081 Sub(temp, csp, old_stack_pointer);
2082 // We want temp <= 0 && temp >= -12.
2083 Cmp(temp, 0);
2084 Ccmp(temp, -12, NFlag, le);
2085 Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
2086 }
2087 SetStackPointer(old_stack_pointer);
2088 }
2089}
2090
2091
2092void MacroAssembler::Jump(Register target) {
2093 Br(target);
2094}
2095
2096
2097void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode) {
2098 UseScratchRegisterScope temps(this);
2099 Register temp = temps.AcquireX();
2100 Mov(temp, Operand(target, rmode));
2101 Br(temp);
2102}
2103
2104
2105void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode) {
2106 DCHECK(!RelocInfo::IsCodeTarget(rmode));
2107 Jump(reinterpret_cast<intptr_t>(target), rmode);
2108}
2109
2110
2111void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode) {
2112 DCHECK(RelocInfo::IsCodeTarget(rmode));
2113 AllowDeferredHandleDereference embedding_raw_address;
2114 Jump(reinterpret_cast<intptr_t>(code.location()), rmode);
2115}
2116
2117
2118void MacroAssembler::Call(Register target) {
2119 BlockPoolsScope scope(this);
2120#ifdef DEBUG
2121 Label start_call;
2122 Bind(&start_call);
2123#endif
2124
2125 Blr(target);
2126
2127#ifdef DEBUG
2128 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
2129#endif
2130}
2131
2132
2133void MacroAssembler::Call(Label* target) {
2134 BlockPoolsScope scope(this);
2135#ifdef DEBUG
2136 Label start_call;
2137 Bind(&start_call);
2138#endif
2139
2140 Bl(target);
2141
2142#ifdef DEBUG
2143 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
2144#endif
2145}
2146
2147
2148// MacroAssembler::CallSize is sensitive to changes in this function, as it
2149// requires to know how many instructions are used to branch to the target.
2150void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
2151 BlockPoolsScope scope(this);
2152#ifdef DEBUG
2153 Label start_call;
2154 Bind(&start_call);
2155#endif
2156 // Statement positions are expected to be recorded when the target
2157 // address is loaded.
2158 positions_recorder()->WriteRecordedPositions();
2159
2160 // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2161 DCHECK(rmode != RelocInfo::NONE32);
2162
2163 UseScratchRegisterScope temps(this);
2164 Register temp = temps.AcquireX();
2165
2166 if (rmode == RelocInfo::NONE64) {
2167 // Addresses are 48 bits so we never need to load the upper 16 bits.
2168 uint64_t imm = reinterpret_cast<uint64_t>(target);
2169 // If we don't use ARM tagged addresses, the 16 higher bits must be 0.
2170 DCHECK(((imm >> 48) & 0xffff) == 0);
2171 movz(temp, (imm >> 0) & 0xffff, 0);
2172 movk(temp, (imm >> 16) & 0xffff, 16);
2173 movk(temp, (imm >> 32) & 0xffff, 32);
2174 } else {
2175 Ldr(temp, Immediate(reinterpret_cast<intptr_t>(target), rmode));
2176 }
2177 Blr(temp);
2178#ifdef DEBUG
2179 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
2180#endif
2181}
2182
2183
2184void MacroAssembler::Call(Handle<Code> code,
2185 RelocInfo::Mode rmode,
2186 TypeFeedbackId ast_id) {
2187#ifdef DEBUG
2188 Label start_call;
2189 Bind(&start_call);
2190#endif
2191
2192 if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
2193 SetRecordedAstId(ast_id);
2194 rmode = RelocInfo::CODE_TARGET_WITH_ID;
2195 }
2196
2197 AllowDeferredHandleDereference embedding_raw_address;
2198 Call(reinterpret_cast<Address>(code.location()), rmode);
2199
2200#ifdef DEBUG
2201 // Check the size of the code generated.
2202 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
2203#endif
2204}
2205
2206
2207int MacroAssembler::CallSize(Register target) {
2208 USE(target);
2209 return kInstructionSize;
2210}
2211
2212
2213int MacroAssembler::CallSize(Label* target) {
2214 USE(target);
2215 return kInstructionSize;
2216}
2217
2218
2219int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
2220 USE(target);
2221
2222 // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2223 DCHECK(rmode != RelocInfo::NONE32);
2224
2225 if (rmode == RelocInfo::NONE64) {
2226 return kCallSizeWithoutRelocation;
2227 } else {
2228 return kCallSizeWithRelocation;
2229 }
2230}
2231
2232
2233int MacroAssembler::CallSize(Handle<Code> code,
2234 RelocInfo::Mode rmode,
2235 TypeFeedbackId ast_id) {
2236 USE(code);
2237 USE(ast_id);
2238
2239 // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2240 DCHECK(rmode != RelocInfo::NONE32);
2241
2242 if (rmode == RelocInfo::NONE64) {
2243 return kCallSizeWithoutRelocation;
2244 } else {
2245 return kCallSizeWithRelocation;
2246 }
2247}
2248
2249
2250void MacroAssembler::JumpIfHeapNumber(Register object, Label* on_heap_number,
2251 SmiCheckType smi_check_type) {
2252 Label on_not_heap_number;
2253
2254 if (smi_check_type == DO_SMI_CHECK) {
2255 JumpIfSmi(object, &on_not_heap_number);
2256 }
2257
2258 AssertNotSmi(object);
2259
2260 UseScratchRegisterScope temps(this);
2261 Register temp = temps.AcquireX();
2262 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2263 JumpIfRoot(temp, Heap::kHeapNumberMapRootIndex, on_heap_number);
2264
2265 Bind(&on_not_heap_number);
2266}
2267
2268
2269void MacroAssembler::JumpIfNotHeapNumber(Register object,
2270 Label* on_not_heap_number,
2271 SmiCheckType smi_check_type) {
2272 if (smi_check_type == DO_SMI_CHECK) {
2273 JumpIfSmi(object, on_not_heap_number);
2274 }
2275
2276 AssertNotSmi(object);
2277
2278 UseScratchRegisterScope temps(this);
2279 Register temp = temps.AcquireX();
2280 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2281 JumpIfNotRoot(temp, Heap::kHeapNumberMapRootIndex, on_not_heap_number);
2282}
2283
2284
2285void MacroAssembler::LookupNumberStringCache(Register object,
2286 Register result,
2287 Register scratch1,
2288 Register scratch2,
2289 Register scratch3,
2290 Label* not_found) {
2291 DCHECK(!AreAliased(object, result, scratch1, scratch2, scratch3));
2292
2293 // Use of registers. Register result is used as a temporary.
2294 Register number_string_cache = result;
2295 Register mask = scratch3;
2296
2297 // Load the number string cache.
2298 LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
2299
2300 // Make the hash mask from the length of the number string cache. It
2301 // contains two elements (number and string) for each cache entry.
2302 Ldrsw(mask, UntagSmiFieldMemOperand(number_string_cache,
2303 FixedArray::kLengthOffset));
2304 Asr(mask, mask, 1); // Divide length by two.
2305 Sub(mask, mask, 1); // Make mask.
2306
2307 // Calculate the entry in the number string cache. The hash value in the
2308 // number string cache for smis is just the smi value, and the hash for
2309 // doubles is the xor of the upper and lower words. See
2310 // Heap::GetNumberStringCache.
2311 Label is_smi;
2312 Label load_result_from_cache;
2313
2314 JumpIfSmi(object, &is_smi);
2315 JumpIfNotHeapNumber(object, not_found);
2316
2317 STATIC_ASSERT(kDoubleSize == (kWRegSize * 2));
2318 Add(scratch1, object, HeapNumber::kValueOffset - kHeapObjectTag);
2319 Ldp(scratch1.W(), scratch2.W(), MemOperand(scratch1));
2320 Eor(scratch1, scratch1, scratch2);
2321 And(scratch1, scratch1, mask);
2322
2323 // Calculate address of entry in string cache: each entry consists of two
2324 // pointer sized fields.
2325 Add(scratch1, number_string_cache,
2326 Operand(scratch1, LSL, kPointerSizeLog2 + 1));
2327
2328 Register probe = mask;
2329 Ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2330 JumpIfSmi(probe, not_found);
2331 Ldr(d0, FieldMemOperand(object, HeapNumber::kValueOffset));
2332 Ldr(d1, FieldMemOperand(probe, HeapNumber::kValueOffset));
2333 Fcmp(d0, d1);
2334 B(ne, not_found);
2335 B(&load_result_from_cache);
2336
2337 Bind(&is_smi);
2338 Register scratch = scratch1;
2339 And(scratch, mask, Operand::UntagSmi(object));
2340 // Calculate address of entry in string cache: each entry consists
2341 // of two pointer sized fields.
2342 Add(scratch, number_string_cache,
2343 Operand(scratch, LSL, kPointerSizeLog2 + 1));
2344
2345 // Check if the entry is the smi we are looking for.
2346 Ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
2347 Cmp(object, probe);
2348 B(ne, not_found);
2349
2350 // Get the result from the cache.
2351 Bind(&load_result_from_cache);
2352 Ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
2353 IncrementCounter(isolate()->counters()->number_to_string_native(), 1,
2354 scratch1, scratch2);
2355}
2356
2357
2358void MacroAssembler::TryRepresentDoubleAsInt(Register as_int,
2359 FPRegister value,
2360 FPRegister scratch_d,
2361 Label* on_successful_conversion,
2362 Label* on_failed_conversion) {
2363 // Convert to an int and back again, then compare with the original value.
2364 Fcvtzs(as_int, value);
2365 Scvtf(scratch_d, as_int);
2366 Fcmp(value, scratch_d);
2367
2368 if (on_successful_conversion) {
2369 B(on_successful_conversion, eq);
2370 }
2371 if (on_failed_conversion) {
2372 B(on_failed_conversion, ne);
2373 }
2374}
2375
2376
2377void MacroAssembler::TestForMinusZero(DoubleRegister input) {
2378 UseScratchRegisterScope temps(this);
2379 Register temp = temps.AcquireX();
2380 // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
2381 // cause overflow.
2382 Fmov(temp, input);
2383 Cmp(temp, 1);
2384}
2385
2386
2387void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
2388 Label* on_negative_zero) {
2389 TestForMinusZero(input);
2390 B(vs, on_negative_zero);
2391}
2392
2393
2394void MacroAssembler::JumpIfMinusZero(Register input,
2395 Label* on_negative_zero) {
2396 DCHECK(input.Is64Bits());
2397 // Floating point value is in an integer register. Detect -0.0 by subtracting
2398 // 1 (cmp), which will cause overflow.
2399 Cmp(input, 1);
2400 B(vs, on_negative_zero);
2401}
2402
2403
2404void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
2405 // Clamp the value to [0..255].
2406 Cmp(input.W(), Operand(input.W(), UXTB));
2407 // If input < input & 0xff, it must be < 0, so saturate to 0.
2408 Csel(output.W(), wzr, input.W(), lt);
2409 // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255.
2410 Csel(output.W(), output.W(), 255, le);
2411}
2412
2413
2414void MacroAssembler::ClampInt32ToUint8(Register in_out) {
2415 ClampInt32ToUint8(in_out, in_out);
2416}
2417
2418
2419void MacroAssembler::ClampDoubleToUint8(Register output,
2420 DoubleRegister input,
2421 DoubleRegister dbl_scratch) {
2422 // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
2423 // - Inputs lower than 0 (including -infinity) produce 0.
2424 // - Inputs higher than 255 (including +infinity) produce 255.
2425 // Also, it seems that PIXEL types use round-to-nearest rather than
2426 // round-towards-zero.
2427
2428 // Squash +infinity before the conversion, since Fcvtnu will normally
2429 // convert it to 0.
2430 Fmov(dbl_scratch, 255);
2431 Fmin(dbl_scratch, dbl_scratch, input);
2432
2433 // Convert double to unsigned integer. Values less than zero become zero.
2434 // Values greater than 255 have already been clamped to 255.
2435 Fcvtnu(output, dbl_scratch);
2436}
2437
2438
2439void MacroAssembler::CopyFieldsLoopPairsHelper(Register dst,
2440 Register src,
2441 unsigned count,
2442 Register scratch1,
2443 Register scratch2,
2444 Register scratch3,
2445 Register scratch4,
2446 Register scratch5) {
2447 // Untag src and dst into scratch registers.
2448 // Copy src->dst in a tight loop.
2449 DCHECK(!AreAliased(dst, src,
2450 scratch1, scratch2, scratch3, scratch4, scratch5));
2451 DCHECK(count >= 2);
2452
2453 const Register& remaining = scratch3;
2454 Mov(remaining, count / 2);
2455
2456 const Register& dst_untagged = scratch1;
2457 const Register& src_untagged = scratch2;
2458 Sub(dst_untagged, dst, kHeapObjectTag);
2459 Sub(src_untagged, src, kHeapObjectTag);
2460
2461 // Copy fields in pairs.
2462 Label loop;
2463 Bind(&loop);
2464 Ldp(scratch4, scratch5,
2465 MemOperand(src_untagged, kXRegSize* 2, PostIndex));
2466 Stp(scratch4, scratch5,
2467 MemOperand(dst_untagged, kXRegSize* 2, PostIndex));
2468 Sub(remaining, remaining, 1);
2469 Cbnz(remaining, &loop);
2470
2471 // Handle the leftovers.
2472 if (count & 1) {
2473 Ldr(scratch4, MemOperand(src_untagged));
2474 Str(scratch4, MemOperand(dst_untagged));
2475 }
2476}
2477
2478
2479void MacroAssembler::CopyFieldsUnrolledPairsHelper(Register dst,
2480 Register src,
2481 unsigned count,
2482 Register scratch1,
2483 Register scratch2,
2484 Register scratch3,
2485 Register scratch4) {
2486 // Untag src and dst into scratch registers.
2487 // Copy src->dst in an unrolled loop.
2488 DCHECK(!AreAliased(dst, src, scratch1, scratch2, scratch3, scratch4));
2489
2490 const Register& dst_untagged = scratch1;
2491 const Register& src_untagged = scratch2;
2492 sub(dst_untagged, dst, kHeapObjectTag);
2493 sub(src_untagged, src, kHeapObjectTag);
2494
2495 // Copy fields in pairs.
2496 for (unsigned i = 0; i < count / 2; i++) {
2497 Ldp(scratch3, scratch4, MemOperand(src_untagged, kXRegSize * 2, PostIndex));
2498 Stp(scratch3, scratch4, MemOperand(dst_untagged, kXRegSize * 2, PostIndex));
2499 }
2500
2501 // Handle the leftovers.
2502 if (count & 1) {
2503 Ldr(scratch3, MemOperand(src_untagged));
2504 Str(scratch3, MemOperand(dst_untagged));
2505 }
2506}
2507
2508
2509void MacroAssembler::CopyFieldsUnrolledHelper(Register dst,
2510 Register src,
2511 unsigned count,
2512 Register scratch1,
2513 Register scratch2,
2514 Register scratch3) {
2515 // Untag src and dst into scratch registers.
2516 // Copy src->dst in an unrolled loop.
2517 DCHECK(!AreAliased(dst, src, scratch1, scratch2, scratch3));
2518
2519 const Register& dst_untagged = scratch1;
2520 const Register& src_untagged = scratch2;
2521 Sub(dst_untagged, dst, kHeapObjectTag);
2522 Sub(src_untagged, src, kHeapObjectTag);
2523
2524 // Copy fields one by one.
2525 for (unsigned i = 0; i < count; i++) {
2526 Ldr(scratch3, MemOperand(src_untagged, kXRegSize, PostIndex));
2527 Str(scratch3, MemOperand(dst_untagged, kXRegSize, PostIndex));
2528 }
2529}
2530
2531
2532void MacroAssembler::CopyFields(Register dst, Register src, CPURegList temps,
2533 unsigned count) {
2534 // One of two methods is used:
2535 //
2536 // For high 'count' values where many scratch registers are available:
2537 // Untag src and dst into scratch registers.
2538 // Copy src->dst in a tight loop.
2539 //
2540 // For low 'count' values or where few scratch registers are available:
2541 // Untag src and dst into scratch registers.
2542 // Copy src->dst in an unrolled loop.
2543 //
2544 // In both cases, fields are copied in pairs if possible, and left-overs are
2545 // handled separately.
2546 DCHECK(!AreAliased(dst, src));
2547 DCHECK(!temps.IncludesAliasOf(dst));
2548 DCHECK(!temps.IncludesAliasOf(src));
2549 DCHECK(!temps.IncludesAliasOf(xzr));
2550
2551 if (emit_debug_code()) {
2552 Cmp(dst, src);
2553 Check(ne, kTheSourceAndDestinationAreTheSame);
2554 }
2555
2556 // The value of 'count' at which a loop will be generated (if there are
2557 // enough scratch registers).
2558 static const unsigned kLoopThreshold = 8;
2559
2560 UseScratchRegisterScope masm_temps(this);
2561 if ((temps.Count() >= 3) && (count >= kLoopThreshold)) {
2562 CopyFieldsLoopPairsHelper(dst, src, count,
2563 Register(temps.PopLowestIndex()),
2564 Register(temps.PopLowestIndex()),
2565 Register(temps.PopLowestIndex()),
2566 masm_temps.AcquireX(),
2567 masm_temps.AcquireX());
2568 } else if (temps.Count() >= 2) {
2569 CopyFieldsUnrolledPairsHelper(dst, src, count,
2570 Register(temps.PopLowestIndex()),
2571 Register(temps.PopLowestIndex()),
2572 masm_temps.AcquireX(),
2573 masm_temps.AcquireX());
2574 } else if (temps.Count() == 1) {
2575 CopyFieldsUnrolledHelper(dst, src, count,
2576 Register(temps.PopLowestIndex()),
2577 masm_temps.AcquireX(),
2578 masm_temps.AcquireX());
2579 } else {
2580 UNREACHABLE();
2581 }
2582}
2583
2584
2585void MacroAssembler::CopyBytes(Register dst,
2586 Register src,
2587 Register length,
2588 Register scratch,
2589 CopyHint hint) {
2590 UseScratchRegisterScope temps(this);
2591 Register tmp1 = temps.AcquireX();
2592 Register tmp2 = temps.AcquireX();
2593 DCHECK(!AreAliased(src, dst, length, scratch, tmp1, tmp2));
2594 DCHECK(!AreAliased(src, dst, csp));
2595
2596 if (emit_debug_code()) {
2597 // Check copy length.
2598 Cmp(length, 0);
2599 Assert(ge, kUnexpectedNegativeValue);
2600
2601 // Check src and dst buffers don't overlap.
2602 Add(scratch, src, length); // Calculate end of src buffer.
2603 Cmp(scratch, dst);
2604 Add(scratch, dst, length); // Calculate end of dst buffer.
2605 Ccmp(scratch, src, ZFlag, gt);
2606 Assert(le, kCopyBuffersOverlap);
2607 }
2608
2609 Label short_copy, short_loop, bulk_loop, done;
2610
2611 if ((hint == kCopyLong || hint == kCopyUnknown) && !FLAG_optimize_for_size) {
2612 Register bulk_length = scratch;
2613 int pair_size = 2 * kXRegSize;
2614 int pair_mask = pair_size - 1;
2615
2616 Bic(bulk_length, length, pair_mask);
2617 Cbz(bulk_length, &short_copy);
2618 Bind(&bulk_loop);
2619 Sub(bulk_length, bulk_length, pair_size);
2620 Ldp(tmp1, tmp2, MemOperand(src, pair_size, PostIndex));
2621 Stp(tmp1, tmp2, MemOperand(dst, pair_size, PostIndex));
2622 Cbnz(bulk_length, &bulk_loop);
2623
2624 And(length, length, pair_mask);
2625 }
2626
2627 Bind(&short_copy);
2628 Cbz(length, &done);
2629 Bind(&short_loop);
2630 Sub(length, length, 1);
2631 Ldrb(tmp1, MemOperand(src, 1, PostIndex));
2632 Strb(tmp1, MemOperand(dst, 1, PostIndex));
2633 Cbnz(length, &short_loop);
2634
2635
2636 Bind(&done);
2637}
2638
2639
2640void MacroAssembler::FillFields(Register dst,
2641 Register field_count,
2642 Register filler) {
2643 DCHECK(!dst.Is(csp));
2644 UseScratchRegisterScope temps(this);
2645 Register field_ptr = temps.AcquireX();
2646 Register counter = temps.AcquireX();
2647 Label done;
2648
2649 // Decrement count. If the result < zero, count was zero, and there's nothing
2650 // to do. If count was one, flags are set to fail the gt condition at the end
2651 // of the pairs loop.
2652 Subs(counter, field_count, 1);
2653 B(lt, &done);
2654
2655 // There's at least one field to fill, so do this unconditionally.
2656 Str(filler, MemOperand(dst, kPointerSize, PostIndex));
2657
2658 // If the bottom bit of counter is set, there are an even number of fields to
2659 // fill, so pull the start pointer back by one field, allowing the pairs loop
2660 // to overwrite the field that was stored above.
2661 And(field_ptr, counter, 1);
2662 Sub(field_ptr, dst, Operand(field_ptr, LSL, kPointerSizeLog2));
2663
2664 // Store filler to memory in pairs.
2665 Label entry, loop;
2666 B(&entry);
2667 Bind(&loop);
2668 Stp(filler, filler, MemOperand(field_ptr, 2 * kPointerSize, PostIndex));
2669 Subs(counter, counter, 2);
2670 Bind(&entry);
2671 B(gt, &loop);
2672
2673 Bind(&done);
2674}
2675
2676
2677void MacroAssembler::JumpIfEitherIsNotSequentialOneByteStrings(
2678 Register first, Register second, Register scratch1, Register scratch2,
2679 Label* failure, SmiCheckType smi_check) {
2680 if (smi_check == DO_SMI_CHECK) {
2681 JumpIfEitherSmi(first, second, failure);
2682 } else if (emit_debug_code()) {
2683 DCHECK(smi_check == DONT_DO_SMI_CHECK);
2684 Label not_smi;
2685 JumpIfEitherSmi(first, second, NULL, &not_smi);
2686
2687 // At least one input is a smi, but the flags indicated a smi check wasn't
2688 // needed.
2689 Abort(kUnexpectedSmi);
2690
2691 Bind(&not_smi);
2692 }
2693
2694 // Test that both first and second are sequential one-byte strings.
2695 Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
2696 Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
2697 Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
2698 Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
2699
2700 JumpIfEitherInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, scratch1,
2701 scratch2, failure);
2702}
2703
2704
2705void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialOneByte(
2706 Register first, Register second, Register scratch1, Register scratch2,
2707 Label* failure) {
2708 DCHECK(!AreAliased(scratch1, second));
2709 DCHECK(!AreAliased(scratch1, scratch2));
2710 static const int kFlatOneByteStringMask =
2711 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2712 static const int kFlatOneByteStringTag = ONE_BYTE_STRING_TYPE;
2713 And(scratch1, first, kFlatOneByteStringMask);
2714 And(scratch2, second, kFlatOneByteStringMask);
2715 Cmp(scratch1, kFlatOneByteStringTag);
2716 Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2717 B(ne, failure);
2718}
2719
2720
2721void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
2722 Register scratch,
2723 Label* failure) {
2724 const int kFlatOneByteStringMask =
2725 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2726 const int kFlatOneByteStringTag =
2727 kStringTag | kOneByteStringTag | kSeqStringTag;
2728 And(scratch, type, kFlatOneByteStringMask);
2729 Cmp(scratch, kFlatOneByteStringTag);
2730 B(ne, failure);
2731}
2732
2733
2734void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
2735 Register first, Register second, Register scratch1, Register scratch2,
2736 Label* failure) {
2737 DCHECK(!AreAliased(first, second, scratch1, scratch2));
2738 const int kFlatOneByteStringMask =
2739 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2740 const int kFlatOneByteStringTag =
2741 kStringTag | kOneByteStringTag | kSeqStringTag;
2742 And(scratch1, first, kFlatOneByteStringMask);
2743 And(scratch2, second, kFlatOneByteStringMask);
2744 Cmp(scratch1, kFlatOneByteStringTag);
2745 Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2746 B(ne, failure);
2747}
2748
2749
2750void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register type,
2751 Label* not_unique_name) {
2752 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
2753 // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
2754 // continue
2755 // } else {
2756 // goto not_unique_name
2757 // }
2758 Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
2759 Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
2760 B(ne, not_unique_name);
2761}
2762
2763
2764void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2765 const ParameterCount& actual,
2766 Handle<Code> code_constant,
2767 Register code_reg,
2768 Label* done,
2769 InvokeFlag flag,
2770 bool* definitely_mismatches,
2771 const CallWrapper& call_wrapper) {
2772 bool definitely_matches = false;
2773 *definitely_mismatches = false;
2774 Label regular_invoke;
2775
2776 // Check whether the expected and actual arguments count match. If not,
2777 // setup registers according to contract with ArgumentsAdaptorTrampoline:
2778 // x0: actual arguments count.
2779 // x1: function (passed through to callee).
2780 // x2: expected arguments count.
2781
2782 // The code below is made a lot easier because the calling code already sets
2783 // up actual and expected registers according to the contract if values are
2784 // passed in registers.
2785 DCHECK(actual.is_immediate() || actual.reg().is(x0));
2786 DCHECK(expected.is_immediate() || expected.reg().is(x2));
2787 DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(x3));
2788
2789 if (expected.is_immediate()) {
2790 DCHECK(actual.is_immediate());
2791 if (expected.immediate() == actual.immediate()) {
2792 definitely_matches = true;
2793
2794 } else {
2795 Mov(x0, actual.immediate());
2796 if (expected.immediate() ==
2797 SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
2798 // Don't worry about adapting arguments for builtins that
2799 // don't want that done. Skip adaption code by making it look
2800 // like we have a match between expected and actual number of
2801 // arguments.
2802 definitely_matches = true;
2803 } else {
2804 *definitely_mismatches = true;
2805 // Set up x2 for the argument adaptor.
2806 Mov(x2, expected.immediate());
2807 }
2808 }
2809
2810 } else { // expected is a register.
2811 Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
2812 : Operand(actual.reg());
2813 // If actual == expected perform a regular invocation.
2814 Cmp(expected.reg(), actual_op);
2815 B(eq, &regular_invoke);
2816 // Otherwise set up x0 for the argument adaptor.
2817 Mov(x0, actual_op);
2818 }
2819
2820 // If the argument counts may mismatch, generate a call to the argument
2821 // adaptor.
2822 if (!definitely_matches) {
2823 if (!code_constant.is_null()) {
2824 Mov(x3, Operand(code_constant));
2825 Add(x3, x3, Code::kHeaderSize - kHeapObjectTag);
2826 }
2827
2828 Handle<Code> adaptor =
2829 isolate()->builtins()->ArgumentsAdaptorTrampoline();
2830 if (flag == CALL_FUNCTION) {
2831 call_wrapper.BeforeCall(CallSize(adaptor));
2832 Call(adaptor);
2833 call_wrapper.AfterCall();
2834 if (!*definitely_mismatches) {
2835 // If the arg counts don't match, no extra code is emitted by
2836 // MAsm::InvokeCode and we can just fall through.
2837 B(done);
2838 }
2839 } else {
2840 Jump(adaptor, RelocInfo::CODE_TARGET);
2841 }
2842 }
2843 Bind(&regular_invoke);
2844}
2845
2846
2847void MacroAssembler::InvokeCode(Register code,
2848 const ParameterCount& expected,
2849 const ParameterCount& actual,
2850 InvokeFlag flag,
2851 const CallWrapper& call_wrapper) {
2852 // You can't call a function without a valid frame.
2853 DCHECK(flag == JUMP_FUNCTION || has_frame());
2854
2855 Label done;
2856
2857 bool definitely_mismatches = false;
2858 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
2859 &definitely_mismatches, call_wrapper);
2860
2861 // If we are certain that actual != expected, then we know InvokePrologue will
2862 // have handled the call through the argument adaptor mechanism.
2863 // The called function expects the call kind in x5.
2864 if (!definitely_mismatches) {
2865 if (flag == CALL_FUNCTION) {
2866 call_wrapper.BeforeCall(CallSize(code));
2867 Call(code);
2868 call_wrapper.AfterCall();
2869 } else {
2870 DCHECK(flag == JUMP_FUNCTION);
2871 Jump(code);
2872 }
2873 }
2874
2875 // Continue here if InvokePrologue does handle the invocation due to
2876 // mismatched parameter counts.
2877 Bind(&done);
2878}
2879
2880
2881void MacroAssembler::InvokeFunction(Register function,
2882 const ParameterCount& actual,
2883 InvokeFlag flag,
2884 const CallWrapper& call_wrapper) {
2885 // You can't call a function without a valid frame.
2886 DCHECK(flag == JUMP_FUNCTION || has_frame());
2887
2888 // Contract with called JS functions requires that function is passed in x1.
2889 // (See FullCodeGenerator::Generate().)
2890 DCHECK(function.is(x1));
2891
2892 Register expected_reg = x2;
2893 Register code_reg = x3;
2894
2895 Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2896 // The number of arguments is stored as an int32_t, and -1 is a marker
2897 // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
2898 // extension to correctly handle it.
2899 Ldr(expected_reg, FieldMemOperand(function,
2900 JSFunction::kSharedFunctionInfoOffset));
2901 Ldrsw(expected_reg,
2902 FieldMemOperand(expected_reg,
2903 SharedFunctionInfo::kFormalParameterCountOffset));
2904 Ldr(code_reg,
2905 FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2906
2907 ParameterCount expected(expected_reg);
2908 InvokeCode(code_reg, expected, actual, flag, call_wrapper);
2909}
2910
2911
2912void MacroAssembler::InvokeFunction(Register function,
2913 const ParameterCount& expected,
2914 const ParameterCount& actual,
2915 InvokeFlag flag,
2916 const CallWrapper& call_wrapper) {
2917 // You can't call a function without a valid frame.
2918 DCHECK(flag == JUMP_FUNCTION || has_frame());
2919
2920 // Contract with called JS functions requires that function is passed in x1.
2921 // (See FullCodeGenerator::Generate().)
2922 DCHECK(function.Is(x1));
2923
2924 Register code_reg = x3;
2925
2926 // Set up the context.
2927 Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2928
2929 // We call indirectly through the code field in the function to
2930 // allow recompilation to take effect without changing any of the
2931 // call sites.
2932 Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2933 InvokeCode(code_reg, expected, actual, flag, call_wrapper);
2934}
2935
2936
2937void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2938 const ParameterCount& expected,
2939 const ParameterCount& actual,
2940 InvokeFlag flag,
2941 const CallWrapper& call_wrapper) {
2942 // Contract with called JS functions requires that function is passed in x1.
2943 // (See FullCodeGenerator::Generate().)
2944 __ LoadObject(x1, function);
2945 InvokeFunction(x1, expected, actual, flag, call_wrapper);
2946}
2947
2948
2949void MacroAssembler::TryConvertDoubleToInt64(Register result,
2950 DoubleRegister double_input,
2951 Label* done) {
2952 // Try to convert with an FPU convert instruction. It's trivial to compute
2953 // the modulo operation on an integer register so we convert to a 64-bit
2954 // integer.
2955 //
2956 // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
2957 // when the double is out of range. NaNs and infinities will be converted to 0
2958 // (as ECMA-262 requires).
2959 Fcvtzs(result.X(), double_input);
2960
2961 // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
2962 // representable using a double, so if the result is one of those then we know
2963 // that saturation occured, and we need to manually handle the conversion.
2964 //
2965 // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
2966 // 1 will cause signed overflow.
2967 Cmp(result.X(), 1);
2968 Ccmp(result.X(), -1, VFlag, vc);
2969
2970 B(vc, done);
2971}
2972
2973
2974void MacroAssembler::TruncateDoubleToI(Register result,
2975 DoubleRegister double_input) {
2976 Label done;
2977
2978 // Try to convert the double to an int64. If successful, the bottom 32 bits
2979 // contain our truncated int32 result.
2980 TryConvertDoubleToInt64(result, double_input, &done);
2981
2982 const Register old_stack_pointer = StackPointer();
2983 if (csp.Is(old_stack_pointer)) {
2984 // This currently only happens during compiler-unittest. If it arises
2985 // during regular code generation the DoubleToI stub should be updated to
2986 // cope with csp and have an extra parameter indicating which stack pointer
2987 // it should use.
2988 Push(jssp, xzr); // Push xzr to maintain csp required 16-bytes alignment.
2989 Mov(jssp, csp);
2990 SetStackPointer(jssp);
2991 }
2992
2993 // If we fell through then inline version didn't succeed - call stub instead.
2994 Push(lr, double_input);
2995
2996 DoubleToIStub stub(isolate(),
2997 jssp,
2998 result,
2999 0,
3000 true, // is_truncating
3001 true); // skip_fastpath
3002 CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber
3003
3004 DCHECK_EQ(xzr.SizeInBytes(), double_input.SizeInBytes());
3005 Pop(xzr, lr); // xzr to drop the double input on the stack.
3006
3007 if (csp.Is(old_stack_pointer)) {
3008 Mov(csp, jssp);
3009 SetStackPointer(csp);
3010 AssertStackConsistency();
3011 Pop(xzr, jssp);
3012 }
3013
3014 Bind(&done);
3015}
3016
3017
3018void MacroAssembler::TruncateHeapNumberToI(Register result,
3019 Register object) {
3020 Label done;
3021 DCHECK(!result.is(object));
3022 DCHECK(jssp.Is(StackPointer()));
3023
3024 Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
3025
3026 // Try to convert the double to an int64. If successful, the bottom 32 bits
3027 // contain our truncated int32 result.
3028 TryConvertDoubleToInt64(result, fp_scratch, &done);
3029
3030 // If we fell through then inline version didn't succeed - call stub instead.
3031 Push(lr);
3032 DoubleToIStub stub(isolate(),
3033 object,
3034 result,
3035 HeapNumber::kValueOffset - kHeapObjectTag,
3036 true, // is_truncating
3037 true); // skip_fastpath
3038 CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber
3039 Pop(lr);
3040
3041 Bind(&done);
3042}
3043
3044
3045void MacroAssembler::StubPrologue() {
3046 DCHECK(StackPointer().Is(jssp));
3047 UseScratchRegisterScope temps(this);
3048 Register temp = temps.AcquireX();
3049 __ Mov(temp, Smi::FromInt(StackFrame::STUB));
3050 // Compiled stubs don't age, and so they don't need the predictable code
3051 // ageing sequence.
3052 __ Push(lr, fp, cp, temp);
3053 __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
3054}
3055
3056
3057void MacroAssembler::Prologue(bool code_pre_aging) {
3058 if (code_pre_aging) {
3059 Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
3060 __ EmitCodeAgeSequence(stub);
3061 } else {
3062 __ EmitFrameSetupForCodeAgePatching();
3063 }
3064}
3065
3066
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003067void MacroAssembler::EnterFrame(StackFrame::Type type,
3068 bool load_constant_pool_pointer_reg) {
3069 // Out-of-line constant pool not implemented on arm64.
3070 UNREACHABLE();
3071}
3072
3073
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003074void MacroAssembler::EnterFrame(StackFrame::Type type) {
3075 DCHECK(jssp.Is(StackPointer()));
3076 UseScratchRegisterScope temps(this);
3077 Register type_reg = temps.AcquireX();
3078 Register code_reg = temps.AcquireX();
3079
3080 Push(lr, fp, cp);
3081 Mov(type_reg, Smi::FromInt(type));
3082 Mov(code_reg, Operand(CodeObject()));
3083 Push(type_reg, code_reg);
3084 // jssp[4] : lr
3085 // jssp[3] : fp
3086 // jssp[2] : cp
3087 // jssp[1] : type
3088 // jssp[0] : code object
3089
3090 // Adjust FP to point to saved FP.
3091 Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
3092}
3093
3094
3095void MacroAssembler::LeaveFrame(StackFrame::Type type) {
3096 DCHECK(jssp.Is(StackPointer()));
3097 // Drop the execution stack down to the frame pointer and restore
3098 // the caller frame pointer and return address.
3099 Mov(jssp, fp);
3100 AssertStackConsistency();
3101 Pop(fp, lr);
3102}
3103
3104
3105void MacroAssembler::ExitFramePreserveFPRegs() {
3106 PushCPURegList(kCallerSavedFP);
3107}
3108
3109
3110void MacroAssembler::ExitFrameRestoreFPRegs() {
3111 // Read the registers from the stack without popping them. The stack pointer
3112 // will be reset as part of the unwinding process.
3113 CPURegList saved_fp_regs = kCallerSavedFP;
3114 DCHECK(saved_fp_regs.Count() % 2 == 0);
3115
3116 int offset = ExitFrameConstants::kLastExitFrameField;
3117 while (!saved_fp_regs.IsEmpty()) {
3118 const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
3119 const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
3120 offset -= 2 * kDRegSize;
3121 Ldp(dst1, dst0, MemOperand(fp, offset));
3122 }
3123}
3124
3125
3126void MacroAssembler::EnterExitFrame(bool save_doubles,
3127 const Register& scratch,
3128 int extra_space) {
3129 DCHECK(jssp.Is(StackPointer()));
3130
3131 // Set up the new stack frame.
3132 Mov(scratch, Operand(CodeObject()));
3133 Push(lr, fp);
3134 Mov(fp, StackPointer());
3135 Push(xzr, scratch);
3136 // fp[8]: CallerPC (lr)
3137 // fp -> fp[0]: CallerFP (old fp)
3138 // fp[-8]: Space reserved for SPOffset.
3139 // jssp -> fp[-16]: CodeObject()
3140 STATIC_ASSERT((2 * kPointerSize) ==
3141 ExitFrameConstants::kCallerSPDisplacement);
3142 STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
3143 STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
3144 STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset);
3145 STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset);
3146
3147 // Save the frame pointer and context pointer in the top frame.
3148 Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
3149 isolate())));
3150 Str(fp, MemOperand(scratch));
3151 Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3152 isolate())));
3153 Str(cp, MemOperand(scratch));
3154
3155 STATIC_ASSERT((-2 * kPointerSize) ==
3156 ExitFrameConstants::kLastExitFrameField);
3157 if (save_doubles) {
3158 ExitFramePreserveFPRegs();
3159 }
3160
3161 // Reserve space for the return address and for user requested memory.
3162 // We do this before aligning to make sure that we end up correctly
3163 // aligned with the minimum of wasted space.
3164 Claim(extra_space + 1, kXRegSize);
3165 // fp[8]: CallerPC (lr)
3166 // fp -> fp[0]: CallerFP (old fp)
3167 // fp[-8]: Space reserved for SPOffset.
3168 // fp[-16]: CodeObject()
3169 // fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
3170 // jssp[8]: Extra space reserved for caller (if extra_space != 0).
3171 // jssp -> jssp[0]: Space reserved for the return address.
3172
3173 // Align and synchronize the system stack pointer with jssp.
3174 AlignAndSetCSPForFrame();
3175 DCHECK(csp.Is(StackPointer()));
3176
3177 // fp[8]: CallerPC (lr)
3178 // fp -> fp[0]: CallerFP (old fp)
3179 // fp[-8]: Space reserved for SPOffset.
3180 // fp[-16]: CodeObject()
3181 // fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
3182 // csp[8]: Memory reserved for the caller if extra_space != 0.
3183 // Alignment padding, if necessary.
3184 // csp -> csp[0]: Space reserved for the return address.
3185
3186 // ExitFrame::GetStateForFramePointer expects to find the return address at
3187 // the memory address immediately below the pointer stored in SPOffset.
3188 // It is not safe to derive much else from SPOffset, because the size of the
3189 // padding can vary.
3190 Add(scratch, csp, kXRegSize);
3191 Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
3192}
3193
3194
3195// Leave the current exit frame.
3196void MacroAssembler::LeaveExitFrame(bool restore_doubles,
3197 const Register& scratch,
3198 bool restore_context) {
3199 DCHECK(csp.Is(StackPointer()));
3200
3201 if (restore_doubles) {
3202 ExitFrameRestoreFPRegs();
3203 }
3204
3205 // Restore the context pointer from the top frame.
3206 if (restore_context) {
3207 Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3208 isolate())));
3209 Ldr(cp, MemOperand(scratch));
3210 }
3211
3212 if (emit_debug_code()) {
3213 // Also emit debug code to clear the cp in the top frame.
3214 Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3215 isolate())));
3216 Str(xzr, MemOperand(scratch));
3217 }
3218 // Clear the frame pointer from the top frame.
3219 Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
3220 isolate())));
3221 Str(xzr, MemOperand(scratch));
3222
3223 // Pop the exit frame.
3224 // fp[8]: CallerPC (lr)
3225 // fp -> fp[0]: CallerFP (old fp)
3226 // fp[...]: The rest of the frame.
3227 Mov(jssp, fp);
3228 SetStackPointer(jssp);
3229 AssertStackConsistency();
3230 Pop(fp, lr);
3231}
3232
3233
3234void MacroAssembler::SetCounter(StatsCounter* counter, int value,
3235 Register scratch1, Register scratch2) {
3236 if (FLAG_native_code_counters && counter->Enabled()) {
3237 Mov(scratch1, value);
3238 Mov(scratch2, ExternalReference(counter));
3239 Str(scratch1, MemOperand(scratch2));
3240 }
3241}
3242
3243
3244void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
3245 Register scratch1, Register scratch2) {
3246 DCHECK(value != 0);
3247 if (FLAG_native_code_counters && counter->Enabled()) {
3248 Mov(scratch2, ExternalReference(counter));
3249 Ldr(scratch1, MemOperand(scratch2));
3250 Add(scratch1, scratch1, value);
3251 Str(scratch1, MemOperand(scratch2));
3252 }
3253}
3254
3255
3256void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
3257 Register scratch1, Register scratch2) {
3258 IncrementCounter(counter, -value, scratch1, scratch2);
3259}
3260
3261
3262void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
3263 if (context_chain_length > 0) {
3264 // Move up the chain of contexts to the context containing the slot.
3265 Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
3266 for (int i = 1; i < context_chain_length; i++) {
3267 Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
3268 }
3269 } else {
3270 // Slot is in the current function context. Move it into the
3271 // destination register in case we store into it (the write barrier
3272 // cannot be allowed to destroy the context in cp).
3273 Mov(dst, cp);
3274 }
3275}
3276
3277
3278void MacroAssembler::DebugBreak() {
3279 Mov(x0, 0);
3280 Mov(x1, ExternalReference(Runtime::kDebugBreak, isolate()));
3281 CEntryStub ces(isolate(), 1);
3282 DCHECK(AllowThisStubCall(&ces));
3283 Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
3284}
3285
3286
3287void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
3288 int handler_index) {
3289 DCHECK(jssp.Is(StackPointer()));
3290 // Adjust this code if the asserts don't hold.
3291 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
3292 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
3293 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
3294 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
3295 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
3296 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
3297
3298 // For the JSEntry handler, we must preserve the live registers x0-x4.
3299 // (See JSEntryStub::GenerateBody().)
3300
3301 unsigned state =
3302 StackHandler::IndexField::encode(handler_index) |
3303 StackHandler::KindField::encode(kind);
3304
3305 // Set up the code object and the state for pushing.
3306 Mov(x10, Operand(CodeObject()));
3307 Mov(x11, state);
3308
3309 // Push the frame pointer, context, state, and code object.
3310 if (kind == StackHandler::JS_ENTRY) {
3311 DCHECK(Smi::FromInt(0) == 0);
3312 Push(xzr, xzr, x11, x10);
3313 } else {
3314 Push(fp, cp, x11, x10);
3315 }
3316
3317 // Link the current handler as the next handler.
3318 Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
3319 Ldr(x10, MemOperand(x11));
3320 Push(x10);
3321 // Set this new handler as the current one.
3322 Str(jssp, MemOperand(x11));
3323}
3324
3325
3326void MacroAssembler::PopTryHandler() {
3327 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
3328 Pop(x10);
3329 Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
3330 Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes);
3331 Str(x10, MemOperand(x11));
3332}
3333
3334
3335void MacroAssembler::Allocate(int object_size,
3336 Register result,
3337 Register scratch1,
3338 Register scratch2,
3339 Label* gc_required,
3340 AllocationFlags flags) {
3341 DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
3342 if (!FLAG_inline_new) {
3343 if (emit_debug_code()) {
3344 // Trash the registers to simulate an allocation failure.
3345 // We apply salt to the original zap value to easily spot the values.
3346 Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3347 Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
3348 Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
3349 }
3350 B(gc_required);
3351 return;
3352 }
3353
3354 UseScratchRegisterScope temps(this);
3355 Register scratch3 = temps.AcquireX();
3356
3357 DCHECK(!AreAliased(result, scratch1, scratch2, scratch3));
3358 DCHECK(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
3359
3360 // Make object size into bytes.
3361 if ((flags & SIZE_IN_WORDS) != 0) {
3362 object_size *= kPointerSize;
3363 }
3364 DCHECK(0 == (object_size & kObjectAlignmentMask));
3365
3366 // Check relative positions of allocation top and limit addresses.
3367 // The values must be adjacent in memory to allow the use of LDP.
3368 ExternalReference heap_allocation_top =
3369 AllocationUtils::GetAllocationTopReference(isolate(), flags);
3370 ExternalReference heap_allocation_limit =
3371 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3372 intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3373 intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3374 DCHECK((limit - top) == kPointerSize);
3375
3376 // Set up allocation top address and object size registers.
3377 Register top_address = scratch1;
3378 Register allocation_limit = scratch2;
3379 Mov(top_address, Operand(heap_allocation_top));
3380
3381 if ((flags & RESULT_CONTAINS_TOP) == 0) {
3382 // Load allocation top into result and the allocation limit.
3383 Ldp(result, allocation_limit, MemOperand(top_address));
3384 } else {
3385 if (emit_debug_code()) {
3386 // Assert that result actually contains top on entry.
3387 Ldr(scratch3, MemOperand(top_address));
3388 Cmp(result, scratch3);
3389 Check(eq, kUnexpectedAllocationTop);
3390 }
3391 // Load the allocation limit. 'result' already contains the allocation top.
3392 Ldr(allocation_limit, MemOperand(top_address, limit - top));
3393 }
3394
3395 // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3396 // the same alignment on ARM64.
3397 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3398
3399 // Calculate new top and bail out if new space is exhausted.
3400 Adds(scratch3, result, object_size);
3401 Ccmp(scratch3, allocation_limit, CFlag, cc);
3402 B(hi, gc_required);
3403 Str(scratch3, MemOperand(top_address));
3404
3405 // Tag the object if requested.
3406 if ((flags & TAG_OBJECT) != 0) {
3407 ObjectTag(result, result);
3408 }
3409}
3410
3411
3412void MacroAssembler::Allocate(Register object_size,
3413 Register result,
3414 Register scratch1,
3415 Register scratch2,
3416 Label* gc_required,
3417 AllocationFlags flags) {
3418 if (!FLAG_inline_new) {
3419 if (emit_debug_code()) {
3420 // Trash the registers to simulate an allocation failure.
3421 // We apply salt to the original zap value to easily spot the values.
3422 Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3423 Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
3424 Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
3425 }
3426 B(gc_required);
3427 return;
3428 }
3429
3430 UseScratchRegisterScope temps(this);
3431 Register scratch3 = temps.AcquireX();
3432
3433 DCHECK(!AreAliased(object_size, result, scratch1, scratch2, scratch3));
3434 DCHECK(object_size.Is64Bits() && result.Is64Bits() &&
3435 scratch1.Is64Bits() && scratch2.Is64Bits());
3436
3437 // Check relative positions of allocation top and limit addresses.
3438 // The values must be adjacent in memory to allow the use of LDP.
3439 ExternalReference heap_allocation_top =
3440 AllocationUtils::GetAllocationTopReference(isolate(), flags);
3441 ExternalReference heap_allocation_limit =
3442 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3443 intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3444 intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3445 DCHECK((limit - top) == kPointerSize);
3446
3447 // Set up allocation top address and object size registers.
3448 Register top_address = scratch1;
3449 Register allocation_limit = scratch2;
3450 Mov(top_address, heap_allocation_top);
3451
3452 if ((flags & RESULT_CONTAINS_TOP) == 0) {
3453 // Load allocation top into result and the allocation limit.
3454 Ldp(result, allocation_limit, MemOperand(top_address));
3455 } else {
3456 if (emit_debug_code()) {
3457 // Assert that result actually contains top on entry.
3458 Ldr(scratch3, MemOperand(top_address));
3459 Cmp(result, scratch3);
3460 Check(eq, kUnexpectedAllocationTop);
3461 }
3462 // Load the allocation limit. 'result' already contains the allocation top.
3463 Ldr(allocation_limit, MemOperand(top_address, limit - top));
3464 }
3465
3466 // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3467 // the same alignment on ARM64.
3468 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3469
3470 // Calculate new top and bail out if new space is exhausted
3471 if ((flags & SIZE_IN_WORDS) != 0) {
3472 Adds(scratch3, result, Operand(object_size, LSL, kPointerSizeLog2));
3473 } else {
3474 Adds(scratch3, result, object_size);
3475 }
3476
3477 if (emit_debug_code()) {
3478 Tst(scratch3, kObjectAlignmentMask);
3479 Check(eq, kUnalignedAllocationInNewSpace);
3480 }
3481
3482 Ccmp(scratch3, allocation_limit, CFlag, cc);
3483 B(hi, gc_required);
3484 Str(scratch3, MemOperand(top_address));
3485
3486 // Tag the object if requested.
3487 if ((flags & TAG_OBJECT) != 0) {
3488 ObjectTag(result, result);
3489 }
3490}
3491
3492
3493void MacroAssembler::UndoAllocationInNewSpace(Register object,
3494 Register scratch) {
3495 ExternalReference new_space_allocation_top =
3496 ExternalReference::new_space_allocation_top_address(isolate());
3497
3498 // Make sure the object has no tag before resetting top.
3499 Bic(object, object, kHeapObjectTagMask);
3500#ifdef DEBUG
3501 // Check that the object un-allocated is below the current top.
3502 Mov(scratch, new_space_allocation_top);
3503 Ldr(scratch, MemOperand(scratch));
3504 Cmp(object, scratch);
3505 Check(lt, kUndoAllocationOfNonAllocatedMemory);
3506#endif
3507 // Write the address of the object to un-allocate as the current top.
3508 Mov(scratch, new_space_allocation_top);
3509 Str(object, MemOperand(scratch));
3510}
3511
3512
3513void MacroAssembler::AllocateTwoByteString(Register result,
3514 Register length,
3515 Register scratch1,
3516 Register scratch2,
3517 Register scratch3,
3518 Label* gc_required) {
3519 DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3));
3520 // Calculate the number of bytes needed for the characters in the string while
3521 // observing object alignment.
3522 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3523 Add(scratch1, length, length); // Length in bytes, not chars.
3524 Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
3525 Bic(scratch1, scratch1, kObjectAlignmentMask);
3526
3527 // Allocate two-byte string in new space.
3528 Allocate(scratch1,
3529 result,
3530 scratch2,
3531 scratch3,
3532 gc_required,
3533 TAG_OBJECT);
3534
3535 // Set the map, length and hash field.
3536 InitializeNewString(result,
3537 length,
3538 Heap::kStringMapRootIndex,
3539 scratch1,
3540 scratch2);
3541}
3542
3543
3544void MacroAssembler::AllocateOneByteString(Register result, Register length,
3545 Register scratch1, Register scratch2,
3546 Register scratch3,
3547 Label* gc_required) {
3548 DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3));
3549 // Calculate the number of bytes needed for the characters in the string while
3550 // observing object alignment.
3551 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3552 STATIC_ASSERT(kCharSize == 1);
3553 Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
3554 Bic(scratch1, scratch1, kObjectAlignmentMask);
3555
3556 // Allocate one-byte string in new space.
3557 Allocate(scratch1,
3558 result,
3559 scratch2,
3560 scratch3,
3561 gc_required,
3562 TAG_OBJECT);
3563
3564 // Set the map, length and hash field.
3565 InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
3566 scratch1, scratch2);
3567}
3568
3569
3570void MacroAssembler::AllocateTwoByteConsString(Register result,
3571 Register length,
3572 Register scratch1,
3573 Register scratch2,
3574 Label* gc_required) {
3575 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
3576 TAG_OBJECT);
3577
3578 InitializeNewString(result,
3579 length,
3580 Heap::kConsStringMapRootIndex,
3581 scratch1,
3582 scratch2);
3583}
3584
3585
3586void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
3587 Register scratch1,
3588 Register scratch2,
3589 Label* gc_required) {
3590 Allocate(ConsString::kSize,
3591 result,
3592 scratch1,
3593 scratch2,
3594 gc_required,
3595 TAG_OBJECT);
3596
3597 InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
3598 scratch1, scratch2);
3599}
3600
3601
3602void MacroAssembler::AllocateTwoByteSlicedString(Register result,
3603 Register length,
3604 Register scratch1,
3605 Register scratch2,
3606 Label* gc_required) {
3607 DCHECK(!AreAliased(result, length, scratch1, scratch2));
3608 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3609 TAG_OBJECT);
3610
3611 InitializeNewString(result,
3612 length,
3613 Heap::kSlicedStringMapRootIndex,
3614 scratch1,
3615 scratch2);
3616}
3617
3618
3619void MacroAssembler::AllocateOneByteSlicedString(Register result,
3620 Register length,
3621 Register scratch1,
3622 Register scratch2,
3623 Label* gc_required) {
3624 DCHECK(!AreAliased(result, length, scratch1, scratch2));
3625 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3626 TAG_OBJECT);
3627
3628 InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
3629 scratch1, scratch2);
3630}
3631
3632
3633// Allocates a heap number or jumps to the need_gc label if the young space
3634// is full and a scavenge is needed.
3635void MacroAssembler::AllocateHeapNumber(Register result,
3636 Label* gc_required,
3637 Register scratch1,
3638 Register scratch2,
3639 CPURegister value,
3640 CPURegister heap_number_map,
3641 MutableMode mode) {
3642 DCHECK(!value.IsValid() || value.Is64Bits());
3643 UseScratchRegisterScope temps(this);
3644
3645 // Allocate an object in the heap for the heap number and tag it as a heap
3646 // object.
3647 Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
3648 NO_ALLOCATION_FLAGS);
3649
3650 Heap::RootListIndex map_index = mode == MUTABLE
3651 ? Heap::kMutableHeapNumberMapRootIndex
3652 : Heap::kHeapNumberMapRootIndex;
3653
3654 // Prepare the heap number map.
3655 if (!heap_number_map.IsValid()) {
3656 // If we have a valid value register, use the same type of register to store
3657 // the map so we can use STP to store both in one instruction.
3658 if (value.IsValid() && value.IsFPRegister()) {
3659 heap_number_map = temps.AcquireD();
3660 } else {
3661 heap_number_map = scratch1;
3662 }
3663 LoadRoot(heap_number_map, map_index);
3664 }
3665 if (emit_debug_code()) {
3666 Register map;
3667 if (heap_number_map.IsFPRegister()) {
3668 map = scratch1;
3669 Fmov(map, DoubleRegister(heap_number_map));
3670 } else {
3671 map = Register(heap_number_map);
3672 }
3673 AssertRegisterIsRoot(map, map_index);
3674 }
3675
3676 // Store the heap number map and the value in the allocated object.
3677 if (value.IsSameSizeAndType(heap_number_map)) {
3678 STATIC_ASSERT(HeapObject::kMapOffset + kPointerSize ==
3679 HeapNumber::kValueOffset);
3680 Stp(heap_number_map, value, MemOperand(result, HeapObject::kMapOffset));
3681 } else {
3682 Str(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
3683 if (value.IsValid()) {
3684 Str(value, MemOperand(result, HeapNumber::kValueOffset));
3685 }
3686 }
3687 ObjectTag(result, result);
3688}
3689
3690
3691void MacroAssembler::JumpIfObjectType(Register object,
3692 Register map,
3693 Register type_reg,
3694 InstanceType type,
3695 Label* if_cond_pass,
3696 Condition cond) {
3697 CompareObjectType(object, map, type_reg, type);
3698 B(cond, if_cond_pass);
3699}
3700
3701
3702void MacroAssembler::JumpIfNotObjectType(Register object,
3703 Register map,
3704 Register type_reg,
3705 InstanceType type,
3706 Label* if_not_object) {
3707 JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
3708}
3709
3710
3711// Sets condition flags based on comparison, and returns type in type_reg.
3712void MacroAssembler::CompareObjectType(Register object,
3713 Register map,
3714 Register type_reg,
3715 InstanceType type) {
3716 Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
3717 CompareInstanceType(map, type_reg, type);
3718}
3719
3720
3721// Sets condition flags based on comparison, and returns type in type_reg.
3722void MacroAssembler::CompareInstanceType(Register map,
3723 Register type_reg,
3724 InstanceType type) {
3725 Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
3726 Cmp(type_reg, type);
3727}
3728
3729
3730void MacroAssembler::CompareObjectMap(Register obj, Heap::RootListIndex index) {
3731 UseScratchRegisterScope temps(this);
3732 Register obj_map = temps.AcquireX();
3733 Ldr(obj_map, FieldMemOperand(obj, HeapObject::kMapOffset));
3734 CompareRoot(obj_map, index);
3735}
3736
3737
3738void MacroAssembler::CompareObjectMap(Register obj, Register scratch,
3739 Handle<Map> map) {
3740 Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3741 CompareMap(scratch, map);
3742}
3743
3744
3745void MacroAssembler::CompareMap(Register obj_map,
3746 Handle<Map> map) {
3747 Cmp(obj_map, Operand(map));
3748}
3749
3750
3751void MacroAssembler::CheckMap(Register obj,
3752 Register scratch,
3753 Handle<Map> map,
3754 Label* fail,
3755 SmiCheckType smi_check_type) {
3756 if (smi_check_type == DO_SMI_CHECK) {
3757 JumpIfSmi(obj, fail);
3758 }
3759
3760 CompareObjectMap(obj, scratch, map);
3761 B(ne, fail);
3762}
3763
3764
3765void MacroAssembler::CheckMap(Register obj,
3766 Register scratch,
3767 Heap::RootListIndex index,
3768 Label* fail,
3769 SmiCheckType smi_check_type) {
3770 if (smi_check_type == DO_SMI_CHECK) {
3771 JumpIfSmi(obj, fail);
3772 }
3773 Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3774 JumpIfNotRoot(scratch, index, fail);
3775}
3776
3777
3778void MacroAssembler::CheckMap(Register obj_map,
3779 Handle<Map> map,
3780 Label* fail,
3781 SmiCheckType smi_check_type) {
3782 if (smi_check_type == DO_SMI_CHECK) {
3783 JumpIfSmi(obj_map, fail);
3784 }
3785
3786 CompareMap(obj_map, map);
3787 B(ne, fail);
3788}
3789
3790
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003791void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1,
3792 Register scratch2, Handle<WeakCell> cell,
3793 Handle<Code> success,
3794 SmiCheckType smi_check_type) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003795 Label fail;
3796 if (smi_check_type == DO_SMI_CHECK) {
3797 JumpIfSmi(obj, &fail);
3798 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003799 Ldr(scratch1, FieldMemOperand(obj, HeapObject::kMapOffset));
3800 CmpWeakValue(scratch1, cell, scratch2);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003801 B(ne, &fail);
3802 Jump(success, RelocInfo::CODE_TARGET);
3803 Bind(&fail);
3804}
3805
3806
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003807void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell,
3808 Register scratch) {
3809 Mov(scratch, Operand(cell));
3810 Ldr(scratch, FieldMemOperand(scratch, WeakCell::kValueOffset));
3811 Cmp(value, scratch);
3812}
3813
3814
3815void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
3816 Label* miss) {
3817 Mov(value, Operand(cell));
3818 Ldr(value, FieldMemOperand(value, WeakCell::kValueOffset));
3819 JumpIfSmi(value, miss);
3820}
3821
3822
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003823void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
3824 UseScratchRegisterScope temps(this);
3825 Register temp = temps.AcquireX();
3826 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
3827 Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3828 Tst(temp, mask);
3829}
3830
3831
3832void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) {
3833 // Load the map's "bit field 2".
3834 __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset));
3835 // Retrieve elements_kind from bit field 2.
3836 DecodeField<Map::ElementsKindBits>(result);
3837}
3838
3839
3840void MacroAssembler::TryGetFunctionPrototype(Register function,
3841 Register result,
3842 Register scratch,
3843 Label* miss,
3844 BoundFunctionAction action) {
3845 DCHECK(!AreAliased(function, result, scratch));
3846
3847 Label non_instance;
3848 if (action == kMissOnBoundFunction) {
3849 // Check that the receiver isn't a smi.
3850 JumpIfSmi(function, miss);
3851
3852 // Check that the function really is a function. Load map into result reg.
3853 JumpIfNotObjectType(function, result, scratch, JS_FUNCTION_TYPE, miss);
3854
3855 Register scratch_w = scratch.W();
3856 Ldr(scratch,
3857 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3858 // On 64-bit platforms, compiler hints field is not a smi. See definition of
3859 // kCompilerHintsOffset in src/objects.h.
3860 Ldr(scratch_w,
3861 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
3862 Tbnz(scratch, SharedFunctionInfo::kBoundFunction, miss);
3863
3864 // Make sure that the function has an instance prototype.
3865 Ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
3866 Tbnz(scratch, Map::kHasNonInstancePrototype, &non_instance);
3867 }
3868
3869 // Get the prototype or initial map from the function.
3870 Ldr(result,
3871 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3872
3873 // If the prototype or initial map is the hole, don't return it and simply
3874 // miss the cache instead. This will allow us to allocate a prototype object
3875 // on-demand in the runtime system.
3876 JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss);
3877
3878 // If the function does not have an initial map, we're done.
3879 Label done;
3880 JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done);
3881
3882 // Get the prototype from the initial map.
3883 Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3884
3885 if (action == kMissOnBoundFunction) {
3886 B(&done);
3887
3888 // Non-instance prototype: fetch prototype from constructor field in initial
3889 // map.
3890 Bind(&non_instance);
3891 Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
3892 }
3893
3894 // All done.
3895 Bind(&done);
3896}
3897
3898
3899void MacroAssembler::CompareRoot(const Register& obj,
3900 Heap::RootListIndex index) {
3901 UseScratchRegisterScope temps(this);
3902 Register temp = temps.AcquireX();
3903 DCHECK(!AreAliased(obj, temp));
3904 LoadRoot(temp, index);
3905 Cmp(obj, temp);
3906}
3907
3908
3909void MacroAssembler::JumpIfRoot(const Register& obj,
3910 Heap::RootListIndex index,
3911 Label* if_equal) {
3912 CompareRoot(obj, index);
3913 B(eq, if_equal);
3914}
3915
3916
3917void MacroAssembler::JumpIfNotRoot(const Register& obj,
3918 Heap::RootListIndex index,
3919 Label* if_not_equal) {
3920 CompareRoot(obj, index);
3921 B(ne, if_not_equal);
3922}
3923
3924
3925void MacroAssembler::CompareAndSplit(const Register& lhs,
3926 const Operand& rhs,
3927 Condition cond,
3928 Label* if_true,
3929 Label* if_false,
3930 Label* fall_through) {
3931 if ((if_true == if_false) && (if_false == fall_through)) {
3932 // Fall through.
3933 } else if (if_true == if_false) {
3934 B(if_true);
3935 } else if (if_false == fall_through) {
3936 CompareAndBranch(lhs, rhs, cond, if_true);
3937 } else if (if_true == fall_through) {
3938 CompareAndBranch(lhs, rhs, NegateCondition(cond), if_false);
3939 } else {
3940 CompareAndBranch(lhs, rhs, cond, if_true);
3941 B(if_false);
3942 }
3943}
3944
3945
3946void MacroAssembler::TestAndSplit(const Register& reg,
3947 uint64_t bit_pattern,
3948 Label* if_all_clear,
3949 Label* if_any_set,
3950 Label* fall_through) {
3951 if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
3952 // Fall through.
3953 } else if (if_all_clear == if_any_set) {
3954 B(if_all_clear);
3955 } else if (if_all_clear == fall_through) {
3956 TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3957 } else if (if_any_set == fall_through) {
3958 TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
3959 } else {
3960 TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3961 B(if_all_clear);
3962 }
3963}
3964
3965
3966void MacroAssembler::CheckFastElements(Register map,
3967 Register scratch,
3968 Label* fail) {
3969 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3970 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3971 STATIC_ASSERT(FAST_ELEMENTS == 2);
3972 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3973 Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3974 Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue);
3975 B(hi, fail);
3976}
3977
3978
3979void MacroAssembler::CheckFastObjectElements(Register map,
3980 Register scratch,
3981 Label* fail) {
3982 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3983 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3984 STATIC_ASSERT(FAST_ELEMENTS == 2);
3985 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3986 Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3987 Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
3988 // If cond==ls, set cond=hi, otherwise compare.
3989 Ccmp(scratch,
3990 Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi);
3991 B(hi, fail);
3992}
3993
3994
3995// Note: The ARM version of this clobbers elements_reg, but this version does
3996// not. Some uses of this in ARM64 assume that elements_reg will be preserved.
3997void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
3998 Register key_reg,
3999 Register elements_reg,
4000 Register scratch1,
4001 FPRegister fpscratch1,
4002 Label* fail,
4003 int elements_offset) {
4004 DCHECK(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
4005 Label store_num;
4006
4007 // Speculatively convert the smi to a double - all smis can be exactly
4008 // represented as a double.
4009 SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag);
4010
4011 // If value_reg is a smi, we're done.
4012 JumpIfSmi(value_reg, &store_num);
4013
4014 // Ensure that the object is a heap number.
4015 JumpIfNotHeapNumber(value_reg, fail);
4016
4017 Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
4018
4019 // Canonicalize NaNs.
4020 CanonicalizeNaN(fpscratch1);
4021
4022 // Store the result.
4023 Bind(&store_num);
4024 Add(scratch1, elements_reg,
4025 Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2));
4026 Str(fpscratch1,
4027 FieldMemOperand(scratch1,
4028 FixedDoubleArray::kHeaderSize - elements_offset));
4029}
4030
4031
4032bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
4033 return has_frame_ || !stub->SometimesSetsUpAFrame();
4034}
4035
4036
4037void MacroAssembler::IndexFromHash(Register hash, Register index) {
4038 // If the hash field contains an array index pick it out. The assert checks
4039 // that the constants for the maximum number of digits for an array index
4040 // cached in the hash field and the number of bits reserved for it does not
4041 // conflict.
4042 DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
4043 (1 << String::kArrayIndexValueBits));
4044 DecodeField<String::ArrayIndexValueBits>(index, hash);
4045 SmiTag(index, index);
4046}
4047
4048
4049void MacroAssembler::EmitSeqStringSetCharCheck(
4050 Register string,
4051 Register index,
4052 SeqStringSetCharCheckIndexType index_type,
4053 Register scratch,
4054 uint32_t encoding_mask) {
4055 DCHECK(!AreAliased(string, index, scratch));
4056
4057 if (index_type == kIndexIsSmi) {
4058 AssertSmi(index);
4059 }
4060
4061 // Check that string is an object.
4062 AssertNotSmi(string, kNonObject);
4063
4064 // Check that string has an appropriate map.
4065 Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
4066 Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
4067
4068 And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
4069 Cmp(scratch, encoding_mask);
4070 Check(eq, kUnexpectedStringType);
4071
4072 Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
4073 Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
4074 Check(lt, kIndexIsTooLarge);
4075
4076 DCHECK_EQ(0, Smi::FromInt(0));
4077 Cmp(index, 0);
4078 Check(ge, kIndexIsNegative);
4079}
4080
4081
4082void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
4083 Register scratch1,
4084 Register scratch2,
4085 Label* miss) {
4086 DCHECK(!AreAliased(holder_reg, scratch1, scratch2));
4087 Label same_contexts;
4088
4089 // Load current lexical context from the stack frame.
4090 Ldr(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset));
4091 // In debug mode, make sure the lexical context is set.
4092#ifdef DEBUG
4093 Cmp(scratch1, 0);
4094 Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
4095#endif
4096
4097 // Load the native context of the current context.
4098 int offset =
4099 Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
4100 Ldr(scratch1, FieldMemOperand(scratch1, offset));
4101 Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
4102
4103 // Check the context is a native context.
4104 if (emit_debug_code()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004105 // Read the first word and compare to the native_context_map.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004106 Ldr(scratch2, FieldMemOperand(scratch1, HeapObject::kMapOffset));
4107 CompareRoot(scratch2, Heap::kNativeContextMapRootIndex);
4108 Check(eq, kExpectedNativeContext);
4109 }
4110
4111 // Check if both contexts are the same.
4112 Ldr(scratch2, FieldMemOperand(holder_reg,
4113 JSGlobalProxy::kNativeContextOffset));
4114 Cmp(scratch1, scratch2);
4115 B(&same_contexts, eq);
4116
4117 // Check the context is a native context.
4118 if (emit_debug_code()) {
4119 // We're short on scratch registers here, so use holder_reg as a scratch.
4120 Push(holder_reg);
4121 Register scratch3 = holder_reg;
4122
4123 CompareRoot(scratch2, Heap::kNullValueRootIndex);
4124 Check(ne, kExpectedNonNullContext);
4125
4126 Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset));
4127 CompareRoot(scratch3, Heap::kNativeContextMapRootIndex);
4128 Check(eq, kExpectedNativeContext);
4129 Pop(holder_reg);
4130 }
4131
4132 // Check that the security token in the calling global object is
4133 // compatible with the security token in the receiving global
4134 // object.
4135 int token_offset = Context::kHeaderSize +
4136 Context::SECURITY_TOKEN_INDEX * kPointerSize;
4137
4138 Ldr(scratch1, FieldMemOperand(scratch1, token_offset));
4139 Ldr(scratch2, FieldMemOperand(scratch2, token_offset));
4140 Cmp(scratch1, scratch2);
4141 B(miss, ne);
4142
4143 Bind(&same_contexts);
4144}
4145
4146
4147// Compute the hash code from the untagged key. This must be kept in sync with
4148// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
4149// code-stub-hydrogen.cc
4150void MacroAssembler::GetNumberHash(Register key, Register scratch) {
4151 DCHECK(!AreAliased(key, scratch));
4152
4153 // Xor original key with a seed.
4154 LoadRoot(scratch, Heap::kHashSeedRootIndex);
4155 Eor(key, key, Operand::UntagSmi(scratch));
4156
4157 // The algorithm uses 32-bit integer values.
4158 key = key.W();
4159 scratch = scratch.W();
4160
4161 // Compute the hash code from the untagged key. This must be kept in sync
4162 // with ComputeIntegerHash in utils.h.
4163 //
4164 // hash = ~hash + (hash <<1 15);
4165 Mvn(scratch, key);
4166 Add(key, scratch, Operand(key, LSL, 15));
4167 // hash = hash ^ (hash >> 12);
4168 Eor(key, key, Operand(key, LSR, 12));
4169 // hash = hash + (hash << 2);
4170 Add(key, key, Operand(key, LSL, 2));
4171 // hash = hash ^ (hash >> 4);
4172 Eor(key, key, Operand(key, LSR, 4));
4173 // hash = hash * 2057;
4174 Mov(scratch, Operand(key, LSL, 11));
4175 Add(key, key, Operand(key, LSL, 3));
4176 Add(key, key, scratch);
4177 // hash = hash ^ (hash >> 16);
4178 Eor(key, key, Operand(key, LSR, 16));
4179}
4180
4181
4182void MacroAssembler::LoadFromNumberDictionary(Label* miss,
4183 Register elements,
4184 Register key,
4185 Register result,
4186 Register scratch0,
4187 Register scratch1,
4188 Register scratch2,
4189 Register scratch3) {
4190 DCHECK(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3));
4191
4192 Label done;
4193
4194 SmiUntag(scratch0, key);
4195 GetNumberHash(scratch0, scratch1);
4196
4197 // Compute the capacity mask.
4198 Ldrsw(scratch1,
4199 UntagSmiFieldMemOperand(elements,
4200 SeededNumberDictionary::kCapacityOffset));
4201 Sub(scratch1, scratch1, 1);
4202
4203 // Generate an unrolled loop that performs a few probes before giving up.
4204 for (int i = 0; i < kNumberDictionaryProbes; i++) {
4205 // Compute the masked index: (hash + i + i * i) & mask.
4206 if (i > 0) {
4207 Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i));
4208 } else {
4209 Mov(scratch2, scratch0);
4210 }
4211 And(scratch2, scratch2, scratch1);
4212
4213 // Scale the index by multiplying by the element size.
4214 DCHECK(SeededNumberDictionary::kEntrySize == 3);
4215 Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
4216
4217 // Check if the key is identical to the name.
4218 Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
4219 Ldr(scratch3,
4220 FieldMemOperand(scratch2,
4221 SeededNumberDictionary::kElementsStartOffset));
4222 Cmp(key, scratch3);
4223 if (i != (kNumberDictionaryProbes - 1)) {
4224 B(eq, &done);
4225 } else {
4226 B(ne, miss);
4227 }
4228 }
4229
4230 Bind(&done);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004231 // Check that the value is a field property.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004232 const int kDetailsOffset =
4233 SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
4234 Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004235 DCHECK_EQ(FIELD, 0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004236 TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss);
4237
4238 // Get the value at the masked, scaled index and return.
4239 const int kValueOffset =
4240 SeededNumberDictionary::kElementsStartOffset + kPointerSize;
4241 Ldr(result, FieldMemOperand(scratch2, kValueOffset));
4242}
4243
4244
4245void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
4246 Register address,
4247 Register scratch1,
4248 SaveFPRegsMode fp_mode,
4249 RememberedSetFinalAction and_then) {
4250 DCHECK(!AreAliased(object, address, scratch1));
4251 Label done, store_buffer_overflow;
4252 if (emit_debug_code()) {
4253 Label ok;
4254 JumpIfNotInNewSpace(object, &ok);
4255 Abort(kRememberedSetPointerInNewSpace);
4256 bind(&ok);
4257 }
4258 UseScratchRegisterScope temps(this);
4259 Register scratch2 = temps.AcquireX();
4260
4261 // Load store buffer top.
4262 Mov(scratch2, ExternalReference::store_buffer_top(isolate()));
4263 Ldr(scratch1, MemOperand(scratch2));
4264 // Store pointer to buffer and increment buffer top.
4265 Str(address, MemOperand(scratch1, kPointerSize, PostIndex));
4266 // Write back new top of buffer.
4267 Str(scratch1, MemOperand(scratch2));
4268 // Call stub on end of buffer.
4269 // Check for end of buffer.
4270 DCHECK(StoreBuffer::kStoreBufferOverflowBit ==
4271 (1 << (14 + kPointerSizeLog2)));
4272 if (and_then == kFallThroughAtEnd) {
4273 Tbz(scratch1, (14 + kPointerSizeLog2), &done);
4274 } else {
4275 DCHECK(and_then == kReturnAtEnd);
4276 Tbnz(scratch1, (14 + kPointerSizeLog2), &store_buffer_overflow);
4277 Ret();
4278 }
4279
4280 Bind(&store_buffer_overflow);
4281 Push(lr);
4282 StoreBufferOverflowStub store_buffer_overflow_stub(isolate(), fp_mode);
4283 CallStub(&store_buffer_overflow_stub);
4284 Pop(lr);
4285
4286 Bind(&done);
4287 if (and_then == kReturnAtEnd) {
4288 Ret();
4289 }
4290}
4291
4292
4293void MacroAssembler::PopSafepointRegisters() {
4294 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
4295 PopXRegList(kSafepointSavedRegisters);
4296 Drop(num_unsaved);
4297}
4298
4299
4300void MacroAssembler::PushSafepointRegisters() {
4301 // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
4302 // adjust the stack for unsaved registers.
4303 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
4304 DCHECK(num_unsaved >= 0);
4305 Claim(num_unsaved);
4306 PushXRegList(kSafepointSavedRegisters);
4307}
4308
4309
4310void MacroAssembler::PushSafepointRegistersAndDoubles() {
4311 PushSafepointRegisters();
4312 PushCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
4313 FPRegister::kAllocatableFPRegisters));
4314}
4315
4316
4317void MacroAssembler::PopSafepointRegistersAndDoubles() {
4318 PopCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
4319 FPRegister::kAllocatableFPRegisters));
4320 PopSafepointRegisters();
4321}
4322
4323
4324int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
4325 // Make sure the safepoint registers list is what we expect.
4326 DCHECK(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
4327
4328 // Safepoint registers are stored contiguously on the stack, but not all the
4329 // registers are saved. The following registers are excluded:
4330 // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
4331 // the macro assembler.
4332 // - x28 (jssp) because JS stack pointer doesn't need to be included in
4333 // safepoint registers.
4334 // - x31 (csp) because the system stack pointer doesn't need to be included
4335 // in safepoint registers.
4336 //
4337 // This function implements the mapping of register code to index into the
4338 // safepoint register slots.
4339 if ((reg_code >= 0) && (reg_code <= 15)) {
4340 return reg_code;
4341 } else if ((reg_code >= 18) && (reg_code <= 27)) {
4342 // Skip ip0 and ip1.
4343 return reg_code - 2;
4344 } else if ((reg_code == 29) || (reg_code == 30)) {
4345 // Also skip jssp.
4346 return reg_code - 3;
4347 } else {
4348 // This register has no safepoint register slot.
4349 UNREACHABLE();
4350 return -1;
4351 }
4352}
4353
4354
4355void MacroAssembler::CheckPageFlagSet(const Register& object,
4356 const Register& scratch,
4357 int mask,
4358 Label* if_any_set) {
4359 And(scratch, object, ~Page::kPageAlignmentMask);
4360 Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
4361 TestAndBranchIfAnySet(scratch, mask, if_any_set);
4362}
4363
4364
4365void MacroAssembler::CheckPageFlagClear(const Register& object,
4366 const Register& scratch,
4367 int mask,
4368 Label* if_all_clear) {
4369 And(scratch, object, ~Page::kPageAlignmentMask);
4370 Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
4371 TestAndBranchIfAllClear(scratch, mask, if_all_clear);
4372}
4373
4374
4375void MacroAssembler::RecordWriteField(
4376 Register object,
4377 int offset,
4378 Register value,
4379 Register scratch,
4380 LinkRegisterStatus lr_status,
4381 SaveFPRegsMode save_fp,
4382 RememberedSetAction remembered_set_action,
4383 SmiCheck smi_check,
4384 PointersToHereCheck pointers_to_here_check_for_value) {
4385 // First, check if a write barrier is even needed. The tests below
4386 // catch stores of Smis.
4387 Label done;
4388
4389 // Skip the barrier if writing a smi.
4390 if (smi_check == INLINE_SMI_CHECK) {
4391 JumpIfSmi(value, &done);
4392 }
4393
4394 // Although the object register is tagged, the offset is relative to the start
4395 // of the object, so offset must be a multiple of kPointerSize.
4396 DCHECK(IsAligned(offset, kPointerSize));
4397
4398 Add(scratch, object, offset - kHeapObjectTag);
4399 if (emit_debug_code()) {
4400 Label ok;
4401 Tst(scratch, (1 << kPointerSizeLog2) - 1);
4402 B(eq, &ok);
4403 Abort(kUnalignedCellInWriteBarrier);
4404 Bind(&ok);
4405 }
4406
4407 RecordWrite(object,
4408 scratch,
4409 value,
4410 lr_status,
4411 save_fp,
4412 remembered_set_action,
4413 OMIT_SMI_CHECK,
4414 pointers_to_here_check_for_value);
4415
4416 Bind(&done);
4417
4418 // Clobber clobbered input registers when running with the debug-code flag
4419 // turned on to provoke errors.
4420 if (emit_debug_code()) {
4421 Mov(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
4422 Mov(scratch, Operand(bit_cast<int64_t>(kZapValue + 8)));
4423 }
4424}
4425
4426
4427// Will clobber: object, map, dst.
4428// If lr_status is kLRHasBeenSaved, lr will also be clobbered.
4429void MacroAssembler::RecordWriteForMap(Register object,
4430 Register map,
4431 Register dst,
4432 LinkRegisterStatus lr_status,
4433 SaveFPRegsMode fp_mode) {
4434 ASM_LOCATION("MacroAssembler::RecordWrite");
4435 DCHECK(!AreAliased(object, map));
4436
4437 if (emit_debug_code()) {
4438 UseScratchRegisterScope temps(this);
4439 Register temp = temps.AcquireX();
4440
4441 CompareObjectMap(map, temp, isolate()->factory()->meta_map());
4442 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4443 }
4444
4445 if (!FLAG_incremental_marking) {
4446 return;
4447 }
4448
4449 if (emit_debug_code()) {
4450 UseScratchRegisterScope temps(this);
4451 Register temp = temps.AcquireX();
4452
4453 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4454 Cmp(temp, map);
4455 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4456 }
4457
4458 // First, check if a write barrier is even needed. The tests below
4459 // catch stores of smis and stores into the young generation.
4460 Label done;
4461
4462 // A single check of the map's pages interesting flag suffices, since it is
4463 // only set during incremental collection, and then it's also guaranteed that
4464 // the from object's page's interesting flag is also set. This optimization
4465 // relies on the fact that maps can never be in new space.
4466 CheckPageFlagClear(map,
4467 map, // Used as scratch.
4468 MemoryChunk::kPointersToHereAreInterestingMask,
4469 &done);
4470
4471 // Record the actual write.
4472 if (lr_status == kLRHasNotBeenSaved) {
4473 Push(lr);
4474 }
4475 Add(dst, object, HeapObject::kMapOffset - kHeapObjectTag);
4476 RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
4477 fp_mode);
4478 CallStub(&stub);
4479 if (lr_status == kLRHasNotBeenSaved) {
4480 Pop(lr);
4481 }
4482
4483 Bind(&done);
4484
4485 // Count number of write barriers in generated code.
4486 isolate()->counters()->write_barriers_static()->Increment();
4487 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, map,
4488 dst);
4489
4490 // Clobber clobbered registers when running with the debug-code flag
4491 // turned on to provoke errors.
4492 if (emit_debug_code()) {
4493 Mov(dst, Operand(bit_cast<int64_t>(kZapValue + 12)));
4494 Mov(map, Operand(bit_cast<int64_t>(kZapValue + 16)));
4495 }
4496}
4497
4498
4499// Will clobber: object, address, value.
4500// If lr_status is kLRHasBeenSaved, lr will also be clobbered.
4501//
4502// The register 'object' contains a heap object pointer. The heap object tag is
4503// shifted away.
4504void MacroAssembler::RecordWrite(
4505 Register object,
4506 Register address,
4507 Register value,
4508 LinkRegisterStatus lr_status,
4509 SaveFPRegsMode fp_mode,
4510 RememberedSetAction remembered_set_action,
4511 SmiCheck smi_check,
4512 PointersToHereCheck pointers_to_here_check_for_value) {
4513 ASM_LOCATION("MacroAssembler::RecordWrite");
4514 DCHECK(!AreAliased(object, value));
4515
4516 if (emit_debug_code()) {
4517 UseScratchRegisterScope temps(this);
4518 Register temp = temps.AcquireX();
4519
4520 Ldr(temp, MemOperand(address));
4521 Cmp(temp, value);
4522 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4523 }
4524
4525 // First, check if a write barrier is even needed. The tests below
4526 // catch stores of smis and stores into the young generation.
4527 Label done;
4528
4529 if (smi_check == INLINE_SMI_CHECK) {
4530 DCHECK_EQ(0, kSmiTag);
4531 JumpIfSmi(value, &done);
4532 }
4533
4534 if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
4535 CheckPageFlagClear(value,
4536 value, // Used as scratch.
4537 MemoryChunk::kPointersToHereAreInterestingMask,
4538 &done);
4539 }
4540 CheckPageFlagClear(object,
4541 value, // Used as scratch.
4542 MemoryChunk::kPointersFromHereAreInterestingMask,
4543 &done);
4544
4545 // Record the actual write.
4546 if (lr_status == kLRHasNotBeenSaved) {
4547 Push(lr);
4548 }
4549 RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
4550 fp_mode);
4551 CallStub(&stub);
4552 if (lr_status == kLRHasNotBeenSaved) {
4553 Pop(lr);
4554 }
4555
4556 Bind(&done);
4557
4558 // Count number of write barriers in generated code.
4559 isolate()->counters()->write_barriers_static()->Increment();
4560 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, address,
4561 value);
4562
4563 // Clobber clobbered registers when running with the debug-code flag
4564 // turned on to provoke errors.
4565 if (emit_debug_code()) {
4566 Mov(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
4567 Mov(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
4568 }
4569}
4570
4571
4572void MacroAssembler::AssertHasValidColor(const Register& reg) {
4573 if (emit_debug_code()) {
4574 // The bit sequence is backward. The first character in the string
4575 // represents the least significant bit.
4576 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
4577
4578 Label color_is_valid;
4579 Tbnz(reg, 0, &color_is_valid);
4580 Tbz(reg, 1, &color_is_valid);
4581 Abort(kUnexpectedColorFound);
4582 Bind(&color_is_valid);
4583 }
4584}
4585
4586
4587void MacroAssembler::GetMarkBits(Register addr_reg,
4588 Register bitmap_reg,
4589 Register shift_reg) {
4590 DCHECK(!AreAliased(addr_reg, bitmap_reg, shift_reg));
4591 DCHECK(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits());
4592 // addr_reg is divided into fields:
4593 // |63 page base 20|19 high 8|7 shift 3|2 0|
4594 // 'high' gives the index of the cell holding color bits for the object.
4595 // 'shift' gives the offset in the cell for this object's color.
4596 const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
4597 UseScratchRegisterScope temps(this);
4598 Register temp = temps.AcquireX();
4599 Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
4600 Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
4601 Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2));
4602 // bitmap_reg:
4603 // |63 page base 20|19 zeros 15|14 high 3|2 0|
4604 Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
4605}
4606
4607
4608void MacroAssembler::HasColor(Register object,
4609 Register bitmap_scratch,
4610 Register shift_scratch,
4611 Label* has_color,
4612 int first_bit,
4613 int second_bit) {
4614 // See mark-compact.h for color definitions.
4615 DCHECK(!AreAliased(object, bitmap_scratch, shift_scratch));
4616
4617 GetMarkBits(object, bitmap_scratch, shift_scratch);
4618 Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4619 // Shift the bitmap down to get the color of the object in bits [1:0].
4620 Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
4621
4622 AssertHasValidColor(bitmap_scratch);
4623
4624 // These bit sequences are backwards. The first character in the string
4625 // represents the least significant bit.
4626 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4627 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
4628 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
4629
4630 // Check for the color.
4631 if (first_bit == 0) {
4632 // Checking for white.
4633 DCHECK(second_bit == 0);
4634 // We only need to test the first bit.
4635 Tbz(bitmap_scratch, 0, has_color);
4636 } else {
4637 Label other_color;
4638 // Checking for grey or black.
4639 Tbz(bitmap_scratch, 0, &other_color);
4640 if (second_bit == 0) {
4641 Tbz(bitmap_scratch, 1, has_color);
4642 } else {
4643 Tbnz(bitmap_scratch, 1, has_color);
4644 }
4645 Bind(&other_color);
4646 }
4647
4648 // Fall through if it does not have the right color.
4649}
4650
4651
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004652void MacroAssembler::JumpIfBlack(Register object,
4653 Register scratch0,
4654 Register scratch1,
4655 Label* on_black) {
4656 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
4657 HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
4658}
4659
4660
4661void MacroAssembler::JumpIfDictionaryInPrototypeChain(
4662 Register object,
4663 Register scratch0,
4664 Register scratch1,
4665 Label* found) {
4666 DCHECK(!AreAliased(object, scratch0, scratch1));
4667 Factory* factory = isolate()->factory();
4668 Register current = scratch0;
4669 Label loop_again;
4670
4671 // Scratch contains elements pointer.
4672 Mov(current, object);
4673
4674 // Loop based on the map going up the prototype chain.
4675 Bind(&loop_again);
4676 Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
4677 Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
4678 DecodeField<Map::ElementsKindBits>(scratch1);
4679 CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found);
4680 Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
4681 CompareAndBranch(current, Operand(factory->null_value()), ne, &loop_again);
4682}
4683
4684
4685void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
4686 Register result) {
4687 DCHECK(!result.Is(ldr_location));
4688 const uint32_t kLdrLitOffset_lsb = 5;
4689 const uint32_t kLdrLitOffset_width = 19;
4690 Ldr(result, MemOperand(ldr_location));
4691 if (emit_debug_code()) {
4692 And(result, result, LoadLiteralFMask);
4693 Cmp(result, LoadLiteralFixed);
4694 Check(eq, kTheInstructionToPatchShouldBeAnLdrLiteral);
4695 // The instruction was clobbered. Reload it.
4696 Ldr(result, MemOperand(ldr_location));
4697 }
4698 Sbfx(result, result, kLdrLitOffset_lsb, kLdrLitOffset_width);
4699 Add(result, ldr_location, Operand(result, LSL, kWordSizeInBytesLog2));
4700}
4701
4702
4703void MacroAssembler::EnsureNotWhite(
4704 Register value,
4705 Register bitmap_scratch,
4706 Register shift_scratch,
4707 Register load_scratch,
4708 Register length_scratch,
4709 Label* value_is_white_and_not_data) {
4710 DCHECK(!AreAliased(
4711 value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
4712
4713 // These bit sequences are backwards. The first character in the string
4714 // represents the least significant bit.
4715 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4716 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
4717 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
4718
4719 GetMarkBits(value, bitmap_scratch, shift_scratch);
4720 Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4721 Lsr(load_scratch, load_scratch, shift_scratch);
4722
4723 AssertHasValidColor(load_scratch);
4724
4725 // If the value is black or grey we don't need to do anything.
4726 // Since both black and grey have a 1 in the first position and white does
4727 // not have a 1 there we only need to check one bit.
4728 Label done;
4729 Tbnz(load_scratch, 0, &done);
4730
4731 // Value is white. We check whether it is data that doesn't need scanning.
4732 Register map = load_scratch; // Holds map while checking type.
4733 Label is_data_object;
4734
4735 // Check for heap-number.
4736 Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
4737 Mov(length_scratch, HeapNumber::kSize);
4738 JumpIfRoot(map, Heap::kHeapNumberMapRootIndex, &is_data_object);
4739
4740 // Check for strings.
4741 DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
4742 DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
4743 // If it's a string and it's not a cons string then it's an object containing
4744 // no GC pointers.
4745 Register instance_type = load_scratch;
4746 Ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
4747 TestAndBranchIfAnySet(instance_type,
4748 kIsIndirectStringMask | kIsNotStringMask,
4749 value_is_white_and_not_data);
4750
4751 // It's a non-indirect (non-cons and non-slice) string.
4752 // If it's external, the length is just ExternalString::kSize.
4753 // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
4754 // External strings are the only ones with the kExternalStringTag bit
4755 // set.
4756 DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
4757 DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
4758 Mov(length_scratch, ExternalString::kSize);
4759 TestAndBranchIfAnySet(instance_type, kExternalStringTag, &is_data_object);
4760
4761 // Sequential string, either Latin1 or UC16.
4762 // For Latin1 (char-size of 1) we shift the smi tag away to get the length.
4763 // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
4764 // getting the length multiplied by 2.
4765 DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4);
4766 Ldrsw(length_scratch, UntagSmiFieldMemOperand(value,
4767 String::kLengthOffset));
4768 Tst(instance_type, kStringEncodingMask);
4769 Cset(load_scratch, eq);
4770 Lsl(length_scratch, length_scratch, load_scratch);
4771 Add(length_scratch,
4772 length_scratch,
4773 SeqString::kHeaderSize + kObjectAlignmentMask);
4774 Bic(length_scratch, length_scratch, kObjectAlignmentMask);
4775
4776 Bind(&is_data_object);
4777 // Value is a data object, and it is white. Mark it black. Since we know
4778 // that the object is white we can make it black by flipping one bit.
4779 Register mask = shift_scratch;
4780 Mov(load_scratch, 1);
4781 Lsl(mask, load_scratch, shift_scratch);
4782
4783 Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4784 Orr(load_scratch, load_scratch, mask);
4785 Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4786
4787 Bic(bitmap_scratch, bitmap_scratch, Page::kPageAlignmentMask);
4788 Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
4789 Add(load_scratch, load_scratch, length_scratch);
4790 Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
4791
4792 Bind(&done);
4793}
4794
4795
4796void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
4797 if (emit_debug_code()) {
4798 Check(cond, reason);
4799 }
4800}
4801
4802
4803
4804void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
4805 if (emit_debug_code()) {
4806 CheckRegisterIsClear(reg, reason);
4807 }
4808}
4809
4810
4811void MacroAssembler::AssertRegisterIsRoot(Register reg,
4812 Heap::RootListIndex index,
4813 BailoutReason reason) {
4814 if (emit_debug_code()) {
4815 CompareRoot(reg, index);
4816 Check(eq, reason);
4817 }
4818}
4819
4820
4821void MacroAssembler::AssertFastElements(Register elements) {
4822 if (emit_debug_code()) {
4823 UseScratchRegisterScope temps(this);
4824 Register temp = temps.AcquireX();
4825 Label ok;
4826 Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
4827 JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
4828 JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
4829 JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
4830 Abort(kJSObjectWithFastElementsMapHasSlowElements);
4831 Bind(&ok);
4832 }
4833}
4834
4835
4836void MacroAssembler::AssertIsString(const Register& object) {
4837 if (emit_debug_code()) {
4838 UseScratchRegisterScope temps(this);
4839 Register temp = temps.AcquireX();
4840 STATIC_ASSERT(kSmiTag == 0);
4841 Tst(object, kSmiTagMask);
4842 Check(ne, kOperandIsNotAString);
4843 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4844 CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
4845 Check(lo, kOperandIsNotAString);
4846 }
4847}
4848
4849
4850void MacroAssembler::Check(Condition cond, BailoutReason reason) {
4851 Label ok;
4852 B(cond, &ok);
4853 Abort(reason);
4854 // Will not return here.
4855 Bind(&ok);
4856}
4857
4858
4859void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
4860 Label ok;
4861 Cbz(reg, &ok);
4862 Abort(reason);
4863 // Will not return here.
4864 Bind(&ok);
4865}
4866
4867
4868void MacroAssembler::Abort(BailoutReason reason) {
4869#ifdef DEBUG
4870 RecordComment("Abort message: ");
4871 RecordComment(GetBailoutReason(reason));
4872
4873 if (FLAG_trap_on_abort) {
4874 Brk(0);
4875 return;
4876 }
4877#endif
4878
4879 // Abort is used in some contexts where csp is the stack pointer. In order to
4880 // simplify the CallRuntime code, make sure that jssp is the stack pointer.
4881 // There is no risk of register corruption here because Abort doesn't return.
4882 Register old_stack_pointer = StackPointer();
4883 SetStackPointer(jssp);
4884 Mov(jssp, old_stack_pointer);
4885
4886 // We need some scratch registers for the MacroAssembler, so make sure we have
4887 // some. This is safe here because Abort never returns.
4888 RegList old_tmp_list = TmpList()->list();
4889 TmpList()->Combine(MacroAssembler::DefaultTmpList());
4890
4891 if (use_real_aborts()) {
4892 // Avoid infinite recursion; Push contains some assertions that use Abort.
4893 NoUseRealAbortsScope no_real_aborts(this);
4894
4895 Mov(x0, Smi::FromInt(reason));
4896 Push(x0);
4897
4898 if (!has_frame_) {
4899 // We don't actually want to generate a pile of code for this, so just
4900 // claim there is a stack frame, without generating one.
4901 FrameScope scope(this, StackFrame::NONE);
4902 CallRuntime(Runtime::kAbort, 1);
4903 } else {
4904 CallRuntime(Runtime::kAbort, 1);
4905 }
4906 } else {
4907 // Load the string to pass to Printf.
4908 Label msg_address;
4909 Adr(x0, &msg_address);
4910
4911 // Call Printf directly to report the error.
4912 CallPrintf();
4913
4914 // We need a way to stop execution on both the simulator and real hardware,
4915 // and Unreachable() is the best option.
4916 Unreachable();
4917
4918 // Emit the message string directly in the instruction stream.
4919 {
4920 BlockPoolsScope scope(this);
4921 Bind(&msg_address);
4922 EmitStringData(GetBailoutReason(reason));
4923 }
4924 }
4925
4926 SetStackPointer(old_stack_pointer);
4927 TmpList()->set_list(old_tmp_list);
4928}
4929
4930
4931void MacroAssembler::LoadTransitionedArrayMapConditional(
4932 ElementsKind expected_kind,
4933 ElementsKind transitioned_kind,
4934 Register map_in_out,
4935 Register scratch1,
4936 Register scratch2,
4937 Label* no_map_match) {
4938 // Load the global or builtins object from the current context.
4939 Ldr(scratch1, GlobalObjectMemOperand());
4940 Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
4941
4942 // Check that the function's map is the same as the expected cached map.
4943 Ldr(scratch1, ContextMemOperand(scratch1, Context::JS_ARRAY_MAPS_INDEX));
4944 size_t offset = (expected_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
4945 Ldr(scratch2, FieldMemOperand(scratch1, offset));
4946 Cmp(map_in_out, scratch2);
4947 B(ne, no_map_match);
4948
4949 // Use the transitioned cached map.
4950 offset = (transitioned_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
4951 Ldr(map_in_out, FieldMemOperand(scratch1, offset));
4952}
4953
4954
4955void MacroAssembler::LoadGlobalFunction(int index, Register function) {
4956 // Load the global or builtins object from the current context.
4957 Ldr(function, GlobalObjectMemOperand());
4958 // Load the native context from the global or builtins object.
4959 Ldr(function, FieldMemOperand(function,
4960 GlobalObject::kNativeContextOffset));
4961 // Load the function from the native context.
4962 Ldr(function, ContextMemOperand(function, index));
4963}
4964
4965
4966void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4967 Register map,
4968 Register scratch) {
4969 // Load the initial map. The global functions all have initial maps.
4970 Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4971 if (emit_debug_code()) {
4972 Label ok, fail;
4973 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
4974 B(&ok);
4975 Bind(&fail);
4976 Abort(kGlobalFunctionsMustHaveInitialMap);
4977 Bind(&ok);
4978 }
4979}
4980
4981
4982// This is the main Printf implementation. All other Printf variants call
4983// PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
4984void MacroAssembler::PrintfNoPreserve(const char * format,
4985 const CPURegister& arg0,
4986 const CPURegister& arg1,
4987 const CPURegister& arg2,
4988 const CPURegister& arg3) {
4989 // We cannot handle a caller-saved stack pointer. It doesn't make much sense
4990 // in most cases anyway, so this restriction shouldn't be too serious.
4991 DCHECK(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
4992
4993 // The provided arguments, and their proper procedure-call standard registers.
4994 CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3};
4995 CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg};
4996
4997 int arg_count = kPrintfMaxArgCount;
4998
4999 // The PCS varargs registers for printf. Note that x0 is used for the printf
5000 // format string.
5001 static const CPURegList kPCSVarargs =
5002 CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count);
5003 static const CPURegList kPCSVarargsFP =
5004 CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, arg_count - 1);
5005
5006 // We can use caller-saved registers as scratch values, except for the
5007 // arguments and the PCS registers where they might need to go.
5008 CPURegList tmp_list = kCallerSaved;
5009 tmp_list.Remove(x0); // Used to pass the format string.
5010 tmp_list.Remove(kPCSVarargs);
5011 tmp_list.Remove(arg0, arg1, arg2, arg3);
5012
5013 CPURegList fp_tmp_list = kCallerSavedFP;
5014 fp_tmp_list.Remove(kPCSVarargsFP);
5015 fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
5016
5017 // Override the MacroAssembler's scratch register list. The lists will be
5018 // reset automatically at the end of the UseScratchRegisterScope.
5019 UseScratchRegisterScope temps(this);
5020 TmpList()->set_list(tmp_list.list());
5021 FPTmpList()->set_list(fp_tmp_list.list());
5022
5023 // Copies of the printf vararg registers that we can pop from.
5024 CPURegList pcs_varargs = kPCSVarargs;
5025 CPURegList pcs_varargs_fp = kPCSVarargsFP;
5026
5027 // Place the arguments. There are lots of clever tricks and optimizations we
5028 // could use here, but Printf is a debug tool so instead we just try to keep
5029 // it simple: Move each input that isn't already in the right place to a
5030 // scratch register, then move everything back.
5031 for (unsigned i = 0; i < kPrintfMaxArgCount; i++) {
5032 // Work out the proper PCS register for this argument.
5033 if (args[i].IsRegister()) {
5034 pcs[i] = pcs_varargs.PopLowestIndex().X();
5035 // We might only need a W register here. We need to know the size of the
5036 // argument so we can properly encode it for the simulator call.
5037 if (args[i].Is32Bits()) pcs[i] = pcs[i].W();
5038 } else if (args[i].IsFPRegister()) {
5039 // In C, floats are always cast to doubles for varargs calls.
5040 pcs[i] = pcs_varargs_fp.PopLowestIndex().D();
5041 } else {
5042 DCHECK(args[i].IsNone());
5043 arg_count = i;
5044 break;
5045 }
5046
5047 // If the argument is already in the right place, leave it where it is.
5048 if (args[i].Aliases(pcs[i])) continue;
5049
5050 // Otherwise, if the argument is in a PCS argument register, allocate an
5051 // appropriate scratch register and then move it out of the way.
5052 if (kPCSVarargs.IncludesAliasOf(args[i]) ||
5053 kPCSVarargsFP.IncludesAliasOf(args[i])) {
5054 if (args[i].IsRegister()) {
5055 Register old_arg = Register(args[i]);
5056 Register new_arg = temps.AcquireSameSizeAs(old_arg);
5057 Mov(new_arg, old_arg);
5058 args[i] = new_arg;
5059 } else {
5060 FPRegister old_arg = FPRegister(args[i]);
5061 FPRegister new_arg = temps.AcquireSameSizeAs(old_arg);
5062 Fmov(new_arg, old_arg);
5063 args[i] = new_arg;
5064 }
5065 }
5066 }
5067
5068 // Do a second pass to move values into their final positions and perform any
5069 // conversions that may be required.
5070 for (int i = 0; i < arg_count; i++) {
5071 DCHECK(pcs[i].type() == args[i].type());
5072 if (pcs[i].IsRegister()) {
5073 Mov(Register(pcs[i]), Register(args[i]), kDiscardForSameWReg);
5074 } else {
5075 DCHECK(pcs[i].IsFPRegister());
5076 if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) {
5077 Fmov(FPRegister(pcs[i]), FPRegister(args[i]));
5078 } else {
5079 Fcvt(FPRegister(pcs[i]), FPRegister(args[i]));
5080 }
5081 }
5082 }
5083
5084 // Load the format string into x0, as per the procedure-call standard.
5085 //
5086 // To make the code as portable as possible, the format string is encoded
5087 // directly in the instruction stream. It might be cleaner to encode it in a
5088 // literal pool, but since Printf is usually used for debugging, it is
5089 // beneficial for it to be minimally dependent on other features.
5090 Label format_address;
5091 Adr(x0, &format_address);
5092
5093 // Emit the format string directly in the instruction stream.
5094 { BlockPoolsScope scope(this);
5095 Label after_data;
5096 B(&after_data);
5097 Bind(&format_address);
5098 EmitStringData(format);
5099 Unreachable();
5100 Bind(&after_data);
5101 }
5102
5103 // We don't pass any arguments on the stack, but we still need to align the C
5104 // stack pointer to a 16-byte boundary for PCS compliance.
5105 if (!csp.Is(StackPointer())) {
5106 Bic(csp, StackPointer(), 0xf);
5107 }
5108
5109 CallPrintf(arg_count, pcs);
5110}
5111
5112
5113void MacroAssembler::CallPrintf(int arg_count, const CPURegister * args) {
5114 // A call to printf needs special handling for the simulator, since the system
5115 // printf function will use a different instruction set and the procedure-call
5116 // standard will not be compatible.
5117#ifdef USE_SIMULATOR
5118 { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
5119 hlt(kImmExceptionIsPrintf);
5120 dc32(arg_count); // kPrintfArgCountOffset
5121
5122 // Determine the argument pattern.
5123 uint32_t arg_pattern_list = 0;
5124 for (int i = 0; i < arg_count; i++) {
5125 uint32_t arg_pattern;
5126 if (args[i].IsRegister()) {
5127 arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX;
5128 } else {
5129 DCHECK(args[i].Is64Bits());
5130 arg_pattern = kPrintfArgD;
5131 }
5132 DCHECK(arg_pattern < (1 << kPrintfArgPatternBits));
5133 arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i));
5134 }
5135 dc32(arg_pattern_list); // kPrintfArgPatternListOffset
5136 }
5137#else
5138 Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
5139#endif
5140}
5141
5142
5143void MacroAssembler::Printf(const char * format,
5144 CPURegister arg0,
5145 CPURegister arg1,
5146 CPURegister arg2,
5147 CPURegister arg3) {
5148 // We can only print sp if it is the current stack pointer.
5149 if (!csp.Is(StackPointer())) {
5150 DCHECK(!csp.Aliases(arg0));
5151 DCHECK(!csp.Aliases(arg1));
5152 DCHECK(!csp.Aliases(arg2));
5153 DCHECK(!csp.Aliases(arg3));
5154 }
5155
5156 // Printf is expected to preserve all registers, so make sure that none are
5157 // available as scratch registers until we've preserved them.
5158 RegList old_tmp_list = TmpList()->list();
5159 RegList old_fp_tmp_list = FPTmpList()->list();
5160 TmpList()->set_list(0);
5161 FPTmpList()->set_list(0);
5162
5163 // Preserve all caller-saved registers as well as NZCV.
5164 // If csp is the stack pointer, PushCPURegList asserts that the size of each
5165 // list is a multiple of 16 bytes.
5166 PushCPURegList(kCallerSaved);
5167 PushCPURegList(kCallerSavedFP);
5168
5169 // We can use caller-saved registers as scratch values (except for argN).
5170 CPURegList tmp_list = kCallerSaved;
5171 CPURegList fp_tmp_list = kCallerSavedFP;
5172 tmp_list.Remove(arg0, arg1, arg2, arg3);
5173 fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
5174 TmpList()->set_list(tmp_list.list());
5175 FPTmpList()->set_list(fp_tmp_list.list());
5176
5177 { UseScratchRegisterScope temps(this);
5178 // If any of the arguments are the current stack pointer, allocate a new
5179 // register for them, and adjust the value to compensate for pushing the
5180 // caller-saved registers.
5181 bool arg0_sp = StackPointer().Aliases(arg0);
5182 bool arg1_sp = StackPointer().Aliases(arg1);
5183 bool arg2_sp = StackPointer().Aliases(arg2);
5184 bool arg3_sp = StackPointer().Aliases(arg3);
5185 if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) {
5186 // Allocate a register to hold the original stack pointer value, to pass
5187 // to PrintfNoPreserve as an argument.
5188 Register arg_sp = temps.AcquireX();
5189 Add(arg_sp, StackPointer(),
5190 kCallerSaved.TotalSizeInBytes() + kCallerSavedFP.TotalSizeInBytes());
5191 if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits());
5192 if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits());
5193 if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits());
5194 if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits());
5195 }
5196
5197 // Preserve NZCV.
5198 { UseScratchRegisterScope temps(this);
5199 Register tmp = temps.AcquireX();
5200 Mrs(tmp, NZCV);
5201 Push(tmp, xzr);
5202 }
5203
5204 PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
5205
5206 // Restore NZCV.
5207 { UseScratchRegisterScope temps(this);
5208 Register tmp = temps.AcquireX();
5209 Pop(xzr, tmp);
5210 Msr(NZCV, tmp);
5211 }
5212 }
5213
5214 PopCPURegList(kCallerSavedFP);
5215 PopCPURegList(kCallerSaved);
5216
5217 TmpList()->set_list(old_tmp_list);
5218 FPTmpList()->set_list(old_fp_tmp_list);
5219}
5220
5221
5222void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
5223 // TODO(jbramley): Other architectures use the internal memcpy to copy the
5224 // sequence. If this is a performance bottleneck, we should consider caching
5225 // the sequence and copying it in the same way.
5226 InstructionAccurateScope scope(this,
5227 kNoCodeAgeSequenceLength / kInstructionSize);
5228 DCHECK(jssp.Is(StackPointer()));
5229 EmitFrameSetupForCodeAgePatching(this);
5230}
5231
5232
5233
5234void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
5235 InstructionAccurateScope scope(this,
5236 kNoCodeAgeSequenceLength / kInstructionSize);
5237 DCHECK(jssp.Is(StackPointer()));
5238 EmitCodeAgeSequence(this, stub);
5239}
5240
5241
5242#undef __
5243#define __ assm->
5244
5245
5246void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
5247 Label start;
5248 __ bind(&start);
5249
5250 // We can do this sequence using four instructions, but the code ageing
5251 // sequence that patches it needs five, so we use the extra space to try to
5252 // simplify some addressing modes and remove some dependencies (compared to
5253 // using two stp instructions with write-back).
5254 __ sub(jssp, jssp, 4 * kXRegSize);
5255 __ sub(csp, csp, 4 * kXRegSize);
5256 __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize));
5257 __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize));
5258 __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
5259
5260 __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
5261}
5262
5263
5264void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
5265 Code * stub) {
5266 Label start;
5267 __ bind(&start);
5268 // When the stub is called, the sequence is replaced with the young sequence
5269 // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
5270 // stub jumps to &start, stored in x0. The young sequence does not call the
5271 // stub so there is no infinite loop here.
5272 //
5273 // A branch (br) is used rather than a call (blr) because this code replaces
5274 // the frame setup code that would normally preserve lr.
5275 __ ldr_pcrel(ip0, kCodeAgeStubEntryOffset >> kLoadLiteralScaleLog2);
5276 __ adr(x0, &start);
5277 __ br(ip0);
5278 // IsCodeAgeSequence in codegen-arm64.cc assumes that the code generated up
5279 // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
5280 __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
5281 if (stub) {
5282 __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
5283 __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
5284 }
5285}
5286
5287
5288bool MacroAssembler::IsYoungSequence(Isolate* isolate, byte* sequence) {
5289 bool is_young = isolate->code_aging_helper()->IsYoung(sequence);
5290 DCHECK(is_young ||
5291 isolate->code_aging_helper()->IsOld(sequence));
5292 return is_young;
5293}
5294
5295
5296void MacroAssembler::TruncatingDiv(Register result,
5297 Register dividend,
5298 int32_t divisor) {
5299 DCHECK(!AreAliased(result, dividend));
5300 DCHECK(result.Is32Bits() && dividend.Is32Bits());
5301 base::MagicNumbersForDivision<uint32_t> mag =
5302 base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
5303 Mov(result, mag.multiplier);
5304 Smull(result.X(), dividend, result);
5305 Asr(result.X(), result.X(), 32);
5306 bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
5307 if (divisor > 0 && neg) Add(result, result, dividend);
5308 if (divisor < 0 && !neg && mag.multiplier > 0) Sub(result, result, dividend);
5309 if (mag.shift > 0) Asr(result, result, mag.shift);
5310 Add(result, result, Operand(dividend, LSR, 31));
5311}
5312
5313
5314#undef __
5315
5316
5317UseScratchRegisterScope::~UseScratchRegisterScope() {
5318 available_->set_list(old_available_);
5319 availablefp_->set_list(old_availablefp_);
5320}
5321
5322
5323Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
5324 int code = AcquireNextAvailable(available_).code();
5325 return Register::Create(code, reg.SizeInBits());
5326}
5327
5328
5329FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
5330 int code = AcquireNextAvailable(availablefp_).code();
5331 return FPRegister::Create(code, reg.SizeInBits());
5332}
5333
5334
5335CPURegister UseScratchRegisterScope::AcquireNextAvailable(
5336 CPURegList* available) {
5337 CHECK(!available->IsEmpty());
5338 CPURegister result = available->PopLowestIndex();
5339 DCHECK(!AreAliased(result, xzr, csp));
5340 return result;
5341}
5342
5343
5344CPURegister UseScratchRegisterScope::UnsafeAcquire(CPURegList* available,
5345 const CPURegister& reg) {
5346 DCHECK(available->IncludesAliasOf(reg));
5347 available->Remove(reg);
5348 return reg;
5349}
5350
5351
5352#define __ masm->
5353
5354
5355void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
5356 const Label* smi_check) {
5357 Assembler::BlockPoolsScope scope(masm);
5358 if (reg.IsValid()) {
5359 DCHECK(smi_check->is_bound());
5360 DCHECK(reg.Is64Bits());
5361
5362 // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
5363 // 'check' in the other bits. The possible offset is limited in that we
5364 // use BitField to pack the data, and the underlying data type is a
5365 // uint32_t.
5366 uint32_t delta = __ InstructionsGeneratedSince(smi_check);
5367 __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
5368 } else {
5369 DCHECK(!smi_check->is_bound());
5370
5371 // An offset of 0 indicates that there is no patch site.
5372 __ InlineData(0);
5373 }
5374}
5375
5376
5377InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
5378 : reg_(NoReg), smi_check_(NULL) {
5379 InstructionSequence* inline_data = InstructionSequence::At(info);
5380 DCHECK(inline_data->IsInlineData());
5381 if (inline_data->IsInlineData()) {
5382 uint64_t payload = inline_data->InlineData();
5383 // We use BitField to decode the payload, and BitField can only handle
5384 // 32-bit values.
5385 DCHECK(is_uint32(payload));
5386 if (payload != 0) {
5387 int reg_code = RegisterBits::decode(payload);
5388 reg_ = Register::XRegFromCode(reg_code);
5389 uint64_t smi_check_delta = DeltaBits::decode(payload);
5390 DCHECK(smi_check_delta != 0);
5391 smi_check_ = inline_data->preceding(smi_check_delta);
5392 }
5393 }
5394}
5395
5396
5397#undef __
5398
5399
5400} } // namespace v8::internal
5401
5402#endif // V8_TARGET_ARCH_ARM64